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VECTOR ANALYSIS

1. HISTORICAL SKETCH (The following is a resume of the Historical Introduc-
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tion to C. E. Weatherdurn's "Elementary Vector Analysis'".)

2. " The method of subjecting vector quantities to scalar algebra by resolution .
into three components is due to Descartes (1594-1650)., The need of a calculus - -
for dealing directly with vectors has.long been recognized; Leibnitz made an
attempi, but with little success (1679). In 1806, Argand showed how a geomet- ..
rical representation could be given to ‘the complex number. This was-important

to the theory of complex variables; but gave the wrong impression that the
theory of real vectors is necessarily dependent upon that of complex numbers.
This idea has not entirely disappeared. In 182A, M3hius, one of Gauss' pugils,
Published his "Baryeentrisches Calecul”. This was a forerunner of more general
analysis by Grassmann, In 1832, Bellavitis published "Calcolo delle Eguipol-
lenze", which deals systematically with geometric addition and equality of
vectors. In 1834-44, Hamilton produced his "Quaternions", and at the same y
time, Grassmann preduced his "Ausdehnungslehre'". These authors, working inde- .
pendently, and along different lines, developed similar analyses.

3« The quaternion is a sort of "sum", or complex of a scalar and a vector,
although originally defined as the "quotient" of twc vectors. The "Ausdehnung--:
slehre" is an algebra of geometric forms.

4. Tait, (1831-1901, Scotch), was a friend of Hamilton, and 2 strong exponent
of quatersions. He wrote a text, (1867), "Elementary Treatise on Quaternicns'.

5. Neither Hamilton's nor Grassmann's system met the needs of physicists or
applied mathematicians, being too general and too complex for the requirements
of ordinary calculations, ' "The ideas involved in the scalar and .vector gquan-
tities of mechanics and physics are much simpler than those of Hamilton's
theory, in which imaginaries play a large part, and vectors and scalars appear
as degenerate quaternions rather than in their own right.”

6. The feeling hecame general that a simpler system was needed. Various men,. - .
in different countries, developed identical analyses, asfar as elements and
functions are concerned. The differences lay only in terminclegy and notation.
In Germany, the men who made noteworthy contributions were F8ppl, Abraham,
Bucherer, Fischer, Ignatowsky, and Gans: in England, Ollver Heaviside: and in

the USa, ¥Willard Gibbs. :

7. Gibbs was familiar with the work cf-Grassmann and Hamilton, and, realizing
the need of a simpler system, developed what he called the Vector Analysis.

He published privately, for his students, a pamphlet entitled "Elements of
Vector Analysis". This was not formally published until 20 years later, when
he reluctantly consented to the publication of a fairly complete treatise. He
Wwas reluctant because he considered it to be only a special adaptation of the
work of others. This was true of some parts of the book, but he contributed
largely in systematizing the subject, and advanced it in certain fields.

8. Oliver Heaviside, in England, independently developed an almost identical
system, for use in his work in Electromagnetic Theory.

9. Tait, in Scotland, objected violently, and a eontroversy betwees the quater—
niorists and vector analysists was started, which lasted for several years.
Vector Andlysis won out, simply because it is the more usable system.
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10. Dr. Edwis Bidwell Wilson, ther. of Yale, later of M.I.T., a former pupil of
Gibbs, wrche the first full exposition of Gibbs' work, "Veotor Analysis" (1991,
Yale Uriversity Press, 2nd Edition, 1909). )

11. The Italians have done a great deal of work on this subject. Outstanding
are Prof. R. Marcolongo, of the University of Naples, and Prof. C. Bureli-
Fortl, of the Military Academy of Turir. (Elements de Calcul Vectoriel!, -
Paris, 1910; and a larger work, "analyse Vectorielle Genérale", Paris, 1912.)

12. The order of development of Vector Analysis has been the opposite of what
mizht have been expected. To quote Heaviside (Electromagnetic Thecry, vel. 1,
p. 136):

13. "Suppose a sufficiently competent mathematician desired to find out from
the Cartesian methematics what vector algebra was like, and its laws. He could
4o so by careful inspection and comparison of the Cartesian formulae. He wQuld
find certain combinations of symbols and quantities cccurring again and.agaln,
usually in systems of threes. He might introduce tentatively an abbrev1§ted
notation for these combinations. After a little practice he would perceive the
laws according to which these combinations arose and how they operated. F&n§U¥,
he would come to a very compact system in which vectors themselves and certain
simple funstions of vecters appeared, and would be delighted to find that the
riles for the multiplication and the general manipulation of these vect?rs
were, considerieg the complexity of the Cartesian mathematics cut of which he
hiad discovered them, of an almost incredible simplicity. But there would be no
slgm of a quaternion in his result, for one thing; and, for ancther, there
woild be no metaphysics or abstruse reasoning required to establish the rulgs
Cf maripulation of his veetors." This is the logical wey for Vector Anglysls
%o have developed, but it is nct the way it happened. Its manner of origin has
~ounted against it, but this prejudice has largely disappeared, and the §nalY"
81z has become very populer. It is almost indispensible in three diment%onal
Work in almost every branch of mathematical physics. The main difficulties
left, in the way of universal use are the differences in nctations used by dif-
ferernt authors, but even these difficulties are being wiped out.

4. CEFINITIONS:

4.l A SCILAR QUANTITY has magnitude, but is not related to any definite dlre?—
“ion in space, To specify a scalar, a unit quantity of she same type is needed,
83 well as the ratio the given quantity bears to that unit, so that it may be
€rpressed as a multiple of that unit. EXAMPLES OF SCALARS: Mass, Volume,
aerisity, speed, temperature, work (energy), quantity of heat, electrie vharge,
potential, '

‘he2 A VECTOR QUANTITY has magnitude, and is related to a certain definite
Cirertion in space. To specify a vector is needed not only a unit quantidy
of the same kind considered apart from direction, and a number which is the
measure of the original quantity in terms of this unit, but also a statement
cf its direction. EXAMPLES OF VECTOR QUANTITIES: Displacement, velocity,
aersleration, momentum, force, electric and magnetic intensities.

A Vector quantity can be represented by a straight line, proportional in
lgngth to the magnitude of the vector quantity, and drawn in the proper direc-
tior. Such a straight line is commonly called a VECTOR.,

FLM-1/26/51
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14.3 The MODULE of a Vector is the 9031t1ve number whichds the measure of
its length, . &

FIGURE 14.4

14.4 A UNIT VECTOR is one whose module is unity.

14.5 Conventions for representing vectors may be illustrated by the accompany-
ing figure, where the vector might be indicated by AB, AiB, a, or a. In print,
heavy type is sometimes used to indicate a vector., The unit vector of ais
usually represented by &, the magnitude of a by a. Thus,

a=a®d.

For ease of typing, the letter representing a vector will be underllned, in
this paper, .

14.6 EGUAL VECTORS. If a =b , then =% s which means that their direc-
tions are identical; and that a = b s which indicates equality of magnitude.

14.7 A ZERO or NULL VECTOR is one whose module is zero. 'A11 null vectors are
necessarily equal.

14.8 The vector which has the same module as a, but the opposite direction,

is defined as the pegative of a, and is denoted by -a.

14.9 The value of a vector depends upon its length and direction, but is
independent of position, the vecter not being localized in any definite line.
i single vector cannot, therefore, completely represent the effect of a
localized vector guantity, such as a force acting on a rigid body. This
-effect depends upon the line of action of the force; and it will be shown
later that two vectors are necessary for its specification.

15, ADDITION and SUBTRACIION OF VECTORS.

15.1 ADDITICN. If three points, 0, P, R, are chosen so that QP = a and PR
= b, then the vector OR is called the (vector) sum or resultent of a and b.
Denotlng OR by c gives

FIG. 15,11
c=2a+b. — R
s ¥ 2
: c ® = b
0 3 S P - a
By figure 15.12 it may be seen also, that ¢c= Db + a FIG.
: ’ ' ‘ 15.12

By follow1ng this llne of reasonlng, we find that the sum of any number of
vectors is independent of the order and grouping of the terms. :

15.2 SUBTRACTION The subtraction of b from a is understood to be the addi-
tion of -b to a. That is, 2a -~ b = a + (—b) From the flgure, where QO RP
= b, and QR = 0P = a,

: . (See Page 4)
FLM=1/26/51 '
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a+b=QR+RP=Q0+OP=QP.
and  a-b=03+QR=0P+PR=CR.

16, MULTIPLICATION BY A NUMBER. If m is any positive real number, ma indi-
cates the vector in the same direction as a , but of m times its length.
For example, Newton's Second Law may be written F = ma , where F , the force,
has the same direction as a , the acceleration, but is m times as great,
where m 1is the mass, a scalar.

17. COMPONENTS OF A VECTOR.

17.1 Three or more vectors are said to be COPLANAR when a plane can be drawn
parallel to all of them, otherwise, they are NONCOPLANAR. Any vector, r , can
be expressed as the sum of three others, parallel to any three non~coplanar
vectors. Let a, b, ¢, be unit vectors in the three given noncoplanar direc-
tions. With any point O'as origin take QP = r , and on OP as diagonal, con-
‘struct a parallelopiped with edges OA, OB, 0C, parallel to a, b, [F respectively.
Then, if x, y, 2, are the measures of the lengths of its edges, r is expressible
as the sum

r =04+ AF + FP = OA + OB + OC

=xa+y_tz+z§_,'

- i P
Then r is the resultant of the three vectors,
Xa, yb, 2zc, which are called the components of
r in the given directions. (x, y, z may be
either positive or negative.) If two vectors
are equal, their components, parallel to the P

same axes, are respectively equal. _ FIGURE 17.1 A

17.2 UNIT VECTORSy i, j, k . Usually vectors are resolved into components
parallel to the Cartesian axes, x, y, z . The unit vectors along the x, y,
and z axes are i, Jj, and k, respectively. (Note that neither i nor j in this
notation is the symbol for ¥=1 ) Thus, a vector, r may be represented by
r=xi+yj+ zk . The sumn of several vectors, I, Ips Iy etec., would then
be

(Xl + 59+ 29k ) + (X8 + ypd + 20k ) + vennnn.
= ( ¥1.+ Xy + Xe + e ) i+ ( YL *Yp t Yzt e ) i+ ( 2y + 7y * 7y ¥ eee) k

17.3 Cartesian analysis deals with vectors and vector gquantities by resolving
them into rectangular components. In vector analysis, the quantities are
treated, as far as possible, without resolution, :

FLM-1/26/51
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18. CENTROIDS.

~

18.1 Position Vector. When a vector QP is used to specify the position of a
point P relative to another point O, it is called the position vector of P for
the origin 0.

Example: If p, g, r, ... are n real numbers,'the point G whose position
. vector is ‘

0G = (pa+gb+rc® 0o )/ (p+as+r+ 0s)

is called the centroid of the given points with associated numbers p, q, r, ...
respectively. (The centroid is independent of the origin of vectors.) Then
the center of mass of a set of particles, whose associated numbers are thelr
respective masses, ml, 2, m .« at points I, r ses 18

3’ =2 I3
T = (m1£ tmr ot .. ) / (ml +m, + .,.)4,

F- Sm/Sn. o

18.2 If the number of particles approaches infinity, (the case of a solid
body), the llmltlng position of G is the center of mass of contlnuous distribu-
tion. _— :

19. GEOMETRY.
Equations of some of the simple geometric forms are given here.

19.1- Equation of a STRAIGHT LINE. The vectof equation of a straight line
through a given point A, parallel to a given vector, b, is

FIGURE 19.11

where a is the position vector of the point A, t is a variable .scalar, and r
"1s the position vector of point P, any point on the required line;

The wvector eduation of a line through two given points A and B is:
o A b-a B '
r=a+tk-a)

|

= (1=-t)a+tb " FIGURE 19.12

0
19.2 Equation of a PLANE. The equatlon of the plane through the orlgln, paral—

lel to a and b is -

r =sa+th. FIGURE 19,21

where s and t are variable scalars. //tzif:::j:i ///
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VECTOR ANALYSIS

The equation of the plane through point C, parallel to a and b, is

4
FIG. 19.23

r=c+sa+tb

-—

The equation of the plane
through three points 4,B,C, is:

r=a+s(b-a)+tlc-2a ¢

1=
e

= (1-s-t) a + sb + tc \ 'FIG. 19.22

This form is not the only equation of the plane, nor is it the most eon-
venient. This will be discussed more in detail later.

19,3 VECTOR AREAS. An area may be represented by a vector, perpendicular to
its surface, of a magnltude proportional to that of the area, The

direction of the vector is determined by the direction in which the

boundary of the flgure is described, the convention being: the nor-

mal vector PP! bears to this direction of rotation the same relation

as the translation to the dlrectlon of rotation of a rlght-handed

screw, ' "~ FIG. 19.3

20. PRODUCTS OF T%:O VECTORS.

20,1 From the nature of a vector, it is impossible to say what the product of

© two vectors dught to be. But examination of the ways in which two vectors enter
into combinations, in Physics and Mathematics, brings about the definition of
two distinct kinds of products, one a scalar, the other a vector.

20.2 SCALAR or DOT PRODUCT. The scalar product of two vectors a and b, whose
directions are inclined at an angle 8 , is the real number (scalar), ab cos 8,
and is written asb = ab'cos 8 . It is commonly called the dot product because
of the widely accepted method of indication.

The following equations are mathematical statements of the rules govern-
ing this type of multiplication, '

a:b = bea , a-(b+c)=ab+ac ;
If a is perpendicular to b , asb = 0 , since cos 8 =0 .
If a has the same direction as b , a*b = ab , since cos 8 = 1 ,
If a and b have opposite directions, a.b =.— ab, since cos ® = -1
asa = a2, and is commonly indicated as 32 .
The square of any unit vector is unity. Thus, 1 =k2=l .

But since i, J, and k are mutually perpendicular, i*j=j-k=k-i=0

(na)+b = nab cos 8 = a«(nb).
Since the scalar product is a number, it may occur .as the numerical coefficient
of a vector. Thus, a'bc = (2aeb)c is a vector in the direction of ¢ with

module a*bc o Similarly, a.bc.d = (a.b) (c.d) , a scalar.

FLM-1/26/51
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20.3 VECTOR OR CROSS PRODUCT. The vector product of two vectors a and b ,
whose directions are inclined at an angle @8, is the vector whose module is

(ab sin 8), and whose direction is perpendicular to both a and b , being posi-
tive relative to a rotation from a to b. It is indicated by (a x b) , hence
the name. The following equations represent laws governing this kind of multi-
plication. Note that in this multiplication it makes a difference which vector
is mentioned first. :

’

a2 x b= ab sin 5 n , where n is unit vector perpendicular to both a and b , in

. proper direction.

_plane.

axb=-bxa .. ixi=jxj=kxk=0,since sin®=20.

ixj=k=-ixi , jxk=i--kxj, kxi=ji=1ixk.

(ma) xb = mab sin #n =2 x (mb) . a x (b +¢c)=axb+axc
(a+b+-—)x(l+m+—)=2axl+taxm+-—+bxl+bxm+ -
Q.X_b_='(ali._.4 821+33_}£)X(bli+bzi+ bsk{_)

albli__ X _]; + albzi__ X _,j—"' ,alb3_i_ X }i + azbl‘,_i X ;1._ + _a'2b2_3:_ X g. +

+ a2b3i X k+ a3b15 x i+ a3b25 xd+ a3h3§ x k .

‘But since t xi= jxi=kxk=0,andixj=-jxi, etc., and

:j_._:xi:l(_, etc.,

axb=(azhy=agh, )i+ (agby~agby) j+ (agby=-2phy )k
81 % 33 -
or axhb-= by by b3 in determinant form,
L 41k '

21. EQUATION OF THE PLANE. Let p be the length of the perpendicular ON

. from the origin O to the given-plane , and f\ the unit vector normal to the

plane, having the direction O to N.  Then ON = . If r is the position
vector of any point P on the plane, r . n is the projection of OP on ON, and

is therefore equal to p. Thus the equation,
P ,
N
/ / . FIGURE 21

r «f =p, is the equation of the plane,

This may be rewritten as

T en=np=q (say), and this is taken
as the standard form for the equation of a

I

FLM-1/26/51
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The angle between two planes whose equations are r.n = q , and r.n'
= q! is the angle bétween their normals. But
' -1 nent
n «n' =nn'cos® , so that 8 = cos ~ ==,
' nn'

22, APPLICATIONS TO MECH.NICS.

22,1 Vork done by a force.,

If F=0a force, d = displacement, and W = work done by force through d1splace~
ment d , and @ is the angle between F and d, then
W=F +d="Fdcos 6.
d
e
E
FIGURE 2z2.1l

‘Torque of a force (Moment) « A

FIGURE 22,12

' The moment M of a force F about a point O is related to an axis through 0,
perpendlcular to the planp common to O and F.

M=rxF, where r is the position vector of any point on the line of actlonof
E & M is represented by a vector perpendicular to r and F , whose magnitude
is rF sin OPN = Fr sin OPN = F (ON), where ON is perpendlcular to F.

. If there are several forces, F}, Fp, 23,--- acting through the same point V
P, they have a resultant, R , where R = é_E N ‘

4mwe ) = r X F. + X F, + —

Then, r xR =1 x ( B, +E 1 E,

_2

To express numerically the moment of force F about O; write
F=Xi+Yj+Zk and r=xi+yj+zk. Then

M=rxF=(yZ -2Y)i+ (2X-x2)j + (xY - yX)k.
In this expression, the coefficients of i, j, and k are the ordinary scalar
moments of the force about the coordinate axes, It follows that the ordinary
moment of a force F about any straight line through O is the resolved part,
along this line, 6f the vector moment of F about O. In the above case, liy =
M+i=yZ-~2Y, My =M J=2{-xZ, and M, = M - k =¥ - yX .,

If there are several concurrent forces, it follows from the above that the
scalar moment of the resultant about any axis through O is equal to the sum
of the scalar moments of the several forces about that axis.,

FLM-1/26/51
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22.2 ANGULAR VELOCITY OF 4 RIGID BODY ABOUT A FIXED AXIS.

Consider the rotation of a rigid
body, rotating about an axis ON, at the
rate of w radians per second. The
angular velocity of the body is speci-
fied by a vector A, whose module is ¢ ,
and whose direction is parallel to the
axis, in the positive direction rela-
tive to the rotation. The velocity, v ,
of any point P in the body is given by

v=hxr=(wrsin8)A

= (W-NP ) A .

FIGURE 22,2

23. PRODUCTS OF THREE VECTORS.

. 23.1 The scalar triple product of three vectors a, b, and ¢, is the scalar pro-
duct of a and bxc . It is the measure of the volume of the parallelo-
piped whose edges are determined by three vectors., The value of this product

is unaltered by changing the order of the factors, as long as the cyclic order
of the factors is unaltered, or by interchanging the dot and cross. That is,

a*(bxg)=>b-(egxa)=c-(axb)-=
(g_xg)-g=/(2xg)-g=(g'xg_)'-g s
but 2 + (bxg)=-Db-(axg) .

23:2 This product is usually written (abe), since only the cyclic order of the
factors is important. Then (abc) = - (acbh).

23.3 The value of the product is given by the determinant .

al a2 'a3

(abe) = |PL P2 B3
cl C2 CB

23.A The Vector Triple Product a x (b x ¢) is the vector product of a into
(b x c). It is a vector in the plane of b and a, and its value is given by.

ax(exg)=a-cb-a-bhe.

——

The position of the brackets in this product is not arbitrary; for (a x b) x ¢
is a vector in the plane of a and b , and its value is

(@xbh)xc=2a-cb-b-ca.

Neither can the order of the factors be changed at pleasure,

FLM~-1/26/51
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235 (All of the preceding discussion has been taken from Weatherburn's "Ele-
mentary Vector Analysis". This book goes into the geometry of the plane,
~ straight line, the sphere very thoroughly. The following discussion of dif-
ferentiation of vectors is taken also from Weatherburn.)

24, DIFFERENTIATION.

24,1 If r is a function of a scalar varlable, t, and S:r is the increment in
r correspondlng to the increment & ¢t in t , then the llmltlng value of the
quotient 8§r/8t as &t tends to zero is called the derivative of r with res-
pect to t. We use the notation

Lt Sz Codre
— 0
St 5t dt

The derivative of this function is called the second derivative, and so on,

24.2 The rules for differentiating sums and products of vectors are similar to
those for algebraic sums and products. Thus

dr ds
__@_.._(r + §_ + e ) o + it + e s
dat — dt dt ‘
d dr | ds
———(r - s) -~ _:- L E + £ 4 ____' ’
dt = 7 dt dt
d dr ds
——— 22— X + X —
dt(r x ‘S') dt £z dt
2

Differentiating both sides of the equality r® = r? , and using the second of

these formulae, we obtain

r * dr/dt=sr « dr/dt .

Also, if a is a vector of constant length, a dg/dt = 0 , showing that a
- 1s perpendicular to its derivative, . v

24,3 Other examples of differentiatibns:

d_(rx d.ll):rxdz:
dat \" - dt2
dr
—— d...J_{i 91 '+.c.1£k
dt d dt at —
d
i—(iéﬁ)’ __d.aé:bc)-r (?.‘9'9‘9.) + (-- "“E‘)
at dat — = dt d
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25. INTEGRATION. Integration is the reverse process to differentiation. The
vector F , whose derivative with respect to t is equel to r , is called the
1ntegrel of r , and is written

E = J/~£ dt

A constant of integration may be introduced as in algebraic caldulus. Thus

2Jf . dt =r?+C=r2+C

2

) rx g -p x4

a2 - dt
d2r
The equation ——5 = -n2r may be integrated after scalar multiplication of both
2

members with 2 SE . We then obtaln(d#) = 0 = n2r2 .

dt dt

A definite integral is defined as in ordinary calculus.
26. RIGID KINEMATICS

26.1. The motion of a rigid body about a fixed axis is at any instant one of
rotation about a definite axis through that point, called the instantaneous
axis. The angular velocity can then be represented by a vector A parallel to
this axis. The velocity of the particle at the point r is v = 4 x r, the
fixed point being taken as origin.

26,2 When no point in the body is fixed, take the position of any particle

as origin, and let v be the velocity of that particle. Then the velocity of
any other particle whose posxtlon vector isr is V=v + A xr . The vector

A is independent of the origin, and is called the : angular veloc1ty of the body.

26.3 Any motion of a rigid body is equivalept to a screw motion, The axis -
of the screw is parallel to L ; and the velocity of any particle on the axis
is along the axis; being the same for all such particles. The two invariants
of the motion are A2 and "= v « 4 , where v is the velocity of any particle,
The pitch of the screw is

p=T7/ 8.

26.4 Simultaneous angular velocities about a fixed point are compounded by
vector addition. Simultaneous angular velocities about parallel axes are
compounded like parallel forces. Any simultaneous motions corresponding to
velocities ¥; , v, , ..s of a particle chosen as origin, and angular veloci-
ties Al ’ 52 > of the body about that point, are compounded by vector addi-
tion of the velocities of the origin, and vector addition of the angular
velocities,

FLM-1/26/51
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27. Nn attempt has been made to give any justification of statements made in
this paper, -and no attempt has been made to be thoreugh in this necessarily
short summary .

28, "Elementary Vector Analysis", by C. E. Weatherburn was used almost ex~
clusively in this discussien. Other elementary books are J. G. Coffin's
"Vector Analysis", and Brands's "Vectorial Mechanics". For more advanced werk
see Weatherburn's "Advanced Vector Analysis", Haas' "Theoretical Physics" and
other becks. There are many beoks in Vector Analysis in the main library at.
the University of California,

Brand Vectorial Mechanics QA80C5 B7 1930

' (Alse in Eng. library 375 B817) N
feffin Vector Analysis QA261 Cé 1911
Weatherburn Elementary V.A. QAR61 Wy2

n Ldvanced  V,A. QA261 Wi,

(Above noteas prepared by A. Hailey, 1931)

FIM-1/46/51



LECTURE 2 v Page 1

Saarcte
SH

COMPUTATION AND MEASUREMENT OF Q AND Rg

Z = C(Charsacteristic

. 1 ' _ ° Impedance
i, = OCurrent at peak of cycle
o~ Vo = Voltage at pesk of cycle
2 i, { 42 = Frequency (Angular)
o = S
Vo ()4 = Frequency at resonance

(Angular)

f

.71’0 — s i&@jo

If the resonance curve of a circuit is plotted as above, it was shown
that the width of the resonance curve at 0,707 of the height of the: curve
is equal to 1 :

Q
It was also shown that
2 v '
RS - Y-Q-— . (2"1)
‘ 2P

Where Rg = “VL/C . Q@ = 2z, q

To get a high voltage for a given amount of power, both I/C and Q should
be large. How, then, shall we go about it to get these values larger?

[:j%jaﬂi-“ In a circuit of this type, sipce‘Q = vL/C ,

R

Q will be increased by decreasing R

The most obvious way to decrease R is to increase the amount of copper
as by putting another inductance in parallel.

How to increase the value of L/C
This can be done by decreasing C

The plates of the condenser can be moved apart.

FLM 12/5/50 o \
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Carrying these two processes to the limit will result in a cavity

(ﬁ} (;) having the capacity element consisting of °

2

the two end plates and the 1nductance that due to the length of the cyl-
inders, :

Another way to look at this is coﬁsidef the circuit as shown here,

The two end plétes have a capacity and the connecting line has

an inductance. The resistance of the connecting ﬁire can be
reduced by adding more in.parallel, until the limit is reached of
entirely surrounding the space with a cylindrical shell,

Now ' Q - 2 7 Energy Stored = WU . (2-2)
Power loss/cycle . P

Also from (1-35)

. - | |
s = Vo = AL . g (2-3)
= |

L/C is a function of the geometry of the system only. This is diffi-
cult to measure directly, since for a cavity the inductance and capacity
elements are mixed together. It is difficult to measure V, altho P can be
measured readily. Q is easy to measure by measuring the width of the reso-
nance curve,

The values of R, and Q can be computed, know1ng the geometry of the
cavity and the conductivity of the copper, and it is evident from (2-2) and
(2-3) that for a given power loss per cycle Q and Rg both vary in the same
way. A measurement made of Q will give a correctlon factor for the computed
value, and this same factor will then apply to correct the computed value of
the shunt impedance Rg.

Dynamic Behavior of Circuits

The discussion so far has considered steady state conditions, that is
the conditions after oscillations have continued long enuf so that each
oscillation is the same as the preceding one. Actually the circuit has to
start from rest, and since energy has to be built up in the system tg reach
the steady state condition this will take time, How long will it take to
build up?. : .

After equilibrium is established all the power input goes into losses,
The process "of building up to this point is called excitation., If the total
power imput is constant the conditions with respect to tlme may be represen=
ted thus

FIM_12/5/50 | -
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P v Constant
' Power Imput

]

At the start the current is small, and the power loss due to r931stance,
Pr is low. For a constant power imput the remaining power
(P - PR)
goes into storage. This power is ev1dently equal to the rate of change of
energy stored with respect to time or :

aU _ (oo e
3t (P-PR)

The full line above represents the way the power losé due to resistance
varlos, and the dotted line represents the variation of d4U
: dt

An order-of-magnitude estimate of the time required may be made by
noting thgt at equilibrium Q = 217 Energy Stored

Power loss per cycle

For a constant power input the encrgy that is put in per cycle is therefore
21T fraction of the final energy U.
Q .
It will therefore takec, as the general order of magnitude;,g}— cycles
to reach equilibrium, A system with high Q will thercfore take - " some time
to build up to final voltage.

To describe this mathematlcally the transient conditions must be con-

s1dored
_L, ]_

Consider & circuit consisting of capacity and resistance, to which a source
of voltage, such as a battery may be connected., When the switch is closed -
the voltage of the battery does not appear agross the condenser immediately.
‘The voltage is divided across the resistance and the condenser as long as -
the current is flowing as follows -

Ve R +o0 o (2-4)

FLM 12/5/50
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At the start, q is zero, and the voltage drop across the resistance will be
V. The current will start out equal to V. As the eurrent flows, the charge
q increases, and the voltage across the ‘condenser increases proportionately.
The available drop across the resistance is correspondingly reduced, and the
current decreases.,

Since i = g% (2-) may be written

ve 8 rye '
3t g /

(The eomplex form just cannot be used here, since this only applies where
the voltage is varying sinusoidally.)

(2=5) has the following solution

a= o7 (1-e VRO y | »  (2-6)

We may plot this as follows:

1.0
0.951

a/VC 04631

|

|
‘

lh

1

l

!
!
I
i
{

1.0 2,0 340 t/T

S RC 4is the time constant of the circuit and the curve is plotted in
terms of the number of units of time equal to the time constant.

This is a transient solution. It will be noted that equilibrium will
only be reached exactly when T = %, Actually for practical purposes we
will consider equilibrium is reached when the voltage reaches the battery
voltage to within a tolerance that is small enuf to be neglected for the

purpose s2y 1% or 5%. In the curve above the 5% tolerance value will be
reached when t/7 = 30 :

For a eircuit consisting of inductanee and resistanee we have

FIM 12/5/523 .
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For this case

VI 1R+ L _di (2-7)

dt
Whenece »
| 12 T (1-e -

t
. R (2-5)

The same may be used to represent the variation if T is taken to be 1/R for
this case, - ' ‘

From the above, it is evident that the higher the inductance or the
lower the resistance, the longer will it take to .build up the current to the
steady state.

Time to put power into a resopant circuit.

¥
s tolerance
4.

t/r

Suppose we have a pulsed accelerator (where the power is applied in pulses,
with intervals between.) The voltage will build up as shown above. It may
‘be questioned, why not put higher power in at the start, and thereby reduce
the time? The answer to this is, if higher power is available, why not use
it all the time rather than only at the start? This leads to the c¢oneclusion
that the maximum available power input should be used at all times, to de-
crease the build up time, :

Ye may write P = %g_ + Pr“ ] : (2-9)
, Rate of Power
Pover ~ Change losses
Input of Stored due to

Energy resistance

Since gz U -2 E}’lel‘gy stored
Pr/es Power loss/ cyele
P,z WU
S
(2~9) becores
P = du wU . : .
T  (2-10)

FIM 12/5/50
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This has the solution (see appendix for derivation)

PQ,.,  -@1/q

Uz 5 (l-e

) (2-11)

The same curve for build up will apply again, by letting the time
constant 7 = W /Q and using as ordinate

U at -any time
U final ‘

If the tolerance is 5%,7 = 3.0 so the build up time will be

t = 39 cycles
4s an example, if € = 200,000

3. x8 A 100,000 cycles:
Y

The pulse length must teke account of this time to build up

—

‘Build Up " Productive ‘ Decay
Time Time

For v = 12 megacycles and T 2 3,0

= 100,000 = _1 =0,0083 seconds .
1 " 12,000,000 T2 -

The efficiency of the pulse will then be |

ty - b
t2

The efficiency of the pulse can be increased by making the productive
time longer, so the question is raised, how do we benefit from pulsing?

‘The answer to this is avéuestion of economy., If a high power level is
required for the desired particle acceleration this can be obtained more
economically by pulsed operation, since smaller power cquipment can be used

FIM 12/5/50
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if it has provision for storing energy at a low constant rate and releasing
it in short pulses at a high rates Furthermorec, some equiprent, such as the
oscillator tubes, can be run'on pulsed operation at very much higher rates

than their continuous rating, sinee the limiting condition is often one of
cooling the tube,

This may be illustrated thus

D.C. |
.~ Power ; -1 Energy S
Continuou? Supply Storage Pulses
Cos@¥propertirsal  Cost preportional
tH Average K tr. Pulse
“Power Duratinn

(In the equation for variation of voltage for an alternating current

V=V, cost

( () has been referred to in the notes on the first lecture as the fre-
queney. In this sense() is the number of radians per second®that a leop

rotating in a two pole magnetic field would turn to produce the alternating
current. le. . '

I 5‘14?‘

Since one revolutinn requires 2 W radians the number of cycles per éecond
will be £ = W/24[, and the time for one cycle will be t = % = 2R
' w

Energy Released on Occurrence of a Fault

)The energy stored in a resonant circuit in the steady state is, from
(2-2

~
y- Xo

Pr

where Pp is the power loss due to resistance, which in the steady state is
equal to the power input. The energy storage is a matter of concern in con-
nection with protective devices. The power dissipation may become very high
in a circuit with high energy content. Consider, for example the power dis-
sipation if the energy of the circuit is released in a single cycle, as by
the nccurrence of a short. The time for one cycle is 2fT/y) sc the power
dissipated in one cycle will be '

u/ 21

w

CFIM 12/5/50
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The energy storage in the L0 ft. linear accelerator at the U, C. Radia-
tion Laboratory is about 400 watt seconds. If this power is discharged in 1
microsecond, the instantaneous power would be 400 megawatts. _For a frequency
of 150 megacycles, a discharge in one cycle would take only 1_ sebond and
the power would be 50,000 megawatts. 50

This is all that will be said about LC éircuits.

Putting Power intoc a Resonant Cavity

Power may be put into a resonant cavity tn excite it by electromag-
— ' » netic or electrostatic means.,
—:::}%g ' To put it in by electromagnetic

means we may in effect make a

A gt
transformer by linking the power
source into a pertion of the ine~
_ﬁf ductive circuit of the circuit.

Actually this can be done by putting a lorp intec the cavity, fgeding it thru
a hole in the side, thus

Q’ (actually the loop plane is
normal to the axis)

Since it is desirable to have a voltage multiplicatioen, and the secondary ~

" (which is the cavity) has in effect only one turn, this can be done by having

the loop enclose only a fraction of the field of the cavity. This makes a
transformer with a ratio of turns nl/hz., Now when one circuit is connected
to another by a transformer the impedance of the transformer en the input
side will depend on the impedance on the output side times the sgquare of the

_turns ratio, or

n
- n R
%input n2 )

Sggpose it is desired to develope 100,000,000 volts in a cavity, and only
10%volts can be used in the primary. This means that

no- 10t - 07k
no 108

FLM 12/5/50
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This means that the input impedance will be

2 . - R -8
Routput = (10 A) Routput 10 Routput

i

!
R = ()
input ns

For such a cavity the measured shunt impedance will be

) 8
Ry = C\yL/C ~s 3 x 10" ohms
' 8 -8

This means that the input impedance Rinput will be 3+10 < 10 7V 3 ohms

Let us see what this means in the primary circuit. The power in the primary
is ' 2
. v

P = §—
Rinput . .
If the voltage in the primary is, limited to 10% Volts and Rinout 35 3 ohms,
l+ |
10
P = (—5—) = 3’3‘107 watts.

or 33 megawatts

This is impracticable at the present time.

The maximum continuous power rating for the largest oscillator now avail-

~e2ble is 0.5 megawatt.

The answer for this situation is to use multiple power sources to supply

the power, If 10 such power sources are used,

~

0 ‘ ,
(H%) must be 10 times as large or the imped-

ance of the primary would be 10 x 3 ohms
- ny % -7 -8
= 30 ohms and (L) = 10  instead of 10
n
2
. om Vi . 1ob -4
making == ~ VY10 + 107t A 3016 .10
: 2

Suppose we already have such a system and a new power source 10 times as
large is developed. The primary must then have to be made smaller in the

ratio of l/‘/number of power sources. 1Ihis requires a smaller loop for higher

~ power input

This illustrates one of the difficulties of driving a large cavity from
s single source .

FL“ 12/ 5/50



LECTURE 2 : Page 10

it resonance the reactance of an LC circuit acts as a pure resistance
and the formula above would make it appear that the input impedance on the
primary side would also appear as a pure resistive load. Actually all of
the field of the primary will not link into all of the turns of the second-
ary, and the loop will still appear to have some self inductance, This is
leakage reactance. The primary should have a low self impedance to mini-
mize the input impedance., The eircuit carrying power to the loop will be
eguivalent to this <

—
o

R

Self inductance of loop

To keep the input impedance low, with respect to R, the loop must be
.designed with thick wide sheets, rather than a round wire.

FLM 12/5/50
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LECTURE 2

Appendix

Derivation of Solution of Equation (2-10)

- du wy ’ -
P = x = (2-10)
Let 2 = P~ @WU (a)
0 : _
dz - -w QU |
dt ¢ at | (b)
Substitute in (2-10) |
z = @ dz ' (c)
w dt
dz _ - wdt (d)
Z C
ln z = - —"'qit +.C (e)

This may put in the form
z oWt : '

=P, since U=0att =20 (g)
t=0

from (f) at t = 0

1n (% )‘ =0 , from which and (g)
1" 1t=0 '
1= F

So (e) becomes

Zy _ - W
whence z = Pe 3&2 (i)

substituting (j) in (a)

~Wt o ~wWy

c =P — (k)

Pe
r
Solving for U —wt
v=-B(1-e ) (1)

That this is the solution may be verified by differentiafing and sub-
stituting back in (2-10).

FIM 12/5/50
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Page 2 Next to last line on the page

power input is constant the conditions . .

Page 3 On the diagram

" Constant Power Input

. Page Line below diagrsm .
4 = RC is the time constant of the circuit
Fourth line belbw diz gram
only be reached exa-vct,ly‘when't/‘,r =0 .
- +
Page 6  Line 4 |

constant P = Q/w

T

Page 7 Line below sketch
Since cone revolution requ’ix"es 27 radians
Lower equation
u = 9Fg
w
v
Page 9 Added diagram -

JUUL
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LECTURE 3

By Dr. Andrew Longacre
12/18/50

N

TRANSMISSION LINES

¥

A transmission line is for the purpose of transmitting alternating cur-
rents from a source te a point of use, The most general treatment is to con-
sider & disturbance in a field which is transmitted thru the field. This is
inserted in Maxwell!'s Equations, together with the boundary conditions, and a
solution is sought. For some cases this can be done but in other cases dif-
ficulties arise. '

Another method, as discussed in Slater's "Micro-Vave Transmission Lines"
is to consider the line as a series of 4-Terminal Networks

5 - CE

Still another technique is to consider the line as a series of lumped
constants

v .
T T T T T

Te will discuss first an elementary physical picture of what happens in-a
transmission line and then express this more fully and more mathematically.

ﬁ It will be convenient since the line

may be of considerable length to eon-

sider the various characteristics of the line in quantities per unit length.

The line has a chafacteristic Inductance/Unit\Length =L
a 0o Resistance/Unit Length = R
a " Capacity/Unit Lqu£h = C

and  a " Transconduétance |

1)

or Leakage /Unit Length = G
The last item concerns the current which leaks across the insulation from
one conductor to the other and dees not go all the way down the line.

-

" For & simple picture, consider a DC generator connected momentarily to a

) 7 L transmission line. A current starts to
— iy ' . : ’
;;5 I flow into the line. Since the line has
. inductance per unit length, a counter

()
FLM 1.2/27/50
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emf is built up, because the inductance tends to resist a change in the cur-
rent. (This is analogous to the reaction that the inertia of mass presents
to a force tending to accelerate it.) The value of the back emf is

d(gx) (3-1)

" dt
where. @ = flux per unit length

v

it

[

X length

(By flux is meant the tectal strength of the magnetic field. Flux per

- unit length is the total magnetic field perpendicular to the plane thru the

two conductors per unit length 2long the transmission line. The flux at any
peint is - :

# = L1 - (3-2)

For this example it will be assumed that current starts to flow abruptly on
contact and remeins at a constant value until the contact is interrupted.
This is a "square wave." -Under these conditions the flux does not vary with
time from front to back of the wave so (3—1) can be written

vV = ¢ i . | . (3—3_)'
dx
Now ' %% is the rate at whlch the wave moves, or v o= ag

IIv

<
a

Thexcurrent alsn establishes a charge
Q@ = CV per unit length
/

between the opposite portions of the two conductors where C is the capacity
per unit length. The current is equal to the rate of change of the charge,or

dq _ a(VCx) _ yre (A
F " x VCv (3 5)_

Combining equations (3-4) and 3-5)

V ov=1_ - (3-6)
1 Cv -
whenece V'2 = —l—
' ) LC
orv = 1 ' ' R
\,LC,

If the generator hac been disconnected shertly after it was sonnected,
the current flow would represent a souare
pulse. The auestion arises, what keeps
the rear end moving forward instead of
dying out in place? ¥hen the source is

B disconnected the applled voltage dreps
to zero.

FIM 12/27/50
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The magnetic field starts to die out, but as it does so it generates a
voltage opposing the change. That is, the induced emf at the rear of the
pulse attempts to keep the current flowing., This keeps the rear end of the
pulse moving forward. ' ‘

In equation’(B-é) we had % = Lv
and in (3=7) v =

Combining these

¥,
I

L \] | (3-8)
Z, is the CHARACTERISTIC IMPEDANCE of the line, and is measured in ohms.

As the pulse passes down the line, energy is being stored in the magnetic
and electric fields that are established, and this energy is restored to the
line at the rear end of the pulse.

- We may express the velocity as follows:

1 1 10 / ’
Vo= = = 3 x 10 cm/sec
Lc " pe (3-9)

+In the above JJ is the inductance of free space and &is the dialectric
, cap601ty of free space., When these are expressed in appropriate units the
answer is the velocity of light in free space.

In the development above no accsunt was taken of the resistance of the
line. In most cases the resistance of transmission lines used in esonnection
with particle accelerators is low, so that computation of their electrical
" behavior can be made with sufficient accuracy by omitting the resistance. -
This considerably simplifies the algebra. However, even though the resistance
terms are omitted from the electrical computations, there may be large amounts
of heat generated by the heavy current flows and ccoling must be provided to
take the heat away,

Ve have considered how a pulse travels down the line. Now the question
arises, what happens at the end of the line? ' This depends on what is at the
end of the line. In general we can expect some thing to come back.

Consider a rectangular pulse moving down
T a line. This will have a voltage and a
S current, as shown above. There are two
extreme cases that may be considered first,

'~ The terminous may be open, or it may be
- shortcircuited. For the open terminus
the current at the end must be zero., How
can we picture what happens?

FLif 12/27/50
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Suppose we consider an imaginary extension of the line with an imaginary
current and voltage the same as the real pulse, but moving in the opposite
direction T

...........................

\

' . | __A _ (a)

If both current and voltage are in phase for the pulse moving to the
right, and the current a2t the terminus is zero, then the imaginary pulse
will have to have a current of opposite phase, so the current of the two
pulses will neutralize at the terminus, The voltages should be in the same
phase, since the circuit is open.

Just as the pulse reaches the end of the line from the left, the imagi-
nary pulse reaches the same point from the right

—— g
[ - — ’

V v | (b) §

Now the vdltages of the two ?ulses are in phase and add up where the two waves
overlap,while the two currentc are of oppesite phase and nullify each other
just at the end. Shortly after this the condition is as follows

(c)

FLM 12/2¢/50



LECTURE 3 - TRANSMISSION LINES '+ Page 5

and then, in succession

X"
(d)
=0
At] Overlap
_ E
N
() L
\"2 \Y%
- —_—
(£)"
< )
(g)
L

FLM 12/27/50 °

The voltages of the real and imagin-
ary pulﬁes add up while they are
passing over the section of the line
where they overlap, while the currents
nullify each other over the sections
of overlap. Finally when the elapsed
time is emf for the width of the
pulse to pass the end of the line, we
have a pulse traveling to the left,
but with current and volt?ge of op-
posite phase.

e may loek 2%t this as the result of
two pulses of equal magnitude, but
moving in opposite directions, meet-
ing and passing at the juncture of
the real line and its imaginary’ ex-
tension, and each pulse continuing
in its original direction unchanged
after they have passed each other,
or we may consider that the pulse
moving to the right has been reflec-
ted, but with a change in phase of
voltage and current, and that the
imaginary pulse moving to the left
has also been reflected with change
of phase,
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Now consider what hzppens when the line is short circuited. In this case
there can be a current at the end of the line, but no voltage.

............ r
. v | ] | ) i

The imaginary pulse moving to the left must be considered as having the
current of the same phase as that moving to the right but the voltage of
opposite phase. The same process of reflection will occur except that the
current will be reflected in the same phase as the original pulse with the
voltage of opposite phase

g enoarens.

X

E

Shorted Terminus

Now censider an intermediate case, where the two conduetors zre connec-
ted et the end by a resistance.

I,V‘———>‘

- .
- Ig VR (reflected) Ip s Vo (transmitted)

The square pulse coming from the left will have a voltage V in one con~
ductor with respect to the other, and Current I. We may assume that there
will be a reflected pulse having a current Ip anda voltage VR ; also-that
there will be a current Ip thru the terminal resistance and a voltage Vp
across it.

FIM 12/27/50
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The current thru the ﬁerminal resistance will be, algebraically, -

It = I+Iy o ' - (3-10)
and the voltage - ‘

Vp =V +Tg S (3-1)
Now from (3-8) V = +7 | ' 10

T * Ze (3-12)

. If the incoming wave has voltage and current in phase, the reflected wave
will have voltage and earrent of opposite phases. lhich of these is positive
depends en the ratio of _ - '

: Zp to Z, , or Terminal Impedance to Characteristie

Impedance of the line.

An open circuit is an extreme example of Z1 being larger than Z; and a
~short circuit is an extreme example of Zp being smaller than Z,. Since the

current and voltage phase relations are changed, the impedance has a negative
sign for the reflected wave

= _%. --z, o  (-13)
Also %% - Ry B (3-14) .
Combining thése , |
- LTYBT = Zc I =2 1y ' _ (3-15) .
Ry (I+1) = 2, (I - 1) o (3a8)
whence IR - I (Zc - HT) | 7 (3-17)
‘ @ ') »

Let us check this for the two“exxreme cases of open and closed terminus.

For the open termimus, R = oo .

and I = I(z, -00) (3-18)
(Zg +00)

' This is not convenient to draw conclusions from, so convert (3-17) by dividing
numerator and denominator by Rp. This gives

. I(L8 - 1) ) -
Ip = e S ' v (3-19)
e+ 1y |

Ry

FLM 12/27/50
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hen Rp =€, this becomes

I = - I - S ' ' (3—20)

This is whot we got before for this case when R% a 0

which is again what we got before for this case.v
Ir a
. Byaz

I

2

R=0 L (3~22)
That is, no current is reflected, and all the power is consumed in the lead.
Since normally the transmission line is intended to put the power into the
load, this indicates that this will be accomplished most efficiently by having
a terminal resistance that is equal to the characteristis impedance of the
transmission line,

SINUSOIDAL CURRENTS IN TRANSMISSION LINES

Now consider what happens if instead of a séuare wave, sinusoidal voltage
and current is applied to one end of a transmission line having characteristics

R, L, G, and C per unit length.

Sprns

In this case the voltage on the wave will change with x. "e may write

dv - dl ; .
| & - -~ -l 3 (3-23) - .
For the current ,
4. v - o (3-24)
ax : dt

which says that the rate of change of current aleng the line is prdportional
to the leakage and to the rate of energy sterage in the eapacity of the line.

In order to simplify the development, we will consider the case where
R =0 and G = 0, which gives a good approximation for most of our cases.
After compubing the eurrent, however, provision must still be made fer removing
the heat lost thru the resistance, which may be considerable.

(3-24) in the simplified form w1ll then be

-c ¥

a
dx dt - (3-25)

FLM 12/27/50
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Differentiating again with respect to x

0 A BN .
X2 T TY a&x @& o - (3-27)

Interchanging the order of differentiation

T L. 4w
= & dx (3-28)

But AV = -L

(3-29)
2

: o 21
Whence %;% = LC gZQ

This is generally knewn as the wave equatlon. Solutiens ¢f this equatien are
always some form of

Tar (;g Sw) |  (3-31)

The function may be a cosinefunction or other shape.

Vihat do we mean by a wave" It may be considered as hump passing down
the line ‘

Ve
/ ,\\
/ \
L \
X S x+dX
t(tlmej X ' . t‘f‘d“t

For the wavée to move with its shape unchanged, the value of I must be
the same at a point dx further along th.ch will be reached at a time ¢/t
later. Substituting these eonditions in (3-31), and noting that ef the wave
is traveling at veloc:Lty v

x = ;v dt . /
I=1" x+vdn-—v(t +dt)}
= f (x - vt) (3~32)
which is the same as (3-31) |

: If the wave is to travel in the negatlve direction, the velogity must
" be made negative, glving

-t Ix- vt + v (¢ + dt)} . (3-33)
= f (x + vt) (3-34)
FLM 12/27/50 o
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Ve may check that (3-32) is a solution of the wave equation as follows

I = f (x-vt)

L+ £'(x - vt)
dx .

421 0.

Q2 a £ (x - vt)
dx?

Also &I . pl(y - vt) (=v)
dt

2 : o
d_% - f”'(x - Vt) v2
at | |
Substituting in the wave equation (3-30)
' Nt ‘ IR ‘
£ (x - vt) = zoeth (x = wt) ¥R
1=v2LC

Or Vo= L

Ve \ - (3-35)

This shows that the wave eguation.is satisfied for a wave moving with velecity
v al " '

A cosine or sine function will also satisfy the wave equation, as will
exponential functions., This can be shown by using the exponential expression
for the sosine function, as follows: :

Let : 4 '
T q e wt-km (3-36).

where I, is the peak value of the current and I is value at any timé t.

If this is put in the form _ _
- gk (- wLt X n 1

I = I.e K

s1e -~k (x- ‘;—’ Ly (3-37)

it is obviocus that this is of the form
I=1f(x-~- Vt)

provid:'mg _‘i.}. = v, or k = .._...\‘tJ )

Now = 247rf

Where f is the frequency

: £
% g - 20VE
But % = X, the wave length, ‘ :
: - - -
Therefore k = 2>\ (3.38)

FIM 12/27/50
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Takihg second derivatives of (2-37) with respect to x and t
4 | Wt 44 ‘ :
: -k (~ X (3-39) .
P jeg e HETETD ’
-
) .. w t 4+
@ _y2p T 1Y) (50
at? e ‘

Substituting in the wave equation

Qil = LC' dzl

At

dx? dt2
n cw b . Wt
- — — -k — c—
Y Ioe»J*‘(x k). -Lew? I, e Jh(x - =
5
k
| . g 1.C
But since k = ==
v
1 .
i
}
or v = 1- '
VLC

Further consider the variation of voltage and current on the line to
which a sinuseidal voltage is applied. The rate of change of voltage with
respect to distance will be : : '

W - - F
& o®

If the voltage at any time is represented by

J(wt - kx)

j(wt - kx

and I = .

where Vg,

dV =

Then
: ax

Lhence'_k Vo

Vo
I,

FLM 12(2'2/50

=j WL, e
=Ll Ip

is the peak voltage in the cycle
Sk V. edWt = kx) |
Jk V0 ev ™™

J(Wt - kx)

s Z

\T;E L/C

k
L
which is the characteristic Impedance of ‘the line.

Nl

c \ - (3-41)
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This represents a wave to the right.
For 2 wave to the left, the impedance is negative and

1. - WL

Y.ﬁ=-zc=-§}-176-= - . ' " (3-42)
Io |

More general expressions for I.and V _
I = 4 edlWt-—kx) o J(Wt - kx) (3-43)
[e] : (-] X

V- Z, A ej(ujt’ - kx)._ Z, B('D,ej(uut * kX) : (3...“‘)

These represent a wave A from the left 'and 2 wave B from the right. 1In
the expressa.on for V, the impedance Z; is taken negative for the B wave, and
the sign of X also changes to mdlcete movement of thls wave to the left.

If B = 0, this means no wave is coming back., This 1s, in general, what
is desired, as it is usually desired to deliver power to the terminous, which
occurs most efficiently when there is no energy reflected.

To determine what cdnditions favor this, we must find out what the termi-
nal impedance does to the input wave.

Now usually the terminal conditions are fixed, and the problem is what
must the input be., It is consequently conventional to measure the distance
not from the input to the output, but from the output or terminus backward
This is done by changing the sign of x to negative..

%e then have

- Z+ (Terminal
(1 ' 6) Ze ‘ Impedance)
npu

- {
]
This will change the general equation (3-43) to

ST ST kx) 4 B e‘](‘Wt Sl - (3-45)

The terminal impedance will not always be a pure resistance, but at some
point short of this, the effect of the line taken into account with the actual
impedance of the terminal, will be such that at this point the section of line
plus the terminal will appear as'a pure resistance.

FIM 1.2/27/50
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Equatlon (3-44) becomes
Vaz, by dWE KX g op eJ(u’t_-vkx)
v o Jkx o _-jkx _ |
Zi = - = A Ao e Bo,e/ . (3—,’*6)

(Input Impedance :
P P ) A e“jkx + Be —Jkx

(the term edWt cancels out of all the terms in numerator and denomlnatcr)

Atlx\ =0, Zi = Z4, whence, rsulce e® =1,

= . = Ao - BO . ’ . |
2 2 = I P T » (3-47)

_ B .
From this the ratio -A—? may be obtained as follows
o : «

Zg (A, *+ By) = 2, (4 ~ Bo)

B, (Zp* %) = o (Zo - Zg)

L . o - (3-48)
A, Z « Zc :

Subst.ltutmg this in (3—Lu’~)

jkxx _ Bo "ka
Z = eJ - K-
i c - o]

eJKX - _1_3_9_ e-—JkX
bg -

- Zo edkx (....____Z ) e~Jkx .
. | Z’t + Zg
eka + (ZC - Z ) . -
g+ 2,

¢ 2g) edK - (2y - 2 ) e7IKX

(Zg + Zc) eJKX (Zc - Z'f.') e-jkx

CFTM 12/27/50
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Rearranging
Jkx ~jkx Jkx _ _-Jkx
7, =72 Za(em T v e ) 42, (e e
i c :
7, (eJKX 4 g=3kXy | 74 (ejkx - e-ka)
= 2, 7 ¢ ¢os kx + Ze Jsinkx

Z, cos kx + Z,b"jsinlfx

- ‘ ' :
= Z, ( "'-'/Zc)'+ j tan kx

1+ 3 (%8/2.) tan kx

whence
z. 'z -
i o= /7 + J tan-kx
o~ (L2 — (3-49)
1+ 3 (“F/z,) tan kx
vLettirllg a = ’x » this becomes
Zg
23 a + j tan kx , _
Zc 1+ jatankx (3-50)

f Z; is obviously not a -pure resistance even though Z+ may be resistive only,

unless kx = Q or N TQ—V where N is an odd integer.

(The cese for kx = N 1—:-:« at first glance would zppear to be indeterminate,

of the form o . By dividing numerator and deriominztor by j tan kx, (3-50)
becomes ) ‘ TR
a
J tan kx © 1
1
j tan kx ta
0+ 1

| tan } )
When kx = T2 this becores o = 5 )

Multiply numerator and denominator of (3-50) by (1 - J a tan kx)

Ca (1 +tafkx) + § ( tan kx - a2 tan kx)
: 1 + a2 tan? kx (3-51)

SIS
ol o)

FLM 12/27/50
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. e 2y :
This is of the form 2: =ry + ] Xi

The resistive component is

a (1 + tan? kx ‘ .
ry = ( an ) | (3 ~52 )
1 + a2 tan? kx - o

The reactive component is

R e N a?) tan kx
Si

1+ a? tan2 kx (3-53)
This varies with x
Let us look at some particular conditions
Resistive Reactive
Component Component Remarks
2T x | | '
0, T, 2T a - 0 No reactive component
(tan kx = O) . v when x = 0
W[z, 37/2, 5Tf2 1/a )
(tan kx =0o) '
immaterial a=1 0 - This is assumed fqr the

case where’;i = ]

whenée ZT/Z = 1
c

~ _For the case where Zp/y, =1 (or a = 1) the reactive component Xy (eq.
3-53) becomes zero and the résistive component r; (eq. 3-52) equals a for
all values of kx. This is to say that when the terminal impedance is equal to
. the characteristic impedance of the line, the input impedance will be purely

resistive, and the length of the line is not critical, but may be any number
of wave lengths, : '

It is of interest to see how the resistive component varies for the case
where Z is not unity. The two extremes are given in the two first cases in

the table Ebove. If the value of ry is plotted as a function of the length of
the transmission line measured in wave lengths we get something like this:

-(See next page),
FLL 12/27/50
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O ®iH

Now consider the reactive component when ZT/Z is not unity, Eq. (3-53) may
be put in the form ‘

1=38° -
xi " tan kx { ;;;%;;: + a? ) | . ’ (3~54)
When a = 0, corresponding to a shﬁrt circuited terminal
X = E7Z§;—;; = tan kx | : | (3~55)

This appears

as shown

/]

7o (w2 AR 373 | ot

Wnen kx lies between O and 471/2, the reastica is inductive, as shown by the posi-
tive value. %hen kx l‘es between 7,/2 and ¥, the reaction is capacitive

FLM 12/27/50
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This may be seen from the vector diagram,

@ TS

o | e

' C

# is the phase angle, indicating when the peak value of the cufrent oceurs -
relative to the peak value of the voltage. ¥hen the value of 6 is positive,
the current lags behind the voltage, from the relative

I=I,cos(wt=-#)
This is the effect of inductance,

WhenAﬁ is negative, the current leads the voltage, which is the effect that a
capacitor has.

A

Yihen the line is open at the«ehd, a =60. Eq. (3-53) may be put in the

form _
-1'—— T -
' ( a2 l) tan kx tan kx
Xi = l’ 2 e 2 ~ cot kx
-2 ¢+ tan? kx tan2 kx
a

This méy be graphed thus
|
/

o W/ % 3z 2w

FLM 12/27/50
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The reaction is capacitive for 0<kx <TV/2 and inductive for M/2 <k < T
It follows from the diagram above showing the variati on of r, with kx,
‘that a low resistance line can be transformed into a high one by gdding (or
subtracting) a quarter wave length. The range will be_from 1/a to a, or the
ratio of resistances from maximum to minimum will be a“i If, for example
Zn = 100 ohms and Z_ = 50 ohms, a = % = 100/50 = 2 i
T c . T/Zc

A quarter wave length line would then have itS‘input resistance

ry = Z, * 1/a = 50/2 = 25 ohms
Adding.a quarter wave iength

ri. = Zg *a=50x2= 100 ohms -

A transmission line can thus act like a transformer.

FLM 12/ 27/50



IECTURE I, - DR. PANOFSKY
T RANSIISS ION LINES

Transmission lines are of intercst to us for threc reasons:
l. They may be used to transfer power to a cavity.

2, They differ'frém the usual lumped-constant systems in that
the electric and magnetic quantities are distributed and

mixed .

4

3« In spite of tholast statement, uder some conditions they
can be used as lumped constants. At high frequencics there
is no such thing aspurc Inductance or Cam citye

, " This discussion will be from the point of view of a line with steady state
A.Cy current flow

Terminus

Source VoV Impedance Zp

~ Line Characteristic -
' l Impedance Zc
- The distance x will be measured from the terminus back toward the source.

One way to consider a transmission line is to look at it as a series of
small sections of unit length ' :

L

L is the Inductance per unit léngth
C 1is the Capacity " " "
R is thc Resistance " " i
.1 is the Ieaknge Resistance per unit length
G .
G is the rceiprocal ofthe resistancé, It is f:onv_cniont to usc recipro-
cals vwhen resistances are in parallel, as is shown by this comparison

Ry RQ:T“LT: ~Rl'§§

= ' = 4 = B+
N R )
R

v
I = Ry, may be applied after finding RO

FIMo1/8/51
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Ohms ILaw may be written
) 1 " :
I =VG , vhere G = R is the conductance.

For thce diagram above

G, = Gy+Gy | S (4=1)
amd I = V (Gy+ Gp) , (4=2)

The computations can be simplified by using reciprocals for quantitics
that are in pdrallel. The inductance and rosistance of the linc scection above

arc in scries, and the inductive impedance of this section of theline may be
represented by T

Z = jwL+ R - - (4-3)

The capacity and the - shunt leakage are in parallel and can be convenicntly
handled by adding their reciprocals. The rcactance of the capacity alone

Zc- = =J
i C
e .
Thq rceiprocal of this is :Ef -  jwC
’ : 1
The resistance of the shunt leakage path por unit of length is Ry =G and the
reciprocal of this is G. The impcdance of the capacity and leakage in paral-
lel moy then be written v v

Y = 50046 )
Tho quantity ¥ is called the "Admittance"

‘Impedances in -serics are.additive '
Admittances in parallel arc additive

Sipgn Conventions

I is ~+in this dircction
-—.—-—-———-——-—?

t Vﬂu Tooinus

distance is positive
in direction from temminus toward input.
The voltage change dl ong a differcntial length of a transmission line is
v = 7T dx . ' (4=5)

FT11 1/8/51
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The current cherge in differential length dx is cqual to tic voltage
tines the admittance, or »

41 = VY ax ' (4-6)

Taking sccond derivatives

> ,
v - z4 . v (47

= = ax = b=7)
Fr - v &V - gy1 (4-8)
dxz ax.

Solutions of thesc cquations arc exponcntials or cosines, dceponding on
wvhether the values of ZY are recal or imaginary.

o now definc the "Propogation Constant ,"

K :-\[EY.‘ / ) (4-9)

and the solution to (4~7) may be shetm to be
V= AdfF + BomIE | (4-10)
We could solve for I in the same way, but sircc from (4=-5),

1273 (M - Bo™) (4-11)
Inlgonoral .
I = I Jut X ’ : : (4-12)
taking the fcal vart, I, is the peak voltage. If k is rcal, the linc is
attonuating, that is the amplitude of the current swing dcereascs exponcutially
with distances If k is imaginaryy we get sbanding waves. -
Expanding (4~9)

x = jw\ia-j%};) -8y | (4-13)

- If Rand G arc zoro (no rcsistanée, no leakage) the cxpression is all ..
imoginory and there is no attenuation, altho there will be a sinusoidal vari-
ation alonz the linc. : |

If R and G arc apprceiablc, there will be some attcnuation.

In very high frequeney circuits, the loss terms arc small, and it simpli-
fios computations to assume that R'and G arc zcro; and camputc the correspond-
ing T and V. Having found I and V, and knowing the resistances, the actual
value of the losses can be computed, asg cooling may have to be provided for
this omount of loss, Theiefore Tigure on the basis that

kK = Jwiio - ‘ (L=11)
and scompnho R as the loss. .

FIM 1/8/51
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TRANSNJSSION LINES Page L
In (4-12)
- j Wt - jwt+ ko
I=1 %", K I, cq : (4=12)
=1 GdwG . x) | (4-15)
o , _
= I, cosw (v ﬁf . X) : (4-16)- .

This represcents a wave.
At a given time t, I varics sinusoidally with x.
At a given x, I varics sinusoidally with t.
The wave moves with velocity v, that is %o say
X — X -+a&xX
when t —=t 4 -%345

: v

If tho obscrver moves alongside the wave with veloecity v, the wave fomm

appcars stationary.

If the linc is homogencous, that is, has thc same cross-scetion or clec-
trical propertics all along its length

4

[
1
(¢]

JIC i [k . . (4-17)
where ¢ = velocity of light
(This is truc for stfaight‘simple lincs, but not alweys. In a loaded helix,
the veloeity is less)

If wo know the capacity C, we can calculate L by “the above rclation.

: If we have a wavé in cach dircétion the wave moving toward the terminus
from the sourec has a positive sign, and is termed the incident wave, while
the wave moving away toward the source has a negative sign and is tormed the |
reflceted vave. : C '

If there arc no losses, and the linc is opon or short circuited at the
terminus, there will be places where the incidont and roflected waves will be
in phase, and add, and other places where they will be of opposite phasc, and
canccls The result, will be a scrics of "Standing Wa vos"

Node LT b2

Noae Loop
' e

PRy | 2 1o . . ) . .
¥rM 1/8/51 (This is for a short circuited terminus )
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’ At the nodes there will be no voltage. In bétween thc-nodqs, the voltage will
vary sinusoidally with time,.

For the above casc, with total-reflection and no losses, therc will be
no power transmitted dowm the line,

In‘géncral, where some power is transmitted and used at the terminus, the
rcflected wave will be of less amplitudé than the incident wave. The voltages

will therefore not cancel to form nodcs, but the voltage variation will be
somecvhat as follows '

" Terminus
-

\

' The ratio of v;r“'ls calledtho "Voltage Standing “ave Ratio" (V ”R)
This can be used as a means of mecasurenent, sinee the ineident and reflected
waves arc related by the terminal impedancc Zp. For vory high frecquencies,
for examplc a slotted line may be used to find the standing wave by putting
a probe into the slot and moving it along and measuring tho voltage

Coning back to (4-11)

I = § (4 oIy C (4-12)

wheie 7 is the inductive 1mncdancb per unit length of line and rgmcmb ring

Lhat
=2\vY = ~{V/Z

FLM 1/8/51
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and that the characteristic impedence of the line is Z, = 2/Y
Zo I = (ackX - pe=k) | (4-18)

A% the terminus we have

Vincident = Z¢ Iir -idont | v
v I
Vroficeted = ~2¢ lreflected - ' Zn

Given Zp , what is the ratio B/A?
The casicst way to determine this is by a geomptrical construetion,
e have Zp and given V, wo can compute I

V and I arc rclated by the phase angle of the impedance, This phase
angl fr - i
ngle, froem (4=~16) is - <

o

The eurrcnt at the terminus will be

»
o

I = V/7p
Multiply this by Zg.
12,2V Zc/.ZT _ _ (4-19)
o~Vrefleocted
Vine
S~ T: a

The construction is as follows:

Draw a voctor equal to V and another cqual to I at an anglec equal to the
phase anglec. Conncet tho onds of thesc vectors and biscet the line. Then the
two halves of the line represent Vrofl and Zc Irefl, vhich are equal and op-
pogites The upper triangle shows that the vector sum of V and Vine =
Vyefleetod '

FIM 1/8/51
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v Vreflectod

o=t

‘ Vine
The lovier triangle shows that thc veetor sum of Z I and I is cqual to

N
Treflceted. Zo Linc .

Z Irefl.

As an cxaaple, consider a casc vhere

Zp = J ¥, ., vhore X is a buro/%oactanco (C or L)
In this casc the phasq angle |

# = 90 Dogrces
The diagram becomes a right angled triangle‘

v ‘ 'Vief.
ine

N

Now fram the geometric theoren that the threc vertices of a right angled
triangle lie on a ecircle whose conter is the mid-point of the hypotenuse, it is
cvident that the inecident and reflected waves are cguale They will therofore

interfere and producc standing waves having a mayluum.voltage of 2V aﬁd a
mirinum valuc of zoro :

This cannot transmit powor. -

As anothor examplo, consider the ecasc vhere

Rp

0 in this casc, and the triangle flattcens out to a line

Zp

u

Tha phase anglo #
(Sec next page)

FIM 1/8/51
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\ __ Vrefl 2 Ipes1
V:'an -
I=V(2,/2)

Fran this rclation

V(2e/20) =V = Vpory + 2o Irera

and sinco Vyory =72, Ipory .

¥ (Zoffr) = V- 2'Vpen

whence

N3

= YV /. ' v c
o1 = 5 (Zp/2p + 1) = 5 (- 37) _ (4-19)
wo conclusions follow:
(1) Vi, is nover cqual to Viupy,
(2) H ZI| - zc s ‘ R - vmfl : O, that ng

there is no reflected wave.
]
Is this good or bad? This depends on the application.

In the case of an antenna, it is desired to transfer the power nmost
cfficiontly to the antenna, This will occur if there is no reflocted wave,
beeausc therc are losses duc to the reflccted wave as well as to the incident
vave, The effect of Zp = Z, is in effcet to connect the load direct from
sourcce to load,

If therc is no reflected wave, there is no reflected coffect on the driver.
These are goed, for camunication purposcs.

If one is in tho linear accelerator business this is not so goed, because
it is desireble to havo the slight changes in the resonant froquency of the
cavity reflcet on the driver and affeet its frequency so the driver remains
in time with the cavity. For this purpose a "flat linc" is not the best.

In a long line rcflected waves absorb cnergy, and hence the tramsnission
is léss efficient than when there is no reflected wave. In the a ccclerator
caso, however, the line is so short that the logses arc only a small fraction
of the power transmitted, so that some increase in the losses can be tolerated
if it is nceessary in order to faeilitate. control, For this rcason somc re-
flection is desirable.

From the victor diagram above and 4-19) the general casc can be written

. F111.1/8/51 - e e
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rr

Ze
7=V (Z'E,') + 2 Vpery -
vhenee Vrofl = -.(1 - Z;) ‘ | ; ' - (4=20)

V= Vine + Vporl

vhoneo
Vine = V= Vpor ‘ | _ (4-21)
. ,
= v {1 -C»]
Zp
Z : '
= ;{1 ﬁ} ' (1-22.)

From (4-20) and 4~21)

Vrofl - ZT Z .
Vine Zr + Z '

Zp in genoral does not cqual Z, , and there will be some.refloction, and the
standing wave will not have a zero value in the valleyse

Vrun

X ] A

1

(One practical résulf of this is that insulators should be installed at the
points of minimum voltage)

(1-24)
(4-25)

1
eFW&ﬂ <
<

Vonx = Vrerl +Vine

Vnin = Vine = Vrefl
The ratio of the Viax 0 Vmin is call d the "Voltage Standing Wave Ratio"
(abreviated VSR) and froa the above ‘

VStR= 2T

——

Zq

Phase of Voltage and Current

Consider conditions at a termiuus as represented by the diagram
(see next page)

FIM 1/ 8 /51
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How do the conditions vary at different points on the line back from the
terminus? First recall that the voltages given above in the diagram may be
taken as the peak values 6f a sinusoidally varying alternating current.

The incident wave may be put in the form (See eq. between (3-45) and
(3-46) in Lecture 3)
/

V -4 edwi(t + I - 0 (4=27)
. o .
This may also be written
V = A, cos wi(t + {EE ;.x} (L=27)
This will have a maximum value when (t + QLC « x) = 0, for which )

cos w (t * \]LC « x) =

If we consider the condition where x = O (the terminus) the incident voltage

‘'will vary sinusoidally with time. If we consider some point x distant from

the terminus there is obviously some velue of t that will meke (t * {IC - x)
= gero and at this point and time the same value of V will exist as will occur
when the zerc value of (¢t + JLC + x) occurs at the terminus. The voltage at
any point will vary sinusoidally with time, or at any fixed time a sinusoldal
voltage variation will exist down the line

Now a sinusoidal variation can be represented by the projection of a
revolving radius of a circle on the diameter, because x = r cos &

//I\ R

~1Xr~“

\ '//
\____,.,
The variation of the incident voltage down the line can therefore be repre~ -
sented by the projection of a vector Icvolv1ug in the positive direction
(conuterclockwise).

FLM 1/8/51
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The reflected wave moves in the opp051te direction, and so its variation
may be represented by vector revolving in the negative (clockwise) direction.

The total voltage will be the vector sum of these two.

s

H
v /"6refl
P <
”fif”/f/’ Vrefl
/

VlnC

In the above.alagram the full lines represent the relations of Vine s Vrefl »
and V at time ty while the dotted lines indi¢ate the condltlon at tlme to ,
after the incident voltage has advanced an angle @. .

If wé are intkrested only in the magnltude of the voltage it can be noted
that this can be obtained more simply by dot revolviig Vind , but hold it
stationary and revolve Vpery 2t twice the rate in the negative (clnckw1<e)

dlrection.

It wild be noted that this will result in a maximum value

= . +
Vhax Vlnc Vrefl

and a minimun value
.

Vmin * Vine = Vrefl ' )

The maximum and the minimum values will repest at intervals of 7\/2
where A, is the wave length. This shows that at every half-wave length down
the line the input "sees" an impedance that is the same as the load impedance

at the terminus,

Suppose our load is a resonant load How do we match the line to it?
~ This may be represented thus

Resonant Load

FIM 1/2/51
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Ve may use a transformer. The secondary impedance is Zé =Q L/C (L~29)

n , . . .
If the turns ratid is -1, the apparent impedance on the primary side is

as follows:

ns .
Z_ .o = %)?'d JL/c | (430

It is common to make the coupling into cavity resonators such that

2 |
Zorin = (%) @ T ~s5z, (4-31)

This is satisfactory, and is not critical.

The next question is, what is the input impedance?
This can be gotten from the diagram. It may also be obtainedlanalytically
V = A ekX + B.e‘,'"kx ’ ) ‘ ([+..32)

2, T = A ekx - pekx ‘ , © (4-33)

At the load,rwhere x =0

V=A+B ,

ZoI=hA-B
whence ~ ‘ : ' a
A+B | V. ' '
A-B 2.1 _ ‘ (L-34)"
but 1=V
)\
so ~A+B T T o (b-35)
A-B ZgV | Z, | L
L+B/A 1
1 -8Bk 1z,
1+ B/MA= 2T (1-p/a)
ZC
7 Zp ,
B/A (L+-Ly= T-1
ZC ZC
B/k .=' "'.ZT,/Z:e'\T‘ 1 . Zp = Zg v »
Zp/ Zop 1 21+ Zg - (4-36)

FLU 1/48/51
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(Note that when 'x '= ZL:\’ 2:;)\ fg )/

FIM 1/2/51

TRANSMISSION LINES Page 13
Substituting this in (4-28)
. . - Z
Voo ok (ekx y L O okx
V=4 (e + ZT N Zc € ) (h—37)
Zr - Zo kx
Zo I = A (efX = 5= 7 ~38
¢ ( ZT + Zc ) (1+ 3 )
T] i
The Effective Impedance is T
_kx . )
so Zinput =(22 + Zo)eX + (7r - Zo)e (4-39)
Zo (ZT + Zc)e‘ ~ _(ZT - Ac)e ~kx ,
- (This is general) ‘
For a lossless line
kx = j WL x (4=40)
W o= 20f | _ (h=41)
"4LC = % and v = £ (L-42)
' 217x
whence kx = j (T500) (L-43)
Substituting this in 4-34) and rearranging
' ’ Z ¢ j2rrx -]21rx)- 2. ( x  -jearx \
3 e ) + + e - € o wet T
-Z_LQM ) ‘T '2$ 277Xy 2:34 » j271:’x - (hhd)
c .J X -J X J2: - ' '
Zg (e < -+ e 7\) + Zp (e———-——% e X )
Z, cos 2TYX , 5 7, sin 21;:3
) TR % —— % (4-45)
| Zc cos 5N +J Zp sin o
If 2 = O (Short c1rcu1teJ Termlnus)
smz TTX
2y = 326 —L— = JZo tan2IX (4-46)
b 12 TT‘ X 7\ P
08— :
~
If x4 the line looks inductive
If %\ £ x (%\ the line looks capacitive
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This may be shown by plotting Zi as a function of N

Shorted Teryminus

=y |
N
;>l>’
1Y
W
=Y

ot , '
Angle =z o %g u
Positive vslues of Zy eorrespond tovinductive reactance (1agging current).
Negative values to capacitive reactance (lesiing current).

Vhen x = % , the input looks as though the line is an open eircuit. It

is therefore equivalent to a choke. Radio frequenqy/will not get thru, and a

D. C. connection. can be made here,

Vhen 2, = ©O (Open Circuited Termihus)
' 1 27 x
(4=45) reduces to Z:; = Z 1 = 72 = cot -
i c Cp— 3 TN (4-47)

| J tan =50
This may be plotted as fcllows

Open Circuited Terminus

;
|
™~
t
i
!
!
1
|
i
{
:

~ |
W |
>
= ;

,A.-ng]e 0 ans ¢T“ ‘ 31 Pard

I 1/
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~

When 0<L x< % » the line looks capacitive

When %— < % Q.g_\ , the line lcoks inductive

The line is an R,F. short for %}

An R.F., connection can be made thru by pass condensers, wh\ich will block D.C.

current., :

N

For x = 'Z- N
(4-45) reduces to

Zs Z . :

1 (o]

L5 L . -8

7 7 | (4-48)
whence 2

Zp

This makes a line of this length equivsalent to a transformer, with turns

S
ratio =& = M
np

mfor which Zi =

The input impedznce is, for x = 175 s the reciprccal of the terminal impedance.
‘ )

From the analytical expression of (4-L5) it can be noted that if Zp = O,

2/7, = O
2

" for x =

A

This has the properties of = puve inductance and ean be nsed for the shoke of
a radio-frequency tilter, :

(See next page)

FIM 1/2/51
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For example, a drift tube in a linear accelerator with a2 connection for put-
ting on & bias voltage may have a quarter wave length section with by-pass:
condensers at each end which will prevent radio~frequency energy from the
inside passing out along the bias connection. This can often be arranged by
using things slready lying arcund, such: as 2 portion of the bias connection.
Fer an open circuited terminus

T for x ' % » the line appears. as capacitive and at >—Z- the effective

capacity is oo

kS
7
L4

A transmission line that has a peir of skirt flanges of length h/h will have
an infinite capacity for the R.F. current and act as a by-pass but will be
insulated so that a direct current conneéction can be made to one side that
.will be insulated from the other

This can also be arranged thus.

These involve some losses 'to pay for the advantage gained.

FIM 1/2/51
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The discussions of the previous lectures have been concerned with circuits.
In connection with cavities and wave guides it is convenient to deal with FIELDS.
These are best handled by the use of the mathematics of VECTORS. It should be
noted that the term "Vector" is used in two senses. We used it in the nreceding
lecture to denote a rotating vector, the projection of which would then give the
megnitude at any time of a quantity, such as voltage.

~aJ Projection e

The projection of a vector of length V on the horizontal axis is
= V cos €

If V is of constant wvalue and © varies uniformly, this represents a sinusoidel
variation of constant meximum amplitude.

In the other sense, as is used in VECTOR ANALYSIS, a vector is a quantity
that has magnitude and direction,

The direction of a vector is a direction in space that is defined hy its
relation %o axes of reference. The magnitude of the vector is defined as the
number of times it will contain 2 vector of the same direction but having a unit
value, that is the number of UNIT VECTORS it consists of.

Consider, for example, an electromagnetic vector cof electric potentiesl, E.

"At some point there may be a potential gradient of E volts in a particular divec-

tion. If the unit of potentiul gladient is 1 volt per meter, the symbol E is

a vector consisting of E unit vectors in the given directicn. (Vectors are vari~
ovsly represented. In printed matter it is custcmary to use heavy faced tyve.

In menuscriph the fact that a cuantity is a vector may be indicated by drawing a
line over ﬂt, +h"°'ﬁg or putting an arrow over it, thus E”, or an ac.:ent, bh.ug_,
or underlining it, +hus,:,. In these notes, which are typewritten, it is most con-
venient %o use the underline mehbhod, I, as this can be done without nPC3S57uj of

reversing the rotation of the plstten that is required to form #n overiine. Use

of the underline, however, has the disadventages of requiring care to keep the
underline distinguished from the line indicating division. The szrrow may occa-
sionally be useful to distinguish egual and opposite vectors.)

: The voltage vector E therefore r°prgsents a voltage gracdient cof megnitude
E in a particular alrectlun, thus:

/
If thercisa Vba*ve of qcoulombs subject to a voltage F:adlent of F volts/meter

the charge will be subgected to a force in the same direction as the voltage

gradient)which will also be a vector, thus:

et

o

F=qE

FLM 1/20/51
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: . If there are two charges q; and 95

)

q
-~ -f 2
at a distance r apart, the force between the charges may be shewn to be
q, 4 ‘ -
F-__1 2 n | | (5-1)
Llr"'Y ko r - .
where q is in coulombs

r is in meters
rl is a vector of unit length with direction from 9 to q2

F is in Newtons (= 10° dynes ) with the same direction as r

kdvis a constant called the "permittivity of free space" »
with the dimensions (coulombs)? per joule or (coulombs)
per Newton meter or farads/meter

~if q is in coulombs
r in meters
F in Newtons

k= g.85 x 10712 (coulombs)® (5-2)
o © joule meter
- 8.85 x 10—12 farads

meter

Along with this unit is
po s the per@eability of free space
Po= 1.257 x 10° henries/meter

However it is not necessary to remember these values if the two follow1ng
relations are remembered, which are more useful

\4 Mof, = 306 oms (5-3)
1 1 '
J o Ko = ¢ = 3 x 108 meters/sec, - (5-4)

There are a number of systems of units for electromagnetic qudntltles. The
most common is the MKS system, where

Distances are in Meters

Masses in Kilograms

Time in Seconds

Force in Newtons (=1O5 dynes)(*1/5 1b. force)

FLM1/20/51
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Quality of charge in Coulombs
Current in Amperes

Potential Difference in Volts_
Electric Field in volts/meter

ke = (cOulombs)z/joule meter

If we have currents flowing in two parallel conductors, esch conductor
will be surrounded by an electromagnetic field

b

— e NN i
HONHITCO

G RN CER ! I
\ N S’ /" N S

The direction of the magnetic field is in accordance with the right hand
rule. ' ' '

If the thumb of the right hand is extended in the direction of the current
flow, the closed fingers will be in the direction of the lines of magnetic force.

When a current flows in a magnetic field, a force acts upon the conductor
tending to move it in a direction at right angles to the field. Since each of
the two parallel conductors above is surrounded by a magnetic field thru which
the other conductor passes, the two conductors tend to move toward each other,

if the flews in both conductors are in the same direction, or away from each
other if the flows are in opposite direction.,

The force per unit length may be shown to be

) I. 1

Bfp - Mo L 2 (5-5)
217D .

where F is in Newtons

L is in Meters
I is in Amperes
/‘/o is permeabiiity of free space
FLM 1/20/51 = 1.257 x 1076 henries/meter (5-6)
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Where there is a number of separate currents or charges or magnetic fields it
may be possible tn add up the effects of each one on each other, but it is
convenient to consider instead the effect on one charge or current of the
field due to the others. This has the effect of breaking up the separate
computations and puts the computations on a basis parallel to the mechanism
by which experimental measurements may be made. In cavities, for example,
measurements cf the fields may be made by inserting probes at various peoints
and measuring the intensity of the magnetic field, or other quantities.

The force acting on an element may, for example, be expreésed as

F =

¥ ql x field of second element

in an électrostatic'field the force on a charge is

E = ql XE_

The pctential gradient is
. 1 a r
E = ————— X —= e+ _1
= L TT ky r2

The force per unit 1ength‘on a conductor is

E/fp- 18
where B is the flux density

Moo

am e e naresatn,

217D

Manipulation of Vectors flgebraically

Because of the quality of dlrec ion involved in a vector, there are some
differences that eppear in their alﬁebralc manipulation.

. Two vechors may be added, which is represented thus

A+ B = C | | (5-7)
: Geometrlca}}___“_s is represented thus
C l

= ~This is similar to the familiar
l : meéthod of adding forces in mechanics
t by the parallelogram rule (which is not
' surprising, since forces are vectors)

Vectors can be multiplied by numerical factors. This merely produces a
vector of greater magnitude, with the same direction, thus

FLM 1/20/51
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There are two ways to multiply vectoﬂsg The first is calléd the SCALAR
or DOT product (from the method of representing the operation)

A+B = ¢ | (5-8)-

© ‘The SCALAR product is equal to the

A Length of ‘A times the length of B times
8 the cosine of the angle ® between the
N ' vectors., ‘ :

B

Thus, in mechanics the power involved in a force F acting on a body moving with
a velocity V at angle 6 to the force is

P = F « ¥V = |[F{+|V] cose | (5—9)>

where |F[and [V|are the numerical values of the force and velocity. This
also illustrates that the DOT product of 2 Vectors produces a2 scalar quantity,
since power has no direction.

- The other method of multiplying vectors is the CROSS PRODUCT
A x B = (5-10)

C is a Vector at right angles te the plane of A and B, and numerically

‘equal to the product of the numerical values of the vectors times the sine of

the angle between them.

AxB =|4] |B] sine (51

A convention for signs is needed here. This is teaken by the right hand rule,
that is, if the direction of the vector is in the direction of the extended
thumb of the right hand, the positive direction of the angle is in the direc-
tion of the closed fingers. /Another way to say this is that the positive
direction of the vector is in the direction of the motioén of a2 nut on & right
hand screw thread when the nut is turned in the clockwise direction,

The Torque produced by a force F with lever arm r is
| E | T = F xzr -~ (5-11-a)

_ The‘torque is represented by a vec-
tor L to the plane of force and lever arm.

The area of a parallelogram is equal‘to

j>

A = AxB =(M IB sine (5-12)

Ito

FLM 1/20/51
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The velume of a parallelepiped is
xB -0 o (5-13)

Where C is the perpendiculér distance between the faces

B

If thére are several factors, with mixed x and » products, the factors
can be commuted. Thus:

(AxB)+C=4 x (B*C) | (5-14)

Vectors in 3 Dimensions

A vector A may be considered to be the sum of three vectors A s A , A
parallel to three axes of coordlnates, thus S A

b = B v A + A a2 - (5-15)

'

y

The dot product of vectors A and B may be represented by the sum of
the products of the components

'AO.B::‘ | +  —-.
LB -A B +AB +AE (5-10)

FLM 1/20/51. -
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~

The companents of A parallel to the x, y, and 2 axis may be represented
by taking the magnltudes of the three components of A, multiplied by the unit
vectors i, Jj, and k parallel respectlvely te the x, ¥, and z axes,

Thus
L o= LAy *+ Jhy+kiyg - (5-17)

(note that this is a dlfferent usage of i and J from that in complex expres—
sions where i or j represents‘V -1 ).

From the definition of the scalar or dot product

A+B = |a 'Bf cos 8 (5-18)

it fellows that

i+i=3-3=k*k = 10 ~ (5-19)
aﬁd
Lej =ik =k-i = O  (5-20)

It follews that

[}- .

{oo
u

(,i_Ax+£'Ay’?.l.<.Az) (1 By + § By + k By)
=11 A Bg+J- 3 Ay By +k « kA By

Ay By * Ay By + 4, B, (5~21)

(All of the coefficient products involving i J 5 J * k ete. equal zero and
the terms containing them drop out).

The cross product becomes more complicated. The cross or vector preduct
is defined to be a vector perpendicular to the two given vectors with a direc-
tien in the sense of the direction of a right hand screw rotated from the first
to the second of the given vectors through the smaller of the two angles be-
tween them. -

The magnitude of the vector
product is

b
®
o

AxB= & ’Al’ [Bl sin & (5-2)

B
: where £ is a unit vector in the direc-
4 _ o tion of a normal to the plane of &
A , and B .

/

FLM 1/20/51
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) . -
: Note however that B x 4 by this rule becomes

B - ’ |
8 - .
< In this type of multiplicatien

AxB =-BxA

BxA

-For Vector Produéts, tpe order of mﬁltiplication makes a differencel
Since )
= £ Al IBl sine
it is obvious that the vector product is zero when the vectors are parallel.
Bj'ﬂhe definition of vector products it follows that
| (5-23)
=0 : (5=24)

X

=
I
T

ixj=k,Jjxk=1,

by

also that ixi=o,jxj=0, kx

The vector product
AxB=(ih +]Jhy+kig) x (LBc+ jBy+kB) |
=i (A, B, = Ay By) + 3 (A By - hy By) + k (A By ~AyBy)
| (5-25
This may be written more compactly in the form of a determinant, thus
| ik
AxB = A Ay AL : (5-28)
By By By

Application of Calculus to Vectors

A derivative of a vector may be taken with respect to a scalar quant.lty,
say, for example, time. Thus

di _ lim A(b+at) -4 (v) (5-27)
at At o At | :

This is stiil a vector

so also
, daB
el R R ,

FLM 1/20/51
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‘The derivative of the product of E scalar times a vector is shown by the
following example

_a

(wa)s= ada,uda . ' 5-29

Tt — = | (5-29)

Also
d da dB

~— (A*B) =B+« =+A = 5-38
and .

d axB =% xpepxE (5231

dt dt at

Now consider the symbol
Y = i d + 3 O 4 k 3 . (5_32)

- 4 Qay - 3z

This is called "Del" and is an "operator." It can operate on a sealar or on
a vector. If @ is a scalar quantity

‘Sz¢=;9-g+j—a-@+.lsi@ - | (5-33)
oX - 3y 3z : .

This is the gradient operstor. The meaning of this may be clarified by con-
sidering'a scalar P which is a function of position in space, that is

g (x, ¥, 2)

Then o o
# (x5 ¥ z) = C, (constapt) (5-34)

represents an equipotential surface, or, in the case of heat flow, a surface
of constant temperature or isothermal surface. For any other value of C,
there will be another equipotential  surface adjacent to, but not necessarily
parallel to, the first equipotential surface. If we consider the distance
from a point on the first surface to the second surface, having a difference
of potential d@, with length dr, -then

. 4¢

3. 1is the rate of change of @
with respect to the distance in the direction dr. This will be a maximum,
for a fixed value of df, when dr is as short as possible, which will be when
is normal to the equipotential surfaces. Thisimaximum value of the rate of
change of @ with respect to the distance is called the GRADIENT.

In Electrostatics,

E=~-vf@ is the gradient of @

(The minus sign because the force
~is from higher to lower voltage)

FLM 1/20/51
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Bem - 3 | (5-35)

Ey =~ 28 | 5-36

y - 35 | (5-36)

= - 9
By - - 24 (5-37)
So '
= .-K = . B_Q P a é . :

, E=%Ly +E+E) i 3£ -4 3%4&-5%  (5-38)
- | (5-39)

= - GRAD - | (5-40)

The operator ¥ has many properties similar to ordinary differentiation.

Thus: - Y(F+G)= YF+VG - \ (5~-41)
end VFG = FYG + GYF - | (5-42)

, S
also Y(-'F“) - GE-F X6 (5~43)

In the above, the operator ¥ has been applied to scelar quantities. It
may also be applied to Vectors, but in two ways, by analogy to the scalar or

dot product, or by znalogy to the Vector or cross product.

DIVERGENCE ,

The operation represented by ¢ - g is a scalar that is called the
DIVERCENCE of A or DIV A . '

The meaning of this can be clarified by considering a related gquantity called
the FLUX.

Flux of a Vector.
If we have a vector F at a certain point in space and an element of ares

S§S at this point, then f 5 9: whiczh is the projection of F on the normal to
the surface times the area §S is the

/ B Flux of the Vector F across &S .
Ss\r— ‘ ' :

—

f\

Some physical examples will illustrate the meaning of the term.
If we have a moving fluid, of which the velocity at any point is represen-

ted by the Vector F, then the Fiuvx of F or F § S would represent the total
flow thru the cross section § S. n

FLM 1/20/51
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If the vector ¥ = P ¥

where'/é = density

']

and vV

velocity

Then the flux of F = /»V § S would represent the mass per unit tlme
flowing across area $5.

Ir E is an Electric Field then the Flux of F is F, § S or the total
lines in a given area § S . '

If g is the intensity of heat flow normal to a small surf
q § 5 is the flux of heat flow across the surlace. This may be e
for example, in Btu/hr. :

If the surface is large enuf so that the valuve of F_ js df Lfferent ot

different places, then the Flux across the entire \Lrpicr”wc1l fave Jo he
obtained by integrating over the entire suif{ate “he vaives of the vector 7
at every point. This may be written
Flux of £ = [, / Fd3 (5
In a magnetlc fleld, the total flux is
N ’JS 24 (5-L5)

A FLUX must start somewhere., It can be cons”*o“vd Lo be msde somewhere or
tn s a circulation closing on itself '

i
RN

I

If the net flux from sn area or volume is positive, the'prea is a SOURCE,
and if negative, it is a SINK. These terms criginate in hyilvadwnemizs.

P

If the flux entering an area is equal/to thﬁt leaving, it is meither a source

nor a sink. : 2
s

If vwe consider the net flué’from a volume V we can represcert ths total

flux of A as '
f“ TS | (5-46)
and the flux per unit volume as -
Ja-as | ()

FLM 1/20/51 -
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The limit as V.—» O of the Flux per unit Volume is called the DIVERGINCE.

If we consider a volume as made up of a number of small volumes the flux
per unit-volume will very from one small volume to another. The total Flux |
from all the small elements of volume will be

Sav Boo av o | (5-48)

This total flux can also be expressed in terms of the total external
surface of the volume. (The net flux across any surface in the interior of
the volume will be zero, since what leaves one small interior volume thru
its surface (positive) enters the adjscent small volume (negative). These
fluxes in the interior accordingly cancel, and only the flux thru the ex~-
terior surface of the total volume can be counted. The summation of the
fluxes on the differential volumes is evidently equal to the total flux
across the exterior surface, which may be expressed

J/faiv Exav = JIES: dV=I£'de" (5_49)
v v S '

The choice of the term DIVERGENCE may be‘explained by considering F as
equal to 2 v where ©is the density and y is the velocity. Then the
integrals of eq ( 5~49) indicate the mass “of fluid flowing per unit time
from the volume. When the volume is infinitesimal, it represents the mass
of fluid flowing or diverging per unit time from a point..

If we consider a small volume dx dy dz , the chanse in mass per unit time
per unit volume will be :
272

ot

This will be, from the principle of conservatlon of mass, equal and
opposite tothe total flux per unit volume, or

2P

25 - - v = -V (Y (5-50)

This is called the Equation of Continuity.

) 7~
When the fluid is incompressible, 0 = constant and %%—g = 0, 80
VM=0. ‘

Vhen the divergence of a function vanishes in a région, the function is
said to be Solenoidal in that region.

N\
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The other means of applying the operator ¥ to vector is

v x A =.-Curl A o (5-51)
' i § k
Curl A =TV A={y 3 2 :
=8 22 (5-52
3x 3y 3z (5-52)
Ax Ay Az
34, A 24, 3k DA, A
= l( -~ Y + - Z :!.- X _
T 3y 9z ) j(az Sx) M ( y) (5-53)

The term Curl is derived from hydrodynamics, It may be shown that the
motion of a small particle of fluid in time dt may be considered as made up
of a translation, a deformation and a rotation about an instantaneous axis.
The curl of the vector v (the velocity) may be shown to have the direction
of this axis and a magnitude equal to twice the instantaneous angular velocity.

We may get a picture of what is meant by
VxA = curl A o (5-54)
as follows.

There are two ways to make a field. One of these is to stir it up, to
form lines of force that make closed figures.

What is a line of force? It has direction and magnitude.

D ' The direction at any

I -~ ' ~ point is that of the
. \ tangent to

the curve at any point

Suppose we consider a short section dL of a path and a vector A making
an angle 8 with the tangent. Then A cos 6 is the component of A parallel to
dl.. Suppose, for example, that A represents the force acting on a particle
moving aleng the path. Then (A! cos B dL is the work done o™ the partlcle
during its motion thru distance dL but |A] cos 6 dL = A ° dL
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The total work dene by the force A in moving around the path is

W= faed | o (5-55)

This is a line integral. If this is carried out for the entire clesed path
we have '

Jq{ A »dL ’ : (5-56)

The circle on the integral sign indicates taking the line 1ntegra1 clear
around to the point of beginning. v

If A 1is the gradient V @ of a scalar function of position, then -

B
Ja-a - rB<V¢) fB(\ dx+f—gdy+—gdz)(5-s7>
A k] .

X L
A o ¥

- deQf - ¢B— % | (5-58)
; |

It follows from this that the line integral of the gradient of any scalar
function of position @ around a closed curve vanlshes, because ¢B = ¢A .

If the value of the line integral around a closed curve is not zero, the
positive value is termed the CIRCULATION,

If, for example, v is the velocity of water around a clased path and

fy - #0 | (5-59)

its value is the quantity of water/sec/unit volume that is being carried

around. If the integration in the direction A to B gives the positive value,
the integration from B to A gives a negative value. The direction giving the
positive value is the direction of circulation. The circulation of the eleo~
. tric intensity round a given curve represents the total voltage that would be
impressed on a conducting wire coinciding with the curve. The circulation of
any force represents the work done on a particle moving around the closed

curve. If the 01rculation vanishes for every closed curve the field of force

returning to its original position.

The circulation around a small loop in a field depends on its size and
orientation. As the loop contracts to a p01nt, the circulation per unit area
may approach a finite limit., This limit is called the component of CURL of
F in that direction, normal to the plane in which the circulation appears to
be cleckwise

limit HA . dL

l = component of Vx A -60
A0 Area P 2 (5-60)

that is perpendicular to the area.
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Vie may consider'a larger area, it may be considered to be made up of a
large number of small areag '
TR

¥ N
( Cleols s .a\
NBEE3Y

The line integrals in the interior of the area cancel each other, and
only the portions on the outer periphery remain te form portiens of the line
integral around the boundary of the area. The components of the V x A
perpendicular to the area may be summed up, se

fa-a- H,Z/F (7+4)vas (5-61)

This is known as Stokes' Theorem.

B

Summarizing:
Del and scalar

Y¢ = grad § = gradient of scalar § . | (5-62)
(This is a vector)

Dot Product of
Del and Vector_

VeA =div A = divergence of A | (5-63)
(This is a scalar)

Vector Product of
Del and a Vector

i J k -
‘ 8 3 3 (5-64)
VxA =Curl 4 = dx Jy da
Ax Ay- Az

With this background we can now proceed to write Maxwell's Eouations.
This will be taken up in the next lecture, «
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Maxwell's Equations in Electromagnetic Theory are

N7
i

"SZ«

=J+“')D

Jt

(6-1)

(6“2){

(6~3)

\
(6L )

When the MKS (Meter, Kllogram, Second) system of Unlts is used, the cur-

rent I is in amperes and V is in volts.

= Tov N L

I

FLM 1/29/51

1}

Electric Displacement (coulombs/meterz)

, ) 2.
- Magnetic Induction (weber/meter)

Electric Intensity (volts/meter)
Magnetic Intensity (amperes/meter)
Current DenSLty (amoe“Pf,mcter )

Electric Conductivity (l/ohm~meter)

Ky Ko

Fr fos Magnetic inductive capacity of the medium

Dialectric constant

Permeability

8.85, x 10"12 (Farad/meter)

L7 x 1077 = 1.257 x 1076 (henry/meter)

Charge density (coulombs/meter3)

1 , }
V-;==l— = 2,998 x 108 meters/sec
V K, Mg (velocity of light (close enuf to 3. x 10

The other terms are

Electric inductive capacity of the medium

M/S for ordinary computations)

g
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In a vacuum | -
p - E : (65
X
©
H = B or H =3 ' : (6-6)
- Mo : ' ' |
e
] . :
oo ot n L | (6-7)
/T C ,
4 :
and \l/-i'{-g' = 376 N ' (6~8)
\ o e
Equation (6-1) is i

VoD =g | « | (6-1)

This ssays that the divergence of the Electric Displacement, or number of lines
of electric force per unit area is equal to the charge per unit volume.

- /@ = Charge per unit volume

I's

The number of lines originating in a unit volume is equal to the charge present
per unit volume, The electric force lines start and end on charges.

‘Equation (6-2) is

ve+B =0 . : | (6-2)
This says that the divergence of B, the magnetié inductioh, is zero. This
means that magnetic lines cannot originate in a source or disappear into a
sink. ' .
N
There is no such thing as a single magnetic pole, butvthe lines of mag-
netic force constitute a circulation.

e\
@ { ¥

. \
N -/
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Equation (6-3) is

) =—.€?-..B. 6"‘
VxE 5t (6-3)

This says that the curl of E, the electric intensity, is equal to minus thg
time rate of change of the magnetic induction B, This says that-an electric
field can be set in circulation '

The surface ‘ The Line
Integral Integral
J(UxE) -d5 = %//~§‘° dL = = =~ (Total magnetic force)

ot (6-9)
In other words, the total electric force around any closed loop is equal
to minus the rate of change of magnetic flux. (The minus sign enters because
the counter &.M.F. developed by a rise in magnetic flux is in the sense oppo-
site to that which produces the magnetic field rise; also the E.M.F. produced
when the, magnetic flux decreases is in the sense to keep the current flowing.

‘Equation (6-4) is ,
VxH = J + 2D - : (6L
ST » e
This says that the curl of the magnetic intensity is equal to the current
density plus the rate of change of the Electric Displacement.

- Circulation - Magnetic Total
Density Motive . Current

. F : : .
J//( ¥ x H) ds = Jﬁr Q?Z; '=_//fg s+ ds . (6-10)

In a magnet, the integral_/'g * dL = total current being made. The total cur-
rent includes the displacement current, which also produces a magnetomotive
force., If we have a circuit like this,

. | T N
.there will be current started when the switch is closed. The magnetic field
accompanying it is

29T rH=1

OR
I

‘H.-zrﬁr ‘ . ~(6-11)

This cyrrent continues only until the condenser is charged, since there is no

current across the gap. This is a displacement current. If the charge on the
J
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condenser is q , : _ . ;
. 23 (6-12)

I 31 -

If the charge is known, the electric field can be computed

Bocods = fpav = q (6-13)

This says the total flux out of a given volume is e%ual to the charge q. The
Electric Displacement is in terms of coulombs/meter< so the charge

qQ = D x Ai‘ea ‘ a (6—:‘-_14.)

The Current per unit area is equal to the time rate of change of the electric
displacement curreat

Eats

&1/8

(6-2.5)

P

Consider the conditions in a cavity

+ —
-+ > -~
+ Electric -
+ Field  ~ -
+ _ | -
<+

The current flowing down the sides produces a magnetic field circulating
around the axis and an electric field between the two ends. '

In a vacuum neither electric nor magnetic fields have sources. £ change
in magnetic field changes the electric field and vice versa. :

¥hy do we have two similar guantities
D and E for Electric
quantities and two similar quantities
B and H for Magnetic/
quantities? ‘ . | '

In a vacuum these are related by simple conétants

A =B
and KO _Q = B
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In other materials
B = /u,k H » (6-17)
o f
where/A is the permeability of the material '

andf/Lo - 4Tx 1077 = 1.257 x lO~8 henry/meter

Also - :
D = KK E N ' (6-18)

where K is the dialectric constant and

K, = 8'85‘X'10—12 (Farad/meter)

Eq. (6-1) can be expressed in terms of -components
C R

Div .12 = S‘z R 2 = SDX N aDy + aDZ
| | - Jx 3y O =z (6-19)
and (6-3) as a determinant
i J k
3 o O
v ’F E = Jx Jy 7% (6~20)
X "y g

Consider the application of these ecuations to a transmission line con-
sisting of two parallel plates

Since it was shown (3-7) that

c= =

Vv 1c | (3-7)

it follows that either L or C can be computed if tﬁe'other is known. The

FLM 1/29/51
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capacity can be computed as follows.

. The capacity of a parallel plate condenser is :
K A (6~21)

d 4

Gy

The capacity per unit lehgth of the £ransmission line above is

co St . (6-22)
From Maxwell'!'s equations a D - l
Q@ = CV = CEd)=c .7x (6~23)
o Fieid x Gap
The total flux of D = total charge.-enclosed
: . .2 D L , \- | -
L R (6-2)
" Whence C = ﬁgﬂ ) - (6-22)
Having this, the iﬁductance L can be computed.
It can also be computed from first principles thus:
L is defined thus . _
g = LI e  (6%25)

Flux = Inductarice x Current

I .
/,/ 3

In the transmission line above current is flowing in opposite directions
in the two plates. '
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Looking endwuys at the plates, each plate will be surrounded by a mag-
netic field

CE' ::js-jf The current flow in this
T d plate is up from the paper
\_‘—w e The current flow in this 3%

plate is down

The lines from each current that encircle the other plate cancel, being of
opposite sense, leaving only a weak stray field. Those in between reinforce

each other, v
{ /

| /K& a4 - - (6-26)

wB ' wBEd
I = wi = — %
= ' fhod

o

This is equal to the total flux per unit length.

The Integral

(6~27)

This may be written

‘ : I

Hag o By |
= (6~28)
'whlch is the inductance C . : )

We now have

ko W ’ :
C= =4 (6-22)
and
o d ,
L= =5 (6-28)
whence CLC = KO /u o
and 1 : 1 ‘
= =3 x lO m/sec (5-4)

JIC ‘/Ko/,(o

Previously it was shown that the characteristic impedance of free space

or 376 Ohms per square, ' N

is

= 376‘%_9_

2l

(6~29)
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376 Ohms per square what?

This says that the characteristic impedance of a transmission line con-
sisting of two parallel plates may be determined by dividing the space between
in square areas of any size and then taking the impedance of each square as
376 ohms and combining them in series and parallel, get the impedarce of the
transmission line.

For example, take the case where d =

| . | \
Zo = 3765 = 3765 = 376 L o

Consider section of cross-section ab cd and one unit in length perpendicu-—
lar to the paper. 2

e may lock alt this as made up of 4 squares thus

W= 2a

p P

d - 22

o ot

i
o
L

Then from the top plate to the bottom plate we have 2 squares in series verti-
cally and 2 columns in parallel horizontally. The resistance of any one square
is 376 ohms, so the resistance of one column 2 squares high will be

‘i——

2 x 376 ohms -

There are two such columns, and the resistance of these two columns in paral-
lel will be halfth that of each column, so the total resxstance of the 2
Columns is é_Z_zi_ = 376 ohms.

2

FLML/29/51 | ’
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-

f

_ The squares do not have to be of the same size, For example, take this
case

37 __fz
i 12
37 |2
3 2 ;
This has w=5 and d = 6 , and according to Eq. ( 6-29)

d . 6
Z, = 3765 =376 % %

Looking at the subdivision into squares, we have one column 2 squares
high in parallel with a sesond column 3 squares high. The two columns-will
have impedances of 2 x 376 ohms and 3 x 376 ohms respectively. Ve may get
the equivalent impedance by adding the admittances and taking the reciprocal
of this

. o It By R
Thus ZC T e vt s = -é———*—*—- = }-{-l:_R.Z.
I . O 1+ B

In this case this becomes

which is the same as found above, o

The usefulness of this concept is that it permits making graphical
approximations of characteristhic impedances of shapes that might be difficult
or impossible to compute analjtically. For example, consider a transmission
line composed of twe concentric cylinders, with an annulus 1/4"

wide. Considering this as equivalent to a pair of flat plates

(6~29)

0.2
5 = 3e66.ﬂ—

d
Z, = 376% = 376
376 w 376 5555

c
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) \ ‘
Apply the ide . L
such azptgis a cf squares to a more complicated transm1551on line shape,

&)
Vj=

L
i

g

Y -

<
-
Nl

T
N
W

" Apply to this the method of curvilinear squares,

First we can note that if there is an axis of symmetry we can consider
only one half and get -the total impedance by dividing the impedance found for
one half in two, since the two halves are in parallel,

Next we can conelude for the two corners that the conditions will be
more or less symmetrical about a L5 degree line extending to the corners.

FIM 1/29/51
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Then, noting that lines starting on the inner boundary must spread out as
they approach the outer boundary, lines of potential are sketched in by eye,
and divided in squares. The spacings are adjusted by eye to permit division
into arezs as nearly as possible square, keeping in mind that the lines must
be at right angles to the inner and outer boundaries. The number of squares
in each column is then noted. This gives the number in series in each column.
These are then combined in parallel by the rule

2o = 37§ " -

+ soes

o

w2
e Lo

+

Tt | g

In the case sketched this can be handled as follows, starting from top center
and going to the right o

No. of Squares No. of Squares -
Per Column Reciprocal Per Column Reciprocal
3 .333  Bro't For'd - - - 2.842
L .250. 3-1/2 +285
4-1/3 .230 L o4=1/2 222
L=1/2 .222 - 5-1/3 .186
5-1/3 .186 5-1,3 .186
8 . 125 L=1/2 222
8 125 L~1/3 230
( 5-1/3 , 2186 L 2250
L=1/2 222 3-1/3 300
L=1/3 $230 3 - 2333
3 , 333 3 333
2-1/2 400 5,389

-———L—- = 00186
5.389 -

Divide by 2 to take account of othesr half

Q;%Qé = 0,093

Then  Z, = 376'x 0.093 = 350

It doesn't make any difference what the sizes of the squares are, és long
as they are properly added in series, and the series sums combined in paraliel,

The process can be applied to a more complicated structure, such as a
pair of Dees for a cyclotron

- oo Seer
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The connections may be made into quarterwave transmission lines with shorted
termini

-

| >
For this case ot
| Vo= ¥ <X
¢ cos =7
I == 1 1 2 /Iv{ X
Zc sin T,

The voltage and current appear thus

v ’

S

The two dees of a cyclotron are computed separately and the result multlplled
by twe

- Excitation

Suppose it is desired to excité the Cyclotron Dees to 100 KV and the avallable
source 1s limited to 10 KV,

An estimate is made as to where the 10 KV points are in the stems, and
the power is fed in there by connecting to the grid and plate of the R-F power
source, making the connecting lines an integral number of wave lengths long.

Adjustment will have to be made by trial and error.
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APPENDIX TO LECTURE §

THE FOLLOVING IS EXTRACTED FROM "MATHEMATICS OF MODERN
ENGINEERING, VOLUME I, BY DOHERTY AND-KELLER

Chapter III, Part II, Pages 206~220, "Derivation of the
Partial Differential Equations of Mathematical Physics -
' or Vector Fields" '
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The following is extracted from "Mathematics of Modern Engineering, I"
by Doherty and Keller, John Wiley & Sons--1936:

DERIVATION OF THE PARTIAL DIFFERENTIAL EQUATIONS OF
MATHEMATICAL PHYSICS OR VECTOR FIELDS

The derivation of the partial differential equations of mathematical
physies is little more than expressing vector relations which hold within a
vector field or between vector fields. The basis relations themselves are,
in general, physical relations in vector form accompanied by certain mathe~
matical transformations resulting in the partial differential equations of
Section 79.

77. SOME VECTOR FIELDS. There are many kinds of vector fields, In the
study of heat conduction, it is known that the flow of heat is in the direc-
tion of the greatest decrease of temperature and has a magnitude per unit area
proportional to the rate of change of temperature, This statement is ex-
pressed simply by the equation g = - ky V, where q is the heat flowing through
a cross-section of unit area per unit time, the direction belng that to give
maximum q; V is the temperature; a scalar functlon, and k is the thermal con-~
ductivity of the body. Near every mass there is a field of force called the
gravitational attraction. This force of attraction at any point may be ob-
tained by taking the gradient of a scalar point function called the gravita-
tional potential (see Section 82.). Likewise, near an electrically charged
body, there is the electrostatic field. ) .

At points exterior to the charge, there exists a scalar point function,
the electrostatic potential, whose gradient taken at the point P(x,y,2) gives
the negative of the electric intensity at that point. Near a magnetized body
there is a magnetic field, The negative of the magnetic intensity of this
- field is given by the gradlent of the scalar magnetic potential, "ithin a
body of flow1ng fluid there is a vector field or velocity field., If the curl
of this field is zero then there exists a function ¢, called the velocity
potential, such that the gradient of ¢ at any point gives the negative of the
velocity of the fluid at that point. :

78, PRELIMINARY THEOREMS. DBefore deriving the partial differential
equations of mathematical physics, it is necessary to understand the very
important theorems, in vector analysis, of Gauss, Stokes, and Green. In
Section 70, line and surface integrals involving vectors were defined and
illustrated. The concept of the volume integral,‘/fgdv,.of a vector function

is also needed, The integralverdv is defined by the equatlon
‘ 1

/de =i fF dv + /Fydv + k /F dv. (éh9)

Vol Vol Vol Vol
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DERIVATION OF THE PARTIAL DIFFERENTIAL ECUATIONS OF
MATHEMATICAL- PHYSICS OR VECTOR FIELDS

The three theorems of this section are the machinery by which transformations
are made between line, surface, and volume integrals. Eqs. (250-252) state in
symbols, respectively, Gauss's, Stokes's, and Green's theorems as follows:

/f‘? Fdv = ffF-ds, .-(250).
fvxF .ds = [‘_F_’.'dg_, o | (251)
o] . ’ R

fvo{f (uy.’- yv-vy'YU).dv'; Sf/(UV_V-—VY_VU)'.p_dS (2§23

Gauss's theorem stated in words is: The volume integral of the divere
gence of a vector function of position in space taken over a volume is equal .
to the surface integral of the vector function taken over a closed surface
bounding the volume, To illustrate Gauss's theorem qualitatively, consider
a mass of metal within which heat is generated, say by electric current.,
Gauss's theorem states that the total heat flowing, in the steady state, out
through the surface is equal to the volume integral of the divergence of the
heat-~flow vector, which can be shown to be equal to the amount of heat gen-
erated in the solid,

Stokes'!s theorem is: The surface integral of the curl of a vector func-
tion of position in space taken over a surface S is equal to the line inte-
gral of the vector function taken around the periphery of the surface, A
physical illustration of Stokes's theorem may be had in the magnetic field
about a wire carrying a current. According to the circuital theorem the work
done in carrying a unit pole around a closed path is 4nf times the current
enclosed by the path, or if the path lies in air Q/‘ = 1), in symbols

fB.dr=zmrI.

But I is equal to the surface integral of the current density j over any
surface bounded by the closed path c,

Jorreniffae
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DERIVATION OF THE PARTIAL DIFFERENTIAL EQUATIONS OF
MATHEMATICAL PHYSICS OR VECTOR FIELDS -

The circuital theorem may also be writteni;i X B = 4alj, To see that this
is true it is only necessary to refer to the third definition of curl in

Section 75, If in Eq. (248), F is replaced by B andd/ﬁﬁ_* dr by LTI we
‘ ) g

obtain

- [é'dr. .
(¥ xB), = lim - um ME s,
J a a

a~-7->-0 B O

Replacing in the double integral above, hqu_by‘ ¥x B we obtain

fB- fva*dS, ' o

which is Stokes's theorem. The material of this article is a statement and
illustration of these thearems by means of physical examples. But these
theorems depend in no way upom physical experiment, They are mathematical
identities. _ ;

79. THE PARTTAL DIFFERENTIAL EQUATIONS OF MATHEMATICAL PHYSICS. The
chief partial differential equations of Mathematical Physics are the follow-~

ing:

a. Laplace's equation V * 7 V¥ = 0, which is satisfied by the fune-
tions: ' - _

1., Gravitational potential in regions unoccupied by attraeting

matter,
2. Electrostatic potential at points where no charge is present.

; * 3. Magnetic potential in regions free from magnetic charges,
4. Temperature in steady state.
5. Velncity potential at points of a homogeneous non-visccus

‘fluid moving irrotationally.

% The operatbr

2
e
<9x? ayZ Eaz

and the equation

jZ YV=20 ‘
is called the LAPLACIAN EQUATION.

2)"
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DERIVATION OF THE PARTIAL DIFFERENTIAL ECUATIONS OF
MATHEMATICAL PHYSICS OR VECTOR FIELDS

6. Electric potentlal in homogeneous conductors in which a current
is flowing.

b. Poisson's equation VYV YV = - e,
¢. Equation of heat conduction without sourcesé a g ¥8= B¢ .
d. Equation of heat conduction with sources, ( QL g6+e)=6,
e, %ave equatlon, jz ¥ Yy s and
tt
f. a (§7 VY + e) = Yo %’
g. Equations of elasticity.
h. Telegraphists! equation, a¢tt + bﬁt +c ¥ 'V ¢ = = C€,
i, Maxwell!s field equations,.
J+ Euler's eguation for the motion of a fluid,

The single subscript t indicates one partial differentiation with res-

pect to time; two subscripts, partlal differentiation twice. We now derive,

in vector notation, some of the above equations.

80. EQUATION OF HEAT CONDUCTION WITHOUT SOURCES, AN A O o
Consider the following problem: A mass of iron has been heated to a certain
temperature and left to cool. That is the temperature at any point of the ~
mass at any time t? The differential equation giving this temperature may be
found from the following physical facts:

(a) The flow of heat will be ) p A
in the direction of the greatest g

Element of
general sur-

face

have a magnitude per unit area pro-
portional to this rate of change of
temperature,

Element of

isothermal sur-
face

(b) The rate at which heat is lost
lost by a given region of the body
is the heat flux passing through the _
surface bounding the region, © Fig. 47.

The fate of heat loss from an element of volume dv in terms 6f tempera~
ture & and épecific heat ¢ is ~ 05353% dv where{jﬁ is the density.ri

Thus the rate of heat loss from a general region of volume V (See Fig. 47)

bounded by surface S is
- -—--n = nf‘ﬁfc‘ﬁ”‘-— dv.
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DERIVATION OF THE PARTIAL DIFFERENTIAL ECUATIONS OF
MATHEMATICAL PHYSICS OR VECTOR FIELDS

" In general S is not an isothermal surface, Ve may also express the rate of

heat loss in terms of the heat current density g (heat flew per unit of time
per unit area normal to the flow) as

28 (o wo

~ Equating these two expressions by relatisn (b)

_‘j((!oc%%dv-afs(g_'gd&' (253)

By means of Gauss'!s theorem, the last equation becomes

m gro- ([

Since these integrals are equal for every volume, the integrands must be equal.

Hence

— Q_Q = L4 v

PeSg=¥ra.
But by relation (a), q =~ k¥6, where k is the thermal conductivity, The
last equation then becomes '

8?7y ©=6t,

vwherea2=PE'c'.

8l. EQUATION OF HEAT CONDUCTION WITH SOURCES. In this case, physical
relations (a) and (b), Section 80, still obtain, and also one additional one,
Each element of the mass within the volume V may have heat generated in it by
some means, for example, by an electric current. The density of strength of
source e of heat is defined by the equation

: Total heat created within V per unit time
e » lim v . S
V.0 '

The additional physical relation is: the rate at which heat is ‘emitted from
the element of volume dv may be considered as consisting of two parts: first,
that which is the rate of cooling the element if no source were present,

namely, ~fec z;— dv; and secondly, that due to the source edv. Returning to
Eq. (253) of the preceding paragraph, we write \

fff /_'>c.‘2._e.+e)dv=ffn’qu.

Vol
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Since this equation holds for every volume, it follows that
WX T ere) =6y,

82, CONCE?T OF POTENTIAL AND THEOREMS OF GENERAL VECTOR FIELDS. It has

" been noted in Section 77 that the gradient of a scalar point function (called

various kinds of potential) gives a vector field. .This leads to the defini-

_ tion of a potential. A potential is a scalar point function whose gradient

is a vector field. In such a case, the vector field is said to possess a
potential. It is by no means true that all vector fields possess a potential.
The simple criterion‘fnr the existence of a potential is given by the theorem:

I. A necessary and sufficient condition that a field F possess a poten-
tial is that ¥ x F ='0. (See Section 27 for the meaning of necessany and
s'ufficient.) . _

To determine whether the curl of a field is zero, 1t is necessary to
know phy51cal facts about the field and then to apply Eq. (248),

which is E | ﬁ.F.' dr
(Curl f_)s = g.;mo___ :
where a = area
For instahce; in.ihe magngtostatip case, if the line integral _4?@ *dr is
calcuiated arcund a cloéed'path which encléses no currents,.by the circﬁital
theorem, J{é * dr =0, and consequently, by (248), curl B = O in such regions,
Similarly, the line integrals of the force of attraction and electric inten-

sity, taken around closed paths, are zero for grav1tatlonal and electrostatic
flelds.

The concept of potential function is one of the most important in mathe-
matical physics because, once the potential (if it»exists) of the field is
known, the field is determined, This raises the question, why not find the
field due to the distribution of charge, current, or mass at once, and dis-

‘pense with the intermediate potential? The answer is that the potential

satisfies certain partial differential equations which can bé integrated and
hence the potential may be found with less difficulty than the field. The
follewlng table dlsplays some of the most important potentlals and their
deflnxtions.

FLM 2/7/5i
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DERIVATION OF THE PARTTAL DIFFERENTIAL EQUATIONS OF |
MATHEMATICAL PHYSICS OR VECTOR FIELDS

Definition by line

Definition by vol~

Definition by par-
tial differential
equation. Solution,

integral une integral subject to boundary
conditions of:
Negative Work |
r
Newtonian potential - f-E . (+ d}'_) vV = / A dv YNV =0,
Zo , r jor V- -YVa-hmim .
Per unit mass
 p Work o o
Electrostatic = f E.(-dr) v - [Ld¥ N'¥V=0,
potential o - . r

 Per unit charge

_ Magnetic potential

r Work

=fﬁ-(—d1r.)

Per unit pole

- [ s

Magnetic vector A oa Jddv - Y'JA =0,
potential o o R . 2 6 0 200 b PO LEOOSSENPSFOESSC — i r or V.Y-A - -h’_iTJ .

Velocity potential L3N 2R I IR ] .'!‘j. LI R I A I B Y ] ® 080000 O0OS 2RSS —_. Y¢ = O.

' Velocity vector @ - qv v.99=0,

potential W9 OGS P CLIOISIOOISIOILEOGEPIREOEN * 2’“ T or .v'yg—? "'2&0

vol

In the abo;?e tablé:

;

RS
-

(1o N [ - L) ‘8 lr& q\g

- FIM 2/7/51

mass per unit volume,
= density of charge per unit volume,
= pole strength per unit volume,

=  velocity vector potential, - ,
= angular velocity of fluid = % curl of linear velocity,

= gravitational force,
=. magnetic intensity {(force per unit pole) = B&L s
= velocity potential, '
=  electric intensity.



Page 8

DERIVATION OF THE PARTIAL DIFFERENTIAL EQUATIONS OF
MATHEMATICAL PHYSICS OR VECTOR FIELDS

_ In the éase of vector potentialé the fields desired are obtained not by .
taking the gradient but by taking the curl of the vector potential.

Frem theorem I, it is evident that vector fields possessing potentials
are not the most general fields;, eince the curls of such fields have the
special value zern, What then is the nature of a general vector field, and
what must be known about a general field to determlne it? The answer to these
twe questions are theorems II and III. :

II., Let F be a single-Valﬁéd vector function which, along with its
derivatives, is finite and continuous. and vanlshes at infinity. Then F can

be written :
F Yd"gxﬂ:

or F = grad g+ curl H
where £ and H are respectively a scalar and a vector point funetion. This is
the Helmholtz theorem in vestor analysis.

IIT. A vector field is uniquely determined if the divergence and curl
be- specified, and if the normal component of the field be known over a closed
surface, or if the vector vanish as 1/r? at infinity. If neither of the last
two conditions is satisfied, the field is determined except for an additive
constant vector. <

We now resume the derivation of equations.

83. PARTIAL DIFFERENTIAL EQUATIONS OF GRAVITATIONAL, ELECTROSTATIC, AND
MAGNETOSTATIC FIELDS. These derivations are based upon Gauss's law and in the
case of the magnetostatic field, the circuital theorem of Ampere,

1. Gauss's law. In electrostatlcs the force between two<:harges Q3 and
qo is given by the inverse sgquare law
%49

rz )

f =

" The field vector E is defined as the force per unit charge., Gauss's law
relates the surface integral of E over a closed surface S to the charge Q
within S. For a region contalning no polarized dielectric it is

J er -dS = L9Q.

This can readily be proved from the inverse square law; in fact, it is a
mathematical equivalent which is based on no further experimental evidence.
Thus if a phenomenon is characterized by Coulomb's inverse square law, as the
magnetostatic and gravitational fields are, Gauss's law also holds. For the

FLM 2/7/51
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DERIVATION.OF TEE PARTIAL DIFFERENTILL ECULTIONS OF
MATHEMATICAL PHYSICS OR VECTOR FIFLDS

magnetostatlc field E in Gauss's law is replaced by H, the force per unit
pole, and Q, by the number of unit poles enclosed. For the gravitational
field, E 1s replaced by F, the force per unit mass, and Q by = M, the nega-
tive of the total mass enclosed. The negative sign occurs because the force
between masses is attraction whereas that between llke charges or like poles
is repulsion,

2. The circuital theorem. The line 1ntegral.L:}{ . dr of the magnetic
intensity H, due to a current, taken around any closed path ¢ encircling a
conductor is equal to 4 I, where I is the total current flowing in the con-
ductor, ,

By means of 1 and 2 above, most of the fundamental laws governing
gravitational, electrostatic, and magnetostatic fields are quickly obtained.

(a) Gravitation. In gravitational fields Gauss's law is

J/#fé *dS = - 4T,
50~ '

where I is the total mass enclosed. The last équation may be written

J(:(,F °dg = - hfgﬂ;dv,

where/u is the mass density. Applylng Gauss s theorem (250), we have

JKEZ Fdv = - L Medv,

vel - Vo
Since the last equation holds for every volume, it follows that the integrands

are equal, that is,
YeF=-bui. (254)

By applying the definition of curl (248) to a gravitational field, which obeys
the inverse square law, it can be shown that ¥ x F = 0 everywhere. By theorem
I, Section 82, a potential V exists such that 9V = F. Hence (254) can be
written : : ‘ .

YTV == bau., - (255)

This is Poisson's ecuation. It holds at all points occupied by matter, At
points free from attracting matter s = 0, and Poisson's equation becomes
Laplace's equation :

¥ .¥%V=0, | (256)

Egs. (255) and (256) are the important partial differential equations of
gravitational theory.

FLM 2/7/51
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MATHEMATICAL PHYSICS OR VECTOR FIELDS

(b) Magnetostatics. Replacing E by H and Q by | g dv in Gauss's law,
. o ol
and repeating the reasoning immediately preceding (254), we have

v+ H = 4o - (257)
The quantity ¢~is the pole strength per unit volume. By the circuital theorem

‘and the definition of curl (248), it follows that in non~current-carrying
reginms )

YxH=0,

Hence by theorem I, Section 82, potenﬁial function §¢ exists in non-current-
carrying regions such that V §2= —~ H. Hence (257) becomes

- VTS == hato. ' (258)
' At points devoid of magnetic poles the last equation becomes
V9L = o, o (259)

In current-carrying regions, by the circuital theorem, ¥V x H £ 0, and cen~
sequently no scalar potential {)exists.

(¢) Electrostatics. By retracing the steps employed in (a) of this
article, it follrws that :

Q-

*E = havp, g
VxE =0, ) -
- ) (260)
9V = - §: ; :
_:Zva'fhdp.)

The quantities © and V are defined in Section 82. So far, the electrostatic
charges considered in the application of Gauss's law have been free charges,
Gauss's law as stated above holds only if there is no dielectric medium within
the closed surface, Suppose now, in addition t¥ free charges, there is within
S a dielectric containing bound charges which are influenced by an electric
field., The field causes the positive atom cores and negative electrons of an
atom to be displaced from their equilibrium (normal) position. The result is
that the atom forms a DIPOLE, The.product of either charge of a dipole by the
separating distance is called the magnitude of the electric moment of the
dipole. If the direction is taken from the negative charge to the positive
charge, the product of this unit vector by the magnitude of the moment is.
called the ELECTRIC MOMENT, a vector quantity. The polarization P of a dielec-
tric is defined to be the total electric moment per unit volume, It can be

I3

.
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DERIVATION OF THL PARTIAL ﬁIFFERENTIAL_EQUATIONS OF
MATHEMATICAL PHYSICS OR VECTOR FIELDS

shown that the POLARIZATION of the atoms of dielectric is equivalent to a
mean charge per unit volume of -%¥ ¢ P . Hence Gauss's theorem becomes

f.@.‘d§_=h'f(@~‘7f2'f_dv)

5 ,

=-a’n’(Q-f_fj.ds),
S

(& + we) - as - v (261)
S

The quantity E + Lq P is called the ELECTRIC DISPLACEMENT and is denoted by D.
Hence Gauss's law for all charges within S -is

, | fg © d8 = A4TQ.
Again proceeding as in (a), Swe have
| VD = 4p O (262)
instead of
Yo E = balp
Vie are now in a position to derive Maxwell's field equations.

8L, MAXWELL'S ECUATIONS. For the derivatinn of these equations, in
‘general form, t here are needed: (a) certain results of Section 83, (b$ the
experimental results of Faraday and Ampere, (c¢) vector relations, and (d)
Maxwell's generalization.

(a) Results of Section 83. In Eqs. (257-262) electrostatic and electro-
magnetic units are employed. The most important of these equations, if written
in Heaviside-Lorentz rational units (to eliminate the har's), are

. ‘ A" = o

{~]

.

4

It
[]

NN

N . ) . _Y—‘

1=
[}
“n

)

) -

) .

g (263)

L]

T

18

= .‘1.

Egs. (263) hold for steady currents and stationary electrostatie charges -
and stationary circuits. It is natural to expect the existence of a set of
simultanenus partial differential equations describing the more general elec-
tromagnetic configurations, that is, those configurations or systems in which
there are moving circuits and charges not at rest, These equations are the
well-known FIELD EQUATIONS.

' (b) Experiments of Faraday and Ampere. In 1831 Faraday discovered the
faet that, whenever the magnetic flux through a clesed single~turn circuit

FLM 2/7/51
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DERIVATION OF THE PARTIAL DIFFERENTIAL ECUATIONS OF
MATHEMATICAL PHYSICS OR VECTOR FIELDS

faries, there is induced in the circuit an electromotive force whose magnitude

is equal to the time rate of decrease of flux. The direction of the electro-
motive force is related to the direction of flux through the circuit as shown
in Fig. 48. 1If the electromoiive

force is induced in a conductor a

current flows, Flux

hmpere first obtained experi-
mentally the results upon which the
theorem stated in Section 83 is
based. E.MLF.

(¢) Mathematicalvexpressionvof
Faraday's and Ampere's laws. The elec~ _ Fig. 48,

tromotive force e around the closed
curve C formed by a circuit is defined

by the line integral
) ) ’e =f§'d£,
c

taken around the curve. By Stokes's theorem,

ﬁ.-ds,“fflxzﬂ.-dg, S (a8
A s :

where S is a cap (surface) whose periphery is the circuit or curve C. Fara--
day's experimental result, expressed in vector form, is

f{vm) "cdtf(B'dS““f[
foE) =~_%-_[[§'d_s_,

where the dot over a quantity indicates partial time differention, and ¢ is a
constant of proportionality, equal to the velocity of light, necessary in this
system of units, Since the last equation is true for every surface S, it
follows that ' -

vxE =~ Lj | (265)
. c =
Eq. (265) is Faraday's law in differential form. Ampere's circuital theorem,

in vector notation, is
/_.odngﬁodg‘l’
c 57"

where S is a cap whose periphery is C. By Stokes's theorem, we also have _

f.ﬂ'd.a’fﬁ_XE'dé-
/Vx H - ds /ﬁ‘ds

or by the reasoning pneceding Eq. (265)

Consequently,

s 21 2xt - @%8)
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DERIVATION OF THE PARTIAL DIFFERENTIALvEQUATIONS‘OF
MATHEMATICAL PHYSICS OR VECTOR FIELDS

EqQ (266) is hmpere's law in differential form. If it is assumed that Gauss's
law is valid for variable fields as well as for electrostatic and magneto~
static fields, we then have the four equations:

¥°D = p, )

Y3 = 0 g

9 xE =-1% =~,.L§_3§;,g (261
v - c = c Jdt )

IxH ’i“ﬁ%’ %: .

where ¥ is the drift velocity of charge of density o .

_ (d) Maxwell's generalization. Maxwell noted that Egs. (267) are in~
consistent with the equation of continuity of charge. The equation of con-

tinuity ofnmasu,—aﬁi = = Y N was derived in Section 74. If p denotes
charge per unit vBtume and v its velocity, the equation of continuity, in
electromsgentic theory, becomes

%7?. -+ (PY). (268)

This equatiopfierely states thet the time rate of increase of charge in any
region is equal to the excess of charge flowing in, per unit time, over that
flowing out. All experimental evidence indicates that the law of continuity
holds, that electricity is neither created nor destroyed.

The contradiction between Eq. (268) and the fiigg,and last of (267). is

seen as follows. Taking the divergence of Vx H = ==, we have

Py ,
¥+ (== )=¥Y-vxH = 0O, (269)

or

But (268) gives

. Moreover, if the first of (267) is differentiated with respect to time, there
is ‘
and from the value of -%f%-in the equation of continuity

v (fx ) =~ ¥ D (270)
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DERIVATION OF THE PARTIAL DiFFERENTIAL EQUATIONS OF
MATHEM!”TCAL PHYSICS OR VECTOR FIELDS

Equations (269) and (270) do not agree. Accordingly, Maxwell revised Ampere'
law as follows. Let the total current cons1st of a convection current £ and

‘ ) * c
a displacemeht current ,2_. ' The j in equation
— c . —

(266) is then replaced by % (F>x + é )s and Ampere's equation as revised by

i

T e

Maxwell becomes o
vx H = .1; (pxr + D). - - (271)

If the divergence of (271) is taken, Eq. (270) is obtained. But (270) is
" a consequence of (268) and the first of (267). Thus the equation of continuity
is satisfied if system (267) be replaced by the equatiens

VeD=Q, )

V'.Es O, g

Y xE=-13 gl : (272)
¢

. 1 3 )

YxH=5(pz+D).)

These are tﬁe field equations of MMaxwell.

If the currents are steady the D = 0 and (272), in this special case,
reduce to (267).

In regions devoid of charg@ and current equations (272), since B=, H
-and D = kE,become . : /)b

) .zogag, g
.Y.-_n;=o, )
s ) (273)
NxE=~L=) '
. . )
~xHg=k8 )
c )

The constants i and k are respectlvely the permeability and dielectric- constant
" of the space for which (273) are valld.

The nature of the solution of these equations is discussed in Section 86,
and the equations are solved in Vol., II, Chap. III, for configurations of

charge and current of great industrial importance, .
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LECTURE 7

By Dr. Andrew Longacre |
2/12/51
WAVE GUIDES

‘Maxwell computed the velocity of electromagnetic waves as

- 1 . ' ' - :
v P 3 x 1019 cm/sec e (7-1)
/po x, a
o -7 -6 :
where™ jl, = 4T7 x10 " = 1,257 X 10 (henry/meter)

f

K, = 8.854 X 1072 (farad/meter) -

From the known measured valves of these constants giving a velocity

-of the electromagnetic wave equal to ¢, 'the velocity of light, Maxwell

concluded immediately that light was also an electromagnetic wave,

It was some time befcre Hertz succeeded in generating and
detecting waves generated by purely electromagnetic means, which
eventually develcoped into symphony concerts, wooden dummies, political
misinformatiocn, and singing commercials now availakle to all on radio
and television sets, T ':

The form of the equations indicated that electromagnevic waves
vibrate transverse to the direction of propagation. This is quite
different from sound waves, in which the vibration is longitudinal,
consisting of alternate zones of compression and rarefaction.

(A stretched rope may transmit longitudinal waves, but can also transmit
transverse waves, such as may be initiated by a sudden transverse
displacement. of one end of the rope, which forms a disturbance that
travels down the line.)

That 1igh£ consi.sts of transverse vibrations may be demonstrated
by the following experiment. - '

TP
///Ij>\\\ o
19 S Fig. (7-1)

{

~F
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(black to absorb the component of the rays that penetrate the surface, so
that this portion will not be reflected by the opposite surface, and wreck -
the experiment) there is a certain critical angle at which light will be
seen after the double reflection., At other angles all light is absorbed.

: ) If light is reflected from 2 polished pieces 6f black glass

This can be explained as follows, The incident beam A is composed
of numerous waves vibrating transversely, but in planes of random
orientation relative to the plane of the glass. Most of the light penetrates
the glass and is absorbed, but those components that are perpendicular to
the plane of the glass will be reflected. The reflected ray B is '"plane
polarized", that is, it contains only elements vibrating in a single plane.
This plane polarized light will also be reflected from the second glass if
. this is at the critical angle., This phenomenon can only be explained if

the vibration is transverse,

e

A few years agc, after means were developed for generatlng waves of
very short wave lengths, it was found that it was possible to transmlt
electromagnetic waves down hcllow pipes of conducting material. This
phenomenon is not the same as transmission by a coaxial cable, in which the
current is carried on the surface of the inner and outer cenductors, in
accordance with the principles of transmission lines that have already been
discussed, but the transmission is by means of multiple reflections back
and forth between the opposing surfaces,

A transverse wave in space has an E vector (electric) and an H vector
(magnetic). These two are in phase, but vibrate in planes at 90° tg each
other, r : » '

i

v - © Fig (7-2)

I This is a right hand system,
The direction of propagation Z
‘3\\+ e is that of a nut moving along
\ - ' a right hand screw, This is

S —r toward the observer if the
A{///// X . rotation appears to be
4 i counterclockwise,
direction of propagation . :

Light from ordinary sources does not have the directions of E and H fixed,
but sucessions of waves vibrate transversely at random angles, as below,

v Here the E vector only.is
h shown. The H vector
accompanying each E vector .
S {;;~*ﬁ> , is perpendicular to it.
- TFig (7-3)
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It the direction'of the E vector (and the H vector at right angles
to it) are pinned down to be in a single plane, the wave is polarized,

Now consider a wave vith direction of propagation making an angle of
incidence 8 yith a conducting metal wall.

Ny ' Metal Wall - Y
///’///—-"/// Ll Ll LS L AL //;\,/ L Gl F Ll L LIl AL b LS
7 )

N A\
/ ’ Fig (7-1)

The wave fronf, is perpendlcular to the direction of propagatlon. Consider
the full lines represent E vectors coming up from the paper, and the dotted
lines represent vectors going down. The E vectors that intersect the surface
cause currents that cancel the incident E vector and are of such magnitude
and direction that they send out ansther E vector of opposite phase that
constitute. the reflected wave front, Now it will be noted that at points
b,c.d,e, etc. there are intersections of equal vectors of opposite phase,
which will therefore cancel. A similar cancellation will occur at the
second group of intersections g,h,i etc. The planes containing these
intersections are parallel to the upper metal wall, and are spaced multiples
of distance a apart. At any such plane of intersecticn another metal wall
can be placed,which will permit a second series of reflections, but will
leave the pattern of waves between the plates undisturbed. ' The waves will
then travel down between the two guiding planes, being reflected back and
forth between them, but without causing currents in the metal, such as exist
in transmission lines, Two additional planes can then be put in ‘parallel to
the plane of the paper, making a recuangular wave guice, :

Fig (7-5)
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N

The distance between two successive wave fronts of the same phase,
measured perpendicular to the wave fronts, is equal to the wave length ?\ °
The distance between the wave fron%s parallel to the wave guide is ')A g. The
angle of incidence of the wave against the wall is € , It follows that

:i i & '.ﬁ.: 54 ’ -
A ?ﬁg?ln & _°1 ;\g sin ©

L3

~

The wave fronts make an angle © with the wall, which is the same as the .
angle of incidence of the direction of propagation with the normal, The
perpendicular distance "a" bisects the angle between incident and reflected
- wave fronls, so :Lt follows that

& . —tane=sin 8- (7-2)

;,‘{g/'z cos O
or ...g_a;_..._. = . A/Rg (7_3)

Mg ’VI:('?%-)Z

This may be solved for A,, as follows:
Tivids by A /?10

-k —

samampmer: 5 e

Va-ip 2
A

=1-(?
&

Dl

N

=~
Ui
av]

-
!
B
4%
1i

N

La

LL
A
Ag:__l?‘_

/1 2" | (7-4)

This gives the relation a g in the quide to’/\ and a .

Ifd= 22, =00
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Th;s is the CUT-OFF wave length = 2a. The wave guide then acts as a high-
pass ¢¢lter, and will not pass waves with greater wave length than 2a
(th;: is, it will only pdss waves having higher frequency than corresponds
o 23. e

(That this passes waves only w1th wave lengths shorter than A = 2a can be
seen from the fact that for X > 23 , the term in the denominator under
the radical w1“] be negative, which would make ;\g imaginary.)

Fig (7-6)

Since the direction of propagation of the waves goes back and forth between
the two walls, it will teke the energy longer to pass down the wave guide
than if it were traveling straight in free space at the velocity of light, C..
‘Tne velocity of energy transmissiocn is called the GROUP VELOCITY and, as can
be seen from the diagram above .

Vg = C sin © (7-5)

From Figure (7-5) it cah be seen that

tan 6 = _sin e = 22 = 25
' o08 Ag/z Ae A/sin ©
£0 cos @ = ~\_
2 (7-6)
and sin © =!/1 _ (4%_)2 »(7 ”
2a -

In Figure (7- 5) the distance ;%g is greater than,A~, the relation

being ;\
g E:’L’r?"'e , (7-9)
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The apparent velocity of the waves in the guide is greater than the ve1001ty :
of light. This is called the ”hAuE ViLOCITY and

= _A_g. C =
p A sin © | (7-10)
Combining (7-5) and (7-10) 0 |

.z in© o & ¢ -
_ Vg Vp C sin 6 55 0 =C »(7 11)

Conqlder a wave guide with plates a dletance a apart (This view is
looking into the end of the gulde)

T
e The E vector is now.in the plane
. of the paper, and is a cosine
I — - - function, with zero value at the
— . top and bottom and a maximum in
= the center,
; -
-t
Fig (77

_ If the guide width (shown vertically) is doubled to 2a, there will be a
second portion of the cesine wave of cpposite sggn, (fig. 7-8) '

- — N
SN —
— —oaites
- i o - . -
Z S el B4 e A
vol=l Vi, |= )
4 B S
= [ This guide of width 2a can also
‘ — a P have passing thru it simultaneously
g == < another wave of the same frequency.
= l = (£ig 7-9)
= ;-
> H «
Fia (7-9) Fig (7-8)

Looking at this in longltudlnal section the last case would be
represented by this arrangement of wave fronts.

13
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Fig, (7-10)

Fig. (7-11)
This shows there may be at least two waves of the same frequency passing
down the wave guide simultaneously, but being reflected differently,
In Figure (7-11), for a guide of width a ,

© = cos _% ;EL ' 0 (7-12)
' 23

- and when/%‘: 2a, ® = 0 . This' means that the wave is bouncing back and forth
normal to the side walls, and is not progressing down tihe guide, Under these
conditicns no power is trensmitted. This is the cut - off frequency.

For a given a , there are an infiﬁite number of wave lengths that can

move down the line, all shorter than.?\: 2a, The attenuation is a mirimum
for the.simplest mode; and increases as the frequency increases,

FIM 2/15/51

~



LICTURE 7 -~ DR. ANDREW LONGACRE
WAVE GUIDES P4AGE 8

If there are two loops

[ = <

A I

o

N
N

a

Y i

in width a , the cut off wave length will be

D)
2L - =
2a "éL" -1

and in‘general, the condition for transmission of.energy is that
n\
<1
For a given ratio of A to a , there is a definite angle of incidence
and reflection ©. To show what this locks like.take a rectangular guide of
width -a and the particular case where A = 0,82 and n has the value 1 or 2.

 from (7-12) for n = 1

8 = cos ™t Qi_ = cos™t Q;?% =z cos™ig.4 = 63.5°
. <a . ’

_ 24,
T For n =2
® = cos™t Eﬁi = cos™t g.8 =37° P -

Y

\ In a rectanguler guide there may be waves reflected back and forth
between each pair of side walls., If the guide is square, there are many
wave lengths that may be noving down both ways simultaneously. If£ the
wave guide is made with one dimension twice the other, there may be fer cne
given frequency a conformation of two loops in the a direction and one in the

e a s B
S |
' Y N1
. ~ e

s N
.

b direéticn, and this is the cross section generally used,
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. Now let us consider how the currents act in a wave guide.

- Figo (7"’12)

The electric vectors move up and down, causing charges alternately
negative and positive in the top and bottom surfaces. It might be that at
first that there would be current flows along the top and bottom guide plates,
but this is nol the case. As the waves progress, the charges pass from the
top to the bottom plates by going down the sides, and there are strong
currents

in the sides of the wave guide,

A slot put in the side walls may be a source of heavy radiation,

Looking down oh the wave guide in pian o _

There are 01rcu1at1ng lines of magnetlc vectors. These move along the guide
as the wave progresses,

” FIM 2/15/51
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Either the E or H vectors may have components along the direction

of propagation, If the direction of

Y
x

i > 7 direction of propagation

propagation is 2 s and the electric vector is in the y direction we have

‘E, =0 . H 5 0
E, =0 . an H,5% 0
Ey = E ‘ Hy = 0

The wave mode just deccrlbed is a transverse electric wave, denoted
TE, Transverse magnetic waves are denocted TM. Subscripts are added to
indicate the number of bumps or half cycles in the longer and narrower
(a and b) directions of the guide. Thus TEl 0 represents a transverse
electric mode with one hump in the a direcﬁion, and none in the b
direction. C
’ (See Terman "Radio Engineering
p 116 et seq for further discussion)

A circular wave guide can be used., This is convenient, for example, when
a swivel connection’is desired, to permit rotating a guide, but it 1s/otherw1se“
avoided,  The pattern of electrlc vectors for the dominant mode is -thus

) o

TEO,l Fig. (7-16)

By putting in a metal partition the following mode can be obtained,

metal partition

TE2’O Fig, (7-17)

FIM 2/15/51
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One objection to a circular guide is that there is nothing to maintain
the plane of polarization, and the power may be hard to pickup, as the plane
may rotate, due to bends or roughnesses in the line,

For the circular guide for the TE. _ mode of Fig (7-15) %he cut-off
wave length is 1,0 '
. _ I

a =341 4

where a 1is the radius in this case

The TM mode may be shown

. thus - - - AR SR I ol LT
. i - - — ;'{_j ] {* - T 7 /}
Fig.(7-18)
. _‘N‘\\ {r . \\
f{ e W W S R S Sesessumin W S
~-= - LR R R -——

In this case the lines are E ’vectors terminating in charges on the

walls, and these rings of charges move down the guide walls, The cut-off
wave length here is '

;\c = 2,61 F

R : A circular guide that will transmit this mode will also transmit the
TE, ,mode with A = 3.1/ ., It would be desirable to prevent both
’ ! ‘ ‘ .

. modes occuring. C

If diaphragms are put acrcss the cylinder, there will be reflections.
© If the diaphragms are spaced a limited number of half guide wave
lengths apart, the reflections will supe”‘mpose and form a standing wave
pattern:
If there are longitudinal E vectors they must end normal to a surface,
A resonating cavity can be made thus ’

77 W —
_

 Fig. (7-19)

’"‘*M =

or by joining a series of such that has an even number of half guide wave
lengths,

N

FLM 2/15/51
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= >
< > Fig. (7-20)

There can be longitudinal electric waves terminating in the ends,
This can happen when » = 2,617, and the length is immaterial, Since
: ' this can also transmit » - 3,41 a , it is necessary to avoid exciting
i the latter wave length, :

FIM 2/15/53.



LECTURE 8 - LOSSES IN RADIO FREQUINGY. CONDUCTORS Page 2

(ord

N,
{ \
N '
~ ' : As an anolog, consider loops as. shown,
/ A wvarying magnetic field applied to the
{£> : i top loop will produce a current in it.
This current has en accompanying magnetic

field of which pari passes through the next loop and induces a current in the
next, locn belcw,

+

The conditions may be set up in terms of Maxwelil's hq’et¢ons as follows

!"1 »

e s o o°o G Jy current is flowing normal to the
= plane of the paper (upwards)
=Y
zY
Take axes as shown, with y normal to the plane of the paper. The plane x y

is then the surface of the metal and 'z is normal to the urf ce in the
direction of the depth, In cither words the view above is-a-transverse section
normal to the surface x y

The magnetic vectors have a component 5 parallel to x,

There ars currents gylnormal to the plane of the pdper and pornal to H..

The electric field Fv is also normal to the plane of the paper,.and this
is the only component of this fiald,

Now J = 0L (8-2)
where o is the conductivity.,

This says the current ic proportional to the field and the “cenductivity, and is
only a form of Ohm's Law applied to a field,

This is shown below

¢ 0 A Ghms low
| . — V=R |
The voltage V is equal to the field E times the length, cor
V=E.] o
The Current 1 is egual to the current per unit area, J , times the area, or
. I=JA o (ee3)
The resistence Rﬁi' Z 3
. ey
, o
© (9 = conductivity) -

_so that =g A (L 1) =4
- AT .
and so fV_='I R _
becomes B/ = J A [
- A : ‘ '
or O°F =7 : ' (8-4)

FLM 3/20/50



IECTURE & - IOSSES IN RADIO FREQUEMNCY CONDUCTCRS Page 3

Since a currert driven by a field must he parallel to the field, J
y e » Y
and E can only have cunponents in the ydirection.

-, N A - :
In copper, _c?_p‘_ is always << J

g
, o the term o D can be neglected,
At :
The fourth Maxw=zll Equation is
VIE=J , 2D (8-5)
3%
which may be written
VeBE=d s 1wk E (8-5)
In copper, for, 10 cm waves the last term is only 1 of J
30000

For very high f‘rchenmes,.e,g. light, this isn't so, For technical wave
lengths however, the term @D may be neglected

S t .
so Vxg =3 - (&)
This is the curl of H, which may be expressed by the determinant
tLoy ko : a
VxH-= -
AN fand haed N . - J - :
"o 2.2 32 - (8-8)
3X gy 32
(i, H 7 H,
Since the H vector hes enly an x component, H, = H, = O _
and by the rules for evaluating detemranbs and the ccordinate system assumed
this reduces to o ‘ "

)z
[ .
This says the raete of change of magnetic field with respect to depth is
proporticnal to the current flowing in the y direction,

The third Maxwell eguaticn is

YxE =-9R 4 (8-10)
° ot ' '
E has only a component in the y direction
: - ; i dk
v o 222 o
% o YXE‘- - g X Iy D . (78"11)
t/ T " - E Ey Bz
T/ with E X and E, = 0., this reduces to ,
-2 - N . . - i\ nt
'a"’d;" E.y = :,:')% M Hy and since H = e to —:Lw/u He s _»_;‘;.;(8-12) »




LECTURAS & ~ T0SSeS IN RADIO FRIGULRCY CONDUCTORS Page L,

(The i here is J-1 s not the % that is the unit vector in the x directicn in
the determinant)

o = Vet Y S
New Ey’ %; from ( )
end J = _2Hx from (8-5)

o2
o B0 H (8-1k)
o a z 9]

Se from (8-12) and (8-14) we get

~

2 1 x
r Yo ° (& = -
> + (,lﬁ“g’f“‘cﬁ" ) i =0 (8-15)

This is of the form

)2
S + Ay =0

o
W Rlad

vhich has the solution

x = Ae l']/‘éTZ - (8"16)
shence 1V 1 T © .
1 — Ge
L =Cs e o v
- C, e £ L VBET 2 (8-17)

which gives H, as a function cf 2z

Note that —‘VE:— appears in the exponent of e,
What this means may be arrived at by looking at the follewing diagram .

/\71 l-H

Since 1 = e /2
Vi =s i(ﬂ/b,
iwt

This can be separated into reel and imagirary par"t}s. When we use e for
representing en elternating sinusoidal current, only the real part is used fer
the voltage aad the icaginary part gives the phase angle

=lf0dde © 2
So H =Ae l’—‘z
_i'{'w’o . © z} - (8-18)
i _ R

-~
Pis

i1
e
T o
{
N
N

”This shows that the magnetic field decreases exponentially with the depth
and that there is a phase change. The racdical has both plus and m:mf‘ s val*ws
mathematically but the plus vale has no physical meamng.,

FLM 3/20/5'0 o |




LECTURE & ~ LOSSES IN RADIC FREQUENCY CONDUCT TORS Page 5

It would indicate that the fi=ld increased indefinitely with cdepth, which
j.s not reasonable. blb merely shows that the mathematics doesn't know that

there isn'i a field on both sides of the surface, and that there is no source
) of cnergy beneath the surface.
Ifweset || _2 =4 ’ (8-19)
!, O
( ) beccnes ( ;
-3 LW -
H. = (de [ =he 5 ‘ (8-20)

4 is called the skin depth, and represents the equivelernt denth of the skin

that would have the same resistance if the current were being carried
uniformly across the cross section. Another way to look at this is to consider
¢ as the depth at which the current has been reduced in value to 1/e of its
vaive at the surface.

Frem (8-19) it will be noted that if the couuuctlv ty is reduced from
100% to 90% or is reduszed 1C%, the power loss is increased 5%, since the
skin denth increases 5% while the conductivity is decreased 10%.,

Note also that ) \
é varies as 1

Vs

S

S At 60 cycles, & =~ 1 inch

L and at 12 megacycles § = 0,0C075 inch
On very large conductors, even for 60 cycles it is desirable to subdivide the
conductors to avoid heving material that is not acting al good efficiency.

For very high frequencies, only a small thicliness carries the current.
It is consecuantly nezcessary tc keep the surface smooth in the direction of
current flow
b
Even very fine emery paper produceg grooves relatlvely large compared to C§
at 12 megacycles, This increases the length of the current path,

If the conductivity test is made at too high a fraquency, it will indicate
higher relative losses than w1*l cczur at lower freguencies,

In the did@ance'é the current has dropped to 1/e¢ of its surface values
and the power has dropped to 10% of the totel, With zavities of very high
Q, the effect of the losses_due to too thin skins cannot be ignored until the
, -power loss is less than 1072 of the total, The higher the Q, the greater
¢ . 7 Trumber of -effective squ d«ptha are necessary to get the Qo

L2 ~v  For: coppex and 12 megacycles
W=2 12 x 10
Ce= 4 x 1077
o 1.

mios/meter

1.7 x 104

FLM 3/20/51
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These values substituted in (8~l9) give the skin depth in meters,
This reduces to the following to give the skin depth in inches
& = 000260
_‘/?
where f is the frequency in megacycles ' (8-21)

Given the magnetic field at the edge of a conducting sheet, how do we
determine the loss?

We had
= :E‘, (8-—2)

current = conductivity x Field,

from which _

P = g2 - (8=22)
Power Y
per unit
volume

This follows from the definition of the conductivity and Ohms Law

_HLﬁl::/7
iin 1“‘* 1/‘
T
The resistance of a one meter cube is 1 and Ohm's Law
: =
P = J%R becomes
P=J?
&

For alternating currents, the current value to be taken is the R.M,S. value,
In fields, it is usual to talk about peak values instead of R.M.S., and since
for sine waves the peak value = J2 times the R.M.S. valne, (8—-.225 must
take the form s
P - _geak (8-23)

Now the ourv-ent, will vary w*.th depth below the surface in the same manner
as the field varies as given by (8-20), so we can write

g =,9d e T et .
at any dep‘t.h - "ab..surface ¢ o
whence - J” peak = J2 peak - e 2B - T
at any at, surface S (8-24)
-aepth
; P - J2 surface /'/_ %7-"- o
- 2
| - (8-25)
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This is the power per unit area of surface
) .
Pe g J° surface

This permits computing the losses if the surface current density is known,
Frequently the surface current is not known, but the integral of the current

at various depths is known,

[ -z iz
IeJ surfacg} e § e d dz (8-26)
- J surface o (8-27)
1+1
I 1is Amperes per meter width

J surface is Amperes /meter?

In magnitude

| 1! = 'J surface
—:V??_ t
P=I?
20’6' , v
If we have so many amperes per square meter, how many watts loss?

Total Current I € total field H

[}
o
.

B o}
S oQ

a8 ©
. e o C

g}fﬁ » dL = I for 1 meter length

H = Total current enclosed

If we know the current we can compute H or vice versa (g'may be measured
with a loop)

(8-28)

If I =100 Amperes/inch, = 4000 Amperes / meter

(8-28) gives the voltage in a loop of Area A, Consider the loop and its
connection to the fnstrument as a transmission line or put the voltage

measuring instrument close to the loop, This can be done in effect by putting
a diede rectifier at the loop, thus

=
T

LS
S

coaxial cable for D,C,

FIM 3/20/51 - !

o e mme e e MR Moty = s YPMRTTY Y G Ty =N T £ T . AT oy = T - T € A T Tt TR a0




LECTURR & - 10SSES IN RADIO FRECURICY CONDUCTORS Page 8

With this, the crest voltage can be measured,
Fs

Other means are to terminate the transmission line at its characteristic
impedance or use a vacuumn tube volt meter,

e

~

i
I3
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