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�You seem very clever at explaining words, Sir�, said Alice.

�Would you kindly tell me the meaning of the poem `Jabberwocky'?�

�Let's hear it�, said Humpty Dumpty.

�I can explain all the poems that ever were invented

� and a good many that haven't been invented just yet.�

Lewis Carroll

Through the Looking Glass (1871) [1]
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Abstract

New Approaches to the Hierarchy Problem

and their Signatures from Microscopic to Cosmic Scales

by

Seth Koren

It's an exciting time in particle theory. Fantastic experimental e�ort has revealed

that the major ideas of the past few decades of particle theory are increasingly in tension

with empirical data�underscoring the need for new ideas and strategies. In this thesis

we focus on the application of this philosophy toward the hierarchy problem. We begin

with a pedagogical introduction aimed at grounding the hierarchy problem in a clear

understanding of renormalization and a comprehensive discussion of the problem while

debunking common confusions. We survey classic approaches and argue that the LHC

data has qualitatively changed the problem. We discuss the Twin Higgs as the avatar

of the `neutral naturalness' strategy, and its exotic signatures which shift the signals

of naturalness away from the energy frontier. Finally, we suggest a new trail for the

naturalness paradigm: violations of e�ective �eld theory�as demanded by quantum

gravity�challenge the assumptions of the space of solutions and suggest qualitatively

new avenues of pursuit.
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Preface

The �rst four chapters of this thesis are introductory material which has not previously

appeared in any public form. My intention has been to write the guide that would have

been most useful for me toward the beginning of my graduate school journey as a �eld

theorist interested in the hierarchy problem. My aim has been to make these chapters

accessible to beginning graduate students in particle physics and interested parties in

related �elds�background at the level of a single semester of quantum �eld theory should

be enough for them to be understandable in broad strokes.

Chapter 1 introduces fundamental tools and concepts in quantum �eld theory which

are essential for particle theory, spending especial e�ort on discussing renormalization

from a variety of perspective. Chapter 2 discusses the hierarchy problem and how to

think about it�primarily through the pedagogical device of refuting a variety of common

misconceptions and pitfalls. Chapter 3 introduces in brief a variety of classic strategies

and solutions to the hierarchy problem which also constitute important frameworks in

theoretical particle physics beyond the Standard Model. Chapter 4 discusses more-recent

ideas about the hierarchy problem in light of the empirical pressure supplied by the lack

of observed new physics at the Large Hadron Collider. Throughout I also make note of

interesting research programs which, while they lie too far outside the main narrative for

me to explain, are too fascinating not to be mentioned.

The �rst half of this thesis is thus mostly an introduction to and review of material

I had no hand in inventing. As always, I am `standing on the shoulders of giants', and

I have bene�ted enormously from the pedagogical e�orts of those who came before me.

When my thinking on a topic has been especially informed by a particular exposition, or

when I present an example which was discussed in a particular source, I will endeavor to

say so and refer to that presentation. As to the rest, it's somewhere between di�cult and
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impossible to distinguish precisely how and whose ideas I have melded together in my own

understanding of the topics�to say nothing of any insight I may have had myself�but

I have included copious references to reading material I enjoyed as a guide. Ultimately

this is a synthesis of ideas in particle theory aimed toward the particular purpose of

understanding the hierarchy problem, and I have attempted to include the most useful

and pedagogical explanations of these topics I could �nd, if not invent.

I then present some work on the subject by myself and my collaborators. Chapter 5

contains work constructing a viable cosmological history for mirror twin Higgs models,

an exemplar of the modern Neutral Naturalness approach to the hierarchy problem.

Chapter 6 focuses on searching for long-lived particles produced at particle colliders as

a discovery channel for a broad class of such models. Chapter 7 is an initial exploration

of a new approach to the hierarchy problem which follows a maximalist interpretation of

the lack of new observed TeV scale physics, and so relies on questioning and modifying

some core assumptions of conventional particle physics. In Chapter 8 we conclude with

some parting thoughts.

xiii



Contents

Acknowledgements v

Curriculum Vitae viii

Abstract x

Permissions and Attributions xi

Preface xii

1 E�ective Field Theory 1

1.1 EFT Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Scale-dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Bottom-up or Top-down . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Loops Are Necessary . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 To Remove Divergences . . . . . . . . . . . . . . . . . . . . . . . 15
Physical Input is Required . . . . . . . . . . . . . . . . . . . 15
Renormalizability . . . . . . . . . . . . . . . . . . . . . . . . 20
Wilsonian Renormalization of φ4 . . . . . . . . . . . . . . . . 22
Renormalization and Locality . . . . . . . . . . . . . . . . . . 28

1.2.2 To Repair Perturbation Theory . . . . . . . . . . . . . . . . . . . 30
Renormalization Group Equations . . . . . . . . . . . . . . . 30
Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Renormalized Perturbation Theory . . . . . . . . . . . . . . . 35
Continuum Renormalization . . . . . . . . . . . . . . . . . . 37
Renormalization Group Improvement . . . . . . . . . . . . . 40

1.2.3 To Relate Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Mass-Independent Schemes and Matching . . . . . . . . . . . 42
Flowing in Theory Space . . . . . . . . . . . . . . . . . . . . 49
Trivialities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.2.4 To Reiterate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xiv



1.3 Naturalness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.3.1 Technical Naturalness and Fine-Tuning . . . . . . . . . . . . . . . 59

Technical Naturalness and Masses . . . . . . . . . . . . . . . 64
1.3.2 Spurion Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.3.3 Dimensional Transmutation . . . . . . . . . . . . . . . . . . . . . 68

2 The Hierarchy Problem 70

2.1 The Higgs in the Standard Model . . . . . . . . . . . . . . . . . . . . . . 70
2.2 Nonsolutions to the Hierarchy Problem . . . . . . . . . . . . . . . . . . . 72

2.2.1 An End to Reductionism . . . . . . . . . . . . . . . . . . . . . . . 72
2.2.2 Waiter, there's Philosophy in my Physics . . . . . . . . . . . . . . 76
2.2.3 The Lonely Higgs . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.2.4 Mass-Independent Regulators . . . . . . . . . . . . . . . . . . . . 85

2.3 The General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3 The Classic Strategies 90

3.1 Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.2 Extra Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.2.1 Technology: Kaluza-Klein Reduction . . . . . . . . . . . . . . . . 105
3.2.2 Quantum Gravity at the TeV Scale . . . . . . . . . . . . . . . . . 108
3.2.3 Technology: Orbifold Reduction . . . . . . . . . . . . . . . . . . . 110
3.2.4 Nonlocal Symmetry-Breaking . . . . . . . . . . . . . . . . . . . . 115

3.3 Compositeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4 The Loerarchy Problem 127

4.1 The `Little Hierarchy Problem' . . . . . . . . . . . . . . . . . . . . . . . 127
4.1.1 The Twin Higgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.1.2 Neutral Naturalness or The Return Of The Orbifold . . . . . . . . 132

Example 1: Folded Supersymmetry . . . . . . . . . . . . . . . . . 134
Example 2: The Γ-plet Higgs . . . . . . . . . . . . . . . . . . . . 138

4.2 The Loerarchy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.3 Violations of E�ective Field Theory . . . . . . . . . . . . . . . . . . . . . 140

4.3.1 Gravity and EFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Neutral Naturalness in the Sky 148

5.1 Particle Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.2 Asymmetric Reheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.2.2 Thermal History of the Mirror Twin . . . . . . . . . . . . . . . . . 154

Twin Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . 154
Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Cosmological Constraints . . . . . . . . . . . . . . . . . . . . . . . 166

5.2.3 Reheating by the decay of a scalar �eld . . . . . . . . . . . . . . . 178

xv



Asymmetric Reheating . . . . . . . . . . . . . . . . . . . . . . . . 179
Imprints on the CMB . . . . . . . . . . . . . . . . . . . . . . . . . 189
Thermal Production . . . . . . . . . . . . . . . . . . . . . . . . . 199

5.2.4 Twin�ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Toy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
5.3 Freeze-Tw in Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.3.2 The Mirror Twin Higgs & Cosmology . . . . . . . . . . . . . . . . 216
5.3.3 Kinetic Mixing & A Massive Twin Photon . . . . . . . . . . . . . 219
5.3.4 Freezing-Tw in Dark Matter . . . . . . . . . . . . . . . . . . . . . 220
5.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

6 Neutral Naturalness in the Ground 228

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
6.2 Signal and analysis strategy . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
6.4 Signal interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

6.4.1 Higgs portal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.4.2 Neutral naturalness . . . . . . . . . . . . . . . . . . . . . . . . . . 249

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

7 New Trail for Naturalness 255

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
7.2 Noncommutative Field Theory . . . . . . . . . . . . . . . . . . . . . . . . 259
7.3 Real Scalar φ4 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

7.3.1 Dimensional Regularization . . . . . . . . . . . . . . . . . . . . . 272
7.4 Yukawa Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

7.4.1 Motivation: Strong UV/IR Duality . . . . . . . . . . . . . . . . . 275
7.4.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
7.4.3 Scalar Two-Point Function . . . . . . . . . . . . . . . . . . . . . . 280
7.4.4 Fermion Two-Point Function . . . . . . . . . . . . . . . . . . . . . 284
7.4.5 Three-Point Function . . . . . . . . . . . . . . . . . . . . . . . . . 285

7.5 Softly-broken Wess-Zumino Model . . . . . . . . . . . . . . . . . . . . . . 288
7.6 Whence UV/IR Mixing? . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

8 Conclusion 299

A Kinetic Mixing in the Mirror Twin Higgs 301

B How to Formulate Field Theory on a Noncommutative Space 305

xvi



C Wilsonian Interpretations of NCFTs from Auxiliary Fields 309

C.1 Scalar Two-Point Function . . . . . . . . . . . . . . . . . . . . . . . . . . 309
C.2 Fermion Two-Point Function . . . . . . . . . . . . . . . . . . . . . . . . . 310
C.3 Three-Point Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Bibliography 315

xvii



Chapter 1

E�ective Field Theory

The formulation and understanding of the hierarchy problem is steeped heavily in the

principles and application of e�ective �eld theory (EFT), so we begin with an introduc-

tory overview to set the stage for our main discussion. As is clear from the table of

contents, I have prioritized clarity over brevity, especially when it comes to renormaliza-

tion. The reader with a strong background in particle physics may �nd much of this to

be review, so may wish to skip ahead directly to Chapter 2 and circle back to sections of

this chapter if and when the subtleties they discuss become relevant.

We will endeavor to discuss the conceptual points which will be useful later in un-

derstanding the hierarchy problem, and more generally to clarify common confusions

with ample examples. Of course we will be unable to discuss everything, and will try

to provide references to more detailed explanations when we must needs say less than

we would like. Some generally useful introductions to e�ective �eld theory can be found

from Cohen [16] and Georgi [17].

1



E�ective Field Theory Chapter 1

1.1 EFT Basics

E�ective �eld theory is simply the familiar strategy to focus on the important degrees

of freedom when understanding a physical situation. For a simple example from an intro-

ductory Newtonian mechanics course, consider studying the motion of balls on inclined

planes in a freshman lab. It is neither necessary nor useful to model the short-distance

physics of the atomic composition of the ball, nor the high-energy physics of special rela-

tivity. Inversely, it is also unnecessary to account for the long-distance physics of Hubble

expansion or the low-energy physics of air currents in the lab. In quantum �eld theories

this intuitive course of action is formalized in decoupling theorems, showing precisely

the sense in which �eld theories are amenable to this sort of analysis: the e�ects of

short-distance degrees of freedom may be taken into account as slight modi�cations to

the interactions of long-distance degrees of freedom, instead of including explicitly those

high-energy modes.

Of course when one returns to the mechanics laboratory armed with an atomic clock

and a scanning tunneling microscope, one begins to see deviations from the Newtonian

predictions. Indeed, the necessary physics for describing a situation depends not only on

the dynamics under consideration but also on the precision one is interested in attaining

with the description. So it is crucial that one is able to correct the leading-order descrip-

tion by systematically adding in subdominant e�ects, as organized in a suitable power

series in, for example, (v/c), where v is the ball's velocity and c is the speed of light. Of

course when the full description of the physics is known it's in principle possible to just

use the full theory to compute observables�but I'd still rather not begin with the QED

Lagrangian to predict the deformation of a ball rolling down a ramp.

The construction of an appropriate e�ective description relies on three ingredients.

The �rst is a list of the important degrees of freedom which specify the system under

2



E�ective Field Theory Chapter 1

consideration�in particle physics this is often some �elds φi. The second is the set of

symmetries which these degrees of freedom enjoy. These constrain the allowed interac-

tions between our �elds and so control the dynamics of the theory. Finally we need a

notion of power counting, which organizes the e�ects in terms of importance. This will

allow us to compute quantities to the desired precision systematically. Frequently in

e�ective �eld theories of use in particle physics this role is played by E/Λ, where E is

an energy and Λ is a heavy mass scale or cuto� above which we expect to require a new

description of the physics.

1.1.1 Scale-dependence

We will often be interested in determining the appropriate description of a system

at some scale, so it is necessary to understand which degrees of freedom and which

interactions will be important as a function of energy. We can gain insight into when

certain modes or couplings are important by studying the behavior of our system under

scale transformations. Consider for example a theory of a real scalar �eld φ, with action

S =

∫
ddx

(
−1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λφ4 − 1

6!
τφ6 + . . .

)
, (1.1)

where d is the dimensionality of spacetime, m,λ, τ are couplings of interactions involving

di�erent numbers of φ, the . . . denote terms with higher powers of φ, and we've imposed

a Z2 : φ → −φ symmetry for simplicity. We've set c = ~ = 1 which is often called

`working in natural units', leaving us with solely one sort of dimensionality to speak of,

mass = energy = length−1 = time−1, which is called `mass dimension'. From the fact

that regardless of dimension we have [S] = 0 and [x] = −1, where [·] denotes the mass

dimension, we �rst calculate from the kinetic term that [φ] = d−2
2
, and then we can read

o� [m2] = 2, [λ] = 4 − d, [τ ] = 6 − 2d. These are known as the classical dimension of

3
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the associated operators and are associated to the behavior of the operators at di�erent

energies, for the following reason.

If we wish to understand how the physics of this theory varies as a function of scale, we

can perform a transformation xµ → sx′µ and study the long-distance limit s � 1 with

x′µ �xed. The measure transforms as ddx → sdddx′ and the derivatives ∂µ → s−1∂µ′ .

Then to restore canonical normalization of the kinetic term such that the one-particle

states are properly normalized for the LSZ formula to work, we must perform a �eld

rede�nition φ(x) = s
2−d

2 φ′(x′), and the action becomes

S =

∫
ddx′

(
−1

2
∂µ′φ

′∂µ
′
φ′ − 1

2
m2s2φ′2 − 1

4!
λs4−dφ′4 − 1

6!
τs6−2dφ′6 + . . .

)
. (1.2)

As a reminder, in the real world (at least at distances & 1 µm) we have d = 4. As you look

at the theory at longer distances the mass term becomes more important, so is known

as a `relevant' operator. One says that the operator φ2 has classical dimension ∆φ2 = 2.

The quartic interaction is classically constant under such a transformation, so is known

as `marginal' with ∆φ4 = 0, and interactions with more powers of φ shrink at low energies

and are termed `irrelevant', e.g. ∆φ6 = −2. We have been careful to specify that these

are the classical dimension of the operators, also called the `engineering dimension' or

`canonical dimension', which has a simple relation to the mass dimension as ∆O = d− [O]

for some operator O. If the theory is not scale-invariant then quantum corrections modify

this classical scaling by an `anomalous dimension' δO(m2, λ, τ, . . . ) which is a function of

the couplings of the theory, and the full behavior is known as the `scaling dimension'.

The terms `marginally (ir)relevant' are used for operators whose classical dimension is

zero but whose anomalous dimensions push them to one side.

The connection to the typical EFT power counting in (E/Λ) is immediate. In an

EFT with UV cuto� Λ, it's natural to normalize all of our couplings with this scale and

4
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rename e.g. τ → τ̄Λ6−2d where τ̄ is now dimensionless. It's easy to see that the long-

distance limit is equivalently a low-energy limit by considering the derivatives, which pull

down a constant p′µ and scale as s−1�or by simply invoking the uncertainty principle.

Operators with negative scaling dimension contribute subleading e�ects at low energies

precisely because of these extra powers of a large inverse mass scale.

1.1.2 Bottom-up or Top-down

Then he made the tank of cast metal, 10 cubits across from

brim to brim, completely round; it was 5 cubits high, and it

measured 30 cubits in circumference.

God on the merits of working to �nite precision

1 Kings 7:23, Nevi'im

New Jewish Publication Society Translation (1985) [18]

The procedure of writing down the most general Lagrangian with the given degrees

of freedom and respecting the given symmetries up to some degree of power counting

is termed `bottom-up EFT' as we're constructing it entirely generally and will have

to �x coe�cients by making measurements. A great example is the Standard Model

E�ective Field Theory (SMEFT), of which the Standard Model itself is described by

the SMEFT Lagrangian at zeroth order in the power counting. It is de�ned by being an

SU(3)×SU(2)×U(1) gauge theory with three generations of the following representations

of left-handed Weyl fermions:
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3x Fermions SU(3)C SU(2)L U(1)Y

Q 3 2 1
6

ū 3̄ - −2
3

d̄ 3̄ - 1
3

L - 2 −1
2

ē - - 1

In addition the Standard Model contains one scalar, the Higgs boson, which is responsi-

ble for implementing the Anderson-Brout-Englert-Guralnik-Hagen-Higgs-Kibble-'t Hooft

mechanism [19, 20, 21, 22, 23, 24] to break the electroweak symmetry SU(2)L × U(1)Y

down to electromagnetism U(1)Q at low energies:

H - 2 −1
2

The Standard Model Lagrangian contains all relevant and marginal gauge-invariant op-

erators which can be built out of these �elds, and has the following schematic form

Lkin = −1

4
FµνF

µν − iψ̄ /Dψ − (DµH)†(DµH) (1.3)

LHiggs = −yHΨψ + h.c. +m2H†H − λ

4
(H†H)2, (1.4)

with F a gauge �eld strength, ψ a fermion, D the gauge covariant derivative in the

kinetic term Lagrangian on the �rst line, and the second line containing the Higgs'

Yukawa couplings and self-interactions. If a refresher on the Standard Model would be

useful, the introduction to its structure toward the end of Srednicki's textbook [25] will

su�ce for our purposes, while further discussion from a variety of perspectives can be

found in Schwartz [26], Langacker [27], and Burgess & Moore [28].

The SMEFT power-counting is in energies divided by an as-yet-unknown UV scale Λ,

so the dimension-n SMEFT Lagrangian consists of all gauge-invariant combinations of
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these �elds with scaling dimension n− d. At dimension �ve there is solely one operator,

L(5) = (LH)2/Λ + h.c., which contains a Majorana mass for neutrinos. In even-more-

schematic form, the dimension six Lagrangian contains operators with the �eld content

−Λ2L(6) = F 3 +H6 +D2H4 + ψ2H3 + F 2H2 + ψ2FH + ψ2DH2 + ψ4, (1.5)

where for aesthetics we have multiplied through by the scale Λ and haven't bothered

writing down couplings. After understanding the structure of the independent symmetry-

preserving operators (see e.g. [29, 30, 31]), the job of the bottom-up e�ective �eld

theorist is to measure or constrain the coe�cients of these higher-dimensional operators

[32]. Useful data comes from both the energy frontier with searches at colliders for

production/decay of high-energy particles through these higher-dimensional operators

and from the precision frontier measuring fundamental processes very well to look for

deviations from the Standard Model predictions (e.g. [33, 34, 35]). For more detail, see

the introduction to SMEFT by Brivio & Trott [36].

Another approach is possible when we already have a theory and just want to focus on

some particular degrees of freedom. Then we may construct a `top-down EFT' by taking

our theory and `integrating out' the degrees of freedom we don't care about�for example

by starting with the Standard Model above and getting rid of the electroweak bosons to

focus on processes occurring at lower energies [37]. We can't necessarily just ignore those

degrees of freedom though; what we need to do is modify the parameters of our EFT

such that they reproduce the results of the full theory (to some �nite precision) using

only the low-energy degrees of freedom. Such a procedure can be illustrated formally by

playing with path integrals. Consider the partition function for a theory with some light

7
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�elds φ and some heavy �elds Φ:

Z =

∫
DφDΦ eiS(φ,Φ). (1.6)

This contains all of the physics in our theory, and so in principle we may use it to compute

anything we wish. But if we're interested in low-energy processes involving solely the φ

�elds, we could split up our path integral and �rst do the integral over the Φ �elds. The

light φ �elds are the only ones left, so we can then write the partition function as

Z =

∫
Dφ eiSe�(φ), (1.7)

where this de�nes Se�. Thus far this still contains all the same physics, as long as we

don't want to know about processes with external heavy �elds1. But having decided that

we are interested in the infrared physics of the φ �elds, we can say that the e�ects of

the heavy Φ �elds will be suppressed by factors of the energies of interest divided by the

mass of Φ, and we should expand the Lagrangian Le� in an appropriate series:

Z =

∫
Dφ exp

[
i

∫
ddx

(
L0(φ) +

N∑
n=0

Md−n
Φ

∑
i

λ
(n)
i O

(n)
i (φ)

)]
, (1.8)

where L0(φ) is the part of the full Lagrangian that had no heavy �elds in it, O(n)
i (φ) is

an operator of classical dimension n, λ(n)
i is a dimensionless coupling, and N ≥ d de�nes

the precision to which one works in this e�ective theory. This is the procedure to �nd a

1Since we haven't made any approximations and have the same object Z, one may be confused as
to why we've lost access to the physics of the Φ �elds. In fact I've been a bit sloppy. If we want
to compute correlation functions of our �elds φ, we must couple our �elds to classical sources Jφ as
L ⊃ φ(x)Jφ(x). Physically, those sources allow us to `turn on' particular �elds so that we can then
calculate their expectation values. Mathematically, we really need the partition function as a functional
of these sources Z[Jφ], and we take functional derivatives with respect to these sources as a step to
calculating correlation functions or scattering amplitudes. In integrating out our heavy �eld Φ, we no
longer have a source we can put in our Lagrangian to turn on that �eld, as it no longer appears in the
action.
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top-down e�ective �eld theory in the abstract.

A great example of a top-down EFT is in studying the Standard Model �elds in the

context of a Grand Uni�ed Theory (GUT). Broadly, Grand Uni�cation is the hope that

there is some simpler, more symmetric theory behind the Standard Model which explains

its structure. A GUT is a model in which the gauge groups of the SM are (partially [38])

uni�ed in the UV. If there is a full uni�cation to a single gauge factor, then this requires

`gauge coupling uni�cation' in the UV until the symmetry is broken down to the SM

gauge group at a high scale [39]. While one's �rst exposure to this idea today may be in

the context of a UV theory like string theory which roughly demands such uni�cation,

this was in fact �rst motivated by the observed infrared SM structure. It is frankly

amazing that not only are the values of the SM gauge couplings consistent with this idea,

and not only does SU(3) × SU(2) × U(1) �t nicely inside SU(5), but the SM fermion

representations precisely �t into the 10⊕ 5̄ representations of SU(5). It's hard to imagine

a discovery that would have felt much more like one was obviously learning something

deep and important about Nature than when Georgi realized how nicely all of this worked

out. I'm reminded of Einstein's words on an analogous situation in the early history of

electromagnetism�the original uni�ed theory:

The precise formulation of the time-space laws of those �elds was the work of

Maxwell. Imagine his feelings when the di�erential equations he had formu-

lated proved to him that electromagnetic �elds spread in the form of polarised

waves, and with the speed of light! To few men in the world has such an ex-

perience been vouchsafed. At that thrilling moment he surely never guessed

that the riddling nature of light, apparently so completely solved, would con-

tinue to ba�e succeeding generations.

� Albert Einstein

9
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Considerations concerning the Fundaments of Theoretical Physics, 1940 [40]

And just as with Maxwell, the initial deep insight into Nature was not the end of the story.

As of yet, Grand Uni�cation remains an unproven ideal, and indeed further empirical

data has brought into question the simplest such schemes. But it's hard to imagine all of

this beautiful structure is simply coincidental, and I would wager that most high energy

theorists still have a GUT in the back of their minds when they think about the UV

structure of the universe, so this is an important story to understand. To learn generally

about GUTs, I recommend the classic books by Kounnas, Masiero, Nanopoulos, & Olive

[41] and Ross [42] or the recent book by Raby [43] for the more formally-minded. Shorter

introductions can be found in Sher's TASI lectures [44] or in the Particle Data Group's

Review of Particle Physics [45] from Hebecker & Hisano.

The structure of the simplest SU(5) GUT is that the symmetry group breaks down to

the SM at energiesMGUT ∼ 1016 GeV via the Higgs mechanism.2 More generally, uni�ca-

tion may proceed in stages as, for example, SO(10)→ SU(4)c×SU(2)L×SU(2)R → SM ,

and the breaking may occur via other mechanisms, as we'll discuss further in Section 3.

Back to our simple single-breaking example, as is familiar in the SM this means that the

gauge bosons corresponding to broken generators get masses of order this GUT-breaking

scale. As this is a far higher scale than we are currently able to directly probe, it is

neither necessary nor particularly useful to keep these degrees of freedom fully in our

description if we're interesting in understanding the e�ects of GUT-scale �elds. Rather

than constructing the complete top-down EFT of the SM from a GUT, let's focus on one

particularly interesting e�ect.
2The scale MGUT is determined from low-energy data by computing the scale-dependence of the SM

gauge couplings, evolving them up to high energies, and looking for an energy scale at which they meet.
Since we have three gauge couplings at low energies, it is quite non-trivial that the curves gi(µ), i = 1, 2, 3
meet at a single scale µ = MGUT . The MGUT so computed is approximate not only due to experimental
uncertainties on the low-energy values of parameters in the SM, but also because additional particles with
SM charges a�ect slightly how the couplings evolve toward high energies. Indeed, adding supersymmetry
makes the intersection of the three curves even more accurate than it is in the SM itself.
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One of the best ways to indirectly probe GUTs is by looking for proton decay. The

GUT representations unify quarks and leptons, so the extra SU(5) gauge bosons have

nonzero baryon and lepton number and fall under the label of `leptoquarks'. It's worth

considering in detail why proton decay is a feature of GUTs and not of the SM. While

U(1)B, the baryon number, is an accidental global symmetry of the SM3, it's an anoma-

lous symmetry and so is not a symmetry of the quantum world. The `baryon minus lepton'

number, U(1)B−L, is non-anomalous, but this is a good symmetry both of the SM and

of a GUT. What's really behind the stability of the proton is that, though U(1)B and

U(1)L are not good quantum symmetries, the fact that they are good classical symme-

tries means their only violation is nonperturbatively by instantons. Such con�gurations

are proportional to the zero-modes of all the fermions charged under them, leading to

baryon number being violated only by three units at once, and the proton with B = 1 is

stable.

But in GUTs, baryon number and lepton number are no longer accidental symmetries,

so no such protection is available and the GUT gauge bosons mediate tree-level proton

decay processes as in Figure 1.1. We can �nd the leading e�ect by integrating these out�

in particular we'll here look just at a four-fermion baryon-number-violating operator. The

tree-level amplitude is simply

iM(uude) = (ig)2vu1γ
µuu2

−i
(
ηµν + pµpν

M2
GUT

)
p2 +M2

GUT

veγ
νud ≈ ig2vu1γ

µuu2

ηµν
M2

GUT

veγ
νud+O(

1

M2
GUT

),

(1.9)

3`Accidental' here means that imposing this symmetry on the SM Lagrangian does not forbid any
operators which would otherwise be allowed. The SM is de�ned, as above, by the gauge symmetries
SU(3)C×SU(2)L×U(1)Y and the �eld content. Writing down the most general dimension-4 Lagrangian
1.3,1.4 invariant under these symmetries gives a Lagrangian which is automatically invariant under
U(1)B . This no longer holds at higher order in SMEFT, and indeed the dimension-6 Lagrangian 1.5
does contain baryon-number-violating operators. If one wants to study a baryon-number-conserving
version of SMEFT, one needs to explicitly impose that symmetry on the dimension-6 Lagrangian, so
U(1)B is no longer an accidental symmetry of SMEFT.
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Figure 1.1: A representative diagram contributing to proton decay due to exchange of a
heavy GUT gauge boson X.

so integrating out the gauge boson from this diagram gives us one of the contributions

to the low-energy operators in Equation 1.8

O =
g2

2M2
X

εαβγ (uRαγµuLβ) (eRγ
µdLγ) , (1.10)

where, in the notation of Equation 1.8, O(6)
i = εαβγ (uRαγµuLβ) (eRγ

µdLγ) , λ
(6)
i = g2/2

and MΦ = MGUT . The calculation of the proton lifetime from this operator is quite

complicated, but the dimensional analysis estimate of τp ∼ M4
GUT/g

4m5
p actually works

surprisingly well.

The job of the top-down e�ective �eld theorist is to calculate the e�ects of some

particular UV physics on IR observables and by doing so understand how to search

for their particular e�ects. While the e�ects will, by necessity, be some subset of the

operators that the bottom-up e�ective �eld theorist has written down, the patterns and

correlations present from a particular UV model can suggest or require particular search

strategies. In the present context, a GUT may suggest the most promising �nal states

to look for when searching for proton decay. If we wanted to calculate the lifetime and

branching ratios more precisely we would have to deal with loop diagrams (among many
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complications), which of course is a generic feature. So we now turn our attention to the

new aspects and challenges that appear once one goes beyond tree-level.

1.2 Renormalization

Renormalization is a notoriously challenging topic for beginning quantum �eld the-

orists to grok, and explanations often get bogged down in the details of one particular

perspective or scheme or purpose and `miss the forest for the trees', so to speak.4 We'll

attempt to overcome that issue by discussing a variety of uses for and interpretations

of renormalization, as well as how they relate. And, of course, by examining copious

examples and pointing out a variety of conceptual pitfalls.

Loops are necessary

At the outset the only fact one needs to have in mind is that renormalization is

a procedure which lets quantum �eld theories make physical predictions given some

physical measurements. Such a procedure was not necessary for a classical �eld theory,

which is roughly equivalent to a quantum �eld theory at tree-level. A natural question

for beginners to ask then is why we should bother with loops at all: Why don't we just

start o� with the physical, measured values in the classical Lagrangian and be done with

it? That is, if we measure, say, the mass and self-interaction of some scalar �eld φ, let's

just de�ne our theory

Lexact
?
= −1

2
∂µφ∂

µφ− 1

2
m2

physφ
2 − 1

4!
λphysφ

4, (1.11)

4Not that I begrudge QFT textbooks or courses for it, to be clear. There is so much technology to
introduce and physics to learn in a QFT class that discussion of all of these various perspectives and
issues would be prohibitive.
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Figure 1.2: Schematic description of the optical theorem Equation 1.12 as applied to
a 2 → 2 process. On the right hand side one must sum over all possible intermediate
states, including both various state labels X and their phase space ΠX .

for some de�nitions of these physical parameters, and compute everything at tree-level.

However, this does not constitute a sensible �eld theory, as the optical theorem tells us

this is not consistent. De�ning S = 1 + iM as the S-matrix, then demanding unitarity

S†S = 1 tells us the nontrivial part must satisfy

i
(
M† −M

)
=M†M. (1.12)

Sandwiching this operator equation between initial and �nal states, we �nd that the

left hand side is the imaginary part of the amplitudeM(i→ f), which is nonzero solely

due to loops. This is depicted schematically in Figure 1.2. We can see why this is by

examining a scalar �eld propagator. Taking the imaginary part one �nds

Im
1

p2 +m2 + iε
=

−ε
(p2 +m2)2 + ε2

. (1.13)

This vanishes manifestly as ε→ 0 except for when p2 = −m2, and an integral to �nd the

normalization yields

Im
1

p2 +m2 + iε
= −πδ(p2 +m2). (1.14)

So internal propagators are real except for when the particle is put on-shell. In a tree-level

diagram this occurs solely at some measure-zero set of exceptional external momenta,

but in a loop-level diagram we integrate over all momenta in the loop, so an imaginary
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part is necessarily present.

The lesson to take away from this is that classical �eld theories produce correlation

functions with some particular momentum dependence, which can be essentially read o�

from the Lagrangian. But a consistent theory requires momentum dependence of a sort

that does not appear in such a Lagrangian, which demands that calculations must include

loops. In particular it is the analyticity properties of these higher-order contributions

that are required by unitarity, and there is an interesting program to understand the

set of functions satisfying those properties at each loop order as a way to bootstrap the

structure of multi-loop amplitudes (see e.g. [46, 47, 48, 49, 50, 51]).

So far from being `merely' a way to deal with seemingly unphysical predictions, renor-

malization is very closely tied to the physics. We begin in the next section with under-

standing its use for removing divergences, as this is the most basic application and is

often the �rst introduction students receive to renormalization. We will then move on to

discuss other, more physical interpretations of renormalization.

1.2.1 To Remove Divergences

Physical input is required

As a �rst pass, let's look again at a φ4 theory

L = −1

2
∂µφ∂

µφ− 1

2
m2

0φ
2 − 1

4!
λ0φ

4, (1.15)

and now treat it properly as a quantum �eld theory. As a simple example, let us consider

2→ 2 scattering in this theory, our discussion of which is particularly in�uenced by Zee

[52]. At lowest-order this is extremely simple, and the tree-level amplitude is iM(φφ→

φφ) = −iλ0. But if we're interested in a more precise answer, we go to the next order in
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Figure 1.3: One-loop diagrams contributing to 2 → 2 scattering in the φ4 theory. Since
the external legs are all the same, these three di�erent internal processes must be summed
over, corresponding to momentum exchanged in the s, t, u channels, where these are the
Mandelstam variables [53].

perturbation theory and we have the one-loop diagrams of Figure 1.3.

De�ning P µ
s ≡ pµ1 + pµ2 as the momentum �owing through the loop in the s-channel

diagram, that diagram is evaluated as

iM(φφ→ φφ)one-loop s-channel = (−iλ0)2(−i)2 1

2

∫
d4k

(2π)4

1

P 2
s +m2

0

1

(Ps + k)2 +m2
0

. (1.16)

Just from power-counting, we can already see that this diagram will be divergent. In

the infrared, as k → 0, the diagram is regularized by the mass of the �eld, but in the

ultraviolet k →∞, the integral behaves as ∼
∫
d4k/k4 ∼

∫
dk/k which is logarithmically

divergent.

Though one might be tempted now to give up, we note that this divergence is ap-

pearing from an integral over very high energy modes�far larger than whatever energies

we've veri�ed our φ4 model to, so let's try to ignore those modes and see if we can't get

a sensible answer. The general term for removing these divergences is `regularization'

and we will here regularize (or `regulate') this diagram by imposing a hard momentum

cuto� Λ in Euclidean momentum space, which is the maximum energy of modes we let

propagate in the loop. The loop amplitude may then be calculated with elementary

methods detailed in, for example, Srednicki's textbook [25]. First we introduce Feynman

parameters to combine the denominators, using (AB)−1 =
∫ 1

0
dx(xA+(1−x)B)−2, which
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here tells us

1

P 2
s +m2

0

1

(Ps + k)2 +m2
0

=

∫ 1

0

dx
[
x
(
(Ps + k)2 +m2

0

)
+ (1− x)(P 2

s +m2
0)
]−2

(1.17)

=

∫ 1

0

dx
[
q2 +D

]−2
, (1.18)

where we've skipped the algebra letting us rewrite this with q = k + xPs and D =

x(1− x)P 2
s +m2

0. The change of variables k → q has trivial Jacobian, so the next step is

to Wick rotate�Euclideanize the integral by de�ning q0 = iq̄d, such that q2 ≡ qµηµνq
ν =

q̄µδµν q̄
ν ≡ q̄2. The measure simply picks up a factor of i, ddq = iddq̄, and we can then

go to polar coordinates via ddq̄ = q̄d−1dq̄dΩd. Lorentz invariance then means the angular

integral gives us the area of the unit sphere in d dimensions, Ωd = 2πd/2/Γ(d/2), where

Ω4 = 2π2, and the radial integral becomes

∫ Λ

0

dq̄ q̄3
[
q2 +D

]−2
=

1

2

[
D

q̄2 +D
+ log

(
q̄2 +D

)]∣∣∣∣Λ
0

(1.19)

= −1

2

[
Λ2

Λ2 +D
+ log

D

Λ2 +D

]
. (1.20)

In fact it is possible to do the x integral analytically here, but we'll take Λ2 � |P 2| � m2

to �nd a simple answer

−1

2

∫ 1

0

dx

[
Λ2

Λ2 +D
+ log

D

Λ2 +D

]
=

1

2

(
1− log

P 2
s

Λ2

)
+ . . . (1.21)

Now putting all that together and including all the diagrams up to one-loop, we get the

form

M(φφ→ φφ) = −λ0 +Cλ2
0

[
log

(
Λ2

s

)
+ log

(
Λ2

t

)
+ log

(
Λ2

u

)]
+ subleading, (1.22)
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where s, t, u are the Mandelstam variables and C is just a numerical coe�cient. Now

we see explicitly that the divergence has led to dependence of our amplitude on our

regulator Λ. Of course this is problematic because we introduced Λ as a non-physical

parameter, and it would not be good if our calculation of a physical low-energy observable

depended sensitively on how we dealt with modes in the far UV. But let us try to connect

this with an observable anyway. We note that the theory de�ned by the Lagrangian in

Equation 1.15 can not yet be connected to an observable because we have not yet given

a numerical value for λ0. So let's imagine an experimentalist friend of ours prepares

some φs and measures this scattering amplitude at some particular angles and energies

corresponding to values of the Mandelstam variables s0, t0, u0. They �nd some value

λphys, which is a pure number. If our theory is to describe this measurement accurately,

this tells us a relation between our parameters and a physical quantity

−λphys = −λ0 + Cλ2
0

[
log

(
Λ2

s0

)
+ log

(
Λ2

t0

)
+ log

(
Λ2

u0

)]
+O(λ3). (1.23)

This is known as a `renormalization condition' which tells us how to relate our quantum

�eld theories to observations at non-trivial loop order. Since the left hand side is a

physical quantity, it may worry us that the right hand side contains a non-physical

parameter Λ. But we still haven't said what λ0 is, so perhaps we'll be able to �nd

a sensible answer if we choose λ0 ≡ λ(Λ) in a correlated way with our regularization

scheme. We call this `promoting λ to a running coupling' by changing from the `bare

coupling' λ0 to one which depends on the cuto�. So let's solve for λ in terms of λphys
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and Λ. Rearranging we have

λ0 = λphys + Cλ2
0

[
log

(
Λ2

s0

)
+ log

(
Λ2

t0

)
+ log

(
Λ2

u0

)]
+O(λ3

0) (1.24)

λ(Λ) = λphys + Cλ2
phys

[
log

(
Λ2

s0

)
+ log

(
Λ2

t0

)
+ log

(
Λ2

u0

)]
+O(λ3

phys) (1.25)

where in the second line the replacement λ2
0 7→ λ2

phys modi�es the right side only at higher-

order and so that is absorbed into our O(λ3) uncertainty. To see what this has done for

us, let us plug this back into our one-loop amplitude Equation 1.22. This will impose our

renormalization condition that our theory successfully reproduces our experimentalist

friend's result. We �nd

M(φφ→ φφ) = −λphys − Cλ2
phys

[
log

(
Λ2

s0

)
+ log

(
Λ2

t0

)
+ log

(
Λ2

u0

)]
(1.26)

+ Cλ2
phys

[
log

(
Λ2

s

)
+ log

(
Λ2

t

)
+ log

(
Λ2

u

)]
+O(λ3

phys)

where again we liberally shunt higher-order corrections into our uncertainty term. Taking

advantage of the nice properties of logarithms, we rearrange to get

M(φφ→ φφ) = −λphys−Cλ2
phys

[
log

(
s

s0

)
+ log

(
t

t0

)
+ log

(
u

u0

)]
+O(λ3

phys). (1.27)

We see that our renormalization procedure of relating our theory to a physical observable

has enabled us to write the full amplitude in terms of physical quantities, and remove the

divergence entirely. This one physical input has enabled us to fully predict any 2 → 2

scattering in this theory.

We thus see how the renormalization procedure removes the divergences in a naïve

formulation of a �eld theory and allows us to make �nite predictions for physical ob-

servables. While we did need to introduce a regulator, once we make the replacement
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λ0 → λ(Λ) as de�ned in Equation 1.25 (and similar replacements for the coe�cients of

the other operators), the one-loop divergences are gone. We are guaranteed that any

one-loop correlation function we calculate is �nite in the Λ → ∞ limit, which removes

the regulator. If we wanted to increase our precision and calculate now at two loops,

we would �rst renormalize the theory at two loops analogously to the above, and would

�nd a more precise de�nition for λ(Λ) which included terms of order O(λ3
phys). At each

loop order, replacing the bare couplings with running couplings su�ces to entirely rid

the theory of divergences.

Renormalizability

An important question is for which quantum �eld theories do a �nite set of physical

inputs will allow the theory to be fully predictive, in analogy to the example above.

Such a theory is called `renormalizable' and means that after some �nite number of

experimental measurements, we can predict any other physics in terms of those values.

Were this not the case, and no �nite number of empirical measurements would �x the

theory, it would not be of much use. Within the context of perturbation theory, a theory

will be renormalizable if its Lagrangian contains solely relevant and marginal operators,

and indeed for our φ4 theory three renormalization conditions are needed�one for each

such operator.

The simplest way to understand why we must restrict to relevant and marginal op-

erators is that irrelevant operators inevitably lead to the generation of a tower of more-

and-more irrelevant operators. To see this, imagine now including a φ6 interaction, as

depicted in Figure 1.4a. At one loop this leads to a 4 → 4 scattering process with the

same sort of divergence we saw in our previous loop diagram. So this loop is probing

the UV physics, but we cannot absorb the unphysical divergence into a local interaction

in our Lagrangian unless we now include a φ8 term. But then we can draw a similar
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(a)
(b)

Figure 1.4: In (a), a pictoral representation of the nonrenormalizability of theories de-
scribed by Lagrangians with irrelevant operators. A tree-level six-point coupling leads
to a new divergence in 4 → 4 scattering, which must be absorbed into a renormalized
eight-point coupling, which would then beget a divergent 6 → 6 amplitude . . . . Note
that this does not mean there are not one-loop contributions to 4→ 4 scattering. Such a
diagram is depicted in (b), but it is �nite and does not require additional local operators.

one-loop diagram with the φ8 interaction which will require a φ10 interaction, and so on.

Note that in our φ4 theory we also have 4 → 4 scattering at one loop, seen in Figure

1.4b, but there it comes from a box diagram which is �nite, and so there is no need to

include more local operators.

However, we emphasized above that the most useful description of a system depends

on the precision at which one wishes to measure properties of the system. Thus in the

study of e�ective �eld theories a broader de�nition of renormalizability should be used.

For a theory with cuto� Λ, one decides to work to precision O(E/Λ)n where E is a

typical energy scale of a process and n is some integer. There are then a �nite number

of operators which contribute to processes to that precision�only those up to scaling

dimension n�and so there is a notion of `e�ective renormalizability' of the theory. We

still require solely a �nite number of inputs to set the behavior of the theory to whatever

precision we wish, but such a theory nevertheless fails the original criterion, which may

be termed `power counting renormalizability' in comparison.
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Wilsonian renormalization of φ4

Above we characterized our cuto� as an unphysical parametrization of physics at

high scales that we do not know and we found that its precise value dropped out of

our physically observable amplitude. To some extent this is rather surprising, as it's

telling us that the high energy modes in our theory have little e�ect on physics at long

distances�we can compensate for their e�ects by a small shift in a coupling. We can

gain insight into the e�ects of these high energy modes by taking the cuto� seriously

and looking at what happens when the cuto� is lowered. This brilliant approach due to

Wilson [54] is aimed at providing insight as to the particular e�ects of these high-energy

modes by integrating out `shells' of high-energy Euclidean momenta and looking at the

low-energy e�ects. This discussion is closely inspired by that in Peskin & Schroeder's

chapter 12 [55], as well as Srednicki's chapter 29 [25].

It is easiest to see how to implement this by considering the path integral formulation.

We can equally well integrate over position space paths as over momentum modes:

Z =

∫
Dφ(x)ei

∫
L(φ) =

(∏
k

∫
dφ(k)

)
ei

∫
L(φ), (1.28)

and here it is clear that we may integrate over particular momentum modes separately if

we so choose. In the condensed matter application in which Wilson originally worked, a

cuto� appears naturally due to the lattice spacing a giving an upper bound on momenta

kmax ∼ 1/a. In a general application we can imagine de�ning the theory with a funda-

mental cuto� Λ by including in the path integral only modes with Euclidean momentum

k2 ≤ Λ2.5 The theory is de�ned by the values of the parameters in the theory with that

5It is necessary to de�ne this cuto� in Euclidean momentum space for the simple fact that in
Lorentzian space a mode with arbitrarily high energy k0 may have tiny magnitude by being close to the
light cone |k0| ' |~k|. It is left as an exercise for the reader to determine what deep conclusion should be
taken away from the fact that we perform all our QFT calculations in Euclidean space.
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cuto��our familiar relevant and marginal operators m2(Λ), λ(Λ) and in principle all of

the `Wilson coe�cients' of irrelevant operators as well, since the theory is manifestly

�nite. The idea is to e�ectively lower the cuto� by explicitly integrating out modes with

bΛ ≤ k ≤ Λ for some b < 1. This will leave us with a path integral over modes with

k2 ≤ b2Λ2�which is a theory of the same �elds now with a cuto� bΛ. By integrating

out the high-energy modes we'll be able to track precisely their e�ects in this low-energy

theory.

Peskin & Schroeder perform this path integral explicitly by splitting the high energy

modes into a di�erent �eld variable and quantizing it, but since we've already introduced

the conceptual picture of integrating �elds out we'll take the less-involved approach of

Srednicki. To repeat what we discussed above, the diagrammatic idea of integrating

out a �eld is to remove it from the spectrum of the theory and reproduce its e�ects on

low-energy physics by modifying the interactions of the light �elds. Performing the path

integral over some �elds does not change the partition function, so the physics of the

other �elds must stay the same. We want to do the same thing here, but integrate out

solely the high energy modes of a �eld and reproduce the physics in terms of the light

modes.

We'll continue playing around with φ4 theory and de�ne our (�nite!) theory with a

cuto� of Λ, which in full generality looks like:

L(Λ) = −1

2
Z(Λ)∂µφ∂

µφ− 1

2
m2(Λ)φ2 − 1

4!
λ(Λ)φ4 −

∞∑
n=3

cn(Λ)

(2n)!
φ2n. (1.29)

For simplicity we will decree that at our fundamental scale Λ we have a canonically

normalized �eld Z(Λ) = 1 and no irrelevant interactions cn(Λ) = 0, but just some

particular m2(Λ) and λ(Λ).

Let's look �rst at the one-loop four-point amplitude, which we must ensure is the
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same in both the theory with cuto� Λ and that with cuto� bΛ. In the original theory,

the amplitude at zero external momentum is

iV Λ
4 (0, 0, 0, 0) = −iλ(Λ) +

3

2
(−iλ(Λ))2

∫
|k|<Λ

d4k

(2π)4

(−i)2

(k2 +m2(Λ))2
+O(λ3) (1.30)

When we evaluate this in the theory with a lowered cuto� bΛ, the modi�cation is simply

to everywhere make the replacement Λ 7→ bΛ. In order for the physics to remain the

same without the high-energy modes, the vertex function must not change. We'll take

full advantage of the perturbativity of the result�that is, λ(Λ)−λ(bΛ) ∼ O(λ2), m2(Λ)−

m2(bΛ) ∼ O(λ2)�to swap out quantities evaluated at bΛ in the second-order term for

those evaluated at Λ at the cost solely of higher-order terms which we ignore.

0 ≡ V Λ
4 (0, 0, 0, 0)− V bΛ

4 (0, 0, 0, 0) (1.31)

= −λ(Λ) +
3

2
λ(Λ)2

∫
|k̄|<Λ

d4k̄

(2π)4

1

(k̄2 +m2(Λ))2

+ λ(bΛ)− 3

2
λ(bΛ)2

∫
|k̄|<bΛ

d4k̄

(2π)4

1

(k̄2 +m2(bΛ))2

= −λ(Λ) + λ(bΛ) +
3

2
λ(Λ)2

∫ Λ

|k̄|=bΛ

d4k̄

(2π)4

1

(k̄2 +m2(Λ))2
+O(λ3)

= −λ(Λ) + λ(bΛ) +
3

16π2
λ(Λ)2 log

(
1

b

)
+O(λ3,

m2

Λ2
)

⇒ λ(bΛ) = λ(Λ)− 3

16π2
λ(Λ)2 log

(
1

b

)
+ . . . (1.32)

The e�ect of high energy modes on the four-point vertex function can be simply absorbed

into a shift in the coupling constant! This procedure explicitly transfers loop-level physics

in the theory de�ned at Λ into tree-level physics at bΛ.
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We can repeat this for the two point function to �nd the behavior of Z(Λ),m2(Λ).

0 ≡ ΣΛ(p)− ΣbΛ(p) (1.33)

= Z(Λ)p2 +m2(Λ) + λ(Λ)

∫
|k̄|<Λ

d4k̄

(2π)4

1

(Z(Λ)k̄2 +m2(Λ))

− Z(bΛ)p2 −m2(bΛ)− λ(bΛ)

∫
|k̄|<bΛ

d4k̄

(2π)4

1

(Z(bΛ)k̄2 +m2(bΛ))

= [Z(Λ)− Z(bΛ)] p2 +m2(Λ)−m2(bΛ) + λ(Λ)

∫ Λ

|k̄|=bΛ

d4k̄

(2π)4

1

(Z(Λ)k̄2 +m2(Λ))

= [Z(Λ)− Z(bΛ)] p2 +
[
m2(Λ)−m2(bΛ)

]
+
λ(Λ)

16π2

[
Λ2 − b2Λ2

]
+ λ(Λ)

m2(Λ)

8π2
log

(
1

b

)
⇒ Z(bΛ) = Z(Λ) +O(λ2) (1.34)

⇒ m2(bΛ) = m2(Λ) +
λ(Λ)

16π2
Λ2
[
1− b2

]
− λ(Λ)

m2(Λ)

8π2
log

(
1

b

)
+ . . . (1.35)

We have again liberally ignored subleading terms. We see that the wavefunction nor-

malization Z does not run at one-loop in this theory, since the only one-loop diagram

contributing to the two-point function does not have external momentum routed through

the loop. This is merely `accidental' as Z is not symmetry-protected and does run at

two-loops. We also see the �rst hints of a somewhat worrisome situation with scalar

masses. The mass m2(Λ) receives large one-loop corrections which tend to raise the mass

up to near the cuto�, regardless of whether we originally had m2(Λ) � Λ2. We will

investigate this in great detail later.

Now imagine we want to measure some properties of φ particles with external mo-

menta far below our fundamental cuto� pi ∼ µ � Λ. By construction, our procedure

of integrating out high-energy momentum modes keeps the physics of these low-energy

particles the same. But if we calculate this scattering amplitude using L(Λ), it is not

easy to see from the Lagrangian how these low-energy modes will behave, since important

e�ects are hidden in loop diagrams. If we instead �rst integrate out momentum shells
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down to some L(bΛ) with µ < bΛ � Λ, then the e�ects of the high energy modes have

been absorbed into the parameters of our Lagrangian, and we can read o� much more of

how φ particles will behave at low energies simply by looking at the parameters.

We can see further value in this approach if we consider scattering more low-energy

φ. Let's look at the 6-point vertex function at zero momentum�in the theory at Λ, we

start with c6(Λ) = 0 and a one-loop diagram where momenta up to Λ run in the loop:

V Λ
6 =

λ3(λ)

48

∫
|k|<Λ

d4k

(2π)4

(
1

Z(Λ)k2 +m2(Λ)

)3

. (1.36)

Now in the theory at bΛ, the loop only contains momenta up to bΛ, so we must account

for the di�erence with a contact interaction c6(bΛ):

V bΛ
6 = c6(bΛ) +

λ3(bλ)

48

∫
|k|<bΛ

d4k

(2π)4

(
1

Z(bΛ)k2 +m2(bΛ)

)3

. (1.37)

Again we should ensure that the physics is the same upon lowering the cuto�:

0 ≡ V Λ
6 − V bΛ

6 (1.38)

c6(bΛ) =
λ3(λ)

48

∫ Λ

bΛ

d4k

(2π)4

(
1

Z(Λ)k2 +m2(Λ)

)3

(1.39)

=
λ(Λ)3

3× 256π2

(
1

(bΛ)2
− 1

Λ2

)
+ . . . (1.40)

So this renormalization procedure is especially useful for understanding the behavior of

irrelevant interactions. In our original theory nothing about the six-particle interaction

was obvious from the Lagrangian, but in our theory with cuto� bΛ we can simply read

o� the strength of this interaction at lowest order.

Note also the inverse behavior to that of the mass corrections�for the irrelevant

interaction, the most signi�cant contributions to the infrared behavior come from the
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low -energy part of the loop integral, and the UV contributions are suppressed relative to

this. Similarly, if we had started with a nonzero c6(Λ) which was small in units of the

cuto� c6(Λ)� Λ−2 (so perturbative), such a UV contribution will also be subdominant.

Then fully generally here, we have

c6(bΛ) ' λ(Λ)3

16π2

1

b2Λ2
+O(b0) (1.41)

as we evolve to low scales b� 1.

The Wilsonian approach we have discussed here gives useful intuition for how renor-

malization works as a coarse-graining procedure wherein one changes the fundamental

`resolution' of the theory, but in practice can make calculations cumbersome. Further-

more, the hard momentum-space cuto� we used is not gauge-invariant, which causes

di�culties in applications.

The bene�t, however, is that this is a `physical renormalization scheme' in which the

renormalization condition relates the bare parameters to physical observables. For this

reason, this renormalization scheme satis�es the Appelquist-Carrazone decoupling theo-

rem [56], which is enormously powerful. This guarantees for us that the e�ects of massive

�elds can, at low energies, simply be absorbed into modi�cations of the parameters in an

e�ective theory containing solely light �elds.

In the next section we'll return to a clarifying example of the meaning of the de-

coupling theorem, and also discuss a renormalization scheme which does not satisfy the

requirements for this theorem to operate, but is far simpler to use for calculations. The

winning strategy will be to input decoupling by hand, which will allow us to get sensible

physical results without the computational di�culty. Before we get to that, though, we'll

take a couple detours.
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Renormalization and locality

We have seen that the need to remove divergences in our theory led to the intro-

duction of running couplings which change as a function of scale. In our example above

we see that renormalization has the operational e�ect of transferring loop-level physics

into the tree-level parameters. This is an interesting perspective which bears further

exploration�if there is hidden loop-level physics that really has the same physical e�ects

as the tree-level bare parameters, perhaps this is a sign that there is a better way to

organize our perturbation theory. Indeed, at some very general level renormalization can

be thought of as a method for improving the quality of perturbation theory. For useful

discussions at this level of abstraction of how renormalization operates, see [57] for its

natural appearance whenever in�nities are encountered in naïve perturbative calcula-

tions, and [58] for its usefulness even when in�nities are not present. We'll discuss this

perspective on renormalization further in the next section.

However it's clear that loops also give rise to physics that is starkly di�erent from

the lowest-order result (e.g. non-trivial analytic structure), so how do we know what

higher-order physics we can stu� into tree-level? In a continuum quantum �eld theory,

a Lagrangian is a local object L(x)�that is, it contains operators like φ(x)3 give an

interaction between three φ modes at a single spacetime point x. Such e�ects are known

as `contact interactions', but even at tree-level a local Lagrangian can clearly produce

non-local (that is, long-range) physics e�ects. For example, consider the amplitude for

2→ 2 scattering in a φ3 theory at second order in the coupling.

In position space the non-locality here is obvious, as in Figure 1.5: A simple tree-level

diagram corresponds to a particle at point x and a particle at point y exchanging a φ

quantum, but one may forget this important fact when working in momentum space.
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Figure 1.5: A position space Feynman diagram with vertices labeled.

There the result is

iM(φφ→ φφ) =
ig2

p2 +m2
, (1.42)

and indeed, Fourier transforming the cross-section for this process yields a Yukawa scat-

tering potential for our φ particles, showing that they mediate a long-range force over

distances r ∼ 1/m. We obviously cannot rede�ne the Lagrangian to put this e�ect into

the lowest order of perturbation theory since this is not a local e�ect.

But if we do have a continuum quantum �eld theory, then because of locality it

describes �uctuations on all scales. When we go to loop-level, we must integrate over

all possible internal states, which includes integrating over arbitrarily large momenta or

equivalently �uctuations on arbitrarily small scales. Heuristically, when the loop integral

in sensitive to the ultraviolet of the theory, it is computing e�ects that operate on all

scales�that is, it gives a contribution to local physics. This tells us that the pieces of this

higher-order contribution which we can reshu�e into our Lagrangian are connected with

ultraviolet sensitivity, leading to a close connection of renormalization with divergences.

A couple notes are warranted about the notion of locality we rely on here. Firstly, it's

clear that this criterion of local e�ects appears because we began with a local Lagrangian.

If we postulated that our fundamental theory contained nonlocal interactions, say L(x) ⊃

gφ(x)
(∫

dyφ(y)
) (∫

dzφ(z)
)
, then we could clearly absorb further nonlocalities with the

same structure into this coupling as well. However, this sort of nonlocality is di�erent
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from the nonlocality we saw appearing out of the local theory at tree-level. In particular

it would break the standard connection between locality and the analytic structure of

amplitudes�see e.g. Schwartz [26] or Weinberg [59] on `polology' and locality.

Secondly, our notion of locality should be modi�ed in a low-energy theory with an

energy-momentum cuto� Λ, as can be seen in hindsight in our Wilsonian discussion above.

As Λ de�nes a maximum energy scale we can probe, there is equivalently a minimum

time and length scale we can probe due to the uncertainty principle, heuristically ∆xµ &

1/∆pµ & 1/Λ. As a result, any �uctuations on shorter length scales are e�ectively local

from the perspective of the low-energy theory. An exchange of a massive �eld with

M > Λ or of a light �eld with high frequency ω > Λ appears instantaneous to low-

energy observers. This explains how it's sensible to use renormalization techniques in,

for example, condensed matter applications, where systems are fundamentally discrete.

We can see this concretely by imagining the light φs in the tree-level example above

instead exchanged a heavier scalar Φ with mass M � m. While the amplitude M =

g2/(p2 +M2) is still nonlocal in the continuum theory, if we're only interested in physics

at energies E � M we may Taylor expand the result M = g2/M2 + g2p2/2M4 + . . . .

We may then absorb the leading e�ects of this heavy scalar into an e�ectively local

interaction g2φ4/M2 among the light �elds�as long as we work at energies below M .

In the next section we'll explore concretely how these insights enable us to transfer

loop-level physics to tree-level physics, and so improve our calculations.

1.2.2 To Repair Perturbation Theory

Renormalization group equations

The astute reader may notice a potential issue with our one-loop results in the φ4

theory, Equations 1.32,1.34,1.35. We've derived this behavior as the �rst subleading
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terms in a series expansion in the number of loops. In relation to the tree-level results,

the one-loop contributions are suppressed by a factor ∼ λ/16π2 log(Λ0/Λ), where I've

switched notation to now have Λ0 as a high scale and Λ as the lower scale we integrate

down to. Higher n-loop contributions will be further suppressed by n loop factors. But

what if we wanted to study physics at a scale far lower than Λ0? Eventually this factor

becomes large enough that we will need to compute many loops to obtain high precision,

and then large enough that we have reason to question the convergence of the series6.

Keep in mind that we are in the era of precision measurements of the Standard Model,

so these one-loop expressions are very restrictive.

For a concrete example, say we wanted to check the SM prediction for a measurement

of a coupling λ(Λ) with λ(Λ0) = 1 whose experimental uncertainty was 1%. Let's de�ne

a theoretical uncertainty on a perturbative calculation to nth order as

εn ≡
nth order result− estimated size of (n+ 1)th order result

nth order result
, (1.43)

where our Wilsonian calculation in Section 1.2.1 gave at �rst order, as a reminder (and

with modi�ed notation)

λ(Λ) = λ(Λ0)− 3

16π2
λ(Λ0)2 log

Λ0

Λ
+O(λ3), (1.44)

and our heuristic estimate for the size of the second order correction is ( 3
16π2 )2λ(Λ0)3 log2 Λ0

Λ
.

When the result is simply a series, the uncertainty is very simple to calculate, as the nu-

6Please excuse my slang. Perturbative series in QFT are quite generally not convergent but we
can trust the answers anyway to order n ∼ exp 1/expansion parameter because they are asymptotic

series. So really when this parameter becomes large enough we worry that our series is not even asymp-
totic. Thinking deeply about this leads to many interesting topics in �eld theory, from accounting for
nonpertubative instanton e�ects which are (partially) behind the lack of convergence; to the program
of `resurgence', the idea that there are secret relations between the perturbative and nonperturbative
pieces. This is all far outside my purview here, but some introductions aimed at a variety of audiences
can be found in [60, 61, 62, 63, 64, 65].
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merator is then our estimate of the (n+1)th order correction, which is roughly the square

of the �rst order correction. Here we have ε1 = 3
16π2λ(Λ0) log Λ0

Λ
.

Then in order for our theoretical uncertainty to be subdominant to the experimental

precision, ε1 < 0.01, we must go past the one-loop result if we wish to look at energies

below Λ ∼ exp(−16π2 × 0.01/3)Λ0 ∼ Λ0/2, the two-loop result is only su�cient until

Λ ∼ Λ0/400, and if we can manage to calculate the three-loop corrections that only gets

us down to something like Λ ∼ Λ0/8× 104. If we're interested in taking the predictions

of a Grand Uni�ed Theory de�ned at Λ0 ∼ 1016 GeV and comparing them to predictions

at SM energies, how in the world are we to do so?

Fortunately, we can do better by applying our one-loop results more cleverly. It is

clear by looking at Equations 1.32,1.34,1.35 that the results have the same form no matter

the values of Λ0,Λ. So if we take Λ to be only slightly smaller than Λ0 (corresponding to

1− b� 1 in our previous notation) the expansion parameter becomes very small and the

one-loop result becomes very trustworthy. What we would like is some sort of iterative

procedure to gradually lower the cuto�, which we could then use to �nd the one-loop

result for energies far lower than the range of our perturbative series. This is in fact

precisely the sort of problem that a di�erential equation solves, and we can derive such

an equation by di�erentiating both sides by ln Λ and then taking Λ in�nitesimally close

to Λ0. That exercise yields

dZ(Λ)

d log Λ
= 0 (1.45)

dm2(Λ)

d log Λ
=
λ(Λ)

8π2

(
m2(Λ)− Λ2

)
(1.46)

dλ(Λ)

d log Λ
=

3

16π2
λ(Λ)2 (1.47)

These are known as `renormalization group equations' and they indeed allow us to evolve
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the coupling down to low energies�one says we use them to `resum the logarithm'. Then

to study physics at a very low scale we can bring these couplings down to a lower scale

and do our loop expansion using those couplings, which is known as `renormalization

group improved perturbation theory', and which we will discuss in more detail soon.

Explicitly solving with our boundary condition at Λ0 yields

λ(Λ) =
λ(Λ0)

1 + 3λ(Λ0)
16π2 log Λ0

Λ

(1.48)

Turning back to our e�ective �eld theory language, we see that quantum corrections

have generated an anomalous dimension for λ, δφ4 = 3λ2/(16π2), correcting the leading

order scaling behavior. Since δφ4 > 0, we've determined that the quartic interaction is

marginally irrelevant, which we will return to later.

We can now look at the theoretical uncertainty in this one-loop resummed calculation

by including an estimate of the next order correction to the running of the quartic

dλ(Λ)
d log Λ

= 3
16π2λ(Λ)2 +

(
3

16π2

)2
λ(Λ)3 and resumming that expression. This can no longer be

done analytically, but numerical evaluation easily reveals that the theoretical uncertainty

here stays below 1% for many, many orders of magnitude below Λ0. Resumming the

logarithmic corrections allows us to use our loop results to far greater e�ect.

Decoupling

The physical meaning and technical statement of the decoupling theorem commonly

confuse even prominent practitioners of e�ective �eld theory, so it's worth going clearly

through an example to re�ne our understanding. Indeed, one may be confused just at

zeroth order about how decoupling is sensible against the background of the hierarchy

problem�which is an issue of sensitivity of a scalar mass to heavy mass scales. How

can we claim QFT obeys a decoupling theorem and then go on to worry at length about
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quantum corrections δm2 ∝M2?

The correct way to think about the decoupling theorem is not whether a top-down

calculation could yield a result that depends on heavy mass scales, but whether a bottom-

up e�ective �eld theorist and low-energy observer could gain information about the heavy

mass scales through low-energy measurements. We can clarify this important di�erence

by looking at a one-loop mass correction to a light scalar φ of mass m from a heavy scalar

Φ of mass M through the interaction λφ2Φ2. We again take a Wilsonian perspective and

begin at a scale Λ0 > M . In close analogy to what we had before, we now �nd

0 ≡ ΣΛ0(0)− ΣΛ(0) (1.49)

= m2(Λ0) + λ(Λ0)

∫
|k|<Λ0

d4k

(2π)4

1

(k2 +M2(Λ0))

−m2(Λ)− λ(Λ′)

∫
|k|<Λ

d4k

(2π)4

1

(k2 +M2(Λ))

= m2(Λ0)−m2(Λ) + λ(Λ0)

∫ Λ0

|k|=Λ

d4k

(2π)4

1

(k2 +M2(Λ0))

=
[
m2(Λ0)−m2(Λ)

]
+
λ(Λ0)

16π2

[
Λ2

0 − Λ2
]
− λ(Λ0)

M2(Λ0)

16π2
log

(
Λ2

0 +M2(Λ0)

Λ2 +M2(Λ)

)
⇒ m2(Λ) = m2(Λ0) +

λ(Λ0)

16π2

([
Λ2

0 − Λ2
]

+M2(Λ0) log
Λ2

0 +M2(Λ0)

Λ2 +M2(Λ)

)
+O(λ2). (1.50)

And we may already exhibit the confusion. If we use this to calculate the mass at a

low scale Λ � M , we see that m2(Λ) does depend on the heavy mass scale, and gets a

contribution which goes like m2(Λ) ∼M2(Λ0) log (1 + Λ2
0/M

2(Λ0)).

However, the e�ect on the light scalar is an additive shift of the mass. If we go out

and measure the mass at a single scale m2(Λ) we can't tell empirically which `parts' of

that came from m2(Λ0) and which came from M2(Λ0) or whatever else is in there, so

we have no idea of how this low-energy measurement depends on heavy scales. To get

information about the various contributions to the light scalar mass, we can measure it at
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di�erent scales and look at how it changes. Of course this information is contained in the

renormalization group equation for m2(Λ). At O(λ), we can �nd this by di�erentiating

the above, and we �nd

dm2(Λ)

d log Λ
=
λ(Λ)

8π2
Λ2

[
M2(Λ)

Λ2 +M2(Λ)
− 1

]
. (1.51)

Now we can see the di�erence. If we perform low-energy observations where we can take

the cuto� below the mass of the heavy scalar Λ � M , then the physics of the heavy

scalar decouples from the running of the light scalar mass. It is only by studying this

running at low energies that we can gain information about the ultraviolet, and we see

that this information is contained solely in small corrections scaling as Λ2/M2. At low

energies, to learn about short-distance physics we must make very precise measurements

of the low-energy physics. This is the sense in which heavy mass scales decouple from

the theory in the infrared.

Renormalized perturbation theory

Now let us study another, slightly more complex theory and apply renormalization

techniques to simplify our calculations. We avoid the complication of gauge symmetries

and focus instead on a Yukawa theory of a Dirac fermion interacting with a parity-odd

scalar.

Our �rst improvement to perturbation theory will be to switch from `bare' to `renor-

malized perturbation theory'. Let's �rst recap our procedure in Section 1.2.1. We began

with a Lagrangian with bare parameters m0, λ0, . . . , introduced a regulator, computed

the physical parameters mphys, λphys in terms of the bare ones, inverted those relation-

ships, and then plugged in for the bare parameters in terms of the renormalized ones,

after which we were left with an amplitude which remains �nite as we remove the regu-

35



E�ective Field Theory Chapter 1

lator. This procedure works to remove the divergences in any renormalizable theory, but

is obviously rather cumbersome.

Furthermore one may question the validity of performing a perturbative expansion

in a bare parameter which we later discover is formally in�nite in the continuum theory

λ0 ∼ log(Λ2
0) → ∞. It is both conceptually and computationally easier to instead start

o� by performing perturbation theory in terms of the renormalized parameters which we

know to be �nite by de�nition. Fortunately we can improve our accounting simply by

reshu�ing the Lagrangian as follows.

In terms of the bare parameters and �elds, the Lagrangian reads

L0 = ψ̄0

(
i/∂ −M0

)
ψ0 +

1

2
φ0

(
�−m2

0

)
φ0 (1.52)

L1 = ig0φ0ψ̄0γ5ψ0 −
1

24
λ0φ

4
0 (1.53)

where we've split up the free and interaction parts. Just as in our earlier example,

when we compute at one-loop these parameters will get corrections such that the bare

parameters are no longer the physical parameters we measure. Anticipating that fact,

let us rewrite the Lagrangian to explicitly account for those corrections from the outset.

Although it was not a feature of our simple example above, in general there will be

`wavefunction renormalization' which changes the normalization of our �eld operators,

so we de�ne φ0 = Z
1/2
φ φ, ψ0 = Z

1/2
ψ ψ where ψ, φ are now renormalized �elds, We do the

same to de�ne renormalized masses related to the bare masses as M0 = ZMZ
−1
ψ M,m2

0 =

Z−1
φ Zmm

2, and for the couplings g0 = Z
−1/2
φ Z−1

ψ Zgg, λ0 = Z−2
φ Zλλ. Next we use the

brilliant strategy of adding zero to split these Z-factors into a piece with the same form

we started with and a `counterterm' proportional to (Z − 1). Since at tree-level there's

no renormalization needed, we know Z = 1 +O(couplings). At nontrivial loop level, we

must choose the Z-factors to implement our chosen renormalization scheme.
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The Lagrangian now takes the form

L0 = ψ̄
(
i/∂ −M

)
ψ +

1

2
φ
(
�−m2

)
φ (1.54)

L1 = iZggφψ̄γ5ψ −
1

24
Zλλφ

4 + Lct (1.55)

Lct = i(Zψ − 1)ψ̄ /∂ψ − (ZM − 1)Mψ̄ψ − 1

2
(Zφ − 1)∂µφ∂µφ−

1

2
(Zm − 1)m2φ2 (1.56)

where we've split o� the counterterms into Lct. We can now treat the terms in Lct simply

as additional lines and vertices contributing to our Feynman diagrams. We'll see how

useful this is once we begin renormalizing the theory. This is done in full in Srednicki's

chapters 51-52 [25], so we will not go through every detail.

Continuum renormalization

We'll regulate this theory using `dimensional regularization' (dim reg) which ana-

lytically continues the theory to general dimension d = 4 − ε. That this will regulate

our theory is not obvious, but I recommend Georgi [17] to convince yourself of this and

Collins [66] for a full construction of dim reg; we'll content ourselves with seeing it in

action. Our renormalization scheme will be `modi�ed minimal subtraction' and denoted

MS, where `minimal subtraction' means we'll choose our counterterms solely to cancel

o� the divergent pieces (rather than to enforce some relation to physical observables, as

we did previously) and `modi�ed' means that actually it's a bit nicer if we cancel o� a

couple annoying constants as well. Since we're using MS, the mass parameters m,M

will not quite be the physical masses, which are always the locations of the poles in the

propagators, and the �elds will not be normalized to have unity residue on those poles.

So we'll have to relate these parameters to the physical ones later.

We'll brie�y go through renormalizing the scalar two-point function at one loop to

evince dim reg and MS. In our one-loop diagrams we use propagators given by L0,

37



E�ective Field Theory Chapter 1

Figure 1.6: Diagrams giving the one-loop correction to the scalar propagator in Yukawa
theory.

since we know the counterterms begin at higher order. The full details of the one-loop

renormalization of this theory can be found in Srednicki's Chapter 51.

At one-loop, the scalar two-point function gets corrections due to both interactions,

as seen in Figure 1.6. There is the diagram we had in the φ4 theory above, but we must

recompute this in dim reg

iΣφ loop(p
2) = −i1

2
λ

∫
d4k

(2π)4

−i
k2 +m2

(1.57)

= −i1
2
λµ̃ε

∫
ddk̄

(2π)d
1

k̄2 +m2
(1.58)

= −iλ
2

Γ
(
−1 +

ε

2

) m2

(4π)2

(
4πµ̃2

m2

)ε/2
(1.59)

' i
λ

2(4π)2
m2

(
2

ε
+ 1− γE

)(
1 +

ε

2
log

4πµ̃2

m2

)
(1.60)

' i
λ

2(4π)2
m2

(
2

ε
+ 1− γE − log

4πµ̃2

m2

)
(1.61)

= i
λ

(4π)2
m2

(
1

2
+

1

ε
+

1

2
log

µ2

m2

)
+O(ε), (1.62)

where we have analytically continued to d = 4−ε dimensions including replacing λ 7→ λµ̃ε,

with µ̃ a mass scale, to keep λ dimensionless; performed the integral in general dimension;

expanded for ε ' 0; and de�ned µ2 ≡ 4πµ̃2e−γE , where γE is the Euler-Mascheroni

constant, to simplify the expression. Details on these calculational steps are laid out in
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Srednicki's Chapter 14. There's another diagram with a ψ loop

iΣψ loop(p
2) = (−1)(ig)2

∫
d4k

(2π)4
(−i)2

Tr
[
(−/k +M)γ5(−/k − /p+M)γ5

]
(k2 +M2)((k + p)2 +M2)

(1.63)

= − g2

4π2

[
1

ε
(k2 + 2M2) +

1

6
k2 +M2 −

∫ 1

0

dx(3x(1− x)k2 +M2) ln
D

µ2

]
,

(1.64)

with D = x(1−x)k2 +m2, whose evaluation follows similar steps but we skip for brevity.

Adding these together, MS tells us the φ counterterms must take the values

Zφ = 1− g2

4π2

1

ε
(1.65)

Zm = 1 +

(
λ

16π2
− g2

2π2

M2

m2

)
1

ε
. (1.66)

For the fermion, evaluating the one-loop diagrams gives us the counterterms

Zψ = 1− g2

16π2

1

ε
(1.67)

ZM = 1− g2

8π2

1

ε
. (1.68)

Since we didn't choose the counterterm to keep the location of the pole in the propagator

�xed, m is no longer the physical scalar mass. But we can �nd the physical, `pole' mass

precisely from that condition:

0 ≡ ∆−1(k2 = −m2
phys) (1.69)

= k2 +m2 + Σ(k2)
∣∣
k2=−m2

phys

(1.70)

= −m2
phys +m2 − Σ(−m2

phys) (1.71)

⇒ m2
phys = m2 − Σ(−m2) +O(λ2, g4, λg2), (1.72)
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(a) (b)

Figure 1.7: Some one-loop diagrams in Yukawa theory correcting the interactions. In (a),
a triangle diagram correcting the Yukawa interaction. In (b), a box diagram correcting
the scalar quartic interaction.

where we have used our favorite trick to replace m2
phys with m

2 in the one-loop correction,

since it is already higher order in couplings.

As for the interactions, we have a triangle diagram for the Yukawa coupling and a

new contribution to the quartic with a fermion running in the loop, as depicted in Figures

1.7a and 1.7b respectively. These lead to the counterterms

Zg = 1 +
g2

8π2

1

ε
(1.73)

Zλ = 1 +

(
3λ

16π2
− 3g4

π2λ

)
1

ε
, (1.74)

from which we'll be able to understand how the strength of the interactions changes as

a function of the energy at which the theory is probed.

Renormalization group improvement

Now the second improvement to perturbation theory is the RG-improved perturbation

theory we mentioned above. This takes on an even more useful role in our continuum

renormalization scheme here. In the Wilsonian picture, Λ was a high cuto� and we

ensured the physics was invariant under evolution of Λ, but this scale still needed to stay
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far above the scales of interest in the problem Λ � m,M,−k2, . . . . Now the scale µ is

entirely unphysical and we are free to bring it all the way down to the scales of kinematic

interest�in fact doing so will vastly simplify calculations. As a result we are able to

make even more use of the RG-improvement than we could above.

We �nd the running couplings by again using the fact that the bare parameters

are independent of the unphysical renormalization scale µ. Having utilized a mass-

independent regulator, a Wilsonian interpretation of couplings running with the value of

the regulator is nonsensical here and so renormalization group improvement is the way

to extract predictions from this theory. We already have the relations between the bare

and renormalized quantities, e.g.

g0 = Z
−1/2
φ Z−1

ψ Zggµ̃
ε/2. (1.75)

And since we know that the bare parameters are independent of µ by de�nition, we have

ln g0 = ln

(
1 +

g2

8π2

1

ε

)
+ ln

(
1 +

g2

16π2

1

ε

)
+ ln

(
1 +

g2

8π2

1

ε

)
+ ln g +

1

2
ε ln µ̃ (1.76)

=
5g2

16π2

1

ε
+ ln g +

1

2
ε ln µ̃+O(g4) (1.77)

d ln g0

d lnµ
= 0 (1.78)

=
10g

16π2

1

ε

dg
d lnµ

+
d ln g

d lnµ
+

1

2
ε (1.79)

=
dg

d lnµ

(
1 +

5g2

8π2

1

ε

)
+ εg. (1.80)

If we expand dg
d lnµ

= a1ε + a0 + . . . order by order in ε, then matching the O(ε) terms

gives a1 = −g/2 and matching the O(ε0) terms tells us that, in the ε→ 0 limit, we have

dg
d lnµ

=
5

16π2
g3 +O(g4). (1.81)
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This ε-independent piece is known as the `beta function' for the coupling, β(g) = 5
16π2 g

3.

Of course there are higher-order terms in dg
d lnµ

which are needed to match the O(ε−n)

terms, and which one can solve for. But these vanish in the ε → 0 limit, so will not

contribute to the running of g(µ).

We can now resum this logarithm to �nd the evolution of this coupling with renor-

malization scale

g(µ) =
ḡ√

1− 5ḡ2

8π2 log µ
µ̄

, (1.82)

where we've used the boundary condition g(µ̄) = ḡ. As before, the resummed version will

allow us to maintain precision to far lower scale than we could with simply its leading

order approximation.

It's useful to keep in mind the Wilsonian picture as a clearer example because our

regulator had a physical interpretation. The point is that the logarithms are really what's

encoding how couplings change as a function of scale; in the Wilsonian calculation it was

obvious that the logarithmic contribution log 1
b
is present no matter the initial cuto�.

One says that couplings which receive logarithmic quantum corrections `get contributions

from all scales'. Then it's clear why this RG-improvement is sensible�though we may

start at some particular Λ or µ, a one-loop calculation o�ers information on the lowest-

order logarithmic running over all momenta, and we may sum up those modi�cations to

improve our perturbation theory.

1.2.3 To Relate Theories

Mass-independent schemes and matching

We've seen already the necessity of renormalization when a theory produces naïvely

divergent results, and its enormous use in improving the precision of perturbative calcu-
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lations in a given theory. The last facet we'll discuss is its use in connecting theories.

This is necessary to use the computationally-simple scheme of dim reg with MS in the-

ories with di�erent mass scales, and is very closely related to the e�ective �eld theory

philosophy we discussed in Section 1.1. Cohen's monograph [16] goes into far more depth

than I will be able to, and is a fantastic introduction to these ideas and their application.

This perspective on renormalization has also been of enormous use in condensed matter

to understand behaviors that appear in many distinct systems in the long-distance limit,

and has applications in formal �eld theory to understand better the properties of QFT

itself.

In the previous section we derived the beta function for Yukawa theory in the MS

scheme. As promised by our terming of this as a `mass-independent' scheme, the beta

functions indeed have no reliance on the masses. But this should seem remarkably pecu-

liar, as it suggests that there is no decoupling at all. Were that the case, by measuring

the low-energy beta functions of QED we could tell how many charged particles existed

up to arbitrarily large mass scales! What has gone wrong is that MS does not meet the

criterion of a physical scheme which is necessary for the Appelquist-Carrazone theorem

to operate. In MS the renormalization condition has nothing to do with physical values

of the parameters so, while it makes calculations far simpler, MS has broken decoupling.

To restore decoupling and allow us to properly use a mass-independent scheme, we

must implement the mass-dependence ourselves by `matching' the Yukawa theory at

energies above the fermion mass to a theory of solely light scalars at energies below the

spinor mass. To `match', we consider some process which exists in both theories�for

example, φ4 scattering�and ensure that at the matching scale M both theories agree on

the physics.

In the high-energy Yukawa theory we can run the RG scale all the way down from a

high scale µ̄ to µ = Mphys, the physical, pole mass of the fermion. To get simple closed-
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form expressions, we'll take the couplings small enough that working to lowest order gives

a good approximation. We'll denote all of the UV values with bars, e.g. M(µ = µ̄) = M̄ .

Firstly, we use the counterterms to �nd the anomalous dimension of the fermion mass

d logM

d log µ
= − d

d log µ

(
Z−1
ψ ZM

)
(1.83)

= − g2

16π2
(1.84)

⇒M(µ) ' M̄

(
µ̄

µ

) ḡ2

16π2

(1.85)

' M̄

(
1 +

ḡ2

16π2
log

µ̄

µ

)
+ . . . (1.86)

We then �nd the fermion pole mass as

0 = −Mphys +M(µ = Mphys)− Σ(−Mphys) (1.87)

Mphys = M̄

(
1 +

ḡ2

16π2
log

µ̄

M̄

)
− Σ(−M̄) + subleading (1.88)

= M̄

(
1 +

ḡ2

16π2
log

µ̄

M̄

)
− ḡ2

16π2
M̄

∫ 1

0

dxx log

(
x2M̄2 + (1− x)m̄2

M̄

)
+ . . .

(1.89)

= M̄

[
1 +

ḡ2

16π2

(
1

2
+ log

µ̄

M̄

)]
+ . . . (1.90)
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Now we need the value of the other parameters at that mass threshold

1

m

dm

d log µ
=

1

4π2

(
1

8
λ− g2 m

2

M2
+

1

2
g2

)
(1.91)

⇒ m(Mphys) = m̄

(
1− 1

4π2

[
1

8
λ̄− ḡ2 m

2

M2
+

1

2
ḡ2

]
log

µ̄

M̄

)
+ . . . (1.92)

dg

d log µ
=

5

16π2
g3 (1.93)

⇒ g(Mphys) = ḡ

(
1− 5ḡ2

16π2
log

µ̄

M̄

)
+ . . . (1.94)

dλ

d log µ
=

1

16π2

(
3λ2 + 8λg2 − 48g4

)
(1.95)

⇒ λ(Mphys) = λ̄

(
1− 1

16π2

[
3λ̄2 + 8λ̄ḡ2 − 48ḡ4

]
log

µ̄

M̄

)
+ . . . (1.96)

Now we are ready to proceed to even lower energies. We enforce decoupling by matching

to the low-energy theory of just a self-interacting scalar. We have

L0 =
1

2
φ
(
�−m2

)
φ (1.97)

L1 = − 1

24
Zλλφ

4 + Lct (1.98)

Lct = −1

2
(Zφ − 1)∂µφ∂µφ−

1

2
(Zm − 1)m2φ2 (1.99)

The counterterms and beta functions in this theory can be conveniently found by trun-

cating those found above. Of course, by construction, we �nd that the heavy fermion ψ

no longer contributes to the running of parameters at low-energies. To make sure we're

getting the physics correct, we must impose the boundary condition that the predictions

match at µ = Mphys, which here is quite simple�we just use the values at Mphys in the

UV theory as literal boundary conditions for our running in the IR theory. In the IR
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theory, for µ ≤Mphys, we have

dλ

d log µ
=

3

16π2
λ2 (1.100)

⇒ λ(µ) =
λ(Mphys)

1 + 3
16π2λ(Mphys) log

Mphys

µ

(1.101)

' λ̄

(
1− 1

16π2

[
3λ̄2 + 8λ̄ḡ2 − 48ḡ4

]
log

µ̄

M̄

)(
1− 3

16π2
λ̄ log

M̄

µ

)
+ . . . (1.102)

' λ̄

(
1− 1

16π2

[
3λ̄2 + 8λ̄ḡ2 − 48ḡ4

]
log

µ̄

M̄
− 3

16π2
λ̄ log

M̄

µ

)
+ . . . (1.103)

The bene�t is now clear. While the RGE in the UV theory were very complicated, the

running of λ in the low energy theory is simple. Our mass-independent scheme allows us

to explicitly factorize these and contain all the UV physics in the boundary condition,

which lets us study the low-energy theory in a simple manner.

The general procedure of renormalization group evolution in mass-independent schemes

is called `running and matching'. The parameters in the Lagrangian run as you evolve

down in energies, but at a mass threshold M we must match the UV theory at µ = M

from above to a theory without this �eld at µ = M from below. When we match we

ensure that the physics of the low-energy �elds stays constant as we cross that threshold

and remove that particle from the spectrum of our theory. This becomes less trivial

when we have multiple mass scales, so consider now upgrading our Yukawa theory with

additional fermions.

L ⊃
N∑
i=1

Miψ̄iψi + g(N)φ

N∑
i=1

ψ̄iγ5ψi (1.104)

Now if we are given the theory at very high energies µ�Mi and we want to understand

what it looks like at very low energies, there is a cascade of EFTs we evolve through. As

depicted in Figure 1.8, we run the parameters down to the largest fermion mass, match

to a theory with one less fermion, run down again until the next mass scale, and so on.
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Figure 1.8: A schematic
depiction of the cascade
of e�ective �eld theories
as one transitions from
a Yukawa theory of N
fermions at high energies
through integrating these
out sequentially until one
�nds an e�ective φ4 theory
at low energies.

As an example which is closer to the real world, consider

QED with our three generations of leptons (and ignoring the

strong sector for simplicity). At low energies we measure

the asymptotic value α(µ ' 0) ' 1/137, and in colliders

we measure the value of the gauge coupling at the Z mass

mZ ' 91 GeV. To compare these, we must run the high-

energy value all the way down into the infrared. Abovemτ '

1.7 GeV we have a theory where all of e, µ, τ run in loops

and giving an MS beta function βα = 2α2/π. But at mτ

we should remove the τ from our theory, such that from mτ

down to mµ ' 105 MeV we have βα = 4α2/3π. Below the µ

we solely have the electron and recover the textbook βα =

2α2/3π, and �nally as we cross the electron mass threshold

me ' 511 keV we remove the electron from the spectrum

and �nd that the gauge coupling stops running βα ≡ 0.

Physically this corresponds to the fact that pure QED is

scale-invariant, meaning that the coupling will not evolve at all in a theory with no

charged particles. This is the regime in which classical electrodynamics holds precisely

(up to the presence of additional interactions suppressed by powers of me, that is).

A possible confusion is to con�ate the mass-independence of the regularization scheme

with that of the renormalization scheme, and conclude that dimensional regularization

cannot be used if one wants decoupling without having to integrate out and match. So

lest one confuse the roles let's quickly look at an example of using dimensional regular-

ization with a renormalization scheme which does satisfy decoupling, known as `o�-shell

momentum subtraction'. For simplicity, we'll look at the anomalous dimension of our

Yukawa scalar φ, and we'll perform wavefunction renormalization by subtracting the
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value of the graphs at the o�-shell momentum scale k2 = µ2
E. In symbols this amount to

the prescription

Zφ = 1 + Σloop(k
2 = µ2

E), where Πloop(k
2) = k2Σloop(k

2) + mass renorm pieces.

(1.105)

Since we're still using the same regularization scheme, we have the same result for

Πloop(k
2) as above. We can then simply calculate the anomalous scaling dimension as

de�ned by γφ ≡ 1
2

d logZφ
d log µE

,

γφ =
1

2

dΣloop(µ
2
E)

d log µE
(1.106)

=
3g2

4π2

1∫
0

dx
x2(1− x)2µ2

E

M2 + (1− x)xµ2
E

. (1.107)

This integral can be performed analytically, but the full expression is unilluminating.

However, it is useful to look at the limits

γφ =


g2

8π2 , µ2
E �M2

g2

40π2

µ2
E

M2 , µ2
E �M2

to check if they agree with our expectations. At energies far above the fermion mass its

contribution to the scalar anomalous dimension cannot know about that scale, and at

energies far below its mass we expect inverse dependence on the mass for decoupling to

occur. This is precisely what we �nd, so the lesson is that even if we didn't want to go

through the trouble of integrating out the fermion and matching, we could still make use

of the magical regularization scheme that is dim reg.
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Flowing in theory space

Our interpretation of the renormalization group thus far has been as a way of under-

standing what a particular theory looks like at di�erent energies. But there is another

way of looking at it that is also useful, for which we shall follow an example of Peskin

& Schroeder. Let's return to the idea of the Wilsonian path integral and successively

integrating out Euclidean momentum shells. In the previous section we began with a

scalar �eld theory

Z =

(∫ Λ∏
k=0

dφ(k)

)
exp

[
−
∫

ddx

(
1

2
(∂µφ)2 +

1

2
m2φ2 +

1

4!
λφ4

)]
. (1.108)

We then integrated over momentum shells from Λ down to bΛ with 0 < b < Λ, and found

we could express our result as (schematically; see 1.32,1.34,1.35,1.41)

Z =

(∫ bΛ∏
k=0

dφ(k)

)
exp

[
−
∫

ddxLe�
]

(1.109)

Le� =

(
1

2
(1 + ∆Z)(∂µφ)2 +

1

2
(m2 + ∆m2)φ2 +

1

4!
(λ+ ∆λ)φ4 +

1

6!
∆c6φ

6 + . . .

)
.

(1.110)

Above we interpreted this in terms of looking at the same theory at lower energies, having

coarse-grained over the largest momentum modes, which is a useful way of comparing

the two path integrals. Another useful way to compare is to get them to a form where

they look similar, so let's now de�ne a change of variables k′ = k/b, x′ = xb, in terms of
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which the path integral now looks like

Z =

(∫ Λ∏
k′=0

dφ(k′)

)
exp

[
−
∫

ddx′Le�
]

(1.111)

Le� = b−d
(

1

2
(1 + ∆Z)b2(∂µ′φ)2 +

1

2
(m2 + ∆m2)φ2 +

1

4!
(λ+ ∆Λ)φ4 +

1

6!
∆c6φ

6 + . . .

)
.

(1.112)

We can transform the kinetic terms back to the canonical form with the �eld rede�nition

φ′(x′) = b(2−d)/2(1 + ∆Z)1/2φ(x′), after which we can write the e�ective Lagrangian as

Le� =
1

2
(∂µ′φ

′)2 +
1

2
m′2φ′2 +

1

4!
λ′φ′4 +

1

6!
c′6φ
′6 + . . . . (1.113)

with m′2 = (m2 + ∆m2)(1 + ∆Z)−1b2, λ′ = (λ + ∆λ)(1 + ∆Z)−2bd−4, c′6 = ∆c6(1 +

∆Z)−3b2d−6, . . . , and it's clear that we could write such an e�ective action regardless of

what sort of coe�cients we began with before integrating out this momentum shell.

Now our series of transformations has e�ected the change (up to normalization)

Z =

(∫ Λ∏
k=0

dφ(k)

)
exp

[
−
∫

ddxL
]
→ Z =

(∫ Λ∏
k′=0

dφ′(k′)

)
exp

[
−
∫

ddx′L′
]
.

(1.114)

Since all of our dynamical variables are integrated over in calculating the partition func-

tion, we can view this as a transition in the space of Lagrangians, L → L′. So this gives

us an interpretation of the renormalization group as a �ow in `theory space'.

This interpretation invites us to conceptualize renormalization group �ow as a path

through theory space between two conformal �eld theories (CFTs), as depicted in Figure

1.9. CFTs are quantum �eld theories with an enlarged spacetime symmetry group7,

consisting essentially of a scaling symmetry 8. CFTs are �xed points of RG �ows�since

7This does not violate the Coleman-Mandula theorem [67] because CFTs do not have S-matrices.
8It is not known whether scale invariance in fact implies conformality in four-dimensional QFTs, the
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Figure 1.9: Schematic two-dimensional projection of some RG �ow trajectories from an
interacting UV �xed point to IR �xed points that are either interacting or free.

they possess scaling symmetry they look the same at all energy scales, so if an RG �ow

is to have an endpoint it clearly must be a CFT.

There's a terminological confusion here, which is that the `renormalization group'

isn't actually a group at all, since the operation of integrating out a momentum shell

is irreversible. This came up already above when we saw that integrating out heavy

�elds means we can no longer compute processes which have them as external �elds

(see Footnote 1). Flowing to lower energies, or toward the IR, is really a coarse-graining

operation which does lose information about small scales, in precise analogy to decreasing

the resolution of an image. This means that RG evolution is a directed �ow, so there is

a di�erence between �xed points in the UV and in the IR.

Quantum �eld theories can have di�erent sorts of �xed points. If the theory has

a `mass gap'�no zero-energy excitations in the infrared, which may be because one

began solely with massive �elds or through dynamical mechanisms like Higgsing and

con�nement�then one �nds a `trivial' �xed point. In the far infrared, everything has

latter of which includes also invariance roughly under inversion of spacetime through a point. Polchinski's
early paper on the topic is a classic [68], and a recent review can be found from Nakayama [69].
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been integrated out and there is not enough energy to excite any modes. We know

phenomenologically that this happens in QCD. Alternatively, one can have a `Gaussian'

or `free' �xed point if the theory contains massless �elds which don't interact, such as in

QED. At energies far below the mass of the lightest charged particle this is a theory of

free electromagnetism, though one can excite photons of arbitrarily-long wavelength.

Such a Gaussian �xed point occurs in the UV for QCD�the celebrated result of

`asymptotic freedom' [70, 71]�because the strong coupling �ows toward zero, giving

a free theory. This famously cannot occur for U(1) gauge theories whose couplings

necessarily grow with increasing energies, leading them to herald their own breakdown

with the prediction of a `Landau pole' [72], a �nite UV energy where the perturbative

theory predicts the coupling becomes in�nite. From one perspective this is an inverse

to the prediction of a con�nement scale in QCD, where the perturbative prediction is a

blowup of the coupling at low energies, as we'll discuss further in Section 1.3.3. In either

case the theory cannot make predictions for energies above the Landau pole or below the

con�nement scale, respectively, and so can be called inconsistent.

It's clear that the divergence of a coupling either in the IR or the UV is problematic

for a complete, consistent interpretation of a QFT. This is precisely why the formal

perspective on a well-de�ned QFT is that it describes an RG �ow between two CFTs,

such that in neither direction does a coupling grow uncontrollably. In fact this provides

an incredibly important perspective on renormalizability, which we'll get to momentarily.

First, let us introduce somewhat of a generalization of the `relevant/irrelevant' ter-

minology which we introduced in Section 1.1. We implicitly had in mind that we were

studying a theory in the vicinity of the Gaussian �xed point which we perturbed with

various �eld operators�indeed, this is precisely how we normally carry out perturbative

calculations�and our terminology depended on that. Generally one wishes to imagine

perturbing a CFT by a particular operator, �owing down in energy, and seeing whether
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the operator grows in importance�a relevant operator�or shrinks�an irrelevant op-

erator. Perturbing a CFT by an irrelevant operator does not induce an RG �ow (to a

di�erent CFT), so interesting dynamical RG �ows come from CFTs perturbed by relevant

operators. This clearly agrees with our power-counting notion of relevance when we're

near the Gaussian �xed point, but works also if one is near a strongly-coupled, interact-

ing �xed point where one may not know how to do such power-counting and anomalous

dimensions of operators may grow to overpower their classical dimensions.

The importance of this language was realized in particular by Polchinski in his pi-

oneering article [73]. He showed that in fact the intuitive notion of `power-counting

renormalizability' that the �eld had been building�that for a theory near the Gaussian

�xed point we could see whether it was renormalizable merely by checking whether it has

any coe�cients of negative mass dimensions�in fact maps on to a very general state-

ment. This is enormously powerful, as prior arguments for renormalizability were made

on a case by case basis and were complicated and messy and graph-theoretic. His deriva-

tion of this fact is brilliant but requires much work, so we'll merely try to get a sense for

why it should be true by building on our intuition from our Wilsonian renormalization

of φ4 theory in Section 1.2.1.

So long as your theory has a �nite number of �elds, all of which have mass dimen-

sion [φi] > 0 when canonically normalized, then there are a �nite number of relevant

or marginal operators. As we �ow down in energy through theory space, we saw above

the sense in which those coe�cients are UV-sensitive�the IR coe�cients of those oper-

ators are determined primarily by their UV values and IR corrections are subdominant.

Contrariwise, the coe�cients of the in�nite number of possible irrelevant operators are

UV-insensitive, being determined primarily by the IR physics of the relevant and marginal

operators. That is, the RG �ows are attracted to a �nite-dimensional submanifold of the

space of Lagrangians.

53



E�ective Field Theory Chapter 1

Consider a Wilsonian RG �ow where we start o�, as above, by specifying a cuto�

Λ0 and the values of coe�cients λi0 of all the n marginal and relevant operators at

that scale, as well as the coe�cients ci0 of however many irrelevant operators we wish

to turn on. We can then �ow downwards in energy as normal, and at an energy scale

ΛR � Λ0 let's say we measure the relevant and marginal coe�cients λiR at that scale. The

coe�cients of the irrelevant operators are then dominated by the infrared λiR and ΛR up

to precision (ΛR/Λ0)∆i from subleading corrections, with ∆i > 0 the scaling dimension of

the irrelevant operator. So indeed, the RG �ow is attracted to the n-dimensional surface

described by ci = ciR(λiR; ΛR) and separate trajectories through theory space as a function

of scale Λ which reach the same λiR will di�er only by positive powers of (ΛR/Λ0). For

less abstract discussion, Polchinski goes through a simple example which may provide

further insight, and Schwartz discusses the same example in Chapter 23 of his textbook

[26].

To see why this implies renormalizability, recall that the program of Wilsonian renor-

malization is to de�ne renormalized, `running' couplings as a function of scale to keep

infrared physics at ΛR �xed while `removing the cuto�'. A bit more formally, we want

a family of Lagrangians L(Λ0;λi0, c
i
0) with coe�cients chosen as a function of Λ0 such

that each Lagrangian yields the same low energy physics λiR, in terms of which all the IR

observables can be calculated up to subleading corrections in ΛR/Λ0. When the cuto� is

removed by taking Λ0 →∞, one thus recovers precisely the correct physics, speci�ed by

those chosen values of the λiR, which are the renormalization conditions. If we can �nd

such a family of Lagrangians, then we say this theory is power counting renormalizable.

Polchinski's argument shows that this can be done so long as one wishes solely to �x the

IR values of relevant and marginal couplings.
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Trivialities

The attentive reader may at this point notice an inconsistency due to imprecise lan-

guage. We've seen now that the criterion for renormalizability, which Polchinski provided

a robust basis for, is power-counting of the operators near the IR �xed point. This would

suggest that the λφ4 theory we've studied by means of an example is renormalizable.

However, recall the result of resumming its renormalization group equation:

λ(Λ) =
λ(Λ0)

1 + 3λ(Λ0)
16π2 log Λ0

Λ

, (1.115)

which has a Landau pole for Λ = Λ0 exp( 16π2

3λ(Λ0)
), preventing us from taking the limit we

required above. A mathematical physicist would say λφ4 theory is `trivial' or `quantum

trivial', as if we demand the existence of a continuum limit, that sets λ(Λ) = λ(Λ0) = 0.

The issue is that the tree-level, classical scaling dimension captures only the scaling of

the operators in�nitesimally close to the infrared Gaussian �xed point. If we move a �nite

distance upward in energy scale, we've seen above that the φ4 operator gets an anomalous

dimension δφ4 > 0 and so is marginally irrelevant. So it's clear that Polchinski's picture

of renormalization is only getting at a perturbative sense of renormalizability, and cannot

tell us whether there truly exists an RG �ow from a UV �xed point down to the IR theory

we want to study.

So what are we to make of λφ4 theory�or for that matter of QED, which has the

same problem? Of course we know empirically that QED works fantastically well and

we can absolutely make �nite, accurate predictions after a �nite number of inputs. To

understand this, we must appeal the language of e�ective �eld theory, which we've already

discussed. In fact the feature we're really relying on is e�ective renormalizability, which

tells us we require solely a �nite number of inputs to set the behavior of the theory to a

given precision. It's clear that in this sense QED itself is an e�ective �eld theory whose
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validity breaks down somewhere below its Landau pole.

Finally, let me mention another reason not to be too worried that our most beloved

quantum �eld theories don't exist in the continuum limit: Our universe is not described

by a QFT at its smallest scales! It's indeed true that only RG �ows between a UV CFT

and an IR CFT can hope to de�ne fully consistent and mathematically well-de�ned QFTs.

But the existence of gravity�and the very strong evidence that a quantum �eld theory of

gravity is inconsistent�means that at some energy scale e�ects not present in quantum

�eld theory must become relevant. And since gravity couples universally to everything

[74, 75], we have no strict empirical need for a UV complete, interacting quantum �eld

theory that does not include gravity. It is entirely consistent, and overwhelmingly likely,

that a quantum-�eld-theoretic description of the world works only approximately and

some inherently quantum gravitational theory provides a sensible UV complete theory.

1.2.4 To Reiterate

Before moving on, let us reiterate what we've discussed about renormalization. As

we've seen, renormalization is so important and so useful and ful�lls so many purposes

that an entirely general statement risks becoming vague. But if a single sentence sum-

mary is demanded: Renormalization reveals for us the scale-dependence of a quantum

mechanical �eld theory.

The e�ects of this seemingly innocuous statement, however, are powerful and mani-

fold, including:

• Correctly accounting for this scale-dependence is necessary to have well-de�ned

quantum �eld theories, which otherwise appear nonpredictive.

• Bringing the non-scale-invariance of the quantummechanical theory into clear scale-

dependence of the couplings makes it simple to read o� the qualitative behavior at
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di�erent scales from the renormalized Lagrangian.

• Including this scale-dependence in the couplings allows us to reorganize our pertur-

bative series such that we can e�ciently calculate the behavior of the theory over

a far wider range of energies than a naïve treatment allows.

• Properly accounting for the scale dependence allows us to harness the full power of

e�ective �eld theory, as we can study a theory of low-energy �elds which correctly

accounts for corrections from the high-energy physics.

• Understanding the perspective of single quantum �eld theories as �ows through

theory space as a function of the scale allowed us to develop a nonperturbative

de�nition of how a fully UV-complete quantum �eld theory behaves and what it is.

All of these various perspectives will be of use in the following chapters as we apply

this technology to understanding the hierarchy problem and how we can solve it.

1.3 Naturalness

Naturalness is the notion that we have the right to ask about the origins of the dimen-

sionless numbers in our theories�past solely �tting them to the data. It was Dirac who

�rst introduced such a notion to particle physics in 1938 [76]. In modern language, what

is referred to as `Dirac naturalness' consists of the idea that dimensionless parameters in

a fundamental physical theory should take values of order 1. In the language of EFT,

in a theory with a cuto� Λ and an operator O with scaling dimension ∆, we expect its

coe�cient to taken a value cO ∼ O(1)Λd−∆. As stated this is essentially dimensional

analysis, as Λ is the only scale we've introduced, but we will discuss below that quantum

mechanics gives additional credence to this expectation�indeed we've already seen this

feature in our one-loop examples above.
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't Hooft pointed out a re�nement of this principle [77], which has come to be called

`technical naturalness'. If the operator O breaks a symmetry which is respected by the

action in the limit cO → 0, then one says it is `technically natural' for cO to take on a

small value. The reasoning here is simple�as we saw above, in a quantum �eld theory

de�ned at a high scale, one �nds corrections δcO to such coupling constants as they run

to low energies. If there is an enhanced symmetry of the theory in the limit that cO → 0,

then such quantum mechanical corrections cannot generate that operator and break the

symmetry, so we know that δcO ∝ cO. The low-energy e�ective �eld theorist says of such

couplings that one can `set it and forget it': if one has cO � 1 at the cuto� Λ, that

coupling will remain small as one �ows to lower energies.

Conversely, we can emphasize the connection to Dirac naturalness by looking at this

picture in reverse. We know of mechanisms to generate small technically natural couplings

at low energies from Dirac natural ones, as we will discuss in detail below. Imagine one

measures a small coupling cO at long distances in the low-energy theory with cuto� Λ

that does not have a Dirac natural explanation. If that parameter is technically natural,

it remains small up to the cuto�, and so the next generation of physicists can explain

its small size at Λ in the UV theory, as emphasized nicely by Zhou [78]. If cO is not

technically natural, then its RG evolution up the cuto� yields a value to which the low-

energy physics is very sensitive, and we must explain why it has a very speci�c value

such that the correct physics emerges at long distances.

58



E�ective Field Theory Chapter 1

1.3.1 Technical Naturalness and Fine-Tuning

A model is �ne-tuned if a plot of the allowed parameter

space makes you wanna puke.

David E. Kaplan (2007)

It's useful to make this less abstract by looking at a simple example. Consider a d = 6

dimensional e�ective �eld theory of a real scalar �eld φ of mass m which is odd under

a Z2 symmetry, which we expect is a good description of our system up to a cuto� Λ

with m � Λ. If we add a small explicit breaking σφ3 with σ � 1 at low energies, σ is

technically natural and stays small up to the cuto�, so we can easily write down a UV

completion which generates this small value Dirac naturally.

However, if we add another Z2-odd real scalar Φ and give it a large Z2-breaking

interaction with φ, then σ is no longer technically natural. Its low-energy value becomes

extremely sensitive to the values of the parameters at the cuto�. It then becomes di�cult

to understand an ultraviolet reason for why those values take the precise values they need

to realize small σ in the far IR. Consider the bare action

S =

∫
d6x

[
−1

2
(∂φ0)2 − 1

2
m2

0φ
2
0 −

1

2
(∂Φ0)2 − 1

2
m2

0Φ2
0 −

σ0

3!
φ3

0 −
y0

2
φ0Φ2

0

]
, (1.116)

where we've given the two �elds the same mass for simplicity. This is not stable under

radiative corrections, but that's a higher-order e�ect which will not come into our one-

loop calculation of the RG evolution of the cubic couplings.

We will renormalize this theory at one loop using dim reg with MS. As discussed

above, we will compute the one-loop 1PI diagrams and add counterterms to cancel solely

59



E�ective Field Theory Chapter 1

the 1
ε
pieces of the results. With counterterms, the action is

S =

∫
ddx

[
−1

2
Zφ(∂φ)2 − 1

2
Zmφm

2φ2 − 1

2
ZΦ(∂Φ)2 − 1

2
ZmΦm

2Φ2 +
σ

3!
Zσφ

3 +
y

2
ZyφΦ2

]
(1.117)

where these parameters and �elds are the renormalized parameters, and for compactness

we have not written down the split of these terms as we did above in Equation 1.97.

At tree level the relation to the bare quantities is trivial and so Z = 1 + . . . . To get

an accurate picture of how the strength of the interactions vary as they're probed at

di�erent energy scales, we must fully renormalize the theory. Since our focus is on the

interactions, we simply state the results for the quadratic part of the action, where we

have

Zφ = 1− 1

6(4π)3

(
σ2 + y2

) 1

ε
+ . . . (1.118)

ZΦ = 1− 1

3(4π)3

(
σ2 + y2

) 1

ε
+ . . . (1.119)

Zmφ = 1− 1

(4π)3

(
σ2 + y2

) 1

ε
+ . . . (1.120)

ZmΦ = 1− 2

(4π)3
y2 1

ε
+ . . . (1.121)

These tell us that the physical mass of the �elds and the normalization of their one-

particle states has changed. The relation to these can be found using the quantum-

corrected propagator ∆(k2)−1 as ∆(−m2
phys)

−1 ≡ 0 to de�ne the mass and R−1 =

d
dk2 [∆(k2)−1]

∣∣
k2=−m2

phys

to de�ne the normalization R, but solving for these relations

explicitly will not be necessary for our purposes.

The one-loop three-point functions each have two diagrams, whose evaluation only

di�ers in the coupling constants. For the correction to σ, we have triangle diagrams with
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(a)
(b)

Figure 1.10: Diagrams contributing to the one-loop corrections to the three-point func-
tions in our 6d scalars with cubic interactions. Dashed lines denote φ and full lines denote
Φ. In (a), the diagrams renormalizing σ, and in (b), the diagrams renormalizing y.

either φ or Φ running in the loop. We can evaluate them in d = 6− ε dimensions as

i
1

σ
Vσ =

1

σ

[
(iσ)3 + (iy)3

] ∫ d6q

(2π)6

(−i)3

(q2 +m2)3
(1.122)

=
i

σ

[
σ3 + y3

]
µ̃ε
∫

ddq̄

(2π)d
1

(q̄2 +m2)3
(1.123)

=
i

σ

[
σ3 + y3

]
µ̃ε

Γ
(
ε
2

)
2(4π)3

(
m2

4π

)− ε
2

(1.124)

=
i

2(4π)3σ

[
σ3 + y3

](2

ε
− γE

)(
1 +

ε

2
log

4πµ̃2

m2

)
(1.125)

=
i

2(4π)3σ

[
σ3 + y3

](2

ε
+ log

µ2

m2

)
. (1.126)

The counterterm vertex contributes to this as −i(Zσ − 1), meaning that MS prescribes

we set

Zσ = 1 +
1

(4π)3

(
σ2 +

y3

σ

)
1

ε
(1.127)

For the other vertex correction there are diagrams with either one or two of each internal

line, which give

i
1

y
Vy =

1

y

[
(iy)3 + (iσ)(iy)2

] ∫ d6q

(2π)6

(−i)3

(q2 +m2)3
(1.128)

=
i

2(4π)3σ

[
y2 + σy

](2

ε
+ log

µ2

m2

)
, (1.129)
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leading to the counterterm

Zy = 1 +
1

(4π)3

(
y2 + σy

) 1

ε
. (1.130)

This gives us the beta functions

βσ =
1

4(4π)3

(
−3σ3 − 4y3 + y2σ

)
+ . . . (1.131)

βy =
1

12(4π)3

(
σ2y − 12σy2 − 7y3

)
+ . . . (1.132)

Now we are �nally in a place to mathematically evince our physics point about technical

naturalness. Without Φ, the coupling σ is the only one which violates the Z2 and so the

beta function is necessarily proportional to σ. 9 Let's say we recruit an experimentalist

friend of ours to measure the 2 → 2 scattering cross-section of φs and we �nd that at

µ = m, the theory �ts the data for σ(m) = σ0 with σ0 � 1. Solving the beta function,

we �nd that to lowest order

σ(µ) ' σ0

(
1− 3

4(4π)3
σ2

0 log
[ µ
m

])
. (1.133)

So σ is indeed radiatively stable. If σ(m) = σ0 is small, then it takes until the enormous

scale µ ' m exp ((4π)3/σ2
0) for σ to change by an order one fraction. So running σ(µ)

up to wherever the cuto� Λ of our theory is, σ(Λ) will still be small. If by Λ we haven't

discovered any explanation for the size of σ(m), we can ask the theory above Λ to produce

this small value of σ(Λ) from Dirac natural parameters at yet higher energies. Perhaps

the high-energy Dirac natural value of σ has been relaxed toward zero by an axion-type

9This is trivial in our case as σ would be the only interaction, but you'll �nd the feature persists
if you add other symmetry-respecting interactions, for example a Z2-even scalar ψ with an interaction
φ2ψ. The general argument for this fact is given in the next section.
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mechanism, or perhaps σ is the vev of another Z2-odd �eld which spontaneously broke

the Z2 via con�nement. We don't need to know a particular mechanism; the fact that

σ is technically natural means that if we don't �nd an explanation for its size there is

hope yet that our academic descendants will. One says that here σ is UV-insensitive as

its low-energy value does not depend strongly on the physics at high energies.

On the other hand, if σ is not technically natural, we have a much more di�cult

issue. If we now have the theory with both φ and Φ, and our experimentalist measures

σ(m) = σ0 � 1 and y(m) = y0 = O(1), then to lowest order the RG evolution of σ will

be βσ ' −y3/(4π)3 leading to

σ(µ) = σ0 −
1

(4π)3
y3

0 log
[ µ
m

]
. (1.134)

And we can see the issue, as we are no longer guaranteed that a small σ(m) is related

to a small σ(Λ). For concreteness, if σ0 = 10−3, y0 = −5 and Λ = 105m, then (using the

full one-loop RG), we have σ(Λ) ' 0.55 and y(Λ) ' 4.16. How are we to ensure these

values at Λ? We know how to produce small numbers, but not incredibly speci�c ones.

To see that we do need to produce these values very precisely, let's switch directions

and consider the RG evolution down in energy from Λ to m. In the theory with solely

φ, the coupling σ runs incredibly slowly, so an O(1) change in σ(Λ), evolved down to

the scale m, results in an O(1) change to σ(m). But in the theory with two sources of

breaking, σ(m) is enormously sensitive to the values of the couplings at Λ. With the

same cuto� Λ = 105m, if we very slightly change the input value to σ(Λ) = 0.56 and

leave y(Λ) as above, evolving down now gives us σ(m) ' 10−2�a < 2% change in input

parameters has resulted in a 1000% change in our low energy observable! It's even more

sensitive to the input value of y; a ∼ 1% modi�cation solely to y(Λ) = −4.20 trickles

down to give σ(m) ' 2× 10−2, a 2000% change. In this theory σ is now a UV-sensitive
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parameter, whose low-energy behavior depends strongly on the high-energy physics. To

say the least, it seems di�cult to �nd a natural way to achieve the precise values needed

to reproduce the observed low-energy physics in this theory. We'll return to this issue at

length in Section 2.2.2.

Technical naturalness and masses

Our understanding of technical naturalness allows us to already see another warning

sign of the hierarchy problem. An elementary spin-1 �eld comes along with a gauge

symmetry Aµ → Aµ − ∂µα(x) which is broken by a mass term m2
AA

µAµ. So a mass for

a gauge boson is technically natural and one necessarily �nds δm2
A ∝ m2

A. Similarly,

a massive Dirac fermion Ψ = (ψ, χ†) has a U(1) global symmetry under which ψ →

eiαψ, χ → e−iαχ. In the m → 0 limit, the symmetry is enhanced to U(1)2 as arbitrary

rephasings of the two Weyl fermions become symmetries, so again δmΨ ∝ mΨ. But an

elementary scalar does not automatically come with any such protective symmetry, and

we've already seen in all our examples above that scalar mass corrections indeed get

contributions not proportional to the mass itself.

In fact for discussing the technical naturalness of masses there is an even simpler

argument: A massless spin-1 boson has two degrees of freedom and a massive one has

three. Quantum corrections cannot generate a degree of freedom ex nihilo, so a massless

gauge boson must be protected. Similarly a massless chiral fermion has two degrees of

freedom, but a massive Dirac fermion has four. So for charged spinors and for vectors,

it is simply the representation theory of the Lorentz group that is responsible for the

stability of their masses. In either of these cases mass must arise from interactions of the

�eld with a scalar as in the Higgs mechanism, which can pair up chiral spinors together

and lend vectors another degree of freedom. But a massless scalar and a massive scalar

have the same number of degrees of freedom. If we want a scalar mass to be technically
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natural, it must come from some symmetry past simply the Lorentz group. We'll see

some examples of how to arrange this in Chapter 3.

1.3.2 Spurion Analysis

An important tool for understanding symmetries and their violation is known as

`spurion analysis'. The basic idea is simple: for a theory which respects a symmetry

except for the coupling c, this coupling parametrizes the breaking of the symmetry and

any e�ects which violate the symmetry are proportional to c. More concretely, one

assigns such couplings spurious transformation properties under the symmetry such that

the action becomes invariant under the symmetry. Physically one can imagine that the

observed values of such couplings come from the vacuum expectation values of some heavy

�elds which are above the cuto� of the theory. This can be viewed as imagining a UV

completion where the explicit symmetry breaking in the low-energy e�ective theory comes

microscopically from some spontaneous symmetry breaking, but the value of spurions is

not dependent upon a particular realization of the UV completion.

We can quickly see the utility of this by looking at a simple example of a complex scalar

�eld φ with an interaction which explicitly breaks the U(1) global symmetry φ→ φeiα.

S =

∫
d4x

(
−∂µφ†∂µφ−m2φ†φ− 1

3!
λφ3 + h.c.

)
, (1.135)

where �+ h.c.” denotes the addition of the Hermitian conjugate of the non-Hermitian

interaction term. A naïve e�ective �eld theorist would say that our Lagrangian has no

symmetries, and so we have no control and should expect that quantum corrections give

us any polynomials in φ, φ† at low energies.

However, we may note that if we assign λ a charge of −3 such that λ→ λe−3iα, then

the theory is invariant under that U(1) global symmetry. So quantum corrections cannot
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violate our spurious symmetry, and as a result we know that we can only generate terms

like λ2φ6, and there are no φ4 or φ5 interactions generated at any order in perturbation

theory.

We can also usefully apply this to the example of technical naturalness studied in the

preceding section. If ε is given the spurious transformation Z2 : ε → −ε then the εφ3

term is invariant. Then it's simple to see that no matter what other sorts of interactions

we add, so long as they respect the Z2 symmetry we must have δε ∝ ε. But having added

yφΦ2 we see that this term can also be made invariant with y → −y, and this allows

δε ∝ y as well.

An important real-world example where spurion analysis is useful is in understanding

the �avor structure of the SM. With all masses turned o�, the SM has a large global

symmetry group U(3)5 = U(3)Q × U(3)u × U(3)d × U(3)L × U(3)e = SU(3)5 × U(1)5,

corresponding to arbitrary unitary reshu�ings of the three generations of each fermion

representation. These symmetries are explicitly broken by the Yukawa matrices which

generate hierarchically di�erent masses for the three generations.

L ⊃ −Y ij
d QiHdj − Y ij

u QiH
†uj − Y ij

e LiHej (1.136)

where i, j = 1, 2, 3 are generation indices, and the Yukawa couplings are matrices in this

generation space.

We don't understand why these hierarchies are present, but we can carry out a spurion

analysis to see how worried we should be. We see that our theory will be invariant

under the full �avor group if we assign the Yukawa matrices the following transformation

66



E�ective Field Theory Chapter 1

properties under the various SU(3) symmetry groups

Yd ∼ (3, 3̄, 1) under SU(3)Q × SU(3)d × SU(3)u (1.137)

Yu ∼ (3, 1, 3̄) under SU(3)Q × SU(3)d × SU(3)u (1.138)

Ye ∼ (3, 3̄) under SU(3)L × SU(3)e (1.139)

Since these are the only �avor-violating couplings in the SM and they are all in distinct

spurious �avor representations, this tells us the quantum corrections to these matrices

must be proportional to the matrices themselves e.g. δYe ∝ Ye. Thus this pattern of

Yukawa couplings is stable under RG evolution to higher scales, and we are justi�ed in

thinking that the generation of this pattern may take place at large, currently-inaccessible

scales.

This eases our minds about when we need to discover the origin of these �avor hierar-

chies, but this holds true only as long as these remain the only �avor-violating couplings.

Fantastic work in precision �avor measurements and theory has provided lower bounds

on the scale at which additional �avor violation can occur. Searches for �avor-violating

processes have constrained these violations to take place at scales enormously higher than

scales we are able to directly probe at colliders, which poses a puzzle. If there is new

physics near the TeV scale, how is it arranged to respect the �avor structure of the SM?

A phenomenological approach known as Minimal Flavor Violation [79] demands that all

�avor violation is proportional to these Yukawa couplings, but no fundamental explana-

tion for this is known. For recent introductions to �avor in the Standard Model, see e.g.

[80, 81, 82].
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1.3.3 Dimensional Transmutation

Perhaps the most important example of a Dirac natural �eld theory generating a

small number is that of `dimensional transmutation'. In particular, in quantum chro-

modynamics (QCD) the theory is `asymptotically free'�meaning that the interaction

strength vanishes in the far UV�and the gauge coupling g grows as one goes to lower

energies. We skip the Nobel-worthy calculation (see e.g. Srednicki's chapter 73 [25]) and

simply quote the results for the beta function of QCD (here parametrized via αs = g2/4π),

which dictates the dependence of the gauge coupling on energy. In MS, the calculation

�nds

β(αs) ≡
dαs
d lnµ

= −α
2
s

2π
(11− 2

3
nf ) +O(α3

s) (1.140)

where µ is the energy scale of interest and nf is the number of quarks with masses

below µ, which at high energies is nf = 6. Then if we know the gauge coupling at a

fundamental scale like Mpl, we can follow the procedure discussed in Section 1.2.3 of

running and matching to sequentially evolve the coupling down to low energies. We end

up with a result like
1

α(Mpl)
− 1

α(µ)
=

b

2π
ln
Mpl

µ
(1.141)

where b is somewhere between the 11 − 6 × 2/3 = 7 value it takes above the top quark

mass and the 11 − 3 × 2/3 = 8 value it has below the charm quark mass. This tells

us that eventually the QCD coupling blows up in the infrared, and the theory becomes

strongly coupled�we expect our perturbative understanding of the theory to break down.

While there is no proof of the precise e�ects of this, there is strong evidence that this is

responsible for the observed phenomenon of `color con�nement'� at low energies colored

particles form bound states which are color-neutral. The intuition being that the gluon

interaction is so strong that trying to pull quarks in a color-singlet apart from each other
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requires so much energy that it is energetically favorable for a quark-antiquark pair to

be created out of the vacuum and to end up with two color singlets. We may de�ne a

new scale ΛQCD as being the energy at which α diverges

ΛQCD ≡Mple
− 2π

b
1

α(Mpl) (1.142)

So for some reasonable fundamental coupling α(Mpl) at high energies, the theory gener-

ates a new scale which is exponentially far removed from the fundamental physics. Since

the mass of the proton is mainly from QCD binding energy, mp ∼ ΛQCD this explains the

huge hierarchy mp≪ Mpl. This is an extremely important mechanism and historically

one of the �rst suggestions for how to generate the electroweak scale was by copying this

strategy, as we'll discuss in Section 3.3.
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The Hierarchy Problem

2.1 The Higgs in the Standard Model

The physical question of the hierarchy problem is how to get an infrared scale v out

of a microscopic theory whose degrees of freedom live at the much higher scale Λ, with

v/Λ � 1. The tools introduced in Section 1 have already provided a window into why

this can be di�cult in a quantum �eld theory. Our aim in this section is to expand on that

notion for the generation of the electroweak symmetry breaking scale in the Standard

Model, where this scale is provided by the Higgs mass. In the Standard Model the Higgs

mass is not technically natural, so the example discussed in Section 1.3 suggests the issue

that may appear.

It is well-known that the Higgs plays a central role in the Standard Model, but the

tagline `it provides mass' doesn't go far enough in underscoring its importance. The

Higgs is needed because the fermions of the Standard Model have a chiral spectrum:

There are no representations with opposite charges under the full SM gauge group. This

means that there are no gauge-invariant fermion bilinears, so no fermions can be paired

up to form mass terms. If the Standard Model were not chiral, we could write mass terms
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directly in the Lagrangian. In such a case there's no reason to expect small masses for

the fermions, and indeed in the familiar case of right-handed neutrinos�which are SM

gauge-neutral themselves, so can have Majorana masses�we generally expect them to

be very heavy. In some sense the natural expectation for such `vector-like' (non-chiral)

fermions would be to have Planck-scale masses, as in the absence of other particle physics,

this is the only scale.

So macroscopic structure in the universe is solely made possible by the chiral nature of

the Standard Model.10 There may well be other vector-like sectors which indeed contain

Planck-scale masses. The fact that the particles which comprise us have a weakly-coupled

description where quantum gravitational e�ects are suppressed � and so notions like

locality and Riemannian geometry work well � would not hold in such a vector-like

sector.

Thus the fact that the Standard Model is chiral and so requires the Higgs mechanism

to provide masses answers a deep and important question about our place in the universe.

But it doesn't provide a full answer, as the scale at which the Standard Model sits still

needs to be generated somehow. And in the absence of a mechanism to make it light, we

must worry once more about losing our macroscopic existence with a mass scale which

is again naturally of the only other mass scale, the Planck scale.

So, far more than the hierarchy problem being a small detail to clean up after having

empirically veri�ed the structure of the Standard Model, the question of why mH �Mpl

has serious physical importance.11 If we want an answer to why we live in a world with

10We note that it's also true that the existence of a macroscopic universe relies on the smallness of
the cosmological constant, which is the other pressing �ne-tuning issue present in the Standard Model.
This way of viewing the naturalness problems of the Standard Model has been beautifully articulated
by Nima Arkani-Hamed in [83] and in many seminars.

11It's worth noting that in the complete absence of the Higgs, electroweak symmetry is broken by
the QCD chiral condensate [84, 85]. It's interesting to ponder why Nature did not choose to let QCD
con�nement solely �ll the role, but we know empirically that there is EWSB at ∼ 100 GeV scales, so we
need to understand the generation of that separate scale.
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macroscopic structure, we must grapple with the hierarchy problem.

This section is devoted to understanding the technical statement of this physical ques-

tion in the framework of e�ective �eld theory. We pursue this by introducing, discussing,

and refuting some common confusions about the hierarchy problem.

2.2 Nonsolutions to the Hierarchy Problem

In this section I will introduce a few common confusions and misconceptions about

the hierarchy problem. Discussion and refutation of these arguments provides a natural

backdrop for introducing how the hierarchy problem should be properly understood and

why it is important.

2.2.1 An End to Reductionism

A �rst point of confusion is that the Higgs mass is a free input parameter in the

Standard Model, so a natural objection is that we should just set mH = 125 GeV and

call it a day. Indeed, this hits on a basic and important point: There is no hierarchy

problem in the Standard Model. The hierarchy problem exists for a more-fundamental

theory which predicts the Higgs mass�that is, one in which the Higgs mass is an output

parameter.

We can evince this in a simple toy model of a scalar φ interacting with other general

�elds ψi where a tree-level, `bare' mass term is allowed by the symmetries. This is our

toy version of the Standard Model, in which the scalar mass is likewise an input.

S =

∫
ddx

[
−1

2
(∂µφ)2 − 1

2
m2

0φ
2 − V (φ)− φgO(ψiψj)

]
(2.1)

Of course, as is familiar, m0 itself is not measurable. When one calculates the two-
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point function of φ perturbatively in couplings12 one �nds quantum corrections Γ(2)(p) =

p2 + m2
0 + g2 (m2

1 + . . . ) + O(g4), where these are generically large because the mass

is not technically natural�there's no symmetry protecting it. When one measures the

mass of φ with e.g. some scattering experiment, it is m2
phys = m2

0 + g2m2
1 + . . . which

one measures. And luckily so, because m2
1 may well be formally in�nite in a continuum

quantum �eld theory, and a similarly in�nite bare mass term is necessary to end up

with the correct �nite physical mass. Indeed, we are justi�ed in this theory in choosing

m0 such that mphys matches the measured value. This is just the familiar procedure of

renormalization, stretching back many decades and �rst understood in the context of

quantum electrodynamics. To de�ne QED one needs to input some de�nitions of the

electron mass and the electromagnetic coupling based on experimental data, and these

two inputs then determine all other predictions of the theory�e.g. the di�erential cross

section of Coulomb scattering, the lifetime of positronium, and anything else you could

hope to measure.

However, consider now a theory which has a global SU(2) symmetry which is spon-

taneously broken at a high scale M . We want to understand how to get a light scalar

degree of freedom out of this theory�that is, we've measured mphys �M . This is a toy

model of a Grand Uni�ed Theory, where the microscopic physics exists at a high scale

MGUT, and indeed it was in this guise that the hierarchy problem was �rst recognized.

Let's say our light scalar degree of freedom φ originated from a doublet Φa = (ϕ, φ)ᵀ.

Our microscopic theory now does not have a bare mass term for φ but rather solely

for Φ as a whole, since it must respect the symmetry. A di�erence in the masses of φ

and ϕ can only come from the spontaneous breaking of the symmetry�let's say when

another fundamental scalar Σ gets a vev ν = M . This vev is a physical, measurable

12Perturbative calculations are an expansion in couplings, not ~ [86], though this subtlety is commonly
elided.
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parameter related to the mass of Σ and its self-interactions. Our action is controlled by

the symmetries, as ever.

S =

∫
ddx

[
−1

2
(∂µΦ)†(∂µΦ)− 1

2
M2

0 Φ†Φ− λ0Φ†ΣΣ†Φ− V (Φ)

]
(2.2)

whereM0 is the bare mass of the Φ doublet and λ0 is its bare interaction strength. In the

absence of any other scales we generally expect M0 ∼ M and λ ∼ O(1). In this theory

there is no reason for the values of these parameters to be connected to each other in any

way.

When Σ gets a vev, 〈Σ〉 = (0, ν)ᵀ, it breaks the SU(2) symmetry and gives a mass

splitting between the two degrees of freedom in Φ, since 〈Σ〉†Φ = νφ. We then have the

masses m2
ϕ = M2

0 , m
2
φ = M2

0 + λ0ν
2. In this theory our tree-level inputs are M0 and

λ0 (and the interactions controlling the value of ν, which for simplicity we don't write

down) and the scalar mass mφ is an output. In fact here the hierarchy problem occurs at

tree-level, simply as a result of wishing to produce a small mass via splitting a multiplet.

If we wish to have, say, M ' 1016 GeV and mφ ' 100 GeV�the values of the GUT

scale and the electroweak scale in the real world�we need to �ne-tune λ enormously so

it takes a value like −1.0000000000000000000000000001× M2
0

ν2 .

Of course when we look at our theory at loop level there will again be quantum

corrections to our tree-level parameters m0 and λ0, and again it will be their corrected

values which are physical and measurableM2
phys = M2

0 +gM2
1 +. . . , λphys = λ0+gλ1+. . . .

But if our theory is renormalizable, we know that quantum corrections will merely change

the values of these parameters, and not the operators we have. The point is that the

quantum corrections are SU(2) invariant, so the masses of both φ and ϕ will receive the

same loop contributions. We will then still predict the mass of φ as m2
φ = M2

phys+λphysν
2.

Now at the level of inventing the theory we may still tune these parameters to get a small

74



The Hierarchy Problem Chapter 2

mφ, but we're tuning physical, observable parameters.

In the theory described by Equation 2.1, one might have also said that we needed to

�ne-tune m1 against m0 in order to get a small mφ, especially if we calculated that the

quantum correction m1 was large. But there the �ne-tuning was of a di�erent sort, since

m0 and m1 were only ever observable in the combination mphys. Here the �ne-tuning has

a much sharper meaning. This tuning translates into a physical demand on our theory

that at high energies the strength of the interaction between our two scalars Φ,Σ for

some reason has a value extremely close to −M2
phys/ν

2, despite having nothing to do

with either of these parameters. The tuning is now a physical feature of our theory and

demands explanation.13

So we see explicitly that the hierarchy problem is present when the light scalar mass is

an output of the theory, rather than an input. If one is so inclined, one can say the words

that the Higgs mass is simply an input, but this possibility spells the end of scienti�c

reductionism. It is indeed conceivable that this is how the universe works. However,

we know there is physics beyond the Standard Model at smaller length scales, and our

best ideas for what those could be involve theories where the inputs are de�ned in the

ultraviolet and the Higgs mass comes out. Whether the Higgs ultimately originates as

a component of a larger multiplet, or a bound state of fermions, or an excitation of a

string, we expect that the Higgs mass is a parameter that comes out in the low-energy

theory.

13Let me mention parenthetically a confusion one may encounter if one reads older literature on the
hierarchy problem in GUTs. It was common to speak of having to `re-tune the parameters at every
order in perturbation theory', as if imagining an algorithmic process where one �rst computed a tree-
level prediction, tuned that to be correct, and then computed the one-loop corrections, re-tuned those
parameters to get it right again, etc. This is framed as being `worse' than just requiring `one' set of
tunings. This is moronic, for the simple physical reason that Nature does not compute via perturbation
theory. There is a physical problem, which is how to get the electroweak scale out of other physical
parameters in the theory. Whether you compute the predictions in perturbation theory, or on a lattice,
or whilst standing on your head is immaterial.
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2.2.2 Waiter, there's Philosophy in my Physics

You can always use the history of physics to illustrate

any polemic point you want to make.

Nima Arkani-Hamed

Now having exhibited that getting a light scalar truly does involve some �ne-tuning

of physical parameters, one may still say `So? '. In the real world, we've observed (the

analogue of) mφ, but the physics we've discussed at the heavy scale M is new physics,

and we don't have experimental measurements of λ telling us the value is not that

perfect value to get our light scalar. One might thus object that there's no fundamental

inconsistency, and as long as our theory can �t the data anything else is just philosophy.

But the criterion of it being not literally impossible for a theory to �t the data is an

incredibly low bar, and scientists always use additional criteria to select theories. While

there is ultimately a degree of subjectivity in any notion of `naturalness', this is really the

same subjectivity that one constantly uses in science to decide which of two explanations

for some data to accept.

A simple (approximately) historical example of this can be seen in epicyclic theories

of the motion of the planets. The Ptolemaic, geocentric model of the universe predicted

at �rst that the heavenly bodies orbited the Earth in circles, but eventually astronomical

data was accurate enough to show that the motion of the planets and sun around the earth

was not circular. In the Ptolemaic model, this was dealt with by adding an epicycle, the

suggestion that the heavenly bodies moved on smaller circular orbits about their circular

orbit around the Earth. As astronomical observations became more and more detailed

over the ensuing centuries, multiple layers of epicyclic motion were needed to explain

the data�circles on circles on circles. The description never stopped working though; if
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you'd like to, you may describe the orbit of any solar system object via r(θ) =
N∑
n=1

rn sin θ
n
,

and for some large but �nite N you'll be able to �t any orbit to within observational

precision.

So why did sixteenth century physicists favor Kepler's laws and heliocentrism? The

discriminating factor is manifestly not which model better-�tted the data. Rather, the

choice comes down to Occam's razor, to explanatory power, to simplicity and to �ne-

tuning of parameters. Physicists favor theories which do more with less�theories which

explain more about the world while requiring fewer inputs. This is a subjective bias

about how we think the universe should work, and it's possible that this philosophy will

ultimately fail�but it's been working well thus far.14

While keeping the above intuition �rmly in the back of our minds, it can be useful

to introduce a mathematical classi�cation of this �ne-tuning, with the understanding

that no such measure is god-given and so what to do with such a measure is up to us.

We'll discuss a couple such schemes, the �rst being a mathematical formalization of the

dependence of an output of interest on the values of the inputs. This has the bene�t

that it is intuitive and simple to compute, and so it is widely used in the particle physics

literature. However, it lacks independence under how variables are parametrized and so

can lead to misleading conclusions if used without care.

Furthermore, it will assign a measure of �ne-tuning to individual points in the pa-

rameter space of a model, whereas we'd like to characterize the naturalness of a model

14As a semi-autobiographical aside, I had the honor and pleasure of being in the inaugural cohort
of the Integrated Studies Program for Benjamin Franklin Scholars in the School of Arts & Sciences at
the University of Pennsylvania. The program, founded and spearheaded by the classicist Prof. Peter
Struck, o�ered a dedicated interdisciplinary experience wherein, each semester, three diverse �elds gave
courses o�ering perspectives around a central topic, which were concurrently collectively compared and
contrasted. In my year we studied biology, anthropology, classics, political science, physics, and litera-
ture, all taught by preeminent professors in their respective �elds. After noticing a pattern, the group
kept track of (among other things) how many times each professor mentioned, discussed, or appealed
to `beauty'. The winner in this regard was Prof. Vijay Balasubramanian�lecturing on the way the
universe works�by a country mile.
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as a whole�if a model only produces predictions that match the real world in a small

region of its parameter space, that's another important element of �ne-tuning [87]. For

example, if new data removes all but a small fraction of the viable parameter space in a

given model, we want to regard that model as being less natural afterward. An approach

based on Bayesian statistics allows us to incorporate these issues and gives unambiguous

comparisons of the relative naturalness of models upon the collection of new data [88],

but loses out on simplicity.

A simple and often-used measure was introduced by Giudice and Barbieri [89], who

suggested the de�nition

∆X ≡
∣∣∣∣d lnm2

d lnX

∣∣∣∣ =

∣∣∣∣ Xm2

dm2

dX

∣∣∣∣ (2.3)

which may be called a measure of the �ne-tuning of the input parameter X necessary to

get out the correct output parameter m2. The logarithmic dependence naturally gives

a measure of relative sensitivity and removes dependence on overall scale or choice of

units. If ∆X is large, this denotes a large sensitivity of m2 to the value of X, and so

implies that one must choose the value of X very carefully to get out the right physics.

In the example in Equation 2.2 above we have ∆λ = λ
m2
φ
ν2 ' M2

m2
φ
' 1028, indeed signaling

enormous �ne-tuning, and likewise ∆ν2 = λ ν2

m2
φ
. Contrast this with the familiar case of a

seesaw mechanism where the light neutrino mass is given by a formula like m2
ν = m4/M2,

with M a heavy mass scale and m a weak scale mass. We can check whether this

mechanism requires �ne-tuning with ∆M2 = M2

m2
ν

m4

M4 = 1
m2
ν

m4

M2 = 1, and we �nd that

seesaw mechanisms are natural. So ∆X matches our intuition here, and can be quite

useful.

However, for a model with free parameters a notion of �ne-tuning at a single point in

parameter space does not capture the full picture, and we should incorporate a notion of

the volume of viable parameter space into our naturalness criterion [90]. This necessity
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should be intuitive in the context of constraining models of new physics. Models which

achieve their aim throughout parameter space are viewed more favorably than models

which only work in some small region of their parameter space. For a relevant example,

there are still corners of the MSSM parameter space that are natural under the Giudice-

Barbieri measure. But the fact that the LHC has ruled out large swathes of this parameter

space means that we should surely view weak-scale supersymmetry as less natural now

than we did a decade ago. A pointwise measure of �ne-tuning misses this.

An approach based on Bayesian statistics can be used to better match what we want

from a measure of naturalness, as is discussed well in [78]. The de�nition of a model in

a Bayesian framework requires priors on its free parameters {θi}, p(θi|M), and di�erent

choices of p({θi}|M) should be considered di�erent models. We also require a prior

probability p(M) that the modelM is true as a whole. After we receive data d, Bayes'

theorem gives us the posterior probability for the model as

p(M|d) =
p(d|M)p(M)

p(d)
(2.4)

where p(d|M) is known as the likelihood. Both p(M) and p(d) are explicitly subjective,

but if we take the ratio of the posterior probabilities for two modelsM1 andM2 we �nd

p(M1|d)

p(M2|d)
=
p(d|M1)

p(d|M2)

p(M1)

p(M2)
(2.5)

This expresses how the ratio of the likelihood of these two models changes after receiving

new data. So while di�erent physicists may disagree on the prior and posterior probabil-

ities, the `Bayes update factor' B ≡ p(d|M1)/p(d|M2) is unambiguous and shows that

the physicists agree on how the relative naturalness of the two models is a�ected by the

new data.
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The likelihood in a model with free parameters {θi} is calculated as

p(d|M) =

∫ (∏
i

dθi

)
p(d|M, θi)p(θi|M) (2.6)

This is an integration over parameter space of the likelihood of producing the data in this

model, weighted by the prior probability distribution we've placed on our parameters.

This balances the competing e�ects of how well parameter points �t the data with the

principle of parsimony�models with large regions of parameter space which don't �t

the data are penalized. The need to compare models to de�ne naturalness in a Bayesian

formalism is easily seen by the fact that the likelihood for any new physics model decreases

monotonically as more data is collected and previously-viable regions of parameter space

are ruled out (in the absence of a discovery, of course).

An interesting playground for these ideas is the strong CP problem. In brief, this is

the smallness of the so-called `theta angle' θ in QCD, which controls the amount of CP

breaking in the strong sector. While θ ∈ [0, 2π), empirical measurements now constrain

θ . 10−10. Although θ is not technically natural, in the Standard Model it runs very

slowly�since the other source of CP breaking is from the CKM matrix�such that if

one sets it tiny in the UV, it stays small down to the IR. The Guidice-Barbieri measure

would thus produce ∆θUV ' 1, as the measured value is insensitive to small changes

in the UV value. And yet, the small theta angle is regarded as a naturalness problem,

which can be justi�ed in a Bayesian approach. The necessity of a prior does help quantify

one's surprise at the small value of θ in the context of the Standard Model, but to really

think about naturalness we need to have a comparison. We know of simple theories

which produce vanishing θ starting from generic values of the parameters�for example,

an axion naturally produces θ = 0. Then if we have new data which pushes down the

upper bound on θ, axion models receive large Bayesian update factors in relation to the
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Standard Model. When we know of a simple model which automatically explains some

data, it's puzzling if our current model requires precise choices for free parameters in

order to explain the data.

We can see these notions play out for the hierarchy problem by comparing our toy

model of a GUT to one with weak-scale supersymmetry. Our toy model in Section 2.2.1

produced a scalar through a cancellation of GUT-scale ∼ 1016 GeV contributions. A

toy model with supersymmetry (to be discussed in Section 3.1) would remove sensitivity

to the ultraviolet, and replace the scale of GUT-breaking with the e�ective scale of

supersymmetry-breaking in the SM sector m̃. And while the GUT scale is (more or

less) �xed by the running of SM couplings, the SUSY-breaking scale in the SM can

be far lower. We use m̃ here as a one-parameter avatar of the scale of superpartners.

The general prediction for supersymmetry before the LHC was m̃ ∼ O(100 GeV), with

multiple species of superpartners appearing below the TeV scale. Such a model produces

an improvement in Giudice-Barbieri tuning of δ∆ ∼ 1028 over our model without SUSY.

Let's take p(m̃|weak scale SUSY) to be a logarithmic prior from mlow to mhigh, where

an upper limit mhigh ∼ 500 GeV− 1 TeV is justi�ed by the requirement that the model

give small Higgs mass corrections and a weak-scale dark matter candidate. If we collect

collider data for a decade and �nd that much of the parameter space is ruled out, say

with a limit m̃ ≥ m we should update our thoughts on the naturalness of the model. This

data has no e�ect on our non-SUSY GUT model, as it predicts no new light particles,

but there has been a large e�ect on our SUSY model as its most favored parameter space

has been ruled out. So we have a large Bayesian update factor.
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B ≡ p(LHC data|non-SUSY GUT)

p(LHC data|weak scale SUSY GUT)
(2.7)

=
1(

log
mhigh

mlow

)−1 ∫ mhigh

m
dm̃
m̃

= log
mhigh

mlow

/ log
mhigh

m

Of course supersymmetric extensions of the SM have a large number of parameters, and

how to translate to an upper bound m on our one-parameter version isn't well-de�ned,

but certainly much of the previously-favored parameter space has been ruled out. The

general lesson is that models which don't predict new visible states near the weak scale

have received large Bayesian update factors from the LHC. This doesn't give a strict

mandate for our overall relative belief, as one may argue there are good reasons to take a

large prior for supersymmetry and expect always to �nd superpartners right around the

corner. After all, even if m̃ ∼ 1000 TeV, it would still have δ∆ ∼ 1020 Giudice-Barbieri

tuning better than the GUT without SUSY. But it does motivate further investigation

of models which don't succumb to this issue, be they neutral naturalness modules which

push the scale of new visible states up by a loop factor or more radical ideas about the

origin of the electroweak scale.

Furthermore, we can directly input physics into making a sensible choice of the prior

one places on a model, and there has been much discussion of justifying simple choices.

The dictum of Dirac naturalness mandates priors peaked at O(1) values. But with a

model which makes some parameter technically natural one, a prior that allows small

values is justi�ed, such as a logarithmic prior. An explicit example of this modi�cation

of priors by physics can be seen in the application of the Weak Gravity Conjecture to

the hierarchy problem [91, 92, 93, 94, 95, 96, 97, 98, 11, 5, 99], which will be discussed

in more detail in Section 4.3.1. This mechanism explicitly modi�es the prior one should
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have on UV theories by linking the notion of the Swampland�that some string vacua

don't admit universes like ours�to the allowed range of Higgs masses. This addresses

the hierarchy problem by constructing a model where the priors are forced by UV physics

to favor a light Higgs.

While these measures of naturalness are useful to help us clarify our expectations,

we emphasize again that they must be used sensibly. But it's clear that some notion

of naturalness appears solely from the axioms of probability, and is indeed baked-in to

the practice of science inquiry. That's not to say that we should be epistemologically

committed to the naturalness of the universe, but we can still see it as a useful guide

toward new physics which has worked well in the past.

2.2.3 The Lonely Higgs

All models are wrong, but some are useful.

George E. P. Box [100]

Robustness in the Strategy of

Scienti�c Model Building (1979)

There is another obvious suggestion that is useful to discuss: perhaps the Higgs does

not interact with any physics at higher mass scales, such that despite in principle worries

about the hierarchy problem there is no hierarchy problem in practice. The physics which

can destabilize the Higgs mass must, as seen in the above example, both be heavier than

the Higgs and interact with it in order to generate a contribution. Since the Higgs mass

in the SM is not technically natural (that is, it is UV sensitive), large mass corrections

from such particles are generic, as we saw in Section 1.3. One can explore the idea that

perhaps there are no such particles. This faces a number of challenges.

The �rst di�culty is that we know there must be new physics. The Standard Model
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(a)
(b)

Figure 2.1: In (a), a representative two-loop diagram giving gravitational corrections to
the Higgs mass from a new dark fermion ψ. These diagrams do not destabilize the Higgs
mass. In (b), a representative three-loop diagram in which the gravitons couple to an
o�-shell top quark, which is no longer proportional to the Higgs mass.

does not explain neutrino masses nor dark matter, though it is possible that both of

these be resolved without introducing new heavy particles. But a deeper issue is that we

know the SM cannot be a fundamental theory because the Landau pole in hypercharge

makes it inconsistent. This demands that something must happen to rid the theory of

this pole, and it will interact with the Higgs because the Higgs is hypercharged. This is

one motivation for thinking that something like Grand Uni�cation must take place, and

of course its breaking introduces a heavy fundamental scale. One can try to get around

this by appealing to quantum gravity coming in at scales below that of the Landau pole.

But the Higgs certainly interacts gravitationally, so for this program to succeed one needs

a quantum gravitational theory which does not introduce any scales. This is interesting

to explore, but does not seem to be the way the universe works, though we leave detailed

criticism of this idea to the gravity theorists.

Furthermore, even if somehow all heavy particles are neutral under the SM gauge

groups, there is no way for them to escape gravitational interactions with the Higgs.

This leads to irreducible three-loop corrections to the Higgs mass [101], as depicted in

Figure 2.1. Consider a fermion ψ with mass Mψ. The obvious two-loop diagram where

the graviton couples to the Higgs directly gives a correction proportional to m2
H , as the
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graviton coupling to a massless on-shell particle vanishes at zero momentum. However,

we can draw a diagram where a ψ loop talks gravitationally to an o�-shell top loop

contribution to the Higgs two-point function, and integrating this particle out yields a

correction

δm2
H '

y2
t

(16π2)3

M4
ψ

M4
pl

M2
ψ + subleading. (2.8)

The powers ofMψ appear because the only other possible mass scale for the numerator is

mt = ytv, and the top loop power-law correction to the Higgs mass does not vanish in the

v → 0 limit. The sensitivity of the Higgs mass is softened by three loop factors as well as

by the Planck mass from the gravitational couplings, but insisting that δm2
H . (1 TeV)2

places an upper `naturalness' limit on such fermions of ∼ 1014 GeV. While far better

than the ∼ 1 TeV limit for SM-charged particles, this is still well below the Planck scale

and amounts to an enourmous constraint on UV physics. In fact the problem is a bit

worse than this estimate, as we should sum over all SM loops that couple to the Higgs,

but this su�ces already to see the problem.

So asking for the Higgs to be lonely enough to cure the hierarchy problem is a humon-

gous requirement on the ultraviolet of the universe, and this approach faces a number of

important hurdles. We mention that there is work on interesting theories which touch

on some of these points, but as a whole Nature seems not to have taken this approach.

2.2.4 Mass-Independent Regulators

One may hear the statement that the hierarchy problem disappears if you use a mass-

independent regularization scheme, for example dimensional regularization. Unlike the

prior nonsolutions we've considered, this one is de�nitively incorrect. The mass scale one

introduces in EFT is a stand-in for genuine physical e�ects of any sort which appear at

shorter distance scales. So the cuto� regularization is useful for seeing an avatar of the
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Figure 2.2: The one-loop diagram for a scalar quartic interaction contributing to a scalar
mass.

hierarchy problem even when one does not know the ultraviolet theory. With a mass-

independent scheme, one must instead put in speci�c short-distance physics to see the

problem, but we can easily see the general issue.

As a simple example, take a theory with two real scalars - our light φ and a heavier

ϕ. If we impose a Z2 symmetry for simplicity, the action is

S =

∫
d4x

[
−1

2
(∂µφ)2 − 1

2
m2

0φ
2 − 1

2
M2

0ϕ
2 − λ

4
φ2ϕ2

]
(2.9)

Doing continuum e�ective �eld theory with dimensional regularization and the MS renor-

malization scheme, we must upgrade the masses and couplings to running parameters

which depend on the renormalization scale µ, as usual. Since our renormalization scheme

is mass-independent, if we want to study physics at an energy scale µ ∼ mφ � Mϕ, we

should implement the decoupling theorem by hand. We integrate out the heavy degree

of freedom at the scale µ ∼ Mϕ and match to a low-energy e�ective �eld theory which

only contains the low-energy degree of freedom φ. So let us go ahead and integrate out

the heavy scalar ϕ. The e�ect on the φ mass comes from the simple diagram of Figure

2.2.

We go to general dimension d = 4− ε and replace λ → λµ̃ε, where µ̃ is an arbitrary

scale which soaks up the mass dimension of λ away from d = 4. The resources needed to
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compute the integrals for general dimension and to take the limit ε→ 0 can be found in

Srednicki's textbook [25].

−iδm2 =
−iλµ̃ε

2

∫
ddk

(2π)d
−i

(k2 +M2
ϕ)

=
−iλµε

2

∫
ddk̄

(2π)d
1

(k̄2 +M2
ϕ)

= −i λµ̃ε

2(4π)2
Γ(−1 +

ε

2
)(4π)

ε
2 (M2

ϕ)1− ε
2

= i
λ

2(4π)2
M2

ϕ

[
2

ε
− γE + 1 + ln 4π − lnM2

ϕ + 2 ln µ̃+O(ε)

]
= i

λ

(4π)2
M2

ϕ

[
1

ε
+

1

2
+ ln

µ2

M2
ϕ

+O(ε)

]
(2.10)

Where γE is the Euler-Mascheroni constant, and we have Wick rotated k0 → ik̄d, inte-

grated in general dimension, expanded in the limit ε → 0 and de�ned µ2 ≡ 4πµ̃2e−γE

to soak up the annoying constants. Indeed, we see that there's no quadratic divergence,

which ultimately is due to the fact that scaleless integrals vanish in dimensional regular-

ization
∫

ddk
kn

= 0, as must be true simply by dimensional analysis.

Now we follow the MS renormalization scheme by adding a counterterm which cancels

o� the divergent piece and we match at µ = Mϕ to ensure that our low-energy EFT

produces the same predictions as the UV theory, as discussed in Section 1.2.3. This gives

us

S =

∫
ddx

[
−1

2
(∂µφ)2 − 1

2

(
m2

0 +
λ

(4π)2
M2

ϕ

)
φ2 − . . .

]
(2.11)

We see that the high-energy degree of freedom ϕ contributes a threshold correction when

we �ow to lower energies and remove it from the spectrum. While there was never a

quadratic divergence, we still found a large quadratic correction to the mass of the scalar

φ which is proportional to the scale of new physics.

This underscores the importance of not getting confused by unphysical features of
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renormalization. There is a physical issue, which is the sensitivity of the physical low-

energy scalar mass to the physics in the ultraviolet. Indeed if we tame the UV in di�erent

ways, we �nd di�erent avatars of this sensitivity. It's true that a Wilsonian cuto� acts

as a stand-in for arbitrary scaleful physics, which is why it's more direct to see the issue

in that picture, but the same physical problem appears regardless of the regularization.

2.3 The General Approach

After discussing those misconceptions, we may give a one-sentence description of the

hierarchy problem:

In a theory of physics beyond the Standard Model where the Higgs mass is an output,

physical parameters must be �nely-tuned in order to produce a mass which is far below

the scale of new physics, in tension with the principle of parsimony.

With that in hand, we are prepared to delve in to how the hierarchy problem may

be solved in the next section. Our discussion below will not take place within a UV

complete extension of the Standard Model, so one might worry that we are attacking a

problem without knowing its source. While true, the point from Section 2.2.3 is that the

sensitivity to UV physics is so general that we expect to need a mechanism which stabilizes

the Higgs mass to whatever new heavy physics is out there. Our toy calculation of the

relative naturalness of SUSY already evinces this point�SUSY tamps UV sensitivity no

matter what it is, so the details of the UV completion are immaterial. As a result of

this idea, we will mostly worry just about �nding a way to produce a light scalar and

assume that it can be embedded into whatever UV completion, rather than committing

to a particular one. Of course it's possible that interesting mechanisms to produce an

IR scale do rely on particular properties of the UV, and we'll discuss this important

88



The Hierarchy Problem Chapter 2

idea in Section 4.3. But even there, our goal is solely to produce a light scalar which

is compatible with the Standard Model, rather than to write down a full theory of the

universe on all scales.
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Chapter 3

The Classic Strategies

Without going out of my door

I can know all things on earth

Without looking out of my window

I could know the ways of heaven

George Harrison satirizing the

past decades of particle theory

in light of LHC data

The Inner Light (1968) [102]

Fantastic Symmetries and How To Break Them

In large part the story of particle physics over the past decades is the story of attempts

to solve the hierarchy problem. Much theoretical e�ort has been put into understanding

interesting symmetries and mechanisms for breaking them, and more generally ways

that small numbers can pop out of physical theories; and much experimental e�ort has

focused on locating empirical hints of these ideas. However, the past few years have seen
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many practitioners turn their attention toward topics like dark matter, cosmology, and

astrophysics. And for good reason�on the experimental side, this is largely where the

new data is and will be for the foreseeable future, and at the purely theoretical level the

hierarchy problem has become a lot more challenging, as we will argue below. But this

has lead to a new generation of particle theorists who are largely unfamiliar with the

fantastic and brilliant ideas which drove the �eld in the prior couple decades.

Despite the fact that we will argue below that these ideas largely appear to not be the

way the world works at the weak scale, understanding this prior work can be enormously

helpful for inventing novel ideas in the future. It is with this in mind that we introduce

below the basics of a variety of interesting ideas and methods in particle physics against

the backdrop of their relevance to the hierarchy problem. These are ideas that have

not yet made their way into standard textbooks on �eld theory, but are nevertheless

essential topics for students of particle theory to absorb. We will endeavor to explicate

the core of these ideas in the simplest models possible, and will largely avoid discussing

phenomenological considerations past producing a light scalar. The discussion will not

be at the level of depth required for research in the �eld, but will hopefully be a nice

overview of interesting topics for which references to serious introductions and reviews

will be provided as well.

So how does one solve the hierarchy problem? The classical solutions may be concep-

tually divided into two steps. First one introduces some structure above the electroweak

scale which protects the Higgs mass from large contributions due to UV physics. This

could be something like a new symmetry which forbids a scalar mass term, or a modi�-

cation to spacetime on small length scales, or the dissolution of a non-fundamental Higgs

into component �elds.

However, the Higgs is not exactly massless, which is due to the fact that whatever

structure we add is not a feature of the low-energy Standard Model. There must thus be
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some IR dynamics that break that UV structure at the electroweak scale to ensure that

we end up with the Standard Model at low energies. Depending on the UV structure

this may be something like spontaneous symmetry breaking or moduli stabilization or

dimensional transmutation.

There are two big categories of classical solutions. One is to �nd a �eld-theoretic

mechanism which prevents contributions to the Higgs mass in the UV. Supersymmetry is

the prime example here. The other is to bring the fundamental cuto� of the theory down

to the infrared, such that in the UV there's no Higgs to talk about. This is exempli�ed

by composite Higgs theories or theories where the cuto� of quantum gravity is lowered

to the weak scale.

To evince these strategies, we'll go through a couple examples of ways to forbid scalar

masses and to break those structures. Our aim here is not to construct realistic theories

of the Higgs but rather to understand these general principles, so we'll study simple toy

models which allow us to appreciate the essential points.
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3.1 Supersymmetry

Superpartners aren't essential

But would have been consequential

Such wasted superpotential

Super once, super twice

Super chicken soup with rice

Maurice Sendak on his disappointment with

the LHC run 1 data

Lost Stanza of Chicken Soup with Rice [103]

Supersymmetry exploits a loophole in the classic Coleman-Mandula theorem [67] by

introducing fermionic generators, which in layman's terms turn bosons into fermions and

vice-versa. By the Haag��opusza«ski�Sohnius theorem [104], this is the unique extension

to the Poincaré algebra. Since we know that symmetries tend to make physics easier,

it is not surprising that supersymmetry is an indispensable tool in high energy theory,

regardless of how or whether it is realized in the real world. Some useful general intro-

ductions to supersymmetry in d = 4 and its application to the real world are Terning's

book [105], Martin's periodically-updated lecture notes [106], and Shih's video lectures

[107], in roughly increasing order of friendliness to neophytes.

In a supersymmetric theory �elds come in multiplets which include particles of dif-

ferent spins (so called `supermultiplets') all having the same mass and quantum num-

bers. We add fermionic generators Qα and Q†α̇, called supercharges, with the de�ning
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(anti)commutation relations

{
Qα, Q

†
α̇

}
= 2σµαα̇Pµ {Qα, Qβ} = 0 =

{
Q†
β̇
, Q†α̇

}
(3.1)

[Qα, Pµ] = 0 =
[
Pµ, Q

†
α̇

]
(3.2)

where Pµ is the generator of spacetime translations and σµ = (1, ~σi) with σi the Pauli

matrices. These may be determined simply by writing down all objects with the correct

index structure. For later use, recall that spinor indices are raised/lowered with the

invariant antisymmetric symbols εαβ, εα̇β̇, as used for example in de�ning the conjugate

invariants (σµ)α̇α = σµ
ββ̇
εαβεα̇β̇.

We want to �nd irreducible representations of the supersymmetry algebra, called

supermultiplets. Since PµP µ = m2 commutes with the generators Qα, Q
†
α̇, the di�erent

particles in a supermultiplet will have the same mass. As an example of how to generate

supermultiplet states, consider a massive particle. We can go to its rest frame, where

it has momentum Pµ = (m, 0, 0, 0) with m its mass. Then the supersymmetry algebra

greatly simpli�es to
{
Qα, Q

†
α̇

}
= 2m1αα̇. Then we see that this is just a Cli�ord algebra

of raising and lowering operators. We de�ne a lowest weight state, or Cli�ord vacuum

|Ωs〉 such that it is annihilated by the undotted generators

|Ωs〉 = Q1Q2 |m, s, sz〉 (3.3)

⇒ Q1 |Ωs〉 = 0 = Q2 |Ωs〉 (3.4)
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Now we can use the dotted generators as raising operators to generate the entire multiplet.

|Ωs〉 (3.5)

Q†
1̇
|Ωs〉 , Q†2̇ |Ωs〉 (3.6)

Q†
1̇
Q†

2̇
|Ωs〉 (3.7)

A single fermionic supersymmetry generator must change the spin of a state by 1
2
. Start-

ing at the top with a spin j particle gives us states of spin j− 1
2
and j + 1

2
on the middle

line, and another state of spin j on the bottom line. In d = 4 the supermultiplet formed

from a vacuum state of spin 1
2
is called a `vector multiplet' and contains four states with

spins (0, 1
2
, 1

2
, 1). That formed from spin 0 is called a `chiral multiplet', and has states

with spins (0, 0, 1
2
). Note that this is fewer degrees of freedom, since negative spins are

not allowed. Beginning with spins higher than 1
2
leads to states with spins greater than

1, which will take us into supergravity and will not be necessary for our purposes.

We could repeat this exercise for massless supermultiplets, labelling states by their

energy and helicity |E, λ〉. We would �nd a Cli�ord algebra with only one set of rais-

ing/lowering operators, and �nd supermultiplets with helicities λ and λ + 1
2
for some

starting λ. Then CPT invariance would force us to add states of −λ and −λ− 1
2
.

Merely from the de�nition of the symmetry group there are already a few interesting

immediate results. For a start, we show that physical states have nonnegative energy

in a supersymmetric theory, and the vacuum energy is an order parameter for super-

symmetry breaking. First, let's give a simple expression for the Hamiltonian operator of

supersymmetry. We act on our anticommutation relation with (σν)α̇α and recall various
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identities to note that σµαα̇(σν)α̇α = 2ηµν , which gives us

4P ν = (σν)α̇α
{
Qα, Q

†
α̇

}
⇒ 4P 0 = 4H = 1α̇α

{
Qα, Q

†
α̇

}
4H = Q1Q

†
1̇

+Q†
1̇
Q1 +Q2Q

†
2̇

+Q†
2̇
Q2,

where we have used the fact that the zeroth component of the generator of spacetime

translations is the generator of time translations, which is the Hamiltonian operator.

Then we can write the energy of some state state S as

〈S|H |S〉 =
1

4

(
||Q1 |S〉 ||2 + ||Q†

1̇
|S〉 ||2 + ||Q2 |S〉 ||2 + ||Q†

2̇
|S〉 ||2

)
≥ 0, (3.8)

so the energy of S is non-negative. Furthermore, consider a vacuum state |0〉 of our

theory. In a standard QFT, the vacuum energy 〈0|H |0〉 = Evac is non-physical�we can

just shift the Hamiltonian arbitrarily to remove it. But here, the supersymmetry algebra

gives a preferred frame. If a vacuum state |0〉 is supersymmetric then it is annihilated

by the supercharges Qα |0〉 = 0, Q†α̇ |0〉 = 0, otherwise the vacuum would not be invariant

under supersymmetry transforms. This implies that it will have vanishing total energy

〈0|H |0〉 = 0. Conversely, if the vacuum state is non-supersymmetric, then its energy

is strictly positive. We say supersymmetry is broken in such a state. Thus the vacuum

energy acts as an order parameter for SUSY breaking.

Connected to that fact is that each supermultiplet contains the same number of

fermionic and bosonic degrees of freedom. We can see this by de�ning an operator F

which counts the fermion number of a state, so that bosonic states have eigenvalue 1 under

(−1)F , and fermionic states have eigenvalue −1. Since the SUSY generators interchange

bosonic and fermionic states, they must anticommute with (−1)F .
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Now, for a given supermultiplet consider the states |a〉 with the same given four-

momentum pµ, p0 = E 6= 0. Since the supercharges commute with P µ, we know that

these must form a complete set of states in this subspace
∑
a

|a〉 〈a| = 1. Now consider

the trace of the weighted energy operator (−1)FH/4.

∑
a

〈a| (−1)FH |a〉 =
∑
a

〈a| (−1)FQQ† |a〉+
∑
a

〈a| (−1)FQ†Q |a〉

=
∑
a

〈a| (−1)FQQ† |a〉+
∑
a

∑
b

〈a| (−1)FQ† |b〉 〈b|Q |a〉

=
∑
a

〈a| (−1)FQQ† |a〉+
∑
b

〈b|Q(−1)FQ† |b〉

=
∑
a

〈a| (−1)FQQ† |a〉 −
∑
b

〈b| (−1)FQQ† |b〉

= 0 (3.9)

where we have suppressed the contracted spinorial indices. This implies that the number

of bosonic degrees of freedom is the same as the number of fermionic degrees of freedom

in our supermultiplet, which we found to be true in the example we considered above.

There is a beautiful formalism of `superspace' which can be used to make super-

symmetric theories far more transparent, but introducing this would be too large of a

digression for our purposes.15 We simply want to see the e�ects of supersymmetry on

(in)sensitivity of low-energy physics to the ultraviolet, for which studying a simple the-

15Martin's notes [106] serve as a good introduction to traditional `o�-shell' superspace for N = 1, d = 4
theories, and Thaler's TASI lecture notes [108] are also a fantastic resource. There is a related but
distinct formalism of `on-shell' superspace, which falls under the heading of the amplitudes/on-shell/S-
matrix program. This was �rst introduced very early on by Nair [109] and was used to great e�ect by
Arkani-Hamed, Cachazo, & Kaplan [110] much later. A pedagogical introduction to on-shell techniques
including superspace can be found in the textbook by Elvang & Huang [111]. Until recently, the on-shell
program was mostly restricted to massless particles. As it so happens, after Arkani-Hamed, Huang,
& Huang [112] introduced a beautiful extension of the formalism to include massive particles, it was
Timothy Trott, my undergrad mentee Aidan Herderschee, and myself who formulated an extension of
the on-shell superspace formalism for massive particles [9]. The on-shell program is another fascinating
line of work that I suggest any aspiring particle or �eld theorist learn about.
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ory of chiral super�elds will do. The Wess-Zumino model is the simplest such example

which is not free, consisting of a single self-interacting chiral supermultiplet, and was

historically the �rst non-trivial four-dimensional theory proved to be supersymmetric.

We may write down the Wess-Zumino Lagrangian as

L =

∫
d4x

(
−∂µφ?∂µφ−m2φ?φ− iψ†σ̄µ∂µψ −

1

2
mψψ − 1

2
yφψψ − 1

2
ymφ2φ? − 1

4
|y2|φφφ?φ?

)
,

(3.10)

where for compactness we've left o� the Hermitian conjugate terms. To avoid introducing

certain technical complications we eschew the proof that this is indeed invariant under

a supersymmetric transformation and instead evince its UV insensitivity. For fun we'll

compute without assuming the masses are the same mφ 6= mψ, as can happen in the

presence of soft breaking of the symmetry.

Let's look at the vacuum energy, which we'll calculate generally but schematically. A

quantum harmonic oscillator has ground state energy ±1
2
~ω for bosonic and fermionic

states respectively, with the sign being familiar from the Casimir e�ect. If we consider a

box of side length V 1/D, the energy of the �elds inside it is

E0 =
bosons∑
~k

1

2
~ω~k −

fermions∑
~k

1

2
~ω~k, (3.11)

where ~k = (k1, k2, . . . , kD)(2π/V 1/D), ki ∈ Z. Now in QFT each mode has energy

ω~k =
√
k2 +m2 , and as we make the box bigger V 1/D → ∞, the sum turns into an

integral

E0 = V

∫
ddk

(2π)d

(
1

2

√
k2 +m2

B −
1

2

√
k2 +m2

F

)
, (3.12)

with mB a boson mass and mF a fermion mass, where the sum over species is implicit.

We also recognize E0/V as the vacuum energy density, denoted Λ, which we can write
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Figure 3.1: The one-loop diagrams contributing to the scalar mass correction in the
Wess-Zumino model.

as

Λ ' 1

2(2π)D

∫
ddk

(√
k2 +m2

B −
√
k2 +m2

F

)
. (3.13)

Now if we specialize to D = 4 and introduce a cuto� kmax up to which we're con�dent

that our description of particle physics holds, the schematic form is simply

Λ ∼ k4
max

(
bosons∑

1−
fermions∑

1

)
+ k2

max

(
bosons∑

m2
B −

fermions∑
m2
F

)
+ . . . (3.14)

Now we see quite generally and explicitly that in a supersymmetric state the vacuum

energy vanishes, since there are equal numbers of bosonic and fermionic �elds with de-

generate masses. Furthermore, spontaneous breaking of supersymmetry breaks the de-

generacy but does not change the numbers of �elds, so softly broken supersymmetry

retains protection from the largest contribution.

Let's look now more sharply at the one-loop contributions to the scalar mass in the

Wess-Zumino model, regularized with a hard cuto� Λ. Take care that we've written

the Lagrangian in terms of two-component spinors, an exhaustive guide to which can be

found in [113]. The three diagrams are shown in Figure 3.1, and their evaluation proceeds
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as

−iδm2 = (−imψy)2

∫
d4k

(2π)4

(−i)2

(k2 +m2
φ)2

+ (−iy2)

∫
d4k

(2π)4

(−i)
(k2 +m2

φ)

+ (−1)
1

2
(−iy)2

∫
d4k

(2π)4

(−i)2Tr [σµkµσ̄
νkν ]

(k2 +m2
ψ)2

(3.15)

= i|y|2
∫

d4k̄

(2π)4

[
m2
ψ

(k̄2 +m2
φ)2
− 1

(k̄2 +m2
φ)

+
k̄2

(k̄2 +m2
ψ)2

]
(3.16)

= i
|y|2

16π2

∫ Λ

0

dk̄ k̄3

[
m2
ψ −m2

φ − k̄2

(k̄2 +m2
φ)2

+
k̄2

(k̄2 +m2
ψ)2

]
(3.17)

= i
|y|2

16π2
(m2

φ −m2
ψ) log Λ + �nite. (3.18)

We see that the UV sensitivity of the scalar mass in this theory has disappeared, even

if the two �elds have di�erent masses. In the limit of unbroken supersymmetry, the

contribution vanishes identically.

This fact of removing the UV sensitivity of the mass of a scalar persists generally,

no matter which other super�elds are added, so long as supersymmetry is at most softly

broken. The connection to the hierarchy problem is clear: If, in the UV, all �elds come

in supermultiplets, then the Higgs mass is protected from UV contributions.

Of course we do not observe mass-degenerate superpartners, so this soft supersymme-

try breaking is a necessary feature of any implementation of supersymmetry to the real

world. The Minimal Supersymmetric Standard Model [114] embeds each of our fermions

in a chiral supermultiplet and each gauge boson in a vector multiplet. The Higgs sector

must be enlarged to two chiral multiplets containing the up and down Yukawas respec-

tively, as is necessary for anomaly cancellation16.

16Perhaps the more urgent reason for needing two Higgs multiplets is that the interactions in su-
persymmetric theories are highly constrained by `holomorphy', a full explanation of which here would
require too much machinery but which leads to the conclusion that the same multiplet cannot have
Yukawa interactions with both the up- and down-type quarks. However see [115] for the interesting
possibility that at high energies only the up-type Yukawa interactions exist, and the down-type and
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The question of supersymmetry-breaking is a very non-trivial one. At the level of a

phenomenological accounting of possible soft breaking terms in the MSSM, there are 105

physical parameters [116]. However, constraints on �avor-violating couplings and on CP

violation tell us empirically that the soft terms that appear must be very non-generic. In

fact, looking at the MSSM in detail it turns out there are no places for supersymmetry-

breaking to enter directly, and indeed there are general arguments that such breaking

must take place in another, hidden sector and be indirectly communicated to the MSSM

�elds (see e.g. Martin's Section 7.4 [106]).

The origins of supersymmetry-breaking being a separate sector does force us to expand

our model of particle physics, but on the upshot this sequestering means we can explore

interesting phenomenology in sectors which are unconstrained. One can write down

models where supersymmetry breaking is mediated by supergravity e�ects [117, 118,

119, 120, 121, 122, 123], communicated to the SM �elds by our gauge bosons from a

sector with new, massive SM-charged particles [124, 125, 126, 127, 128, 129], or takes

place at a physically separate location in an extra dimension [130, 131, 132, 133, 134,

135, 136, 137, 138, 139]. A full discussion of the mechanisms and strategies for models

of supersymmetry-breaking is beyond our scope, but we highly recommend Intriligator

& Seiberg's lecture notes [140] as a general reference along with Martin's notes [106].

Of course we would like this phase transition to originate as spontaneous symme-

try breaking, rather than explicitly putting it in by hand, since we want the far UV to

be supersymmetric. Such spontaneous breaking requires the generation of a scale, and

so it would be great if such a scale were generated dynamically, as in the dimensional

transmutation we saw in QCD in Section 1.3.3. This would then be a natural mecha-

nism for SUSY breaking. This phenomenological prospect lead to and bene�ted from a

fantastic body of work understanding the details of supersymmetric gauge theories e.g.

charged lepton masses are induced by supersymmetry-breaking.
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[141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151], which can be found reviewed in

textbooks by Terning [105] and Shifman [152] and in TASI notes by Strassler [153].

We stated above that �elds in a given supermultiplet share all the same quantum

numbers, but there is in fact one exception. The supersymmetry algebra in Equation 3.1

is invariant under opposite rephasings of the supercharges Qα → Qαe
−iα, Q†α̇ → Q†α̇e

iα.

So there is a generator of a global internal symmetry that we may add that has nontrivial

commutation relations with the supercharges:

[R,Q] = −Q,
[
R,Q†

]
= Q†. (3.19)

This generator is known as an R-symmetry generator, and if the theory is invariant under

an R-symmetry that means that each supermultiplet Φ can be assigned an R-charge

rΦ and the theory is invariant under transformations of each multiplet Φ → ΦeirΦα,

schematically, where Φ is the collection of �elds in that multiplet. Since R does not

commute with the supercharges, the di�erent �elds in the supermultiplet have di�erent

R-charges. For example if Φ is a chiral super�eld consisting of (φ, ψ) then under a global

rotation by α they transform as

φ→ φeirΦα, ψ → ψei(rΦ−1)α, (3.20)

which is simply because |ψ〉 ∼ Q |φ〉.

It's important to emphasize that this R-symmetry is not part of the supersymmetry

algebra, so one may have supersymmetric theories which do or do not implement R-

symmetry. Nelson & Seiberg showed a fascinating connection between R-symmetry and

supersymmetry-breaking [154]. They show roughly that for a low-energy Wess-Zumino

model (possibly after having integrated out con�ned strong dynamics) as long as one has
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a `generic' potential (in the sense that a generic set of n equations in n unknowns has a

solution), then a vacuum spontaneously breaks supersymmetry if and only if it sponta-

neously breaks R-symmetry. The reasoning is simply that such a symmetry imposes an

additional constraint on the potential minimization equations, leading to a solution no

longer being generically present.

For later use we mention the possibility of `extended supersymmetry', where addi-

tional supercharges are added

{
QA
α , Q

†B
α̇

}
= 2σµαα̇Pµ,

{
QA
α , Q

B
β

}
= 0 =

{
Q†A
β̇
, Q†Bα̇

}
(3.21)

where A,B = 1..N index the supercharges. The construction of supermultiplets proceeds

as before, but there are now more nonvanishing combinations of supercharges to act on

the Cli�ord vacuum, so supermultiplets are enlarged. In four dimensions, the most su-

persymmetry we can have without gravity is N = 4, which contains enough supercharges

to relate the helicity −1 vector all the way to the helicity +1 vector; any more super-

charges would necessarily yield particles of spins 3/2, 2. If we are willing to include these

degrees of freedom we can only go up to N = 8 `supergravity' (SUGRA), as more charges

would lead to a theory with fundamental particles of spins s > 2 which is pathological17.

The classic references for supergravity are Wess & Bagger [156] and Freedman & Van

Proeyen [157]. Ultimately if supersymmetry is a �eld-theoretic feature of the ultraviolet

of our universe we must have SUGRA as well, as it simply results from applying the

supercharges to the graviton �eld, but we won't discuss SUGRA any further.

When we enlarge our superalgebra we also enlarge the (potential) R-symmetry group�

the group of symmetries which do not commute with the supercharges�since we can now

17There's an important exception here, which is a theory which includes particles of all spins. This
is necessary for string theory to operate, but has also led to the formulation of novel �eld theories
commonly called `Vasiliev gravity' [155].
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shu�e around the supercharges in addition to rephasing them. We'll revisit this in Sec-

tion 3.2.3 in the context of utilizing non-trivial R-symmetry representations to break

supersymmetry.

3.2 Extra Dimensions

I exist in the hope that these memoirs, in some

manner, I know not how, may �nd their way to

the minds of humanity in Some Dimension,

and may stir up a race of rebels who shall

refuse to be con�ned to limited Dimensionality.

Edwin Abbott Abbott,

Flatland, 1884 [158]

One of the most important ideas in theoretical physics developed in the latter part

of the 20th century is that there may be additional spatial dimensions past the familiar

three of our everyday experiences. Theories in which additional spatial dimensions are

present were �rst studied in the context of unifying gravity and electromagnetism, �rst by

Nordström [159] (before General Relativity!) and then by Kaluza [160] and Klein [161].

These ideas saw a resurgence of interest some half-century later with the advent of string

theory, and the vision of all features of the universe being fundamentally geometrized.

Against that backdrop, it is clearly prudent to consider the interplay of such theories

with the puzzle of the hierarchy problem. As we shall see, extra dimensional theories can

produce terribly interesting physics, and the possibilities are manifold.
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3.2.1 Technology: Kaluza-Klein Reduction

To consider the possibility that there are additional microscopic dimensions, we de-

velop a picture of the e�ects of fundamentally D-dimensional �elds where D = 4 +d. On

our manifold M =M4 ×K, where K is compact, we write down an action

S =

∫
M4

∫
K

√
−g(4+d) L(φ,AM ,gMN) (3.22)

where our �elds are in irreducible representations of the D-dimensional Poincaré alge-

bra, and the Lagrangian manifestly obeys D-dimensional Lorentz invariance. We'll use

boldface for D-dimensional �elds and Latin letters for D-dimensional Lorentz indices.

However, since K is compact, it places constraints on the mode expansions of our �elds.

Then when we want to study the e�ective four-dimensional theory we �rst need to de-

compose our �elds into irreducible representations of the 4-dimensional Poincaré algebra.

The D-dimensional vectors and tensors will become multiplets of 4-dimensional �elds.

Then we can explicitly integrate over the compact manifold K, which will produce a

tower of states.

As an easy, explicit example, take the compact manifold to be the circle S1 of length

2πR, and consider a single complex scalar. We start with

S5 =

∫
d4x

∫ 2πR

0

dy

[
−1

2
∂Mφ∗∂Mφ− 1

2
m2φ∗φ

]
(3.23)

From introductory quantum mechanics, we know that the boundary conditions of being

single-valued around the circle constrains the mode expansion of φ. We can write

φ(xµ, y) =
1√

2πR

+∞∑
n=−∞

φn(xµ)einy/R (3.24)
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where the normalization will produce canonically normalized kinetic terms in the 4−dimensional

action, and should generally be
√
Vol(K) . Plugging this into the action gives

S5 =
1

2πR

∫
d4x

∑
mn

∫ 2πR

0

[
−1

2
∂µφ∗m∂µφn −

1

2

(
−im
R

)(
in

R

)
φ∗mφn −

1

2
m2φ∗mφn

]
ei(n−m)y/R

(3.25)

where the �rst and second terms come from either theM4 derivatives or theK derivatives

acting on the mode expansion. The integral over the compact direction now gives, using

orthogonality
∫ 2πR

0
dyei(n−m)y/R = 2πRδnm, a 4−dimensional action

S4 =

∫
d4x

∑
n

[
−1

2
∂µφ∗n∂µφn −

1

2

(
m2 +

n2

R2

)
φ∗nφn

]
(3.26)

We see that we now have a tower of 4−dimensional states that have arisen from the one

5−dimensional scalar. There is a `zero-mode' which has a mass given by the 5−dimensional

mass term, and then there are states with larger masses. If R is small, these will be heavy,

and so we would only see them at, say, a particle collider. Note that all of these higher

levels are doubly-degenerate, since n ranges over all the integers.

If we had included the graviton in this compacti�cation procedure, we would see the

5−dimensional graviton split up into

gMN =



gµν · · · gµ4

...
. . .

...

g4ν · · · g44


so we see the emergence of a 4-dimensional scalar, vector, and two-index symmetric

tensor. And it was in this context that compacti�cation was originally studied as a
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uni�cation of general relativity and electromagnetism.

There's another very important e�ect of the compacti�cation. Let's consider the

Einstein Hilbert action

S =
1

16πG
(4+d)
N

∫
M4×K

R
√
−g(4+d) ddx (3.27)

Noting that the Ricci scalar R ∼ ∂2 always has mass dimension [R] = 2, we see that

the (4 + d)-dimensional Newton's constant must have
[
G

(4+d)
N

]
= 2−D = −2− d, so to

rewrite the action in natural units we must de�ne a (4 + d)-dimensional Planck mass as

1/G
(4+d)
N = (M

(4+d)
pl )2+d. If we take the metric to be independent of the K coordinates,

then the integration over K just gives a factor of the volume VK of the compact space

S =
(M

(4+d)
pl )2+d

16π
VK

∫
M4

R
√
−g(4) d4x (3.28)

Putting this into the form of the four-dimensional Einstein-Hilbert action, we �ndM2
pl =

(M
(4+d)
pl )2+dVK . Taking VK ' Rd for some radius R, we see that if the compact dimensions

are not Planck-sized R ∼ 1/Mpl but larger for whatever reason, then the e�ective Planck

mass at long distances can be much larger than the fundamental Planck mass.

Now we don't see zero-mode, di�erent spin partners of our particles which �ll out

representations of the higher-dimensional symmetry, so this simple compacti�cation can-

not be the real way the world is. If we have compact dimensions, they must be such that

the symmetry of zero-modes is somehow broken for the SM �elds. This is important�

we don't just want to have di�erent 5d �elds with zero modes or not, we need di�erent

four-dimensional components of them to have or not have zero modes. We'll solve this

problem in Section 3.2.3.
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3.2.2 Quantum Gravity at the TeV Scale

In the previous section we noticed that extra dimensions dilute the fundamental

Planck mass in the higher-dimensional theory to produce a weaker e�ective four-dimensional

Planck mass. So perhaps we can �x the hierarchy between the electroweak scale and

Planck scale by lowering the fundamental scale of quantum gravity. Arkani-Hamed, Di-

mopoulos, and Dvali proposed that the fundamental Planck scale can be M (4+d)
pl ∼ TeV

with the weakness of four-dimensional gravity resulting from the dilution of gravitational

�ux into the extra d dimensions [162]. Using

(1 TeV)(2+d)/2 ' (M
(4+d)
pl )(2+d)/2 'M

(4)
pl /R

d/2 (3.29)

where R is the radius of the extra dimensions, we �nd that a parsimonious d = 3 spherical

dimensions of radius R ' 1 nm su�ce to remove the hierarchy problem and accord with

Eöt-Wash constraints on the behavior of gravity at scales down to ∼ O(µm) [163, 164,

165].

Now a nanometer is tiny compared to human scales, but the associated energy scale

is 1/R ' 100 eV, which is a scale we have quite a bit of information about. In particular,

if the Standard Model �elds were to propagate in all 4 + d dimensions then it would

be easy to excite the `winding modes' with momentum in the extra dimensions, and we

should have observed many �nely-space Kaluza-Klein resonances with the same quantum

numbers. This is obviously not how the universe works, so to dilute gravity with large

extra dimensions one must trap Standard Model �elds to the four-dimensional manifold

we know and love.

This can be done by imagining we live on a (3 + 1)-dimensional topological defect

which is embedded in the larger (4 + d)-dimensional space. `Topological defect' sounds

exotic, but these are just (semi-)familiar non-perturbative objects such as the branes of
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string theory [166, 167, 168], or the cosmic strings or domain walls that can appear in

Higgsed gauge theories and which are introduced well in Shifman's textbook [152]. The

original proposal suggests a weak-scale vortex in which zero-modes of our familiar �elds

are trapped, which is super cool.

Note that the new physics appearing at the TeV scale in this scenario is about as

violent as you could imagine: quantum gravity appears at a TeV! This leads to a variety of

fascinating signatures and constraints, even in the absence of concrete model of quantum

gravity, though embeddings into string theory have also been found [169, 170, 171]. Very

generically there are corrections to the Newtonian gravitational laws [172], all sorts of

e�ects on precision observables [173], a loss of �ux of high energy particles into the

ambient space either astrophysically [174] or at a collider [138], violations of the global

symmetries of the SM since quantum gravity does not respect them [175, 176, 177],

and production of Kaluza-Klein gravitons [178] and black holes at TeV-scale colliders

[179, 180, 181, 182]. This is a fascinating �eld which is well worth studying in detail, but

unfortunately we do not have the space to do it justice. For more detail we refer to the

reviews by Rubakov [183] and Maartens & Koyama [184], and the more introductory notes

from Csáki [185], Kribs [186], Pérez-Lorenzana [187], Cheng [188], and Csáki, Hubisz, and

Meade [189].

However, shrewd readers will be eager to point out that we haven't actually solved

the hierarchy problem; we've merely traded the mH �Mpl hierarchy for a 1/R(2+d)/2 �

M
(4+d)
pl hierarchy. And indeed, it can be di�cult to stabilize the size of the extra dimen-

sions in this scheme. But the conceptual leap of considering geometric solutions to the

hierarchy problem is incredibly important and leads to many further interesting direc-

tions. The next ingredient we need is to control the existence of opposite-spin partners.
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3.2.3 Technology: Orbifold Reduction

Let us consider a spacetime manifold M = M4 × KG with M4 four-dimensional

Minkowski space and KG a d−dimensional compact `orbifold'. An orbifold is constructed

by `modding out' a manifold K by a discrete symmetry group G. A manifold is a space

that looks locally like Euclidean space; an orbifold is one which locally looks like the

quotient space of Euclidean space quotiented by a �nite group. In layman's terms,

quotienting or modding out is just identifying points which are transformed into each

other under G�our space becomes the space of equivalence classes of K under the action

of elements of G.

As an illustrative example, consider the line R and the action of the discrete symmetry

Z2 : x 7→ −x. When we form the quotient space and identify points under this Z2 action,

we �nd the half line R≥0. You'll notice that this space has a boundary at x = 0, which

was a �xed point of the symmetry group. Mathematicians would say that the Z2 acts

freely except at this point. This is a generic feature, and in fact what makes orbifolds

interesting. We could have also imagined `orbifolding' R by the translation T (2πR),

but this would have produced a compact manifold without boundary, S1, because this

symmetry has no �xed points. Part of the power of orbifolds comes because the quotient

group structure gives us some information about what happens at �xed points - you could

imagine just studying the half-line, but it seems natural to consider smooth structures

on the manifold and then look at the e�ects under the identi�cation. This should be

evinced later in our examples.

Compactifying on orbifolds also gives us a way to cure our missing partner ills. Con-

sider quotienting the circle by a Z2 which folds the circle over onto itself, y ' 2πR − y.

This produces a line segment with boundaries at both ends y = 0, πR. We can alter-

natively think of this as modding out the real line by both translation and mirroring,
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Figure 3.2: Schematic of the construction of an orbifold from the real line. The real line
has a Z2(0) : x 7→ −x symmetry and a translational T (2πR) : x 7→ x + 2πR symmetry.
Modding out by the former yields an orbifold because it has a �xed point, while modding
out by the latter returns a regular manifold.

Figure 3.3: Schematic of the construction of an orbifold from a circle. Quotienting by Z2

corresponds to folding the circle over on itself. We can produce independent �xed points
by uplifting �rst to the real line, or equivalently by folding the circle into quarters.

producing R/T (2πR)× Z2(0). There are then two di�erent sorts of �xed points - y = 0

is �xed by Z2(0), and y = πR is �xed by T (2πR)Z2(0) ∼ Z2(πR). You can then en-

vision this as the circle of length 4πR with these two discrete identi�cations, that is

S1(4πR)/Z2(0)× Z2(πR), as depicted in Figure 3.3.

How does this a�ect the resulting compacti�cation? As a �rst step should take our

results and rewrite them in terms of eigenfunctions of our Z2 symmetry. We write

φ(xµ, y) =
1√
πR

[
1√
2
φ

(+)
0 (xµ) +

+∞∑
n=1

φ(+)
n (xµ) cosny/R +

+∞∑
n=1

φ(−)
n (xµ) sinny/R

]
(3.30)
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where all we have done is rearrange things by de�ning

φ
(+)
0 ≡ φ0, φ

(+)
n>0 ≡

1√
2

(φn + φ−n) , φ
(−)
n>0 ≡

i√
2

(φn − φ−n) , (3.31)

where the superscript denotes their eigenvalue under the Z2. Now the way to change

our S1 compacti�cation to an S1/Z2 compacti�cation is to impose in our 5−dimensional

action that φ transform with de�nite parity, which must be the case if the Z2 is a good

symmetry18. You'll notice our free action does not demand a particular choice of parity

for φ, so we are free to choose φ either even or odd. But in either case we are forced

to get rid of half of our states. If φ is even we must set φ(−)
n = 0, and if φ is odd we

must set φ(+)
n = 0�including, importantly, getting rid of the zero mode. If we wanted

to include certain interactions in the higher-dimensional theory, that could dictate the

transformation of φ�for example, the interaction term φ3 would necessitate an even φ.

This is just the same as we're familiar with in four dimensions.

More interestingly, let us consider the e�ect of the orbifold on larger Lorentz repre-

sentations. Imagine a 5-dimensional gauge �eld with free action

S5 = −1

4

∫
M

FMNFMN (3.32)

where FMN = ∂MAN − ∂NAM is the �eld strength. The mixed terms here read Fµ4 =

∂µA4 − ∂4Aµ, and this must transform coherently under the symmetry in order for the

kinetic term to be invariant. But notice that Z2 : ∂4 7→ −∂4. So A4 and Aµ are forced

to have opposite transformations under the re�ection symmetry! Thus in this example

one and only one of the four-dimensional vector and scalar multiplet has a massless

18Note that since we're getting our eigenmodes through this orbifold reduction our reduced action will
still need to be produced by integrating from y = 0 to y = 2πR because it's this domain over which our
eigenfunctions are orthonormal.
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zero mode; so orbifold compacti�cations generally enable us to have light �elds without

partners.

For another example of the usefulness of orbifolding, consider a �ve dimensional

theory with the minimal amount of supersymmetry and we want to ensure our four-

dimensional theory has only N = 1 supersymmetry. First let's recall why we cannot

have more than N = 1 in four dimensions. As emphasized above, the SM is a chiral

theory, wherein the di�erent chiral components of its Dirac �elds are in di�erent gauge

symmetry representations. This means that N = 2 supersymmetry in four dimensions is

too much for us, since the irreducible representations of super-Poincaré in that case don't

allow for chiral matter. In particular, the N = 2 vector multiplet must transform in the

adjoint, and the N = 2 hypermultiplet must transform in a real representation in order

for it to be CPT self-conjugate, which means the two Weyl fermions must transform

in conjugate representations. Thus if we want to imagine that the world came from a

higher-dimensional supersymmetric theory, orbifold compacti�cation is necessary.

The same problem appears just for �ve dimensional spinor �elds, since there is no

such thing as chirality in odd spacetime dimensions. So under dimensional reduction,

one �ve-dimensional spinor breaks into two conjugate four-dimensional spinors, and you

cannot get chiral matter. This is really the same problem as the above, since the possible

supersymmety comes exactly from the possible spinor representations.

Compactifying a theory on an orbifold, rather than a manifold, will allow us to solve

both of these problems�obtaining chiral matter, and reducing the amount of supersym-

metry we have. First note that we can build N = 2 supermultiplets out of two N = 1

supermultiplets, which is really just thinking about a particular ordering for the construc-

tion of the supermultiplet by acting with supercharges. So for each N = 1 super�eld

we want to have, we need to arrange for it to be even under the parity, and so have

a zero-mode, and its partner super�eld to be odd under the parity, and so only have
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n > 1 Kaluza-Klein modes. In this way we get a set of zero modes which are chiral and

N = 1 supersymmetric, while the towers re�ect the full N = 2 supersymmetry and are

non-chiral.

As an explicit example, consider an N = 2 vector multiplet, which consists of a real

scalar Σ, two fermions ψa with a = 1, 2, and a vector AM . Under the SU(2)R symmetry,

the scalar and vector are singlets and the fermions form a doublet. As in the example

above, the N = 2 Lagrangian for this multiplet dictates that the two N = 1 multiplets

living inside it transform di�erently under the Z2. So on the four-dimensional boundary

one gets a zero-mode for either (Aµ, ψ
1) or (ψ2, A4 + iΣ), corresponding to a vector

multiplet or a chiral multiplet respectively. In slightly more group-theoretic language we

can say that we've embedded the Z2 in the SU(2)R, and have been forced by the physics

to put the doublet in a two-dimensional representation

Z2 : ψa → σaz bψ
b, σz =

1 0

0 −1

 (3.33)

and to pair each of these fermions with two bosonic degrees of freedom, Z2 : Aµ →

±Aµ, A4 → ∓A4,Σ → ∓Σ. This gives us either an N = 1 chiral multiplet or an N = 1

vector multiplet on the boundary. More discussion and details can be found in Quirós'

TASI notes [190], and in e.g. [191, 192, 193].

In fact orbifolding can do even more symmetry-breaking for us. As mentioned

above, we can alternatively consider compacti�cation on an interval as the orbifold

S1(4πR)/(Z2(0) × Z2(πR)), which then means the two boundaries are �xed points of

independent Z2 symmetries. In particular this means we can choose di�erent embed-

dings of the Z2 in the full symmetry on the two ends y = 0, πR [194, 195]. Now let's

apply this technology to the N = 2 case we considered above. We saw we had two
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di�erent choices for nontrivial embeddings of the N = 2 into the R-symmetry to break

the supersymmetry down to N = 1 at the boundary. These correspond to choosing

which half of the �elds are even under the Z2 and so get zero-modes. Now that we have

independent Z2s on either end, we can choose these to leave di�erent N = 1 symmetries

unbroken.

In a microscopic picture, what we end up with is a theory on R3,1 × I[0, πR] where

the bulk is (N = 2)-supersymmetric and the boundaries respect di�erent N = 1 super-

symmetries. When we look at the e�ective four-dimensional theory at distances much

larger than R, we have fully broken supersymmetry with the breaking being a nonlo-

cal e�ect�one must be sensitive to physics on both boundaries in order to see the full

breaking. As a result of this nonlocality, supersymmetry-breaking is guaranteed to be

`soft' the e�ects cannot depend on positive powers of UV scales, as we will discuss fur-

ther momentarily. This leads to fantastically predictive models of BSM physics from

around the turn of the century which really do read like they have it all �gured out

[196, 191, 197, 198, 199, 192, 200, 193]. It's worth understanding these in some detail

simply because of how beautiful they are, but they uniformly lead to lots of (thus far)

unseen structure near the TeV scale as KK partners become excited.

3.2.4 Nonlocal Symmetry-Breaking

Consider a single extra circular dimension of radius R with gravity and some gauge

�eld. Upon restriction to the four-dimensional Lorentz group, those representations break

up as grav(5) → grav(4) +vec(4) + scalar and vec(5) → vec(4) + scalar. Each of these must

be massless by �ve-dimensional gauge-invariance above the scale 1/R, but below that

they can pick up mass corrections up to that cuto�. Either of these possibilities then

amounts to a mechanism for UV protection of a scalar mass. In implementing this to the
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SM, the �rst possibility is known as the Higgs being a radion�the scalar which controls

�uctuations of the size of the �fth dimension, h − δh = 〈h〉 = 1/R, and the latter is

denoted `gauge-Higgs uni�cation' for obvious reasons. A particular motivation for gauge-

Higgs uni�cation is as an extension of the strategy of grand uni�cation. As mentioned in

Section 1, the SM gauge bosons and fermions beautifully �t into representations of larger

gauge groups, but in 4d GUTs the Higgs is left out in the cold as an extra puzzle piece.

But `grand gauge-Higgs uni�cation' in 6d may allow even further frugality of ingredients.

A very interesting feature of this sort of construction is that the symmetry-breaking

which is responsible for producing the light scalar is nonlocal�one must traverse around

the �fth dimension to see the e�ects of the breaking. This should be intuitively clear, as

at distances small compared to R the theory looks like �ve-dimensional Minkowski space.

If it isn't obvious, I recommend musing by analogy on how we could tell whether or not

the universe is a sphere with radius far, far larger than the Hubble scale R� 1/H0.

As a result of this nonlocal symmetry-breaking, the scalar mass must be �nite and

calculable in the low-energy theory below 1/R. There cannot be any sensitivity to ultra-

violet energy scales ΛUV, as this corresponds to a `local counterterm', but in the theory

above 1/R we know that the mass vanishes identically by gauge invariance, so such

a counterterm cannot occur (recall our discussion in Section 1.2.1). This is powerful

because symmetry-breaking generally leaves residual logarithmic dependence on large

scales even when quadratic dependence has been eliminated, as we saw in the example

of supersymmetry above.

Of course the theory can generate �nite corrections to the mass of such a scalar at

and below the scale 1/R . If we look only at the low-energy e�ective theory then these

look divergent, but we know they must get cut o� at 1/R. Since we know the high-energy

theory we can ask how the scalar gets a mass at all, which seems to be impossible from

gauge invariance. In fact the scalar mass comes from the Wilson loop wrapping the non-
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trivial cycle around the �fth dimension [201, 202, 203, 204, 205, 206, 207].In any gauge

theory there is a gauge-invariant operator called a `Wilson loop',

WC = P exp ig

∮
C

AMdxM , (3.34)

where g is the gauge coupling, C is some closed path through spacetime, and P denotes

`path ordering' of the operators along C in similarity to the time ordering in the de�nition

of the Feynman propagator. In an Abelian theory, the gauge �eld transforms as Aµ →

Aµ − ∂µΓ(x) and we see that
∮
C
Aµdxµ →

∮
C
Aµdxµ −

∮
C
∂µΓdxµ. Integration by parts

leaves us only with gauge transformations at the endpoints of C, of which there are none

if C is a loop (equivalently if we started more generally looking at a `Wilson line', we

can say that for a loop the endpoints are connected and so their gauge transformations

cancel each other). This remains true in non-Abelian gauge theories, though we do not

go through the proof.

In our case we can consider a path which goes solely around the �fth dimension, in

which case the Wilson loop contains only our 4d scalar AMdxM → A5dx5 and yet is fully

gauge-invariant. Quantum corrections can thus generate the operator

L ⊃ σ4Tr P exp ig5

∮
A5(xµ, x5)dx5 + h.c. (3.35)

We note that on a circle the four- and �ve-dimensional gauge couplings are related as

g2
5 = Rg2

4. Proceeding naïvely and expanding A5(xµ, x5) = 1√
2πR

+∞∑
n=−∞

φ(n)(xµ)einx5/R,

we see that this operator includes a four-dimensional mass for the zero-mode,

L ⊃ σ4TrP exp ig5

∮
φ(0)(xµ)dx5 + h.c. ' σ4 cos

[
g5

√
2πR φ(0)

]
⊃ σ4g2

5R
2
(
φ(0)
)2
,

(3.36)
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where we note that the natural size for the Wilson coe�cient σ ' 1/R yields a scalar

mass expectation which is m2
φ ' g2

4/R
2, unsurprisingly as R is the only scale in the

problem.

For a successful such model of gauge-Higgs uni�cation, we need not only to get a

light scalar but also to endow that scalar with dynamics pushing it to break electroweak

symmetry[208, 196, 209, 210, 211, 212, 213, 214, 215, 216]. There is far too much rich

physics involved here to mention, but discussions of the calculation of the one-loop e�ec-

tive potential in these models can be found in [217, 218, 219]. Gauge symmetry-breaking

by a higher-dimensional gauge �eld component getting a vev is sometimes referred to as

the `Hosotani mechanism' [205, 206, 207].

As opposed to the Large Extra Dimensional model of the previous section, in these

models the extra dimensions are `universal'�all of the SM �elds can propagate around

the small dimension, not just gravitons. This means that all of our familiar �elds are the

zero modes of KK towers with spacing ∼ 1/R ∼ mH . These KK partners have the same

gauge charges, and so should be produced copiously in interactions with
√
s � 1/R, yet

none have been observed at the LHC (see e.g. [220, 221, 222, 223] for some constraints).

As a result, the lower bound on the KK scale is now far above the Higgs mass, which

makes all of these sorts of models increasingly less attractive as solutions to the hierarchy

problem.

3.3 Compositeness

We have saved for last what is, in some sense, the most obvious strategy to pursue. As

discussed in Section 1.3, the Standard Model already breaks a symmetry and generates a

mass scale in a natural manner with the chiral condensate of QCD. Perhaps Nature has

only this one trick, and repeats the same mechanism to generate the weak scale. After
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all, we mentioned above that the QCD condensate does in fact break the electroweak

symmetry, just not at the right scale.

The idea is to introduce a new gauge sector which is asymptotically free and so be-

comes strong and con�nes at the electroweak scale. If the condensate has electroweak

quantum numbers, then it breaks electroweak symmetry just as a Higgs �elds would, but

now without any Higgs. This strategy is known as `technicolor', and was proposed in its

simplest form by Weinberg [224] and Susskind [225]. A modern pedagogical introduction

can be found in TASI lectures from Chivukula [226] or Contino [227], which has heavily

in�uenced this discussion, and a more detailed classic review is from Hill & Simmons

[228]. We introduce a technicolor sector which is an SU(NTC) gauge group with ND

technicolor fundamentals which are electroweak doublets and their singlet partners, to-

gether enjoying a global SU(2)L × SU(2)R symmetry which is broken in the infrared

to SU(2)V by con�nement in the SU(NTC) sector at ΛTC ∼ v. This structure exactly

matches that of the SM QCD sector (save for the values of NTC , ND), so we expect all

the same phenomenology, for example with composite technipions appearing close to the

electroweak scale. But in this case since the technicolor chiral condensate is the leading

breaking of the gauged SU(2)L, the technipions will be predominantly `eaten' and ap-

pear as the longitudinal polarizations of our W,Z bosons. Technicolor can `Higgs' the

electroweak gauge symmetry just like a fundamental Higgs �eld would.

However, the SM Higgs not only breaks electroweak symmetry but also gives mass to

the quarks, and thus far we haven't introduced any coupling between the quarks and the

technicolor sector. To get the appropriate couplings we can embed both of these gauge

groups in a larger `extended technicolor' group, SU(NETC) ⊃ SU(3)c× SU(NTC). After

this extended group undergoes spontaneous symmetry breaking at ΛETC , the broken
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gauge bosons generate the appropriate four-Fermi interactions

L ⊃ g2
ETC

Λ2
ETC

(q̄q)(ψ̄TCψTC) +O(
∂2

Λ4
ETC

), (3.37)

and then when the technicolor group con�nes at a scale ΛTC , we see the emergence of

quark masses

mq '
g2
ETC

Λ2
ETC

〈
ψ̄TCψTC

〉
∼ ΛTC

(
Λ2
TC

Λ2
ETC

)
. (3.38)

But this clearly su�ces solely to generate a single quark mass scale, since the Yukawa

coupling is originating from a single gauge coupling, so it was quickly realized that

accounting for �avor physics required far more structure and signi�cantly larger gauge

groups [229, 230, 231, 232]. To generate the variety of quark mass scales with this

mechanism would require a cascade of breakings from SU(NETC) down to SU(3)c ×

SU(NTC). Furthermore the same massive gauge boson exchanges which generate those

needed four-Fermi operators also generate four-quark interactions (q̄q)(q̄q) which can lead

to large �avor violation.

While there were insights on how various aspects of this could be tackled, the death-

knell for technicolor came with Peskin & Takeuchi's parametrization of oblique corrections

to the two-point functions of the electroweak vector bosons from BSM physics [233].

These e�ciently parametrize deviations from the tree-level form of the vector boson

propagators, and can be simply connected with experiment. Ensuing estimates for the

sizes of these parameters in strongly-interacting models were very far from empirical

measurements [234]. The program of technicolor lives on with `walking technicolor', the

idea that the con�ning dynamics may be due to a strongly-coupled gauge theory which

behaves very di�erently from QCD [235, 236, 237, 238, 239, 240, 241]. This is too large

a digression for us to introduce, but we mention that there is interesting recent work
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relating the existence of `walking' dynamics to proximity of the theory to a �xed point

at complex value of the coupling [242, 243, 244, 245, 246].

However, there is another way that compositeness can be useful for us in securing

a light electroweak-symmetry-breaking scalar: It will allow us to realize the dream of

a pseudo-Nambu-Goldstone Higgs. Recall that whenever a continuous global symmetry

is spontaneously broken, there appear scalar Goldstone bosons πi(x) which parametrize

excitations about the vacuum state in the direction of the broken generators. Since the

theory had a global symmetry, the potential along these directions is �at, and thus the

Goldstones are massless. More strongly, they contain a shift symmetry:

L(πi(x)) = L(πi(x) + ξ) (3.39)

where ξ is independent of x. This means they may only be `derivatively coupled'; they

may appear in the Lagrangian solely as ∂µπi(x). Thus, a non-zero mass for such a scalar

is technically natural�if such an operator is present, πi is said to be a pseudo-Goldstone

and corresponds to the breaking of an approximate symmetry. This is a familiar story

in the context of the QCD condensate breaking the approximate chiral symmetry of the

quarks, leading to light but not massless pions.

In the case of technicolor, the phenomenon of con�nement of a strongly interacting

sector is directly responsible for breaking the gauged electroweak symmetry, leading to no

separation between the two scales ΛTC and v. This means the technipions are immediately

eaten, and there is no scale at which it looks like a scalar �eld is responsible for symmetry-

breaking, which leads to large electroweak precision constraints. In a general composite

Higgs scenario, we'll attempt to arrange for separation between the scale of con�nement

and the scale of electroweak symmetry breaking by having con�nement break an enhanced

global symmetry, leading to pseudo-Nambu Goldstone bosons whose masses are protected.
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We then want to radiatively generate a potential for these pNGBs, leading to them getting

a vev and breaking electroweak symmetry at a lower scale. A degree of separation between

con�nement at the scale f and EWSB at v will reduce the di�culties with electroweak

precision constraints, as this scenario returns to the SM elementary Higgs sector in the

limit v/f → 0. Even more pressing, now that we have gained experimental access

to energies close to v it's even more clear that scale separation is needed�con�ning

dynamics lead generically to lots of resonances at the scale f , which would be seen in all

sorts of ways.

The general setup is a group G of (approximate) global symmetries, of which a sub-

group H0 is gauged. We will have strong dynamics at the scale f break the global

symmetry to H1, and in full generality allow for some part of the gauge symmetries to be

broken, such that the unbroken gauge symmetry is H = H0∩H1. This leads to [G]− [H1]

Goldstone bosons (where [·] is the dimension of a group) of which [H0]− [H] are eaten by

the broken gauge bosons. The uneaten, light pNGBs transform non-trivially under the

remaining gauge symmetry H ⊃ SU(2)L × U(1)Y , so we can hope to arrange for them

to break this symmetry. In a realistic minimal model, we can have the strong dynamics

not break any gauge symmetry, H0 ⊂ H1 ⇒ H = H0. Such a minimal model may be

constructed with G = SO(5) × U(1) → H1 = SO(4) × U(1) ⊃ H0 = SU(2)L × U(1)Y

[247].

To evince the ideas in the simplest scenario possible, we'll discuss an even simpler

model for a composite pNGB which then breaks a U(1) gauge symmetry. This is just a

toy model to understand the features, which has already been kindly worked out in the

extensive review from Panico & Wulzer [248], and which we'll call a `composite Abelian

Higgs' model. To �nd the most minimal model we'll ask for a composite pNGB which

breaks the smallest continuous gauge symmetry, U(1), for which we simply need two

uneaten degrees of freedom (since a charged scalar is necessarily complex). We can
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make the even more minimal choice H0 = H1 = H, as we're not worried about having

additional unbroken global symmetries. Since [U(1)] = 1, we then just need to choose

a group G with at least [G] = 3 to get the right number of pNGBs. We'll study the

breaking SO(3) → SO(2) ' U(1), which is especially nice because we have geometric

intuition for the Lie algebras of these groups.

We'll study this using a `linear sigma model', of which the `chiral Lagrangian' de-

scribing the QCD pions is the most familiar example. Much of the general technology

was developed by Callan, Coleman, Wess & Zumino [249, 250], and some modern intro-

ductions to this technology can be found in Schwartz' textbook [26], in a pedagogical

review of Little Higgs models by Schmaltz & Tucker-Smith [251], and in exhaustive detail

in the review by Scherer [252]. The big idea is one of bottom-up e�ective �eld theory:

Given knowledge of the symmetry-breaking structure, we can cleverly parametrize our

�elds to easily see the structure of the Lagrangian which is demanded both before and

after symmetry-breaking.

In our case we must start with an SO(3)-invariant Lagrangian of a fundamental �eld

~Φ, which is a familiar 3d vector.

−L =
1

2
∂µ~Φ

ᵀ∂µ~Φ +
g2
?

8

(
~Φᵀ~Φ− f 2

)2

, (3.40)

where SO(3) rotations act as ~Φ → g · ~Φ with g = exp iαAT
A, where TA, A = 1..3 are

the generators of SO(3). The potential of ~Φ is minimized for
〈∣∣∣∣∣∣~Φ∣∣∣∣∣∣〉 = f 2, so ~Φ gets

a nonzero vev and the symmetry is broken down to rotations keeping
〈
~Φ
〉
�xed, which

is simply U(1). There are a two-sphere worth of vacua corresponding to possible angles

for
〈
~Φ
〉
, which parametrize the Goldstone directions. We can make the split between
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broken and unbroken generators explicit by parametrizing our �eld as

~Φ = exp

(
i

√
2

f
Πi(x)T̂ i

)
0

0

f + σ(x)

 = (f + σ)

sin
(

Π
f

)
~Π
Π

cos
(

Π
f

)
 (3.41)

where in the �rst equality T̂ i are the two broken generators, Πi(x) are the massless

Goldstones corresponding to �uctuations along the vacuum manifold, and σ(x) is the

massive `radial mode' giving �uctuations about the vev. We eschew writing down the

generators explicitly and assert that in this case one �nds the compact latter expression,

with Π =
√
~Πᵀ~Π . We can �nd an explicit expression for the interaction of the Goldstones

and the radial modes by simply plugging this parametrization into the Lagrangian above.

We indeed �nd a mass for σ of mσ = g?f , massless pions ~Π and a tower of all possible

interactions between these �elds which are consistent with the symmetries.

We now have a theory of massless scalars transforming under an unbroken symmetry;

our pions form a doublet of SO(2) transforming as ~Π → exp (iασ2)~Π, corresponding

to rotations about the unbroken SO(3) generator. We can complexify by introducting

H ≡ 1√
2

(Π1 − iΠ2) to view SO(2) ' U(1) as acting H → exp (iα)H. As it stands,

H is an exact Goldstone boson, so cannot pick up a potential to then itself get a vev

and break U(1). However, when we gauge a U(1) subgroup of our original SO(3) global

symmetry we're introducing explicit breaking of the symmetry and resultinglyH becomes

a pNGB and can pick up a mass. The tree-level e�ect of this gauging is simply to upgrade

derivatives to gauge covariant derivatives, ∂µ~Π→ Dµ
~Π = (∂µ − ieAµσ2)~Π.

Now as a result of SO(3) rotations no longer being an exact symmetry, H is free

to pick up a potential, which in general will be radiatively generated as a result of this

gauging. It is easy to draw diagrams in which loops of our U(1) gauge bosons generate a
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Figure 3.4: Representative diagrams contributing to the one-loop e�ective potential for
a charged scalar.

nonzero mass and quartic for H, as in Figure 3.4, and in a realistic model the corrections

from loops of top quarks will be especially important. These loop diagrams come along

with an obvious cuto�: Above the compositeness scale f , the �elds ~Φ no longer exist in

the spectrum. There is a beautiful general method for deriving the radiatively-generated

potential for H by resumming the one-loop diagrams with various numbers of external

H legs, known as the Coleman-Weinberg potential [253].

Unfortunately, absent any of other structure, �nding v/f � 1 still requires some

degree of cancellation between various contributions to the potential of H. However any

amount of v/f < 1 will help alleviate the pressure from electroweak precision observables

which thus far look empirically as expected for an elementary Higgs �eld, while still

retaining the bene�t of forbidding corrections to the Higgs mass above f . But one still

can't get away from requiring lots of structure near the electroweak scale, which has not

(yet) been observed.

There are a variety of important aspects and interesting directions we do not have the

space to discuss. Even past understanding the best sorts of group structures to which

to apply this strategy, it is clearly important to understand the sorts of �eld theories

which can con�ne to break G → H1, as well as the detailed structure of the potential

radiatively-generated by SM �elds. Then it's important to explore the possibility of a

natural structure which dictates v/f < 1�while there has been much work on this, we

mention in particular the interesting strategy of `collective' symmetry breaking in which

a symmetry is broken only by an interplay between di�erent couplings. This class of
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models is known as the `Little Higgs' [251, 254, 255, 256, 257, 258], and can be seen

as a purely four-dimensional application of the strategy of nonlocal symmetry breaking

through `nonlocality in theory space' [259, 260], which is a fascinating topic.
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Chapter 4

The Loerarchy Problem

The great tragedy of science � the slaying of a

beautiful hypothesis by an ugly fact.

Thomas Henry Huxley

Biogenesis and Abiogenesis (1870) [261]

4.1 The `Little Hierarchy Problem'

We've seen in Chapter 3 a cadre of theories which can produce a light scalar naturally,

and there's one feature all the classic approaches have in common: they predict new

states with Standard Model charges close to the mass of the Higgs. This is seemingly

inevitable simply from the structure of e�ective �eld theory�whatever extra structure

protects the Higgs mass at UV scales must be broken close to the electroweak scale to

allow the Standard Model, which does not have that extra structure. This feature means

that smashing together protons at scales much greater than the electroweak scale would

surely reveal the physics of whatever mechanism solves the hierarchy problem. And so

the Large Hadron Collider was eagerly awaited to tell us which of these ideas was correct.
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Yet even years before the LHC turned on, those who could clearly read the tea

leaves were realizing that something was amiss with our naturalness expectations (see

e.g. the `LEP paradox' [262], also [263]), and exploring the idea that supersymmetry

would not show up to solve the hierarchy problem (e.g. `split supersymmetry' [264, 265,

266]). Perhaps there was something else present which made weak-scale supersymmetry

unnecessary for protecting the Higgs.

Of course the LHC has been a fantastic success. It has con�rmed for us the existence

of a light Higgs resonance that looks SM-like, and made many great measurements of the

SM besides. But rather than revealing to us which TeV-scale new physics kept the Higgs

light, we've instead had a march of increasingly powerful constraints on new particles

which couple to the Standard Model.

These null results for physics beyond the Standard Model from run 1 of the LHC

rapidly popularized the idea that something else might be responsible for stabilizing the

Higgs mass at the electroweak scale up to a higher scale where, say, supersymmetry came

in. This line of thinking is termed the `Little Hierarchy Problem'�the idea being that

one of those classic solutions would appear at Λ ∼ 10 TeV to solve the `Big Hierarchy

Problem' and explain why the Higgs mass was not at the Planck scale, leaving a smaller

hierarchy of a couple orders of magnitude between mH and Λ unexplained. Perhaps

rather than minimal supersymmetry there was another module which provided this last

bit of protection. But this has to be a special module to protect the Higgs mass without

introducing new colored particles.

4.1.1 The Twin Higgs

The �rst such proposal in fact appeared before the LHC had even turned on. The

mirror twin Higgs (MTH) [267] introduces a second copy of the SM gauge group and
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states related to ours by a Z2 symmetry. Since these `twin' states are neutral under the

SM gauge group, they are subject only to indirect bounds from precision Higgs coupling

measurements. The two sectors are connected solely by Higgs portal-type interactions

between the two SU(2) doublet scalars.19 Subject to conditions on the quartic coupling,

the Higgs sector enjoys an approximate SU(4) global symmetry, and the breaking of this

symmetry leads naturally to a pseudo-Nambu Goldstone boson. Seemingly magically, this

structure is accidentally respected by the quadratically-divergent one-loop corrections to

the Higgs potential, and the pNGB continues to be protected through one-loop from

large corrections to its mass. The Twin Higgs thus allows the postponement of a solution

to the `Big Hierarchy Problem' until scales a loop factor 16π2 ∼ O(100) above the Higgs

mass.

While the space of Neutral Naturalness models has now been explored more thor-

oughly and we will discuss some generalities below, the mirror twin Higgs remains per-

haps the most aesthetically pleasing of all these approaches and serves as a useful avatar

for this general strategy. As a result, in Chapter 5 we consider cosmological signatures

of the MTH speci�cally, so we give here a more-detailed introduction to the twin Higgs

in particular.

The scalar potential in this model is best organized in terms of the accidental SU(4)

symmetry involving the SU(2) Higgs doublets of the SM and twin sectors, HA and HB.

The general tree-level twin Higgs potential is given by (see e.g. [268])

V (HA, HB) = λ(|HA|2 + |HB|2 − f 2/2)2 + κ(|HA|4 + |HB|4) + σf 2|HA|2. (4.1)

The �rst term respects the accidental SU(4) global symmetry, as can be seen by writing

it in terms of H = (HA, HB)ᵀ, which transforms as a complex SU(4) fundamental. The

19We return in Section 5.3 to the prospect of kinetic mixing between the two U(1)Y factors, which is
also allowed by the symmetries.

129



The Loerarchy Problem Chapter 4

second term breaks SU(4) but preserves the Z2 and the �nal term softly breaks the Z2.

In order for the SU(4) to be a good symmetry of the potential, we require κ, σ � λ.

However, the gauging of an SU(2) × SU(2) subgroup constitutes explicit breaking

of the SU(4), so we should worry about whether quantum corrections reintroduce large

masses for the would-be Goldstones when SU(4) is broken. But writing down the one-

loop corrections reveals a fortuitous accidental symmetry. The one-loop e�ective scalar

potential gets the following leading corrections from the gauge bosons at the quadratic

level:

V1−loop(HA, HB) ⊃
9g2

2,A

32π2
Λ2|HA|2 +

9g2
2,B

32π2
Λ2|HB|2 + subleading→

Z2

9g2
2

32π2
Λ2|H|2, (4.2)

where we see explicitly that if the Z2 symmetry is good at the level of the gauge couplings,

then these largest one-loop corrections continue to respect the SU(4). It is easy to see

from here by power counting that this holds for all the quadratically-divergent pieces so

long as the Z2 is a good symmetry for the interactions involved.

There is radiative SU(4)-breaking at the level of the quartic, since the Z2 symmetry

no longer su�ces to form the Higgses into an SU(4) invariant. The coupling κ should

naturally be of the order of these corrections, the largest of which comes from the Yukawa

interactions with the top/twin top, κ ∼ 3y4
t /(8π

2) log(Λ/mt) ∼ 0.1 for a cut-o� Λ ∼ 10

TeV (yt being the top quark Yukawa coupling and mt its mass). Requiring λ� κ there-

fore implies λ & 1. As the SM and twin isospin gauge groups are disjoint subgroups of

the SU(4), the spontaneous breaking of the SU(4) coincides with the SM and twin elec-

troweak symmetry breaking. This gives seven Goldstone bosons, six of which are `eaten'

by the SU(2) gauge bosons of the two sectors, which leaves one Goldstone remaining.

This will acquire mass through the breaking of the SU(4) that is naturally smaller than

the twin scale f . For future reference, it is convenient to de�ne the real scalar degrees
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of freedom in the gauge basis as hA = 1√
2
<(H0

A)− vA and hB = 1√
2
<(H0

B)− vB, where

〈H0
A〉 = vA and 〈H0

B〉 = vB.

The surviving Goldstone boson should be dominantly composed of the hA gauge

eigenstate in order to be SM-like. The soft Z2-breaking coupling σ is required to tune

the potential so that the vacuum expectation values (vevs) are asymmetric and that the

Goldstone is mostly aligned with the hA �eld direction. The (unique) minimum of the

Twin Higgs potential (4.1) occurs at vA ≈ f
2

√
λ(κ−σ)−κσ

λκ
and vB ≈ f

2

√
σ+κ
κ

. The required

alignment of the vacuum in the HB direction occurs if σ ≈ κ, which has been assumed in

these expressions for the minimum. The consequences of this are that vA ≈ v/
√

2 and

vB ≈ f/
√

2 � v (where v is the vev of the SM Higgs, although vA ≈ 174 GeV is the vev

that determines the SM particle masses and electroweak properties), so that the SM-like

Higgs h is identi�ed with the Goldstone mode and is naturally lighter than the other

remaining real scalar, a radial mode H whose mass is set by the scale f . The component

of h in the hB gauge eigenstate is δhB ≈ v/f (to lowest order in v/f). Measurements

of the Higgs couplings restrict f & 3v [269, 268], and the Giudice-Barbieri tuning of the

weak scale associated with this asymmetry is of order f 2/2v2.

The spectrum of states in the broken phase consists of a SM-like pseudo-Goldstone

Higgs h of mass m2
h ∼ 8κv2, a radial twin Higgs mode H of mass m2

H ∼ 2λf 2, a

conventional Standard Model sector of gauge bosons and fermions and a corresponding

mirror sector. The masses of quarks, gauge bosons, and charged leptons in the twin

sector are larger than their Standard Model counterparts by ∼ f/v, while the twin QCD

scale is larger by a factor ∼ (1 + log(f/v)) due to the impact of the higher mass scale

of heavy twin quarks on the renormalisation group (RG) evolution of the twin strong

coupling. The relative mass of twin neutrinos depends on the origin of neutrino masses,

some possibilities being ∼ f/v for Dirac masses and ∼ f 2/v2 for Majorana masses from

the Weinberg operator. Mixing in the scalar sector implies that the SM-like Higgs couples
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to twin sector matter with an O(v/f) mixing angle, as does the radial twin Higgs mode to

Standard Model matter. These mixings provide the primary portal between the Standard

Model and twin sectors.

The Goldstone Higgs is protected from radiative corrections from Z2-symmetric physics

above the scale f . While the mirror Twin Higgs addresses the little hierarchy problem,

it does not address the big hierarchy problem, as nothing stabilizes the scale f against

radiative corrections. However, the scale f can be stabilized by supersymmetry, com-

positeness, or perhaps additional copies of the twin mechanism without requiring new

states beneath the TeV scale. Minimal supersymmetric UV completions can furthermore

remain perturbative up to the GUT scale [270, 271].

As mentioned, the collider constraints on twin Higgs models are very mild and pertain

mostly to a lower bound on the soft breaking of the Z2. In this respect, the Twin Higgs

naturally reconciles the observation of a light Higgs with the absence of evidence for new

physics thus far at the LHC. The primary challenge to these models comes from cosmology

due to the e�ects of additional light particles on the cosmic microwave background. We

will discuss these issues in Chapter 5 and propose a natural resolution.

4.1.2 Neutral Naturalness or The Return Of The Orbifold

More broadly, the twin Higgs is just the simplest example of the more general `Neutral

Naturalness' paradigm in which the states responsible for stabilizing the electroweak scale

are not charged under (some of) the Standard Model (SM) gauge symmetries [267, 272,

273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283], thus explaining the lack of expected

signposts of naturalness.

In the symmetry-based solutions to the hierarchy problem discussed in Chapter 3,

modi�cations of the Higgs mass were technically natural as a result of a continuous
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symmetry which commuted with the SM gauge groups. This naïvely seems necessary to

ensure that the necessary degrees of freedom are present and couple to the Higgs with the

right strength to cancel divergences. How is the top quark contribution ∝ Ncyt (where Nc

is the number of colors) to be canceled if not by another colored particle with the same

coupling to the Higgs, which gives the opposite contribution? Well we saw above that

the twin Higgs nevertheless works with a quark charged under a separate gauge group.

Indeed, at one-loop Nc is really just a `counting factor' and we are free to get those three

opposite-sign contributions in a variety of ways. To some extent the space of Neutral

Naturalness models is an exercise in interesting ways to �nd that color factor. We'll be

able to see that picture more clearly in the language of orbifold projection, which will

also give us good reason to expect that these models with naïvely strange symmetries in

fact do have nice UV completions.

In Section 3.2.3 we saw how orbifolds could be useful dynamically - that is, in a�ording

a higher-dimensional, symmetric theory which at low energies looks like a less symmetric,

four-dimensional theory due to boundary conditions imposed by the orbifold discrete

symmetries. But these theories had interesting properties in their low-energy behavior

below the scale of compacti�cation; we didn't need to make reference to their origins in

studying them.

Now we want to understand the variety of low energy theories we can get very gener-

ally, but only at the level of the zero-mode spectrum. Rather than decomposing our �elds

into modes and integrating over the compact manifold and noticing that only those �elds

invariant under the orbifold symmetry are left with zero-modes, we're going to skip to

the answer and look at the spectrum of �elds left invariant under our discrete symmetry.

We'll �nd that these theories have enhanced symmetry properties at one loop.

The underlying reason lies in the `orbifold correspondence' in large N gauge theories

[284, 285, 286]. Given a `mother' �eld theory, you can create a `daughter' theory by
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embedding some given discrete symmetry in the symmetries of the mother theory and

projecting out states which are not invariant under that discrete symmetry; we call

this process `orbifolding'. Then at leading order in large N , the correlation functions

of the daughter theory match those of the mother theory. This is nothing short of

amazing�a theory with no supersymmetry to speak of can nevertheless `accidentally'

exhibit supersymmetric behavior at leading order.

The general case of the orbifold correspondence and how to construct Neutral Nat-

uralness models is beautiful and I do recommend reading [284, 273, 287], but the group

theory required for a full discussion would be too large a detour from our main narrative.

Fortunately we can get a good sense for what's going on by considering a few explicit

examples, which will not require much mathematical machinery.

Example 1: Folded Supersymmetry

Let's �rst consider the example of `Folded Supersymmetry' [273] which was the �rst

Neutral Naturalness model constructed explicitly via orbifolding. The idea is precisely

to consider a supersymmetric theory and orbifold project onto a theory with no explicit

supersymmetry but in which supersymmetric cancellations still occur at one loop. As

a pedagogical example, consider an N = 1 supersymmetric U(2N)C gauge theory with

2N �avors of left and right fundamental chiral super�elds Q = (q̃, q) which enjoy a

U(2N)F,L×U(2N)F,R global �avor symmetry. Let's decree also that the theory respects

R-symmetry. We will orbifold by the discrete group Z2 as before, but we must choose how

to embed the Z2 in each of these symmetry groups. That is, our original `mother' theory

is invariant under a large symmetry group U(2N)C × U(2N)F,L × U(2N)F,R × U(1)R,

which contains many Z2 subgroups, and we must decide precisely which Z2 we want to
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orbifold by. We choose the following embeddings:

C =

1N 0

0 −1N

 , F =

1N 0

0 −1N

 , R = (−1)F , (4.3)

where the �rst matrix is in color-space, the second is in �avor-space, and the third

transformation is by fermion number. Each of these generates a Z2 subgroup of one of

the symmetry factors of the mother theory. To see which �elds are invariant under this

Z2, we must only act them on the �elds and see how they transform. Gauge bosons

Aµ and their superpartner gauginos λ are in the adjoint of the gauge group. Indexing

A,B = 1..N separately over the two halves of the gauge indices, we have

Aµ =

Aµ,AA Aµ,AB

Aµ,BA Aµ,BB

→ C

Aµ,AA Aµ,AB

Aµ,BA Aµ,BB

C†1R =

+Aµ,AA −Aµ,AB

−Aµ,BA +Aµ,BB

 (4.4)

λ =

λAA λAB

λBA λBB

→ C

λAA λAB

λBA λBB

C†(−1)R =

−λAA +λAB

+λBA −λBB

 (4.5)

where the di�erence here is because of the di�erent R transformations. We see that

if we project down to only those states invariant under this transformation, our gauge

group dissolves from U(2N)C down to disconnected pieces U(N)C×U(N)C . We see that

embedding the Z2 non-trivially in the R-symmetry group means the daughter theory will

be non-supersymmetric. The superpartners of our gauge �elds are no longer present, but

rather the gauginos have been twisted into bifundamentals under the two gauge factors.

In the matter sector, letting a, b = 1..N similarly index the two halves of the �avor indices
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(a)
(b)

Figure 4.1: In (a), a quiver diagram for the (left-chiral �elds in) the mother theory. A
circle corresponds to a gauge symmetry and a square to a �avor symmetry. Lines between
denote bifundamentals, which here represents a full chiral supermultiplet. In (b), a quiver
diagram for the orbifold daughter theory described in the text. The gauge and �avor
groups have been divided into two distinct groups each, and the degrees of freedom in
the chiral and vector supermultiplet have been shu�ed around.

and writing the �elds as matrices in a combined color and �avor space, we have

q̃ =

q̃Aa q̃Ab

q̃Ba q̃Bb

→ C

q̃Aa q̃Ab

q̃Ba q̃Bb

F†1R =

+q̃Aa −q̃Ab

−q̃Ba +q̃Bb

 (4.6)

q =

qAa qAb

qBa qBb

→ C

qAa qAb

qBa qBb

F†(−1)R =

−qAa +qAb

+qBa −qBb

 . (4.7)

Again we see that we have broken supersymmetry. The �avor group has also broken down

to U(N)F,L × U(N)F,L and the invariant states are squarks which are bifundamentals

under `diagonal' combinations of the gauge and �avor groups, and quarks which are

bifundamentals under the `o�-diagonal' combinations.

It is not too hard to roughly see the magic of how the orbifold-projected theory

continues to protect scalar masses. Draw the one-loop the diagrams in the mother theory

which would contribute to a calculation of the mass of, say, q̃Aa, as in Figure 4.2. In

the mother theory we know there are no quadratic corrections by supersymmetry. In the
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Figure 4.2: Representative diagrams contribution to the one-loop mass correction of a
scalar in the supersymmetric mother theory. The daughter theory projects out some
of the internal states of each diagram in a pattern that is non-supersymmetric but still
enforces cancellations.

daughter theory, half of each sort of diagram will be eliminated by the orbifold projection,

so it's clear that there will still be no quadratic divergences. But because it is di�erent

internal states that have been eliminated for di�erent classes of diagrams, the daughter

theory has no supersymmetry to speak of! Again, as we saw in the example of the twin

Higgs, the magic is in that at one-loop we really only need to get the counting right, and

so we can use orbifolding to construct theories which do that in clever ways.

The structure of the theory can be succinctly summarized in a `quiver' or `moose'

diagram where the various symmetry groups correspond to nodes in a graph and the

matter is represented by links between these groups which represent their charges, as in

Figure 4.1.

Despite the fact that our daughter theory has no supersymmetry, the orbifold cor-

respondence guarantees that in the N → ∞ limit the correlation functions have full

supersymmetric protection. For �nite N the supersymmetric relations are broken, but

only by 1/N corrections. Going through this explicitly is useful, and pedagogical discus-

sions of it can be found in [284, 276].
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Example 2: The Γ-plet Higgs

We can understand the twin Higgs as the simplest example of a Γ-siblings Higgs which

is an orbifold projection SU(3Γ) × SU(2Γ)/ZΓ. We focus on the sector which contains

the Yukawa interaction of the top quark, as the top partners have the most e�ect on the

naturalness of the Higgs. In the mother theory the matter content is:

SU(3Γ) SU(2Γ) SU(Γ)

H - � �

Q � � -

u � - �

where the charges allow the operator ytHQu. The generalization of the twin Higgs

is found by embedding the ZΓ in these groups as the block-diagonal element Sn =

diag [1n,1n exp(2πi/Γ), . . . ,1n exp(2πki/Γ), . . . ,1n exp(2π(Γ− 1)i/Γ)], where n = 1, 2, 3

corresponds to which SU(nΓ) factor the element belongs to and 1n is the n× n identity

matrix. This leads to Γ SM-like sectors which are independent except for their scalar

sectors, where the Γ-plet Higgses enjoy an accidental SU(2Γ) symmetry at one loop.

The general orbifolding approach to constructing models of Neutral Naturalness was

fully laid out in [287, 276], where they in particular explore a `regular representation'

embedding of the discrete group into the continuous symmetries of the mother theory.

This approach of orbifolding to �nd low-energy models with accidental symmetries is

useful also because such models come along with guides for how to UV-complete them.

When we wrote down the twin Higgs model above, it was perhaps not obvious that there

is a nice UV completion of this theory. But now we see that the twin Higgs is an orbifold

projection of a SU(6) × SU(4) gauge theory by Z2, so we expect we can uplift this

to a �ve-dimensional UV completion where the twin Higgs emerges dynamically at low

energies from orbifold boundary conditions. So we can con�dently study solely the low-

138



The Loerarchy Problem Chapter 4

energy e�ective theory of the zero-modes we've projected out without worrying explicitly

about whether a UV completion exists.

4.2 The Loerarchy Problem

Modern particle theorists must now confront a new version of the issue of electroweak

naturalness. When originally understood, the pressing problem was understanding what

sorts of UV structure could protect a scalar from large mass corrections. Of course this

structure needed to be broken to get the SM structure in the IR and there's lots of

interesting physics and subtleties on that end as well. But with the structure of the weak

scale barely explored, the ways in which this could be done were abundant.

Over the ensuing decades we explored electroweak physics with increasing precision,

which has provided invaluable guidance for how the SM structure must appear. Gradually

the IR dynamics became more and more constrained to the point where now, as we have

emphasized, we have enormous constraints on any appearance of new physics with SM

quantum numbers up to mass scales that are often many times the electroweak scale.

We thus have a qualitative change in the electroweak naturalness issue over the past

decades. We term the modern, empirical, low-energy puzzle of electroweak naturalness

without visible structure around the weak scale as `The Loerarchy Problem', for obvious

reasons.

In this language, the little hierarchy problem is just one approach toward this problem,

which assumes that one of the classic solutions is just out of reach and another module

is needed to postpone the appearance of SM charged particles. While it's more than

worthwhile to continue looking for and exploring those theories, in the face of increasingly

powerful LHC data in excellent agreement with the Standard Model it's worth thinking

transversely. As intriguing as the Neutral Naturalness models are, these classes of models
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rely on one-loop accidents and so do not completely relieve the empirical pressure from

a lack of new physics at the energy frontier. Such models are gradually also being

constrained by the LHC, so what else are we to do? The maximalist interpretation of

the LHC data is that Nature may be leading us to the conclusion that there is no new

physics at the weak scale. With every inverse femtobarn of LHC data without a signal of

new physics, the impetus for such a paradigm shift becomes stronger.

But how can we generate a scale without additional structure appearing surrounding

it? Within the context of e�ective �eld theory, decoupling theorems demand that if the

RG evolution is to change around a scaleM it must be due to �elds close to the scaleM .

This was perhaps clearest in dim reg with MS, where the beta functions explicitly change

solely at mass thresholds, though the Wilsonian approach is more useful for physical

intuition. So how are we to break this feature? This undertaking is the maximalist

approach to the Loerarchy Problem.

4.3 Violations of E�ective Field Theory

There are more things in heaven and earth, Horatio,

Than are dreamt of in your philosophy.

William Shakespeare

Hamlet, c. 1600 [288]

The line of thought we suggest here is that perhaps the apparent violation of EFT

expectations at the weak scale is a sign of the breakdown of EFT itself. Depending

on how much background in particle physics one has this statement may seem more or

less heretical, but the idea is not as radical as it may at �rst seem�for one reason, the

cosmological constant problem has inspired sporadic reexaminations of the validity of
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e�ective �eld theory in our universe for decades.

The cosmological constant problem is the �ne-tuning issue with the other dimension-

ful parameter in the Standard Model. Just as with the Higgs mass, there is no protective

symmetry in the Standard Model for the vacuum energy, and so the natural expectation

is Λ ∼ M4
pl, some 120 orders of magnitude higher than observations suggest. However

there's an important di�erence in the severity of these problems�for the Higgs, as em-

phasized in Section 2.2.1, the worrisome mass corrections are those from new physics.

This is why the severity of the problem has only ratcheted up in recent years, as we have

seen nothing to protect the Higgs from BSM mass corrections. But for the vacuum en-

ergy, there are �nite, calculable, physical contributions in the Standard Model itself! For

a start, EWSB by the Higgs yields a contribution ∼ −v4, and chiral symmetry-breaking

yields a contribution ∼ −Λ4
QCD. How is it that these can be nearly perfectly canceled o�

in the late universe?

There have been important attempts to address the cosmological constant problem

with a violation of e�ective �eld theory, from Coleman's suggestion [289] that nonlocality

induced by wormholes may allow the early universe to be sensitive to late-time require-

ments to Cohen-Kaplan-Nelson's suggestion [290] that the Bekenstein bound demands

an infrared cuto� on the validity of any EFT. From one perspective, our suggestion to

extend this philosophy to the hierarchy problem appears natural in light of its apparent

need in cosmology. We can point to an even-more-general motivation with the realization

that gravity necessarily violates EFT.

4.3.1 Gravity and EFT

The perturbative quantum �eld theory of the Einstein-Hilbert Lagrangian is quite

clearly an e�ective �eld theory of a symmetric two-index tensor �eld which obeys dif-
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feomorphism invariance and with power counting in 1/Mpl [291], as we can easily see by

writing it out and expanding around �at space gµν = ηµν + hµν :

−LEH =
1

2M2
pl

√
g R ∼ ∂2h2 +

1

Mpl

∂2h3 +
1

M2
pl

∂2h4 + . . . (4.8)

where we have only given the schematic form of the operators in terms of the number of

derivatives and linearized gravitational �elds they contain, as the full expressions quickly

become complicated [292, 293]. This e�ective �eld theory will be a good approximation

to infrared gravitational physics until we get to energies close to the Planck scale, at

which point the higher-dimensional operators are unsuppressed and we need a UV com-

pletion. From this bottom-up approach it's not clear why gravity should be particularly

special. But we can get some insight at a very basic level by thinking about gravitational

scattering.

Let's compare two e�ective �eld theories: the four-Fermi theory of the weak interac-

tion below the weak scale G−1/2
F and the perturbative theory of quantum gravity below

the Planck mass. If we consider scattering two leptons at
√
s � G

−1/2
F , we can make

very precise predictions by computing in the four-Fermi theory�the possible �nal states,

the di�erential cross-section; whatever we'd like. And similarly if we scatter two particles

at
√
s � Mpl, we can compute to high precision in quantum gravitational corrections

what will happen.

Now inversely, imagine scattering two leptons at
√
s � G

−1/2
F in the four-Fermi

theory. At a scale like 1015G
−1/2
F , the EFT has obviously broken down and we can say

essentially nothing about what this process will look like�any calculation we tried would

be hopelessly divergent, and we have no idea what sorts of states might exist at energies

that large.

However, what if we scatter two particles at
√
s � Mpl, say a ridiculously trans-
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Planckian scale like 1015Mpl? In this case, in fact, we know what will happen to incredi-

ble precision�a black hole will form! This will be a `big' black hole of mass �Mpl with

a lifetime of order days. It will be well-described by classical general relativity for some

macroscopic time, and then semiclassical GR for an O(1) fraction of the full lifetime. In

fact, unless you are interested in incredibly detailed measurements which involve collect-

ing essentially every emitted Hawking quanta (of which there will be n ∼ 1030 in this

case!) and �nding their entanglement structure, we know how to describe the evaporation

nearly completely.20

So something profoundly weird is going on. The key point being that in gravity,

the far UV of the theory is controlled by classical, infrared physics. This is obviously a

feature that we do not see in other EFTs.

This is not a new idea; it has long been known that gravity contains low-energy e�ects

which cannot be understood in the context of EFT. The fact that black holes radiate

at temperatures inversely proportional to their masses [295] necessitates some sort of

`UV/IR mixing' in gravity�infrared physics must somehow `know about' heavy mass

scales in violation of a naïve application of decoupling. As a perhaps-more-fundamental

raison d'être for such behavior, the demand that observables in a theory of quantum

gravity must be gauge-(that is, di�eomorphism-)invariant dictates that they must be

nonlocal (see e.g. [296, 297, 298, 299, 300]), again a feature which standard EFT tech-

niques do not encapsulate. In view of this, the conventional position is that EFT should

remain a valid strategy up to the Planck scale, at which quantum gravitational e�ects

become important. But once locality and decoupling have been given up, how and why

are violations of EFT expectations to be sequestered to inaccessible energies? Indeed, the

`�rewall' argument [301] evinces tension with EFT expectations in semiclassical gravity

20I recommend Giddings' Erice lectures [294] for more on the perspective of quantum gravitational
behavior as a function of the Mandelstam variables.
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around black hole backgrounds at arbitrarily low energies and curvatures, as does recent

progress �nding the Page curve from semiclassical gravity [302, 303, 304, 305, 306, 307].

That quantum gravitational e�ects will a�ect infrared particle physics is likewise

not a new idea. This has been the core message of the Swampland program [308],

which has been cataloging�to varying degrees of concreteness and certainty�ways in

which otherwise allowable EFTs may conjecturally be ruled out by quantum gravitational

considerations. These are EFTs which would look perfectly sensible and consistent to an

infrared e�ective �eld theorist, yet the demand that they be UV-completed to theories

which include Einstein gravity reveals a secret inconsistency. While this is powerful

information, the extent to which the UV here meddles with the IR is relatively minor�

just dictating where one must live in the space of infrared theories. Even so, they have

been found to have possible applications to SM puzzles, including the hierarchy problem

[91, 92, 93, 94, 95, 96, 97, 98, 11, 5, 99].

Let us review brie�y the approach to connect the Weak Gravity Conjecture (WGC)

[309] to the hierarchy problem. The WGC is one of the earliest and most well-tested

Swampland conjectures, its formulation is relatively easy to understand, and it's em-

blematic of the way one might try to connect the hierarchy problem to Swampland

conjectures in general.

The prime motivation for formulating the WGC was the well-known folklore that

quantum gravity does not respect global symmetries. The simple argument for this fact

is that `black holes have no hair'�the only quantum numbers a black hole has correspond

to its mass, spin, and gauge charges. This means that if we make a black hole by smashing

together a bunch of neutrons, there is no reason why it cannot decay into solely photons,

which violates the global U(1)B−L symmetry of the SM but no gauge symmetries. The

authors suggested that the fact that Abelian gauge symmetries smoothly become global

symmetries as the gauge coupling vanishes means that something must go wrong with
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very small gauge couplings as well, so as for the physics to be smooth in this limit.

Another line of thinking for quantum gravity not respecting global symmetries, which

connects more closely to the WGC formulation, is based on entropic arguments. If global

symmetries could be exact, then we could create a big black hole with an arbitrary

global charge, and wait a very very long time while it Hawking evaporates down to the

Planck scale. Unlike gauge charges, the global charge does not a�ect the metric, so the

black hole does not shed this charge as it evaporates. We then end up with a Planck-sized

black hole with an arbitrarily large global charge, which would necessitate the existence of

arbitrarily-many black hole microstates for a �xed-mass black hole. But this is a disaster!

In calculating a scattering amplitude one has to sum over all possible intermediate states,

in principle including black holes. These e�ects are surely Boltzmann-suppressed by

enormous amounts, but if there are an in�nite number of possible black holes then any

nonzero contribution from a single black hole will lead to a divergence. A cuter (albeit

somewhat tongue-in-cheek) `hand waving argument' is provided by [310]: Were there

incredibly large numbers of super-Planckian states which could populate a thermal bath,

a vigorous wave of your hand would produce them in Unruh radiation, and you could

feel them against your hand.

Now if we have a gauge symmetry, there are no longer Planck-sized black holes with

arbitrarily large charge because there is an extremality bound: g|Q| ≤ M/Mpl, with

Q the gauge charge and M the mass, in units of the gauge coupling g and the Planck

mass. If this were violated, a naked singularity would appear. But for a very tiny gauge

coupling, while we no longer have strictly in�nitely-many black holes at each mass, there

are still an enormous number of black hole microstates for a Planck-sized black hole as

g → 0. So a worry like the hand-waving argument still applies.

This sort of reasoning motivated Arkani-Hamed, Motl, Nicolis, and Vafa to conjecture

that just as quantum gravitational theories must not have exact global symmetries, they
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must also su�er some physical malady which disallows the limit where Abelian gauge

symmetries become global symmetries. Their conjecture has two forms: The `magnetic'

conjecture dictates that a quantum gravitational theory with a U(1) gauge symmetry

must be enlarged into a theory allowing magnetic monopoles by a cuto� Λ . gMpl,

which connects to such a description never being valid in the limit g → 0. The `electric'

form of the WGC is that such a theory must contain a particle which is `super-extremal'�

it has charge greater than its mass gqMpl > m. The existence of such a particle would

destabilize the extremal, charged black holes, allowing them to decay.

Well this super-extremality bound should look very interesting to us, as it provides an

upper bound on a mass scale. While we cannot apply this directly to the Higgs because

it is not charged under any unbroken Abelian gauge symmetries, we know that one of

the Higgs' jobs is to provide mass to other particles. So if the weak gravity conjecture

bound must apply to some state φ with mass mφ = yv, with v the Higgs vev, then this

still amounts to a bound on the electroweak scale.

This was suggested in the context of gauged U(1)B−L with very tiny coupling giving

an upper bound on the lightest neutrino mass [91], but the magnetic form of the WGC

is di�cult to deal with in this context. This can be circumvented by introducing a new

dark Abelian gauge group U(1)X and charged states which get (some of) their mass from

the Higgs [5].

The way such a model solves the hierarchy problem is by changing the shape of our

prior for the electroweak scale, as mentioned in Section 2.2.2. As naïve e�ective �eld

theorists with no information about quantum gravity, we assumed some sort of �at prior

in [−Mpl,Mpl]. But in fact much of this space is ruled out by quantum gravitational

constraints, consisting of theories `in the Swampland', meaning that our prior should be

reshaped to include only values which can actually be produced by a theory of quantum

gravity. This is how much of the connection from Swampland conjectures to the real
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world has worked schematically: one says that Quantum Gravity demands one live in a

subregion of the EFT parameter space.

In theory far more �agrant violations of low-energy expectations are permissible�that

is, the extent to which quantum gravitational violation of EFT will a�ect the infrared

of our universe is not at all certain. Of course any proposal to see new e�ects from a

breakdown of EFT must contend with the rampant success of the SM EFT in the IR.

Certainly a violation of EFT must both come with good reason and be deftly organized

to spoil only those observed EFT puzzles. For the former, the need for quantum gravity

is obviously compelling. As to the latter, it is interesting to note that the most pressing

mysteries involve the relevant parameters in the SM Lagrangian.

Ultimately, our ability to address the hierarchy problem through quantum gravita-

tional violations of EFT is limited by our incomplete understanding of quantum gravity.

This motivates �nding non-gravitational toy models that violate EFT expectations on

their own, providing a calculable playground in which to better understand the potential

consequences of UV/IR mixing. In Chapter 7 we pursue the idea that UV/IR mixing

may have more direct e�ects on the SM by considering noncommutative �eld theory

(NCFT) as such a toy model. These theories model physics on spaces where translations

do not commute [311, 312], and have many features amenable to a quantum gravitational

interpretation�indeed, noncommutative geometries have been found arising in various

limits of string theory [313, 314, 315, 316].
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Chapter 5

Neutral Naturalness in the Sky

In the beginning the Universe was created.

This has made a lot of people very angry and

been widely regarded as a bad move.

Douglas Adams

The Restaurant at the End of the Universe

(1980) [317]

5.1 Particle Cosmology

It is an amazing and serendipitous fact that the universe started o� hot. As a result of

the initially high energies and densities, the details of microscopic physics greatly a�ected

the large-scale evolution of the universe. Since the speed of light is �nite, by looking out

in the sky at enormous distances we can not only learn about the history of the universe

but we can use this information to learn about particle physics. While cosmology doesn't

give us probes of arbitrarily high temperatures, there's still a humongous amount to be

learned�in part due to further serendipity. The fact that the universe transitions from
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radiation domination to matter domination shortly before recombination means that

the cosmic microwave background (CMB) encodes information both about the light,

radiation-like degrees of freedom as well as the matter density in the early universe. Had

radiation domination ended far before recombination, it would be far more di�cult to

use the CMB to constrain light degrees of freedom like extra neutrinos. Had radiation

domination ended far after recombination, there would be little evidence of dark matter

in the CMB, which is the strongest evidence for particle dark matter instead of, say, a

modi�cation of gravity at large distances. In fact such a cosmic coincidence also occurs

much later, as there is a very long epoch of matter domination before the universe

transitions to dark energy domination. Were there just slightly less dark energy, its

e�ects would be essentially invisible thus far in the history of the universe, and it would

be very di�cult to measure dark energy at all.

All that is to say that there is enormous value in collaboration between particle physics

and cosmology. In this chapter we investigate this connection for the twin Higgs model

in particular, though our �ndings are relevant for general Neutral Naturalness theories as

well. In Section 4.1.1 we noted that the energy frontier does not e�ectively probe these

theories. Since they do not introduce new particles with Standard Model charges, it is

only precision electroweak measurements made at colliders that constrain them at all.

However, such theories are in fact probed very well by cosmology, as they introduce new

light degrees of freedom. Despite the fact that these do not directly interact with normal

matter, their gravitational e�ects still contribute to the evolution of the universe, and so

the CMB provides a powerful constraint on new light particles.

It is this cosmological e�ect that provided the biggest obstacle to the original twin

Higgs proposal [267], which became an urgent issue after the null results of run 1 of

the LHC and the increased interest in models where the lightest states responsible for

Higgs naturalness were SM-neutral. The landmark approach taken in [268] was to pare
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the model down to a `minimal' version where only those states necessary for Higgs nat-

uralness appeared in the twin spectrum. This revived the twin Higgs as a solution to

the little hierarchy problem, and their `fraternal' version brought about many interesting

phenomenological possibilities.

The `fraternal twin Higgs' has a twin sector consisting�at energies below its cuto��

solely of the third generation of fermions, and with ungauged twin hypercharge. This

brilliantly removes all light particles from the spectrum, so their e�ects would not cause

trouble in the early universe. But this approach leaves perhaps a niggling unpleasant

taste for those worried about parsimony. Yes the fraternal twin Higgs introduces fewer

new particles than the mirror twin Higgs, so a naïve desire to solve problems with few

ingredients might suggest that this is a windfall. However, the mirror twin Higgs really

consists of only two `ingredients': a Z2 symmetry and some soft breaking to misalign the

resulting Higgs vevs�whereas the fraternal twin Higgs has much more structure.

While those statements seem to be of a very subjective sort, we can ground this

unease in physics by considering what's needed to UV-complete such a model. At the

cuto� of this model Λ ∼ 10 TeV, we need the Z2 to still be a relatively good symmetry

among the largest couplings in the twin sector�that is, the gauge couplings g2, g3 and the

top Yukawa yt�such that the cancellation of contributions from the two sectors to the

Higgs potential works well. Yet in other parts of the theory we have done great violence

to the structure of the theory, having broken twin hypercharge and removed parts of the

spectrum. How are we to ensure �rstly that the correct degrees of freedom gain large

masses, and secondly that this does not radiatively feed into the remaining light degrees

of freedom?

In the midst of this digression, I should mention a terminological confusion. In the

literature, the phrase `mirror twin Higgs' often refers to models in which the full collection

of twin degrees of freedom are present in the low-energy theory, regardless of how much
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Z2-breaking is present. Judicious introduction of such asymmetries has been used to

create models which avoid cosmological issues by making all the twin fermions heavy,

while still staying within the technical de�nition of the mirror twin Higgs. But this is an

overreliance on a de�nition; the fraternal twin Higgs is merely a limit of these theories

in which the Z2-breaking is severe enough to push some degrees of freedom above the

cuto�. The real distinction between classes of Neutral Naturalness models should be

between those which break the Z2 only minimally and those which do greater violence

to the symmetry. It is this distinction which classi�es the di�culty involved in �nding a

UV completion.

Now let me emphasize that this is not to undercut the value of such a model. After all,

the Yukawa interactions in the Standard Model badly break the large global symmetries it

would otherwise have. Indeed, the fraternal twin Higgs showcased interesting phenomena,

pointed to new general experimental probes, and provided a basis for many intriguing

lines of research. In fact we will return to this model in Chapter 6 to study a novel

collider search strategy to which it lent credence and which turns out to be a broadly

useful probe of many theories of BSM physics. Despite the fact that the vast, vast

majority of theory papers written in particle physics will not ultimately be the exact

right model of the universe, they still contain value. They may guide experimental

searches toward interesting classes of signals to look for, or teach us new things about

the range of particle phenomenology or quantum �eld theories. Regardless, we obviously

don't know in advance which model will be correct, so exploring all possible directions is

crucial.

Yet when there is the possibility for a more parsimonious model, it's certainly worth

pursuing that option. This is the philosophy that led to my collaborators and me looking

into the prospect of attaining a realistic twin Higgs cosmology that respected the Z2

symmetry.

151



Neutral Naturalness in the Sky Chapter 5

5.2 Asymmetric Reheating

5.2.1 Introduction

The primary challenge to the mirror Twin Higgs comes not from LHC data, but from

cosmology. An exact Z2 exchange symmetry predicts mirror copies of light Standard

Model neutrinos and photons states, which contribute to the energy density of the early

universe. In particular, twin neutrinos and a twin photon provide a new source of dark

radiation that is strongly constrained by CMB and BBN measurements [318, 319]. While

these constraints could be avoided if the two sectors were at radically di�erent tempera-

tures, the Higgs portal couplings required by naturalness keep the two sectors in thermal

equilibrium down to relatively low temperatures.

Constraints on dark radiation in the mirror Twin Higgs have motivated models in

which the Z2 symmetry is approximate [276, 287, 320, 321, 322, 268, 280, 323, 324, 325,

326], in which case the dark radiation component can be made naturally small. These

models have proved to be a boon for phenomenology. Among other things, they quite

generally motivate looking for Higgs decays to long-lived particles at colliders [327, 328,

329, 330, 12, 331, 10, 332] and contain well motivated dark matter (DM) candidates [333,

334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344]. However, such cosmological �xes

come at the cost of minimality, as models with approximate Z2 symmetries require a

considerable amount of additional structure near the TeV scale.

In this work we take an alternative approach and investigate ways in which early

universe cosmology can reconcile the mirror Twin Higgs with current CMB and BBN

observations. In doing so, we �nd compelling scenarios that transfer the signatures of

electroweak naturalness from high-energy colliders to cosmology. We consider several

possibilities in which the energy density of the light particles in the twin sector is diluted

by the out-of-equilibrium decay of a new particle after the two sectors have thermally
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decoupled. Crucially, the new physics in the early universe respects the exact (albeit

spontaneously broken) Z2 exchange symmetry of the mirror Twin Higgs. This symmetry

may be used to classify representations of the particle responsible for this dilution. We

concentrate on two minimal cases: In the �rst, the long-lived particle is Z2-even and the

asymmetry is naturally induced by kinematics. In the second, there is a pair of particles

which are exchanged by the Z2 symmetry and which may be responsible for in�ation.21

Moreover, in these cases the new physics does not merely reconcile the existence of a

mirror twin sector with cosmological constraints, but predicts contributions to cosmolog-

ical observables that may be probed in current and future CMB experiments. This raises

the prospect of discovering evidence of electroweak naturalness �rst through cosmology,

rather than colliders, and provides natural targets for future cosmological constraints on

minimal realizations of neutral naturalness.

The next sections are organized as follows: In Section 5.2.2 we discuss the thermal

history of the mirror Twin Higgs, with a particular attention to the interactions keeping

the Standard Model and twin sector in thermal equilibrium and the cosmological con-

straints on light degrees of freedom. In Section 5.2.3 we present a simple model where the

out-of-equilibrium decay of a particle with symmetric couplings to the Standard Model

and twin sector leads to a temperature di�erence between the two sectors after they

decouple. We turn to in�ation in Section 5.2.4, constructing a model of �twin�ation�

in which the softly broken Z2-symmetry extends to the in�ationary sector and leads to

two periods of in�ation. The �rst primarily reheats the twin sector, while the second

primarily reheats the Standard Model sector. We conclude in Section 5.2.5.

21A third case exists, in which the particle is Z2-odd. This may additionally be related to the spon-
taneous Z2-breaking in the Higgs potential, although we �nd that a realisation of such a scenario is
dependent upon the UV completion of the model.
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5.2.2 Thermal History of the Mirror Twin

The primary challenge to the mirror Twin Higgs comes from cosmology, rather than

collider physics. The mirror Twin contains not only states responsible for protecting

the Higgs against radiative corrections (such as the twin top), but also a plethora of

extra states due to the Z2 symmetry that are irrelevant to naturalness. The lightest of

these, namely the twin photon and twin neutrinos, contribute signi�cantly to the energy

density of the early universe around the era of matter-radiation equality, since they have

a temperature comparable to that of the Standard Model plasma at all times. This is

because the same Higgs portal coupling that makes the Higgs natural also keeps the

two sectors in thermal equilibrium down to O(GeV) temperatures. Then the identical

particle content in the twin and Standard Model sectors guarantees that they remain at

comparable temperatures even after they decouple - for every massive Standard Model

species that becomes non-relativistic and transfers its entropy to the rest of the plasma,

its twin counterpart does the same within a factor of f/v in temperature.

In this section we undertake a detailed study of the decoupling between the Standard

Model and twin sectors as well as the constraints from precision cosmology.

Twin Degrees of Freedom

In thermal equilibrium, each relativistic degree of freedom has roughly the same

energy density. In general, we express the energy density of the universe ρ during the

radiation-dominated era as ρ ≡ g?
π2

30
T 4, where we de�ne g? through this relation as

the e�ective number of relativistic degrees of freedom and T the temperature of the

SM photons. This then determines the evolution of the scale factor through the �rst
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Friedmann equation

H =
1

Mpl

[
π2

90
g?T

4

]1/2

(5.1)

(assuming spatial �atness), whereMpl is the reduced Planck mass. In general, the energy

density of a particular species i may be computed from ρi = gi
∫

d3p
(2π)3fi(p, Ti)E(p), where

gi are the number of internal degrees of freedom, E(p) is the energy as a function of

momentum p, while fi(p, Ti) is the phase-space number density and is a Bose-Einstein or

Fermi-Dirac distribution if the species is in equilibrium at temperature Ti. The number of

e�ective relativistic degrees of freedom may then be de�ned for each sector separately as

gSM? (T ) and gt?(T ) satisfying ρSM(T ) = π2

30
gSM? (T )T 4 and ρt(T ) = π2

30
gt?(T )T 4, respectively,

where ρSM(T ) and ρt(T ) are the total energy densities of SM and twin particles. The

values of g?(T ) for the SM and twin sectors are shown in Figure 5.1, where all species

within each sector are in thermal equilibrium. These can then be used to calculate the

total number g? as a function of temperature, by weighting twin sector energy density

by its temperature: g?(T ) = gSM? (T ) + gt?(T̂ )(T̂ /T )4, where T̂ is the twin sector photon

temperature when the SM photon temperature is T .

Likewise, entropy densities for each sector i are de�ned as si(T ) = 2π2

45
gi?(T )T 3. We

neglect the small di�erences between the number of relativistic degrees of freedom de�ned

from energy and entropy densities, which are not signi�cant over the range of tempera-

tures of interest here.

Decoupling

In the early universe, the two sectors are thermally linked by interactions medi-

ated by the Higgs, which, through mixing with both hA and hB components, allows for

SM fermions and weak bosons to scatter o� or annihilate into their twin counterparts.
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Figure 5.1: The e�ective number of relativistic degrees of freedom for mirror Twin Higgs
models for di�erent values of f/v. The dash-dotted line is the for the Standard Model
gSM? (T ) and the dashed lines are the twin sector degrees of freedom gt?(T ). The evolution
of g? during the QCD phase transition (QCDPT) is not well-understood, so we assign the
SM QCDPT a central value of 175 MeV and a width of 50 MeV and interpolate linearly
between the values of g? at 225 MeV for free partons and at 125 MeV for pions. Further
discussion may be found in [345]. For the twin sector we use a central value and width
which are (1 + log(f

v
)) times larger than the SM values. Note that new mass thresholds,

expected to appear at energies ∼ 10 TeV in UV completions of the twin Higgs, have not
been included.

However, once the temperature drops su�ciently for this Higgs-mediated interaction to

become rare on the expansion time-scale, the sectors decouple and thereafter thermally

evolve independently. More precisely, thermal decoupling will occur once the rate at

which energy can be exchanged between SM and twin particles (through the Higgs) falls
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below the Hubble rate.

Thermal decoupling is traditionally formulated from the Boltzmann equations de-

scribing the evolution of single-particle phase space number densities, wherein collisions

induce instantaneous changes to the shape of these distributions. When the collisions

occur faster than the expansion rate, the phase space probability density functions of

the interacting species are expected to relax to an equilibrium distribution (Boltzmann,

neglecting quantum statistics, will be applicable to our case). However, once the rate

of collisions falls below the expansion rate, collisions become rare on cosmological time

scales and the phase space distributions depart from equilibrium. The decoupling tem-

perature is determined as that at which the scattering rate of a participating particle, Γ,

drops below the Hubble rate, assuming that this occurs instantaneously across the entire

phase space where the number density is signi�cant. This formulation can be used to

determine the time at which a particular species of particle will cease to scatter o� twin

particles on cosmological time scales.

In the case of interest here, however, both sectors of particles remain thermalised

within themselves while the interactions between sectors freeze-out. This implies that the

phase space number densities are still Boltzmann distributions throughout decoupling,

with a di�erent temperature for each sector. As it is the twin sector temperature that

ultimately determines the impact of the light twin degrees of freedom on the cosmological

observables (discussed below in Section 5.2.2), we wish to describe the thermal evolution

of the two sectors by that of their entire energy or entropy content and the bulk heat

�ows between them. They may then be identi�ed as thermally decoupled once the rate

at which they exchange energy falls below the expansion rate.

If the SM and twin sector plasmas have temperatures T and T̂ respectively, then

calling q the net heat �ow density from the SM to the twin sector, the rate at which the
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twin entropy densities st and sSM evolve is determined by

dst
dt

+ 3Hst =
1

T̂

dq

dt
=

1

T̂

(dqin
dt
− dqout

dt

)
(5.2)

dsSM
dt

+ 3HsSM =
−1

T

dq

dt
= − 1

T

(dqin
dt
− dqout

dt

)
. (5.3)

Here, H is the Hubble rate. The heat �ow rate has been decomposed into the sum of the

energy transferred into and out of the twin sector by collisions in the second equality in

each line, where dqin
dt

and dqout
dt

are both positive.

The rate of heat �ow q may be calculated by performing a phase space average of

the rate that energy is transferred from the SM to the twin sector through particle

interactions. Since the decay rates of top quarks or weak bosons are fast compared to

their scattering rate and the Hubble rate, energy transferred to them is instantaneously

transferred to the rest of the plasma. Similarly, the scattering rate of lighter fermions

o� other particles of the same sector (such as photons or gluons) is much faster than

their interaction rate with twin fermions. Energy transferred to the lighter fermions

therefore quickly di�uses throughout their respective plasmas. The rate of heat �ow

between sectors may therefore be well approximated by the rate at which energy is

transferred from SM particles to twin particles in Higgs mediated interactions. This

may occur through elastic scattering of SM particles o� twin particles or annihilations

of SM particle/antiparticle pairs into twin particles (or the reverse). The energy density

transferred to twin particle i from SM particle j in scattering is given by

dqij→ij
dt

=
gigj

(2π)6

∫ ∫
d3k

2Ei(k)

d3h

2Ej(h)
fi(k, T̂ )fj(h, T )

4Ei(k)Ej(h)

∫
vrel(Ei(p)− Ei(k))

dσij→ij
dΩ

dΩ, (5.4)

where p is the outgoing 4-momentum of particle i. In the cosmic comoving frame, the
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phase space number densities fi and fj are just Boltzmann factors, although evaluated

at the di�erent temperatures of each sector. The factor gi is the number of internal

degrees of freedom of particle i, which here includes colour (the cross section should not

be colour averaged, as each colour of quark is present in the plasma in equal abundances

and each mediates the exchange of energy, so have their contributions summed). Finally,

Ei(k) is the on-shell energy of particle i with momentum k, while dσij→ij
dΩ

is the di�erential

scattering cross section for species i scattering o� j per solid angle Ω and vrel is the usual

relative speed of the incoming particles. As described in [?], the factor in the integrand

giving the energy transferred per reaction is simply a component of a 4-vector,

X = 4Ei(k)Ej(h)

∫
(p− k)vrel

dσij→ij
dΩ

dΩ. (5.5)

This may be calculated in the centre-of-mass frame and then boosted back into the cosmic

comoving frame where the integrals in (5.4) can be evaluated, similarly to the thermal

averaging procedure described in [346].

The integral (5.4) may be decomposed into two terms giving the positive and negative

energy changes of the twin particle, which respectively contribute to dqin
dt

and dqout
dt

. When

evaluated in the centre-of-mass frame, these terms correspond to the cases where the

scattering angle of the twin particle is respectively less than and greater than the angle

between its initial momentum and the total momentum of the system. However, when

T 6= T̂ , we �nd the integrals involved in this decomposition substantially more arduous

than when they are evaluated together.
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Energy transferred through annihilations may be similarly calculated as

dqjj̄→īi
dt

=
g2
j

(2π)6

∫ ∫
d3k

2Ej(k)

d3h

2Ej(h)
fj(k)fj(h)

4Ej(k)Ej(h)

∫
vrel(Ej(h) + Ej(k))

dσjj̄→īi
dΩ

dΩ

− g2
i

(2π)6

∫ ∫
d3k

2Ei(k)

d3h

2Ei(h)
fi(k)fi(h)

4Ei(k)Ei(h)

∫
vrel(Ei(h) + Ei(k))

dσīi→jj̄
dΩ

dΩ, (5.6)

where
dσjj̄→īi
dΩ

is now the di�erential annihilation cross section. This rate may be evaluated

as described above and is more directly amenable to the factorisation of the integrals

observed in [346]. See also [347] for further details of similar calculations. The �rst term

of (5.6) is the energy transferred from the SM to the twin sector and contributes to dqin
dt

in (5.2), while the second term is the energy transferred from the twin sector to the SM

and contributes to dqout
dt

.

In thermal equilibrium, the rate of energy transferred through collisions into one

sector will be balanced by that of energy transferred out of it so that there is negligible

net heat �ow. This state will be rapidly attained (compared to the age of the universe)

if dqin,out
dt
� 3HT̂st. However, as the universe expands and the plasma cools, the energy

transfer rates fall faster than the Hubble rate. This is demonstrated in the Figure 5.2

below. Once they drop below the Hubble rate, energy exchange ceases on cosmological

time scales and the sectors thermally decouple, thereafter thermodynamically evolving

independently.

To determine the decoupling temperature of the sectors, we calculate the rates of pos-

itive energy exchange for the twin particles interacting with the SM particles. The cross

sections are calculated using a tree-level e�ective fermion-twin fermion contact interac-

tion that, in the full twin Higgs model, would be UV completed by a SM Higgs exchange
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(the heavier mass of the radial mode would make its exchange subdominant). The in-

teraction strength is determined by the masses of the fermions through their Yukawa

couplings, as well as the mixing angle of the SM-like mass state h with the gauge eigen-

state hB, giving a 4-fermion coupling of strength
mfmf̂
m2
hf

2 (here mf and mf̂ are the masses

of fermions f and f̂). See [270], [323] for a more detailed discussion of the cross sections.

This e�ective interaction is appropriate for the temperatures of interest here and helps to

simplify the integrals of (5.4). In order to further simplify the integrations of (5.4) when

it is to be decomposed into terms in which the energy exchange is positive and negative,

we calculate dqin
dt

under the assumption that the sectors have the same temperature (this

ensures that the rate dqout
dt

is identical). This is then combined with the rate of energy

transferred from annihilation. A similar calculation of these rates was recently performed

in [323], for cases where the Yukawa couplings do not respect the Z2 twin symmetry.

In Figure 5.2 we compare the energy transfer rate to the Hubble rate in order to

determine when decoupling occurs. As long as the energy exchange rate exceeds the ex-

pansion rate, the sectors will be thermalised and have the same temperature. Decoupling

then occurs once this rate drops below the Hubble rate. From Figure 5.2, this occurs

at a temperature ∼ 2 GeV. However, even after the energy exchange rate drops below

the Hubble rate, the sectors will remain at the same temperature unless some event that

either injects or redistributes entropy occurs within a sector (such as the temperature

dropping below a mass threshold). As the heavy quark masses roughly coincide with

the decoupling temperature, these do cause the twin sector to be mildly reheated with

respect to the SM below decoupling. However, the resulting temperature di�erence is

small and the energy exchange rates are expected to continue to be well-approximated

by the rates presented in Figure 5.2 beyond decoupling.

The lower plot of Figure 5.2 illustrates the decomposition of the energy exchange

rates into contributions from interactions involving di�erent SM quarks. The interaction
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cross sections are proportional to the Yukawa couplings of the interacting fermions. The

greatest heat exchange is therefore expected to be mediated by the most massive particles,

provided that their abundances are not too Boltzmann suppressed. As expected, at

temperatures ∼ 1 GeV, the bottom quark is the best conduit of thermal equilibration,

followed by the charm quark and then the τ (with colour factors enhancing the former two

with respect to the latter). The rate of heat �ow that the top quarks and weak bosons can

mediate at these temperatures (or below) is negligible because of Boltzmann suppression.

The bend in the curves at temperatures ∼ 5 GeV in the lower plot corresponds to

a transition from temperatures where the dominant energy exchange rate is through

scatterings to those where it occurs through annihilations, as can be seen in the upper

plot. The annihilation rate into twin bottom quarks is the dominant component at high

enough energies (again because of the larger Yukawa coupling), but this becomes rapidly

threshold suppressed as the temperature drops. As can also be inferred in the upper plot,

the energy exchange rate through annihilations involving the twin charmed quarks and

tau leptons overtakes that of twin bottom quarks at similar temperature, but are still

subdominant to scatterings.

The decoupling temperature depends upon f/v, which sets both the mass scale of

the twin sector and the strength of the Higgs-mediated coupling. As f/v is increased,

decoupling occurs earlier because of the greater Boltzmann suppression, although this is

only a relatively small e�ect that, for f/v = 10, increases the decoupling temperature by

only 4 GeV.

When the twin sector is colder than the SM (which will be important for much of

what follows) the heat �ow is typically dominated by annihilations of SM into twin

particles. However, the energy exchange from elastic scattering can be comparable to

that from annihilations, as illustrated in Figure 5.2. Although the energy exchange in an

annihilation will generally exceed that of a scattering because all of the energy involved
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Figure 5.2: Rates of energy density exchange per twin entropy density ( 1

3stT̂

dqin
dt
) de-

composed into contributions from scattering and annihilation (top) and for interactions
involving di�erent species of SM fermions (bottom), along with the Hubble parameter,
for f/v = 4. The decoupling temperature is that where the sum of the energy exchange
rates equals the Hubble rate, which occurs at Tdecoup ≈ 2 GeV.

in the process must be transferred, the annihilation rate also becomes more Boltzmann

or threshold suppressed when the temperature drops below the mass of the heavier twin
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particles. It is therefore not always clear that energy transfer through annihilations

dominates.

Decoupling is not exactly instantaneous and there is some range of temperatures over

which the rate of heat �ow freezes-out. The net heat �ow rate dq
dt
is greater for larger tem-

perature di�erences between sectors. The generation of a potentially large temperature

di�erence within this brief epoch of sector decoupling, such as those discussed below in

Section 5.2.3, may be cut o� when the heat �ow rate becomes comparable to the Hubble

rate. For a given SM temperature T , the minimum twin-sector temperature T̂min during

the decoupling period may be roughly estimated as that which satis�es

H ∼ 1

3stT̂

dq

dt

∣∣∣
T̂=T̂min

. (5.7)

Twin temperatures colder than T̂min will partially thermalise back to this value. As

the participating fermions are not non-relativistic, instantaneous decoupling is not as

accurate an approximation as it is, for example, for chemical decoupling of a WIMP,

although it is still reliable.

In Figure 5.3, we show the minimum temperature that the twin sector may have as

a function of SM temperature for heat �ow to freeze out, estimated using (5.7). Only

annihilations have been included in the determination of the minimum temperature,

although we have veri�ed that, for these temperatures, the scatterings contribute only

. 10% to the heat �ow. Note that while the energy exchange rate, such as 1

T̂

dqin
dt

in

(5.2), in scattering processes may be faster, the net energy �ow rate, or heat �ow ( 1

T̂

dq
dt
in

(5.2)), which is the di�erence between energy exchange rates into and out of the sector,

is actually dominated by annihilations. Generally, we �nd that decoupling begins at

temperatures ∼ 4 GeV. The temperature di�erence can reach an order of magnitude

without relaxing once the SM temperature drops to ∼ 1 GeV.
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Figure 5.3: Minimum temperature of the twin sector that will not be heated by inter-
actions with a hotter SM plasma, as a function of SM temperature, for f/v = 4. Also
shown is the SM temperature, for reference.

While the extent of thermal decoupling is temperature dependent, the maximum

temperature di�erence that will not relax grows quickly as the SM temperature drops.

Then we may describe the two sectors as being decoupled if, in a given cosmology, all

events that raise the temperature of one sector relative to the other (such as the crossing

of a mass threshold and the resulting entropy redistribution, the most signi�cant of which

is the con�nement of colour) induce temperature di�erences that are too small to partially

relax.

At energies . 1 GeV in Figure 5.2, the reliability of the calculation of the heat �ow

rate diminishes because of the strengthening of the strong coupling and the eventual

con�nement of colour. Fortunately, for a cooler twin sector, which will be of interest in

subsequent sections, annihilations from the SM dominate other processes over most of

the parameter space. These are the least sensitive to higher order corrections and non-

perturbative e�ects because of their higher temperature, and hence energy, compared

to the potentially cooler twin sector. The range of temperatures illustrated in Figures
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5.2 and 5.3 have been selected to roughly illustrate the duration of decoupling, but

may extend below the range where the perturbative calculation of the heat �ow rate is

valid. For example, at temperatures below the twin sector QCDPT, which occurs at

∼
(
1 + log(f

v
)
)
higher temperatures than in the SM, the partonic calculation of twin

quark/anti-quark pair production must be replaced by a hadronic one. Furthermore, the

growth of the twin strong coupling necessitates that the quark-Higgs Yukawa couplings

be RG evolved to the scale of the energy exchanged, which can induce an O(1) change

to the cross section, although this has only a relatively small e�ect on the decoupling

temperature. It is nevertheless clear that decoupling is mostly complete by then and that

these uncertainties are not large enough to a�ect this conclusion.

In the standard mirror Twin Higgs cosmology, knowing the decoupling temperature

tells us how the temperatures of the two sectors will be related at subsequent times.

The sectors separately evolve adiabatically after decoupling, though they redshift in the

same way and di�erences in temperature only arise from events that redistribute entropy.

Non-minimal cosmological events that could potentially cause the temperatures of each

sector to diverge can therefore only be e�ective if they leave each sector colder than this

approximate decoupling temperature.

Cosmological Constraints

Given that the twin and Standard Model sectors remain in thermal equilibrium to

O(GeV) temperatures, the simplest mirror Twin Higgs scenario is cosmologically invi-

able due to the presence of light twin species (photons and neutrinos) with abundances

comparable to those of the SM. The cosmological observables through which evidence of

light species may be inferred are typically represented by Ne�, the �e�ective number of

neutrino species� in the early universe; their individual masses, which determine their

free-streaming distances; and the �e�ective mass� me�
ν , which parameterises their contri-
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bution to the present-day energy density of non-relativistic matter. These observables

are probed by both the CMB and large scale structure (LSS).

E�ective number of neutrinos The parameterNe� describes the amount of radiation-

like energy density during the evolution of the CMB anisotropies before photon decou-

pling. It is de�ned as the e�ective number of massless neutrinos with temperature as

predicted in the standard cosmology that would give equivalent energy density in radia-

tion:

ρr = ργ +
7

8

(
4

11

)4/3

Ne�ργ, (5.8)

where ρr is the energy density of radiation and ργ is the energy density of photons (the

factor of
(

4
11

)4/3

arises from the relative reheating of the photons from electron/positron

annihilation, which occurs after most of the neutrinos have decoupled, and the factor of

7/8 is from the opposite spin statistics). A deviation from the Standard Model predic-

tion of 3.046 [348] is denoted by ∆Ne� = Ne� − 3.046. This de�nition of radiation, or

equivalently, relativistic degrees of freedom, becomes less clear if the new �elds have a

non-negligible mass, as we discuss further below.

We here review the CMB physics of dark radiation, summarising the discussion in

[349]. See also [318] for further review. The angular size and scale of the �rst acoustic

peak is well-measured and this approximately �xes the scale factor at matter-radiation

equality aeq. If we imagine �xing all other ΛCDM parameters, extra radiation would

delay the epoch of matter-radiation equality. This would have a pronounced e�ect on

the power spectrum in the vicinity of the �rst acoustic peak through the early Integrated

Sachs-Wolfe (eISW) e�ect. The modes corresponding to this feature entered the horizon

close to matter-radiation equality and the evolution of their potentials is highly sensitive

to the radiation energy density. However, the impact of a ∆Ne� ∼ O(1) deviation on the
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peak height can be simultaneously balanced by increasing the amount of non-relativistic

matter, to the extent to which other observations providing independent constraints

upon Ωc permit (for ΛCDM+Ne�, a variation of ∼ 10% in Ωch
2 is consistent with present

CMB+BAO measurements [318], although these variations must be consistent with other

observables). This degeneracy is not expected to be broken by CMB-S4 [350].

Given that aeq is approximately �xed, the utility of Ne� arises because, in simple ex-

tensions of the ΛCDM model, it approximately corresponds to the suppression of power

in the small scale CMB anisotropies that arises from Silk damping. The reason for this is

roughly that, although the greater expansion rate induced by the extra radiation reduces

the time that CMB photons have to di�use before decoupling, it also reduces the sound

horizon size more severely. As the angular size of the sound horizon is determined by

the location of the acoustic peaks and is also well measured, the reduction in the sound

horizon must be compensated for by a reduction in the angular diameter distance to the

CMB. This e�ectively raises the angular distance over which photon di�usion proceeds

and results in a prediction of smoother temperature anisotropies at small scales. This

correspondence with the Silk damping allows Ne� to be approximately factorised from

other parameters and constrained independently, providing a direct observational avenue

for detecting the presence of new, massless �elds [349] (see [351] for further implications

for model building). This relationship arises because the �xing of aeq implies that Ne�

e�ectively determines the energy density of the universe, and hence the Hubble rate, dur-

ing CMB decoupling. Note, however, that further extensions of ΛCDM may complicate

this correspondence, in particular deviations from the standard Big Bang Nucleosynthesis

prediction of the primordial helium abundance.

The contribution to Ne� (or ∆Ne�) in the mirror Twin Higgs arises from two sources:

the twin photons, which can be treated as massless dark radiation with an appropriate

twin temperature T t
eq at the time of matter-radiation equality, and the twin neutrinos,
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whose non-zero masses may need to be accounted for. For the twin photons, the con-

tribution to Ne� is simple; their equation of state is always w = 1/3 and their energy

density is given by g π
2

30

(
T t
eq

)4
, where g = 2. The twin temperature at matter-radiation

equality is found from the SM temperature using comoving entropy conservation,

T t
eq

T SM
eq

=

(
gt?(Tdecoup)

gSM? (Tdecoup)

)1/3
(
gSM? (T SM

eq )

gt?(T
t
eq)

)1/3

, (5.9)

where the two sectors have the same number of thermalized degrees of freedom by this

time. Here, T SM
eq is the SM photon temperature at matter-radiation equality and Tdecoup

is the sector decoupling temperature.

Since neutrinos are massive, their behavior is more complicated. Their equation of

state parameter takes on a scale factor dependence which is controlled by their mass.

In the Standard Model, this sensitivity is negligible because present CMB bounds imply

that neutrinos are ultra-relativistic at aeq to good approximation [318]. However, the

factor by which the twin neutrino masses are enhanced may raise them to order T teq or

greater (see Section 4.1.1 for discussion of the scaling of the masses with f/v).

To better describe the impact of the extra twin (semi-)relativistic degrees of freedom

on the CMB, we choose to de�ne Ne� through the e�ects of neutrinos at matter-radiation

equality, when the impact on the expansion rate of the universe for most of the period

relevant for the evolution of the CMB is greatest. Note that, in their presentation of joint

exclusion bounds on Ne� and
∑
mν (the sum of SM neutrino masses) or me�

ν (e�ective

mass contributing to the present-day non-relativistic matter density of an extra sterile

neutrino), the Planck collaboration de�ne Ne� as the value in (5.8) at temperatures

su�ciently high that the neutrinos are fully relativistic. Our values cannot be directly

compared with their analysis, although we consider ours to be a reasonable rough estimate

that is more representative of the CMB constraints. The ensuing correction from the �nite
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neutrino masses is, in the cases considered in this work, a small e�ect anyway.

To determine this correction and provide a de�nition of Ne� that better describes the

impact of quasi-relativistic particles on the CMB, we �rst de�ne the epoch of matter-

radiation equality as the time at which the average equation of state parameter of the

universe is w̄ = 1/6 (the equation of state is de�ned as ρ = w̄P , where ρ is energy density

and P is pressure). We can express this condition as

d lnH

d ln a

∣∣∣∣
aeq

= −7

4
, (5.10)

as in [352].

Call the quasi-relativistic neutrino energy density ρ̃(a) with time-evolving equation of

state parameter w(a), which is to be balanced against some extra non-relativistic energy

density ∆ρCDM(a) ∝ a−3 to keep aeq the same. This amount of non-relativistic energy

density ∆ρCDM is

∆ρCDM(aeq) = ρr(aeq)− ρm(aeq)− 2aeq
dρ̃

da

∣∣∣∣
aeq

− 7ρ̃(aeq), (5.11)

where ρr and ρm are the energy densities of the radiation and non-relativistic matter.

For a perfect �uid, dρ̃
da

= −3(1 + w(a))ρ̃/a (neglecting the anisotropic stress that is

expected only to contribute to a weak phase shift in the CMB [353]), this results in a

Hubble parameter of

H2(aeq) =
2

3M2
pl

[ρr(aeq) + 3w(aeq)ρ̃(aeq)] . (5.12)
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This suggests a de�nition of the e�ective number of neutrinos, Ne�, via

H2(aeq) =
2

3M2
pl

(
ργ +Ne�ρ

th
ν,m=0

)∣∣
aeq

(5.13)

Ne� ≡
∑
i

wi
1/3

ρi
ρthν,m=0

, (5.14)

where ρi is the contribution to the energy density from some species i with equation of

state parameter wi and ρthν,m=0 is the energy density of a massless neutrino with a thermal

distribution in the standard cosmology. Then 3w gives the `relativistic fraction' of the

energy density. Note that this is simply a ratio of the pressure exerted by the new �elds

to that of a massless neutrino. The e�ectiveness of this approximation was discussed in

[354] in the context of thermal axions (while e�ective at keeping aeq �xed, changes to

odd peak heights subsequent to the �rst are imperfectly cancelled and require further

changes to H0 to compensate - see Section 5.2.2 below).

Calling T iν the temperature at which the neutrinos in sector i freeze-out and aiν the

corresponding scale factor, then assuming instantaneous decoupling, the phase space

number density for scale factor a is given by a redshifted Fermi-Dirac distribution [355]

f iα(p) ≈
[
1 + epa/(a

i
νT

i
ν)
]−1

(5.15)

for the α neutrino mass eigenstate in the i sector (mi
α � T iν , so has been dropped). The

energy density and pressure are

ρiνα =
gα
2π2

∫ ∞
0

dp p2

√
p2 + (mi

α)2 f iα(p) (5.16)

P i
να =

gα
2π2

∫ ∞
0

dp
p4

3
√
p2 + (mi

α)2
f iα(p), (5.17)

where gα = 2 is the number of degrees of freedom for a neutrino species.
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Since the neutrino decoupling temperature depends on the strength of the weak in-

teraction as Tν ∝ G
−2/3
F , while GF ∝ v2, then the twin neutrino decoupling temperature

T t
ν is related to the SM neutrino decoupling temperature T SM

ν by

T t
ν = (f/v)4/3T SM

ν . (5.18)

We can then simply use (5.16) and (5.17) at matter-radiation equality to �nd ∆Ne�

(assuming instantaneous decoupling). We thus obtain

H2(aeq) =
2

3M2
pl

(
ρSMγ + 3.046ρthν,m=0 + ρtγ +

∑
α

3wναρ
t
να

)∣∣∣∣∣
aeq

(5.19)

and

∆Ne� =

(
11

4

)4/3
120

7π2 (T SM)4

(
ρtγ +

∑
α

3wtναρ
t
να

)
, (5.20)

where we now have equation of state parameters wνα for each neutrino, while ρSMγ and

ρtγ are the SM and twin photon energy densities, ρthν,m=0 and ρ
t
να are the neutrino energy

densities.

Neutrino masses Because they are so weakly interacting, the neutrinos have a long

free-streaming scale given by the distance travelled in a Hubble time vν/H, with vν ∝ m−1
ν

the speed of the neutrino once it becomes non-relativistic. This de�nes a free-streaming

momentum scale kfs =
√

3
2
aH
vν
∝ mν , above which neutrinos do not cluster. Below

this scale, perturbations in the matter density consist coherently of neutrinos and other

matter, but well above it only non-neutrino matter contributes to density perturbations.

This results in a suppression of the matter power spectrum on large scales which is

proportional to the fraction of energy density in the free-streaming matter. Since this
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occurs at late times when neutrinos are non-relativistic, the energy density is simply

ρνα = nναmνα for each neutrino species α, where nνα is the number density. Constraints

on the sum of neutrino masses then come from the observations of power on small scales,

which is suppressed relative to that expected for massless neutrinos by a factor ∝∼ 1−8fν ,

where fν = Ων/Ωm is the fraction of non-relativistic energy in neutrinos at late times

[356].

More generally, inferences of the matter power spectrum constrain the present-day

energy density fraction of free-streaming species that do not cluster on small scales and

have since become non-relativisitic, Ων = (
∑
mν + me�

ν )/(94.1 eV), where
∑
mν is the

sum of SM neutrino masses and me�
ν is the sum of twin neutrino masses weighted by their

number density

me�
ν =

ntν
nSMν

∑
α

mt
να . (5.21)

Here ntν is the number density of a relic twin neutrino �avour and nSMν is that for a SM

neutrino. It is assumed that the neutrinos have been thermally produced as hot relics.

The relic abundance of a neutrino species is given by its number density when it

decoupled, diluted by the factor by which the universe has since expanded. The scale

factors at which neutrino decoupling occurs in the two sectors, aSMν and atν can be deter-

mined from (5.18), the relative temperatures in the two sectors and comoving entropy

conservation, to obtain

atν = aSMν

(
v

f

)4/3(
gt? (Tdecoup)

gSM? (Tdecoup)

)1/3

(5.22)

where the same mass thresholds have been assumed in each sector below their neutrino

decoupling temperatures, so that gSM?
(
T SM
ν

)
= gt? (T t

ν). The neutrino number densities
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are then

ntν
nSMν

=

(
T t
νa

t
ν

T SM
ν aSMν

)3

=
gt? (Tdecoup)

gSM? (Tdecoup)
. (5.23)

For f/v from 3 to 10 and using Tdecoup ∼ 2− 6 GeV from Section 5.2.2, we �nd

gt? (Tdecoup) / g
SM
? (Tdecoup) ∼ 0.8 and thus arrive at

me�
ν ≈ 0.8

(
f

v

)n∑
α

mSM
να , (5.24)

where n = 1 for Dirac masses and n = 2 for Majorana masses.

If they are su�ciently light and hot, the twin neutrinos only a�ect the CMB as dark

radiation and their masses may then only be inferred from tests of the matter power

spectrum. However, if heavier and colder, they are better described as a hot dark matter

component. Their impact on the CMB is discussed in [357], where the shape of the

power spectrum can depend upon the individual neutrino kinetic energies through their

characteristic free-streaming lengths. The early Integrated Sachs-Wolfe e�ect (eISW) is

also sensitive to the masses if the neutrinos become non-relativistic during decoupling

(thereby a�ecting the radiation energy density and the growth of inhomogeneities) [356].

There is a signi�cant degeneracy in cosmological �ts to the CMB between Ωm and H0

(the Hubble constant) [?], where raising the non-relativistic matter fraction, such as with

nonrelativistic neutrinos, can be accommodated by a decrease in H0 (or equivalently, the

dark energy density), which keeps the angular diameter distance to the CMB approxi-

mately �xed. This degeneracy can be broken by measurements of the baryon acoustic

oscillations (BAOs), which are sensitive to the expansion rate of the late universe and

provide an independent measurement of Ωm and H0. It is through combination with

these results that bounds from Planck on neutrino masses are strongest [318].
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Bounds The authors are unaware of any specialised analysis of the present and pro-

jected future cosmological constraints on scenarios with both massless dark radiation

and additional light, semi-relativistic sterile neutrinos. In the absence of this, we use

bounds from [318] as a rough indication of the present level of sensitivity to these pa-

rameters, which we nevertheless expect to be a reliable indication of the (in)viability of

this model. The 95% con�dence limits on these parameters are Ne� = 3.2 ± 0.5 and∑
mν < 0.32 eV when each are constrained separately with the other �xed. This, of

course, overlooks correlations between the impacts of masses and ∆Ne� on the CMB and

LSS. Bounds on an additional sterile neutrino as the only source of dark radiation are

also presented with number density, or equivalently, contribution to ∆Ne�, left to �oat.

These are similar to the limit on
∑
mν . It was found in [358] that, allowing

∑
mν and

me�
ν to �oat independently for a single extra sterile neutrino, the bound mildly relaxes

to me�
ν . 1 eV, although the bound may be stronger depending on the combination of

data sets chosen (the lensing power spectrum presently prefers higher neutrino masses

and raises the combined bounds if included). Other bounds from LSS on
∑
mν exist and

are potentially stronger than those placed from the CMB, possibly as low as me�
ν . 0.05

eV, again depending on data sets combined (see [359], [360]), although these are subject

to greater uncertainties in the inference of the power spectra of dark matter halos from

galaxies surveys and the Lyα forest.

It must also be noted that the shape of the CMB temperature anisotropies depends

upon both the mass of individual neutrino components (through their free-streaming

distance) and their contribution to the energy density of the nonrelativistic matter that

does not cluster on small scales. However, it is not expected that improvements in bounds

on the former will be made from improved measurements of the primary CMB itself,

but rather from weak lensing of the CMB, in conjunction with future measurements

from DESI of the BAOs to break degeneracy with Ωm. The lensing spectrum, like
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inferences of the matter power spectrum made in galaxy surveys, is expected to measure

the suppression of small scale power and therefore to strengthen constraints upon me�
ν ,

rather than the individual neutrino masses. One of the goals of CMB-S4 will be the

detection of neutrino masses, given the present lower bound
∑
mν & 0.06 eV from

oscillations. Projected bounds are as low as ∼ 0.02 eV [350], although this assumes

no extra dark radiation or sterile neutrinos. A projection of the joint bound on Ne�

(from extra massless dark radiation) and me�
ν combining improved measurements CMB

temperature measurements, lensing and BAOs indicates a limit of me�
ν . 0.1 eV at 1σ

[350]. Any contribution from additional states to me�
ν may therefore be testable and

bounded by the excess of the neutrino mass inference over the minimum neutrino mass,

although laboratory measurements or measurements of ∆Ne� will be required to further

ascertain the contribution from the new particles.

Constraints on ∆Ne� from improved measurements of the damping tail as part of

CMB-S4 are projected to be ∼ 0.02− 0.05 at 1σ [350]. In the following sections, we use

an optimistic estimate of 0.02 for its reach in order to identify as much of the potentially

testable parameter space as possible.

To estimate the impact of current and projected CMB limits on the mirror Twin Higgs,

we consider two scenarios: the minimal Standard Model neutrino mass spectrum of mν =

[0.0, 0.009 eV, 0.06 eV] and a degenerate spectrum ofmν = [0.1 eV, 0.1 eV, 0.1 eV] /3 from

[318]. In Figure 5.4 we plot the predictions of the mirror Twin Higgs for ∆Ne� and me�
ν

for both types of spectra, as well as for both Dirac and Majorana masses (which scale

di�erently with f/v). As is plainly evident, the mirror Twin Higgs is ruled out cosmolog-

ically, no matter the choices of neutrino masses one makes, if only for the presence of the

twin photon. In the standard cosmology, the twin sector will have roughly the same tem-

perature as the SM, giving 4.6 . ∆Ne� . 6.3 for f/v < 10, according to the de�nition of

(5.20). This range depends upon f/v through the twin neutrino decoupling temperature
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Figure 5.4: Predicted values of ∆Ne� and
∑
mν + me�

ν for minimal and degenerate
neutrino mass spectra with both Dirac and Majorana masses for f/v from 3 to 10. The
Planck 2015 constraint[318] is the dashed line; the corresponding Ne� upper bound is
well below the bottom of the plot. All points are excluded by the combination of bounds
on ∆Ne� and

∑
mν +me�

ν .

(5.18), which determines the extent to which the twin photons are reheated relative to the

twin neutrinos after twin electron/positron annihilations. This is su�ciently large that

even the cold dark matter fraction cannot be adjusted to keep matter-radiation equality

�xed, resulting inevitably in changes to the height and shape of the �rst acoustic peak.

The energy density in neutrinos is predicted to be above the present observational upper

bounds for most neutrino mass con�gurations, with the exception of the minimal values

permitted by neutrino oscillation measurements with f/v . 6. We therefore discuss
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cosmological mechanisms in which the twin radiation is diluted to levels compatible with

these observational bounds in the subsequent sections of this paper.

5.2.3 Reheating by the decay of a scalar �eld

We now turn to simple scenarios that reconcile the mirror Twin Higgs with cosmo-

logical bounds, while taking care to respect the softly-broken Z2 symmetry. We begin

with the out-of-equilibrium decay of a particle with symmetric couplings to the Standard

Model and twin sectors, in which the desired asymmetry is generated kinematically. That

is to say, the dimensionless couplings between the decaying particle and the two sectors

are equal, and asymmetric energy deposition into the two sectors is a direct consequence

of the asymmetric mass scales. In this respect, the scenario is philosophically similar to

Nnaturalness [361], albeit with a parsimonious N = 2 sectors. See also [362], [363] and

[347] for other recent related ideas of using long-lived particles for the dilution of dark

sectors.

For simplicity, here we will focus on the case of a real scalar X coupled symmetrically

to the A and B sector Higgs doublets. Due to the di�erence in masses between the sectors

after electroweak symmetry breaking, simple kinematic e�ects give X a larger branching

ratio into the Standard Model. This occurs over a range of X masses within a few decades

of the weak scale. If X decays out-of-equilibrium below the decoupling temperature of

the two sectors, this injects di�erent amounts of energy into the two sectors, e�ectively

suppressing the temperature of the twin sector relative to the Standard Model. This

relative cooling suppresses the contribution of the light degrees of freedom of the mirror

Twin Higgs to below cosmological bounds. Insofar as the asymmetry is driven entirely

by kinematic e�ects arising from v � f , the resulting temperature inequality between

the two sectors is proportional to powers of v/f .
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The requisite suppression of the twin sector temperature relative to the Standard

Model temperature necessitates that the X dominate the cosmology before it decays.

Our main discussion will follow the simplest case of an X which dominates absolutely

before it decays, comprising all of the energy density of the universe and e�ectively acting

as a `reheaton'. Afterwards, we will discuss the possibility of a `thermal history' for X

� a scenario where X is in thermal equilibrium with the two sectors, then chemically

decouples at some high temperature and grows to dominate the cosmology before it

decays. This scheme will result in additional stringent constraints on the viable parameter

space.

Asymmetric Reheating

A Z2-even scalar X which is a total singlet under the SM and twin gauge groups

admits the renormalisable interactions

V ⊃ λxX(X + x)
(
|HA|2 + |HB|2

)
+

1

2
m2
XX

2, (5.25)

where mX is the mass of X (neglecting corrections from mixing that will be shown below

to be tiny), λx is a dimensionless coupling and x is a dimensionful parameter, which one

may imagine identifying as a vacuum expectation value (vev) of X in an UV theory.

Note that these interactions preserve the accidental SU(4) symmetry of the Twin Higgs.

The X �eld may additionally possess self-interactions, which we omit here as they do

not play a signi�cant role in what follows.

The interactions in (5.25) allowX to decay into light states in the Standard Model and

twin sectors. If X reheats the universe through out-of-equilibrium decays, the reheating

temperatures of the two sectors will be determined by its partial decay widths, assuming

that the decay products do not equilibrate. In the instantaneous decay approximation,
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X decays when the Hubble parameter falls to its decay rate ΓX ∼ H. As we will show in

Section 5.2.3, in order to evade cosmological constraints we need the X to decay mostly

into the SM, so we may estimate ΓX ∼ Γ(X → SM). Then the energy that was contained

in the X is transferred into radiation energy density, with the resulting temperature of

the radiation given by (see [364])

T ∼ 1.2

√
ΓXMpl√

g?
(5.26)

where g? is the e�ective number of relativistic degrees of freedom, as de�ned in Section

5.2.2, of the particles that are being reheated. Our numerical calculation of the reheating

temperature, which will be presented in Section 5.2.3, indicates that the approxima-

tion T ∼ 0.1
√

ΓXMpl reliably reproduces the reheating temperature over the range of

interest.

As shown in Section 5.2.2, the two sectors thermally decouple when the temperature

falls below Tdecoup ∼ 1 GeV, so reheating must take place to below this temperature. At

even lower temperatures, big bang nucleosynthesis (BBN) places strong constraints on

energy injected into the SM at temperatures below O(1− 10) MeV [365]. Requiring that

the SM reheating temperature is above ∼ 10 MeV, these constraints on the SM reheating

temperature become constraints on the decay rate of the X into the SM, which in the

above approximation becomes

5× 10−21 GeV . ΓX . 3× 10−16 GeV. (5.27)

This then constrains the couplings λx and x of the X to the Higgs sector. Importantly,

it means that X must couple very weakly, in order to be long-lived enough to reheat to

a low temperature, as will be shown below.
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The asymmetry in partial widths arises from di�erent e�ects depending upon the

mass of X. For masses below the SM Higgs threshold, it is predominantly di�erences in

mass mixing with the two Higgs doublets that produces the asymmetry, where the size

of the mixing angles determines the e�ective coupling of X to the SM and twin particles

and therefore its branching fractions. For masses below the twin scale, the relative size

of the mixing scales inversely with the vevs in each sector. Thus the hierarchy v � f

already present in the Higgs sector can automatically gives rise to a hierarchy in partial

widths. Note that additional threshold e�ects can enhance the asymmetry further, in

particular whenX has mass above threshold for a signi�cant decay channel in the SM, but

below the corresponding mass threshold in the twin sector. Decays into on-shell Higgses

complicate this picture further. In what follows, we �rst give an analytic calculation of

the mass mixing e�ect, then present a more precise calculation of the decay widths into

each sector.

To lowest order, X decays via its interactions with the SM and twin Higgs, and only

to other fermions and gauge bosons through its mass mixing with the Higgs scalars.

Expanding the X potential after the SU(4) is spontaneously broken, the mixing term

between X and hA in the scalar mass matrix is
√

2 λxxvA, while that between X and hB

is
√

2 λxxvB. The hA and hB components of the X mass eigenstate, which we denote

respectively as δXA and δXB, can then be determined. The expressions for the mixing

angles are in general complicated, but they simplify in limits mX < f and mX � f :

(δXA, δXB) ≈


4λxxvA
m2
X−m

2
h

(
1√
2
, vA
f

)
mX < f

λxxf
m2
X

(√
2 vA
f

, 1
)

mX � f

(5.28)

to lowest order in (v/f)2 and κ/λ. The partial width for the decay of X into SM states
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(excluding the Higgs) is

Γ(X → SM) ≈ |δXA|2 Γh(mh = mX), (5.29)

where Γh(mh = mX) denotes the decay width of a SM Higgs if it were to have mass

mX . Note that the Higgs partial width must be computed using the vev vA ≈ v/
√

2 to

determine the masses and couplings of the SM particles. The partial width of the X into

twin states is computed the same way using δXB and the vev vB ≈ f/
√

2 .

From the mixing angles (5.28), it is already apparent over what mass range asym-

metric reheating from X decays will work. These give

Γ(X → SM)

Γ(X → Twin)
∼


f 2/v2

A � 1 mX < f

v2
A/f

2 � 1 mX � f.

(5.30)

Thus when the mass of X is less than the twin scale, the Standard Model will be reheated

to a higher temperature than the twin sector, but in the large mass limit this mechanism

works in the opposite direction and would appear to lead to preferential reheating of the

twin sector.

More precise statements about the relative branching ratios and resulting temper-

atures require additional care. In addition to decaying through mass mixing, X can

decay into the Higgs mass eigenstates themselves if above threshold. As the energy is

ultimately transferred to the SM and twin sectors, we then need to consider how these

states decay and account for the further mixing of the Higgs mass eigenstates into Higgs

gauge eigenstates.

For mX > 2mh, decay can occur into the lighter (SM-like) Higgs mass eigenstate h
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with partial width

Γ(X → hh) ≈ λ2
xx

2

16πmX

√
1−

(
2mh

mX

)2

. (5.31)

Similarly, for mX > 2mH , decays can proceed into HH with a similar partial width,

but with the h mass replaced with that of the H. Above the intermediate threshold

mX > mh +mH , there is also the mixed decay

Γ(X → hH) ≈ λ2
x

2πmX

√
1−

(
mH +mh

mX

)2

(fδAX + 2vAδBX)2. (5.32)

Here, δAX ≈ −δhAδXA − δhBδXB is the component of the hA gauge eigenstate in the X

mass eigenstate and δBX ≈ δhBδXA − δhAδXB is the corresponding component of the hB

gauge eigenstate, where δhA and δhB are, respectively, the components of the SM Higgs

in the hA and hB gauge eigenstates to zeroth order in λx. Combining all ingredients, this

decay width is of order λ4
xx

2. Since it is only the total decay width that is constrained to

be small by the demand that the SM reheating temperature lie in the required window,

this �xes only a product of λx and x. If x ∼ v, then the mixed decay to hH is e�ectively

second order in the small coupling λ2
x and can be neglected relative to the other partial

widths. Conversely if x� v, then λx is much larger and this decay cannot be neglected.

In what follows we will work in the region of parameter space where mixed decays to hH

are negligible.

The rate of heat �ow into each sector may be well approximated by adding the decay

rates of X into each channel and weighting these by the fraction of energy transferred

into the particular sector. Of course, when X decays into Higgs particles, these in turn

decay out of equilibrium into both the Standard Model and twin sectors. As the Higgs

decays are almost instantaneous, the fraction of energy transferred into each sector is

simply that carried by the Higgs decay products multiplied by their branching fractions
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for each sector. The total rate at which X particles are transferred into the SM plasma

is

W (X → SM) ≈ Γ(X → SM) + Γ(X → hh)Br(h→ SM)

+ Γ(X → HH)(Br(H → SM) +Br(H → hh)Br(h→ SM)). (5.33)

The corresponding rate for energy deposition into the twin sectors is simply given by the

replacement of SM 7→ Twin. The �rst term is the rate at which X decays directly into

the SM through mass mixing with the Higgs. The second is the fraction of X energy

that is transferred into lighter Higgs states that subsequently decay into the SM. The

third is the analogous term for decays into the heavy Higgs, where cascade decays of the

H into the h and subsequently other SM particles must be included. Note that decays

of the heavy Higgs into the light Higgs make up a majority of decay width, because of

the large quartic coupling required for the twin Higgs potential.

Below the hh threshold, it is possible for X to decay via one on-shell and one o�-

shell Higgs boson. The partial width for o�-shell Higgs production was calculated for

X → hh∗ → hbb̄ and found to be negligible compared to two-body decays through mass

mixing and so we omit three-body decay widths in what follows.

Ultimately, the complete partial widths for the decay of X into the Standard Model

and twin sectors includes the sum of decays into Higgs bosons h and H and direct decays

into the fermions and gauge bosons of the two sectors. We compute the latter to an

intended level of accuracy of ∼ 10% (including, e.g., NLO QCD corrections to decays

into light-�avor quarks), mostly following [366]. The resulting partial widths into the

Standard Model and twin sectors are shown as a function of mX in Figure 5.5 with the

ratio of branching fractions displayed in Figure 5.6.

Over much of the space below the Higgs mass, the branching ratio exhibits the ex-
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Figure 5.5: The partial widths of the X into the SM (solid blue line) and twin sector
(dashed orange) for f/v = 3 in units of (λxx)2. The light gray bands indicate regions
of QCD-related uncertainty in the SM calculation, while the darker gray bands indicate
the corresponding regions of uncertainty for the twin calculation.

pected (f/v)2 scaling from the mass mixing. Below ∼ 40 GeV, suppression of the twin

partial width arises because the twin bottom quark pair production threshold is crossed.

As mX nears mh, the SM branching fraction grows by ∼ 4 orders of magnitude as the

WW ∗, ZZ∗, and then WW and ZZ decays go above threshold. Since the analogous

thresholds are at much higher energies in the twin sector, the enhancement is not paral-

leled by decays into the twin sector until mX is close to the twin scale. There is therefore

a large range of masses mh . mX . mH over which the SM branching fraction dominates

by several orders of magnitude.

Above the X → hh threshold, the ratio of decay widths is roughly constant in mass

up to the HH threshold. The twin sector decay rate is dominated by decays of on-shell

light Higgs into twin states, Γ(X → Twin) ≈ Γ(X → hh)Br(h → Twin) ∝ 1/mX as

in (5.31). If the SM were also predominantly reheated through this channel, then the
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Figure 5.6: The ratio of branching fractions of the X into the SM and twin sectors
at f/v = 3. The dashed line gives the expected (v/f)2 scaling from the mass mixing;
deviations are due to various mass threshold e�ects.

ratio of branching fractions would again be approximately δ2
hA/δ

2
hB ≈ (f/v)2. However,

the SM decay width also receives a larger contribution from decays through mass mixing

between the X and the Higgs gauge eigenstates.

For masses mX > 2mh, decays through mass mixing are dominated by the SM WW

and ZZ channels. In this mass region, the decay rate of a Higgs into longitudinally

polarized vector bosons scales as Γ(h → WW,ZZ) ∼ m3
X , but the mixing angle scales

as δ2
AX ∼ 1/m4

X (as in (5.28)), resulting in the same ∼ 1/mX scaling and thus a roughly

constant ratio in this range of masses. Near mX ∼ 1 TeV, decays into twin vector bosons

through mass mixing begin to dominate, and there is no favourable asymmetry in the

branching fractions, as discussed in this section. Even at higher masses, the e�ects of

heavy Higgs decays into light Higgs do not compensate su�ciently, as this partial width

scales with mX in the same way as the partial width for longitudinally polarised weak

bosons.

The constraint on the decay width from the required reheating temperature (5.27)
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translates into a constraint on the size of the coupling λxx. For mX & mh, this gives

10−8.5 GeV . λxx . 10−6 GeV, while for lower masses, this range increases to 10−7 GeV .

λxx . 10−5.5 GeV at mX ∼ 20 GeV.

The gray bands in Figure 5.5 highlight regions where our analytic estimates of the

partial widths encounter enhanced uncertainties arising from the bottom and charm

thresholds in both sectors. Over most of these ranges, we estimate the size of these

uncertainties to be either ∼ 10% or con�ned to very small subregions. The thicknesses of

these bands have been chosen conservatively, and ultimately the branching ratios should

be accurate to within a factor of ±ΛQCD of the bottom and charm mass thresholds.

In particular, the prescription of [367] has been followed for approximating the bottom

partial width close to the open �avour threshold. Resonant decay into gluons from

bottomonia mixing has been neglected, although these resonant mass ranges are expected

to be only ∼ MeV wide at the CP-even, spin-0 bottomonia masses mX = mχbi (see [367]

and [368]). It should be noted, however, that at temperatures above that of the QCD

phase transition, the quark decay products behave di�erently compared to that expected

in a low temperature environment. In particular, for hot enough temperatures, the b

or c quarks may not hadronise and the partonic partial widths may more reliable. The

applicability of the treatment of the �avour thresholds used here may therefore not be

valid if the decay occurs in the hot early universe. However, it is only very close to the

threshold itself (within several GeV) that this uncertainty becomes signi�cant. Finally,

quark masses have been neglected in the gluon partial width. For mX close to the �avour

thresholds, this approximation breaks down, but the gluon branching fraction is only

∼ 10% and so the error does not contribute to the uncertainty of the total width by more

than this order (it is this uncertainty that is responsible for most of the extension of the

length of the gray bands about the �avour threshold).

Close to the charm threshold, the analogous uncertainties are even more poorly under-
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stood. Below the charm threshold, hadronic decays of a light scalar are highly uncertain

(see [369] for discussion). We avoid these regions altogether by restricting our consider-

ations to mX roughly above the twin charm threshold. Note that below the SM charm

threshold, the smaller decay rate of a Higgs-like scalar necessitates larger couplings λXx

for X to have a lifetime within the required reheating window. The larger couplings then

imply potentially stronger constraints from invisible mesonic decays. See [368, 369, 370]

for further discussion and recent analysis of the pertinent experimental constraints.

Taken together, the results in Figures 5.5 and 5.6 bear out the expectation that a

scalar X with symmetric couplings to the Standard Model and twin sectors may nonethe-

less inherit a large asymmetry in partial widths from the hierarchy between the scales v

and f . Across a wide range of masses mX , the asymmetry is proportional to (or greater

than) v2/f 2, tying the reheating of the two sectors to the hierarchy of scales.

Before proceeding to our computation of cosmological observables, we comment on

an alternative variation on the reheating mechanism presented here that involves having

X odd under the twin parity. This permits two renormalisable interactions with the

Higgses to give a Higgs potential of the form:

V ⊃ m2
0

(
|HA|2 + |HB|2

)
+ λ0

(
|HA|4 + |HB|4

)
+ εX2

(
|HA|2 + |HB|2

)
+ ε̃X

(
|HA|2 − |HB|2

)
.(5.34)

If X then acquires a vev at some scale, it may be possible to arrange for the resulting

spontaneous breaking of the Z2 to give that required in the Higgs potential. However,

we �nd that, in order for X to be long-lived and reheat the universe, its couplings to the

Higgs must be highly suppressed and therefore that the resulting vev of X required to

explain the soft Z2-breaking in the Higgs potential must be many orders of magnitude

above the twin scale. If this is to be identi�ed with the characteristic mass scale of X,

then a UV-completion of the twin Higgs is required for anything further to be said of the
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prospects of this possibility. However, if such a UV completion has similar structure to

the couplings in (5.34), then asymmetric reheating may require a cancellation between

the odd and even couplings ofX to the Higgs potential in order to suppress its twin-sector

branching fraction (because the odd coupling appears with opposite signs in the coupling

between X and the hA and hB states). We do not consider this possibility further.

Imprints on the CMB

For appropriate values of mX , the out-of-equilibrium decay of X reheats the two

sectors to di�erent temperatures and e�ectively dilutes the energy density in the twin

sector. We obtain an analytic estimate of the e�ects of the X decay on the number of

light degrees of freedom observed from the CMB by approximating both the decay of X

and the decoupling of species as instantaneous in Section 5.2.3. We then demonstrate

that this estimate is reliable over most of the parameter space of interest with a numerical

calculation in Section 5.2.3. In Section 5.2.3 we consider neutrino masses and their joint

constraints with Ne�.

Analytic estimate of Ne� If X dominates the energy density of the universe and then

decays, depositing energy ρSM and ρt into the SM and twin sectors respectively, then the

temperature ratio is determined by

ρt
ρSM

=
gt?(T

t
reheat)

gSM? (T SM
reheat)

(
T t
reheat

T SM
reheat

)4

≈ Γ(X → Twin)

Γ(X → SM)
, (5.35)

where T SM
reheat and T

t
reheat are the reheating temperatures for each sector, while gSM? and

gt? are the SM and twin e�ective number of relativistic degrees of freedom, respectively.

We have assumed that the two sectors are cool enough that they have already decoupled.

We point out that not only does the number of e�ective degrees of freedom in each sector
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need to be evaluated at the temperature of that sector, but that gt? and gSM? di�er as

functions of temperature due to the di�erences in the spectra of the sectors, as seen in

Figure 5.1. As is well-known [364], reheating is a protracted process that occurs over

a time-scale given by the lifetime of the reheaton. During this time, the temperature

of the plasma cools slowly because, while the energy is being replenished by the decay

of the reheaton, it is simultaneously diluted and redshifted with the expansion of the

universe. It is assumed in (5.35) that any primordial energy density in either sector is

subdominant.

The temperatures of both sectors then redshift in the same way, so the only additional

di�erences between their temperatures arise from changes to the e�ective number of

degrees of freedom in each sector. By conservation of comoving entropy within each

sector, each evolves as T ieq/T
i
reheat =

(
gi?(T

i
reheat)/g

i
?(T

i
eq)
)1/3

a(Treheat)/a(Teq) where T ieq is

the temperature of the sector at matter-radiation equality, which the CMB probes as

explained in Section 5.2.2, and a(T ) is the scale factor as a function of temperature. In

the mirror Twin Higgs model, the two sectors have the same number of light degrees of

freedom at recombination (three neutrinos and a photon, assuming that the neutrinos

are still relativistic), so

(
T t
eq

T SM
eq

)4

=

(
T t
reheat

T SM
reheat

)4(
gt?(T

t
reheat)

gSM? (Treheat)

)4/3

=
Γ(X → Twin)

Γ(X → SM)

(
gt?(T

t
reheat)

gSM? (Treheat)

)1/3

. (5.36)

As our range of reheat temperatures encompasses the QCD phase transitions of both

sectors, the factors of g? can be important.

Given the temperatures of the two sectors after X decays, we can obtain a simple es-

timate of the contribution to Ne� that neglects the impact of masses of the twin neutrinos
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discussed in Section (5.2.2),

(∆Ne�)mν=0 =
4

7

(
11

4

)4/3

gSM? (T SM
eq )

ρt(T
t
eq)

ρSM(T SM
eq )

(5.37)

≈ 7.4× Br(X → Twin)

Br(X → SM)

(
gt?(T

t
reheat)

gSM? (T SM
reheat)

)1/3

. (5.38)

In this limit the most recent Planck data give a 2σ bound of ∆Ne� . 0.40 assuming pure

ΛCDM+Ne� [318]. This translates into the requirement
ρt(T teq)

ρSM(TSMeq )
≈ Γ(X→Twin)

Γ(X→SM)
. 0.05,

ignoring possible di�erences in g?.

Of course, as discussed in Section 5.2.2, the twin neutrino masses are relevant at the

temperature of matter-radiation equality, so we can obtain a more meaningful estimate

of ∆Ne� using the results of Section 5.2.2 evaluated at the twin temperature determined

above:

∆Ne� =

(
11

4

)4/3
120

7π2
(
T SM
eq

)4

(
ρtγ
(
T t
eq

)
+
∑
α

3wtνα
(
T t
eq

)
ρtνα
(
T t
eq

))
(5.39)

T t
eq = T SM

eq

(
Γ(X → Twin)

Γ(X → SM)

)1/4(
gt?(T

t
reheat)

gSM? (T SM
reheat)

)1/12

(5.40)

with T SM
eq ≈ 0.77 eV [318] the photon temperature. While the right-hand side of this

equality has implicit dependence on T t
eq through g

t
?, this is only important if the reheat-

ing occurs between the SM and twin QCDPTs and the neglecting of the factors of g?

is otherwise reliable. With the further inclusion of Standard Model neutrino masses or

an extra sterile neutrino, the bound described above weakens to ∆Ne� . 0.7. As dis-

cussed in Section 5.2.2, we are not aware of any analyses speci�c to our model involving

both pure dark radiation and three sterile neutrinos with masses of order the photon

decoupling temperature of the CMB and possibly cooler temperatures. In the absence of

such an analysis, we use the inequality ∆Ne� . 0.7 to indicate where the present CMB
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measurements are likely to constrain the light degrees of freedom of this model, leaving

a more detailed analysis of the CMB constraints as future work. In this case, the bound

on the decay width ratio is Γ(X→Twin)
Γ(X→SM)

. 0.09. The next generation of CMB experiments

are projected to strengthen this constraint to ∆Ne� . 0.02 at the 1σ level [371].

Numerical Calculation of Ne� A more precise study of the e�ect of X decay on the

number of e�ective neutrino species at recombination may be performed by numerically

solving a system of di�erential equations for the entropy in X and the two sectors as a

function of time. Following the analysis of Chapter 5.3 of [364] we have

H =
1

a

da

dt
=

√
1

3M2
Pl

(ρX + ρSM + ρt) (5.41)

dρX
dt

+ 3HρX = −ΓXρX (5.42)

ρi =
3

4

(
45

2π2gi?

)1/3

S
4/3
i a−4 (5.43)

S
1/3
i

dSi
dt

=

(
2π2gi?

45

)1/3

a4
(
ρXΓX→i +

dqj→i
dt

)
, (5.44)

where Si are comoving entropy densities and it has been assumed that X is cold by the

time it decays so that ρX = mXnX with number density nX (this is reliable as we only

consider mX > 10 GeV, which is above the decoupling temperature of ∼ 1 GeV). The

rate of heat �ow from sector j to i per proper volume, dqj→j
dt

, is de�ned in (5.6). To

account for the temperature-dependence of the e�ective number of relativistic degrees of

freedom in each sector, these equations are solved iteratively in the pro�les of gi?(T
i).

The equations are solved in three stages: before, during and after the decoupling of

the SM and twin sectors. The ratio f/v is �xed to 4 for this analysis. Initial conditions

were chosen with ρ = 10−12ρX , for combined SM and twin energy densities ρ. However,

it is only the requirement that the initial energy density of X dominates over that of
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the SM and twin sectors that is important for simulating the cosmology over the times

of interest here, as the entirety of the latter is then generated by the subsequent decay.

The results close to the decoupling and reheating epochs are otherwise insensitive to the

initial conditions and ultimately match onto the standard outcome [364] expected by

equating the Hubble rate with the decay rate of X. The sectors are assumed to be in

thermal equilibrium and sharing entropy until a temperature of 10 GeV, below which

they are evolved separately with the heat �ows dqi→j
dt

switched on. Elastic scatterings

were neglected from the heat �ow rate to accelerate the computation. It was veri�ed for

the results found below that their contribution to the heat �ow was always . 10% while

the heat �ow was itself not dominated by the Hubble rate. Heat �ow was switched o�

again once the twin temperature reaches 0.1 GeV, by which time thermal decoupling is

long-since complete, and the sectors are subsequently evolved separately. Again, although

the strengthening of the colour force and the QCDPT make the perturbative tree-level

computation of the scattering rates unreliable at temperatures below∼ 1 GeV, as found in

Section 5.2.2 and also in the results below, the sectors decouple above these temperatures.

Notably, the impact of X on the expansion rate causes decoupling to occur at slightly

hotter temperatures than expected from the analysis of Section 5.2.2 for the decoupling

in the standard cosmology.

The ratio of energy densities in each sector determines Ne�, from (5.39). A plot of this

ratio over time is shown in Figure 5.7, with the expectation under the approximations of

the previous section shown as well. This approximation is reliable as long as the lifetime

of X is much longer than the temperature at which decoupling concludes, here ∼ 1 GeV.

The larger asymptotic value of the ratio of the blue line arises because the lifetime lies

close to the decoupling period, so that a signi�cant fraction of the energy is transferred

while the sectors are thermalised or partially thermalised and does not contribute toward

asymmetric reheating. Equivalently, as will be discussed below, insu�cient time elapses
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Figure 5.7: Ratio of twin to SM energy densities throughout decoupling and reheating,
for di�erent decay rates ΓX . The dashed line corresponds to the prediction of from the
ratio of decay widths, here selected to be 1/16.

between decoupling and reheating for the twin energy density to dilute and be repopulated

by the decays to the level predicted by (5.35). The subsequent bump represents the period

between the reheating of the twin sector by its QCD phase transition followed by that

of the SM. The green and orange lines correspond to reheating temperatures that lie

between SM and twin QCD phase transitions. In these cases, the reheating of the SM

from the subsequent SM QCD phase transition raises its energy density relative to the

twin sector above that expected from the ratio of branching fractions. As this occurs

after the lifetime of the reheaton, the estimate of the reheating temperatures presented

in (5.36) is still good as subsequent changes in the ratio due to the evolution of g? are

accounted for in our analysis of the reheating scenarios.

The steep drop in the energy density ratio corresponds to the brief period during

which the energy density of the twin sector present at decoupling dilutes and redshifts,

which continues until it reaches a comparable size to the energy density that is being
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replenished by reheating. If the twin-sector branching fraction is highly suppressed, as

can occur in the �valley� region in Figure 5.6 with mh . mX . 2mh, then a longer time is

required for this to happen, especially close to the decay epoch where the diminishing of

the X population also contributes to a reduced reheating rate. These e�ects can prolong

the time required for the energy density ratio to converge to the asymptotic prediction

of (5.35).

Contour plots of ∆Ne� as a function of mX and f/v appear in Figure 5.8, along with

current and predicted bounds using the analytic results of Section 5.2.3. The minimum

neutrino mass con�guration with Dirac masses has also been assumed, although the

results are relatively insensitive to this provided that the twin neutrino masses are not

well above the eV scale. A SM reheating temperature of 0.7 GeV has been assumed. At

this temperature, we have veri�ed using the numerical calculation of Section 5.2.3 that the

twin sector reheating temperature is always roughly above the twin neutrino decoupling

temperature over the parameter space of the �gure, ensuring that the neutrinos thermalise

once produced in the decays and hence that the predictions of Section 5.2.3 are valid. A

treatment of the case in which the twin neutrinos are produced below their decoupling

temperature is beyond the scope of this analysis, but would involve the computation of

the phase space spectrum of the neutrino decay products of the X.

Also, as discussed in Section 5.2.2, a large temperature di�erence may partially relax

back if reheating occurs close to sector decoupling. However, a reliable calculation of the

heat �ow at the temperatures of interest here must incorporate non-perturbative e�ects.

We do not perform such a computation, but note that, at a slightly higher SM reheating

temperature of 2 GeV where this computation is more reliable, ∆Ne� in Figure 5.8 can

be raised by up to an order of magnitude in the region with f/v . 4 and 150GeV .

mX . 200GeV, notably where the twin sector partial width is suppressed relative to the

SM by several orders of magnitude. The resulting ∆Ne� prediction is, nevertheless, still
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out of observable reach. At the lower SM reheating temperature assumed in Figure 5.8,

it is expected that decoupling will be further advanced and the enhancement in ∆Ne�

would be weaker.

We emphasize that, if the lifetime of X is su�ciently close to the time of decoupling,

or equivalently, that the reheating temperature is su�ciently close to the decoupling

temperature, then the residual twin energy density left-over may be comparable to or

greater than that regenerated by reheating. Consequently, the suppression in ∆Ne� would

be less than that predicted in (5.36). In this respect, the projection of Figure 5.8 should

be regarded as a lower bound on ∆Ne�. In the regions of high suppression, such as the

�valley� region, the full asymmetry may not be generated before the complete decay of

X when the reheating temperature is of similar order as the decoupling temperature. In

particular, for the reheating temperature chosen here of 0.7 GeV and branching fraction

Br(X → Twin) ∼ 10−5, the numerical calculation of the energy density ratio saturates

at ∼ 4× 10−5. We do not include this e�ect in Figure 5.8 as its only impact is to mildly

shift the unobservably small ∆Ne� = 10−4 contour. Lower reheating temperatures would

agree with the prediction of (5.35) were it not for the caveat that the twin neutrinos

may be produced out of equilibrium. However, this minimum value at which ∆Ne� is

saturated can grow signi�cantly with hotter reheating temperatures upon which it is

highly dependent.

CMB-S4 observations will be able to probe a large portion of the most natural pa-

rameter space, save the region mh . mX . 2mh where decays into the Standard Model

dominate well beyond the ratio f 2/v2, as previously discussed. Signi�cantly, precision

Higgs coupling measurements at the LHC are unlikely to probe the mirror Twin Higgs

model beyond f ∼ 4v, so that the observation of additional dark radiation may be the

�rst signature of a mirror Twin Higgs.
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Figure 5.8: Contours of log10 ∆Ne� as a function of mX and f/v, for T SM
reheat = 0.7 GeV.

The dark blue region is in tension with Planck, while the light blue region will be tested
by CMB-S4. Gray regions are where the X mass is below the twin charm threshold and
our calculation of the twin sector partial width is unreliable.

Neutrino Masses In addition to the bounds on Ne�, we must also respect the bounds

on neutrino masses. The analysis remains nearly the same as in Section 5.2.2, but

now with the twin neutrinos at a lower temperature, as determined above. As men-

tioned above, for large enough f/v and SM reheating temperature su�ciently close to

the lower bound, the reheating temperature of the twin sector may be below the twin

neutrino decoupling temperature and the resulting energy density would be more di�-

cult to compute. For simplicity, we choose λxx large enough such that the twin reheating
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temperature is always above the twin neutrino decoupling temperature.

As before, we compute me�
ν as

me�
ν =

ntν
nSMν

∑
α

mt
να . (5.45)

In relating the scale factors at neutrino decoupling in each sector, we now have to use

the above temperature ratio to �nd, analogously to Section 5.2.2, that

me�
ν =

(
Γt

ΓSM

)3/4(
gt? (T t

reheat)

gSM? (T SM
reheat)

)1/4(
f

v

)n∑
α

mSM
να , (5.46)

where, again, n = 1 for Dirac masses and n = 2 for Majorana masses. Interestingly, if

the branching ratios scale as Γt/ΓSM = (v/f)2, then we have me�
ν ∝ (f/v)−3/2+n, so the

contribution grows with f/v for Majorana masses, but is suppressed for Dirac masses.

As before, we consider the minimal mass spectrum of mν = [0.0, 0.009, 0.06 eV] and

a degenerate spectrum of mν = [0.1 eV, 0.1 eV, 0.1 eV] /3. In Figure 5.9 we plot the

predictions of the X reheating for ∆Ne� and me�
ν for both spectra and both Dirac and

Majorana masses using the approximations of Section 5.2.2, for f/v from 3 to 10 and

assuming the Γt
ΓSM
∼ (v/f)2 scaling; there are regions in the space of mX where the

suppression of me�
ν would be much higher.

Dashed lines indicate the rough locations of present experimental limits from Planck

2015, and projected bounds from CMB-S4. As mentioned in Section 5.2.2, we are unaware

of any study of bounds on both me�
ν and ∆Ne� treated jointly. In the absence of this, we

show present and projected constraints on Ne� and
∑
mν from [372] and [350], ignoring

correlations, as described in Section 5.2.2.
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Figure 5.9: Predicted values of ∆Ne� and
∑
mν + me�

ν for minimal and degenerate
neutrino mass spectra with both Dirac and Majorana masses for f/v from 3 to 10. The
Planck 2015 [318] bounds on

∑
mν and Ne�, as discussed in Section 5.2.2, are represented

by the dashed lines, and the projected CMB-S4 constraints are given by the dotted lines.
It has been assumed that Γt

ΓSM
∼ (v/f)2. Note however, that, from Figure 5.8, this scaling

of the partial widths holds only for the mass range 50GeV . mX . 120GeV, outside of
which the twin partial width is more suppressed and the model is only testable through
∆Ne� over a smaller range in f/v.

Thermal Production

In our discussion up to this point, we have been agnostic about the origin of the cosmic

abundance of X and have operated under the assumption that it absolutely dominates

the cosmology before it decays. Here, we consider the possibility that X was thermally

produced through freeze-out and subsequently dominates the universe as a relic before

decaying. This thermal history is viable, but places strong constraints on the mass and

couplings of the X.
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The energy density of relativistic species redshifts as ρr ∝ a−4 ∝ T 4, while the energy

density of non-relativistic, chemically decoupled matter scales as ρm ∝ a−3. The energy

density contained in the X can therefore only grow relative to the energy density in

the thermal bath once it becomes non-relativistic. We found in Section 5.2.3 that by

recombination, ρt/ρSM . 0.09 is needed to evade current bounds on ∆Ne�. Thus we

need to have the energy density in the X dominate over the SM and twin plasmas by

more than this factor when it decays. If X becomes non-relativistic instantaneously at

the moment that its temperature reaches some fraction c ∼ O(0.1) of its mass, then, as

T ∝ 1/a and ρX is ∼ 1/g? of the total energy density, the mass is required to satisfy

mX & 10/c × g? (T = mX)T SM
Xreheat. Since the SM reheating temperature is strongly

constrained to be above BBN, this e�ectively puts a lower limit on the mass of the X.

Importantly, X must freeze-out when relativistic or its energy density will be further

Boltzmann suppressed. The lower limit on the mass of the X becomes an upper limit

on the X's couplings - if it couples too strongly to the thermal bath, then it won't freeze

out early enough to be hot.

In fact the situation is somewhat less favorable than the above analysis suggests,

because it is relevant operators that must keep X in thermal equilibrium. For an X

with the interactions introduced in Section 5.2.3, the annihilations have rates that scale

with temperature as Γ ∼ nX 〈σv〉 ∼ T for T & mX ,mh (where nX is the number

density of X and 〈σv〉 is its thermally averaged annihilation cross section). However, in

a radiation-dominated universe, H ∼ T 2. Thus, at high enough temperatures, X is not

in thermal equilibrium with the plasma and it is only once the universe cools enough

that it may thermalise. Then, as the temperature drops, XX → qq̄ annihilations become

suppressed by the Higgs mass and subsequent Boltzmann suppression causes X to freeze-

out. Note that the rates of these annihilation processes are controlled by the coupling

λx, independently of x, which is unconstrained by itself (other processes mediated by
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λxx are found to be subdominant in the ensuing analysis, for the range of λx over which

thermal production is successful). If the coupling is too weak to begin with, then the X

never thermalises and thermal production cannot happen. Thermal production therefore

requires a careful balancing of parameters - small coupling λx is preferred for X to

freeze-out hot and as early as possible, but the coupling is bounded from below by the

requirement that X reach thermal equilibrium. This combination of constraints severely

restricts the size of the parameter space over which thermal production is viable to cases

in which the coupling is selected so that X enters and departs from thermal equilibrium

at close to the same temperature.

To obtain numerical predictions for this scenario, the calculation of Section 5.2.3

was modi�ed to account for the time after the freeze-out of X before it becomes non-

relativistic. During this period we use (5.15) and (5.16) for the energy density of the

X, approximating decays as being negligible, before switching over to (5.42) when the

temperature drops below the mass of the X. The approximation that the X does not

decay appreciably while it is relativistic must be good if there is to be su�cient time

for it to grow to dominate between becoming non-relativistic and decaying. The decay

width of X was �xed to 5 × 10−21 GeV, corresponding to a reheating temperature close

to the ∼ 10 MeV lower limit, in order to maximise the amount of time over which the

energy density of X may grow relative to the SM plasma, thereby providing the greatest

possible reheating.

The predictions for ∆Ne� from a thermally produced X are shown in Figure 5.10 for

the small regions of parameter space where this is viable, with f/v = 4. We �nd that the

dominant annihilation channels over this region are XX → tt̄ and XX → bb̄, mediated

by the light Higgs, as well as their twin analogues, mediated by the heavy Higgs. As

expected, the primordial energy density in the twin sector is too large compared to that

generated by the X for the asymmetric reheating to be e�ective when mX is too light
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(. 100 GeV in this case). Similarly, when the coupling is too strong, the X is held

in equilibrium for longer and freezes-out underabundant compared to the twin energy

density. However, when the coupling is too weak (the gray region), X never thermalises

to begin with (close to the boundary with this region, X freezes-out almost immediately

after thermalising). The peak in the contours occurs because of the �H-funnel� in which

the twin Higgs resonantly enhances annihilations into twin quarks. All of this region will

be testable by CMB-S4.

5.2.4 Twin�ation

As an alternative to the model presented above of late, out-of-equilibrium decays

of a Z2-symmetric scalar, one may imagine that the �eld driving primordial in�ation

reheats only the Standard Model to below the decoupling temperature of the two sectors.

Production of the twin particles then ceases at some time after the temperature drops

below the decoupling temperature during reheating.

To make this consistent with a softly-broken Z2 symmetry, we extend the in�ationary

sector and introduce a `twin�aton' that couples solely to the twin sector. The combined

in�ationary and twin�ationary sectors respect the Z2 symmetry. However, if the two

sectors are entirely symmetric then one generally expects both in�ationary dynamics to

happen coincidentally, which would result in identical reheating. We therefore rely on soft

Z2-breaking to give an asymmetry between the two sectors that causes the twin�ationary

sector to dominate the universe �rst. With the right arrangement we can end up with

two distinct periods of in�ation - a �rst caused by the �twin�aton� and a second that

then reheats the Standard Model to below the decoupling temperature, having diluted

the sources of twin-sector reheating from the �rst period.

One simple mechanism for Z2-breaking which is well-suited for introducing asymme-
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Figure 5.10: Parameter space where thermal production of X gives a large enough relic
abundance to dilute the twin sector, for f/v = 4. In the gray region, the coupling is too
weak for X to ever reach thermal equilibrium. The blue region is in tension with recent
Planck measurements of ∆Ne�, whereas all of the white region will be tested by CMB-
S4. Predictions presented here for ∆Ne� close to the gray boundary are more uncertain
because of the high sensitivity of the freeze-out temperatures to the coupling.

try to in�ationary sectors is to introduce an additional Z2-odd scalar �eld η (as was done

in [373]). This admits linear and quadratic interactions to antisymmetric and symmetric

combinations of the in�ationary sector �elds, respectively. When η acquires a vev, this

introduces an asymmetry in the �elds to which it was coupled, dependent on the combi-

nation of its vev and its couplings. If η is coupled to both the in�ationary sectors and the

Higgs sectors, it could be the sole source of Z2-breaking in a twin�ationary theory. One
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may generally imagine that, in some UV completion, the mechanism that softly breaks

the symmetry in the Higgs potential could also be the origin of the soft breaking of the

in�ationary sector.

Cosmologically, this possibility may have similar observational signatures as the model

discussed in Section 5.2.3, where the amount of twin-sector dark radiation is determined

by the partial widths of the in�aton of the second in�ationary epoch. If this dominantly

couples to the SM, then ∆Ne� will be suppressed which, while successfully resolving the

cosmological problems of the Mirror Twin Higgs, may also be observationally inaccessible.

However, additional, distinctly in�ationary signatures may make this potentially testable

by other cosmological observations.

The mechanism of twin�ation completes a catalog of models of asymmetric reheating

by late decays, which may be indexed by representations of the twin parity: the case

of a Z2-even particle, in which a kinematic asymmetry in the partial widths provides

the reheating asymmetry, the case of a Z2-odd particle, which can also provide the

spontaneous Z2-breaking required in the Higgs potential, and the case where two distinct,

long-lived particles couple to each sector, which may also be related to in�ation.

Toy Model

As a toy model we here consider `twinning' the simple ϕ2 chaotic in�ation scenario.

The in�ationary dynamics in this case are easy to understand and we have the additional

bene�t that this in�ationary model has been considered in the literature before as `Double

In�ation' (see [374], [375] and [376]). We furthermore specialize to `double in�ation with

a break', where there are two distinct periods of in�ation which produces a step in the

power spectrum, and we consider the constraints that this places on our model. In this

case, it is assumed that each in�aton �eld couples and therefore decays dominantly into

the sector to which it belongs. We will comment brie�y on the case without a break and
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the additional signals one could look for in that case.

The potential of the in�ationary sector for in�aton ϕA and twin�aton ϕB is

V =
1

2
m2
Aϕ

2
A +

1

2
m2
Bϕ

2
B, (5.47)

where mA 6= mB may arise from soft Z2- breaking, perhaps related to the soft Z2-

breaking in the Higgs potential. In order for the `twin�ation' to occur �rst, we require

that the energy of the B �eld initially dominates the energy density of the universe. We

take the initial positions of the �elds to be the same and m2
B � m2

A.
22 Call ϕA(0) =

ϕB(0) = n
√

2Mpl = nϕc, where ϕc is the critical value at which in�ation stops and

mB = rmA = rm with n, r > 1. The in�ationary dynamics are then those of slowly-

rolling scalar �elds. At some point in the early universe we imagine that the slow-roll

approximation holds for both �elds and the in�ationary sector dominates the universe.

The dominating �eld then slow-rolls down its potential for n2−1
2

e-folds, while the lighter

�eld's velocity is suppressed by approximately ϕA
r2ϕB

. Solving the system numerically

reveals that the motion of ϕA during this period can be neglected entirely.

After ϕB reaches the critical value
√

2Mpl, it stops slow-rolling and begins oscillating

around the minimum of its potential. For there to be two distinct periods of in�ation,

there must be a period where these oscillations dominate the universe, which requires that

the energy densities of each in�aton ρA and ρB satisfy ρB(ϕc) = r2m2M2
pl > ρA(ϕ(0)) =

n2m2M2
pl and therefore r > n. For a ϕ2

B potential, the energy in these oscillations redshifts

as ρB ∼ a−3. Eventually, the energy density in ϕB drops below that of ϕA and a new

epoch of in�ation, driven by ϕA, begins. This provides a further n2−1
2

e-folds of in�ation

to give n2 − 1 in total, while the B-sector energy density is diluted away.

22Note that merely giving the twin �eld a much larger initial condition does not instigate twin�ation.
The dynamics of the subdominant �eld in this case are such that it will track the dominant �eld and
both will reach the critical value at the same time. This is easily con�rmed numerically.

205



Neutral Naturalness in the Sky Chapter 5

Note that in order for our toy model to reheat below the decoupling temperature of the

two sectors, reheating must occur well after the end of in�ation. If, during the coherent

oscillation of an in�aton, it becomes the case that the in�aton decay width Γ ∼ H, then

reheating will occur and result in temperature Treheat ∼ 0.1
√

ΓMpl . However, if Γ� H

when in�ation ends, then all of the energy in the in�aton is immediately transferred and

we instead have reheating temperature Treheat ∼ 0.1
√
mαMpl for an in�aton of mass mα.

But in order for Treheat . 1 GeV, it is required that mα . 10−7 eV, so this possibility that

the in�aton is short lived is not viable. The procedure of twinning in�ationary potentials

may be generalised to other, more realistic models, provided that this constraint upon

the reheating temperature can be satis�ed.

Observability

One could always make a twin�ationary scenario consistent with observational con-

straints by letting the second in�ationary period of in�ation last long enough. In our

toy model, this would correspond to setting n high enough that the momentum modes

which left the horizon during the �rst in�ation have not yet re-entered the horizon - such

a scenario would look exactly like single-�eld chaotic in�ation.

Alternatively, we may also allow for n small enough that all the momentum modes

that left the horizon during the second in�ation are currently sub-horizon. In this case,

�uctuations at large enough wavenumbers (equivalently, small enough length scales) are

`processed' (cross the horizon) at a di�erent in�ationary energy scale than those that

were processed earlier, giving a step in the power spectrum. While Planck has measured

the primordial power spectrum for modes with 10−4 Mpc−1 . k . 0.3 Mpc−1 (where the

lower bound is set by the fact that smaller modes have not yet re-entered the horizon),

proposed CMB-S4 experiments will increase this range [350] somewhat, as will be dis-

cussed further below. We wish to show that the power spectrum of our toy model is not
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ruled out and, furthermore, may be observed in the coming decades.

The height of the step in the primordial power spectrum is determined by the energy

scale of each period of in�ation, so modes crossing the horizon in the second in�ationary

period should be suppressed by a factor of r2 > n2 & 25 compared to those exiting

in the �rst period. This degree of suppression is ruled out by Planck for the range of

modes over which it has reconstructed the power spectrum [372]. A computation of the

primordial power spectrum for double in�ation was given in [375]. It was found that

signi�cant damping does not occur for modes which cross outside the horizon during the

�rst in�ationary period, re-enter during the inter-in�ationary period and again cross the

horizon during the second in�ationary period. It is only those scales which �rst cross the

horizon during the second in�ationary period that are signi�cantly damped (although

other features in the shape, such as oscillations, may be present for modes that are

subhorizon during the intermediate period).

The relation of this characteristic scale to present-day observables is easily done using

the framework given in [377]. Let the subscripts a, b, c, d, e respectively correspond to

the beginning of the �rst in�ationary period, the end of that period, the beginning of

the second in�ationary period, the end of that period, and the beginning of radiation

domination. During the coherent oscillation periods, the in�aton acts as matter and the

energy density falls as ρ ∝ a−3. Let ki be the momentum whose mode is horizon-size at

the i epoch; ki = aiHi. The scales ki can be related using the number of e-folds in each

period, which are themselves determined from the �rst Friedmann equation. Denoting

Nij = ln
aj
ai
, we have ka = e−Nabnkb, kb = e

1
2
Nbckc and similarly for the other characteristic

modes, where, in particular, slow-roll in�ation predicts that Nab = Ncd = n2−1
2

. The

evolution of the characteristic momentum scales is shown schematically in Figure 5.11.
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Figure 5.11: Schematic evolution of the characteristic scales in Twin�ation, as seen by
comparing wavenumbers to the Hubble radius over time. Note that the time axis is not
a linear scale.

Finally, ke can be determined using the conservation of comoving entropy:

ke =
πg

1/3
? (T0)g

1/6
? (Treheat)T0Treheat

3
√

10Mpl

, (5.48)

where T0 and a0 are the temperature and scale factor today and Treheat is the reheating

temperature (which is su�ciently low that only SM particles are produced). We work

explicitly with the convention a0 = 1. The characteristic modes associated with the break

can then be determined.

As mentioned above, [375] shows that damping occurs for modes that exit the horizon
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only during the second in�ationary period, so we should take the characteristic damping

scale to be the smallest such scale, which here corresponds roughly to kb This can be

determined as

kb = ne
1
2
Nbc−Ncd+ 1

2
Ndeke

= n
( r
n

)1/3

exp

(
−n

2 − 1

2

)[ 1
2
m2M2

pl

π2

30
g?(Treheat)T 4

reheat

]1/6
πg

1/3
? (T0)g

1/6
? (Treheat)T0Treheat

3
√

10Mpl

(5.49)

where kc only di�ers by the factor of (r/n)1/3 (which is roughly close to unity). Once

again, between kb and kc are oscillatory features, so kb should merely be taken as the

rough characteristic scale of the damping.
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Figure 5.12: The prediction for the characteristic suppression scale as a function of the
initial values of the �elds. The mapped regions should be interpreted not as having
hard boundaries, but rather fuzzy endpoints where they break down. Here we have used
Treheat = 10 MeV and r = 2n.

Now the characteristic damping scale is determined by m, n, r, and Treheat. Our

observational bound on kb is that Planck has not seen this suppression on momentum

scales at which it has been able to reconstruct the primordial power spectrum from the

angular temperature anisotropy power spectrum, which is roughly k . 0.3 Mpc−1. We

have constraints on the reheating temperature from rethermalization of the twin sector
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or interrupted big bang nucleosynthesis 10MeV . Treheat . 1 GeV, on having a period

of intermediate matter domination between the two in�ations r > n and on the total

number of e-folds n2 − 1 & 25 to solve cosmological problems. Note that we require

fewer e-folds of in�ation than is typically assumed in the standard cosmology. Since the

low reheating temperature gives fewer e-folds from reheating up to today, less in�ation

is needed to explain the large causal horizon and �atness.

The normalization of the spectrum provides a further constraint, the most recent

measurement of which come from Planck [372]. The scalar power spectrum at k? =

0.05 Mpc−1 is measured to be PR(k?) = e3.094±0.034 × 10−10. Then for k? < kc (i.e.

k? having left the horizon during the �rst period of in�ation and not re-entered before

the second, so no deviation from single-�eld in�ation would be seen at this scale), the

spectrum of [375] yields the constraint

2.03× 10−6 =
r2m2

M2
pl

ln

(
kb
k?

)(
ln
kb
k?

+
n2

2

)
. (5.50)

The characteristic scale (5.49) depends much more strongly on n than it does on any

of the other parameters. In Figure 5.12, we give a rough idea of the scale as a function of

n, having set Treheat = 10 MeV and r = 2n, while m is chosen to satisfy the normalization

condition. We also show the constraint on kb set by Planck. Note again that the region

described as �observationally single-stage in�ation" does still provide a solution to the

problem of reconciling cosmology with the mirror Twin Higgs.

CMB-S4 will improve the constraint on kb through its improved measurement of polar-

ization anisotropies [350]. With only precision measurements of temperature anisotropies,

the un-lensed power spectrum cannot be so easily reconstructed from the lensed spec-

trum. The e�ects of gravitational lensing of CMB place an upper limit on the size

of primordial temperature anisotropies that can be measured [378], which Planck has
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saturated. However, the polarization anisotropy power spectrum allows the removal of

lensing noise from the temperature spectrum so that higher primordial modes can be

detected. The polarization power spectrum itself also gives us another window into the

high-` modes of the primordial power spectrum, as the signal does not become dominated

by polarized foreground sources until higher scales near ` ∼ 5000. CMB-S4 is projected

to make cosmic variance limited measurements of both the temperature and polarization

anisotropy power spectra up to the modes where they become foreground-contaminated

and so provide additional information on the shape of the primordial power spectrum

[350]. The map from measurements of angular modes ` to contraints on spatial modes

k depends on the evolution of the power spectrum between in�ation and the CMB, so

forecasting constraints requires careful study. However, these improvements will not test

most of the parameter space presented in Figure 5.12, where the step is predicted on

extremely small distance scales.

We have discussed a twin�ationary model of double in�ation with a break for sim-

plicity, but there is a parametric regime where double in�ation without a break gives the

required amount of asymmetric reheating into the Standard Model. With two periods

of in�ation, the second period dilutes the energy density of the heavier �eld su�ciently

that there is no observable signal of it produced in reheating. However, even with only

one period, in�ation can continue for long enough after the in�aton turns the corner in

�eld space such that, at late times, the fraction of the in�aton in the B state relative

to the A state is small enough that the expected energy densities that are transferred

into each sector satisfy ρB/ρA < 0.1. This occurs as long as r & 1.2, assuming that

the mixing angle of the slow-rolling �eld with the ϕA and ϕB �elds entirely determines

the fraction of its energy that reheats each sector. There is thus a much larger range of

r where this toy model of in�ation passes Ne� bounds than our above analysis shows.

The resulting imprint on the CMB could resemble that of the long-lived decay model of
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Section 5.2.3, with ∆Ne� again being related to the ratio of branching fractions, although

this is dependent upon the UV completion of the Twin Higgs.

When there is only one period of in�ation, the step is smoothed out and less pro-

nounced and it is necessary to locate the feature numerically. Furthermore, having mul-

tiple degrees of freedom available allows for non-trivial evolution of momentum modes

after they become super-horizon, which does not occur in single-�eld in�ation but may

be calculated from the full solution to the �eld equations [376]. While a twinned poten-

tial leading to two periods of in�ation generally predicts a step in the power spectrum,

when there is no break the predictions, and thus constraints, this prediction become more

model-dependent. Therefore we leave detailed predictions in that case for future study

using realistic models and merely state that the range of r = 1 to n interpolates between

the single �eld spectrum and that with a step, as one would expect.

There are also at least two other detectable e�ects one might expect in double in�ation

without a break and in general realistic twin�ationary models. Interactions between

in�aton �elds may produce primordial non-Gaussianities, while the presence of additional

oscillating degrees of freedom may produce isocurvature perturbations. These do not

appear in our toy model because the heavy �eld is exponentially damped during the

second in�ation. CMB-S4 is projected to improve Planck's bounds on non-Gaussianities

by a factor of ∼ 2 and on isocurvature perturbations by perhaps an order of magnitude

(though model-independent projections have not been made), so may be able to detect

or place useful constraints on realistic twin�ationary models [350].

We have introduced twin�ation as a mirror Twin Higgs model which suppresses the

cosmological e�ects of twin light degrees of freedom. It extends the mirror symmetry to

the in�ationary sector. The soft Z2 symmetry-breaking of the Higgs sector may be used

in the in�ationary sector to cause distinct periods of in�ation. There exists a parametric

region where this is cosmologically indistinct from single-stage in�ation, but also another
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in which it may be observable. As the direct product of in�ation and the Mirror Twin

Higgs, this is in some sense a minimal solution.

5.2.5 Conclusion

In this section we have considered scenarios in which cosmology provides meaning-

ful insight on solutions to the electroweak hierarchy problem. In particular, we have

demonstrated several simple mechanisms in which the cosmological history of a mirror

Twin Higgs model is reconciled with current CMB constraints and provides signatures

accessible in future CMB experiments. In the case of out-of-equilibrium decays, we have

found that decays of Z2-even scalars su�ciently dilute the energy density in the twin

sector without the addition of any new sources of Z2-breaking. In much of the parameter

space, the residual contribution to ∆Ne� is directly proportional to the ratio of vacuum

expectation values v2/f 2 parameterizing the mixing between Standard Model and twin

sectors (as well as the tuning of the electroweak scale), and may be within reach of CMB-

S4 experiments. In the case of twin�ation, we have found that a (broken) Z2-symmetric

in�ationary sector may successfully dilute the energy density in the twin sector, as well as

potentially leave signatures in the form of a step in the primordial power spectrum or in

departures of primordial perturbations from adiabaticity and Gaussianity. In both cases,

these models raise the tantalizing possibility that signatures of electroweak naturalness

may �rst emerge in the CMB, rather than the LHC.

There are a variety of possible directions for future work. Here we have focused on

the cosmological consequences of late-decaying scalars and twinned in�ationary sectors

without specifying their origin in a microscopic model. It would be interesting to con-

struct complete models (where, e.g., supersymmetry or compositeness protect the scale

f from UV contributions) in which the existence and couplings of late-decaying scalars
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arise as intrinsic ingredients of the UV completion. Likewise, we have considered only

a toy model of twin chaotic in�ation; it would be interesting to see if twin�ation may

be realized in complete in�ationary models that match the observed spectral index and

constraints on the tensor-to-scalar ratio.

While we have taken care to ensure that our scenarios respect the well-measured cos-

mological history beneath T ∼ 1 MeV, we have not addressed the origin of the observed

baryon asymmetry. In the case of out-of equilibrium decays, there are a number of pos-

sibilities. It is plausible that a somewhat larger baryon asymmetry is generated through

various conventional mechanisms and diluted by late decays. Alternatively, the decay

mechanism itself may possibly be expanded to generate a baryon asymmetry or some

other late decay may generate the baryon asymmetry below ∼ 1 GeV. In the case of

twin�ation, in�ationary dilution of pre-existing baryon asymmetry requires that baryo-

genesis occur in association with reheating or via another mechanism at temperatures

below ∼ 1 GeV. It would be worthwhile to study models for the baryon asymmetry

consistent with these scenarios. Steps in this direction have been taken in [338], which

attempted to relate this to asymmetric dark matter in the twin sector.

Likewise, any investigation of dark matter, be it related directly to the twin mech-

anism or otherwise, must also address implications of the dilution. Previous work at-

tempting to construct dark matter candidates in the twin sector [323, 333, 334, 335, 336,

337, 338, 339]) has relied upon explicit Z2-breaking that is not present in the mirror

model. Dark matter may alternatively be unrelated to the Twin Higgs mechanism, such

as a a WIMP in some minimal extension of the electroweak sector that freezes-out as an

overabundant thermal relic and is then diluted to the observed density during reheating.

Alternatively, it may be that the dark matter abundance is produced directly during

reheating. It would be interesting to study extensions of our scenarios that incorporate

dark matter candidates directly related to the mechanism of dilution.

214



Neutral Naturalness in the Sky Chapter 5

Finally, we have only approximately parameterized Planck constraints and the reach

of CMB-S4 on twin neutrinos and twin photons. Ultimately, more precise constraints

and forecasts may be obtained via numerical CMB codes. This strongly motivates the

future study of CMB constraints on scenarios with three sterile neutrinos and additional

dark radiation whose temperatures di�er from the Standard Model thermal bath.

5.3 Freeze-Tw in Dark Matter

5.3.1 Introduction

In this work, we build on a MTH framework where `hard' breaking of the Z2 is absent.

In [13, 379], it was realized that late-time asymmetric reheating of the two sectors could

arise naturally in these models if the spectrum were extended by a single new state. This

asymmetric reheating would dilute the twin energy density and so attune the MTH with

the cosmological constraints. This dilution of twin energy density to negligible levels

would seem to hamper the prospect that twin states might constitute the dark matter,

and generating dark matter was left as an open question. This presents a major challenge

toward making such cosmologies realistic. However, we show that asymmetric reheating

perfectly sets the stage for a MTH realization of the `freeze-in' mechanism for dark matter

production [380, 381, 382, 383, 384, 385, 386, 387].

Freeze-in scenarios are characterized by two assumptions: 1) DM has a negligible

density at some early time and 2) DM interacts with the SM so feebly that it never

achieves thermal equilibrium with the SM bath.23 This second assumption is motivated

in part by the continued non-observation of non-gravitational DM-SM interactions. Both

assumptions stand in stark contrast to freeze-out scenarios.

23We note that the feeble connection between the two sectors may originate as a small dimensionless
coupling or as a small ratio of mass scales, either of which deserves some explanation.
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Freeze-twin dark matter is a particularly interesting freeze-in scenario because both

assumptions are ful�lled for reasons orthogonal to dark matter considerations: 1) the

negligible initial dark matter abundance is predicted by the asymmetric reheating already

necessary to resolve the MTH cosmology, and 2) the kinetic mixing necessary to achieve

the correct relic abundance is of the order expected from infrared contributions in the

MTH. To allow the frozen-in twin electrons and positrons to be DM, we need only

break the Z2 by a relevant operator to give a Stueckelberg mass to twin hypercharge.

Additionally, the twin photon masses we consider can lead to dark matter self-interactions

at the level relevant for small-scale structure problems [388].

The next sections are organized as follows: In Section 5.3.2, we review the MTH and

its cosmology in models with asymmetric reheating, and in Section 5.3.3 we introduce our

extension. In Section 5.3.4, we calculate the freeze-in yield for twin electrons and discuss

the parameter space to generate dark matter and constraints thereon. We discuss future

directions and conclude in Section 5.3.5. For the interested reader, we include some

discussion of the irreducible IR contributions to kinetic mixing in the MTH in Appendix

A.

5.3.2 The Mirror Twin Higgs & Cosmology

The mirror twin Higgs framework [267] introduces a twin sector B, which is a `mirror'

copy of the Standard Model sector A, related by a Z2 symmetry. Upgrading the SU(2)A×

SU(2)B gauge symmetry of the scalar potential to an SU(4) global symmetry adds a

Higgs-portal interaction between the A and B sectors:

V = λ
(
|H|2 − f 2/2

)2
, (5.51)
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where H =

HA

HB

 is a complex SU(4) fundamental consisting of the A and B sector

Higgses in the gauge basis. The SM Higgs is to be identi�ed as a pseudo-Goldstone mode

arising from the breaking of SU(4) → SU(3) when H acquires a vacuum expectation

value (vev) 〈H〉 = f/
√

2 . Despite the fact that the global SU(4) is explicitly broken

by the gauging of SU(2)A × SU(2)B subgroups, the Z2 is enough to ensure that the

quadratically divergent part of the one-loop e�ective action respects the full SU(4). The

lightness of the SM Higgs is then understood as being protected by the approximate

accidental global symmetry up to the UV cuto� scale Λ . 4πf , at which point new

physics must come in to stabilize the scale f itself.

We refer to twin particles by their SM counterparts primed with a superscript ', and

we refer the reader to [267, 268] for further discussion of the twin Higgs mechanism.

The thermal bath history in the conventional MTH is fully dictated by the Higgs

portal in Eq. (5.51) which keeps the SM and twin sectors in thermal equilibrium down to

temperatures O(GeV). A detailed calculation of the decoupling process was performed

in [13] by tracking the bulk heat �ow between the two sectors as a function of SM

temperature. It was found that for the benchmark of f/v = 4, decoupling begins at a

SM temperature of T ∼ 4 GeV and by ∼ 1 GeV, the ratio of twin-to-SM temperatures

may reach . 0.1 without rebounding. While heat �ow rates become less precise below

∼ 1 GeV due to uncertainties in hadronic scattering rates, especially close to color-

con�nement, decoupling between the two sectors is complete by then for f/v & 4. For

larger f/v, the decoupling begins and ends at higher temperatures.

As mentioned above, one class of solutions to this Ne� problem uses hard breaking of

the Z2 at the level of the spectra [268, 323, 324, 325, 326] while keeping a standard cos-

mology. An alternative proposal is to modify the cosmology with asymmetric reheating to

dilute the energy density of twin states. For example, [379] uses late, out-of-equilibrium
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decays of right-handed neutrinos, while [13] uses those of a scalar singlet. These new

particles respect the Z2, but dominantly decay to SM states due to the already-present

soft Z2-breaking in the scalar sector. In [379], this is solely due to extra suppression by

f/v-heavier mediators, while in [13], the scalar also preferentially mass-mixes with the

heavier twin Higgs. [13] also presented a toy model of `Twin�ation', where a softly-broken

Z2-symmetric scalar sector may lead to in�ationary reheating which asymmetrically re-

heats the two sectors to di�erent temperatures. In any of these scenarios, the twin sector

may be diluted to the level where it evades Planck bounds [389] on extra radiation, yet

is potentially observable with CMB Stage IV [390].

We will stay agnostic about the particular mechanism at play, and merely assume

that by T ∼ 1 GeV, the Higgs portal interactions have become ine�cient and some

mechanism of asymmetric reheating has occurred such that the energy density in the

twin sector has been largely depleted, ρtwin ≈ 0.24 This is consistent with the results of

the decoupling calculation in [13] given the uncertainties in the rates at low temperatures,

and will certainly be true once one gets down to few × 102 MeV.

One may be concerned that there will be vestigial model-dependence from irrelevant

operators induced by the asymmetric reheating mechanism which connect the two sectors.

However, these operators will generally be suppressed by scales above the reheating scale,

as in the example studied in [13]. Prior to asymmetric reheating, the two sectors are in

thermal equilibrium anyway, so these have little e�ect. After the energy density in twin

states has been diluted relative to that in the SM states, the temperature is far below the

heavy masses suppressing such irrelevant operators, and thus their e�ects are negligible.

So we may indeed stay largely agnostic of the cosmological evolution before asymmetric

reheating as well as the details of how this reheating takes place. We take the absence

24If asymmetric reheating leaves some small ρtwin > 0, then mirror baryon asymmetry can lead to
twin baryons as a small subcomponent of dark matter [391].
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of twin energy density as an initial condition, but emphasize that there are external,

well-motivated reasons for this to hold in twin Higgs models, as well as concrete models

that predict this occurrence naturally.

5.3.3 Kinetic Mixing & A Massive Twin Photon

In order to arrange for freeze-in, we add to the MTH kinetic mixing between the SM

and twin hypercharges and a Stueckelberg mass for twin hypercharge. At low energies,

these reduce to such terms for the photons instead, parametrized as

L += − ε
2
FµνF

′µν − 1

2
m2
γ′A
′
µA
′µ. (5.52)

This gives each SM particle of electric charge Q an e�ective twin electric charge εQ.25

The twin photon thus gives rise to a `kinetic mixing portal' through which the SM bath

may freeze-in light twin fermions in the early universe.

The Stueckelberg mass constitutes soft Z2-breaking,26 but has no implications for

the �ne-tuning of the Higgs mass since hypercharge corrections are already consistent

with naturalness [268]. We will require mγ′ > me′ , to prevent frozen-in twin electron/-

positron annihilations, and mγ′ > 2me′ , to ensure that resonant production through the

twin photon is kinematically accessible. Resonant production will allow a much smaller

kinetic mixing to generate the correct relic abundance, thus avoiding indirect bounds

25Note that twin charged states do not couple to the SM photon. Their coupling to the SM Z boson
has no impact on freeze-in at the temperatures under consideration. Furthermore, the miniscule kinetic
mixing necessary for freeze-in has negligible e�ects at collider experiments. See Ref. [392] for details.

26While we are breaking the Z2 symmetry by a relevant operator, the extent to which a Stueckelberg
mass is truly soft breaking is not clear. Taking solely Eq. (5.52), we would have more degrees of freedom
in the twin sector than in the SM, and in a given UV completion it may be di�cult to isolate this Z2-
asymmetry from the Higgs potential. One possible �x may be to add an extremely tiny, experimentally
allowed Stueckelberg mass for the SM photon as well [393], though we note this may be in violation
of quantum gravity [394, 395] or simply be di�cult to realize in UV completions without extreme �ne-
tuning. We will remain agnostic about this UV issue and continue to refer to this as `soft breaking',
following [392].
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from supernova cooling. We note that while taking mγ′ � f does bear explanation, the

parameter is technically natural.

On the other hand, mixing of the twin and SM U(1)s preserves the symmetries of

the MTH EFT, so quite generally one might expect it to be larger than that needed for

freeze-in. However, it is known that in the MTH a nonzero ε is not generated through

three loops [267]. While such a suppressed mixing is phenomenologically irrelevant for

most purposes, here it plays a central role. In Appendix A, we discuss at some length the

vanishing of infrared contributions to kinetic mixing through few loop order. If nonzero

contributions appear at the �rst loop order where they are not known to vanish, kinetic

mixing of the order ε ∼ 10−13 − 10−10 is expected.

The diagrams which generate kinetic mixing will likely also generate higher-dimensional

operators. These will be suppressed by (twin) electroweak scales and so, as discussed

above for the irrelevant operators generated by the model-dependent reheating mecha-

nism, freeze-in contributions from these operators are negligible.

5.3.4 Freezing-Tw in Dark Matter

As we are in the regime where freeze-in proceeds while the temperature sweeps over

the mass scales in the problem, it is not precisely correct to categorize this into either

�UV freeze-in� or �IR freeze-in�. Above the mass of the twin photon, freeze-in proceeds

through the marginal kinetic mixing operator, and so a naive classi�cation would say

this is IR dominated. However, below the mass of the twin photon, the clearest approach

is to integrate out the twin photon, to �nd that freeze-in then proceeds through an

irrelevant, dimension-six, four-Fermi operator which is suppressed by the twin photon

mass. Thus, at temperatures TSM . mγ′ , this freeze-in looks UV dominated. This leads

to the conclusion that the freeze-in rate is largest at temperatures around the mass of the
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twin photon. Indeed, this is generally true of freeze-in � production occurs mainly at

temperatures near the largest relevant scale in the process, whether that be the largest

mass out of the bath particles, mediator, and dark matter, or the starting thermal bath

temperature itself in the case that one of the preceding masses is even higher.

As just argued, freeze-in production of dark matter occurs predominantly at and

somewhat before T ∼ mγ′ . We require mγ′ � 1 GeV so that most of the freeze-in yield

comes from when T < 1 GeV, which allows us to retain `UV-independence' in that we

need not care about how asymmetric reheating has occurred past providing negligible

density of twin states at T = 1 GeV. Speci�cally, we limit ourselves to mγ′ < 2mπ0 , both

for this reason and to avoid uncertainties in the behavior of thermal pions during the

epoch of the QCD phase transition. However, we emphasize that freeze-in will remain a

viable option for producing a twin DM abundance for even heavier dark photons. But

the fact that the freeze-in abundance will be generated simultaneously with asymmetric

reheating demands that each sort of asymmetric reheating scenario must then be treated

separately. Despite the additional di�culty involved in predicting the abundance for

larger twin photon masses, it would be interesting to explore this part of parameter

space. In particular, it would be interesting to consider concrete scenarios with twin

photons in the range of tens of GeV [396].

To calculate the relic abundance of twin electrons and positrons, we use the Boltzmann

equation for the number density of e′:

ṅe′ + 3Hne′ =
∑
k,l

−〈σv〉e′ē′→kl (ne′nē′ − n
eq
e′ n

eq
ē′ ) , (5.53)

where 〈σv〉e′ē′→kl is the thermally averaged cross section for the process e′ē′ → kl, the

sum runs over all processes with SM particles in the �nal states and e′ē′ in the initial

state, and neqe′ is the equilibrium number density evaluated at temperature T . As we are
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in the parametric regime in which resonant production of twin electrons through the twin

photon is allowed, 2 → 2 annihilation processes f̄f → γ′ → ē′e′, with f a charged SM

fermion, entirely dominate the yield.

In accordance with the freeze-in mechanism, ne′ remains negligibly smaller than its

equilibrium number density throughout the freeze-in process, and so that term is ignored.

It is useful to reparametrize the abundance of e′ in terms of its yield, Ye′ = ne′/s where

s = 2π2

45
g∗sT

3 is the entropy density in the SM bath. Integrating the Boltzmann equation

using standard methods, we then �nd the yield of e′ today to be

Ye′ =

∫ Ti

0

dT
(45)3/2

√
2 π3
√
g∗ g∗s

MPl

T 5

(
1

T
+
∂Tg∗s
3g∗s

)
×

∑
f̄f→ē′e′

〈σv〉f̄f→ē′e′ n
eq
ē′ n

eq
e′ , (5.54)

where Ti = 1 GeV is the initial temperature of the SM bath at which freeze-in begins in

our setup, g∗(T ) is the number of degrees of freedom in the bath, and MPl is the reduced

Planck mass. We will calculate this to an intended accuracy of 50%. To this level of

accuracy, we may assume Maxwell-Boltzmann statistics to vastly simplify the calculation

[397]. As a further simpli�cation, we observe that the ∂Tg?s term is negligible compared

to 1/T except possibly during the QCDPT - where uncertainties on its temperature

dependence remain [345] - and so we ignore that term. The general expression for the

thermally averaged cross section of the process 12→ 34 is then

〈σv〉neq1 n
eq
2 =

T 4

29π5s34

∫ ∞
Max(m1+m2

T
,
m3+m4

T )
dxx2 (5.55)

×
√

[1, 2]
√

[3, 4]K1(x)

∫
d (cos θ) |M|212→34 ,

where s34 is 1 if the �nal states are distinct and 2 if not, x =
√
s /T ,

√
[i, j] =
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√
1−

(mi+mj
xT

)2
√

1−
(mi−mj

xT

)2
, and |M|212→34 is the matrix element squared summed

(not averaged) over all degrees of freedom. To very good approximation, the yield re-

sults entirely from resonant production, and so we may analytically simplify the matrix

element squared for f̄f → ē′e′ using the narrow-width approximation

∫
d (cos θ) |M|2f̄f→ē′e′ ≈

256π3α2ε2

3

(
2m2

f +m2
γ′

)
(5.56)

×
(
2m2

e′ +m2
γ′

)
Γγ′m2

γ′T
δ (x−mγ′/T ) .

Γγ′ is the total decay rate of the twin photon.

For the range of mγ′ we consider, the twin photon can only decay to twin electron

and positron pairs. Thus, its total decay rate is

Γγ′ =
α
(
m2
γ′ + 2m2

e′

)
3mγ′

√
1− 4m2

e′

m2
γ′
. (5.57)

Its partial widths to SM fermion pairs are suppressed by ε2, and so contribute negligibly

to its total width.

The �nal yield of twin electrons is then

Ye′≈
3m2

γ′

2π2

(45)3/2MPl√
2 π3

∑
f

∫ Ti

Tf

dTΓγ′→f̄f
K1(

mγ′

T
)

√
g∗ g∗sT 5

, (5.58)

where Tf = ΛQCD for quarks, Tf = 0 for leptons, Γγ′→f̄f is the partial decay width of

the twin photon to ff̄ , and the sum is over all SM fermion-antifermion pairs for which

mγ′ > 2mf .

Since we have approximated the yield as being due entirely to on-shell production

and decay of twin photons, the analytical expression for the yield in Eq. (5.58) exactly

agrees with the yield from freezing-in γ′ via `inverse decays' f̄f → γ′, as derived in [384].
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We have validated our numerical implementation of the freeze-in calculation by success-

fully reproducing the yield in similar cases found in [397, 398]. We have furthermore

checked that reprocessing of the frozen-in dark matter [385, 399] through e′ē′ → e′ē′e′ē′

is negligible here,27 as is the depletion from e′ē′ → ν ′ν̄ ′.

An equal number of twin positrons are produced as twin electrons from the freeze-in

processes. Requiring that ε reproduce the observed DM abundance today, we �nd

ε =

√
Ωχh2ρcrit/h2

2me′Ỹe′s0

, (5.59)

where Ωχh
2 ≈ 0.12, ρcrit/h2 ≈ 1.1 × 10−5GeV/cm3, and s0 ≈ 2900/cm3 [45]. Ỹe′ is the

total yield with the overall factor of ε2 removed. This requisite kinetic mixing appears

in Fig. 5.13 as a function of the twin photon mass mγ′ for the two benchmark f/v

values 4 and 10. In grey, we plot constraints from anomalous supernova cooling. To

be conservative, we include both, slightly di�erent bounds from [402, 403]. The dashed

regions of the lines show approximately where self-interactions through Bhabha scattering

are relevant in the late universe, σelastic/me′ & 1 cm2/g. Self-interactions much larger

than this are constrained by the Bullet Cluster [404, 405, 406] among other observations.

Interestingly, self-interactions of this order have been suggested to �x small-scale issues,

and some claimed detections have been made as well. We refer the reader to [388] for a

recent review of these issues.

As mentioned above and discussed further in Appendix A, the level of kinetic mixing

required for freeze-in is roughly of the same order as is expected from infrared contri-

butions in the MTH. It would be interesting to develop the technology to calculate the

high-loop-order diagrams at which it may be generated. In the context of a complete

27To be conservative, we calculate the rate assuming all interactions take place at the maximum√
s ' mγ′ and �nd that it is still far below Hubble. We perform the calculation of the cross section

using MadGraph [400] with a model implemented in Feynrules [401].
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Figure 5.13: Contours in the plane of twin photon mass mγ′ and kinetic mixing ε which
freeze-in the observed DM abundance for two values of f/v. The dip at high masses
corresponds to additional production via muon annihilations. In the dashed segments,
self-interactions occur with σelastic/me′ & 1cm2/g. Also included are the combined super-
nova cooling bounds from [402, 403].

model of the MTH where kinetic mixing is absent in the UV, ε is fully calculable and

depends solely on the scale at which kinetic mixing is �rst allowed by the symmetries.

Calculating ε would then predict a minimal model at some mγ′ to achieve the right dark

matter relic abundance, making this e�ectively a zero-parameter extension of MTH mod-

els with asymmetric reheating. Importantly, even if ε is above those shown in Fig. 5.13,

that would simply point to a larger value of mγ′ which would suggest that the parame-

ter point depends in more detail on the mechanism of asymmetric reheating. We note

that in the case that the infrared contributions to ε are below those needed here, the

required kinetic mixing may instead be provided by UV contributions and the scenario
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is una�ected.

5.3.5 Conclusion

The mirror twin Higgs is perhaps the simplest avatar of the Neutral Naturalness

program, which aims to address the increasingly severe little hierarchy problem. Un-

derstanding a consistent cosmological history for this model is therefore crucial, and an

important step was taken in [13, 379]. As opposed to prior work, the cosmology of the

MTH was remedied without hard breaking of the Z2 symmetry by utilizing asymmet-

ric reheating to dilute the twin energy density. Keeping the Z2 as a good symmetry

should simplify the task of writing high energy completions of these theories, but low-

scale reheating may slightly complicate cosmology at early times. These works left as

open questions how to set up cosmological epochs such as dark matter generation and

baryogenesis in such models. We have here found that at least one of these questions has

a natural answer.

In this work, we have shown that twin electrons and positrons may be frozen-in

as dark matter following asymmetric reheating in twin Higgs models. This requires

extending the mirror twin Higgs minimally with a single free parameter: the twin photon

mass. Freezing-in the observed DM abundance pins the required kinetic mixing to a level

expected from infrared contributions in MTH models. In fact, the prospect of calculating

the kinetic mixing generated in the MTH could make this an e�ectively parameter-free

extension of the MTH. Compared to generic freeze-in scenarios, it is interesting in this

case that the �just so� stories of feeble coupling and negligible initial density were already

present for reasons entirely orthogonal to dark matter.

This minimalism in freeze-twin dark matter correlates disparate signals which would

allow this model to be triangulated with relatively few indirect hints of new physics. If
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deviations in Higgs couplings are observed at the HL-LHC or a future lepton collider,

this would determine f/v [407, 408, 12, 10], which would set the dark matter mass.

An observation of anomalous cooling of a future supernova through the measurement of

the neutrino `light curve' might allow us to directly probe the mγ′ , ε curve [402, 403],

though this would rely on an improved understanding of the SM prediction for neutrino

production.28 Further astrophysical evidence of dark matter self-interactions would point

to a combination of f/v and mγ′ . All of this complementarity underscores the value of a

robust experimental particle physics program whereby new physics is pursued via every

imaginable channel.

28We thank Jae Hyeok Chang for a discussion on this point.
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Chapter 6

Neutral Naturalness in the Ground

There is nothing like looking, if you want to

�nd something. You certainly usually �nd

something, if you look, but it is not always

quite the something you were after.

J.R.R. Tolkien

The Hobbit, 1937 [409]

Long-Lived Particles

When we introduced models of Neutral Naturalness in Section 4.1.2, we were moti-

vated by the lack of signals of new, SM-charged particles at colliders. However, experi-

mentalists are very clever, and it is in fact possible to observe the e�ects of such particles

if you know where to look.

In particular, Neutral Naturalness models usually exhibit a `hidden valley' type phe-

nomenology, wherein a dark sector is connected to the SM only through some heavy

states. At a collider, a high energy collision can transfer energy from our sector to these
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heavy dark sector states, which may then decay just as heavy SM particles do. If the dark

sector contains absolutely stable particles, then the energy may cascade into those states,

which simply leave the detector. But without a symmetry dictating that stability, dark

sector states may be destabilized by the e�ects of that same high-energy link to the SM.

That connection may induce higher-dimensional operators which allow the decay of the

dark sector states back into SM states. Since this decay channel comes from interactions

of heavy states, the width may be highly suppressed, leaving to a macroscopically long

lifetime, even when the scale set by the particle's mass is microscopically small. This

leads to the appearance of SM particles out of nowhere inside a detector a macroscopic

distance away from the interaction point in a collider.

In fact there are many reasons an unstable particle may be long-lived, and we see a

multitude examples in the SM itself. In analogy with the hidden valley phenomenology,

charged pions are long-lived compared to the QCD scale because their decay must take

place through a heavy W boson. Neutrons are similarly very long-lived as a result of

their small mass splitting with protons. Protons themselves are very long-lived as a

result of an approximate global symmetry. The SM Higgs is long-lived compared to the

electroweak scale because its leading decay mode proceeds through the small bottom

quark Yukawas. Given the genericity of long-lived particles in our sector, it's entirely

reasonable to imagine that some dark sector will have similar phenomenology. So even

aside from our Neutral Naturalness motivation, such searches are generically useful and

interesting things to look for.

In this section we forecast how well an electron-positron collider will be able to probe

Higgs decays to long-lived particles, using the parameters for some proposed machines

and search strategies we designed. Such forecasting is crucially important at the present

time, as the community is still discussing what the next collider is that we will build.

It's clearly necessary to know what sort of physics program we expect we can carry out
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before we build a machine to do it. And these studies are used to motivate di�erent types

of detectors, their detailed design features and how trigger bandwidth is allocated.

6.1 Introduction

Following the discovery of the Higgs boson in 2012 [410, 411], the precision study

of its properties has rapidly become one of the centerpieces of the physics program at

the LHC. The expansion of this program beyond the LHC has become one of the key

motivators for proposed future accelerators, including lepton colliders such as CEPC

[412, 413], FCC-ee [414], the ILC [415, 416], and CLIC [417, 418] that would operate in

part as Higgs factories.

The potential gains of a precision Higgs program pursued at both the LHC and fu-

ture colliders are innumerable. Con�rmation of Standard Model predictions for Higgs

properties would mark a triumphant validation of the theory and illuminate phenomena

never before seen in nature. The observation of deviations from Standard Model predic-

tions, on the other hand, would point the way directly to additional physics beyond the

Standard Model. Such deviations could take the form of changes in Higgs couplings to

itself or other Standard Model states, or they could appear as exotic decay modes not

predicted by the Standard Model. The latter possibility has been extensively explored

for prompt exotic decay modes in the context of both the LHC (see e.g. [419, 420]) and

future Higgs factories [421].

However, an equally compelling possibility is for new physics to manifest itself in

exotic decays of the Higgs boson to long-lived particles (LLPs). Such signals were �rst

considered in the context of Hidden Valleys [422, 423, 424] and subsequently found to

arise in a variety of motivated scenarios for physics beyond the Standard Model, including

solutions to the electroweak hierarchy problem [268] and models of baryogenesis [425];
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for an excellent recent overview, see [426]. The search for exotic Higgs decays into LLPs

necessarily involves strategies outside the scope of typical analyses. The non-standard

nature of these signatures raises the compelling possibility of discovering new physics

that has been heretofore concealed primarily by the novelty of its appearance.

There is a rich and rapidly growing program of LLP searches at the LHC. A variety

of existing searches by the ATLAS, CMS, and LHCb collaborations (e.g. [427, 428, 429];

for a recent review see [430]) constrain Higgs decays into LLPs at roughly the percent

level across a range of LLP lifetimes. Signi�cant improvements in sensitivity are possible

in future LHC runs with potential advances in timing [431], triggers [432, 433, 434], and

analysis strategies [329, 328]. Most notable among these is the possible implementation

of a track trigger [432, 433], which would signi�cantly lower the trigger threshold for

Higgs decays into LLPs and potentially allow sensitivity to branching ratios on the order

of 10−6 in zero-background scenarios.

While studies of prompt exotic Higgs decays at future colliders [421] have demon-

strated the potential for signi�cantly improved reach over the LHC, comparatively little

has been said about the prospects for constraining exotic Higgs decays to long-lived par-

ticles at the same facilities.29 In this work we take the �rst steps towards �lling this gap

by studying the sensitivity of e+e− Higgs factories to hadronically-decaying new particles

produced in exotic Higgs decays with decay lengths ranging from microns to meters. For

the sake of de�niteness we restrict our attention to circular Higgs factories operating at

or near the peak rate for the Higgsstrahlung process e+e− → hZ, namely CEPC and

FCC-ee, while also sketching the corresponding sensitivity for the
√
s = 250 GeV stage

of the ILC. While essentially all elements of general-purpose detectors may be brought

to bear in the search for long-lived particles, the distribution of decay lengths for a given

29A notable exception is CLIC, for which a study of tracker-based searches for Higgs decays to LLPs
has been recently performed [435]. For preliminary studies of other non-Higgs LLP signatures at future
lepton colliders, see e.g. [436]. For studies of LLP signatures at future electron-proton colliders, see [437].
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average lifetime make it advantageous to exploit detector elements close to the primary

interaction point. We thus focus on signatures that can be identi�ed in the tracker. In

order to provide a faithful forecast accounting for realistic acceptance and background

discrimination, we employ a realistic (at least at the level of theory forecasting) approach

to the reconstruction and isolation of secondary vertices.

A key question is the extent to which future Higgs factories can improve on the LHC

sensitivity to Higgs decays to LLPs, insofar as the number of Higgs bosons produced

at the LHC will outstrip that of proposed Higgs factories by more than two orders of

magnitude. Higgs decays to LLPs are su�ciently exotic that appropriate trigger and

analysis strategies at the LHC should compensate for the higher background rate and

messier detector environment. As we will see, there are two natural avenues for improved

sensitivity at future lepton colliders: improved vertex resolution potentially increases

sensitivity to LLPs with relatively short lifetimes, while lower backgrounds and a cleaner

detector environment improves sensitivity to Higgs decays into lighter LLPs whose decay

products are collimated.

This chapter is organized as follows: In Section 2 we present a simpli�ed signal model

for Higgs decays into pairs of long-lived particles, which in turn travel a macroscopic dis-

tance before decaying to quark pairs. We further detail the components of our simulation

pipeline and lay out an analysis strategy aimed at eliminating the majority of Standard

Model backgrounds. In Section 3 we translate this analysis strategy into the sensitivity

of future lepton colliders to long-lived particles produced in Higgs decays as a function

of the exotic Higgs branching ratio and the mass and decay length of the LLP. While

these forecasts are generally applicable to any model giving rise to the signal topology, we

additionally interpret the forecasts in terms of the parameter space of several motivated

models in Section 4. We summarize our conclusions and highlight avenues for future

development in Section 5.
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6.2 Signal and analysis strategy

Exotic decays of the Higgs to long-lived particles encompass a wide variety of inter-

mediate and �nal states. The decay of the Higgs itself into LLPs can proceed through a

variety of di�erent topologies. Perhaps the most commonly-studied scenario is the decay

of the Higgs to a pair of LLPs, h → XX, though decays involving additional visible or

invisible particles (such as h → X + invisible or h → XX + invisible) are also possible.

The long-lived particles in turn may have a variety of decay modes back to the Standard

Model, including X → γγ, jj, `¯̀, or jj`, including various �avor combinations. These

decay modes may also occur in the company of additional invisible states. Moreover, a

given long-lived particle may possess a range of competing decay modes, as is the case for

LLPs whose decays back to the Standard Model are induced by mixing with the Higgs.

Our aim here is to be representative, rather than comprehensive, as each production

and decay mode for a long-lived particle is likely to require a dedicated search strategy.

For the purposes of this study, we adopt a simpli�ed signal model in which the Higgs

decays to a pair of long-lived scalar particles X of mass mX , which each decay in turn

to pairs of quarks at an average �proper decay length� cτ .30 Both the mass mX and

proper decay length cτ are treated as free parameters, though they may be related in

models that give rise to this topology. For the sake of de�niteness, for mX > 10 GeV

we take a branching ratio of 0.8 to bb̄ and equal branching ratios of 0.05 to each of

uū, dd̄, ss̄, cc̄, though the precise �avor composition is not instrumental to our analysis.

For mX ≤ 10 GeV we take equal branching ratios into each of the lighter quarks. We

further restrict our attention to Higgs factories operating near the peak of the e+e− → hZ

cross section, for which the dominant production process will be e+e− → hZ followed

by h → XX. The associated Z boson provides an additional invaluable handle for

30Of course, �proper decay length� is a bit of a misnomer, but we use it as a proxy for c times the
mean proper lifetime τ .
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background discrimination. Here we develop the conservative approach of focusing on

leptonic decays of the Z, though added sensitivity may be obtained by incorporating

hadronic decays.

Given the signal, there are a variety of possible analysis strategies sensitive to Higgs

decays to long-lived particles, exploiting various parts of a general-purpose detector.

Tracker-based searches are optimal for decay lengths below one meter, with sensitivity to

shorter LLP decay lengths all the way down to the tracker resolution. Timing information

using timing layers between the tracker and electromagnetic calorimeter o�ers optimal

coverage for slightly longer decay lengths, while searches for isolated energy deposition

in the electromagnetic calorimeter, hadronic calorimeter, and muon chambers provides

sensitivity to decay lengths on the order of meters to tens of meters. In principle, in-

strumenting the exterior of a general-purpose detector with large volumes of scintillator

may lend additional sensitivity to even longer lifetimes. In this work we will focus on

tracker-based searches at future lepton colliders, as these may be simulated relatively

faithfully and ultimately are among the searches likely to achieve zero background while

retaining high signal e�ciency.

We de�ne our signal model in FeynRules [401] and generate the signal e+e− →

hZ → XX + `¯̀ at
√
s = 240 GeV using MadGraph 5 [400]. Where appropriate, we will

also discuss prospects for Higgs factories operating at
√
s = 250 GeV (potentially with

polarized beams) such as the ILC by rescaling rates with the appropriate leading-order

cross section ratios. In order to correctly simulate displaced secondary vertices, the decay

of the LLP X and all unstable Standard Model particles is then performed in Pythia 8

[438].

In addition to the signal, we consider some of the leading backgrounds to our signal

process and develop selection cuts aimed at achieving a zero-background signal region.

The most signi�cant irreducible backgrounds from Standard Model processes include
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e+e− → hZ with Z → `¯̀ and h → bb̄ as well as e+e− → ZZ → `¯̀+ bb̄. Unsurprisingly,

there are a variety of other Standard Model backgrounds, but they are typically well-

controlled by imposing basic Higgsstrahlung cuts, and we do not simulate them with high

statistics. In addition to irreducible backgrounds from hard collisions, there are possible

backgrounds from particles originating away from the interaction point, including cosmic

rays, beam halo, and cavern radiation; algorithmic backgrounds originating from e�ects

such as vertex merging or track crossing; and detector noise. Such backgrounds are well

beyond the scope of the current study, and will require dedicated investigation with full

simulation of the proposed detectors.

Correctly emulating the detector response to LLPs using publicly-available fast sim-

ulation tools is notoriously challenging. In particular, we have found that the default

clustering algorithms in the detector simulator Delphes [439] tends to cluster calorime-

ter hits from di�erent secondary vertices into the same jets, signi�cantly complicating

the realistic reconstruction of secondary vertices. As such, we develop an analysis strat-

egy using only ingredients from the Pythia output, although we do further run events

through Delphes and utilize ROOT [440] for analysis.

We implement two distinct tracker-based analyses with complementary signal param-

eter space coverage, which we denote as the `large mass' and `long lifetime' pipelines. We

shall eventually see that the former will be e�ective for mX & 10 GeV down to proper

decay lengths cτ & 1µm, while the latter is able to push down in mX by a factor of

a few though is only fully e�ective for cτ & 1 cm. Full cut tables for both irreducible

backgrounds and a variety of representative signal parameter points appear in Tables 6.1

and 6.2, respectively.
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Table 6.1: Cut �ow of the `large mass' analysis for the CEPC with entries of accep-

tance × e�ciency. The top set of rows gives the cut �ow on 500k Z(bb̄)Z(`¯̀) events

and 100k h(bb̄)Z(`¯̀) background events, which are used to con�rm our analysis is in the

no-background regime. The next sets of rows give cut �ows on 5k signal events at repre-

sentative parameter points, where the di�erent columns are labeled by mX/GeV, cτ/m.

The full row labels are given in the top set of rows and the labels below are abbreviations

for the same cuts or selections.

Cut/Selection ZZ Background hZ Background

Dilepton Invariant Mass 0.97 0.98

Recoil Mass 0.006 0.94

Displaced Cluster (≥ resolution) 0.004 0.94

Invariant Charged Mass (6 GeV) 0 0.00005

Invariant `Dijet' Mass 0 0.00005

Pointer Track 0 0.00001

mX , cτ 7.5, 10−4 7.5, 10−2 7.5, 100 10, 10−4 10, 10−2 10, 100

M`` 0.97 0.97 0.97 0.97 0.98 0.97

Mrecoil 0.93 0.93 0.93 0.93 0.94 0.93

|~dcluster| 0.93 0.93 0.41 0.93 0.94 0.50

Mcharged 0.27 0.28 0.08 0.55 0.55 0.21

Mcluster 0.27 0.28 0.08 0.55 0.55 0.21

Pointer 0.25 0.28 0.08 0.50 0.55 0.21
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mX , cτ 25, 10−4 25, 10−2 25, 100 50, 10−4 50, 10−2 50, 100

M`` 0.97 0.97 0.98 0.97 0.98 0.97

Mrecoil 0.92 0.92 0.93 0.92 0.92 0.93

|~dcluster| 0.92 0.92 0.80 0.92 0.92 0.93

Mcharged 0.76 0.77 0.57 0.82 0.85 0.81

Mcluster 0.76 0.77 0.57 0.76 0.80 0.76

Pointer 0.73 0.76 0.57 0.75 0.77 0.76

Table 6.2: Cut �ow of the `long lifetime' analysis for the CEPC with entries of accep-

tance × e�ciency. The top set of rows gives the cut �ow on 500k Z(bb̄)Z(`¯̀) events

and 100k h(bb̄)Z(`¯̀) background events, which are used to con�rm our analysis is in the

no-background regime. The next sets of rows give cut �ows on 5k signal events at repre-

sentative parameter points, where the di�erent columns are labeled by mX/GeV, cτ/m.

The full row labels are given in the top set of rows and the labels below are abbreviations

for the same cuts or selections.

Cut/Selection ZZ Background hZ Background

Dilepton Invariant Mass 0.97 0.98

Recoil Mass 0.006 0.94

Displaced Cluster (≥ 3 cm) 0.004 0.62

Charged Invariant Mass (2 GeV) 0 0.002

`Dijet' Invariant Mass 0 0.002

Pointer Track 0 0.001

Isolation 0 0.00005
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mX , cτ 2.5, 10−4 2.5, 10−2 2.5, 100 7.5, 10−4 7.5, 10−2 7.5, 100

M`` 0.97 0.97 0.98 0.97 0.97 0.97

Mrecoil 0.93 0.93 0.93 0.93 0.93 0.93

|~dcluster| 0.21 0.89 0.15 0.41 0.89 0.41

Mcharged 0 0.40 0.05 0 0.74 0.34

Mcluster 0 0.40 0.05 0 0.74 0.34

Pointer 0 0.40 0.05 0 0.74 0.34

Isolation 0 0.33 0.045 0 0.51 0.33

mX , cτ 15, 10−4 15, 10−2 15, 100 50, 10−4 50, 10−2 50, 100

M`` 0.97 0.98 0.97 0.97 0.98 0.97

Mrecoil 0.93 0.93 0.93 0.92 0.92 0.93

|~dcluster| 0.59 0.87 0.65 0.64 0.69 0.92

Mcharged 0.001 0.71 0.63 0 0.10 0.91

Mcluster 0.001 0.71 0.63 0 0.09 0.90

Pointer 0.001 0.65 0.60 0 0.08 0.84

Isolation 0.0002 0.42 0.58 0 0.05 0.77

As a �rst step in either analysis, we select Higgsstrahlung events by requiring that our

events have an opposite sign electron (muon) pair in the invariant mass range 70 ≤Mee ≤

110 GeV (81 ≤ Mµµ ≤ 101 GeV) and with recoil mass M2
recoil ≡

(
(
√
s ,~0)µ − pµ``

)2
in the

range 120 ≤Mrecoil ≤ 150 GeV, with pµ`` the momentum of the lepton pair. This allows us

to limit our background considerations to the irreducible backgrounds mentioned above

and cuts down severely on the e+e− → ZZ background, as seen in Tables 6.1 and 6.2.

We next identify candidate secondary vertices using a depth-�rst `clustering' algo-

rithm, which roughly emulates that performed in the CMS search [441]. We perform

this clustering using all particles in the event because at later points in the analysis we
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need this truth-level assignment of neutral particles to clusters, but we expect that this

(admittedly unrealistic) inclusion does not signi�cantly modify the performance of this

algorithm. Beginning with a single particle as the `seed' particle for our algorithm, we

look through all other particles in the event and create a `cluster' of particles consisting

of the seed particle and any others whose origins are within `cluster = 7 µm (the projected

tracker resolution of CEPC [413]) of the seed particle. We then add to that cluster any

particles whose origins are within `cluster of any origins of particles in the cluster, and do

this step iteratively until no further particles are added to the cluster. We then choose a

new seed particle which has not yet been assigned to a cluster and begin this clustering

process again. We repeat this process until all particles in the event have been assigned

to clusters. We assign to each cluster a location ~dcluster which is the average of the ori-

gins of all charged particles in the cluster. To ensure that our events contain displaced

vertices, we impose a minimum bound on the displacement from the interaction point

|~dcluster| > dmin, and clusters satisfying this requirement constitute candidate secondary

vertices. For our `large mass' analysis we set dmin to be the impact parameter resolution

(' 5 µm for both CEPC and FCC-ee [413]), and so retain sensitivity to very short X

lifetimes. For our `long lifetime' analysis we set dmin = 3 cm, which removes the vast

majority of clusters coming from B hadron decays in background events, as seen in Table

6.2. An upper bound |~dcluster| < rtracker is imposed by the outer radius of the tracker,

where rtracker = 1.81m for CEPC and rtracker = 2.14m for FCC-ee are proposed.

At this point an experimental analysis might sensibly examine dijets containing can-

didate secondary vertices and impose an upper bound on the dijet invariant mass to

remove backgrounds coming from Standard Model H or Z decays. As discussed above

we are limited to Pythia objects, but to mock up the (small) penalty to signal of

such a selection we implement a selection on the total invariant mass of the clusters

M2
cluster ≡ (

∑
i∈ cluster p

µ
i )2. Since this is truth-level information, to turn it into an analog
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for the dijet invariant mass we apply a Gaussian smearing with a standard deviation of

10 GeV to account for the dijet resolution. We then select only candidate secondary ver-

tices with Mcluster < mh/2. This has no e�ect on background in our simulation pipeline

as the background candidate secondary vertices are the result of hadronic decays, so the

invariant masses of these clusters are not analogs for dijet invariant masses. As empha-

sized above, the imposition of this cut is strictly to account for possible selections that

might appear in a more realistic experimental analysis.

While the total invariant mass of the clusters is not an experimental observable, the

invariant mass of charged particles in the clusters Mcharged = (
∑

i charged p
µ
i )2 is experi-

mentally accessible. For our `large mass' analysis we select candidate secondary vertices

withMcharged > 6 GeV, which gets rid of nearly all clusters from hadronic decays, as seen

in Table 6.1. For the `long lifetime' analysis, while the increased displacement require-

ment removes b hadrons it still allows c, s hadrons, and so we select Mcharged > 2 GeV to

address this, which Table 6.2 shows is again very e�ective.

Next we select the cluster closest to the beamline which passes the above selection

requirements as our secondary vertex for the event. Choosing the closest one preferen-

tially selects X decay clusters over hadronic decay clusters in the jets to which the X

decays, though this can be fooled by a non-zero fraction of `back-�owing' quarks in X

decays (quarks with momenta pointing toward the beamline).

To remove displaced vertices coming from the decays of charged b hadrons we im-

plement a `pointer track' cut in both analyses as follows. For the cluster selected as

the secondary vertex, we consider a sphere of radius r = 0.5 mm around the position

~dcluster. We look for any charged particles whose origins are outside this sphere and whose

momenta (at the point at which they were created) point into it, and veto the event if

there are any such particles. The main e�ect of this cut is to remove clusters which were

produced from the decay of a charged hadron. The sphere size has been chosen to maxi-
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mize this e�ect, though this allows a small e�ect on signal due to geometric coincidence.

Since this cut is only on charged particles, roughly ∼ 30% of background clusters are

una�ected. For this cut we ignore the e�ect of the magnetic �eld in the tracker, which

should not highly impact the trajectories on short scales.

For the `long lifetime' analysis we further implement an `isolation' cut to remove

neutral hadronic background decays. Given the cluster selected as the secondary vertex,

we consider the plane perpendicular to the sum of momenta of charged particles in the

cluster which passes through ~dcluster. We project the paths of prompt (vertex within

3 µm of the primary vertex, the planned CEPC vertex resolution [413]) charged particles

onto this plane (again ignoring the magnetic �eld) and veto the event if any come within

R = 10 cm of the position of the secondary vertex. This radius was chosen to maximally

reduce background, and does have a deleterious e�ect on short decay lengths . 10 mm,

as can be seen in Table 6.2. This cut is not perfectly e�ective at rejecting background due

to the non-negligible presence of jets whose prompt components have neutral fraction 1.

6.3 Results and discussion

To con�rm that our analysis pipelines put us in the zero-background regime we run

both the `long lifetime' and the `large mass' analyses on 500k e+e− → Z(bb̄)Z(`¯̀) events

and 100k e+e− → h(bb̄)Z(`¯̀) background events. For both pipelines we �nd that zero

e+e− → Z(bb̄)Z(`¯̀) events remain, while for e+e− → h(bb̄)Z(`¯̀) we �nd e�ciencies of

5× 10−5 and 1× 10−5 respectively. We then run each analysis on 5k signal events to get

acceptance × e�ciencies for each (mX , cτ) point, for a selection of points with mX = 2.5

from GeV to 50 GeV and cτ from 1 µm to 50 m. In Table 6.2 we give a cut table for

both backgrounds and some representative signal parameter points for the `long lifetime'

analysis, and in Table 6.1 we do the same for the `large mass' analysis.
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In the zero-background regime, Poisson statistics rules out model points which predict

3 or more signal events to 95% con�dence (or better) if no signal is detected. We may

then �nd a projected 95% upper limit on branching ratio as

Br(h→ XX)95 =
Nsig

L × σ(e+e− → hZ)× Br(Z → ``)× A× ε
, (6.1)

with Nsig = 3 and A× ε the result of our simulations. For both the CEPC and FCC-ee,

the most recent integrated luminosity projections [413, 442] give L × σ(e+e− → hZ) =

1.1× 106 Higgses produced.

In Figure 6.1 we show projected 95% upper limits on Br(h → XX) as a function

of X mass and proper decay length. While we plot separate lines for both CEPC and

FCC-ee, we only use one set of signal events generated at
√
s = 240 GeV and only

account for the di�erence in tracker radii, so these overlap entirely at smaller lifetimes.

Approximate limits for the ILC can be obtained by multiplying the above branching

ratio limits by a factor of ∼ 1.8 (i.e. weakening the limit) to account for the leading

order di�erences in center-of-mass energy, polarization, and integrated luminosity at the
√
s = 250 GeV ILC run, assuming comparable acceptance and e�ciency. The ILC limits

weaken slightly further for large decay lengths, as its proposed tracker radius is 1.25 m.

Of course, adding the higher-energy ILC runs should signi�cantly improve sensitivity

given analyses suitable for the WW fusion production relevant at those energies.

For small masses we are only able to use the `long lifetime' analysis, which requires

large displacement from the beamline to cut out the SM b hadron background. As a

result we only retain good sensitivity to X decay lengths comparable with the tracker

size, though the fact that we only require one displaced vertex (out of two Xs per signal

event) signi�cantly broadens our sensitivity range. This fact also helps us retain e�ciency

at low masses, as we are able to get down to a projected branching ratio limit of 1×10−4
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for mX = 2.5 GeV despite our 2 GeV cut on charged invariant mass of the decay cluster.

For larger masses this cut has less e�ect, which allows it to push down to even lower

branching ratios ∼ 5× 10−5.

The `large mass' analysis begins working well for masses not far above the 6 GeV

charged invariant mass cut and provides sensitivity to far shorter decay lengths, reaching

all the way down to the impact parameter resolution and below. For mX = 10 GeV,

where we are aided by the boost factor, we project a limit of 1× 10−4 for a proper decay

length of 1 micron. The sensitivity to extremely small decay lengths drops for larger

masses, but at mX = 50 GeV we cross below the 10−4 threshold by 7.5 µm. For X

masses high enough that the charged invariant mass cut does not remove a large amount

of signal events, this analysis projects a branching ratio limit of ∼ 5×10−5 across roughly

the entire range of decay lengths corresponding to the geometric volume of the detector.

There is a slight dip in sensitivity for cτ ∼ 1 mm, where the pair of dijets from the two

X decays are most likely to overlap and trigger the cut on `pointer' tracks.

The notable region of this parameter space to which our analyses do not provide good

sensitivity is the low mass (mX . 6 GeV) and short proper decay length (cτ . 1 cm)

regime. The di�culty is that, from the perspective of the tracker, the X here looks more

and more like a neutral SM hadron. An analysis making use of the impact parameter

distribution of particles in clusters may help here [441], but we leave this to future

work. Taking advantage of calorimeter data to distinguish between clusters in single jets

versus dijets is also likely to provide good sensitivity, but we again leave this to future

exploration.

Broadly speaking, our results suggest a peak sensitivity of Br(h→ XX) ∼ 5× 10−5,

weakening to ∼ 10−4 for lower-mass LLPs. Signi�cant additional improvement could

be expected with the inclusion of hadronic Z decays, but this requires further study

to ensure the control of corresponding Standard Model backgrounds. These limits are
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Figure 6.1: Projected 95% h → XX branching ratio limits as a function of proper
decay length for a variety of X masses. Blue lines are for CEPC and orange lines are
for FCC-ee, and where only one is visible they overlap. The larger dashes are the `long
lifetime' analysis and the smaller dashes are the `large mass' analysis.

244



Neutral Naturalness in the Ground Chapter 6

competitive with LHC forecasts based on conventional Higgs triggers [329, 328], noting

that these latter forecasts assume zero background. However, the lepton collider limits

are potentially superseded by an e�cient CMS track trigger [432, 433] for higher-mass

LLPs, again assuming zero background is achievable with high signal e�ciency across

a range of lifetimes. In this respect, the primary strengths of the Higgs factories in

searching for exotic Higgs decays to LLPs are the potential to push down to shorter

decay lengths and lighter LLPs. In particular, the relatively clean and low-background

environment of lepton colliders should enable e�cient LLP searches even when the LLP

decay products become collimated, which remains a weakness of the corresponding LHC

searches.

6.4 Signal interpretations

While the bounds presented in the previous section apply to any scenario in which

the Higgs decays into pairs of long-lived particles which in turn decay (at least in part)

into pairs of quarks, it is also useful to interpret these bounds in the context of speci�c

models that relate the Higgs branching ratio to LLPs (and the LLP lifetime) to underlying

parameters. This illustrates the potential for LLP searches at future lepton colliders to

constrain motivated scenarios for physics beyond the Standard Model and allows us

to explore the potential complementarity between LLP searches and precision Higgs

coupling measurements. To this end, we consider the implications of the LLP limits

presented here in the context of both the original Higgs portal Hidden Valley model and

a variety of models of neutral naturalness.
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6.4.1 Higgs portal

As a general proxy model for Higgs decays into LLPs, we �rst consider the archetypal

Higgs portal Hidden Valley [423]. This entails the extension of the Standard Model by an

additional real singlet scalar φ, which couples to the Standard Model through the Higgs

portal [443, 444, 445] via

L ⊃ −1

2
(∂µφ)2 − 1

2
M2φ2 − A|H|2φ− 1

2
κ|H|2φ2

− 1

3!
µφ3 − 1

4!
λφφ

4 − 1

2
λH |H|4. (6.2)

If φ respects a Z2 symmetry under which φ→ −φ, this additionally sets µ = A = 0, such

that the singlet scalar only couples to the Standard Model via the quartic interaction

|H|2φ2. After electroweak symmetry breaking, in unitary gaugeH =
(

0, 1√
2

(h+ v)
)
, but

the CP-even scalars h and φ do not mix. Nonetheless, the quartic interaction nonetheless

provides a signi�cant portal for the production of φ, as φ may be pair produced via the

decay h → φφ for mφ < mh/2. Of course, φ is stable if the Z2 symmetry is exact,

rendering it a potential (albeit highly constrained) dark matter candidate [446, 447, 448].

This model gives rise to long-lived particle signatures [423] if the Z2 is broken by a

small amount, such that A 6= 0 but e.g. A2/M2 � κ. The relative smallness of A is

technically natural, as the Z2 symmetry is restored when A→ 0. This then leads to mass

mixing between the CP even scalars. As long as A is small compared to M and v, the

mass eigenstates consist of an SM-like Higgs hSM and a mostly-singlet scalar s, related

to the gauge eigenstates by

hSM = h cos θ + φ sin θ (6.3)

s = −h sin θ + φ cos θ, (6.4)
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where θ � 1 is the mixing angle. There are now two parametrically distinct processes:

pair production of the scalar s via Higgs decays, governed by the size of the Z2-preserving

coupling κ, and decay of the s scalar back to the Standard Model, governed by the size of

the Z2-breaking coupling A. In the limit of small mixing, the former process is of order

Γ(h→ ss) ≈ κ2v2

32πmh

√
1− 4

m2
s

m2
h

, (6.5)

where we are neglecting subleading corrections proportional to λH sin2 θ. The latter

process proceeds into whatever Standard Model states Y are kinematically available,

with partial widths

Γ(s→ Y Y ) = sin2 θ × Γ(hSM[ms]→ Y Y ), (6.6)

where hSM[ms] denotes a Standard Model-like Higgs of mass ms. This naturally leads to

a scenario in which the s scalars may be copiously produced via Higgs decays but travel

macroscopic distances before decaying back to Standard Model particles.

This scenario may be constrained not only by direct searches for Higgs decays to

LLPs (with the scalar s playing the role of the LLP), but also by precision Higgs coupling

measurements. Higgs coupling deviations in this scenario arise from two parametrically

distinct e�ects: tree-level deviations proportional to θ2 due to Higgs-singlet mixing, and

one-loop deviations proportional to κ due to s loops. Both e�ects result in a universal

modi�cation of Higgs couplings, which is best constrained at lepton colliders via the

precision measurement of the e+e− → hZ cross section [449, 450]. The net deviation in

the e+e− → hZ cross section due to these e�ects in the limit of small mixing is

δσhZ
σSM
hZ

≈ −θ2 − Re
dMhh

dp2

∣∣∣∣
p2=m2

h

, (6.7)
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Figure 6.2: Projected 95% limits on the Higgs portal Hidden Valley model in the κ, θ
plane for three choices of ms; green lines correspond to ms = 2.5 GeV, blue to ms = 10
GeV, and red to ms = 50 GeV. The solid lines are the projected lower limits from
precision Higgs measurements, taking the CEPC projections [413] for de�niteness. The
dashed lines are projected limits from this work, which are essentially identical for CEPC
and FCC-ee. Long dashes are from the `long lifetime' analysis and short dashes from the
`large mass' analysis.

where the radiative correction [450]

dMhh

dp2

∣∣∣∣
p2=m2

h

= − 1

16π2

κ2v2

2m2
h

(6.8)

×

(
1 +

4m2
s

m2
h

√
m2
h

m2
h − 4m2

s

tanh−1

[√
m2
h

m2
h − 4m2

s

])

is approximated at θ = 0. Either e�ect can dominate depending on the relative size

of A/M and κ.

Constraints from a direct search for Higgs decays to LLPs and precision Higgs mea-

surements as a function of the underlying parameters θ and κ are shown in Figure 6.2

for the illustrative benchmarks ms = 2.5, 10, and 50 GeV. Unsurprisingly, in the regime

where s is long-lived, the bounds from precision Higgs coupling measurements are modest

and direct searches provide the leading sensitivity.
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6.4.2 Neutral naturalness

Higgs decays to LLPs are also motivated by naturalness considerations, arising fre-

quently in models of neutral naturalness that address the hierarchy problem with SM-

neutral degrees of freedom [267, 276]. In these models, partially or entirely SM-neutral

partner particles that couple to the Higgs boson are charged under an additional QCD-

like sector. Con�nement in the additional QCD-like sector leads to a variety of bound

states that couple to the Higgs and may be pair-produced in exotic Higgs decays with

predictive branching ratios. The bound states with the same quantum numbers as the

physical Higgs scalar typically decay back to the Standard Model by mixing with the

Higgs. These decays occur on length scales ranging from microns to kilometers, making

them a motivated target for LLP searches at colliders [268, 328].

For simplicity, here we will restrict our focus to scenarios with the sharpest predictions

for the Higgs branching ratio to LLPs. In these cases, the LLPs in question are typically

glueballs of the additional QCD-like sector, of which the JPC = 0++ is typically the

lightest. The coupling of the SM-like Higgs to these LLPs is predominantly due to top

partner loops, for which the scales and couplings are directly related to the naturalness

of the parameter space. In the Fraternal Twin Higgs [268], the entirely SM-neutral

fermionic partners of the top quark induce Higgs couplings to twin gluons, which then

form glueballs; the 0++ states are the lightest in the twin QCD spectrum only if the

other twin quarks are su�ciently heavy. In addition, there are tree-level deviations in

Higgs couplings due to the pseudo-goldstone nature of the SM-like Higgs. In Folded

SUSY [273], the scalar top partners carry electroweak quantum numbers, leading to

radiative corrections to standard Higgs decays as well as the existence of exotic decay

modes. Loops of the scalar top partners again induce Higgs couplings to twin gluons, and

without light folded quarks the 0++ glueball is generically the lightest state in the folded
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QCD spectrum. While there are no tree-level Higgs coupling deviations in this case, the

electroweak quantum numbers of the scalar top partners induce signi�cant corrections

to the branching ratio h → γγ. Finally, in the Hyperbolic Higgs [281] (see also [282]),

the scalar top partners are entirely SM-neutral, and induce couplings to 0++ glueballs

that are generically the lightest states in the hyperbolic QCD spectrum. As with the

Fraternal Twin Higgs, however, there are also tree-level Higgs coupling deviations due to

mass mixing among CP-even neutral scalars.

In each of these scenarios, the branching ratio of the SM-like Higgs can be parame-

terized as follows:

Br(h→ 0++0++) ≈
(

2v2α
′
s(mh)

αs(mh)

[
y2

M2

])2

×Br(h→ gg)SM ×

√
1− 4m2

0

m2
h

(6.9)

Here α′s denotes the coupling of the additional QCD-like sector (whether twin, folded, or

hyperbolic), which is necessarily of the same order as the SM QCD coupling αs, and m0

is the mass of the glueball, which is determined in terms of the QCD-like con�nement

scale. Adopting the schematic notation of [328], the parameter
[
y2

M2

]
encodes the model-

dependence of the Higgs coupling to pairs of gluons in the QCD-like sector, with

[
y2

M2

]
≈


− 1

2v2
v2

f2 Fraternal Twin Higgs

1
4v2

m2
t

m2
t̃

Folded SUSY

1
4v2

v
vH

sin θ Hyperbolic Higgs

(6.10)

For the Fraternal Twin Higgs, f denotes the overall twin symmetry-breaking scale f 2 =

v2 + v′2 in terms of the SM weak scale v and the fraternal weak scale v′. For Folded

SUSY, mt̃ denotes the mass of the scalar top partners, neglecting possible mixing e�ects.
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For the Hyperbolic Higgs, vH is the hyperbolic scale and tan θ ≈ v
vH

encodes tree-level

mixing e�ects. In each case, the scales appearing in the e�ective coupling are related

to the �ne-tuning of the model, drawing a direct connection between the Higgs exotic

branching ratio and the naturalness of the weak scale.

In each case, the 0++ glueballs of the additional QCD-like sector decay back to the

Standard Model by mixing with the SM-like Higgs, with a partial width to pairs of SM

particles Y given by

Γ(0++ → Y Y ) =

(
1

12π2

[
y2

M2

]
v

m2
h −m2

0

)2 (
4παBs F

S
0++

)2

×Γ(hSM [m0]→ Y Y ), (6.11)

where 4παBs F
S
0++ ≈ 2.3m3

0 and, as before, hSM[m0] denotes a Standard Model-like Higgs

of mass m0.

Constraints on each model from a direct search for Higgs decays to LLPs and precision

Higgs measurements are shown in Figure 6.3 as a function of the LLP mass m0 and the

relevant scale (f, vH, and mt̃, respectively). For precision Higgs measurements we use the

CEPC projections from [413]. In the Fraternal Twin Higgs and Hyperbolic Higgs, the

dominant indirect constraint is from σZh, while for Folded SUSY it is from Br(h→ γγ).

For both the Fraternal Twin Higgs and the Hyperbolic Higgs, tree-level Higgs coupling

deviations make precision Higgs measurements the strongest test of the model. However,

the sensitivity of LLPs searches provides valuable complementarity in the event that

Higgs coupling measurements yield a discrepancy from Standard Model predictions. In

particular, the size of an observed Higgs coupling deviation would single out the relevant

overall mass scale (f or vH), providing a �rm target for LLP searches that would then

validate or falsify these models as an explanation of the deviation. Note also that in

the Fraternal Twin Higgs there may be additional contributions to the Higgs branching
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Figure 6.3: Projected 95% limits on the underlying scale as a function of the LLP mass
m0 in three models of neutral naturalness: the Fraternal Twin Higgs (f), the Hyperbolic
Higgs (vH), and Folded SUSY (mt̃). The blue dashed line denotes the limit coming from
precision Higgs coupling measurements, taking for de�niteness the CEPC projections
from [413]. For the Fraternal Twin Higgs and Hyperbolic Higgs, the dominant indirect
constraint is from σZh, while for Folded SUSY it is from Br(h→ γγ). The shaded region
denotes the projected limits from direct LLP searches obtained in this work.

ratio into LLPs coming from the production of twin bottom quarks, which could lead

to sensitivity in the LLP search comparable to that of Higgs couplings. In the case

of Folded SUSY, the absence of tree-level Higgs coupling deviations and the relatively

weaker constraints on Br(h → γγ) make the LLP search the leading test of this model

at Higgs factories.

6.5 Conclusion

The exploration of exotic Higgs decays is an integral part of the physics motiva-

tion for future lepton colliders. New states produced in these exotic Higgs decays may

themselves decay on a variety of length scales, necessitating a range of search strategies.

While considerable attention has been devoted to the reach of future lepton colliders

for promptly-decaying states produced in exotic Higgs decays, the reach for long-lived

particles is relatively unexplored.
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In this paper we have made a �rst attempt to study the reach of proposed circular

Higgs factories such as CEPC and FCC-ee (as well as approximate statements for the
√
s = 250 GeV run of the ILC) for long-lived particles produced in exotic Higgs decays,

focusing on the pair production of LLPs and their subsequent decay to pairs of quarks.

We have developed a realistic tracker-based search strategy motivated by existing LHC

searches that entails the reconstruction of displaced secondary vertices. Rather than

relying on existing public fast simulation tools, which do not necessarily give a sensible

parameterization of signal and background e�ciencies for long-lived particle searches, we

have implemented a realistic approach to clustering and isolation. This allows us to char-

acterize some of the leading irreducible Standard Model backgrounds to our search and

determine reasonable analysis cuts necessary for a zero-background analysis. We obtain

forecasts for the potential reach of CEPC and FCC-ee on the Higgs branching ratio to

long-lived particles with a range of lifetimes. The projected reach is competitive with

LHC forecasts and potentially superior for lower LLP masses and shorter lifetimes. In ad-

dition to our branching ratio limits, which may be freely interpreted in a variety of model

frameworks, we interpret our results in the parameter space of a Higgs portal Hidden Val-

ley and various incarnations of neutral naturalness, demonstrating the complementarity

between direct searches for LLPs and precision Higgs coupling measurements.

There are a variety of directions for future work. While we have attempted to in-

vestigate some of the leading irreducible backgrounds and impose realistic cuts, we have

not attempted to estimate possible backgrounds coming from cosmic rays; algorithmic,

detector, or beam e�ects; or other contributions. Our tracker-based analysis has focused

on Higgs decays to pairs of hadronically-decaying LLPs, but a comprehensive picture

of exotic Higgs decays would also suggest the investigation of Higgs decays to various

LLP combinations as well as the consideration of additional LLP decay modes. More-

over, tracker-based searches for displaced vertices are but one of many possible avenues
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to discover long-lived particles. Analogous searches based on timing or on isolated en-

ergy deposition in outer layers of the detector (including either the electromagnetic or

hadronic calorimeter, the muon chambers, or potentially instrumented volumes outside

of the main detector) would be valuable for building a complete picture of LLP sensitivity

across a range of lifetimes.

More broadly, it is an ideal time to study the potential sensitivity of future Higgs

factories to long-lived particles, as the results are likely to inform the design of detectors

for these proposed colliders. This is a necessary step in motivating the physics case of

future Higgs factories and ensuring that they enjoy optimal coverage of possible physics

beyond the Standard Model.
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Chapter 7

New Trail for Naturalness

Is commuting dead?

The Connecticut Mirror Headline

June 2, 2020 [451]

7.1 Introduction

At its heart, the electroweak hierarchy problem is a question of how an infrared (IR)

scale can emerge from an ultraviolet (UV) scale without �ne-tuning of UV parameters.

Given the sensitivity of the Standard Model Higgs mass to UV scales, the expectation of

e�ective �eld theory (EFT) is that the two should coincide. Conventional solutions to the

hierarchy problem introduce both symmetries that control UV contributions to the Higgs

potential and dynamics that generate IR contributions, leading to considerable structure

at the weak scale and correspondingly sharp experimental tests. Ongoing exploration

of the weak scale has given no evidence for these solutions, despite their theoretical

soundness.

In the face of increasingly powerful LHC data in excellent agreement with the Stan-
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dard Model, it's worth taking seriously the possibility that Nature may be leading us to

the conclusion that there is no new physics at the weak scale. While this is often taken to

suggest the existence of considerable �ne-tuning in the Higgs potential, here we pursue an

alternative idea. Perhaps the apparent violation of EFT expectations at the weak scale

is a sign of the breakdown of EFT itself. We'll use the broad term `UV/IR mixing' to

denote any e�ects that the UV has on low-energy physics which goes past that expected

in EFT.

In this work we pursue the idea that such UV/IR mixing may have more direct e�ects

on the SM by considering noncommutative �eld theory (NCFT) as such a toy model.

These theories model physics on spaces where translations do not commute [311, 312],

and have many features amenable to a quantum gravitational interpretation � indeed,

noncommutative geometries have been found arising in various limits of string theory

[313, 314, 315, 316].31

This noncommutativity bears out the general expectation that the general-relativistic

notion of spacetime should break down in a theory of quantum gravity [463]. Its realiza-

tion here leads directly both to UV/IR mixing in the form of a violation of decoupling

and to nonlocal e�ects in interactions. This gives rise to many interesting e�ects, but

particularly fascinating for our purposes is that UV divergences present in the S-matrix

elements of QFTs on commutative spaces can be transmogri�ed into new infrared poles in

the corresponding �eld theory on noncommutative space [464]. An e�ective �eld theorist

living in a noncommutative space would have no way to understand the appearance of

this infrared scale; its existence is intrinsically linked to the geometry of spacetime and

to the far UV of the theory. Such an e�ective �eld theorist would see a surprising lack

31Noncommutative branes arising in gauge theory matrix models have also been found to contain
emergent gravitational e�ects, and so have been suggested as novel quantum theories of gravity [452,
453, 454, 455, 456, 457, 458, 459, 460, 461]. We do not pursue this perspective here, but refer the reader
to [462] for a review of this approach.

256



New Trail for Naturalness Chapter 7

of new physics accompanying this pole to explain its presence.

It is clear from the outset that the direct application of NCFT to understand the

hierarchy problem is immediately hindered by the Lorentz invariance violation which is

inherent to these theories. Precisely how fatal this might be is not entirely clear; results

regarding the extent to which `generic' Lorentz violation is empirically ruled out [465] are

partly circumvented here by the fact that the Lorentz violation is not generic, but comes

as part of some larger structure. In this case the novel e�ects of UV/IR mixing in fact

only appear in nonplanar loop diagrams [466] and care is required when interpreting EFT

constraints on Lorentz violation � a point we will emphasize in Section 7.2. Even so, it

is di�cult to imagine that observed properties of the weak scale and the wide range of

constraints on Lorentz violation leave room for NCFT to be directly relevant to puzzles

of the Standard Model.

Thus we make no claim about having solved the hierarchy problem. The value of

this work is in the exploration of this toy model of UV/IR mixing, which possesses the

intriguing feature that ultraviolet dynamics generate a scale whose lightness would be

ba�ing to an e�ective �eld theorist. As this is the only model (of which we are aware)

with this feature � and this feature, at the level of words, increasingly matches the

experimental situation with the Higgs � it's worth understanding its appearance in as

much detail as possible.

To make this work self-contained for the contemporary particle theorist, we begin

with an extensive introduction. In Section 7.2, we review quantum �eld theory on non-

commutative spaces with an emphasis on the violation of EFT expectations. In Section

7.3 we use this technology to go over the classic result of [464] which �rst identi�ed

this emergent infrared pole in a Euclidean φ4 theory. We compute also the e�ect in di-

mensional regularization to evince the regularization-independence of the UV/IR mixing

e�ects.
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In Section 7.4 we ask how general the e�ect of UV/IR mixing is within NCFT, which

leads us to study noncommutative Yukawa theory in detail. We �nd that the scalar prop-

agator again develops a new infrared pole at one loop, in contrast with previous work.

Intriguingly, the pole in this case is accessible in s-channel scattering in the Lorentzian

theory, making Yukawa theory a promising setting for probing phenomenological conse-

quences of UV/IR mixing.

In Section 7.5 we upgrade our model to the softly-broken Wess-Zumino model to

study the interplay between UV-�niteness and UV/IR mixing e�ects. When the fermion

is kept in the spectrum of the theory below the cuto�, the lack of UV sensitivity of

the �eld theory removes the light pole. As the fermion is taken above the cuto�, an

e�ective theorist again sees e�ects past those observed in Wilsonian EFT. These results

are expected, but this model a�ords us a concrete demonstration that UV/IR mixing

can only have interesting low-energy e�ects if the �eld theory is UV sensitive, and puts

this naturalness strategy in stark contrast to conventional approaches. Of course, this

also makes addressing the hierarchy problem with UV/IR mixing a potentially Pyrrhic

victory: to generate an IR scale, the �eld theory alone cannot be fully predictive.

Finally, in Section 7.6 we examine the appearance of the emergent light pole in NCFT

from more general arguments, so as to ascertain the relative importance of nonlocality

and Lorentz-violation for these e�ects. The conclusion is inevitably that in this case

the two are inexorably linked, and no strong conclusion about the possibility of �nding

a light pole in a theory with only one or the other is available. However, we provide

some direction toward future explorations into both of these possibilities. We wrap up

in Section 7.7.

258



New Trail for Naturalness Chapter 7

7.2 Noncommutative Field Theory

In this section we review the salient features of the formulation of noncommutative

�eld theories and the standard formalism for studying their perturbative physics. Useful

general references for this background include [467, 468]. Readers familiar with NCFT

may wish to skip to Section 7.3, but we emphasize that our interest is necessarily non-

perturbative in the parameter controlling the noncommutativity, unlike much of the

earlier phenomenological literature.

Physics on noncommutative spaces involves the introduction of a nonzero commutator

between position operators

[x̂µ, x̂ν ] = iθµν , (7.1)

where we will refer to θµν = −θνµ as the noncommutativity tensor, and we emphasize

that it is covariant under Lorentz transformations. So while it does break Lorentz in-

variance, it only does so in the way that turning on a magnetic �eld in your lab chooses

a preferred frame, and it can indeed be thought of as simply a background �eld. This

basic de�nition is reminiscent of the introduction of a nonzero commutator in passing

from classical mechanics to quantum mechanics. Indeed much of the structure is pre-

cisely analogous, including importantly the construction of noncommutative versions of

familiar commutative theories via a quantization map. At an even more basic level, the

above nonzero commutator induces an uncertainty relation

∆x̂µ∆x̂ν ≥
|θµν |

2
, (7.2)

which immediately makes apparent the presence of UV/IR mixing in this theory. If you

attempt to create a wavepacket which is very small in one direction it will necessarily be

elongated in another, and so we see already the non-trivial mixing of UV and IR modes.
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This clearly violates the separation of scales which is baked in to EFT. Thus purely from

the de�ning relation of noncommutative geometry, we see already an indication that

noncommutative theories should violate EFT expectations.

Field theories on this space may be conveniently formulated in terms of �elds that

are functions of commuting coordinates imbued with a new �eld product, known as a

Groenewold-Moyal product (or star-product), with position-space representation

f(x) ? g(x) = exp

(
i

2
θµν∂

µ
y ∂

ν
z

)
f(y)g(z)

∣∣∣∣
y=z=x

= f(x) exp

(
i

2

←−
∂ µθµν

−→
∂ ν

)
g(x). (7.3)

We derive this procedure in Appendix B. It is important to observe that this is a nonlocal

product, since it contains an in�nite series of derivative operators. So we see again that

one of the tenets of EFT has been violated by our basic de�nition of �eld theory on

noncommutative spaces.

With this in hand we may now write down noncommutative versions of familiar

theories in terms of commuting coordinates, which will then allow us to use normal QFT

methods to analyze them. First note that this noncommutative quantization will not

a�ect the quadratic part of the tree-level action due to momentum conservation and the

antisymmetry of the noncommutativity tensor. For the interacting part of the action

the e�ects of noncommutative quantization are not so trivial, but are easy to analyze

classically. As an example, for a simple φn theory we �nd

L(NC)
int =

λ

n!

n copies︷ ︸︸ ︷
φ(x) ? φ(x) ? · · · ? φ(x) . (7.4)

Note, importantly, that the star-product has endowed our vertices with a notion of

ordering, as it is only cyclically invariant. If we now Fourier transform the action to

momentum space, we �nd that we can account for the e�ects of quantization on the
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tree-level action with a simple modi�cation of the momentum-space vertex factor:

Ṽ (k1, . . . , kn) = δ (k1 + · · ·+ kn) exp

(
i

2

n∑
i<j

kµi k
ν
j θµν

)
. (7.5)

A word of caution is in order. We can now express the action in momentum space as

S(NC)
int =

λ

n!

∫ ( n∏
i

d4ki

)
δ (k1 + · · ·+ kn)φ(k1)φ(k2) . . . φ(kn) exp

(
i

2

n∑
i<j

kµi k
ν
j θµν

)
,

(7.6)

and so � as good e�ective �eld theorists � we may be tempted to expand the exponen-

tial for small momenta ∼ |k2| |θ| � 1. Indeed, doing so would give us a series of irrelevant

operators which would correct the leading interaction. However, once the theory is trun-

cated at some �nite order in θ, we are left with a perfectly local EFT. In other scenarios

where an in�nite series of operators appears, this is a valid approximation procedure and

allows one to calculate the leading corrections a theory predicts. But here our de�ni-

tion of NCFT introduces UV/IR mixing which we expect to violate EFT expectations.

Truncating the series removes these e�ects entirely, and a theory so de�ned no longer

has anything to do with NCFT � at least not in the e�ects we will be interested in,

which are nonperturbative in θ as we shall see explicitly in the following sections. There

has been much work expended on these `noncommutative-inspired' theories, but they do

not contain UV/IR mixing, and do not capture the most striking and most interesting

features of physics on a noncommutative space, from our perspective.32

With that in mind, we may now proceed to do perturbative quantum �eld theory

calculations, but we must worry about keeping track of all the phases from each of the

vertices. In fact there is another simpli�cation that occurs, as found by Filk [466], which

32We are not the �rst to issue a warning of this sort � see e.g. [469, 470] in the context of connecting
noncommutativity to the real world, and [471] which discusses the general case of nonlocal interactions.
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allows us to simplify the process of �nding the phase factor for a diagram to a graph-

topological statement. Filk proved two simple rules for the phase factors:

1. An internal line which ends on two di�erent vertices can be contracted while keeping

the ordering of the other lines �xed.

Ṽ (k1, . . . , kn1 , p) Ṽ (−p, kn1+1, . . . , kn2) = Ṽ (k1, . . . , kn2) δ(k1 + · · ·+kn1 +p) (7.7)

2. A loop which doesn't cross any lines can be eliminated. Note that the �xed ordering

of the lines at a vertex means that we can now meaningfully speak of lines which

do or don't cross each other.

Ṽ (k1, . . . , kn1 , p, kn1+1, . . . , kn2 ,−p) = Ṽ (k1, . . . , kn1 , kn1+1, . . . , kn2) if
n2∑

i=n1+1

ki = 0

(7.8)

The proof of these facts relies only on the antisymmetry of θµν and the fact that

each vertex contains a momentum-conserving delta function. We may make use of this

to simply �nd the phase factor of any Feynman diagram. Using the �rst rule, we can

reduce any diagram to a single vertex, which is a rosette of the external lines and closed

loops. The second rule allows us to eliminate loops which don't cross other lines.

If the graph was planar (including, importantly, any tree-level graph), then by def-

inition all loops can be eliminated. So all contributions to phase factors from internal

lines cancel, and we're only left with an overall phase corresponding to the ordering of

the external lines, which has remained �xed throughout the reduction process.

For a nonplanar graph, in this representation it is easy to see that we only pick up

phase factors from lines which cross. The loop gives vertex legs with ±pµ, and for an

external line which doesn't cross this loop, both loop legs will be on the same side of it
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in the cyclic ordering, and so the two terms will cancel in the sum. Only for an external

line which crosses it are the ±p on di�erent sides, and so the antisymmetry of θ will make

the two negative signs cancel to give a coherent phase for this vertex. Thus we de�ne Iij,

the intersection matrix of an oriented graph:

Iij =


1 line j crosses i from right

−1 line j crosses i from left

0 line j does not cross i

(7.9)

Then for any graph G, the contribution Γ(G) of the phase factors is just

Γ(G) = Ṽ ({external momenta})× exp

(
i

2

∑
ij

Iijki ∧ kj

)
, (7.10)

where we've de�ned ki ∧ kj ≡ kµi θµνk
ν
j .

In what follows we will omit the overall external phase when evaluating diagrams,

as it will not be important for our purposes. We have now simpli�ed perturbative �eld

theory on noncommutative spaces down to the simple task of marking line-crossings,

at least at the level of writing down integrands of amplitudes. The triviality of this

task for tree-level graphs leads to the interesting feature that tree-level amplitudes on

noncommutative spaces are the same as on commutative manifolds, and it is only at loop-

level that we �nd deviations. We will see in the next section that the loop integration

will bring surprising features.

An important issue for the interpretation of NCFTs is that of their unitarity. There

is no problem in Euclidean space, but for Lorentzian spacetimes with noncommutativity

in the time directions (`timelike' or `space-time' noncommutativity when −kµθµρθρνkν ≡

k ◦ k < 0 is allowed), one may �nd a breakdown of unitarity by taking cuts of one-loop
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diagrams [472, 473].33 This may be interpreted physically as being due to the production

of tachyonic states, which if added to the Fock space of the theory result in a formal

restoration of the cutting relations whilst making the nonunitarity explicit [476].

This failure of unitarity is well-understood from the stringy perspective. Spatial

noncommutativity appears from a background magnetic �eld and the �eld theory limit

to a spacelike NCFT is smooth [315]. In the case of timelike noncommutativity, however,

approaching the �eld theory limit forces an electric �eld to supercritical values whence

pair-production of charged strings destabilizes the vacuum [477]. Study of string theories

with timelike noncommutativity (e.g. `noncommutative open string theory' [477, 478]) is

outside our scope, but there are at least some hints of similar UV/IR mixing e�ects as

those in the NCFT [479]. We note in passing that there are further interesting connections

between NCFTs and string theories � not only do particles on noncommutative spaces

act in many ways like rods of size L ∼ pθ (see e.g. [480, 481, 482, 483, 484]), mimicking the

behavior of extended objects, but there have been many hints in the spacelike theories

that the curious IR e�ects in the NCFT are reproducing e�ects from closed strings,

despite the fact that these have been decoupled (e.g. [464, 485, 486, 487, 488, 489, 490,

479, 491, 492]).

Within the realm of �eld theory, there have long been suggestions that this di�culty

is pointing to the need for a modi�ed de�nition of quantum �eld theories on timelike

noncommutative spaces (for some early references, see [493, 494, 495, 496, 497, 498, 499,

500]). From this perspective, the issue is that such �eld theories are non-local in time,

which renders nonsensical the normal time-ordering involved in the perturbative Dyson

series (at the least). That is, our e�ective de�nition of these theories above via the

diagrammatic expansion may be too naïve. An interesting line of work is to formulate a

33Though it is interesting to note that the special case of `lightlike' noncommutativity is also unitary
[474, 475].
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modi�cation of the standard quantum �eld theory machinery to non-local-in-time theories

which avoids the unitarity issue by construction. We note that the same UV/IR mixing

e�ects of interest in the two-point function have been seen to persist in at least some of

these approaches (e.g. [495]). For some recent work on the formulation and properties

of nonlocal �eld theories, see e.g. [501, 502, 503, 471, 504, 505].

Below we will begin in Euclidean space, where k ◦ k ≥ 0 is guaranteed for any θµν ,

but will then venture into Lorentzian signature. All of our calculations and the general

features we �nd, including �nding new infrared poles, will hold robustly in spacelike non-

commutative theories. However we will comment also on how these features are modi�ed

when timelike noncommutativity is turned on, taking license from the aforementioned

hints that unitary completions/reformulations of timelike NCFT may retain the UV/IR

mixing exhibited in the naïve approach.

7.3 Real Scalar φ4 Theory

In this section we review the perturbative physics of the noncommutative real scalar

φ4 theory at one loop, which was �rst studied in detail by Minwalla, Van Raamsdonk,

and Seiberg in [464].34

In four Euclidean dimensions the action on noncommutative space becomes

S =

∫
d4x

(
1

2
∂µφ∂

µφ+
1

2
m2φ2 +

g2

4!
φ ? φ ? φ ? φ

)
, (7.11)

where we have already used the fact that the quadratic part of the noncommutative

action is the same as the commutative theory to eliminate the star product there. Our

object of interest will be the one-loop correction to the two-point function. In the com-

34Some early results in this model may also be found in [506, 507].
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mutative theory this is given by a single Feynman diagram, but the noncommutative

theory contains both a planar diagram and a nonplanar diagram.

−Γ
(2)
1 =

p

k

+

p

k

The expressions for these two diagrams now di�er � not only in symmetry factor but

also due to the phase in the integrand. We �nd

Γ
(2)
1,planar =

g2

3 (2π)4

∫
d4k

k2 +m2

Γ
(2)
1,nonplanar =

g2

6 (2π)4

∫
d4k

k2 +m2
eik

µθµνpν .

(7.12)

We may already see that something interesting should happen, as in the nonplanar di-

agram the phase mixes the internal and external momenta. One may intuit that the

rapidly oscillating phase in the UV of the loop integration will dampen the would-be

divergence, and indeed we will see that nonplanar diagrams are �nite. However, unlike

in the case where the vertex factor vanishes rapidly for large Euclidean momenta and so

ensures UV-�niteness [505], here the damping is in some sense `marginal'. This fact will

be responsible for the interesting feature we will �nd presently.

The simplest method to evaluate noncommutative diagrams is to use Schwinger pa-

rameters, recalling the identity 1
k2+m2 =

∫∞
0

dα e−α(k
2+m2). The presence of the phase

in the nonplanar diagram means we must complete the square before going to spherical

coordinates to get a Gaussian integral. This means that after the momentum integrals
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we end up with

Γ
(2)
1,planar =

g2

48π2

∫
dα
α2
e−αm

2

Γ
(2)
1,nonplanar =

g2

96π2

∫
dα
α2
e−αm

2− p◦p
4α

(7.13)

where again p ◦ q = −pµθ2
µνq

ν . Moving to Schwinger space trades large-k divergences for

small-α divergences, which we now smoothly regulate by multiplying the integrands by

exp (−1/(Λ2α)) so that the small α region will be driven to zero. Note that a term of

this form already exists in the expression for the nonplanar diagram. After introducing

the regulator, we can evaluate the integrals to �nd

Γ
(2)
1,planar =

g2

48π2

(
Λ2 −m2 log

(
Λ2

m2

)
+O(1)

)
Γ

(2)
1,nonplanar =

g2

96π2

(
Λ2
e� −m2 log

(
Λ2
e�

m2

)
+O(1)

)
,

(7.14)

where we've de�ned

Λ2
e� ≡

1

1/Λ2 + p ◦ p/4
, (7.15)

which is the e�ective cuto� of the nonplanar diagram.

The �rst thing to note is that it seems the UV divergence of the nonplanar diagram

has disappeared � the graph is �nite in the limit Λ→∞, and so appears to have been

regulated by the noncommutativity of spacetime. In fact the e�ect is more subtle, as

alluded to earlier, and now the UV and IR limits of this amplitude do not commute. If we

�rst take an infrared limit p ◦ p→ 0 we �nd that Λe� → Λ and the ultraviolet divergence

of the commutative theory reappears. If we take the UV limit Λ → ∞ �rst we �nd an

IR divergence 1
p◦p , so the noncommutativity has transmogri�ed the UV divergence into

an IR one.35

35We note here that the failure of a `correspondence principle' between commutative and noncom-
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Turning to the question of renormalizability, one may naïvely ask if we can absorb

all UV divergences into a �nite number of counterterms. Under this criterion, it is clear

that this procedure works in the noncommutative theory at least when the commutative

version is renormalizable. In the current case, we may absorb the UV divergences of

this correction to the two-point function into a rede�nition of the physical mass, M2 =

m2 + g2Λ2

48π2 − g2m2

48π2 log Λ2

m2 , and so write down a one-particle irreducible quadratic e�ective

action which has a �nite Λ→∞ limit:

S
(2)
1PI =

∫
d4p

(2π)4

1

2

(
p2 +M2+

g2

96π2
(
p◦p
4

+ 1
Λ2

) (7.16)

−g
2M2

96π2
log

1

M2
(
p◦p
4

+ 1
Λ2

) + · · ·+O(g4)

)
φ(p)φ(−p).

However, in the Λ→∞ limit one �nds that at one loop the propagator now has two

poles. The �rst is a standard radiative correction to the free pole, but the second has

appeared ex nihilo at one loop:

p2 = −m2 +O(g2)

p ◦ p = − g2

24π2m2
+O(g4),

(7.17)

where we have assumed that θµν is full rank. The former is to be interpreted as the on-

shell propagation of the particles associated to our fundamental �eld φ. If θµν has only

one eigenvalue 1/Λ2
θ � with Λθ thought of as the scale associated with the breakdown

of classical geometry � we have p ◦ p = p2

Λ4
θ
. We see that the new pole appears at

p2 ∝ g2 Λ4
θ

m2 , and so if our �eld φ lives in the deep UV of the theory, our new pole appears

mutative theories as θµν → 0 is clearly intrinsically linked to the appearance of UV/IR mixing. This
failure doesn't violate Kontsevich's proof of the existence of deformation quantization for any symplectic
manifold [508], as that is con�ned solely to `formal' deformation quantization � that is, the production
of a formal power series expansion of the algebra of observables in terms of the deformation parameter.
As was noted in Section 7.2 and is now on prime display, the physics of the theory with nonperturbative
θ-dependence is starkly di�erent from that of any truncation.
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at parametrically low energy scales. To the extent that poles are particles, we appear to

have generated a new light particle from ultraviolet dynamics.

The interpretation of the new pole can be sharpened by considering more carefully

the criteria for renormalizability in Wilsonian EFT. In a Wilsonian picture, we upgrade

our Lagrangian parameters to running parameters, and de�ne our theory at the scale Λ

as

SWilson(Λ) =

∫
d4x

(
1

2
Z(Λ)∂µφ∂

µφ+
1

2
Z(Λ)m2(Λ)φ2 +

Z2(Λ)g2(Λ)

4!
φ ? φ ? φ ? φ

)
.

(7.18)

It is immediately apparent from the above calculation that we cannot write the ac-

tion at a lower scale Λ0 < Λ in this same form by choosing appropriate de�nitions for

Z(Λ),m(Λ), g(Λ) � there's nowhere to put the 1
p◦p term!36

Stated more precisely, for Wilsonian renormalizability we require that we can de�ne

the running couplings such that correlation functions computed from this action converge

uniformly to their Λ → ∞ limits. However, this requirement is �atly violated by the

noncommutation of the UV and IR limits of the diagrams. For any �nite value of Λ,

the e�ective action of Equation 7.16 di�ers signi�cantly from its limiting value for small

momenta p ◦ p� 1
Λ2 . This is the precise sense in which the violation of Wilsonian EFT

appears in this one-loop correction.

This brings up the question of how an e�ective �eld theorist would describe the

36There has been much work on understanding renormalizability of NCFTs, especially with an eye
toward �nding a mathematically well-de�ned four-dimensional quantum �eld theory with a non-trivial
continuum limit. Renormalizability has been proven for modi�cations of NCFTs where the free action
is supplemented by an additional term which adjusts its long-distance behavior. Such an action is
manufactured either by requiring it manifest `Langman-Szabo' duality [509] pµ ↔ 2(θ−1)µνx

ν [510, 511]
or by adding a 1/p◦p term to the free Lagrangian [512], the latter of which directly has the interpretation
of adding `somewhere to put the 1/p ◦ p counterterm'. For recent reviews of these and related e�orts
we refer the reader to [513, 514]. It would be interesting to understand fully the extent to which the
physics of these schemes agrees with the interpretation of the IR e�ects as coming from auxiliary �elds
[464, 488].
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universe if they unknowingly lived on a noncommutative space. A consistent Wilsonian

interpretation can be regained by including a degree of freedom which can absorb the

new infrared dynamics of the quadratic e�ective action. Since we need this to involve

the φ momentum, this new particle must mix linearly with the φ �eld. We manufacture

its tree-level Lagrangian such that the problematic inverse p ◦ p term in the quadratic

e�ective action of φ is replaced with its Λ → ∞ value for all values of Λ, to satisfy our

precise condition for Wilsonian renormalizability. To see how this works, we add to our

tree level Wilsonian action

∆S(Λ) =

∫
d4x

(
1

2
∂χ ◦ ∂χ+

1

2

Λ2

4
(∂ ◦ ∂χ)2 + i

1√
24π2

gχφ

)
. (7.19)

Since χ appears quadratically, we may integrate it out exactly at tree level to �nd a

contribution to the e�ective action

∆S1PI(Λ) =

∫
d4p

(2π)4

1

2

(
− g2

96π2
(
p◦p
4

+ 1
Λ2

) +
g2

24π2p ◦ p

)
φ(p)φ(−p) (7.20)

This precisely subtracts o� the problematic term in the original 1PI quadratic e�ective

action and adds back its Λ→∞ limit, as we had wanted. Ignoring the logarithmic term,37

we are left with an e�ective action which is manifestly independent of the cuto� Λ, and

so satis�es our criterion for Wilsonian renormalizability.38 We discuss the generalization

37Discussion of the interpretation of logarithmic singularities as being due to auxiliary �elds propa-
gating in extra dimensions may be found in [488].

38In Equation 7.19, the four-derivative quadratic action of the auxiliary �eld can be rewritten as
two �elds with two-derivative actions, one of which is of negative norm and may be thought of as the
`Lee-Wick partner' of the positive norm state [515], viz.

L =
1

2
∂χ′ ◦ ∂χ′ − 1

2
∂χ̃ ◦ ∂χ̃− 1

2

4

Λ2
χ̃2 + i

1√
24π2

g (χ′ − χ̃)φ, χ′ ≡ χ+ χ̃ (7.21)

One may then wonder if the lightness of the new IR pole may be understood through the regularization
performed by the Lee-Wick �eld, as is done for the Higgs in the `Lee-Wick standard model' [516].
However, in that theory the Higgs is kept light because every particle comes with a Lee-Wick partner,
and so all diagrams contributing to corrections to the Higgs mass are made �nite. The presence of the
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of this procedure in Appendix C.

Now while we have written down an action which identi�es the new observed IR pole

with a �eld and in doing so gives our e�ective action a Wilsonian interpretation, the

extent to which χ can be taken seriously as a fundamental degree of freedom is unclear.39

The new pole is inaccessible in Euclidean space � so one does not immediately conclude

there is a tachyonic instability � and relatedly, when we naïvely analytically continue this

result to Lorentzian spacetime this new pole is inaccessible in the s-channel.40 However,

its presence is still enough to break unitarity for this theory [472], and in fact may still be

interpreted as being due to the presence of tachyons [476]. As discussed in Section 7.2, it

is possible this may be resolved if analytical continuation is adjusted for nonlocal-in-time

theories, or it may be that a UV theory cures this apparent violation.

Separately, it is not obvious much has been gained by attributing the new pole to a

new, independent �eld, past acting as a formal tool to regain a notion of renormalizability.

Since the only interaction of χ above is linear mixing, its action is not renormalized �

any divergences are instead absorbed into the running of φ parameters � and so no

Higgs' Lee-Wick partner alone is not enough to keep it light. Here, the lightness of χ can be understood
diagrammatically as being simply due to the fact that its only interaction is linear mixing with φ, and so
any correction to its two-point function is absorbed into that of the two-point function of φ. A further
issue with the Lee-Wick rewriting is that the seeming perturbative unitary of the theory is normally
guaranteed by the Lee-Wick partner being heavy and unstable. But as we take the Λ→∞ limit in our
Wilsonian action, we see that the Lee-Wick partner becomes massless as well, in accordance with the
result that this theory is non-unitary [472].

39We note that in matrix models containing dynamical noncommutative geometries it has been argued
that emergent infrared singularities should be associated with the dynamics of the geometry (see e.g. [517,
462]). As our �eld theories are formulated on �xed noncommutative backgrounds, this interpretation is
unavailable to us.

40Note that this peculiar connection regarding (in)accessibility is due to the Lorentz violation. While
the normal pole which is inaccessible in Euclidean signature becomes accessible for timelike momenta in
Lorentzian signature, the Wick rotation a�ects the noncommutative momentum contraction di�erently.
When taking x4 → −ix0, one also rotates θ4ν → −iθ0ν such that Equation 7.1 continues to hold
for the same numerical θµν . For the simplest con�guration of full-rank noncommutativity with θµν
block-o�-diagonal and only one eigenvalue 1/Λ2

θ, the Euclidean p ◦ p = p2/Λ4
θ becomes a Lorentzian

p ◦ p = (p20 − p21 + p22 + p23)/Λ4
θ. So a noncommutative pole which is inaccessible in the Euclidean theory

becomes accessible in the Lorentzian theory for spacelike momenta, while a noncommutative pole which
can be accessed in the Euclidean theory becomes accessible in the s-channel in Lorentzian signature.
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interactions are generated. Furthermore one is obstructed from integrating out the heavy

�eld φ to come up with an e�ective action of χ at low energies by the fact that the kinetic

terms of χ are non-standard, which prevents diagonalization of the quadratic terms in

the Lagrangian. Thus it seems it is intrinsically linked with the heavy scalar which begat

it.

There are further obstructions to asking that this speci�c mechanism be responsible

for the lightness of an observed particle such as the Higgs. Prime among these is the

modi�ed dispersion relation of the new �eld, p ◦ p = O(g2), which means that the free

propagation of this �eld would be Lorentz violating.41 We will explore these issues further

in the next sections, as in the Yukawa theory of Section 7.4 the new pole will appear

with the opposite sign and so will o�er the prospect of appearing as an s-channel pole.

We emphasize that a new infrared scale whose lightness is unexplained in the context

of Wilsonian e�ective �eld theory is an exciting feature that makes further exploration

of UV/IR mixing an interesting pursuit. The fact that it here appears as the scale of

a pole in a propagator makes the connection to the hierarchy problem captivating, but

asking that this toy model � where Lorentz violation is at the fore � literally solve the

problem for us would be too much. We proceed without further hindrance in exploring

NCFT so as to learn more about the appearance and e�ects of UV/IR mixing here.

7.3.1 Dimensional Regularization

A good question to ask is whether, or to what extent, these e�ects are an artifact of

our choice of regularization. To demonstrate their physicality, we repeat the calculation

of the one-loop correction to the two-point function now in dimensional regularization.

We set up our integral in d = 4− ε dimensions, having de�ned g2 = g̃2µ̃ε, and we again

41This dispersion relation means that χ only propagates in noncommutative directions, and so at-
tempts to use hidden extra-dimensional noncommutativity to avoid four-dimensional Lorentz violation
constraints seem a phenomenological nonstarter.
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go to Schwinger space:

Γ
(2)
1,planar =

g̃2µ̃ε

3 (2π)d

∫
ddk dα e−α(k2+m2)

Γ
(2)
1,nonplanar =

g̃2µ̃ε

6 (2π)d

∫
ddk dα e−α(k2+m2)+ikµθµνpν .

(7.22)

After completing the square in the nonplanar integral, the momentum integral and

the Schwinger integral may then be performed analytically, with the results:

Γ
(2)
1,planar =

g̃2µ̃ε

3 (4π)d/2
(m2)

d
2
−1Γ(1− d

2
)

Γ
(2)
1,nonplanar =

g̃2µ̃ε

6 (4π)d/2
2
d
2 (m2)

1
2

( d
2
−1) (
√
p ◦ p )1− d

2 K d
2
−1 (m

√
p ◦ p ) .

(7.23)

If we expand the planar graph in the limit ε→ 0, which should be thought of as probing

the ultraviolet, we recover

Γ
(2)
1,planar = − g̃2m2

3(4π)2

[
2

ε
+ ln

µ2

m2

]
, (7.24)

where in MS we would subtract o� the pole and �nd the renormalization group evolution

of m from the logarithmic term, as usual.

The question of dimensional regularization for the nonplanar diagram is a subtle one

[518]. If we �rst take the ε → 0 limit of Equation 7.23, we see this manifestly has no

divergences, and we are simply left with the �nite, ε0 term

Γ
(2)
1,nonplanar =

g2m2

6(4π)2

[
4

m2p ◦ p
− ln

4

m2p ◦ p
− 1 + 2γ

]
, (7.25)

which we have expanded near p ◦ p → 0 to manifest the IR divergence. We have again

transmogri�ed our UV divergence into an IR pole. We now expect to see that the IR
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limit does not commute with the above UV limit. To do so, we expand Equation 7.23

around p ◦ p→ 0 to �nd

Γ
(2)
1,nonplanar =

g̃2m2

6(4π)2

πε/2µ̃ε

mε
Γ
(
−1 +

ε

2

)
+

g̃2

24π2
µ̃επε/2Γ

(
1− ε

2

)
p ◦ p−1+ε/2 +O(p ◦ p).

(7.26)

If we were to now blindly take the ε→ 0 limit of this expression, we would again get

Equation 7.25, contrary to our expectations. However, we notice that if the dimension of

spacetime over which we had performed the integral was particularly low ε > 2, then we

have incorrectly kept the second term in Equation 7.26, as that term would be at least

O(p ◦ p). If we were to work in d < 2, expand in p ◦ p→ 0 and so ignore that term, and

then analytically continue back to d = 4, we would instead �nd the ε−1 pole

Γ
(2)
1,nonplanar = − g̃2m2

6(4π)2

[
2

ε
+ ln

µ2

m2

]
, (7.27)

and now we recover the UV divergence that was present in the commutative theory, so

that once again we �nd the UV and IR limits don't commute.

The key to understanding clearly this seemingly ambiguous dimensional regularization

procedure is that while Γ
(2)
1,nonplanar(p◦p) ∼

∫
ddq dα e−α(q2+m2)− p◦p

4α is convergent in d > 2

for p ◦ p > 0, at p ◦ p = 0 it is only convergent for d < 2. Since it is a property of

dimensional regularization that if an integral converges in δ dimensions, it converges to

the same value in d < δ dimensions [66], we may thus perform the integral at d < 2 for

all p ◦ p and correctly �nd Equation 7.23. It is only when taking the IR limit that we

must remember the integral was performed in d < 2 dimensions, and so our expansion

to get Equation 7.27 is unambiguously correct. Thus our conclusion that the UV and IR

limits of the two-point function do not commute here is robust.

It is thus clear that the UV/IR mixing we have observed in this model is not an artifact
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of a choice of regularization, and is in fact a physical feature of this noncommutative �eld

theory.

7.4 Yukawa Theory

7.4.1 Motivation: Strong UV/IR Duality

We observed in our �rst example that the UV divergences of the real φ4 commuta-

tive theory are transmogri�ed into infrared poles in the noncommutative theory.42 It

is natural to ask whether this �strong UV/IR duality� [519] is a common feature of all

noncommutative theories.

The answer is no, and the simplest counterexample is provided in the case of a complex

scalar �eld with global U(1) symmetry and self-interaction [519]. In the quantization of

the scalar potential we have two quartic terms which are noncommutatively-inequivalent

due to the ordering non-invariance, so the general noncommutative potential is

V = m2|φ|2 +
λ1

4
φ∗ ? φ ? φ∗ ? φ+

λ2

4
φ∗ ? φ∗ ? φ ? φ, (7.28)

where λ1 and λ2 are now di�erent couplings. By doodling some directed graphs, one

sees simply that the one-loop correction to the scalar two-point function contains planar

graphs with each of the λ1, λ2 vertices, but the only nonplanar graph has a λ2 vertex.

There is thus no necessary connection of the ensuing nonplanar IR singularity to the UV

divergence in the θ → 0 limit, as the coe�cients are unrelated (and in particular, we are

free to turn o� the IR singularity at one loop by setting λ2 = 0).

Another important counterexample is that of charged scalars, the simplest example

42While we only presented the calculation of the one-loop correction to the two-point function, [464]
goes through corrections to the two- and n-point functions for φn with n = 3, 4 and �nds the same
features in all cases.
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of which is noncommutative scalar QED, which was �rst constructed in [520]. There

is a very rich and interesting structure of gauge theories on noncommutative spaces,

a full discussion of which is far beyond the scope of this paper. We refer the reader

to [521, 522, 523, 524, 525, 470, 526] for discussions of some features relevant to SM

model-building. We here satisfy ourselves with the simplest case, for which we have the

noncommutative Lagrangian43

L =
1

4g2
Fµν ? F

µν + (Dµφ)∗ ? (Dµφ) + V (φ, φ∗) , (7.29)

where even though we're quantizing U(1) we have Fµν = ∂µAν − ∂νAµ − i [Aµ ∗, Aν ] due

to the noncommutativity, where [· ∗, ·] is the commutator in our noncommutative algebra.

The vector �elds transform as Aµ 7→ U ? Aµ ? U
† + i∂µU ? U †, where U(x) is an element

of the noncommutative U(1) group, which consists of functions U(x) =
(
eiθ(x)

)
?
, which

is the exponential constructed via power series with the star-product.

The potential and the covariant derivative both depend on the representation we

choose for the scalar. In contrast to commutative U(1) gauge theory, where we merely

assign φ a charge, our only choices now are to put φ in either the fundamental or the

adjoint of the gauge group. Note that an adjoint �eld smoothly becomes uncharged in

the commutative limit. Such a �eld φ transforms as φ 7→ U ? φ ? U †. The covariant

derivative is thus Dµφ = ∂µφ − ig [Aµ ∗, φ]. The gauge-invariant potential then includes

both quartic terms in Equation 7.28, in addition to others such as φ∗ ?φ?φ?φ, since the

adjoint complex scalar is uncharged at the level of the global part of the gauge symmetry.

Strong UV/IR duality then should not hold here either.

The situation is even worse if φ is in the fundamental, where it transforms as φ 7→ U?φ

43It is important to note that many fundamental concepts which one normally thinks of as depending
upon Lorentz invariance still hold on noncommutative spaces, due to a `twisted Poincaré symmetry'
[527, 528, 529, 530]. This includes the unitary irreducible representations, so it is sensible to speak of a
vector �eld.
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and φ∗ 7→ φ∗ ?U−1 with covariant derivative Dµφ = ∂µφ− iAµ ?φ. It is easy to see in this

case that the λ2 interaction term is no longer gauge invariant, and a charged scalar may

only self-interact through V = λ1φ
∗ ? φ ? φ∗ ? φ. Purely from gauge invariance we thus

see that a fundamental scalar has no nonplanar self-interaction diagrams in the one-loop

correction to its two-point function, and so there is no remnant of strong UV/IR duality

to speak of.44

The question is then whether there are other examples where this strong UV/IR

duality does occur, or whether it is perhaps a peculiar feature of real φn theories on

noncommutative spaces. To answer this, we will study in detail another case of especial

phenomenological signi�cance: Yukawa theory. Noncommutative Yukawa theory was

�rst studied in [533].45 Our result on the presence of strong UV/IR mixing di�ers, for

reasons we will explain henceforth.

7.4.2 Setup

For reasons that will soon become clear, we will now work directly in Minkowski

space, and begin with a commutative theory of a real scalar ϕ and a Dirac fermion ψ

with Yukawa interaction:

L(C) = −1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 + iψ/∂ψ − ψMψ + gϕψψ. (7.30)

When constructing a noncommutative version of this theory, the quadratic part of

44Noncommutative QED also has strange behavior in the gauge sector that runs counter to strong
UV/IR duality � the photon self-energy correction gains an infrared singularity from nonplanar one-loop
diagrams, even though the commutative quadratic power-counting divergence is forbidden by gauge-
invariance. The theory is constructed in detail in [531], while more physical interpretation is given in
[532], and the possible relation to geometric dynamics in the context of matrix models is discussed in
[517].

45Aspects of noncommutative Yukawa theory have also been studied recently in d=3 in [534], and with
a modi�ed form of noncommuativity in [535].
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the action does not change. However, ordering ambiguities appear for the interaction

term, and we in fact �nd two noncommutatively-inequivalent interaction terms which

generically appear:

L(NC)
int = g1ϕ ? ψ ? ψ + g2ψ ? ϕ ? ψ. (7.31)

These terms are inequivalent because the star product is only cyclically invariant. In

the analysis of [533], only the g2 interaction was included. As a result, it was concluded

that this theory contains no nonplanar diagrams at one loop, and the �rst appear at two

loops as in Figure 7.1. This immediately tells us that the one-loop quadratic divergence

of the scalar self-energy will not appear with a one-loop IR singularity, and so rules out

the putative strong UV/IR duality of the theory they studied.

g₂ g₂

g₂

g₂

g₂ g₂ g₂ g₂

Figure 7.1: Representative leading nonplanar corrections to the self-energies in the non-
commutative Yukawa theory of [533]. Fermion lines have arrows and dashing denotes
nonintersection.

However, we must ask whether we actually have the freedom to choose g1 and g2 inde-

pendently. To address that question, we must understand the role of discrete symmetries

in noncommutative theories. For ease of reference we here repeat our de�nition of the

noncommutativity parameter

[xµ, xν ] = iθµν (7.1)

It is manifest that the noncommutativity tensor does not transform homogeneously un-

der either parity or time-reversal, but only under their product: PT : xµ → −xµ ⇒

PT : θµν → θµν . So while any Lagrangian with full-rank noncommutativity unavoidably
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violates both P and T , it may preserve PT .

Since both ϕ and the scalar fermion bilinear are invariant under all discrete sym-

metries, these symmetries naïvely play no further role in this theory. However, the

time-reversal operator is anti-unitary, and thus negates the phase in the star-product:

(PT )−1 (f(x) ? g(x))PT = g(x) ? f(x). (7.32)

Armed with this, we may now apply CPT to our interaction Lagrangian, to �nd

(CPT )−1L(NC)
int CPT = g1ψ ? ϕ ? ψ + g2ϕ ? ψ ? ψ. (7.33)

Comparing with Equation 7.31, we see that our interactions have been re-cycled! Re-

quiring that our interactions preserve CPT amounts to imposing

(CPT )−1L(NC)
int CPT = L(NC)

int =⇒ g1 = g2 (7.34)

And so the theory of [533] appears to violate CPT.46 When we instead include both

orderings of interactions the nonplanar diagrams now occur at the �rst loop order. Fur-

thermore, with both couplings set equal the planar and nonplanar diagrams will have the

same coe�cients, which reopens the question of strong UV/IR duality for this theory.

In the following we will keep g1 and g2 distinguished merely to evince how the di�erent

vertices appear, but in drawing conclusions about the theory we will set them equal.47

46We note that while the CPT theorem has only been proven in NCFT without space-time noncom-
mutativity [536, 537, 538, 539], the di�culty in the general case is related to the issues with unitarity
discussed in Section 7.2, and we expect it should hold in a sensible formulation of the space-time case
as well.

47We should note that in the construction of noncommutative QED it has been argued that it is sensible
to assign θ the anomalous charge conjugation transformation C : θµν → −θµν ([540] and many others
since). The argument is that charged particles in noncommutative space act in some senses like dipoles
whose dipole moment is proportional to θ, and so charge conjugation should naturally reverse these
dipole moments. Here, however, our particles are uncharged, and thus we have no basis for arguing in
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7.4.3 Scalar Two-Point Function

First we consider the planar diagrams, of which there are two:

−iΓ2,s,p
1 (p) = g₁ g₁p

k	+	p/2

k	-	p/2

+ g₂ g₂p

k	-	p/2

k	+	p/2

The `symmetrization' of the momenta of the internal propagators is an important

calculational simpli�cation. This calculation is textbook save for our Schwinger-space

regularization, so we will be brief and merely point out the salient features. The sum of

these diagrams gives

Γ
(2),s,p
1 (p) = i(−1)

(
(ig1)2 + (ig2)2

) ∫ d4k

(2π)4

(−i)2Tr
[(
M − /k − /p/2

) (
M − /k + /p/2

)]
((k + p/2)2 +M2) ((k − p/2)2 +M2)

.

(7.35)

To evaluate this, we must now introduce two Schwinger parameters α1, α2 and then

switch to `lightcone Schwinger coordinates' which e�ects the change
∫∞

0
dα1

∫∞
0

dα2 →∫∞
0

dα+

∫ +α+

−α+
dα−. Regulating the integral by exp

[
−1/
√

2 α+Λ2
]
, we may then evaluate

and isolate the divergences as Λ→∞ to �nd

Γ
(2),s,p
1 (p) = −(g2

1 + g2
2)

2π2

[
Λ2 − 6M2 + p2

4
log

(
Λ2

M2 + p2/4

)
+ . . .

]
(7.36)

this manner. Furthermore, such an anomalous transformation makes charge conjugation relate theories
on di�erent noncommutative spaces Mθ → M−θ. The heuristic picture of the CPT theorem (that is,
the reason we care about CPT being a symmetry of our physical theories) is that after Wick rotating to
Euclidean space, such a transformation belongs to the connected component of the Euclidean rotation
group [541], and so is e�ectively a symmetry of spacetime. So it is at the least not clear that de�ning a
CPT transformation that takes one to a di�erent space accords with the reason CPT should be satis�ed
in the �rst place.
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Turning now to the nonplanar diagrams, there are again two

−iΓ(2),s,np
1 =

g₂
p

g₁ + g₂p g₁

Each now has one g1 vertex and one g2 vertex, which makes it clear why the analysis

of [533] found no such diagrams. The two diagrams will come with opposite phase factors,

eip∧k and eik∧p, so we can compute one and then �nd the other by taking p 7→ −p. In

this case it's obvious that after completing the square we will only be left with terms

which are quadratic in p, and so the two diagrams give the same contribution. We can

thus compute both terms at the same time.

The phase factor in the integrand will modify our change of variables, as it did in the

φ4 case, to give again an e�ective cuto� for this diagram due to the noncommutativity.

We �nd

Γ
(2),s,np
1 (p) =

g1g2

π2

∫
dqdα1dα2q

3

(
M2 − q2 +

α1α2

(α1 + α2)2p
2 +

p ◦ p
4(α1 + α2)2

)
× e−(α1+α2)(q2+M2)− α1α2

α1+α2
p2− p◦p

4(α1+α2) . (7.37)

We can now follow the same steps to regulate and integrate this, and again �nd a

closed-form expression for the pieces which contain divergences. Note that unlike the φ4

calculation, we can already see that the nonplanar expression will not merely be given

by Λ→ Λe�, as the change of variables has here modi�ed the numerator of the integrand

to give an extra piece to the momentum polynomial multiplying the exponential. And

281



New Trail for Naturalness Chapter 7

so integration gives us

Γ
(2),s,np
1 (p) =

g1g2

1920π2

[
3
(
640M2 + p4p ◦ p+ 40(4M2 + p2)p ◦ pΛ2

e�

)
K0

(√
4M2 + p2

Λe�

)

+ 20
√

4M2 + p2 Λe�

(
−96 + p2p ◦ p+ 12p ◦ pΛ2

e�

)
K1

(√
4M2 + p2

Λe�

)]
. (7.38)

We must now think slightly more carefully about what we want to add to the quadratic

e�ective action to �nd a Wilsonian interpretation of this theory. We may isolate the IR

divergence that appears when the cuto� is removed by �rst taking the limit Λ→∞ with

p ◦ p held �xed, and then expanding around p ◦ p = 0. We may then ask that this same

divergence appears at any value of Λ. To account for this IR divergence, we must add to

our e�ective action

∆S1PI(Λ) = −1

2

∫
d4p

(2π)4

g1g2

2π2

(
Λ2
e� −

4

p ◦ p

)
ϕ(p)ϕ(−p), (7.39)

which can easily be done through the addition of an auxiliary scalar �eld as was done in

Section 7.3 and is discussed in more generality in Appendix C. After having added this to

our action, for small p◦p the scalar two-point function now behaves as Γs1(p) = − 2g1g2

π2p◦p+. . .

for any value of Λ. The new pole in this case has the opposite sign as that in 7.19, and so

will be accessible in Euclidean signature, clearly signaling a tachyonic instability. While

this puts the violation of unitarity in this theory on prime display, it also means that this

pole will be accessible in the s-channel in the Lorentzian theory if we allow for timelike

noncommutativity.

We emphasize that any conclusions about the Lorentzian theory with timelike non-

commutativity are speculative and dependent upon a solid theoretical understanding of

a unitary formulation of the �eld theory, and in principle such a formulation could �nd

radically di�erent IR e�ects than this naïve approach. However, it was found in [495] that
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a modi�cation of time-ordering to explicitly make the theory unitary (at the expense of

microcausality violation) leaves the one-loop correction to the self-energy unchanged in

φ4 theory, and the same might be expected to hold true for Yukawa theory. This makes

it worthwhile to at least brie�y consider the potential phenomenological consequences of

the new pole.

At low energies, the propagator is here modi�ed to m2 +(pi+pj)
2− 2g1g2

π2
1

(pi+pj)◦(pi+pj) .

If we consider scattering of fermions through an s-channel ϕ and take the simple case of a

noncommutativity tensor which in the lab frame has one eigenvalue 1/Λ2
θ with m

2 � Λ2
θ,

then the emergent pole appears at s = 2g1g2

π2
1−β2

1+β2

Λ4
θ

m2 . Here s = −(pi + pj)
2 is the invariant

momentum routed through the propagator, and β is the boost of the (pi+pj) system with

respect to the lab frame. The Lorentz-violation here then has the novel e�ect of smearing

out the resonance corresponding to the light pole for a particle which is produced at a

variety of boosts. This is in contrast to the pole at m2, which gives a conventional

resonance at leading order. Of course, we have not constructed a fully realistic theory in

any respect, and ultimately it may well be that other Lorentz-violating e�ects provide

the leading constraint. Nonetheless, the lineshape of resonances may be an interesting

observable in this framework.

A further feature of this opposite sign of the new pole compared to that in the φ4

theory is that the unusual momentum-dependence of the two-point function will lead to

ordered phases which break translational invariance [542, 464, 543, 544, 545]. While a

Lorentz-violating background �eld may possibly be very well constrained, the detailed

constraint depends on its wavelength and the ways in which it interacts with the SM.

But this is another obvious line of exploration for constraining realistic NCFTs.
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7.4.4 Fermion Two-Point Function

There are again two planar diagrams:

−iΓ(2),f,p
1 = p

g₁ g₁
+ p g₂ g₂

No new features appear in the evaluation of these diagrams, so we merely quote the �nal

result:

Γ
(2),f,p
1 = −g

2
1 + g2

2

16π2

(
M − /p

2

)
log

4p2Λ2

m4 + 2m2(p2 −M2) + (M2 + p2)2
+ . . . (7.40)

We also have two nonplanar diagrams, which again mix the two vertices

−iΓ(2),f,np
1 = p

g₁
g₂ + p

g₁
g₂

Here we �nd that the di�erent phase factors for each diagram, which we saw were

inconsequential for the nonplanar corrections to the scalar, have an important role. When

we complete the square in each of the two cases, we �nd that one of the diagrams has

an integrand proportional to
(
M − /p α2

α1+α2
− 1

2

pµθµνγν
α1+α2

)
and the other is proportional

to
(
M − /p α2

α1+α2
+ 1

2

pµθµνγν
α1+α2

)
, so the would-be divergence in pθ will cancel manifestly

between the two diagrams. After this everything proceeds as before, and we �nd

Γ
(2),f,np
1 = −g1g2

8π2

(
M − /p

2

)
log

4p2Λ2
e�

m4 + 2m2(p2 −M2) + (M2 + p2)2
+ . . . (7.41)

We see that with g1 = g2 ≡ g, the fermion quadratic e�ective action also behaves as

expected from `strong UV/IR duality'. The logarithmic divergence of the commutative

theory has been transmogri�ed in the nonplanar diagrams into IR dynamics via the
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simple replacement Λ → Λe�, and so a p ◦ p → 0 pole will emerge when we remove the

cuto�. We discuss the use of an auxiliary �eld to restore a Wilsonian interpretation here

in Appendix C.2.

7.4.5 Three-Point Function

The correction to the vertex function constitutes further theoretical data toward the

Wilsonian interpretation of the noncommutative corrections. We calculate the one-loop

correction in this section and delay the discussion of the use of auxiliary �elds to account

for them until Appendix C.3. We will �nd that while we can use the same �elds to

account for the modi�cations to both the propagators and the vertices, the physical

interpretation of such �elds is unclear.

We can compute corrections for each �xed ordering of external lines separately since

they're coming from di�erent operators. For simplicity we'll compute the g1 ordering,

which we will denote Γϕψψ3 (r, p, `). There are four diagrams in total: one planar diagram

with two insertions of the g2 vertex, one nonplanar diagram with two insertions of the

g1 vertex, and two nonplanar diagrams with one insertion of each. It is easy to see by

looking at the diagrams that the same expressions with g1 ↔ g2 compute the correction

to the other ordering, Γψϕψ3 (r, p, l).

The new feature of this computation is that we now need three Schwinger parameters,

and this presents a problem for our previous computational approach. We won't be able

to perform the two �nite integrals before expanding in a variable which isolates the

divergences when α1 + α2 + α3 → 0, analogously to what we did in 2d Schwinger space.

Instead we slice 3d Schwinger space such that we can perform the integral which isolates

the leading divergences �rst, and then � as long as we're content only to understand

this divergence � we can discard the rest without having to worry about performing the
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other two integrals.

The planar diagram is

iΓϕψψ3,p (p, `) = p g₂ g₂
g₁

l ,

and corresponds to the expression

Γϕψψ3,p (p, `) = −i(ig1)(ig2)2× (7.42)∫
d4k

(2π)4

(−i)3
(
M − (/k + /p

2
+ /̀

2
)
)(

M − (/k − /p

2
− /̀

2

)
(
(k + p

2
+ `

2
)2 +M2

) (
(k − p

2
− `

2
)2 +M2

) (
(k + p

2
− `

2
)2 +m2

) .
After moving to Schwinger space, integrating over the loop momentum, and introducing

a cuto� exp (−1/ (Λ2(α1 + α2 + α3))), we switch variables to

α1 = ξ1η, α2 = ξ2η, α3 = (1− ξ1 − ξ2)η, (7.43)

under which
∫∞

0
dα1

∫∞
0

dα2

∫∞
0

dα3 →
∫ 1

0
dξ1

∫ 1−ξ1
0

dξ2

∫∞
0

dη η2. Performing the mo-

mentum integral transfers the divergence for large k to a divergence in small α1+α2+α3 =

η. This will allow us to �nd the leading divergent behavior immediately by carrying out

the η integral and then expanding in Λ→∞. This yields

Γϕψψ3,p (p, `) =
g1g

2
2

16π2
log
(
Λ2
)

+ �nite, (7.44)

where we are unable to determine the IR cuto� of the logarithm, but this su�ces for our

purposes.

The three nonplanar graphs now each receive a di�erent phase corresponding to which
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external line crosses the internal line

iΓϕψψ3,np (p, `) = p
g₁

l
g₁g₁

+ p l
g₁

g₂
g₁

+ p l
g₁

g₂
g₁

, (7.45)

where the �rst gets exp [−i(k ∧ p+ k ∧ `+ p ∧ `)], the second exp [−i(k ∧ p+ p ∧ `/2)],

and the third exp [−i(k ∧ `+ p ∧ `/2)]. The evaluation of these diagrams proceeds as in

the previous examples. If we take the IR limit p, ` → 0 of the nonplanar contributions

to this ordering of the three-point function and then expand in large Λ we �nd

lim
p,`→0

Γϕψψ3,np (p, `) =
g2

1(g1 + 2g2)

16π2
log
(
Λ2
)

+ �nite. (7.46)

However, if we �rst take the UV limit Λ → 0, and then expand in small momenta, we

�nd

lim
Λ→∞

Γϕψψ3,np (p, `) =
g2

1

16π2

[
g1 log

(
4

(p+ `) ◦ (p+ `)

)
(7.47)

+ g2 log

(
4

p ◦ p

)
+ g2 log

(
4

` ◦ `

)]
+ �nite,

where we again see UV/IR mixing, and we note that each nonplanar diagram has been

e�ectively cuto� by the momenta which cross the internal line. We discuss the use of

auxiliary �elds to restore a Wilsonian interpretation to this vertex correction in Appendix

C.3.
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7.5 Softly-broken Wess-Zumino Model

We now turn our attention to the softly-broken noncommutative Wess-Zumino model

as a controllable example of the interplay between UV/IR mixing and the �niteness of the

�eld theory. We will restrict ourselves to calculating the one-loop correction to the scalar

two-point function. Since the new poles appearing in the quadratic e�ective action in

the scalar and Yukawa theories are intimately related to the quadratic divergences of the

commutative theories, we will not be surprised to �nd that this feature will disappear

when both the scalar and the fermion are present in the EFT below the cuto�. By

studying the softly-broken theory we can take the fermion above or below the cuto� to

smoothly see the relation between the �niteness of the �eld theory and the e�ects of

UV/IR mixing. The exactly supersymmetric noncommutative Wess-Zumino model was

�rst discussed in detail in [546], and the absence of an infrared pole in a softly-broken

theory was �rst noted in [532]. The softly-broken Wess-Zumino model was �rst considered

in [469].48

The noncommutative Wess-Zumino theory can be suitably formulated in o�-shell

superspace as

L =

∫
d4θ ZΦ†Φ +

∫
d2θ

(
1

2
MΦ2 +

1

6
y Φ ? Φ ? Φ

)
+ h.c., (7.48)

where Φ is a chiral super�eld and we have included a wavefunction renormalization factor

in the Kähler potential Z = 1 +O(y2). We can introduce soft supersymmetry breaking

by promoting this factor to a spurion Z = 1 + (|M |2−m2)θ2θ†2, the only e�ect of which

is to modify the scalar mass spectrum.

48Our one-loop results agree with those of [469] save for their claim that logarithmic IR divergences are
absent in the exactly supersymmetric theory, which contradicts [546]. We will below �nd a logarithmic
IR divergence in the wavefunction renormalization which is independent of the soft-breaking, which is
consistent with the expectations of strong UV/IR duality.
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Formulating the noncommutative theory including the auxiliary F �elds makes it

manifest that we have preserved supersymmetry o�-shell. This procedure is in fact

precisely the same as quantizing after integrating out F , and so we end up with a star-

product version of the familiar Lagrangian:

−LNCWZ = Z∂µφ∗∂µφ− iZψ†σ̄µ∂µψ

+ Z−1m2φ∗φ+
1

2
Mψψ +

1

2
M∗ψ†ψ†

+
1

2
Z−1yφ ? ψ ? ψ +

1

2
Z−1y∗φ∗ ? ψ† ? ψ†

+
1

2
Z−1yM∗φ ? φ ? φ∗ +

1

2
Z−1y∗Mφ∗ ? φ∗ ? φ

+
1

4
Z−1 |y|2 φ ? φ ? φ∗ ? φ∗ (7.49)

where φ is a complex scalar and ψ is a Weyl fermion. Of course, now that we've introduced

supersymmetry breaking we expect to �nd that there is further renormalization beyond

that associated with Z, but keeping the manifest factors of Z will allow us to easily

compare to our expectations for the supersymmetric limit.

The calculation of the one-loop correction to the two-point function goes much as the

previously-demonstrated examples. The presence of the three-scalar interaction gives a

new class of diagrams, whose evaluation is routine. The two-component fermions yield

slightly di�erent factors than did the Dirac fermions [113]. Finally, it is important to

note that the results for the diagrams computed in Section 7.3 cannot be used here, as

we must here regulate uniformly using exp(−1/(Λ2(α1 +α2))) like we did in Section 7.4.

This may be easily accommodated by writing the integrand in the quartic diagrams as

1
k2+m2

k2+m2

k2+m2 .

Adding up all these diagrams and taking the limit where Λ,Λe� are large, we �nd
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that the one-loop scalar two-point function may be organized as

Γ(2),s ≡ Zp2 + Z−1(m2 + δm2) (7.50)

Z = 1 +
y2

32π2
log

[
ΛΛe�

M2

]
+ . . . (7.51)

δm2 =
y2

32π2

(
M2 −m2

)
log

[
ΛΛe�

M2

]
+ . . . , (7.52)

where we make manifest the presence of supersymmetric nonrenormalization in the limit

m→M , which acts as a non-trivial check. As expected, the absence of the quadratic UV

divergence in the Wess-Zumino model has led to the absence of an infrared pole from the

noncommutativity, even as the fermion is made arbitrarily heavy relative to the scalar.

However, logarithmic UV/IR mixing still occurs.

We may repeat this calculation using dimensional regularization and taking note of

the issues which arose in Section 7.3.1. Using the same parametrization of the one-loop

two-point function as above, the planar diagrams contribute

Zplanar = 1 +
y2

64π2

(
2

ε
+ log

µ2

M2

)
+ . . . (7.53)

δm2
planar =

y2

64π2
(M2 −m2)

(
2

ε
+ log

µ2

M2

)
+ . . . , (7.54)

as expected. The full form of the nonplanar diagrams is unenlightening, but if we take

the IR limit p ◦ p → 0 �rst, they give precisely the same contribution as the planar

diagrams, since the diagram degeneracies are all the same in this case. Taking the UV

limit ε→ 0 �rst (and staying in d < 2), we instead �nd

Znonplanar = 1 +
y2

64π2
log

4

M2p ◦ p
+ . . . (7.55)

δm2
nonplanar =

y2

64π2
(M2 −m2) log

4

M2p ◦ p
+ . . . , (7.56)
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which has precisely the same correspondence with the Schwinger-space regularization as

we saw for the φ4 case.

We thus see clearly the con�ict between supersymmetry and the use of UV/IR mixing

to explain low-energy puzzles. UV/IR mixing transmogri�ed UV momentum dependence

into IR momentum dependence, and so depended crucially on the sensitivity of our �eld

theory to UV modes. For a theory which is �nite as a �eld theory, the dependence on

the UV physics has been removed, and so we see no interesting IR e�ects.

Of course, in the presence of a cuto� Λ it is also possible to study the behavior of the

scalar two-point function when M2 � Λ2 � |M2 − m2| as the fermion is taken above

the cuto� while keeping the scalar light. This corresponds to taking M/Λ,M/Λe� > 1

and then expanding in the limit where Λ,Λe� are large. This gets rid of the nonplanar

Yukawa-type diagrams and, as one might expect, results in a return of UV sensitivity in

the scalar EFT below the cuto�, foreshadowing a return of the UV/IR mixing e�ects.

The scalar mass-squared in this limit becomes

δm2 =
y2

256π2

(
6M2 + 16Λ2 + 8Λ2

e�

)
+ . . . . (7.57)

and UV/IR mixing reappears at the quadratic level. So our EFT intuition isn't totally

out the window; it's been broken in a controlled way, and we can smoothly interpolate

between theories with and without UV/IR mixing by taking the states responsible for

�niteness above the cuto�. This sharpens the sense in which UV/IR mixing can do

something interesting in the IR as long as the �eld-theoretic description of our universe

is never �nite.

Ultimately, this highlights a central challenge for approaching the hierarchy problem

via UV/IR mixing. The hierarchy problem is particularly sharp when the full theory is

�nite and scale separation is large, in which case the sensitivity of the Higgs mass to
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underlying scales is unambiguous. But UV/IR mixing e�ects potentially relevant to the

hierarchy problem are absent in this case, and emerge only when �niteness is lost. This

tension is not necessarily fatal to UV/IR approaches to the hierarchy problem � ultimately

the UV sensitive degrees of freedom are not the ones we would wish to identify with the

Higgs � but it bears emphasizing.

Moreover, there is a possible loophole in the general argument that �niteness must be

surrendered in order to generate a scale from UV/IR mixing. The presence of interesting

e�ects in the IR here depends solely on the UV sensitivity of the nonplanar diagrams.

The `orbifold correspondence' [286, 285, 284] provides non-supersymmetric �eld theories

constructed via orbifold truncation of N > 0 theories whose planar diagrams agree with

those of the supersymmetric theory and so are �nite. A noncommutative orbifold �eld

theory [547] may then provide a theory which is fully predictive, yet which still generates

an infrared scale via UV/IR mixing. Generally, it may be possible that UV/IR mixing

appears in such a way that it is the sole e�ect sensitive to short distances.

7.6 Whence UV/IR Mixing?

To attempt to formulate a realistic theory which uses UV/IR mixing to solve extant

theoretical puzzles, it would be useful to have an understanding of which features of

NCFT were responsible for the curious infrared e�ects discussed above. This would

be helpful whether one wishes to test out these ideas in any of the many proposed

modi�cations of NCFT, or to write down other toy models which share some features of

NCFT but are based upon di�erent principles.

Qualitatively, the two unusual features involved in the formulation of NCFT are

Lorentz invariance violation and nonlocality. However, it is obvious that one may have

theories with one or both of these features without the interesting e�ects we have seen.
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The answer then is not so simple as pointing to one axiom or another of EFT which has

been broken, but depends sensitively on the way in which they are broken. We brie�y

explore two ways we may better understand the interplay here between nonlocality and

Lorentz-violation and how they come together to cause surprising low-energy e�ects. We

�rst give a general argument based on the way nonlocality appears to postdict the form

of the violation of EFT expectations. We then phenomenologically examine the loop

integration appearing in our NCFT calculations to diagnose what caused the appear-

ance of the IR pole. This will lead us to discuss an avenue toward investigating (or

manufacturing) such e�ects in nonlocal, Lorentz-invariant theories.

To see how EFT expectations may be violated, consider the peculiar way in which the

noncommutative e�ects in the one-loop action (e.g. Equation 7.16) induce nonlocality.

In Wilsonian EFT, integrating out momentum modes p & Λ produces a nonlocal theory

at those scales, or equivalently on distances x . 1/Λ. However, particles on a noncom-

mutative space can be thought of as rods of size L ∼ pθ [480, 481, 482, 483, 484]. This

tells us that in a NCFT we should expect nonlocality to be present for scales x . pθ.

Comparing the two scales, we see that we should �nd nonlocal e�ects past those expected

in Wilsonian EFT for 1
Λ
< pθ. Here this momentum-dependent nonlocality occurs in a

Lorentz-violating way. This expectation was exactly borne out in the examples above,

where we saw that the one-loop e�ective action in momentum space is nonlocal for

p ◦ p� 1/Λ2 [464].

Purely from this analysis of the form of nonlocality, we may conclude there will be a

breakdown of Wilsonian renormalization. After we remove the cuto�, the theory should

be nonlocal on all scales p◦p > 0. But if we compute a correlation function at a large-but-

�nite Λ, the theory will still be local for momenta p ◦ p < 1/Λ2, and so will greatly di�er

from the continuum result. So our surprising discovery of the non-uniform convergence

of correlation functions in the examples above is understood easily from this picture.
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While this sort of momentum-dependent nonlocality may seem ad hoc, it has been

suggested previously for separate purposes. It has been argued [548] that quantum gravity

should obey a `Generalized Uncertainty Principle' ∆x & ~
∆p

+ `2
p∆p, with `p the Planck

length, based on the use of Hawking radiation to measure the horizon area of a black hole.

This gives precisely the same sort of momentum-dependent nonlocality as we saw above.

We refer the reader to [549] for a review of the Generalized Uncertainty Principle, [550,

551] for similar conclusions within string theory, and [552] for a more general review of

the appearance of an e�ective minimal length in quantum gravity. It would be interesting

to investigate other �eld theories which obey such uncertainty principles and determine

whether UV/IR mixing causes similar features as appear in NCFT. For theories which

violate Lorentz invariance, care must be taken to avoid arguments that even Planck-scale

Lorentz violation is empirically ruled out [465, 553].

We may also attempt to phenomenologically diagnose what caused the appearance

of the IR pole from the form of the loop integration. The presence of an exponential of

momenta was clearly crucial, and this implies a necessity of nonlocality. It's also clear

that the modi�cation of the cuto� in the nonplanar diagrams Λ 7→ Λe�, which rendered

the diagrams UV �nite in a way that brought UV/IR mixing, was a result of the contrac-

tion between the loop momentum and the external momentum. Less obviously, one may

see that any quadratic term in loop momentum in the exponential would have erased

this feature, as after momentum integration one would �nd an integrand ∼ 1
1+α+

, and

any divergence will have disappeared. Heuristically, the quadratic suppression in loop

momentum is too strong and regulates the UV divergence entirely independently of the

cuto�, so no UV/IR mixing appears. NCFT disallows such terms as a result of mo-

mentum contractions being performed with an antisymmetric tensor, and this particular

mechanism seems to imply the necessity of Lorentz invariance violation. However, this

argument only considers small deviations from the form of the integral in NCFT. Further
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discussions of the form of loop integrals with generalizations of the star-product may be

found in [554, 555].

Likely a better approach to understand the prospect for �nding features similar to that

of NCFT in a Lorentz invariant theory is to back up and study formulations of Lorentz

invariant extensions of NCFT. This is accomplished by upgrading the noncommutativity

tensor θµν from a c-number to an operator. This was proposed already by Snyder in

1947 [311], and this approach has been revived a number of times more recently (e.g.

[556, 557, 558, 559, 560]). Schematically, this results in an action containing an integral

over θµν

S =

∫
d4x d6θ W (θ) L(φ, ∂φ), (7.58)

where W (θ) is a `weighting function', and the Lagrangian is still de�ned using the star-

product. The challenge in this approach for our purposes is in devising a method for

nonperturbative calculations in θ, which as we saw above was necessary to preserve the

features of UV/IR mixing.

Searching more generally for Lorentz invariant theories which contain UV/IR mix-

ing will likely allow more promising phenomenological applications. That such theories

should exist can be broadly motivated by quantum gravity, as any gravitational theory

is expected both to be nonlocal and to have UV/IR mixing. That Lorentz violation

should be present is less clear. A particularly interesting line of development is to then

understand in detail the class of nonlocal theories that would have UV/IR mixing of a

sort similar to that discussed here. Recent work toward placing nonlocal quantum �eld

theories on solid theoretical ground [471, 505] is clearly of sharp interest here, though

the larger goal is quite distinct. The nonlocality studied in these works is designed to

render the �eld theory UV-�nite, and so the nonlocal vertex kernels are chosen precisely

to avoid the introduction of new poles by ensuring these are momentum-space entire
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functions which vanish rapidly in Euclidean directions. The nonlocal vertices of NCFT

manage to introduce new poles by oscillating as p→∞, which presumably allows for the

appearance of new `endpoint singularities' [561, 562], though a full examination of the

Landau equations in NCFT has not (to our knowledge) been performed. Our interest is

thus in a disjoint class of nonlocal theories, where new poles can appear in interesting

ways. Classifying the space of such theories and developing an approach to systematically

understand their unitarity properties seems well motivated.

7.7 Conclusions

The lack of evidence for conventional solutions to the hierarchy problem has placed

particle physics at a crossroads. While it is possible that the answer ultimately lies

further down the well-trodden path of existing paradigms, the appeal of less-travelled

paths grows greater with every inverse femtobarn of LHC data.

In this work we have ventured to take seriously the apparent failure of expectations

from Wilsonian e�ective �eld theory regarding the hierarchy problem by investigating a

concrete framework � noncommutative �eld theory � in which Wilsonian EFT itself

breaks down. Not only does noncommutative �eld theory violate Wilsonian expectations,

it provides a sharp instance of UV/IR mixing: ultraviolet modes of noncommutative

theories can generate an infrared scale whose origin is opaque to e�ective �eld theory. To

the extent that UV/IR mixing has any relevance to the hierarchy problem, the emergence

of an infrared scale seems to be among the most promising e�ects. Although the real-

world applicability of these theories is likely limited by their Lorentz violation, they

nonetheless provide valuable toy models for exploring the potential relevance of UV/IR

mixing to problems of the Standard Model.

To this end, we have surveyed existing results on noncommutative theories with an
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eye towards `strong UV/IR duality' � the transmogri�cation of UV divergences into

infrared poles at the same order. This led us to a detailed analysis of noncommutative

Yukawa theory, perhaps the most useful toy model for thinking about the hierarchy

problem (insofar as the Yukawa sector of the Standard Model is responsible for the

largest UV sensitivity of the Higgs mass, and highlights the relative UV insensitivity of

the fermion masses). In the noncommutative theory, the presence of both inequivalent

Yukawa couplings implies the same strong UV/IR duality exhibited by real φ4 theory: a

quadratic divergence in the one-loop correction to the scalar mass from fermion loops gives

rise to a simple IR pole, while a logarithmic UV divergence in the one-loop correction

to the fermion mass from scalar loops give rise to only a logarithmic IR divergence.

Intriguingly, the infrared pole in the scalar two-point function appears accessible in the

s-channel in the Lorentzian theory, a feature which gives it particular phenomenological

relevance.

We then introduced softly-broken supersymmetry as a way to explore the interplay

between (in)�niteness and UV/IR mixing. Choosing soft terms in order to keep the

scalar light as the fermion mass is varied concretely illustrates several expected features.

Strong UV/IR duality is preserved in the sense that both UV and IR divergences are

absent at quadratic order (and persist at logarithmic order) when both the scalar and the

fermion are in the spectrum. However, infrared structure reappears as the fermion mass

is raised above a �xed cuto� and (quadratic) �niteness is lost. This underlines the sense

in which UV/IR mixing may only ever play an interesting role when the �eld theory is

quadratically UV sensitive at all scales, a scenario in which the hierarchy problem is less

concrete.

Finally, building on the lessons from the toy models considered here, we have high-

lighted a variety of interesting lines of exploration in theories featuring nonlocality with

or without Lorentz violation that may be of relevance to the hierarchy problem.
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While the prospect that UV/IR mixing will solve outstanding theoretical problems

in the low-energy universe is possibly fanciful, now is the time for such reveries. The

paradigms of the past few decades of particle theory are under considerable empirical

pressure, and innovative approaches are needed. At the very least, by pushing the limits

of EFT we stand to learn more about the broad spectrum of phenomena possible within

quantum �eld theory.
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Conclusion

Scientists are ba�ed: What's up with the universe?

The Washington Post Headline

November 1, 2019 [563]

We end the way we began: Declaring it to be an exciting time in particle physics.

The picture we have painted above on the state of the �eld is one of uncertainty�

and indeed we have barely even touched on many of the important problems of the

Standard Model. Dark matter and neutrino masses, while having had canonical, obvious,

beautiful solutions in the context of supersymmetric grand uni�ed theories, have likewise

seen a resurgence of interest in alternative mechanisms in the past few years as a result

of the lack of observational evidence for these standard solutions. But these facts all

make the universe a more exciting place to study. Imagine if we had found weak-scale

supersymmetry at the LHC, and our job now was simply to interpret the data in terms

of which of the supersymmetric extensions proposed and well-studied in the past decades

was correct. Or even worse, if technicolor had really been the answer and we had to

watch Nature repeat the same trick she used at the strong scale again at the weak scale.
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How dreadfully boring!

Yes, yes, this attitude is sel�sh and a bit �ippant, but what we now have is the

chance to learn more about the universe, about the spectrum of possibilities in physics,

and about new, radical ideas. I look forward to what we will discover.
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Appendix A

Kinetic Mixing in the Mirror Twin

Higgs

Since kinetic mixing plays a central role in freeze-twin dark matter, we discuss here at

some length the order at which it is expected in the low-energy EFT. Of course, there

may always be UV contributions which set ε to the value needed for freeze-in. However,

if the UV completion of the MTH disallows such terms - for example, via supersymmetry,

an absence of �elds charged under both sectors, and eventually grand uni�cation in each

sector (see e.g. [564, 565, 270, 271, 566, 567])- then the natural expectation is for mixing

of order these irreducible IR contributions.

To be concrete, we imagine that ε = 0 at the UV cuto� of the MTH, Λ . 4πf . To

�nd the kinetic mixing in the regime of relevance, at momenta µ . 1 GeV, we must run

down to this scale. As we do not have the technology to easily calculate high-loop-order

diagrams, our analysis is limited to whether we can prove diagrams at some loop order

are vanishing or �nite, and so do not generate mixing. Thus our conclusions are strictly

always `we know no argument that kinetic mixing of this order is not generated', and

there is always the possibility that further hidden cancellations appear. With that caveat
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divulged, we proceed and consider diagrammatic arguments in both the unbroken and

broken phases of electroweak symmetry.

Starting in the unbroken phase, we compute the mixing between the hypercharge

gauge bosons. Two- and three-loop diagrams with Higgs loops containing one gauge

vertex and one quartic insertion vanish. By charge conjugation in scalar QED, the three-

leg amplitude of a gauge boson and a complex scalar pair must be antisymmetric under

exchange of the scalars. However, the quartic coupling of the external legs ensures that

their momenta enter symmetrically. As this holds o�-shell, the presence of a loop which

looks like

causes the diagram to vanish. However, at four loops the following diagram can be drawn

which avoids this issue:

where the two hypercharges are connected by charged fermion loops in their respective

sectors and the Higgs doublets' quartic interaction. This diagram contributes at least

from the MTH cuto� Λ . 4πf down to f , the scale at which twin and electroweak

symmetries are broken. We have no argument that this vanishes nor that its unitarity cuts

vanish. We thus expect a contribution to kinetic mixing of ε ∼ g2
1c

2
W/(4π)8, with g1 the

twin and SM hypercharge coupling and cW = cos θW appearing as the contribution to the

photon mixing operator. In this estimate we have omitted any logarithmic dependence

on mass scales, as it is subleading.
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In the broken phase, we �nd it easiest to perform this analysis in unitary gauge. The

Higgs radial modes now mass-mix, but the emergent charge conjugation symmetries in

the two QED sectors allow us to argue vanishing to higher-loop order. The implications

of the formal statement of charge conjugation symmetry are subtle because we have two

QED sectors, so whether charge conjugation violation is required in both sectors seems

unclear. However, similarly to the above case, there is a symmetry argument which

holds o�-shell. The result we rely on here is that in a vector-like gauge theory, diagrams

with any fermion loops with an odd number of gauge bosons cancel pairwise. Thus, each

fermion loop must be sensitive to the chiral nature of the theory, so the �rst non-vanishing

contribution is at �ve loops as in:

where the crosses indicate mass-mixing insertions between the two Higgs radial modes

which each contribute ∼ v/f . Thus, both the running down to low energies and the �nite

contributions are �ve-loop suppressed. From such diagrams, one expects a contribution

ε ∼ e2g2
Ag

2
V (v/f)2/(4π)10, where with gV and gA we denote the vector and axial-vector

couplings of the Z, respectively. We note there are other �ve loop diagrams in which

Higgses couple to massive vectors which are of similar size or smaller.

Depending on the relative sizes of these contributions, one then naturally expects

kinetic mixing of order ε ∼ 10−13 − 10−10. If ε is indeed generated at these loop-levels,

then mixing on the smaller end of this range likely requires that it becomes disallowed

not far above the scale f . However, we note that our ability to argue for higher-loop

order vanishing in the broken versus unbroken phase is suggestive of the possibility that

there may be further cancellations. We note also the possibility that these diagrams,
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even if nonzero, generate only higher-dimensional operators. Further investigation of the

generation of kinetic mixing through a scalar portal is certainly warranted.
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Appendix B

How to Formulate Field Theory on a

Noncommutative Space

In this appendix we provide detail on how to formulate �eld theories on a space which is

de�ned by Equation 7.1, which we repeat here for convenience:

[x̂µ, x̂ν ] = iθµν . (B.1)

To construct a �eld theory on this space we must specify the algebra of observables. First

we brie�y recall the familiar, commutative case. For simplicity, we consider a scalar �eld

theory on �at Euclidean space. We denote by Alg
(
Rd[x], ·

)
the commutative, C∗-algebra

of Schwartz functions of d-dimensional Euclidean space with the standard point-wise

product, and this constitutes our algebra of observables. A convenient basis for the

vector space is that of plane waves eip·x.

The case of interest here is noncommutative �at Euclidean space, on which we de�ne

Alg
(
Rd
θ[x̂], ·

)
. This now consists of such functions of d variables x̂µ related by Equation

7.1, and so is a noncommutative algebra, although we've speci�ed again the normal
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`point-wise' product. A useful basis will again be that of plane waves, which we may

de�ne as the eigenfunctions of appropriately-de�ned derivatives on the noncommutative

space, and which look familiar eip·x̂. To can get a sense for this algebra it is useful to

carry out the simple exercise of multiplying two plane waves by simply applying Baker-

Campbell-Hausdor�

eik·x̂ · eik′·x̂ = exp

(
ik · x̂+ ik′ · x̂− 1

2
kµk

′
ν [x̂µ, x̂ν ]

)
= e−

i
2
θµνkµk′νei(k+k′)·x̂. (B.2)

As in quantum mechanics, we will wish to study noncommutative versions of familiar

commutative theories, and so it will be useful to view Rd
θ as a `deformation' of Rd. We

then wish to construct a map from our commutative algebra to our noncommutative one

which returns smoothly to the identity as θµν → 0. The standard such choice is the

Weyl-Wigner map Ŵ , which one may roughly think of as merely replacing xs with x̂s.

The procedure is simply to Fourier transform from commutative space to momenta,

and then inverse Fourier transform to noncommutative space. Given a commutative

space Schwartz function f , we may compose the two operations and write

Ŵ [f ] =

∫
ddxf(x)∆̂(x), ∆̂(x) =

∫
ddk

(2π)d
eiki·x̂

i

e−iki·x
i

. (B.3)

Note that this is an injective map of Schwartz functions on Rd to those on Rd
θ which

respects the vector space structure but not the structure of the algebra. This property

is familiar from quantum mechanics.

We may now construct noncommutative versions of �eld variables, but we still don't

know how to do physics on these spaces. That is, we can write down the Lagrangian for

noncommutative φ4 theory, and we could even determine an action after we formulate a

notion of an integral over a noncommutative space. But our familiar results about how
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to go from the action of a �eld theory to a calculation for a physical observable most

certainly depended implicitly on living on a commutative space, and so it seems we must

re-formulate physics from the bottom up.

Fortunately, such a drastic measure may not be necessary, as one may formulate

QFT on noncommutative spaces as a simple modi�cation of our normal �eld theory

structure. The core idea is to �nd an algebra of functions on Rd which is isomorphic

to Alg
(
Rd
θ[x̂], ·

)
by pushing the noncommutativity into a new �eld product, known as a

Groenewold-Moyal product (or star-product). We diagram the structure we wish to look

for in Figure B.1.

Alg
(
Rd[x], ·

)

Alg
(
Rd
θ[x̂], ·

)
Alg

(
Rd[x], ?θ

)
Ŵ:Rd[x]→Rdθ [x̂] IdRd[x]

Ŵ an isomorphism of algebras

Figure B.1: The relations between the algebra of a commutative �eld theory, the noncom-
mutative algebra one �nds by applying the Weyl-Wigner map, and the noncommutative
algebra most useful for �eld theory making use of the Groenewold-Moyal product.The
vertical arrows respect only the vector space structure, and one should think of construct-
ing a new algebra by applying a vector space map and then endowing the vectors with a
multiplication operation.

In particular, we may do this by demanding that our quantization map Ŵ is upgraded

to an isomorphism between Alg
(
Rd
θ[x̂], ·

)
and an algebra on the vector space of functions

of commutative Euclidean space, with a multiplication operation which is chosen to

preserve the algebraic structure. That is, we must satisfy

Ŵ [f ?θ g] = Ŵ [f ] · Ŵ [g] , (B.4)

for any Schwartz functions f, g on commutative Euclidean space. But we can guarantee

this by ensuring it for plane waves, the calculation of which we've essentially already
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done above in Equation B.2:

eikx ?θ e
ik′x = Ŵ−1

[
Ŵ
[
eikx
]
· Ŵ

[
eik
′x
]]

= Ŵ−1
[
e−

i
2
θijkik

′
jei(k+k′)·x̂

]
eikx ?θ e

ik′x ≡ e−
i
2
θµνkµk′νei(k+k′)·x, (B.5)

where the θ subscript merely tells us the star-product will depend on the noncommutativ-

ity tensor, and this will henceforth be dropped. This gives a position-space representation

of the star-product,

f(x) ? g(x) = exp

(
i

2
θµν∂

µ
y ∂

ν
z

)
f(y)g(z)

∣∣∣∣
y=z=x

= f(x) exp

(
i

2

←−
∂ µθµν

−→
∂ ν

)
g(x). (B.6)

The general procedure to construct a noncommutative �eld theory from a commutative

one is then by application of the Weyl-Wigner map. As an example, for a simple φn

theory we �nd

L(NC)
int =

λ

n!
Ŵ−1

[
Ŵ (φ(x))n

]
=

λ

n!

n copies︷ ︸︸ ︷
φ(x) ? φ(x) ? · · · ? φ(x) . (B.7)
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Wilsonian Interpretations of NCFTs

from Auxiliary Fields

In this appendix we discuss various generalizations of the procedure introduced in [464,

488] to account for the new structures appearing in the noncommutative quantum e�ec-

tive action via the introduction of additional auxiliary �elds.

C.1 Scalar Two-Point Function

It is simple to generalize the procedure discussed in Section 7.3 to add to the quadratic

e�ective action of φ any function we wish through judicious choice of the two-point

function for an auxiliary �eld σ which linearly mixes with it. In position space, if we

wish to add to our e�ective Lagrangian

∆Le� =
1

2
c2φ(x)f(−i∂)φ(x), (C.1)
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where f(−i∂) is any function of momenta, and c is a coupling we've taken out for con-

venience, then we simply add to our tree-level Lagrangian

∆L =
1

2
σ(x)f−1(−i∂)σ(x) + icσ(x)φ(x), (C.2)

where f−1 is the operator inverse of f . It should be obvious that this procedure is entirely

general. As applied to the Euclidean φ4 model, we may use this procedure to add a second

auxiliary �eld to account for the logarithmic term in the quadratic e�ective action as

∆L =
1

2
σ(x)

1

log
[
1− 4

Λ2∂◦∂

]σ(x)− gM√
96π2

σ(x)φ(x), (C.3)

where we point out that the argument of the log is just 4/(Λ2
e�p◦p) in position space. We

may then try to interpret σ also as a new particle. As discussed in [488], its logarithmic

propagator may be interpreted as propagation in an additional dimension of spacetime.

Alternatively, we may simply add a single auxiliary �eld which accounts for both

the quadratic and logarithmic IR singularities by formally applying the above procedure.

But having assigned them an exotic propagator, it then becomes all the more di�cult to

interpret such particles as quanta of elementary �elds.

C.2 Fermion Two-Point Function

To account for the IR structure in the fermion two-point function, we must add an

auxiliary fermion ξ. If we wish to �nd a contribution to our e�ective Lagrangian of

∆Le� = c2ψ̄Oψ, (C.4)
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where O is any operator on Dirac �elds, then we should add to our tree-level Lagrangian

∆L = −ξ̄O−1ξ + c
(
ξ̄ψ + ψ̄ξ

)
, (C.5)

with O−1 the operator inverse of O. In the Lorentzian Yukawa theory of Section 7.4, if

we add to the Lagrangian

∆L = −ξ M − i
/∂/2

M2 − ∂2/4

[
log

(
1− 4

Λ2∂ ◦ ∂

)]−1

ξ +
g

2
√

2 π

(
ξψ + ψξ

)
. (C.6)

we again �nd a one-loop quadratic e�ective Lagrangian which is equal to the Λ → ∞

value of the original, but now for any value of Λ.

C.3 Three-Point Function

We may further generalize the procedure for introducing auxiliary �elds to account

for IR poles to the case of poles in the three-point e�ective action. It's clear from the

form of the IR divergences in Equation ?? that they `belong' to each leg, and so naïvely

one might think this means that the divergences we've already found in the two point

functions already �x them. However those corrections only appear in the internal lines

and were already proportional to g2, and so they will be higher order corrections. Instead

we must generate a correction to the vertex function itself which only corrects one of the

legs.

To do this we must introduce auxiliary �elds connecting each possible partition of

the interaction operator. However, while an auxiliary scalar χ coupled as χϕ + χψψ

would generate a contribution to the vertex which includes the χ propagator with the

ϕ momentum �owing through it, it would also generate a new (ψψ)2 contact operator,

which we don't want. To avoid this we introduce two auxiliary �elds with o�-diagonal
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two-point functions, a trick used for similar purposes in [488]. By abandoning minimality,

we can essentially use an auxiliary sector to surgically introduce insertions of functions

of momenta wherever we want them.

We can �rst see how this works on the scalar leg. We add to our tree-level Lagrangian

∆L = −χ1(x)f−1(−i∂)χ2(x) + κ1χ1(x)ϕ(x) + κ2χ2(x) ? ψ(x) ? ψ(x). (C.7)

Now to integrate out the auxiliary �elds we note that for a three point vertex, one may

use momentum conservation to put all the noncommutativity between two of the �elds.

That is, χ2(x) ? ψ(x) ? ψ(x) = χ2(x)(ψ(x) ? ψ(x)) = (ψ(x) ? ψ(x))χ2(x) as long as this

is not being multiplied by any other functions of x. So we may use this form of the

interaction to simply integrate out the auxiliary �elds. We end up with

∆Le� = κ1κ2ψ ? ψ ? f(−i∂)ϕ (C.8)

which is exactly of the right form to account for an IR divergence in the three-point

function which only depends on the ϕ momentum.

For the fermionic legs, we need to add fermionic auxiliary �elds which split the Yukawa

operator in the other possible ways. We introduce Dirac �elds ξ, ξ′ and a di�erential

operator on such �elds O−1(−i∂). Then if we add to the Lagrangian

∆L = −ξO−1ξ′−ξ′O−1ξ+c1(ξ?ψ?ϕ+ψ?ξ?ϕ)+c2(ξ?ϕ?ψ+ψ?ϕ?ξ)+c3(ξ′ψ+ψξ′), (C.9)

we now end up with a contribution to the e�ective Lagrangian

∆Le� = c1c3

(
ψ̄ ?O (ψ) ? ϕ+ ψ̄ ?O (ψ ? ϕ)

)
+ c2c3

(
ψ̄ ? ϕ ?O (ψ) + ψ̄ ?O (ϕ ? ψ)

)
,

(C.10)
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where we have abused notation and now the argument of O speci�es which �elds it acts

on. These terms have the right form to correct both vertex orderings.

Now that we've introduced interactions between auxiliary �elds and our original �elds,

the obvious question to ask is whether we can utilize the same auxiliary �elds to correct

both the two-point and three-point actions. In fact, using two auxiliary �elds with o�-

diagonal propagators per particle we may insert any corrections we wish. The new trick

is to endow the auxiliary �eld interactions with extra momentum dependence.

For a �rst example with a scalar, consider di�erential operators f , Φ, and add to the

Lagrangian

∆L = −χ1f
−1(−i∂)χ2 + κ1χ1ϕ+ κ2χ2ψ ? ψ + gϕΦ(−i∂)χ2. (C.11)

We may now integrate out the auxiliary �elds and �nd

∆Le� = gκ1ϕf(Φ(ϕ)) + κ1κ2ψ ? ψ ? f(ϕ) (C.12)

where we've assumed that f and Φ commute. If we take Φ = 1 then we have the

interpretation of merely inserting the χ two-point function in both the two-and three-

point functions. But we are also free to use some nontrivial Φ, and thus to make the

corrections to the two- and three-point functions have whatever momentum dependence

we wish. It should be obvious how to generalize this to insert momentum dependence

into the scalar lines of arbitrary n−point functions.

The case of a fermion is no more challenging in principle. For di�erential operators
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O,F , we add

∆L = −ξO−1ξ′ − ξ′O−1ξ + c1(ξ ? ψ ? ϕ+ ψ ? ξ ? ϕ) + c2(ξ ? ϕ ? ψ + ψ ? ϕ ? ξ)

+ c3(ξ′ψ + ψξ′) +
g

2

(
ξ̄O−1Fψ + ψ̄O−1Fξ

)
, (C.13)

and upon integrating out the auxiliary �elds we �nd

∆Le� = gc3ψ̄Fψ+c1c3

(
ψ̄ ?O (ψ) ? ϕ+ ψ̄ ?O (ψ ? ϕ)

)
+c2c3

(
ψ̄ ? ϕ ?O (ψ) + ψ̄ ?O (ϕ ? ψ)

)
,

(C.14)

where the generalization to n-points is again clear. Note that in the fermionic case it's

crucial that we be allowed to insert di�erent momentum dependence in the corrections

to the two- and three-point functions, as these have di�erent Lorentz structures.

Now we cannot quite implement this for the two- and three-point functions calculated

in Section 7.4, for the simple reason that we regulated these quantities di�erently. That

is, we have abused notation and the symbol `Λ' means di�erent things in the results for

the two- and three-point functions. In order to carry out this procedure, we could simply

regulate the two-point functions in 3d Schwinger space, though we run into the technical

obstruction that the integration method above only calculates the leading divergence,

which is not good enough for the scalar case.
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