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» ABSTRACT

We investigate relativistic heavy-ion scattering in terms of a coherent
droplet model, where the colliding nuclei are treated as droplets of nuclear
matter with no internal structure. The interaction between nuclei is assumed
to be proportional to the amount of interpenetrating matter. We take the matter
diétribution from electron scattering experiments, and reiate the interaction
parameter by optical theorem to the total cross section.

We have performed_calculations.at incident kinetic énergiés at 2.1 GeV/
nucleon for 1*He, 120, and 16O, and obtain a general diffréction pattern‘in the

differential cross section. We also show some interesting scaling property among

heavy-ion scattering,.as compared to perticle-nucleus or black-sphere scattering.
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I. INTRODUCTION

There are some interesting speculations on the interaction of hadron
matter at relativistic energies, such as the energies now available at Bevatron ﬁp to
2.1 GeV/nuc_leon.l Due to the large coherent aeggregation of nucleons in the
colliding nuclei, & state of enormous energy density may be obtained, where
many species of hadrons and mesons may coexist. Aside from this speculation,
the properties of nucleus-nucleus scattering are of iﬁtereét in many fields,
such as cosmic ray physics, particle physics and also nuclear physics.

In cosmic ray measurement, the secondary beam resulting from collisions
of the primary cosmic ray with atmospheric nuclei must be separated out in
order to study the'composition of the primary cosmic ray. Such correction to
the data requires a detail knowledge of the interaction length and fragment-
ation of nucleus-nucleus collision.

In terms of "nuclear democracy",2 & nucleus with A nucleons is just an
elementary particle with baryon number A. It is therefore interesting to study
the particle physics aspect of nucleus-nucleus interaction. If the asymptotic
region is attained, then a test of general concepts, such as limiting frag-
mentation, facterization, and diffractive dissociation should be possible.
However, these reaction phenomenons usually require change of many degrees of
freedom of the system; their detailed treatments are quiﬁe complicated.

In this report, we shall study a simple aspect of heavy-ion collision,
i.e., the elastic scattering, which involves minimal change of degreé of
freedom. In keeping with the "nuclear democracy", our main interest is to see
whether the nucleus-nucleus elastic scattering could be interpreted as simple
hadron, e.g., proton-proton and pion-proton, collisions. It is well known that

high energy elastic scattering at small angles generally depends only on the
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matter distributions of.the colliding oﬁJects. iFor nucleus—nﬁéléus collisibn,
the diffraction peék in the differeﬁtial cross section, as we shall see, is
surﬁrisingly independent of the detail of the matter distribution. To demon-
strate this point fﬁrther, we compare our resulfs-to the extreme case of a
sharp cut-off model, where interaction takes place only wifhin a cut-off impact
peremeter. We also predict a scaling property in heavy-ion differential cross
sections, which is compared to proton-proton and proton-nucleus scattering

measurements.

II. BASIC FORMULATION

High—energy'hadron elastic scattefing from the nucleus has been.quite
successfully interpreted in terms of the multiple—diffracﬁion theory of Glauber.3
Recently the Glauber theory has been genéralized by Czyz and Maximonh to the case
of composite-particle scattering at high energies. They have obtained a complete
multiple scattering series in terms of elementary scattering amplitudes between
the basic constituents and the densities of the composite particles. Such a
series may be.reduced to a simple form in the optical limit when the numbers of
constitufents (A and B) are large and the eleﬁentary)scattering cross ‘section
O is bound as g N(AXB)-I. Czy% and Maximonh have also presented.some model
studies of the sensitivity of the diffraction pattern to‘fhe input parameters,
both in mu;tiple—scattering calculation and iﬁ the optical limit.

In this note, we would, however, like to take a slightly different point
of view concerning nucleus-nucleus scattering at very high engrgies, although the
formulation itself is equivalent to the optical limit of the Glaubekr thedry. We

think that it is useful, at such energies, to disregard'the internal structure or
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constitutents of the nﬁcleés and take the nucleus to be a distribution of
nuclear matter. The collision of two nuclei could then be discussed on the

same footing as proton-proton scatterning, where no quarks or partons are neces-
sary in the interpretation of their elastic scattering.

This coherent droplet model was first proposed by Chou and Xangs in
their discussion of elementary particle sééttering. Durand and Lipes6 have.
applied the model to proton-proton elastic scattéring and have shown a dif-
fréction pattern which has receﬁtly been verified by.experiments at CERN.7
With this success, it is therefore of particular interest to study this model
further in nucleus-nucleus high energy elastic scattering which may shed some
light in the similérity in the hadron and nuclear interactions.

Following the coherent droplet model, we assume that 1) the elastic
scattering is primarily diffractive, resulting from the absorption of the in-
cident wave into inelastic channels, and 2) the absorption is proportional, for

any impact parameter, to the total smount of interpenetrating nuclear matter.

From assumption 2), we have th S-matrix at impact parameter b as
s(®) = exp [1x foor 5, BopBEn] (1)

->
where x is a possibly energy-dependent proportionality constant and p(b) are
the two-dimensional densities (or the blackness of the ob,jects).5 In analogy
with the absorption of a wave propagating through a medium, we may write the

complete elastic scattering amplitude as
-> ik e > > e
F(q) = 1 d2b exp[iq * b] {l - s(b) } ! (2)
. .
where Q is the momentum transfer, k is the incident momentum, and q

= 2k2(l—cos ). We note that, in the optical limit of the Glauber thoery,
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we have an identicai expression, Eq. (2), for the scattering amplitﬁde. In the
case of the Glauber theory, the parametér x is complex and related to the nucleon-
nucleon scattering Amplitudes.h In our calculation, x is simply taken to be a
constant to be determined by the total cross section.

Equation (2) is a convenient starting point fof calculations using impact- )
parameter fbrmalism. As an alterhative, we would like to use angular momentum
representation (or the partial wave expansion). To carry out the transformafion,-

we first define the form factor G(E) as two dimensional Fourier transform of

the density

= a2e 43 - |

p(b) =f =2L=e7%"%a(a) . - (3)

- J (2m)
We may then integrate over B! in Eq. (1) and obtain
- 2+
s(®) = exp [1x 32 3P ¢ Qe (D] . (%)
) 2 A B
. ()

If we further assume that the density is spherically (or conically) symmetric,
then G(E)vis independent of the direction of E{ This allows us to integrate the

exponent in Eq. (4) over the direction of E; we have

= : d _
5(b) = exp [le%é%y 1) Glaeg@)] (5)
which is independent of the direction of b. The function Jo(qb) is the zeroth order

Bessel function. We may convert Eq. (5) into a partial wave scattering amplitude by -

introducing the following correspondence: (kb +> £+ %0. ‘We therefore have PQ(cos 8) -
~ Jo(qb) for 6 small and large %, -

2;:(22+1) ~f 2k%bdb » ' (6)
(¢]
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and the partial wave amplitude S(b)- SQ(k) as

T |
() = exp [1x{g) fatcos oy (cos O (@0 (@] . (D

Finally we may write the complete scattering amplitude F(q) as
l . - .
F(q) = ik }E: (22 + 1) {exp[ixBQ(k)] - l}.PQ(cos 8) (8)
L _ 4
where 0 is the center of mass angle, £ is the orbital angular momentum. The
phase shift GQ(R) is related to the projection of product form factor, or the

phase shift function By (k), by 28y (k) = ixBy(k). Here By (k) is given by

2
By (k) = (22{?),[1 d(cos 8)Py(cos 6) GA(q) GB(q) s (9)
-1

which is identiéal to the following expansioh
_far |
¢,(a) Cyla) -(ke);‘(ezu) By (k) By(cos 8) . (10)

We may interpret GA(q)GB(q) as the probability that the colliding heavy ions
couid sustain a momentum transfer q without being broken-up. It is also inter-
esting to note that Eq. (8) is formally identical to the case of a single-
particle scattering from a composite system, where Bg(k) would be fhe partial

wave amplitude associated with the form factor of the target alone.

We have now completed our basic formulation. For the differential cross
2

section, we find it useful to introduce the invariant parameter t = _qQ  and the
invariant differential cross section as
do _ T 2 '
w5 IF(q) ¢ . (11)

e
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For reference, the c.m. anéﬁlaf distribution is do/df = kz(dc/dt). The
advantage of using the invariant crosé section is that, in the asymptotig
region where the parameter x is a constant, it becomes independent of incident
energy.bThis can be best seen froﬁ EQ. (2) where F(q)“k if s(b) is independent
of energy.

The total cross section is given by the optical theorem as

Ty op (k) = %1'- Im[F(q=0)] . B (12)

For simplification, we‘first take the parameter x to be purely imaginary:
X = ixo, where xovis real and can be determined from a total cross section
measurement. Explicitly we have
’ _2nm
Ior(B) = 3 PUC IR expl-x B ()1} (13)

4
In the asymptotic energy region, the total section may be taken to be simply

'~ the geometric value:
_ 2
Ogot = 2TM(Ry+Rp) . (1)

where RA and RB are the radii of the colliding nuclei.  This choice of the
channel radius is probably consistant with the assumption that the nucleus
would break up whenever»there is any appreciable amount of overlaﬁ of the
nuclear matter. This range of interaction is also consistant with low-energy
optical‘model calculation for heavy-ion elastic scattering.

We may generalize the above discussion to allow the parameter xo.ﬁo be

complex. Let us replace x = (B+i)xo in Eq. (1). Equation (8) for the scattering

amplitude is unchanged. However, the total cross section now does not uniguely
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specify our parameter. We have

Utot = 12{“_22(224.1){1 - e@[-xoBQ(k)] cos (BXOBQ)}' (15)
L

where we need an estimate of X, or B. We first note that both.the differential
and total cross sections are independent of tﬁe sign of B. Furthermore,

the parameter B would generally affect the differential cross section only

near diffraction minime, but does not give rise to substantial change in the
diffraction pattern, as shown by Czyz and Maximonh and alsc by Durand and

Lipes.6 In our calculation, we therefore set a value of B 'and use Eqs. (1k4)

and (15) to determine x_ . As we shall show, the diffraction pattern presists even
for B to be as large as 0.5. More interestingly, we could determine the sign of B
from experiment by nuclear-Coulomb interference at smallvangles, which can

then be compared with the real part of free nucleon-nucleon forward amplitude.
This may give some insight to the degree of transparency in nucleus-nucleus

scattering, as compared to nucleon-nucleon scattering.

III. MODEL CALCULATION
We would now like to apply the formulation to scattering of hea?y
ions. Since there are beams only of light nuclei availableto test this model,
we would like to restrict ourselves only to these nuclei. Generally we may
represent their density distribution by Gaussian or a simple modified Gaussian
form. In *this case the numerical calculation éimplifies greatly by allowing analytic
expressions for BQ(k) in Eq. (8). :For other nuclei where a Woods-Saxon density

distribution may be more appropriate, the impact parameter formalism may be simpler.
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Let us use the following modified Gaussian form factor9
6.(a) = [1- mrok—a? q2] expl- a2 q2/k] (16)
i 2(2+3a,) m,id PL= 8,14 .

where i = A or B, a; =.(Ai-h)/6 with Ai as the number of nucleons in the nucleus
i. The parameters a, and a, are determined from electron scattering. To

simplify the notations, let us introduce

(o % 2 . )
% T 2(2+3q) ®m,i | (17)
. L |
b, = ,ac,i/h . | (18)

From Eq. (10), we obtain the following expression for'BQ(k):
(g_n_) By(k) = exp[-u] {[l-—V+w+ Q(vfw) + VQ(Q?)] ig(u)
: 2

k2:

+ [v-2u+ iggillﬂq i2+l(u) + wig+2(u)} ; (19)
where we have defined
- 2 .
u = 2(b,+by )k _ | (20)
) ,
v =‘2(aB+aB)k (21)
and ' w = ba a it | . (22)
A%B - |

The functions iQ(u) are the modified spherical Bessel functions of the first

kind.lo The nuclear r.m.s. radius Ri is related to CH and & i by
. b4

o 3(2+5a, )
R, = a - (23)
‘1 \/ 2 ( ——2"'3(11 )" m ’i .
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It might be useful to point out that the partial form factor Bg(k) in
Eq. (19), which has been extracted directly from Eq. (10), could also be

obtained by using

‘ "o 2. 2 o '
By (k) = ) (’; ’; ’é) fg..(k):f,m(g-;) (24)

2"2'
where the round bracket indicates a Wigner 3-j symbol,ll\ and the functions

fQ(k) are the partial form factérs associated with the individual nucleus, i.e.,
6y la) = 3 (2241) (k) By(cos 8) . , (25)
' ' 1Y .

We note again that our formulas are applicable to particle-nucleus
scattering, if one of the form factors is properly chosen. In the Glauber theory, the
projectile form factor will be related to nucleon-nucleon eiastic scattering amplitude.

Before we discuss our results, we would like to recall the diffraction

pattern of a black-sphere scattering.l2 That is, if we take

s(p) =0 b < R1+R2
=1 b >R +R, , ' o (26)

the ratio of the differential cross sections is given simply by

NEAT G
d d 1
EE -

where Jl(qR) is the first order Bessel function. The factor 4 is due to the fact

that lim J(x)/x = %-. The effective radius is R = Rl + R,. Equation (27) displays
x+0 )

the well-known Fraunhofer diffraction. The cross section is sharply peasked in the

forward direction, with minima occuring at the zeros of Jl(qB). We shall see that,
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in the case of nucleus-nucleus and particle-nucleus coilisions, this diffraction
. pattern is very rapidly attained, especially when the nucleus has a relatively
sharp surface region. In the next section, we shall discuss the resulfsAof our
calculatibn and comparé them to particle-nucleus and the black-sphere scattering.
' In our calculations, we do not take into account the Coulomb scattering, which

- is important only at very small angles at such high energies for light nuclei.
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IV. NUMERICAL RESULTS
In this section we.shall discuss some general'features of heavy-ion
scattering. For our examples we would like to restrict ourselves to the light

nuclei, such as hHe, 120, and 160. Their density distributions have been well

9

studied by electron scattering. The parameters for the form factors, as repre-
sented by Eq. (16), are given in Teble I. We are first interested in the behavior
of the partial wave form factors fQ(k)vin Eq. (25) and the phase shift function
Bg(k) in Eq. (10) or (19); two such examples are given in Fig. 1, where we
notice that the BQ(k) and fQ(k) do fall rapidly after a transient region of
angular momentum, which would be‘sehsitive té the nuclear surface. However, as we
shall see, the smooth fall off in Fig. 1 results in quite similar differential
cross section to a sharp cut-off model. This is probably due to a very large
number of partial waves contributing to thé differential cross section calEulations,
so that the transient region is relatively narrov.

With thevphase shift functions Bg(k); wé may obtain the scattering
amplitude F(q) in Eq. (8), provided that the parameter x is determined from Eq. (13)
or (15). The values of the parameter x, the total cross section c(tot)(k) and total
elastic cross section cel(k) are given in Table II, where we'alsé show the ratio

c,el/ato’c'
depends on the velue of x, but also the diffraction pattern. In Fig. 2, we show

We note that not only thé magnitudes of the total elastic cross sectibn_

the dependence of the total and elastic cross sections, and the position of the first »

minimum in the differential cross section as functions of the parameter x. The

el’ "tot
probability (see Eq. (1)). For different value of x, the differential cross

ratio 0 _/o approaches 0.5 for very large X, which indicates strong absorption

section is very different as shown by Czyz and Maximonh in their study of the
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composite particle scattering. (Here we refer to their study of the effects of
the subunit size which they renormalize. Their parameter ABo is related
to x in our model.) In Fig. 2, it is also interesting to see that the position

of the firet minimum, let us call it t is not determined by the size of the

min?®
colliding objects alohe, Iﬁ is clear that Gtot’ oel and tmin ere all inter-
dependent through the parameter x. Howevéf, it Utot or cel is detérmined by
the-size of the colliding obJects, the position tmin may then depend on the

size alone.

Wé may now calculate the differential cross sectons, which are
shown in Fig. 3. The solid lines indicaﬁe the purely diffractive scattering
(B=0); the daéhed lines show the results with a larée value of B. Other inter-
mediate values of B, e.g. B = 0.2, would give slightly more pronouncedlminima
than those shown by the dashed line. Oﬁr purpose is to show that, even for such
large B, the-diffraction pattern still remain, except at very lafge momentum
transfer. The maxima.are not, however, affected by ihe value of B. We note
- again that the diffraction patterns shown in Eig. 5 are independent of the
incident energy (see the discussion following Eq. (11)).

In Table IIT, we.shoﬁ'some qnéntities of'interest related to the
differential cross section (%%’c.m. similar to Fig. 3. This is useful for
comparison ﬁo other experimental results generally shown in terms of the non-
invariant form (dc/dn)c.m.' It is interesting to note that the values of the
product gR at the mihima for all the reactions remain constant and rather close to_
the black-sphere values (seg the discussion following Eq. (27)). This feature is
particulérly interesting if we recall that the Bg(k) in Fig. 1 do not sgeﬁ.to have a

very sharp cutoff in £. Nevertheless, a cutoff is shown in Fig. 1 may be deemed

"sharp" as far as producing the minima is concerned.



~13- ' - LBL-1988

We now compare thevregion of mementum transfer near the first diffraction
minimum of heévy-ion scattering to those of particle-nucleus and proton—protbn
scattering inIFig. 4. These three types of scattering cover a very large range
of mementum transfer. The large size of heavy ions eﬁphasizes the importance
of the.very small momentum transfer region.

We have now shown the general behavior of the differential cross section
in heavy-ion scattering. The most interesting feature of our study is the
regularity of the diffraction minima, expressed in terms of the values of gR,
as shown in‘Table ITII. To illustrate this property further, we plot the relative
cross section (dG/dt)/(dc/dt)t=0 versus qR in Fig. 5. It is quite interesting
that the cross sections seem to scale, especially within the first minimum; We
notice that the cross section of l60--]'60 is nearly equal to that of lQC—J“QC
‘scattering at all momentum transfer. fhis seems to be a limiting case for heavy-
ion scattering. 1In Fig. 5, we also compare our results to black-sphere scattering.
Although the minima are predicted by the black-sphere model, the magnitude'is
_ generally too large at large momentum transfer. There is more large-angle
scattering in the black-sphere model, due to the sharp surfaée. For a nucleus
with more diffused surface, such as hHe-hHe case, the large-angle scattering is
relatively smaller, It is also interesting, at ﬁhis point, to point out some
siﬁilarities between the particle-nucleus and the nucleus-nucleus scattering. We'
13

note from the high energy data of P-hHe, p—l2C and p—l60 experiments™ - that dif-

fraction minima also occur quite close tq the values gifen by the sharp cut-off
model . vThe'relative differential cross section, as plotted in Fig. 5, at;the

second maximum seems to have an asymptotic value of 0.2Xl0“2, The large-angle
scattering in particle-nucleus scattering becémeé much smaller than that in nucleus-
nucleus scattering; this is consistent with our observation thaﬁ proton has a much
more diffused surface. These particle-nucleus scatteriﬁg have been discussed by

several authors in the framework of the Glauber theory.h’lh
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Finally we woﬁld like to demonstrate 6ne more property of.the model.
If we increase or decrease the radius of hHe, the total cross section (thérefore‘
the absorption parameter x) and the total elastic scatterings cross section will
all be changed, But the plot in the coordinate; 4R of Fig. 5 will not be very
much changed. We show such an effect in Fig. 6, where we have increased or
decreased the fadius by about 10%. The diffraction pattern remains the same.
This propérty would.a;so appear in the optical limit calculation of the Glauber
theory as applied to particlé—nucleus scattering at high.energies. It is worth-
while to note that the form factors are quite different in the momentum transfer
region involved in the calculation, as shown in the inset of Fig. 6. "It is
importaht to see thaf this specific feature will not oceur if we Just make the
nuclear matter dénser or looser as is done in Ref. U, in which case the parameter
x (or ABo) is not\éhanged; we, however, have changed x to give the new total

cross section as specified by Eq. (14).
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V. CONCLUDING REMARKS
We have investigated the general behavior of heavy—ion scattering at
'reiétivistic energies. In this asymptotic region, we have shown that there
is a'scaling property in the differential cross section. It is appropriate to
reiteraté the purpose of this study: We are interested in the elementary-
particle aspect of nucleus-nucleus collisions.” We postulate that the elastic
scéttering is determined by the matter distributions of the colliding nuclei,.
and that scattering phenomenon can be treated on the same footing as prbton—
proton or pion-proton scattéring. The degrees of freedom of the "subunits" in
the nucleus can be completely neglected. The nucleus-nucleus scattering is
direétly related to electron scattering through the use of the form factors. In
this model, the total cross section and the complete differential cross section
are directly interrelated through the absorption parameter; this is more general
than the optical theorem where the total cross section is related only to the
imaginary paft of the forward scattering amplitude.

To test this model, we suggest the following experiments: l)_scattering
of nuclei with wvery diffused surface, e.g. deutron or heljum, to study the large
momentum transfer, and 2) scattering of nuclei heavier than 12C to study the
aSymptotic behavior of the diffraction pattern. Nuclei heavier than 16O would
generally have a similar, or sharper, diffuseness on the surface and, therefore,
should give similar diffraction pattern. It would also be interesting to use
beams of variqus'enefgies to determine the energy where the interaction Becomés
asymptotic. There is evidence from fragmentation experiments that tge asymptotic

15

region is reached at as low as 1 GeV/nucleon.
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In our formalism, we have not made use of the assumption of pre-
existing subunits, such as nucleons. This model‘should be valid since we
are dealing with elastic scattering where no internal degrees of freedom are
disturbed. A microscopic treatment,‘suéh as the Glauber theory, is certainly
more useful if nucleonic correlation effects are important and can be properly
taken into account. In this case, the nuclear structure information may be
extracted from Suéh experiments. It would be particularly interesting if the
effects of nuéleonic correlétions become enhanced in heavy—ion scattering due
fo some coherent collisioﬁ processes, which are not presenﬁ in particle-nucleus
scattering. This possibility should be investigated when such data are available
in the near future.

We would also like to mention that & similar approach has Been applied

to low-energy heavy-ion elastic scattering.l6
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Table I. -Parameters for Nuclear Form Factors

.~ LBL-1988

Nucleus & (fm) ac(fm) o d<r2> (fm)
L ' - a

He 1.31 1.31 0.0 1.61
8¢ 1.66 1.59 % 2.45
16, L 1.76 1.70 2 2.6k

®Note that this value is used to calculate the r.m.s. radius only; the

parameter 0=0 in Eq. (16), in the case of be.




Table II. Absorption Parameters and the Corresponding Total and Total Elastic Cross Sectionsa
o}
1 _&el
X, Tyot (mb) _Oel (b Tt
the geometric value)

“e - Yye 5.6 x 10° 630 241 0.382
b - 12 1.0 x 10° 1030 407 0.394
“he - 016 1.1 x 1_0h 1130 L5 1 0.39%
_ )y ,
120 - 12 1.7 x 10 1500 605 0.403
126 - 16, 1.8 x 10° 1620 655 0.40k

4 _
164 _ 16, 1.9 x 10 1750 706 0.%03

aFor B =0.2.
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Table IIT.

Some Quantities of Interest in the Differential Croess Seétions.a

. Incident
Differential Differential Differential Momentum -
Reactions Cross Section Position of Cross Section Position of Cross Section in C.M.
' at 6 =0 1st Minimum at 2nd Maximum 2nd Minimum at 3rd Maximum System
dg ,barn : do ,barn R dog ,barn, GeV
dq ( ST ) R ch(degree) dq ( sr ) ak ecm(degree) an ( sr ) ( c ) R
hoo b 2, ' 0.07 - 3.9
He - 'He 3.08 x 10° 3.9 4.6 1.7 7.4 8.7 . 07 .
bre - 12 2.15 x 10° 3.9 2.13 15.1 7.2 3.9 0.8 - 6.35
hHe _ 160 3.18 x 103 3.9 1'8,4 21.7 7.2 3.)4 l-l. 6-99
12, _ 16, 2.38 x 10% 3.9 0.78 158.8 7.1 1.4 12.1 13.28
l60 - 16o 3.71 x 101‘ 3.9 0.65 296.1 7.1 1.2 18.6 15.4
Black-Sphere Scattering 3.8 T.1

“For B =0.2.

g6 T-1d1
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ﬁIGURE CAPTIONS
Fig. l. ¥'P§?§§al'Qéve expansion 6ffnﬁ§lear’form factors fh(k?.ﬁnd the ph&serui'
shift functions By (k) as defined 5y Egqs. (10) and (25). The dashed line is
fg(u) and the solid line is Bg(k). The form factor fg(u) is essentially the
phase shift function in particle-nuclgus scattering. These functions are
_constant at small £ and vanish after transition near the value 2 = kR.
Fig. 2. The total cross section and the total elastic cfoss section as a function
of the absorption parameter xo; For thié illustration Qe take B = 0. For
very large Xy the ratio.cél/otot approaches 0.5 as given by a black-sphere
scattering. The position of thé first minimum tmin aléo‘depends on the

parameter X, -

12 12

Fig. 3. Differentiel cross sections for hHe-hHe, hHe-— C and ;20— c elastkc
scattering. The solid line is obtained using a purelyvihaginary x, i.e.,
x = ix_; the dashed line corresponds to x = (B+i)xo, with a large real part
B = 0.5. The real part does not affect the diffraction pattern very much,
except aﬁ the minima or large momentum transfer. The diffraction patterns
shown here are independent of the incident energy. g

. Fig. k. Comparison of heavy-ion scattering with other types of séattering.
The regions of ipterest are the diffraction patterns within the second
maximum. Heavy-ion scattering covers a very‘different momentum transfer
region. The pfotpn—proton scattering is from Ref. 6 and T; the p—hHe and

p—l60 calculations in the optical limit are from Ref. 4. The P-P scattering

7

data drops by a factor of 107" at the second maximum; the smaller momentum
transfer region is not reproduced here. Note that the cross sections are in

arbitrary unit.
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Fig. 5. Differential cross sections in "scaiing coordinates”". We plot feléﬁive
cross section,(do/dt) to the forward cross section (do/dt),_, » versus
aR, where q is the momentum transfer aqd\R is the effective r;dius R = Rl _
+ R2. The differential cross sectidns seeﬁ to scale. The 12C-lzc, 12C-l60
and 160—160 are essentially indistinguishgble on thié plot. The hHe

?

scattering diviates froﬁ the symptotic form, probably due to.its diffused
surface. The long dashed line is the prediction of a sharp cut—-off model
(black-sphere scattering).

Fig. 6. Test of sensitivity of the "scaling plot" to changes of nuclear radius
for hHe-—hHe scattering. The form factors are showﬁ in the upper right inset.
Itiis clear that alfhough the angular distribution are different, the

"scaling plots" remain nearly identical.
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Differential cross section
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Relative differential cross section
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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