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ABSTRACT OF THE DISSERTATION 

 

The Effects of HIV, Obesity, and Methamphetamine Use on the Gastrointestinal Microbiome of 

Young Men who have Sex with Men 

 

by 

 

Ryan Robert Cook 

Doctor of Philosophy in Epidemiology 

University of California, Los Angeles, 2019 

Professor Pamina M. Gorbach, Chair 

 

Introduction: Chronic inflammation is a major contributor to increased morbidity and mortality 

among people living with HIV. Research suggests that the composition of the gastrointestinal 

microbiome may be altered by HIV, resulting in a state of “dysbiosis” that exacerbates and 

perpetuates immune dysfunction. However, studies of HIV and the microbiome have thus far 

been limited by small sample sizes and poor control for confounding factors and have not 

considered potentially synergistic effects of comorbidities such as obesity and 

methamphetamine (MA) use. Therefore, the effects of HIV on the microbiome remain unclear. 

Methods: This dissertation includes biomarker, behavioral, and clinical data from 381 diverse 

young men who have sex with men. Microbiome composition was assessed by targeted 

sequencing of the V4 region of the 16S rRNA gene using rectal swab samples. In Chapter 2, we 

examined differences in microbiome composition between men with increasing levels of plasma 

HIV RNA.  In Chapter 3, we split the sample into groups based on HIV and obesity and 

compared men who were HIV+ and obese to those with only one or neither conditions. In 
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Chapter 4, we explored the effects of MA use on the microbiome while testing for potential 

interactions between MA use and HIV status. All comparisons utilized inverse probability of 

treatment weighting to control for confounding by numerous behavioral and clinical factors.  

Results: HIV, obesity, and MA use were all associated with shifts in microbial composition 

consistent with a pro-inflammatory environment. There was a dose-dependent relationship 

between HIV RNA level and severity of dysbiosis. Men who were HIV+ and obese had more 

severe dysbiosis than those with only one or neither conditions. Regardless of HIV status, MA 

users had higher relative abundance of many pro-inflammatory bacterial genera, with frequent 

users having the highest amounts. 

Conclusions: As multiple comorbid conditions can negatively impact the microbiome, 

interventions to address dysbiosis and reduce its inflammatory consequences should consider 

interactions between these conditions. Future studies should utilize analytic approaches such as 

those employed in this dissertation in order to limit the effects of confounding and improve 

comparability.  
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Chapter 1. Introduction 

HIV-associated chronic inflammation and comorbidities 

Despite significant progress in the treatment of HIV with antiretroviral therapy (ART), 

HIV-infected individuals are expected to have a shorter lifespan than their HIV-negative peers.1-3 

This reduction in life expectancy has largely been attributed to chronic inflammation associated 

with HIV infection,4-6 which places infected individuals at increased risk of cardiovascular 

disease, metabolic disorders, neurocognitive impairment, and cancer.7-11 Furthermore, illicit 

substance use disorders are highly prevalent among HIV-infected individuals,12 and obesity is a 

growing problem among people living with HIV.13,14 Like HIV, use of illicit substances and 

obesity have   been associated with chronic inflammation.15-21 Studies of HIV and 

methamphetamine use19 and HIV and obesity22 have shown synergistic effects of these 

comorbidities and HIV on inflammation.  

The gastrointestinal (GI) tract is a primary site for viral replication during acute and 

chronic HIV-1 infection, resulting in significant loss of CD4+ T cells. GI mucosal immune 

dysregulation, which does not reconstitute fully with HIV treatment, is thought to be a significant 

driver of the persistent systemic inflammation seen in chronic HIV infection.23 Depletion of 

regulatory immune cells and disruption of inflammatory cytokine pathways weakens the GI 

mucosal epithelium, allowing passage of microbes and microbial products into the GI tract.24,25 It 

has been hypothesized that this process of microbial translocation drives turnover of CD4+ and 

CD8+ T cells, prematurely aging and ultimately exhausting the immune system.25,26 Like HIV, 

methamphetamine use and obesity both compromise GI mucosal immunity, resulting in 

microbial translocation and systemic inflammation.16-18,27,28  

Interactions between the microbiome and the immune system 

The trillions of microorganisms inhabiting the GI tract, collectively called the microbiome, 

play a vital role in our health and the development of disease.29 Loss of homeostasis in the 
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microbiome, a state of “dysbiosis,” has been associated with a broad range of illnesses, ranging 

from localized GI conditions to neurocognitive disorders.29 The microbiome plays a key role in 

inducing and regulating nearly all aspects the immune system.30 Interactions with microbiota 

beginning at birth are thought to train our immune system to respond to outside challenges and 

prevent autoimmune responses,31,32 and microbiota are critical to development of lymphoid cells 

and structures.33 Microbiota can induce immune regulatory capabilities; for example, 

Bacteroides fragilis have been shown to induce IL-10 producing regulatory T (Treg) cells34 and 

butyrate-producers such as Clostridia induce colonic Treg cells.35 The microbiome also plays a 

role in protection against pathogens by preventing colonization, producing antimicrobial 

peptides that directly impact pathogen survival,36 and promoting and calibrating the innate37 and 

adaptive38 immune systems. Although the mechanisms are not always completely understood, it 

is clear that the microbiome plays a critical role in both localized inflammatory responses and 

maintenance and regulation of the entire immune system.30  

Effects of HIV on the microbiome 

There is increasing evidence that HIV disrupts the microbiome,39-43 which may play a 

critical role in HIV-associated chronic inflammation and ultimately contribute to the development 

of serious sequelae.7-10,44 HIV-associated dysbiosis has been correlated with biomarkers of 

inflammation, microbial translocation, and immune cell activation.39,42,45 Furthermore, increased 

abundance of pro-inflammatory bacteria has been correlated with lower CD4+ T cell count and 

increased viral load, whereas the opposite has been found for increases in bacteria thought to 

be beneficial.46-48 It has been hypothesized that HIV-associated immune dysregulation and 

dysbiosis constitute a feedback loop where immune dysregulation induces dysbiosis, and 

dysbiosis drives further inflammation and dysregulation.  

Generally, studies have found that microbial diversity is reduced in HIV-infected 

individuals as compared to HIV-negative controls.48-50 Bacteria from the phylum Proteobacteria 
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appear in high relative abundance among HIV-infected individuals.46,47 Notably, the 

Proteobacerial family Enterobacteriaceae are elevated in HIV-infection46,49 and have been 

associated with inflammation.51,52 High abundance of certain pro-inflammatory species in the 

phylum Bacteroidetes, most notably Prevotella, is consistently found in HIV-infection,47,49,53 while 

others with anti-inflammatory properties such as Bacteroides are decreased.47,53 However, the 

majority of studies of HIV and the microbiome to date have been conducted in small samples 

with incomparable study cohorts and poor control for confounding factors. Additionally, no 

studies have examined the dose-response relationship between levels of HIV viremia and 

dysbiosis. Therefore, the effects of HIV on the microbiome are not well understood, and many 

conflicting findings appear in the literature. Chapter 2 describes the effects of increasing levels 

of plasma HIV RNA on the microbiome, while taking into account a host of behavioral and 

clinical factors that may independently impact microbial composition. 

Effects of obesity and methamphetamine use on the microbiome 

Dysbiosis has also been implicated in disrupted eating behavior and food intake control, 

54,55 eating disorders,56 and development of obesity and metabolic disorders.57,58 Studies have 

shown that GI bacteria enable the body to extract energy from food, increase nutrient 

absorption, and modify taste receptors.56 A number of commonalities between HIV-related and 

obesity-related dysbiosis have been observed. Reduced overall bacterial diversity59 and high 

relative abundance of bacteria in the family Erysipelotrichia has been positively associated with 

both HIV and obesity.60-62 In addition, HIV has been associated with decreased abundance of 

the family Rikenellaceae,63,64 which has been found to be protective against obesity.65 Despite 

high rates of comorbidity with HIV and a similar negative impact on the microbiome and immune 

system, the contribution of obesity to HIV-associated dysbiosis has not been described. Chapter 

3 investigates the combined effects of HIV and obesity on the microbiome. 
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Despite the fact that HIV and methamphetamine (MA) are both pro-inflammatory and 

people living with HIV use MA at rates far higher than the general population, no studies have 

described the interaction between HIV and MA on the microbiome. In fact, few studies have 

examined the impact of MA on the microbiome at all. A study of rats found that administration of 

methamphetamine causes changes in the microbiome,66 and a small cohort of HIV-infected 

individuals found alterations to the microbiome associated with MA use.67 Dysbiosis has been 

observed in HIV-negative individuals with substance use disorders,68 although the study 

included relatively few MA-dependent subjects. The microbiome may even contribute to MA use 

disorders. Novel research into the “gut-brain axis” suggests that dysbiosis may play a role in 

addiction pathology; for example, studies of cocaine reward in mice with experimentally 

manipulated GI bacteria suggest that dysbiosis may alter dopaminergic reward pathways and 

induce addictive behavior.69 Chapter 4 describes the effects of MA on the microbiome and 

potential interactions between HIV and MA. 

 

  



5 
 

Chapter 2. Effects of HIV Viremia on the Gastrointestinal Microbiome 

of Young Men who have Sex with Men 

 

2.1 Abstract 

Objective: We employed a high-dimensional covariate adjustment method in microbiome 

analysis to better control for behavioral and clinical confounders, and in doing so examine the 

effects of HIV on the rectal microbiome.   

Design: Three hundred eighty-three men who have sex with men were grouped into four HIV 

viremia categories: HIV negative (n = 200), HIV+ undetectable (HIV RNA <20 copies/mL; n = 

66), HIV+ suppressed (RNA 20-200 copies/mL; n = 72) and HIV+ viremic (RNA >200 

copies/mL; n = 45). 

Methods: We performed 16S rRNA gene sequencing on rectal swab samples and used inverse 

probability of treatment-weighted marginal structural models to examine differences in microbial 

composition by HIV viremia category.  

Results: HIV viremia explained a significant amount of variability in microbial composition in 

both unadjusted and covariate-adjusted analyses (R2 = .011, p = .02).  Alterations in bacterial 

taxa were more apparent with increasing viremia. Relative to the HIV negative group, HIV+ 

undetectable participants showed depletions in Brachyspira, Campylobacter, and Parasutterella 

while suppressed participants demonstrated depletions in Barnesiella, Brachyspira and 

Helicobacter. The microbial signature of viremic men was most distinct, showing enrichment in 

inflammatory genera Peptoniphilus, Porphyromonas, and Prevotella and depletion of 

Bacteroides, Brachyspira, and Faecalibacterium, among others.  

Conclusions: Our study shows that, after accounting for the influence of multiple confounding 

factors, HIV is associated with dysbiosis in the gastrointestinal microbiome in a dose-dependent 
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manner. This analytic approach may allow for better identification of true microbial associations 

by limiting the effects of confounding, and thus improve comparability across future studies. 

 

2.2 Introduction 

The trillions of bacteria, viruses, and fungi inhabiting the human gastrointestinal (GI) tract 

have a profound impact on our health and the development of disease. Disruption in the 

homeostasis of the these microbes, a state of “dysbiosis,” has been associated with a broad 

range of illnesses, including localized GI conditions, neurocognitive disorders, cancer, 

autoimmune disorders, and cardiovascular disease.29 There is tremendous variability in the 

diversity and composition of the microbiome, even between healthy individuals,70 and the effects 

of different exposures, behaviors, and personal characteristics on the composition and function 

of the microbiome are incompletely understood.  

Chronic inflammation is a hallmark of HIV infection and continues despite suppressive 

antiretroviral therapy (ART). The GI tract is a primary site for HIV replication resulting in 

significant loss of CD4+ T-cells vital to a healthy mucosal immune system. Depletion of 

regulatory immune cells and pathways leads to decreased epithelial barrier function allowing 

translocation of microbes and microbial products which contributes to the chronic inflammatory 

response.24,25 HIV replication may also result in a state of dysbiosis,39,40,42 which has been 

correlated with increases in markers of disease progression, microbial translocation, and 

immune activation.39,42,45,46 It has been hypothesized that HIV-associated immune dysfunction 

induces this dysbiosis, and dysbiosis causes further dysfunction,39. thereby driving persistent 

systemic inflammation in HIV-infected individuals.71 

Many studies have found that overall microbial diversity is reduced in HIV-infected 

individuals,48-50 and HIV has been associated with a shift from commensals such as Bacteroides 

to pro-inflammatory taxa such as Prevotella.47,49,53 However, results have been inconsistent, 
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with some studies showing the opposite or no effects of HIV on microbial diversity15,63,72 and 

little effect on composition.73,74 Certainly, differences in sample collection, sequencing, post-

processing, and analytic methodology may be responsible for much of the heterogeneity in 

results.75 While some research has focused on the role of sampling variability and type-I error 

on irreproducibility of findings,76,77 comparatively little attention has been paid to sources of 

systematic error such as incomparable study cohorts or confounders such as sexual behavior, 

substance use, diet, race/ethnicity, and age. Such confounders are highly prevalent in 

observational human studies of the microbiome and may have a larger effect than HIV itself.73 

Due to these limitations, the specific effects of HIV on the microbiome warrant further 

investigation. 

Increased relative abundance of pro-inflammatory bacteria has been correlated with 

increased viremia, whereas the opposite has been found for potentially beneficial bacteria.46-48 

Given these findings and the effects of viral replication on mucosal immunity, it stands to reason 

that the level of viremia may be a significant determinant of HIV-associated dysbiosis. However, 

the effect of viremia has not been thoroughly explored. Numerous studies comparing cohorts of 

HIV-infected individuals that are either on ART or ART-naïve have shown that ART does not 

result in full “reconstitution” of the microbiome, even if the virus is suppressed.48,62,78 Additional 

studies focused on elite controllers showed that the microbial composition among individuals 

with controlled viremia is more similar to HIV-uninfected than viremic individuals.79,80 However, 

there are likely to be important biological differences between elite controllers and other HIV-

infected individuals that may limit the generalizability of these findings. In order to accurately 

characterize the effects of HIV on the microbiome, a more detailed examination of the effects of 

viremia is needed.  

To this end, we compared intestinal microbial composition between HIV-uninfected, HIV-

infected with undetectable viremia (HIV RNA <20 copies/ml), HIV-infected with suppressed 
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viremia (HIV RNA ≥20-200 copies/ml), and HIV-infected viremic individuals (HIV RNA >200 

copies/ml). We utilized data from a cohort comprised entirely of men who have sex with men 

(MSM) and employed inverse probability of treatment weighting (IPTW) to control for a robust 

set of clinical and behavioral confounders. We hypothesized that alterations to the microbiome 

would be present in all HIV-infected subgroups as compared to HIV-uninfected controls, and the 

severity of dysbiosis would increase with increasing viremia.  

 

2.3 Methods 

Study Population 

Specimens for this study were obtained from an ongoing prospective cohort (The 

mSTUDY, NIDA U01 DA036267). The mSTUDY was approved by a UCLA Institutional Review 

Board (IRB) and all subjects provided written informed consent at study entry. Participants are 

recruited from community clinics in Los Angeles and complete biannual assessments including 

a comprehensive physical examination and medical history, urine toxicology panel, clinical 

laboratory tests including plasma HIV RNA, specimen collection, and detailed behavioral 

questionnaire. Data presented in this manuscript were collected from baseline study visits 

completed between August 2014 and July 2017. Additional details on sample selection and HIV 

RNA quantification are provided in Appendix 1.  

Specimen collection and DNA preparation 

The majority (76%) of rectal swabs (FLOQSwabs, Copan Diagnostics, Murrieta, CA) 

were collected via anoscopy under direct mucosal visualization and without preparatory enema 

at approximately 8 cm from the anal verge. Due to an mSTUDY protocol change, others (24%) 

were participant self-collected at approximately 4-5 cm from the anal verge. Collection method 

was taken into account in the analysis (see Tables 2.1 and A1.1). Swabs were immediately 

frozen neat at -80°C until processing in bulk. For DNA processing the samples were transferred 
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to Lysing Matrix E tubes (MP Biomedicals, Burlingame, CA) containing RLT lysis buffer (Qiagen, 

Hilden, Germany) and bead-beated on a TissueLyser (Qiagen). DNA was then extracted using 

the AllPrep DNA/RNA/Protein kit (Qiagen) per manufacturer’s protocol.  

16S rRNA gene sequencing and data processing  

Microbiome profiling was performed by sequencing of the V4 region of the 16S rRNA 

gene as previously described.81,82 Briefly, the V4 region was amplified in triplicate reactions 

using Golay-barcoded primers 515F/806R. Negative controls from the DNA extraction and PCR 

steps, as well as independent aliquots of a bacterial mock community were processed alongside 

the samples to identify contaminant sequences and ensure data reproducibility. PCR products 

were then pooled and sequenced on the Illumina MiSeq platform using 2x150bp v2 chemistry. 

The sequences were demultiplexed with Golay error correction using QIIME v1.9.1,83 and 

Divisive Amplicon Denoising Algorithm (DADA2) version 1.8 was used for error correction, exact 

sequence inference, read merging, and chimera removal.84 Following contaminant removal (see 

Appendix 1), the amplicon sequence variant (ASV) table comprised 19,955,039 total merged 

read pairs (mean per sample = 52,375; range 10,906 to 124,889). Taxonomic assignment was 

performed using RDP trainset 16.85 Rarefaction was performed at a depth of 10,906 reads for 

alpha diversity analyses. For all other analyses, estimates of relative library sizes (“size factors”) 

were obtained by calculating geometric means of pairwise read count ratios.86 

Behavioral and clinical covariates  

Demographic and behavioral covariates included in the analyses were age, 

race/ethnicity, employment status, country of origin, a dichotomous variable for homelessness in 

past month, number of receptive anal intercourse (RAI) acts in past month, a dichotomous 

variable for RAI within the past seven days, frequency of methamphetamine, marijuana, and 

cocaine use in the past 6 months, tobacco smoking, and binge drinking. All demographic and 

behavioral data were self-reported by participants using a computer-aided self-interview (CASI); 
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measures are described in Appendix 1. Dichotomous variables for obesity (defined as BMI > 30 

or waist circumference > 40 inches), and antibiotic use in the past month were also included in 

the analyses; these data were collected by clinical staff.  

Statistical analyses  

The primary analyses were unadjusted and inverse probability of treatment-weighted 

comparisons of microbiome diversity and composition between HIV-, HIV+ undetectable, HIV+ 

suppressed, and HIV+ viremic participants. The R package ‘phyloseq’ was used to calculate 

alpha diversity statistics, distance matrices, and for ordination. Differences in alpha diversity 

between groups were examined with Kruskal-Wallis tests followed by comparisons of median 

values using quantile regression (R package ‘quantreg’). Permutational Multivariate ANOVA 

(PERMANOVA) was used to test for overall differences in microbial composition between HIV 

groups (R package ‘vegan’). Zero-inflated negative binomial (ZINB) models were fit in order to 

test for differential abundance in bacterial genera between groups with multinomial least 

absolute shrinkage and selection operator (LASSO) models employed as a confirmatory 

analysis (R packages ‘pscl’ and ‘glmnet’). ZINB and LASSO model selection and analytic 

procedures are described in Appendix 1.  

 IPTW87 is a method of confounder control where the study sample is re-weighted in 

order to create a “pseudo-population” in which treatment/exposure, here referring to the four 

HIV viremia groups, is independent of confounding variables (see Appendix 1). We used IPTW 

to control for all variables described in the Behavioral and Clinical Covariates section (Table 

2.1). Weights were estimated using generalized boosted models (R package ‘twang’), and 

balance between groups was assessed by computing standardized mean differences for each 

covariate in the weighted sample (R package ‘tableone’). Table 2.1 and Table A1.1 provide 

information on covariate balance before and after weighting. Robust variance estimates for 

inference tests in weighted ZINB analyses were obtained via the sandwich estimator (R 
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package ‘sandwich’). Additional detail about the IPTW estimation and modeling procedures is 

provided in Appendix 1. Missing covariate data were imputed using the Chained Equations 

method88 (R package ‘mice’); the proportion of missing data for each covariate is shown in 

Table A1.1. In order to account for multiple testing, alpha diversity and ZINB p values were 

corrected with the Benjamini-Hochberg false discovery rate (FDR) method;89 FDR adjusted p 

values are labelled as q values. We utilized a threshold of two-sided p or q < 0.1 for significance 

testing; accordingly, we also display false coverage rate (FCR)-adjusted 90% confidence 

intervals90 where relevant. All statistical analyses were completed using R v.3.4.3 

 

2.4 Results  

Sample characteristics 

N = 383 participants were included in this study; 200 were HIV-, 66 were HIV+ 

undetectable (HIV RNA <20 copies/ml), 72 were HIV+ suppressed (HIV RNA ≥20-200 

copies/ml), and 45 were HIV+ viremic (HIV RNA >200 copies/ml). All participants were MSM 

with an average age 31 (standard deviation = 7). Most were Hispanic (49%) or non-Hispanic 

Black (39%). Table 2.1 provides further detail on participant characteristics. Generally, HIV-

infected participants, especially those with higher levels of viremia, were more likely to be older, 

unemployed, recently homeless, and to report methamphetamine use and frequent binge 

drinking than their HIV-uninfected peers. Among the HIV-infected participants, the mean 

number of years since diagnosis was 7.5 (sd = 5.7), mean log10 viral load was 2.0 (sd = 1.2), 

and mean CD4 cell count was 625 cells/mm3 (sd = 287). No participants were ART-naïve and 

ninety percent of participants reported current ART.  

Effects of HIV viremia on overall microbial composition  

The relative composition of each individual’s microbiome is displayed in Figures 2.1A 

and A1.1, and average composition within each HIV viremia category in Figure 2.1B. Prevotella 
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is the most highly represented bacterial genus among most participants, with increasing relative 

amounts of Bacteroides, Bifidobacteria, and Fusobacteria in those towards the right side of the 

axis (Figure 2.1A). Higher levels of Alloprevotella and Porphyromonas are apparent in the HIV+ 

viremic group, and lower levels of Bacteroides are apparent in all HIV+ groups relative to HIV- 

controls (Figure 2.1B).  

To quantitatively examine the influence of HIV viremia on differences in microbial 

composition between-subjects we used PERMANOVA with Bray-Curtis distance. HIV viremia 

explained a significant amount of variability in microbial composition in both unadjusted (R2 = 

.014, p = .001) and covariate-adjusted analyses (R2 = .011, p = .017) (Table A1.2). Figure 2.2A 

displays ordination of the samples by principal coordinates analysis (Bray-Curtis distance), 

where HIV- and HIV+ viremic groups are distinct while HIV+ undetectable and HIV+ suppressed 

are more similar. 

Comparisons of alpha diversity suggest a tendency for HIV+ individuals to have higher 

diversity in metrics that do not account for evenness (observed count and Chao1 statistic) 

(Figure 2.2B). Kruskal-Wallis analyses revealed significant differences in observed and Chao1 

richness by HIV group (Table A1.3). Quantile regression was further used to investigate these 

differences and revealed higher median observed and Chao1 values for HIV+ suppressed 

versus HIV- individuals (q = .022 in IPTW-adjusted analyses). No other significant differences 

were found in any group. Shannon and Simpson indices did not vary greatly between groups. 

Differences in specific bacterial taxa associated with HIV viremia  

Zero-inflated binomial (ZINB) models were utilized to identify bacterial genera that were 

differentially abundant among the HIV viremia groups. HIV+ undetectable showed significant 

enrichment in Finegoldia and Streptococcus and depletion in Bacteroides, Brachyspira, 

Campylobacter, Helicobacter, Parasutterella, and Turicibacter when compared to HIV-

uninfected. After IPTW adjustment for behavioral and clinical confounders, depletions in 
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Campylobacter, Parasutterella and Brachyspira remained significant (Figure 2.3A). HIV+ 

suppressed participants (HIV RNA ≤200 copies/ml) had increased Pseudoflavonifractor and 

decreased Bacteroides, Barnsiella, Brachyspira, Campylobacter, Escherichia/Shigella, 

Flaonifractor, Helicobacter, Oxalobacter, Parabacteroides, Turicibacter, and Victivallis relative to 

HIV-negative subjects. Following IPTW adjustment, depletions in Barnesiella, Helicobacter, and 

Brachyspira remained significant (Figure 2.3B). 

HIV+ viremic men (HIV RNA >200 copies/ml) had the most distinct microbial signature 

relative to HIV-negative, showing significant enrichment of Corynebacterium, Dietzia, Finegolda, 

Murdochiella, Negativicoccus, Peptoniphilus, Porphyromonas, and Prevotella as well as 

depletion of Arcanobacterium, Brachyspira, Bacteroides, Campylobacter, Faecalibacterium, 

Helicobacter and Succinivibrio. With IPTW adjustment, enrichment of Murdochiella, 

Peptoniphilus, Porphyromonas, and Prevotella and depletion of Arcanobacterium, Bacteroides, 

Brachyspira, Faecalibacterium, and Helicobacter were significant (Figure 2.3C). For some 

bacteria, including Faecalibacterium, Peptoniphilus, Porphyromonas, Prevotella, and 

Streptococcus, effect size (i.e., degree of enrichment or depletion) increased with increasing 

viremia (Figure A1.2).   

An IPTW-adjusted multinomial least absolute shrinkage and selection operator (LASSO) 

model was also used as an additional method of feature selection to compare with ZINB 

findings. Among HIV+ participants with undetectable or suppressed viremia, no genera were 

significant in both the adjusted ZINB and LASSO models. However, among the HIV+ viremic 

group, differences in Bacteroides, Peptoniphilus, Porphyromonas, and Prevotella were 

consistent across analytic strategies (Figure 2.4).  

It was also of interest to determine whether HIV+ participants with low levels of viremia 

(HIV RNA < 200 copies/mL) had distinct microbial signatures from those who were HIV+ but 

undetectable (HIV RNA <20 copies/mL). One genus, Sneathea, was significantly different 
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between these groups in adjusted ZINB analyses (q < .1). The LASSO model identified 

depletions in Gemmiger in HIV+ suppressed as compared to undetectable participants (Figure 

A1.3). 

 

2.5 Discussion  

In this study examining the effects of HIV on the rectal microbiome in a cohort of 383 

young, mostly minority MSM, we found important differences in microbial composition between 

HIV-uninfected and HIV-infected men which varied depending on level of viremia. HIV viremia 

category accounted for about 1% of the variability in microbiome composition, an effect size that 

is consistent with previous studies.73 As hypothesized, microbiome perturbations were most 

evident among HIV+ viremic men, and least evident in HIV+ men with undetectable viremia. 

Importantly, we utilized IPTW to account for multiple confounding factors in our analyses, which 

decreased the likelihood that the results we report are attributable to clinical or behavioral 

covariates affecting the microbiome such as sexual behavior, substance use, or obesity.  

High diversity is generally associated with a healthy rectal microbiome,70 and reduced 

richness and diversity has been reported in studies comparing HIV-infected and uninfected 

persons.49,50,78,91-93 Still other studies report no differences in diversity associated with HIV-

infection,15,63 while others have suggested that differences in diversity may be related to 

sampling location47 or HIV-treatment status.62,92 We found few significant differences in diversity 

metrics in our study, and findings did not follow a clear dose-response pattern with level of 

viremia. As we were able to adjust for multiple confounders in our analyses, we can be 

reasonably confident that previously reported determinants of diversity such as sexual 

behavior73 and substance use68 had limited influence on our findings. Our results suggest that 

once these confounding factors are taken into account, bacterial diversity and richness may not 

be substantially impacted by HIV infection itself.  
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One of the more consistent findings across studies of HIV and the microbiome has been 

enrichment in Prevotella and depletion in Bacteroides among both untreated and treated HIV-

infected individuals.46,47,49 Prevotella species are considered pro-inflammatory,64,94 while 

Bacteroides species have been shown to induce regulatory T-cell differentiation and IL-10 

production.34,95 Previous work has suggested that observed alterations to the 

Prevotella/Bacteroides ratio may have been due to sexual behavior rather than HIV;73 however, 

others have shown decreased Bacteroides among HIV-infected MSM who were matched with 

MSM controls.46 Our study examined exclusively MSM and controlled for recency and frequency 

of receptive anal intercourse in our analyses, therefore, our study provides additional evidence 

that HIV may directly alter the Prevotella/Bacteroides ratio independent of sexual behavior. 

Although we found decreased Bacteroides in all HIV-infected individuals, the effect was similar 

between undetectable and suppressed participants and only statistically significant after 

adjustment for confounding in the viremic group. In addition, we found increasing relative 

amounts of Prevotella with increasing levels of viremia, which were only significant in the 

viremic group. Our findings are consistent with previous research showing that Prevotella may 

normalize with ART48 whereas depletions in Bacteroides persist even with therapy.62  

Of the 78 genera tested, ZINB and LASSO models identified Porphyromonas as the 

genus with the largest difference between HIV+ viremic and HIV- individuals. Porphyromonas is 

a well-known modifier of inflammatory cytokines.96 In fact, Porphyromonas gingivalis has been 

identified as a potential cause of systemic inflammation and metabolic disorders associated with 

periodontal disease97 and implicated in inflammatory processes leading to the development of 

atherosclerosis.98 Furthermore, administration of P. gingivalis to mice was shown to induce GI 

dysbiosis and contribute to intestinal permeability.99 The association between increasing levels 

of HIV viremia and Porphyromonas may therefore represent an important mechanism behind 

HIV-associated chronic inflammation deserving of further study. 
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Of particular interest in our study is the examination of low level viremia individuals who 

are not undetectable (HIV RNA ≥20-200 copies/ml). It is notable that this group, while distinct 

from HIV-uninfected, was virtually superimposed with the undetectable viremia (HIV RNA <20 

copies/ml) group in ordination analysis. Only a single genus, Sneatha, was statistically 

significantly different between these two groups when directly compared. Clinically, persistent 

low level viremia may increase risk of subsequent virologic failure,100 but a recent large study 

showed no difference in progression to AIDS or incidence of non-AIDS events in persons with 

low level viremia compared to undetectable.101 Our analysis suggests that microbial composition 

is similar between those with low level and undetectable viremia, but remains distinguishable 

from HIV-uninfected individuals. While those with low level viremia can still have microbial 

translocation and inflammatory biomarkers,102 the overall decreased dysbiosis in low level 

viremia may correspond to reduced chronic inflammation which lessens clinical progression.   

Our results should be interpreted with consideration of the following limitations. First, we 

did not have diet information on our cohort. We included race/ethnicity, country of origin, 

employment status, obesity, and homelessness (all of which may impact dietary intake) in our 

covariate adjustment set to mitigate this limitation to the best of our ability. Second, the IPTW 

procedure will only achieve perfect balance between exposure groups in nonparametric settings 

with large sample sizes relative to the number of relevant confounders, and there is potential for 

residual confounding even by variables we controlled for in our study. However, we note that 

many of the most significant confounders (e.g. age, antibiotic use, sexual behavior, alcohol use, 

obesity) were well-balanced after weighting. The ability of 16S sequencing to provide species-

level resolution is limited, thus we conducted analyses at the genus level. We acknowledge that 

differentially abundant genera do not necessarily indicate differences in functionally important 

species. Finally, we did not have time since ART initiation for our cohort, and thus cannot 
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determine if participants were viremic because they recently started treatment or because 

treatment was failing. 

Our study also has numerous strengths. Primarily, we utilized data from a large cohort of 

regionally, socioeconomically, and behaviorally similar individuals, increasing the internal 

validity of our findings. We employed a novel technique, IPTW, to incorporate a large amount of 

clinical and behavioral data into our analyses. With IPTW, analyses are “marginal structural 

models” instead of conditional on covariates, as in multiple regression. Modeling microbiome 

data marginally offers several advantages including the ability to control for many confounding 

factors without inducing overfitting bias103 or losing efficiency due to overstratification.104 

Addressing sources of systematic error using IPTW may improve reproducibility in future studies 

of HIV and the microbiome, We also stratified our HIV-infected participants by level of viremia, 

allowing us to examine differences between HIV-uninfected and HIV+ undetectable, 

suppressed, and viremic individuals. This stratification leads to better understanding of the 

relationship between active viral replication and dysbiosis, namely, that dysbiosis increases with 

increasing viremia. Finally, we were able to replicate our major findings using two distinct 

analytic strategies. Genera identified as differentially abundant in both analyses may be more 

likely to be true discoveries.  

This study contributes to a growing body of literature describing the effects of HIV on 

microbial dysbiosis. We show that, even when taking into account the influence of multiple 

confounding factors, HIV is associated with intestinal dysbiosis in a dose-dependent manner. 

Although great strides have been made in the management of chronic HIV infection, the life 

expectancy among HIV-infected individuals remains reduced relative to their HIV-negative 

peers.105 This reduction has largely been attributed to increased rates of inflammation-related 

comorbidities observed among people living with HIV,106 and the microbiome likely plays a key 

role in modulating interactions between HIV and the immune system. Therefore, understanding 
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the ways in which HIV and the microbiome interact may be a crucial step towards developing 

intervention strategies to reduce the burden of HIV-associated morbidity and mortality. 
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Table 2.1. Participant characteristics, split by HIV viremia group, N = 383 men who have 
sex with men in Los Angeles, CA  

 HIV-Nega
tive 
 
 
mean (sd
)/n (%) 

Undetectable 
(HIV RNA < 2
0 copies/mL) 

Suppressed 
(HIV RNA ≥20 - 
200 copies/mL) 

Viremic 
(HIV RNA > 2
00 copies/mL) 

SMDa  
(unwei
ghted) 

SMD 
(weig
hted) 

n 200 66 72 45   

Age 28.91 (6.
43) 

33.41 (6.55) 34.10 (6.36) 33.18 (6.86) .41 .17 

Employment     .54 .25 

Student 26 (13.0) 5 (7.6) 3 (4.2) 1 (2.2)   

Unemployed 61 (30.5) 23 (34.8) 50 (69.4) 27 (60.0)   

Full/part time 113 (56.5
) 

38 (57.6) 19 (26.4) 17 (37.8)   

Race/Ethnicity     .48 .37 

Black Non-  
Hispanic 

82 (41.0) 17 (25.8) 25 (34.7) 26 (57.8)   

Hispanic 98 (49.0) 37 (56.1) 35 (48.6) 19 (42.2)   

Other Non-  
Hispanic 

20 (10.0) 12 (18.2) 12 (16.7) 0   

Country of origin     .12 .08 

United States 171 (85.5
) 

53 (80.3) 55 (76.4) 36 (80.0)   

Other 29 (14.5) 13 (19.7) 17 (23.6) 9 (20.0)   

Homeless in past 6 
months 

65 (32.5) 20 (30.3) 21 (29.2) 22 (48.9) .21 .18 

RAI in past 7  
days 

88 (44.0) 32 (48.5) 30 (41.7) 19 (42.2) .08 .07 

Number of RAI  
acts in past  
month 

2.06 (4.1
9) 

2.48 (4.68) 2.33 (5.45) 4.42 (8.03) .19 .07 

Methamphetamine  
use in past 6  
months 

    .54 .20 

Daily/Weekly 21 (10.5) 14 (21.2) 18 (25.0) 21 (46.7)   

Monthly/less 32 (16.0) 21 (31.8) 19 (26.4) 9 (20.0)   

Never 147 (73.5
) 

31 (47.0) 35 (48.6) 15 (33.3)   

Marijuana use     .30 .14 

Daily/Weekly 71 (35.5) 19 (28.8) 21 (29.2) 19 (42.2)   

Monthly/less 57 (28.5) 10 (15.2) 16 (22.2) 10 (22.2)   

Never 72 (36.0) 37 (56.1) 35 (48.6) 16 (35.6)   

Cocaine use     .16 .09 

At least once 53 (26.5) 11 (16.7) 21 (29.2) 13 (28.9)   

Never 147 (73.5
) 

55 (83.3) 51 (70.8) 32 (71.1)   

Tobacco smoking     .26 .15 

>1 pack/day 10 (5.0) 3 (4.5) 5 (6.9) 2 (4.4)   

<1 pack/day 68 (4.0) 24 (36.4) 31 (43.1) 25 (55.6)   

Nonsmoker 122 (61.0
) 

39 (59.1) 36 (50.0) 18 (40.0)   

Binge drinking in      .40 .15 
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past 6 monthsb 

Weekly 24 (12.0) 15 (22.7) 8 (11.1) 8 (17.8)   

Monthly/less 111 (55.5
) 

26 (39.4) 20 (27.8) 16 (35.6)   

Never 65 (32.5) 25 (37.9) 44 (61.1) 21 (44.7)   

Obesec 64 (32.0) 16 (24.2) 13 (18.1) 10 (22.2) .17 .15 

Antibiotic use 11 (5.5) 5 (7.6) 7 (9.7) 8 (17.8) .21 .08 

Sample collection 
method 

    .21 .08 

Anoscopy 152 (77.0
) 

47 (71.2) 53 (73.6) 39 (86.7)   

Self-collected 46 (23.0) 19 (28.8) 19 (26.4) 6 (13.3)   

Years since HIV  
diagnosis d 

N/A 7 (6) 7 (5) 8 (6) N/A N/A 

HIV RNA copies/m
L (median, IQR) 

N/A N/A 20 (30) 15,730 (48,68
0) 

N/A N/A 

CD4 cells/mm3 N/A 708.95 (279.6) 645.21 (262.9) 470.02 (280.1
) 

N/A N/A 

ART regimen     N/A N/A 

INSTI + NRTI 0 30 (45.5) 30 (41.7) 8 (17.8)   

NNRTI + NRTI 0 21 (31.8) 20 (27.8) 7 (15.6)   

NRTI + PI  10 (15.2) 11 (15.3) 9 (20)   

Other 0 5 (7.6) 8 (10.2) 4 (8.8)   

Missing/Not  
reported/NA 

166 (83) 0 3 (4.2) 17 (37.8)   

PrEP usere 37 (19) N/A N/A N/A N/A N/A 

SMD = Standardized mean difference; RAI = Receptive anal intercourse; ART = Antiretroviral therapy; 
INSTI = Integrase strand transfer inhibitor; NRTI = Nucleoside reverse transcriptase inhibitor; NNRTI = 
Non-nucleoside reverse transcriptase inhibitor; PI = Protease inhibitor 
aBinge drinking defined as 6 or more drinks on one occasion. 
bObese defined as BMI > 30 or BMI > 25 and waist circumference > 40 inches.  
cHIV RNA, CD4 cell count and ART regimen were not included in the inverse probability of treatment 
weight model (as they are generally not relevant to HIV negative participants), all other variables in the 
table were included. 
dHIV negative men taking tenofovir disoproxil fumarate/emtricitabine for pre-exposure prophylaxis (PrEP). 
eSMD is a measure of imbalance across groups; higher SMDs indicate greater imbalance. Average SMD 
before weighting = .29, after weighting = .15. 
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Figure 2.1. Rectal microbial composition of study participants, N = 383. (A) Columns 
represent the relative composition of each subject’s microbiome at the genus level. HIV status 
of the subjects is indicated by a colored line below their microbial composition. Subjects are 
ordered by the first principal coordinate of a Bray-Curtis pairwise distance matrix. Genera 
representing less than 1% of the composition on average across samples were combined into 
“Other.” (B) Average microbial composition within each HIV viremia category. Unadjusted and 
inverse probability of treatment weighted compositions are shown. Bacterial genera 
representing less than 1% of the overall relative composition or present in less than 20% of the 
samples were grouped into “Other.” 
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Figure 2.2. Associations between HIV viremia and overall microbial composition. (A) 
Ordination of the Bray-Curtis distance between samples using principal coordinates analysis. 
PCoA = Principal coordinate axis. Ellipses are 95% confidence regions for each group 
assuming points follow a multivariate t distribution. (B) Boxplots of richness metrics. Boxes 
represent the lower, median, and upper quartile of the data and whiskers are 1.5*interquartile 
range. 

 
  



23 
 

Figure 2.3. Comparisons of individual bacterial genera between HIV viremia categories. 
Forest plots of results of zero-inflated negative binomial models comparing genus-level bacterial 
counts between HIV-negative and (A) HIV+ undetectable (HIV RNA <20 copies/ml), (B) HIV+ 
suppressed (HIV RNA >20 and ≤200 copies/ml) and (C) HIV+ viremic (HIV RNA >200 
copies/ml) participants. Inverse probability of treatment-weighted effect sizes and 90% 
confidence intervals (truncated at -4, 4) are plotted, with statistical significance (q < 0.1) 
indicated in color. Effect sizes are log ratios of normalized genera counts. 
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Figure 2.4. Summary of zero-inflated negative binomial (ZINB) and least absolute 
shrinkage and selection operator (LASSO) model results. Enriched taxa are those with 
positive effect sizes (relative to HIV-), depleted are those with negative effect sizes. Genera with 
no effect in either analysis are not shown. UNW = unadjusted, WT = IPTW adjusted. 
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Chapter 3. Combined Effects of HIV and Obesity on the 

Gastrointestinal Microbiome of Young Men who have Sex with Men 

 

3.1 Abstract 

Introduction. The prevalence of obesity is rising among people living with HIV, with racial/ethnic 

minority populations disproportionately affected. Both obesity and HIV infection are associated 

with immune dysregulation and may work synergistically to increase the risk of inflammation-

associated sequelae. Disruption of gut bacterial communities may be one of the key drivers of 

this inflammation; however, the combined effects of HIV and obesity on the microbiome have 

not been explored. 

Methods. Our study included rectal swab samples from 381 members of an ongoing cohort of 

diverse young men who have sex with men. Thirty-nine were HIV+ and obese (H+O+), 143 

were HIV+ and non-obese (H+O-), 64 were HIV- and obese (H-O+), and 135 were HIV- and 

non-obese (H-O-). Obesity was defined as BMI > 30 or waist circumference > 40 inches. 

Microbiome composition was assessed by targeted sequencing of the V4 region of the 16S 

rRNA gene. We used inverse probability of treatment-weighted marginal structural models to 

investigate differences in microbial composition between HIV and obesity groups while 

controlling for a large number of clinical and behavioral covariates. 

Results. Significant variability in microbial composition was explained by the combination of HIV 

and obesity (R2 for the marginal contribution of the H+/O+ group = .008, p = .001). H+O+ 

participants had the highest ratios of Prevotella to Bacteroides, a pro-inflammatory enterotype 

that has been described in HIV and obesity independently. H+O+ participants had lower levels 

of Bacteroides and Veillonella than all other groups, suggesting a synergistic effect of HIV and 

obesity on these genera. Conversely, Dietzia and Finegoldia were reduced and 

Faecalibacterium was enriched in H+O+ compared to H+O- and H-O+, but not compared to H-
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O- controls, suggesting that HIV and obesity may have some antagonistic effects on these 

genera. 

Conclusions. Our findings support the hypothesis that HIV and obesity act together to disrupt 

gut microbial communities, which may help explain higher levels of generalized inflammation 

among people living with both HIV and obesity. Interactions between conditions altering the 

microbiome, such as HIV and obesity, should be taken into consideration when designing 

interventions to address dysbiosis and reduce its inflammatory consequences. 

 

3.2 Introduction 

 Surveillance data from 2015-2016 suggests that 40 percent of United States adults are 

obese and at high risk of heart disease, stroke, diabetes, and cancer.107The obesity epidemic is 

a worsening public health crisis, with rates increasing over the last 15 years and projected to 

affect 50% of U.S. adults by the year 2030.108 Obesity is of increasing concern among people 

living with HIV, partially because of improved life expectancy and quality of life due to 

antiretroviral therapy (ART) and partially as a side effect of the drugs themselves.109 The 

prevalence of obesity among people living with HIV is similar to the general population and rates 

are rising rapidly.13,14 HIV and obesity disproportionately affect racial and ethnic minorities in the 

United States; the highest age-adjusted prevalences of obesity are found among Hispanics 

(47.0%) and non-Hispanic blacks (46.8%),107 and the highest rates of HIV are among non-

Hispanic Blacks (43.6 per 100,000) and Hispanics (17 per 100,000).110  

 Studies suggest that obesity plays a role in HIV pathogenesis and the development of 

comorbid illnesses.14 Both obesity and long-term HIV infection are associated with cytokine 

disruption, immune dysregulation, and chronic inflammation, and may work synergistically to 

increase the risk of inflammation-associated sequelae. Higher levels of generalized 

inflammation and monocyte activation have been observed in HIV-infected individuals who are 
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obese as compared to non-obese,111 and these immune parameters have been correlated with 

weight gain following ART initiation.112 The consequences of combined inflammatory effects 

may be severe; one study found the prevalence of multimorbidity was nearly 80% in people with 

HIV and obesity,113 and inflammatory biomarkers are associated with mortality in HIV-infected 

individuals.5  

Numerous studies have shown that HIV disrupts the composition and function of the 

gastrointestinal (GI) microbiome.39-43 This disruption, termed “dysbiosis,” is characterized by a 

shift from commensals to pro-inflammatory and potentially pathogenic bacteria. Dysbiosis has 

also been observed in obese individuals59,114-116 and a number of commonalities between HIV-

associated and obesity-associated dysbiosis have been observed. Reduced overall bacterial 

diversity has been described in both HIV and obesity.39,40,59 An elevated Firmicutes to 

Bacteroidetes ratio has been described in obese individuals114,115 as well as those living with 

HIV.117 Within Bacteroidetes, increased relative abundance of Prevotella and decreased 

Bacteroides is one of the most common enterotypes associated with HIV infection,40 and similar 

findings have been described in obese individuals.116 In both HIV and obesity, dysbiosis may be 

one of the key drivers of chronic inflammation.16,18,39,42,45 HIV and obesity have independently 

been shown to disrupt barrier function of the mucosal epithelium, allowing translocation of 

microbes and microbial products into the GI tract.17,25 This process is highly inflammatory and 

may exacerbate dysbiosis. 

Despite the role of the microbiome in mediating inflammation and data showing that HIV 

and obesity may synergistically contribute to immune dysfunction and ultimately increase the 

risk of non-AIDS related morbidity and mortality,22,111,118 the joint effect of HIV and obesity on 

microbial dysbiosis has not been described. Therefore, we examined the combined effects of 

HIV and obesity on dysbiosis in a cohort of young, mostly racial/ethnic minority men who have 

sex with men (MSM). We hypothesized that HIV and obesity would act synergistically to 
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decrease overall bacterial diversity and increase the abundance of pro-inflammatory bacterial 

taxa while simultaneously decreasing those with anti-inflammatory properties.  

 

3.3 Methods 

Study population. Specimens were obtained from an ongoing cohort, the Minority Men 

who have Sex with Men Cohort at UCLA Linking Infections Noting Effects (MASCULINE, or 

mSTUDY, NIDA U01 DA036267). Both the current study and the mSTUDY were approved by a 

UCLA Institutional Review Board and all study procedures were done in accordance with ethical 

standards for research involving human subjects. Sample selection procedures have been 

previously described (Appendix 1).119 

Specimen collection and DNA preparation. Included specimens were rectal swabs 

(FLOQSwabs, Copan Diagnostics, Murrieta, CA), the majority (76%) of which were collected via 

anoscopy under direct mucosal visualization and without preparatory enema at approximately 8 

cm from the anal verge. Due to an mSTUDY protocol change, others (24%) were participant 

self-collected at approximately 4-5 cm from the anal verge. Collection method was taken into 

account in the analysis (Tables 1 and S1). Swabs were immediately frozen neat at -80°C until 

processing in bulk. For DNA processing the samples were transferred to Lysing Matrix E tubes 

(MP Biomedicals, Burlingame, CA) containing RLT lysis buffer (Qiagen, Hilden, Germany) and 

bead-beated on a TissueLyser (Qiagen). DNA was then extracted using the AllPrep 

DNA/RNA/Protein kit (Qiagen) per manufacturer’s protocol.  

16S rRNA gene sequencing and data processing. Microbiome profiling was 

performed by sequencing of the V4 region of the 16S rRNA gene as previously 

described.81,119,120 Briefly, the V4 region was amplified in triplicate reactions using Golay-

barcoded primers 515F/806R. PCR products were then pooled and sequenced on the Illumina 

MiSeq platform using 2x150bp v2 chemistry. The sequences were demultiplexed with Golay 



29 
 

error correction using QIIME v1.9.1,83 and Divisive Amplicon Denoising Algorithm (DADA2) 

version 1.8 was used for error correction, exact sequence inference, read merging, and chimera 

removal.84 The resultant amplicon sequence variant (ASV) table comprised 19,955,039 total 

merged read pairs (mean per sample = 52,375; range 10,906 to 124,889). Taxonomic 

assignment was performed using RDP trainset 16 (https://doi.org/10.5281/zenodo.810827). 

Rarefaction was performed at a depth of 10,906 reads for alpha diversity analyses. To 

normalize all other analyses, estimates of relative library sizes (“size factors”) were obtained by 

calculating geometric means of pairwise read count ratios.86  

HIV serostatus, obesity, and covariates. HIV testing was conducted using the 

OraQuick Advance® HIV 1/2 (OraSure Technologies, Bethlehem, PA) and plasma HIV RNA 

was quantified using a standard clinical laboratory assay (Cobas® AmpliPrep/Cobas® 

TaqMan® HIV-1 Test, Version 2.0). Anthropometrics including height, weight, and waist 

circumference were gathered by trained clinical staff, and participants were classified as obese 

if they had BMI > 30 or waist circumference > 40 inches. Measurement of waist circumference is 

recommended by the National Heart, Lung, and Blood Institute as part of an obesity-related risk 

assessment;121 for men, a waist circumference > 40 inches indicates high risk for the 

development of obesity-related health conditions.  

Demographic and behavioral covariates included in the analyses were age, 

race/ethnicity, country of origin, a dichotomous variable for homelessness in past six months, 

number of receptive anal intercourse (RAI) acts in past month, number of sex partners in the 

past 6 months, positive PCR test for STI (rectal gonorrhea, rectal chlamydia, or syphilis), 

frequency of methamphetamine and marijuana use in the past 6 months, tobacco smoking, and 

binge drinking. All demographic and behavioral data were self-reported by participants using a 

computer-aided self-interview; measures have been previously described (Appendix 1).119 
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Antibiotic use in the past month as well as drugs currently used for ART were also controlled in 

the analyses. These data were collected by trained clinic staff. 

Statistical analyses. To explore the combined effects of HIV and obesity on the 

microbiome, most analyses in this study compare the “index” group of HIV-infected obese 

(H+O+) participants with three reference groups of HIV-infected non-obese (H+O-), HIV-

uninfected obese (H-O+), and HIV-uninfected non-obese (H-O-) participants. We also compare 

obese to non-obese participants within strata of HIV status. As we examined the effects of HIV 

on the microbiome in detail in a previous study,119 we do not make this comparison here. 

Analyses utilize inverse probability of treatment weighting (IPTW) to control for confounding. In 

an IPTW analysis, the study sample is re-weighted to balance treatment/exposure groups with 

respect to covariates used to calculate the weights, creating a “pseudo-population” where these 

covariates no longer act as confounders. See Tables 1 and S1 for a list of covariates included in 

the IPTW models.  IPTW were estimated using generalized boosted models (R package 

‘twang’) and robust standard errors for IPTW-adjusted analyses were obtained using the 

sandwich estimator (R package ‘sandwich’). See Appendix 2 for a description of the IPTW 

calculation process.  

Prior to analysis, differences in clinical and behavioral covariates between the four HIV 

and obesity groups were described using standardized mean differences and tested for 

significance using Chi-square, Kruskal-Wallis, or multinomial logistic regression models. The R 

package ‘phyloseq’ (version 1.24.2) was used to calculate alpha diversity statistics, distance 

matrices, and to create ordination plots. Permutational multivariate ANOVA (PERMANOVA) was 

used to test for overall differences in microbial composition between groups (R package 

‘vegan’). IPTW-adjusted linear regression analyses were utilized to test for mean differences in 

alpha diversity, Firmicutes/Bacteroidetes and Prevotella/Bacteroides ratios between HIV and 
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obesity groups. These analyses utilized a threshold of p < .05 to determine statistical 

significance and Wald-type 95% confidence intervals are displayed where appropriate. 

Zero-inflated negative binomial models (ZINB) with IPTW adjustment were used to test 

for differential abundance of specific genera; see Appendix 2 for an overview of the ZINB model 

selection and analytic procedures. A pre-filtering step excluded genera appearing in less than 

10% of samples as well as those with less than 100 total reads across all samples, resulting in 

78 genera included in ZINB analyses. In order to account for the large amount of tests, p values 

obtained from ZINB models were corrected using Benjamini & Hochberg’s False Discovery Rate 

(FDR) method.89 FDR-adjusted p values are labelled as q values, and q < .1 was used as a 

threshold to determine statistical significance. Accordingly, we display 90% false coverage rate 

(FCR)-adjusted confidence intervals90 to accompany these analyses. All statistical analyses 

were performed using R v.3.5.1. 

 

3.4 Results 

Demographics and clinical characteristics. Three hundred eighty-one participants 

were included; 39 were HIV+ and obese (H+O+), 143 were HIV+ and non-obese (H+O-), 64 

were HIV- and obese (H-O+), and 135 were HIV- and non-obese (H-O-). All participants were 

MSM, their average age was 31, and most were Hispanic (49%) or non-Hispanic Black (39%). 

Among the obese participants, the mean BMI was 34.8 and waist circumference was 43.7 

inches. Obese participants had less frequent RAI, fewer sex partners, and were less likely to 

test positive for a rectal STI than their non-obese peers. Among the HIV+ participants, the mean 

(log 10) plasma RNA level was 2.0 and CD4 cell count was 626 cells/mm3. As compared to HIV- 

participants, HIV+ men were older and more reported using methamphetamine and binge 

drinking in the past 6 months (Tables 3.1 and A2.1). 
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Effects of HIV and obesity on overall microbial composition. Figure 3.1A displays 

the average microbial composition within each group defined by HIV and obesity status after 

adjustment with IPTW. The H+O+ group shows the lowest relative amounts of Bacteroides, 

Campylobacter, and Escherichia/Shigella and the highest relative amounts of Bifidobacterium 

and Prevotella. In contrast, the H-O- group shows higher levels of Bacteroides, 

Escherichia/Shigella, and Parabacteroides and lower levels of Succinivibrio than all other 

groups. Individual-level microbial compositions are shown in Figures A2.1 and A2.2. 

   We calculated Bray-Curtis, Jaccard, and Jensen-Shannon dissimilarity statistics to 

quantitatively examine differences in overall composition between the HIV and obesity groups. 

Figure 3.1B displays ordination of the Bray-Curtis distance by principal coordinates analysis, 

which shows clustering of H+O+ subjects. PERMANOVA models suggest that HIV and obesity 

combined explain a significant amount of between-subject variation in the microbiome, over and 

above each factor alone (Using Bray-Curtis distance, R2 for the marginal contribution of H+/O+ 

= .008, p = .001; additional results in table A2.2 and figure A2.3).  

 We also calculated and compared measures of alpha diversity between groups. Figure 

3.1C displays boxplots of Chao1 index values, split by HIV and obesity status. HIV+ individuals 

generally showed higher diversity than HIV-, with little difference by obesity. Results of a linear 

regression analysis provide support for these observations. Mean Chao1 diversity among the 

H+O+ group was higher than the H-O+ group (mean difference = 18.5, p = .036) and the H-O- 

group (mean difference = 15.9, p = .069), while the difference between H+O+ and H+O- 

participants was minor (mean difference = 4.9, p = .6). Results were consistent for metrics that 

account for evenness (e.g. Shannon index); additional results are presented in table A2.3 and 

figure A2.4. 

Differences in Firmicutes/Bacteroidetes and Prevotella/Bacteroides ratios. Figure 

3.2A displays boxplots of the (natural log) Firmicutes to Bacteroidetes ratios within each HIV 
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and obesity group. No significant differences were seen on a regression analysis between the 

H+O+ group and any other group (Figure 3.2B). Boxplots of Prevotella to Bacteroides ratios are 

shown in Figure 3.2C, which show H+O+ participants with the highest values of this ratio. H-O+ 

and H+O- groups appear to have similar values, and the Prevotella to Bacteroides ratio is 

lowest among H-O- participants. A regression analysis confirms that the Prevotella to 

Bacteroides ratio is significantly higher among H+O+ participants compared to H-O- (mean 

difference in log ratio = 1.84, p < .001); however, the H+O+ group was not different than the H-

O+ or H+O- groups (Figure 3.2D). 

Differences in specific genera associated with obesity, stratified by HIV status. In 

the absence of HIV, there were few significant differences in relative abundance due to obesity 

(Figure 3.3). Obese participants showed enrichment in Allisonella, Finegoldia, and Succinivibrio 

and depletion in Arcanobacterium and Mannheimia relative to non-obese participants. However, 

within the HIV+ stratum, the microbial signature of obese participants was more distinct, 

showing enrichment in Bifidobacterium, Butyricicoccus, Clostridium cluster XI and 

Faecalibacterium and depletion in Bacteroides, Escherichia/Shigella, Finegoldia and 

Gardnerella, among others, relative to those without obesity (Figure 3.3).  

Effects of HIV and obesity together on microbial abundance. Finally, we compared 

the abundance of each taxa between the H+O+ group and H+O-, H-O+, and H-O- groups. We 

first conducted a joint test of the three comparisons, which indicated that there was at least one 

significant difference (q <.1) between H+O+ and the others in 22 genera including Bacteroides, 

Bifidobacterium, Brachyspira, Escherichia/Shigella, Faecalibacterium, Porphyromonas, and 

Prevotella, among others. We then examined individual comparisons for those genera, and as 

can be seen in Figure 3.4, different interactions are evident. H+O+ participants had lower levels 

of Bacteroides and Veillonella than all other groups, suggesting a synergistic effect of HIV and 

obesity on these genera. Dietzia and Finegoldia were reduced and Faecalibacterium was 
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enriched in H+O+ compared to H+O- and H-O+, but not compared to H-O- controls. This 

suggests that HIV and obesity may have antagonistic effects on these genera, e.g., perhaps 

both conditions alter the relative abundance of other taxa enough to “normalize” levels of 

Dietzia, Finegoldia and Faecalibacterium. Finally, Barnesiella, Peptoniphilus, and Succinivibro 

were altered by obesity, but only in the HIV+ stratum, and Porphyromonas was altered by HIV 

only in the obese stratum. 

 

3.5 Discussion 

 In this study, we explored the combined effects of HIV and obesity on the 

gastrointestinal microbiome of young, mostly racial/ethnic minority MSM. Analyses of overall 

microbial composition revealed significant differences between H+O+ participants and those 

without HIV and/or obesity; findings were supported by PERMANOVA models showing 

significant variability in microbial composition explained by the combination of HIV and obesity. 

HIV and obesity did not jointly alter the Firmicutes/Bacteroidetes ratio, but H+O+ subjects did 

have the highest Prevotella/Bacteroides ratios. We found that obesity altered the abundance of 

several genera only in the presence of HIV (i.e., only in the HIV+ stratum). Finally, we also 

noted that HIV and obesity acted synergistically to decrease Bacteroides and Veillonella. In 

general, these findings support the hypothesis that microbial composition is altered by the 

combination of HIV and obesity over and above the contributions of each condition alone.  

 Contrary to our hypothesis, neither HIV nor obesity was associated with reduced alpha 

diversity; in fact, HIV-infected participants appeared to have greater diversity than HIV-

uninfected. With regards to obesity, our results are consistent with the findings of a meta-

analysis by Sze and Schloss.59 Although a significant difference was noted in only two of ten 

studies in the meta-analysis, Sze and Schloss showed that obesity did in fact reduce richness 

and evenness with small effect sizes that were unlikely to be detected in any individual cohort. 
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Although many studies have previously reported a decrease in richness and diversity due to 

HIV,49,50,78,91-93 others have shown that ART may normalize this difference62,92 and 90% of HIV-

infected individuals in our study were taking ART and had high CD4 counts. Generally, a 

healthy rectal microbiome should be highly diverse,70 and our findings may reflect a return to 

health following successful treatment.  

 We also hypothesized that HIV and obesity would increase the ratio of Firmicutes to 

Bacteroidetes, which was not supported by our data. Support for this hypothesis largely comes 

from animal models,122 experimental studies showing that the ratio of these phyla decreased as 

obese individuals lost weight,114 and observations in other HIV-infected cohorts.117 However, 

several re-analyses and meta-analyses have failed to establish that this ratio is affected by 

obesity in humans,59,123,124 and our findings suggest that the addition of HIV does not change 

these results. Furthermore, we were able to control for a number of clinical and behavioral 

confounders such as sexual behavior, which may have exaggerated or spuriously generated 

previously described differences. On the other hand, we found a significantly higher Prevotella 

to Bacteroides ratio among H+O+ individuals compared to H-O- controls. As Bacteroides 

species have immune-regulatory properties95 and Prevotella are considered pro-

inflammatory,64,94 this finding is consistent with the theory that HIV and obesity may act 

synergistically to increase inflammation. Dominance of either Prevotella or Bacteroides 

constitutes a microbial enterotype that may be useful in predicting susceptibility to HIV 

infection125 as well as response to diabetes medications126 and weight-loss diets,127 making this 

ratio highly important to individuals living with HIV and obesity.  

We found that Bifidobacterium was increased in H+O+ individuals relative to both non-

obese groups, a surprising finding, as Bifidobacterium is thought to be protective against obesity 

based on observed associations with weight loss, better glycemic control, reduced adiposity and 

ability to counteract leptin resistance.128 Interestingly, there may be some interaction between 
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the shift from Bacteroides to Prevotella associated with HIV and obesity and the protective 

effects of Bifidobacterium: One study showed that increasing Bifidobacterium resulted in 

improved metabolic parameters in Bacteroides but not Prevotella-rich subjects126 and another 

found a negative association between obesity and Bifidobacterium, but only among study 

subjects of the Bacteroides-dominant microbial enterotype.129 Therefore, it is possible that the 

joint effects of HIV and obesity on the Prevotella/Bacteroides ratio inhibit the potential metabolic 

benefits of increased Bifidobacterium. We also found that Faecalibacterium was increased in 

H+O+ relative to H+O- and H-O+, but unchanged relative to H-O- controls, a pattern suggesting 

antagonism between HIV and obesity on the relative abundance of Faecalibacterium. A 

randomized study of 6 weeks of prebiotic therapy among HIV-infected individuals found a 

compositional shift in favor of Faecalibacterium, which correlated strongly with butyrate 

production and reduction in inflammatory biomarkers.130 However, if HIV and obesity are truly 

antagonistic with respect to increasing Faecalibacterium, HIV-infected individuals who are also 

obese may fail to benefit from such therapy. Validating these suppositions would require an 

experimental study, but these interactions are examples of insights that may be gained by 

studying the simultaneous effects of multiple diseases on the microbiome.  

 Our study is subject to a number of limitations. Primarily, diet information was not 

available for this cohort. Diet has been shown to have little impact on the microbiome relative to 

HIV and other confounding factors (e.g. sexual behavior);73 however, diet is undoubtedly a 

major determinant of obesity status. We adjusted our analyses for race/ethnicity, country of 

origin, and homelessness in order to mitigate this limitation; however, diet remains an important 

omitted confounder. Although most of our behavioral data were self-reports of sensitive topics 

(e.g. substance use, sexual behavior), we utilized a computer-aided self-interview to reduce 

social desirability bias. Additionally, IPTW adjustment does not achieve perfect covariate 

balance between exposure groups in most real-world research applications, and residual 
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confounding is possible. However, our IPTW achieved excellent balance on many of the most 

important covariates (e.g. antibiotic use, alcohol drinking, sexual behavior), increasing the 

likelihood that our findings are truly attributable to HIV and obesity. The ability to integrate a 

large amount of clinical and behavioral data into our analyses using IPTW is a significant 

strength of this study. Finally, our study was conducted exclusively in young MSM. Restricting to 

this group increases internal validity by preventing the influence of some confounders (e.g. 

gender differences, sexual preferences) but may limit the generalizability of our findings to 

women or other HIV risk groups. Despite this, our large cohort included adequate numbers of 

HIV-infected and obese participants to examine the joint effects of both exposures. Although it is 

widely accepted that many factors simultaneously impact microbial composition, there have 

been few studies examining the combined effects of multiple exposures or behaviors on the 

microbiome.  

This study of a diverse group of young MSM identified numerous alterations to the 

gastrointestinal microbiome among H+O+ individuals relative to those with only one or neither 

conditions. We found that the alterations could be synergistic, antagonistic or have no effect; it 

is important to take bacteria-specific interactions into account when evaluating interventions to 

address dysbiosis and ameliorate its inflammatory consequences. HIV and obesity 

disproportionally affect racial and ethnic minorities107,110,131 and their joint inflammatory effects 

may partially explain why HIV-infected minorities experience higher rates of non-AIDS related 

chronic diseases than Whites.132 Therefore, interventions to reduce microbial dysbiosis in this 

vulnerable population could have added benefit. 
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Table 3.1. Participant characteristics, split by HIV and obesity, N = 381 men who have sex 
with men in Los Angeles, CA  
 HIV-/ 

Non-obese 
 
mean (sd)/ 
n (%) 

HIV-/Obese HIV+/ 
Non-obese 

HIV+/ 
Obese 

p¶ 

n 135 64 143 39  

Age 28.1 (6.3) 30.5 (6.6) 33.1 (6.7) 35.6 (5.4) <.001 

Race/Ethnicity     .263 

Black Non-  
Hispanic 

53 (39.3) 29 (45.3) 54 (37.8) 14 (35.9)  

Hispanic 63 (46.7) 33 (51.6) 70 (49.0) 20 (51.3)  

Other Non-  
Hispanic 

19 (14.1) 2 (3.1) 19 (13.3) 5 (12.8)  

Country of origin     .150 

United States 113 (83.7) 58 (90.6) 115 (80.4) 29 (74.4)  

Other 22 (16.3) 6 (9.4) 28 (19.6) 10 (25.6)  

Homeless in past 6  
months 

50 (37.0) 16 (25.0) 52 (36.4) 11 (28.2)  

Number of RAI  
acts in past month 

2.3 (4.7) 1.3 (2.6) 3.2 (6.5) 2.0 (3.1) .175 

Number of anal sex  
partners in past 6 months 

7.3 (8.1) 6.2 (7.2) 8.0 (9.2) 5.9 (8.2) .182 

Positive for STI by  
PCR test † 

18 (13.3) 3 (4.7) 23 (16.1) 3 (7.7) .101 

Methamphetamine  
use in past 6  
months 

    <.001 

Daily/Weekly 16 (11.9) 6 (9.4) 46 (32.2) 7 (17.9)  

Monthly/less 35 (11.1) 17 (26.6) 40 (28.0) 9 (23.1)  

Never 104 (77.0) 41 (64.1) 57 (39.9) 23 (59.0)  

Marijuana use     .289 

Daily/Weekly 49 (36.3) 21 (32.8) 48 (33.6) 11 (28.2)  

Monthly/less 38 (28.1) 19 (29.7) 29 (20.3) 7 (17.9)  

Never 48 (35.6) 24 (37.5) 66 (46.2) 21 (53.8)  

Tobacco smoker 53 (39.3) 25 (39.1) 74 (51.7) 16 (41.0) .140 

Binge drinking in  
past 6 months ‡ 

    .002 

Weekly 18 (13.3) 6 (9.4) 26 (18.2) 5 (12.8)  

Monthly/less 70 (51.9) 41 (64.1) 50 (35.0) 13 (33.3)  

Never 48 (34.8) 17 (26.6) 67 (46.9) 21 (53.8)  

Antibiotic use 9 (6.7) 2 (3.1) 15 (10.5) 5 (12.8) .191 

Sample collection strategy     .463 

Anoscopy 107 (79.3) 46 (71.9) 111 (77.6) 27 (69.2)  

Self-collected 28 (20.7) 18 (28.1) 32 (22.4) 12 (30.8)  

HIV RNA log10 copies/mL  
(median, IQR) § 

   1.6 (1.9) 1.5 (1.5) N/A 

CD4 cells/mm3 (median,  
IQR) § 

  603 (341) 632 (419) N/A 

CD4 cells/mm3 < 200   11 (0.08) 3 (0.08) N/A 

ART regimen     N/A 

NRTI + INSTI   51 (35.7) 17 (43.6)  
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NRTI + NNRTI   43 (30.1) 5 (12.8)  

NRTI + PI   22 (15.4) 8 (20.5)  

Other   11 (7.7) 5 (12.8)  

Missing/Not  
reported/NA 

  16 (11.2) 4 (10.3)  

Tenofovir disoproxil fumarate
/emtricitabine for pre-exposur
e prophylaxis  
(PrEP) 

24 (17.8) 12 (18.8)   N/A 

BMI § 24.3 (2.9) 34.8 (5.7) 24.4 (3.0) 35.0 (7.3) N/A 

Waist circumference  
(inches) § 

33.2 (3.1) 43.6 (6.0) 34.5 (3.1) 43.8 (5.9) N/A 

RAI = Receptive anal intercourse; STI = Sexually transmitted infection; ART = Antiretroviral therapy; 
INSTI = Integrase strand transfer inhibitor; NRTI = Nucleoside reverse transcriptase inhibitor; NNRTI = 
Non-nucleoside reverse transcriptase inhibitor; PI = Protease inhibitor 
†Sexually transmitted infections include rectal gonorrhea and chlamydia as well as syphilis. 
‡Binge drinking defined as 6 or more drinks on one occasion. 
§HIV RNA, CD4 cell count, waist circumference, and BMI were not included in the inverse probability of 
treatment weight model, all other variables in the table were included. 
¶p values are from Kruskal-Wallis tests, Chi-square tests, or multinomial logistic regression models 
depending on variable distributions. If the latter, the p value represents a likelihood ratio test of all model 
coefficients vs. an intercepts-only model. 
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Figure 3.1. Rectal microbial composition, ordination of Bray-Curtis distances, and Chao1 
diversity of study participants, N = 381. (A) Average microbial composition within each HIV 
and obesity category, adjusted for behavioral and clinical confounders using inverse probability 
of treatment weighting. Groups are HIV-/Non-obese (H-O-), HIV-/Obese (H-O+), HIV+/Non-
obese (H+O-), and HIV+/Obese (H+O+). Bacterial genera representing less than 1% of the 
overall relative composition or present in less than 20% of the samples were grouped into 
“Other.” (B) Ordination of Bray-Curtis distances between samples using principal coordinates 
analysis. PCoA = Principal coordinate axis. Ellipses are 95% confidence regions for each group 
assuming points follow a multivariate t distribution. (C) Boxplots of Chao1 index vales. Boxes 
represent the lower, median, and upper quartile of the data and whiskers are 1.5*interquartile 
range. 
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Figure 3.2. Ratios of Firmicutes to Bacteroidetes and Prevotella to Bacteroides. (A) 
Boxplots of log Firmicutes to Bacteroidetes ratios. Boxes represent the lower, median, and 
upper quartile of the data and whiskers are 1.5*interquartile range. (B) Mean differences in 
ratios and Wald 95% confidence intervals, adjusted for behavioral and clinical confounders 
using inverse probability of treatment weighting (IPTW). The HIV+/Obese (H+O+) group is 
compared to the HIV-/Non-obese (H-O-), HIV-/Obese (H-O+), and HIV+/Non-obese groups 
(H+O-). (C) Boxplots of log Prevotella to Bacteroides ratios. (D) IPTW-adjusted mean 
differences in ratios and 95% confidence intervals.  
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Figure 3.3. Effects of obesity on individual bacterial genera, stratified by HIV status. 
Forest plots of results of zero-inflated negative binomial models comparing genus-level bacterial 
counts between obese and non-obese participants, stratified by HIV status. Inverse probability 
of treatment-weighted effect sizes and false coverage rate (FCR)-adjusted 90% confidence 
intervals (truncated at -6, 6) are plotted, with statistical significance (q < 0.1) indicated in red. 
Effect sizes are log ratios of normalized genera counts. 
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Figure 3.4. Combined effects of HIV and obesity on individual bacterial genera. Heatmap 
of results of zero-inflated negative binomial models comparing genus-level bacterial 
counts between HIV+/Obese (H+O+) and HIV-/Non-obese (H-O-), HIV-/Obese (H-O+), and 

HIV+/Non-obese (H+O-) participants. Statistically significant results (q < .1) are colored 
with intensity proportional to effect size; “no effect” indicates q > .1.  
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Chapter 4. Alterations to the Gastrointestinal Microbiome Associated 

with Methamphetamine Use 

4.1 Abstract 

Methamphetamine (MA) use is a major public health problem in the United States, 

especially among people living with HIV. Many MA-induced neurotoxic effects are mediated by 

inflammation, and gut microbiota may play a role in this process. However, few studies have 

examined the effects of MA on the microbiome, and none have considered potential interactions 

with HIV. We performed 16S gene sequencing on rectal swab samples from 381 men who have 

sex with men. We assessed MA use with the NIDA-modified ASSIST and compared microbial 

diversity and composition between MA users and non-users while testing for interactions with 

HIV. All analyses utilized inverse probability of treatment weighting to control for numerous 

behavioral and clinical confounders, including demographics, sexual behavior and use of other 

drugs. Forty-one percent of individuals in our study used MA and 48% were HIV-infected. MA 

use explained significant variation in overall microbial composition (PERMANOVA, Bray-Curtis 

distance, R2=.005, p=.008). Regardless of HIV status, MA users had higher levels of Finegoldia, 

Parvimonas, Peptoniphilus, and Porphyromonas, and lower levels of Butyricicoccus and 

Faecalibacterium, among others. Other genera, including Actinomyces and Streptobacillus, 

were increased in HIV+ MA users compared to HIV+ non-users. Relative abundance of 

Finegoldia and Peptoniphilus increased with increasing frequency of MA use, while 

Butyricicoccus decreased. In summary, MA use was associated with an imbalance in gut 

microbial composition favoring pro-inflammatory, potentially pathogenic bacteria, including some 

with neuroactive potential. Additional investigations into mechanisms linking dysbiosis with MA 

toxicity and poor HIV outcomes among people who use MA are warranted. 

 

4.2 Introduction 
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 The 2017 National Survey on Drug Use and Health estimated that nearly one million 

people in the United States were current users of methamphetamine (MA) or had a MA use 

disorder in the past year.133 MA use is a major public health concern with myriad negative health 

consequences ranging from anxiety and confusion to psychosis and violent behavior; chronic 

abuse may even result in severe and lasting structural changes in the brain affecting emotional 

regulation and cognition.134 MA use is much more prevalent among people living with HIV, with 

rates of recent use 30 times higher and rates of dependence 33 times higher than the general 

population (0.3% vs. 9% recent use and 0.4% vs. 13% dependence12,133,135). MA increases 

susceptibility to HIV infection by altering immune activity,136,137 inhibiting neurocognitive 

processes involved in judgement and decision-making,138 and increasing the frequency of risky 

sex acts.12,139 In two large cohort studies of MSM, the attributable fraction for HIV incidence due 

to MA use was 0.16140 and 0.32,141 both of which signal the possibility for biological processes 

that might explain this heightened incidence. MA use among people living with HIV is 

associated with reduced likelihood of achieving viral suppression,142 faster disease 

progression,143-145 and increased risk of transmission to others.146 

Many MA-induced neurotoxic effects are mediated by inflammation,136,147 and the 

microbiome, which is involved in inducing and regulating the immune system,30 may play a role 

in this process. Exposure to MA impacts both innate and adaptive immunity, increasing 

production of inflammatory cytokines, inhibiting T-cell proliferation, altering gene expression of 

immune cells, modifying cytokine signaling pathways, and increasing blood-brain barrier 

permeability.136,148,149 MA damages gut wall integrity and increases intestinal permeability,149 

leading to the translocation of microbiota into the body. This process disrupts symbiotic 

interactions between the host immune system and microbiota, inducing an immune response 

that may cyclically exacerbate intestinal permeability and further inflammation24. Microbial 

translocation has been cited as one of the key drivers of chronic inflammation described in 
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many other diseases, including HIV, and may play a similar role in MA-induced inflammation 

and toxicity. Furthermore, mediated by inflammation, disruption of gut bacterial communities 

(termed “dysbiosis”) may be a mechanistic link between methamphetamine use and HIV 

transmission and disease progression. 

Dysbiosis has been described in individuals with substance use disorders,68 chronic 

prescription opioid150 and cocaine users,15 as well as people living with HIV39,40 and those 

practicing receptive anal intercourse (RAI).73 We recently showed that MA use was associated 

with microbiome changes in a small sample of HIV-infected MSM.67 However, no large studies 

into the effects of MA on the microbiome has been completed, and no studies have examined 

the potential role of HIV in MA-induced dysbiosis. In order to address this gap, we studied the 

effects of MA on the gastrointestinal microbiome in a cohort of young men who have sex with 

men (MSM), approximately half of whom were HIV-infected, and all of whom were engaging in 

anal intercourse. We hypothesized that MA use would be associated with increased relative 

abundance of pro-inflammatory and pathogenic bacterial taxa as well as alterations to taxa with 

neurologic effects. We also hypothesized that MA and HIV would interact, such that higher 

levels of dysbosis would be observed among HIV+ MA users.   

 

4.3 Methods  

 Study population. Specimens and data for this study were drawn from a larger cohort, 

the NIDA-funded Minority Men who have Sex with Men Cohort at UCLA Linking Infections 

Noting Effects (MASCULINE, or mSTUDY). Subject selection procedures have been previously 

described.119 Briefly, participants were all men born males, aged 18-45, with one-half of the 

sample purposefully included due to current substance use (the other half non-substance users) 

and one-half of the sample purposefully included due to HIV-infection (the other half being HIV-

negative). Both the current study and the mSTUDY were approved by a UCLA Institutional 
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Review Board. All participants provided written informed consent prior to participation and all 

study procedures were done in accordance with ethical principles for human subjects research. 

Specimen collection and DNA preparation. As previously described,119 samples 

included in this study were rectal swabs (FLOQSwabs, Copan Diagnostics, Murrieta, CA). The 

majority (76%) were collected via anoscopy under direct mucosal visualization and without 

preparatory enema at approximately 8 cm from the anal verge. Due to an mSTUDY protocol 

change, others (24%) were participant self-collected at approximately 4-5 cm from the anal 

verge. Collection method was taken into account in the analysis (see Table 4.1). Swabs were 

immediately frozen neat at -80°C until processing in bulk. For DNA processing the samples 

were transferred to Lysing Matrix E tubes (MP Biomedicals, Burlingame, CA) containing RLT 

lysis buffer (Qiagen, Hilden, Germany) and bead-beated on a TissueLyser (Qiagen). DNA was 

then extracted using the AllPrep DNA/RNA/Protein kit (Qiagen) per manufacturer’s protocol.  

16S rRNA gene sequencing and data processing. Microbiome profiling was 

performed by sequencing of the V4 region of the 16S rRNA gene as previously 

described.81,119,120 Briefly, the V4 region was amplified in triplicate reactions using Golay-

barcoded primers 515F/806R. PCR products were then pooled and sequenced on the Illumina 

MiSeq platform using 2x150bp v2 chemistry. The sequences were demultiplexed with Golay 

error correction using QIIME v1.9.1,83 and Divisive Amplicon Denoising Algorithm (DADA2) 

version 1.8 was used for error correction, exact sequence inference, read merging, and chimera 

removal.84 The resultant amplicon sequence variant (ASV) table comprised 19,955,039 total 

merged read pairs (mean per sample = 52,375; range 10,906 to 124,889). Taxonomic 

assignment was performed using RDP trainset 16 (https://doi.org/10.5281/zenodo.810827). 

Rarefaction was performed at a depth of 10,906 reads for alpha diversity analyses. To 

normalize all other analyses, estimates of relative library sizes (“size factors”) were obtained by 

calculating geometric means of pairwise read count ratios.86 
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Measurement of MA use. MA use was measured using an adapted version of the 

NIDA-modified ASSIST.151 Participants were asked how often they used MA in the previous six 

months; response choices were “Daily”, “Weekly”, “Monthly”, “Less often”, “Once”, and “Never.” 

For most analyses we categorized participants as MA users if they indicated any use in the past 

six months, and non-users if they responded “Never.” For the dose-response analysis, we 

combined “Monthly”, “Less often”, and “Once” into “Monthly or less often,” given that infrequent 

exposures are likely to have similar effects on the microbiome. In addition, participants were 

screened for MA use via urinalysis [Fastect® II (Branan Medical Corporation); iScreen® Dip 

Card (Alere)]. We did not use the urinalysis results as our primary exposure variable because 

the detection window for MA is 48-72 hours and no exposure quantification (and thus dose-

response analysis) could be done. We instead compared the self-report and urinalysis results 

as a sensitivity analysis (Figures A3.3, A3.4, and A3.5). 

Behavioral and clinical covariates. Analyses controlled for a large set of behavioral 

and clinical covariates including age, race/ethnicity, homelessness in past six months, number 

of receptive anal intercourse (RAI) acts in past month, number of sex partners in past six 

months, an indicator for RAI in the past seven days, an indicator for a positive STI test 

(including PCR tests for rectal gonorrhea and chlamydia and serology for primary or secondary 

syphilis), self-reported use of marijuana and cocaine, tobacco smoking, and binge drinking 

(defined as 6+ drinks on more than one occasion) in the past six months, and use of antibiotics 

in the past month. We also controlled for type of antiretroviral therapy (including use of pre-

exposure prophylaxis if HIV-) and an indicator for CD4 cell count <200. Measures and assays 

have been previously described.119 

Statistical analyses. Prior to completing the primary analyses for this study, we 

compared clinical and behavioral characteristics between MA users and non-users using 

descriptive statistics, Wilcoxon or Chi-square tests, and standardized mean differences (see 
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Appendix 1). All analyses of microbiome outcomes were adjusted for clinical and behavioral 

confounders using inverse probability of treatment weighting (IPTW). IPTW is a technique in 

which the study sample is re-weighted to achieve balance between exposure groups (here, MA 

users vs. non-users) on important covariates so that they no longer act as confounders.87 

Covariates included in the IPTW model are listed in Table 4.1, and further information about the 

IPTW calculation and adjustment process is available in Appendices 1 and 3. IPTW were 

estimated using generalized boosted models (R package ‘twang’) and robust standard errors for 

IPTW-adjusted analyses were obtained using the sandwich estimator (R package ‘sandwich’). 

All analyses in this study proceeded by first testing for interactions between MA use and HIV 

status using multiplicative interaction terms. A threshold of p < .1 was used as a cutoff for 

significance of interaction tests; if significant, comparisons of MA users vs. non-users are 

presented stratified by HIV status (retaining HIV status and the interaction term in the model). If 

no significant interaction was detected, comparisons of MA users vs. non-users were completed 

controlling for HIV status (retaining HIV status as a covariate but dropping the interaction term). 

The R package ‘phyloseq’ was used to calculate distance matrices, alpha diversity 

metrics, and for ordination. Permutational multivariate ANOVA (PERMANOVA; R package 

‘vegan’) was used to test for differences in overall microbial composition and linear regression 

was used to test for differences in diversity between MA users and non-users. Zero-inflated 

negative binomial (ZINB) models were used to test for differences in individual bacterial genera 

between groups. We employed a previously described model selection strategy119 to choose the 

optimal ZINB model for each genus. A pre-filtering step excluded genera appearing in less than 

10% of samples as well as those with less than 100 total reads across all samples, resulting in 

78 genera included in ZINB analyses. Dose-response analysis was completed by regressing 

bacterial counts on frequency of MA use using orthogonal polynomial coding of linear and 

quadratic curves. As sensitivity analyses, all analyses were repeated redefining MA use 
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according to urine toxicology results (except for dose-response, owing to the qualitative nature 

of urine toxcology).  

PERMANOVA, alpha diversity, and dose-response analyses utilized a threshold of p < 

.05 to determine statistical significance. In order to account for the large amount of genera 

tested, p values obtained from ZINB models were corrected using Benjamini & Hochberg’s 

False Discovery Rate (FDR) method.89 FDR-adjusted p values are labelled as q values, and q < 

.1 was used as a threshold to determine statistical significance. Accordingly, we display 90% 

false coverage rate (FCR)-adjusted confidence intervals90 to accompany these analyses. All 

statistical analyses were performed using R v.3.5.1. 

 

4.4 Results 

 Participant characteristics. This study included 381 participants, 156 MA users (41%) 

and 225 non-users (59%). All participants were MSM, the mean age was 31, and most were 

Hispanic (49%) or non-Hispanic Black (39%). Sixty-five percent of MA users were HIV+ as 

compared to 36% of non-users. MA users were also older than non-users, were more likely to 

have experienced homelessness, had RAI more frequently, had more anal sex partners, were 

more likely to have recently used cocaine, and were more likely to be tobacco smokers. See 

Table 4.1 for additional details.   

 Effects of MA use on overall microbial composition and diversity. PERMANOVA 

analyses with Bray-Curtis, Jaccard, and Jensen-Shannon distances did not reveal significant 

evidence supporting an interaction between MA and HIV on overall microbial composition (all p 

> .1; Table A3.1). Therefore, we described and compared overall composition between MA 

users and non-users while controlling for HIV status. Descriptive barplots suggested increased 

Finegoldia, Fusobacterium, Peptoniphilus, Porphyromonas, Streptobacillus, and Streptococcus 

and decreased Bacteroides, Faecalibacterium, and Succinivibrio in MA users compared to non-
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users (Figures 4.1A and 4.1B). Ordination of Bray-Curtis, Jaccard, and Jensen-Shannon 

distances by principal coordinates analyses revealed differences in overall composition by MA 

status (Figure 4.2A), which were supported by PERMANOVA analyses showing that MA 

explained significant variation in overall microbial composition (Bray-Curtis R2 = .005, p = .008; 

additional results in Figure 4.2A). No significant interactions between MA and HIV were 

detected in observed diversity or Chao1, Shannon, or Simpson indices (all p > .1; Table A3.1), 

and no differences in diversity were detected between MA users and non-users in any metric 

(Figure 4.2B). Despite lack of evidence for an interaction between HIV and MA use, we display 

descriptive, ordination and alpha diversity plots stratified by HIV status in figures A3.1 and A3.2. 

 Effects of MA use on specific genera. Using ZINB models with IPTW adjustment, we 

found differences between MA users and non-users in multiple genera. For some, there was no 

evidence for an interaction between MA and HIV: Regardless of HIV status, MA users had 

higher levels of Finegoldia, Fusobacterium, Parvimonas, Peptoniphilus, Peptostreptococcus, 

and Porphyromonas, and lower levels of Butyricicoccus and Faecalibacterium, among others 

(Figure 4.3). For four genera, a significant (q < .1; Table A3.1) interaction between HIV and MA 

was detected. Actinomyces, Mannheimia, Negativicoccus, and Streptobacillus were increased 

in HIV+ MA users compared to HIV+ non-users, but no difference was found in the absence of 

HIV. No genera were significant only in the HIV- stratum.  

 Dose-response analysis of bacterial counts on increasing frequency of MA use. 

From all genera showing significant differences between MA users and non-users, we chose a 

subset of nine for IPTW-adjusted dose-response analysis based on previously published 

associations with MA use, HIV, inflammation, or relevance to MA toxicity. Of the 156 MA users 

in the study, 40 were daily users, 35 used weekly, and 81 used monthly or less often. Counts of 

Finegoldia and Peptoniphilus increased linearly with increasing frequency of MA use, while 

counts of Butyricicoccus decreased. Porphyromonas also appeared to increase and 
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Faecalibacteirum to decrease, but these trends were not statistically significant. Clear dose-

response trends in Actinomyces, Fusobacterium, Parvimonas, and Peptostreptococcus were 

not apparent, and no significant quadratic dose-response curves were noted in any genera 

(Figure 4.4).  

 Sensitivity analysis using urine toxicology screening to define MA use. Our 

findings, which were based on participant self-report of MA use, were consistent when we re-

defined MA use using urine drug screening results. Fourteen percent of study participants (n = 

52) tested positive for MA including 3 individuals who self-reported no MA use (49/52 who 

tested positive also self-reported using MA). One hundred seven self-reported using MA, but 

tested negative, likely because their last use was outside the drug screen window of detection.  

In biomarker analyses, MA use was still a significant driver of variation in overall 

microbial composition (Bray-Curtis R2 = .008, p = .008), and no differences in alpha diversity 

were noted between MA users and non-users. Many of the same genera were elevated in MA 

users, e.g., Finegoldia, Fusobacterium, Peptoniphilus, Peptostreptococcus, and 

Porphyromonas, and elevations in Streptobacillus in the HIV+ stratum were noted in both 

analyses. Depletion in Faecalibacterium was consistent across analyses; the biomarker analysis 

also identified depletions in Clostridium cluster XI and Lactobacillus in MA users. Results from 

this sensitivity analysis are presented in figures A3.3, A3.4, and A3.5. 

 

4.5 Discussion 

This study of 381 young, diverse MSM who were either HIV-infected or at high risk for 

HIV acquisition found that MA use significantly impacted gut microbial composition after 

controlling for multiple clinical and behavioral confounders. Measures of overall composition 

were altered by MA use, but measures of diversity were not, and the associations between MA 

and overall composition and diversity did not depend on participants’ HIV status. Several genera 
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were increased in MA users regardless of HIV status, many of them considered pro-

inflammatory and pathogenic, while others were increased among HIV+ participants only. We 

found dose-response relationships between the abundance of several bacterial taxa and 

frequency of MA use, such that the abundance of pro-inflammatory taxa increased and 

commensals decreased with increasing frequency of MA use. Finally, we were able to replicate 

our findings using a biomarker confirming recent MA use (urine drug screen). MA effect sizes 

were slightly larger in the biomarker analysis, likely because the window of detection for MA is 

short, making frequent users more likely to test positive. Our analyses utilized a novel method of 

confounder control, IPTW, to account for several factors that have previously been associated 

with dysbiosis (e.g. RAI,73 cocaine use,15 and alcohol use152), making our findings more likely to 

be truly attributable to MA use. 

Although little research has been done on the effects of MA on the microbiome, our 

results are mostly consistent with previously published literature. A study of 37 HIV+ individuals 

from the same cohort as the current data67 (none of the individuals in the current sample were 

included in this previous study) reported a MA effect size (PERMANOVA R2) of .1, larger than 

the effect we found. As in our study, there were no significant differences in diversity between 

MA users and non-users. Enrichment in Porphyromonas in MA users was consistent across 

studies. As a well-known modifier of inflammatory cytokines96 and a potential cause of intestinal 

permeability99 and systemic inflammation associated with periodontal and cardiovascular 

diseases,97 Porphyromonas may play a role in MA-associated inflammation and deserves 

further investigation. Another study in which MA was administered to rats reported an overall 

effect of MA that is consistent with our findings (R2 of .008).66 This study also reported higher 

alpha diversity in the MA-conditioned group, which was not replicated in our study, and 

taxonomic differences that do not overlap with our findings, likely because of differences 

between the mouse model and a human cohort. Finally, a study comparing individuals with 
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substance use disorders (SUDs) to healthy controls found a large effect of SUD (R2 of .067), 

higher observed diversity among individuals with SUDs, and differences in specific genera that 

do not match our findings.68 However, participants with MA use disorder only accounted for 30% 

of the SUD group, and the study did not control for large differences in lifestyle and clinical 

confounders between individuals with SUDs and healthy controls.  

MA use is associated with increases in production and alterations in gene expression of 

many pro-inflammatory cytokines,137,153 which may contribute to neurological deficits, anxiety, 

and impaired memory.154 Many of the bacterial genera that were elevated in MA users, such as 

Porphyromonas,96 Veillonella,155 and Fusobacterium156 have been correlated with increases in 

pro-inflammatory cytokines. MA also exacerbates systemic inflammation by damaging 

gastrointestinal barrier integrity and inducing permeability, allowing the translocation of microbes 

and microbial products into the body. Our study identified depletions in the butyrate-producing 

genera Faecalibacterium and Butyricicoccus in MA users, which have been inversely correlated 

with biomarkers of microbial translocation.49,157 A study of patients with alcohol use disorder 

showed that those with higher levels of gut permeability had lower levels of Bifidobacterium and 

Faecalibacterium species and exhibited more symptoms of alcohol dependence and cravings.158  

Emerging preclinical research has demonstrated a complex interplay between the 

microbiome and the central nervous system,159,160 leading to inquiries about the role of dysbiosis 

in addiction pathology. Gut bacteria produce neuroactive substances, including serotonin, 

epinephrine and dopamine,161 which may access the brain’s reward centers via gut-innervating 

vagal neurons.162 Streptococcus, which was elevated in MA users in our study, can produce 

serotonin,161 and Lactobacillus, which was depleted in MA users (in the biomarker analysis), can 

produce gamma-aminobutyric acid (GABA).161 The connection between dysbiosis and addiction 

pathology has been demonstrated in laboratory experiments of other drugs of abuse. For 

example, increased sensitivity to cocaine reward through alterations in dopaminergic pathways 
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has been observed in mice with experimentally disrupted microbiome.69 Another study showed 

that manipulation of the microbiome resulted in several characteristics of opioid dependence in 

mice, such as reduced opioid analgesic potency and impaired reward behavior.163 In addition, 

there is some preclinical evidence that “repairing” the microbiome might alleviate addiction 

pathology, e.g., Lactobacillus species restored chemically-depressed dopamine levels in the 

prefrontal cortex when administered to rats as a probiotic.164  

Potential mechanisms linking dysbiosis to the pathology of MA dependence remain 

largely unexplored, especially in humans. There is limited clinical evidence linking dysbiosis with 

symptoms associated with MA dependence, such altered stress response and increased 

depression. Butyrate-producing Faecalibacterium, which was decreased in MA users in our 

study, has been associated with reduced depression and higher quality of life.165 Common 

symptoms of MA withdrawal, including depression, anxiety, and fatigue, have been correlated 

with imbalances in gut microbiota166 and probiotics have been used to successfully reduce 

anxiety and depression in clinical trials.167 It is plausible that targeting dysbiosis may ease these 

symptoms among individuals undergoing treatment for MA use disorders. 

We also found a number of genera that were impacted by MA which have previously 

been shown to play a role in HIV acquisition and pathogenesis. Increased abundances of 

Finegoldia and Peptoniphilus in the penile microbiome have been associated with elevated risk 

for HIV seroconversion in men,168 and Parvimonas has been shown to increase genital tract 

inflammation169 and the risk of HIV acquisition170 in women. The implications of enrichment of 

these bacteria in the rectal microbiome have not been explored; however, it is likely that 

inflammation exacerbated by dysbiosis underlies the increase in seroconversion risk, which 

would be highly relevant to at-risk MSM. We also found that MA use increased Fusobacterium, 

which has been correlated with decreased CD4+ T-cell count and increased T-cell activation in 

HIV+ individuals as well as reduced T-cell recovery following ART initiation.171 HIV and MA 
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interacted to multiplicatively increase Actinomyces, which may play a role in reactivating HIV in 

latently infected cells.172 Parvimonas and Peptostreptococcus are oral pathogens that have 

been implicated in periodontal infections among HIV+ individuals,173,174 and their damaging 

effects may be heightened in MA users due to MA’s proclivity to reduce saliva production.175 

Finally, increased abundance of Veillonella has been linked with HIV-associated pulmonary 

diseases.176 Our study, showing that MA impacted the relative abundance of each of these 

genera, may highlight mechanisms underlying the relationship between MA use, HIV acquisition 

and transmission risk, and HIV disease progression which warrant further investigation. 

Our results should be interpreted considering the following limitations. Primarily, no diet 

data is collected for this cohort. We controlled for race/ethnicity and homelessness, which may 

impact diet and thus mitigate the effects of this limitation; however, we were unable to fully 

account for the effects of diet in our analyses. Using IPTW, our study accounts for a plethora of 

other clinical and behavioral confounders which may have masked true findings or generated 

spurious associations in previous studies. However, IPTW cannot achieve perfect balance 

between exposure groups in real-world research applications, and thus we cannot rule out 

residual confounding even by variables included in our analyses. Our study was also conducted 

in a cohort comprised entirely of MSM, all of whom were practicing anal intercourse, which 

increases internal validity by eliminating the effects of some important confounders (e.g. gender, 

sexual behavior73). However, this may limit the generalizability of our findings to other groups, 

such as women who use MA. Finally, because the ability of 16S gene sequencing to identify 

bacterial species is limited, we conducted our analyses at the genus level. We caution that 

differences in genera do not necessarily correspond to differences in functionally important 

species.  

MA use remains a significant public health challenge, especially among people living 

with HIV. Our study found that MA use was associated with an imbalance in gut microbial 
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composition favoring pro-inflammatory, potentially pathogenic bacteria, including some with 

neuroactive potential. There is currently no accepted pharmaceutical treatment for MA use 

disorder and limited evidence for the effectiveness of cognitive-behavioral therapy; further 

research into changes in the microbiome associated with MA use may hold therapeutic potential 

for individuals with MA use disorder. Moreover, increases in multiple taxa that have been 

previously associated with poor HIV outcomes or HIV transmission and acquisition are 

particularly concerning in our study population of MSM who were either HIV-infected or at high 

risk for infection. Additional investigation into the mechanisms underlying these associations 

may improve HIV prognosis and prevent future infections among this vulnerable group. 
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Table 4.1. Participant characteristics, split by MA use, N = 381 men who have sex with 
men in Los Angeles, CA 

 MA- negative 
n = 225 
mean (sd), median 
n (%) 

MA-positive 
n = 156 

Pd SMDe (pre, post 
IPTW) 

Age 30.17 (6.85), 29 32.58 (6.75), 33 <.001 .35, .16 

HIV+ 80 (35.6) 102 (65.4) <.001 N/A 

Race/ethnicity   .6 .1, .07 

Black-Non Hispanic 93 (41.3)  57 (36.5)    

Hispanic 107 (47.6)  79 (50.6)    

Other-Non Hispanic 25 (11.1)  20 (12.8)    

Homeless in past 6 
months 

52 (23.1)  77 (49.4)  <.001 .57, .28 

Had RAI in last 7 
days 

102 (45.3)  65 (41.7)  .5 .07, .03 

Number of RAI  
acts in past month 

2.09 (4.94), 0 2.88 (5.33), 1 <.001 .15, .03 

Number of anal sex  
partners in past 6 
months 

6.17 (7.60), 3 8.79 (9.28), 5 <.001 .31, .18 

Positive for STIa 19 (8.4)  28 (17.9)  .006 .28, .18 

Marijuana use in past 
6 months 

  .1 .23, .21 

Daily/Weekly 69 (30.7)  60 (38.5)    

Monthly/less 52 (23.1)  41 (26.3)    

Never 104 (46.2)  55 (35.3)    

Cocaine use in past 
6 months 

40 (17.8)  60 (38.5)  <.001 .47, .24 

Tobacco smoker 73 (32.4)  95 (60.9)  <.001 .6, .38 

Binge drinking in  
past 6 monthsb 

138 (61.3)  91 (58.3)  .6 .06, .04 

Antibiotic use in past 
month 

15 (6.7)  16 (10.3)  .2 .13, .07 

Sample collection 
strategy 

  .5 .07, .01 

Anoscopy 169 (75.1)  122 (78.2)    

Self-collected 56 (24.9)  34 (21.8)   

Type of ART   <.001 .56, .28 

INSTI + NRTI 30 (13.3)  39 (25.0)    

NNRTI + NRTI 25 (11.1)  23 (14.7)    

NRTI + PI 15 (6.7)  15 (9.6)    

Other 4 (1.8)  12 (7.7)    

HIV+ and missing 
ART data 

6 (2.7) 14 (9.0)   

HIV- pre-exposure 
prophylaxis (PrEP) 
user 

30 (13.3)  7 (4.5)    

HIV-, no PrEP 115 (51.1)  47 (30.1)    

Among HIV+ participants only  

HIV RNA log10 copies
/mL  
(median, IQR) c 

1.03 (0.7) 1.03 (1.7)  N/A 
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CD4 cells/mm3 (medi
an,  
IQR) c 

590.5 (267) 635 (424.3)  N/A 

CD4 cells/mm3 < 200 5 (2.2)  9 (5.8)   .18, .15 

MA = Methamphetamine; SMD = Standardized mean difference; RAI = Receptive anal intercourse; STI = 
Sexually transmitted infection; ART = Antiretroviral therapy; INSTI = Integrase strand transfer inhibitor; 
NRTI = Nucleoside reverse transcriptase inhibitor; NNRTI = Non-nucleoside reverse transcriptase 
inhibitor; PI = Protease inhibitor 
aSexually transmitted infections include rectal gonorrhea, rectal chlamydia as well as primary/secondary 
syphilis. 
bBinge drinking defined as 6 or more drinks on one occasion. 
cHIV RNA and continuous CD4 cell count were not included in the inverse probability of treatment weight 
model, all other variables in the table were included. 
dp values are from Wilcoxon tests or Chi-square tests. 
eSMD is a measure of imbalance across groups; higher SMDs indicate greater imbalance. Average SMD 
before weighting = .28, after weighting = .14. 
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Figure 4.1. Rectal microbial composition of study participants, N = 381, stratified by MA 
use. (A) Columns represent the relative composition of each subject’s microbiome at the genus 
level. Methamphetamine (MA) use by the subjects is indicated by a colored line below their 
composition. Subjects are ordered by the first principal coordinate of a Bray-Curtis pairwise 
distance matrix. Genera representing less than 1% of the composition on average across 
samples were combined into “Other.” (B) Average microbial composition within each MA use 
group. Bacterial genera representing less than 1% of the overall relative composition or present 
in less than 10% of the samples were grouped into “Other.” 
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Figure 4.2. Associations between methamphetamine (MA) use and overall microbial 
composition and diversity. (A) Ordination of the samples using principal coordinates analysis. 
PCoA = Principal coordinate axis. Ellipses are 95% confidence regions for each group 
assuming points follow a multivariate t distribution. R2 and p values are from PERMANOVA 
analyses of distance metrics. (B) Boxplots of diversity metrics. Boxes represent the inverse 
probability of treatment weight-adjusted lower, median, and upper quartiles of the data and 
whiskers are 1.5*interquartile range. p values are from IPTW-adjusted linear regression 
analyses comparing diversity metrics between MA users and non-users. 
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Figure 4.3. Comparisons of individual genera between methamphetamine (MA) users and 
non-users. Forest plots of results of zero-inflated negative binomial models comparing genus-
level bacterial counts between methamphetamine (MA) users and non-users. Inverse probability 
of treatment-weighted effect sizes (log normalized count ratios) and false coverage rate (FCR)-
adjusted 90% confidence intervals are plotted, with statistical significance (q < 0.1) indicated in 
black. Genera with no effect are not shown. Dots are sized proportionally to overall mean 
abundance across samples, i.e., genera with larger dots are, on average, more abundant. 
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Figure 4.4. Dose-response analyses of bacterial counts on increasing frequency of 
methamphetamine (MA) use. Plots show expected log bacterial counts at each level of MA 
use with linear (solid) and quadratic (dashed) dose-response curves drawn to fit the points. 
Significance of the curves was assessed using zero-inflated negative binomial models with 
orthogonal polynomial coding of MA use.    
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Chapter 5. Concluding Remarks 

The microbiome represents one of the most exciting, promising, and challenging 

frontiers in HIV research. As shown in this dissertation, HIV and its associated comorbidities 

have a profound negative impact on the composition of the gut microbiome. Shifts attributable to 

HIV, obesity, and methamphetamine (MA) use largely favored pro-inflammatory, potentially 

pathogenic bacterial taxa at the cost of those with beneficial, immune regulatory properties. 

Because of the multidimensional, symbiotic relationship between the microbiome and the 

immune system, this “dysbiosis” likely plays a significant role in HIV-associated chronic 

inflammation and the development of related diseases.  

This dissertation addresses several factors which have contributed to inconsistencies in 

the literature on HIV and the microbiome. Most significantly, this is the first study to account for 

several behaviors and characteristics that are common among people living with HIV and have 

been independently shown to affect the microbiome. Using inverse probability of treatment 

weighting (IPTW) to adjust for this robust set of covariates is an innovative solution to the 

challenge of integrating questionnaire and clinical data into microbiome analyses. Furthermore, 

this is the largest study of HIV and the microbiome to date, and undoubtedly one of the few with 

adequate power to account for the dimensional and distributional challenges presented by 

microbiome data while adjusting for confounding. In addition, this dissertation includes several 

novel findings. Chapter two describes for the first time a dose-response relationship between 

levels of HIV viremia and dysbiosis. Chapter three includes an exploration of the combined 

effects of two exposures, HIV and obesity, on the microbiome; although it is widely accepted 

that many factors impact microbial composition, few studies have considered more than one at 

a time. Chapter four is one of only two human studies of the effects of MA on the microbiome, 

and the first to consider interactions between MA use and HIV. Each of these innovations relies 



65 
 

on a technique or principle that may be applied to future microbiome research in order to 

increase scientific validity and improve reproducibility. 

Research into the clinical implications of dysbiosis is in its infancy; however, there is 

reason to believe that intervening to “repair” the microbiome may have implications for immune 

reconstitution and reduction in HIV pathogenesis. Studies in Nigeria,177 Tanzania,178,179 and 

Canada180 have shown that administration of Lactobacillus as a probiotic increases CD4 count 

among people living with HIV. In one within-person study adjusted for length of time using 

antiretroviral therapy (ART), the magnitude of increase attributable to the probiotic was 63% of 

that attributable to ART (0.17 CD4+ T-cells/μL/day attributable to probiotic yogurt vs. 0.27 

cells/μL/day attributable to ART).178 These studies also report reduced gastrointestinal 

symptoms (e.g. diarrhea, nausea) in the probiotic groups. Another study found slower CD4+ T-

cell decline in untreated HIV-infected individuals randomized to a prebiotic supplement.181 Other 

research has focused on the effects of pre/probiotics on markers of inflammation and microbial 

translocation, such as one study which found reduced levels of soluble CD14 and activated 

CD4+ T-cells in ART-naïve individuals treated with a prebiotic.182 Another study found that 

probiotic intervention resulted in reduced D-dimer, C-reactive protein, and interleukin-6 (IL-6) 

levels.183 Finally, a randomized trial of virally suppressed HIV-infected individuals found that 

probiotics decreased levels of lipopolysaccharide-binding protein (LPS) and IL-6.184,185 In each 

of these studies, reductions in inflammatory markers correlated with shifts in the microbiome 

from pro-inflammatory to commensal bacterial taxa. Aside from pre/probiotics, fecal microbiota 

transplant (FMT) is the other major method of intervention under study. FMT has been tested in 

simian immunodeficiency virus (SIV)-infected rhesus macaques; the treatment was well-

tolerated and showed some immunological benefits, despite not having a large impact on 

microbial composition.186 Because of the tremendous between-person variability in the gut 
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microbiome and its resilience to alterations, therapeutic treatments for dysbosis are challenging 

to evaluate. 

This dissertation showed significant shifts in the composition of the microbiome 

associated with HIV, obesity, and MA use. However, the function of the microbiome, rather than 

the composition, may be more relevant to our health and the development of disease. The 

number of unique microbial genes present in the gut is over 150 times greater than the human 

genome,187 and the metabolic activity of the microbiome has been estimated to be roughly 

comparable to the liver.49 Sequencing the entire bacterial genome rather than targeted 16S 

sequencing, as well as employing additional -omics techniques (e.g. transcriptomics, 

proteomics), may reveal important differences in bacterial functional pathways driving immune 

dysfunction which are not reflected in compositional differences. In addition, although most 

research has focused on bacteria, the microbiome contains trillions of viruses, fungi, and other 

microorganisms that interact with the immune system and may be relevant to HIV pathogenesis.  

Even in the era of ART, HIV remains a significant public health challenge. Huge racial, 

ethnic, and socioeconomic disparities exist across the HIV care continuum,188 and 

consequently, in life expectancy among people living with HIV.1,105 This research was conducted 

in a group of young, mostly low-income, minority men who have sex with men, who are 

representative of a high proportion of individuals affected by HIV the United States. Therefore, 

the findings of this dissertation have the potential to significantly improve the health of a large 

and particularly vulnerable population. Although microbiome research, and -omics research in 

general, is fraught with methodologic challenges, future research in this area is rife with 

opportunity to better understand HIV pathogenesis and ultimately improve the lives of those 

living with HIV. 
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Appendix 1. Supplemental content for Chapter 2, “Effects of HIV 

Viremia on the Gastrointestinal Microbiome of Young Men who have 

Sex with Men” 

 

Sample selection 

Of the 462 participants enrolled in the mSTUDY at the time our study was conducted, we 

selected a random subsample of 383 based on achieving approximately balanced numbers of 

HIV+ and HIV- substance users and non-users. The mSTUDY cohort was started to study the 

effects of non-injection drug use on HIV acquisition and treatment outcomes among 

Racial/Ethnic minority MSM. As such, substance users are highly represented and we wanted to 

balance this confounding factor between HIV+ and HIV- groups as well as possible.  The total 

sample size was set in order to achieve 90% power to detect a PERMANOVA effect size of 

ω2<0.005 at α=0.1, comparing HIV-infected and -uninfected groups (ω2 is a bias-corrected R2 

statistic; power analysis was conducted using the R package 'micropower'189). Two samples had 

read counts less than the rarefication depth or did not meet the minimum number of nonzero 

pairwise read ratios, 10, for inclusion in the size factor calculation and were excluded from alpha 

diversity, PERMANOVA, ZINB, and LASSO analyses. 

HIV serostatus and RNA quantification.  

HIV negative status was confirmed with the OraQuick Advance® HIV 1/2 (OraSure 

Technologies, Bethlehem, PA). Among infected participants, plasma HIV RNA was quantified 

using a standard clinical laboratory assay (Cobas® AmpliPrep/Cobas® TaqMan® HIV-1 Test, 

Version 2.0, assay range of 20−10,000,000 copies/mL).  

Behavioral and clinical measures 

Demographic data collected included age, Race/Ethnicity, country of origin (United 

States vs. other countries), employment status, and housing status (homeless or stably 
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housed). Self-reported frequency of methamphetamine, marijuana, and cocaine use in the past 

six months was measured using the NIDA-modified ASSIST.151 Due to the relatively low 

frequency of daily methamphetamine/marijuana use, daily users were combined with weekly 

users. Cocaine use (including both powder and ‘crack’ cocaine) was overall infrequent, and thus 

cocaine was treated as a dichotomous variable. Alcohol use in the past six months was 

measured with the NIAAA recommended alcohol questions,190 assessing frequency and amount 

of alcohol “bingeing,” consuming six or more drinks on one occasion. Tobacco smoking was 

measured with the Multicenter AIDS Cohort Study (MACS) questionnaire191 and sexual 

behavior, including recency and frequency of receptive anal intercourse, was measured with the 

American Men’s Internet Survey questionnaire.192 Obesity was determined by clinician-gathered 

anthropometrics (height, weight, and waist circumference) and individuals were classified as 

obese if they had BMI > 30 or waist circumference > 40 inches. Antibiotics used in the past 

month were also assessed by trained clinical staff. Prior to analysis, we used multiple imputation 

with the chained equations method88 to fill in missing covariate data. Amounts of missing data 

for each covariate are displayed in Table A1.1. 

Contaminant sequence removal procedure 

Removal of contaminant sequence variants (SVs) was performed by a calculating a 

‘contaminant score’ �� =  
∑ ���	

∑ ��
 for sequence i, set of negative control samples J, and read count 

of sequence i in sample j cij. Scores range from 0 for sequences that are only observed in “true” 

samples to 1 for sequences that are only observed in negative controls. Intermediate values are 

interpreted as an estimate of the likelihood that a given sequence variant was derived from 

negative controls (i.e. contamination). We used a threshold of Si ≥ 0.1 to identify and remove 

contaminant SVs prior to all further analysis. 

Inverse probability of treatment weighting model selection 



69 
 

Inverse probability of treatment weighting (IPTW) is a balancing procedure used to 

render the treatment/exposure under study (i.e., HIV viremia group) independent of confounding 

variables. In essence, weighting by the inverse probability of treatment (or in this case, 

exposure) transforms the study sample into a “pseudo-population” where exposure status is 

independent of variables used in the IPTW calculation. It has been shown that if the model used 

to estimate the weights includes all relevant confounders and is not misspecified, in a weighted 

population, the effect estimate of exposure on outcome is unbiased.87 With IPTW, the outcome 

models are “marginal structural models” instead of conditional on covariates, as in multiple 

regression. Modeling microbiome data marginally offers several advantages including the ability 

to control for many confounding factors without inducing overfitting bias103 or losing efficiency 

due to overstratification.104 

Mathematically, the IPTW is defined as 

(�
�)


(�
�|�)
 for exposure levels x ∈ 1…n (n = 4 in 

this study, corresponding to the four HIV viremia categories) and set of confounder variables C. 

If the treatment probabilities are known (as in, for example, a randomized trial), no estimation is 

necessary; however, in observational studies the IPTW must be estimated from data. We 

utilized two methods to estimate the IPTW: a generalized boosted model193 and multinomial 

logistic regression. Our covariate set C included all variables described in the behavioral and 

clinical covariates section above (see Table 2.1 and Table A1.1 for more details).  

Prior to fitting the IPTW models, we calculated the standardized mean difference (SMD) 

in each confounding variable across HIV viremia groups, which measures the severity of 

imbalance in that variable (higher SMDs indicate greater imbalance; see the R package 

‘tableone’ vignette for calculation details: https://cran.r-

project.org/web/packages/tableone/tableone.pdf). After fitting each model, we re-calculated the 

SMD while applying the weights. Table A1.1 presents SMDs before and after weighting for each 

variable in the IPTW model plus descriptive statistics of the IPTW themselves. If the IPTW can 
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be flawlessly estimated, all covariates included in the IPTW model will be perfectly balanced 

across exposure groups in a weighted sample (i.e., SMD = 0). In practice, perfect balance is 

only achieved in fully nonparametric settings with large amounts of data relative to the number 

of variables in C, and the SMD measures the severity of the remaining unbalance. We selected 

the method that produced the lowest average SMD across all confounders, which was the 

generalized boosted model (Table A1.1), and used this model to estimate the IPTW.  

Differential abundance testing 

To test for differential abundance of bacterial taxa between HIV viremia groups [HIV-, 

HIV+ undetectable [HIV RNA < 20 copies/mL (lower limit of detection)], HIV+ suppressed (RNA 

between 20 and 200 copies/mL), and HIV+ viremic (RNA > 200 copies/mL)], we utilized zero-

inflated negative binomial (ZINB) or negative binomial (NB) models with multinomial least 

absolute shrinkage and selection operator (LASSO) models used as a confirmatory strategy.  

First, a pre-filtering step excluded genera with less than 100 total reads across all samples or 

present in less than 10% of samples; after filtering, 78 genera were tested in ZINB and LASSO 

models. Estimates of relative library sizes (“size factors”) were obtained by calculating 

geometric means of pairwise read count ratios.86 ZINB models were normalized by including log 

size factors as an offset term, and LASSO models utilized a normalized ASV matrix generated 

by dividing read counts by size factors.  

ZINB model selection and analysis 

Our model selection procedure was as follows: We fit six statistical models to each of 78 

bacterial Genus variables. Two were ZINB models, the first including HIV viremia category as a 

predictor in both the count and zero-inflation components of the model, and the second 

including HIV only in the count component. We also fit a NB model without a zero-inflation 

component. Finally, we fit Poisson versions of each of the aforementioned models. All models 

included HIV viremia group as a categorical predictor and log “size factor” (estimate of relative 
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library size) as an offset term.86 We selected the optimal model according to minimum AIC, 

which has been shown to outperform other methods of model selection for microbiome data.194 

ZINB was the selected model for 75/78 taxa (96%) with NB selected to model Bacteroides, 

Prevotella, and Streptococcus. Positive counts of these three taxa were observed in nearly all 

samples (97%, 100%, and 87%, respectively). As has been previously observed,194 the Poisson 

models were a poor fit for these data, and none were selected as the best model by AIC. Using 

the optimal statistical model for each taxa, we obtained unadjusted coefficient estimates, 

standard errors, and p values, and corrected all p values using FDR. If the first ZINB model was 

selected (using HIV group in both the count and zero-inflation model components), the 

coefficients we report are from the count portion of the model. Next, we utilized IPTW to obtain 

covariate-adjusted estimates. Model-based standard errors are incorrect in inverse probability of 

treatment-weighted models; therefore, we used the sandwich estimator to obtain robust 

standard error estimates. Finally, we calculated false coverage rate (FCR)-adjusted 90% 

confidence intervals90 for each IPTW-adjusted parameter estimate. FCR adjustment preserves 

the connection between statistical significance and confidence interval coverage after selection 

using the FDR method. Adjustment ensures that genera with statistically significant q values will 

have confidence intervals excluding the null value of zero and those that are nonsignificant will 

include zero. 

LASSO model selection and analysis 

 We utilized two multinomial LASSO regression models, one unadjusted and one IPTW-

adjusted, as confirmatory methods of feature selection. The models included the same 78 

genera from ZINB testing as predictors, and HIV viremia category was the multinomial outcome 

variable. Prior to fitting the models, each predictor variable (count of bacterial genus) was 

standardized to have a mean of zero and standard deviation of one. Microbiome data are often 

on very different scales: Some taxa vary comparatively little across samples, while others may 
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be absent in many samples, but present in huge abundance in others. Standardization was 

performed so that the scale of each variable did not impact the likelihood of inclusion in the 

LASSO model.  

For each model, the optimal value of the LASSO penalty coefficient λ was chosen using 

500 repetitions of 10-fold cross-validation (CV). Briefly, for each repetition i = 1 to 500, the data 

were split into 10 randomly selected groups, or folds. Then, for folds k = 1 to 10, the kth was 

held out and the other 9 were used to fit the LASSO model. The fitted model was used to predict 

the holdout data and the mean squared error was recorded. This process was repeated for 100 

values of λ, ranging from very small (admitting all 78 genera into the model) to comparatively 

large (allowing no predictors except an intercept term). Results were averaged across the 10 

folds, resulting in a CV error curve for repetition i. There is significant uncertainty in CV error 

estimates because of the random selection of folds, so the process was repeated 500 times and 

the curves were aggregated to obtain the mean CV error for each value of λ as well as its 

standard error. As is standard practice in elastic net regression,195,196 the optimal value of λ was 

chosen as the minimum value (which is the best fitting model for the data) plus 1 standard error. 

This choice is recognized as the most parsimonious model that lies within a reasonable degree 

of uncertainty from the “best” model.  

The chosen values of λ were then used to fit unweighted and inverse probability of 

treatment weighted LASSO models, and taxa with nonzero coefficients were recorded as 

“selected” in the models. Because of the standardization, LASSO effect sizes are not directly 

comparable with ZINB effect sizes; however, we display in Figure 2.4 whether each nonzero 

effect was negative (indicating depletion of that genus) or positive (indicating enrichment). 
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Table A1.1. Covariates included in the inverse probability of treatment weight models. 
Standardized mean differences (SMDs) are given before and after weighting. Percent missing is 
prior to multiple imputation. GBM = generalized boosted model, LRM = logistic regression 
model, IQR = interquartile range. 

Variable Percent missing SMD (before) SMD (GBM) SMD (LRM) 

Age 0 .405 .171 .245 

Employment status 2.9 .544 .254 .336 

Race/Ethnicity 2.1 .484 .372 .364 

Country of origin 0.5 .118 .080 .109 

Homelessness 0.3 .214 .176 .227 

Recent RAI 4.7 .075 .070 .138 

Frequency of RAI 8.9 .192 .066 .133 

Methamphetamine use 0.5 .539 .202 .213 

Marijuana use 0.5 .296 .139 .263 

Cocaine use 0.5 .159 .091 .134 

Tobacco smoking 2.3 .262 .150 .212 

Binge drinking 0.5 .397 .145 .213 

Obesity 0 .171 .150 .051 

Antibiotic use 0 .209 .077 .080 

Sample collection type 0 .206 .078 .162 

Average SMD  .285 .148 .192 

     

 Range Median IQR (Q3 – Q1)  

IPTW (GBM) 0.14 – 3.72 0.66 0.33 (0.55 – 0.89)  

IPTW (LRM) 0.14 – 11.74 0.71 0.49 (0.57 – 1.06)  
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Table A1.2. Permutational Multivariate ANOVA (PERMANOVA) of HIV category (HIV-, HIV+ 
undetectable, HIV+ suppressed, HIV+ viremic) on Bray-Curtis, Jaccard, and Jensen-
Shannon distance matrices. Unadjusted and covariate adjusted results are shown. 

Distance metric Type F R2 p 

Bray-Curtis Unadjusted 1.75 .014 .001 

 Adjusted 1.39 .011 .017 

Jaccard Unadjusted 1.44 .011 .005 

 Adjusted 1.24 .010 .030 

Jensen-Shannon Unadjusted 2.28 .018 .001 

 Adjusted 1.61 .013 .019 
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Table A1.3. Comparisons in alpha diversity using inverse probability of treatment 
weighted quantile regression (median). Values are expected median differences between the 
group in the ‘Coefficient’ column and the HIV negative reference group. 

Statistic Coefficient Value SE t p q 

Observeda Undetectable 11.00 9.43 1.16 0.245 0.374 

Observed Suppressed 18.00 5.93 3.03 0.003 0.022 

Observed Viremic 15.00 11.41 1.31 0.190 0.374 

Chao1b Undetectable 10.30 10.38 1.09 0.277 0.374 

Chao1 Suppressed 18.80 6.44 2.92 0.004 0.022 

Chao1 Viremic 20.80 12.68 1.64 0.102 0.305 

Shannonc Undetectable 0.016 0.099 0.16 0.873 0.873 

Shannon Suppressed 0.118 0.070 1.68 0.094 0.305 

Shannon Viremic 0.102 0.119 0.86 0.392 0.471 

Simpsond Undetectable -0.005 0.008 -0.60 0.552 0.602 

Simpson Suppressed 0.007 0.007 1.08 0.280 0.374 

Simpson Viremic 0.008 0.007 1.14 0.255 0.374 

aKruskal-Wallis test for difference between groups p = .025. Kruskal-Wallis tests are not adjusted for 
confounding. 
bKruskal-Wallis p = .025 
cKruskal-Wallis p = .332 
dKruskal-Wallis p = .325 
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Figure A1.1. Rectal microbial composition of study participants, split by HIV viremia 
group. Columns represent the relative composition of each subject’s microbiome at the genus 
level. Within HIV viremia groups, subjects are ordered by the first principal coordinate of a Bray-
Curtis pairwise distance matrix. Genera representing less than 1% of the composition on 
average across samples were combined into “Other.” 
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Figure A1.2. Zero-inflated negative binomial effect sizes comparing HIV-infected 
undetectable (RNA <20 copies/mL), suppressed (RNA ≥20-200 copies/mL), and viremic 
(RNA > 200 copies/mL) to HIV-uninfected participants. All taxa with at least one significant 
difference between groups are shown. Inverse probability of treatment-weighted effect sizes and 
90% false coverage rate-adjusted confidence intervals (truncated at -4, 4) are plotted, with 
statistical significance (q < 0.1) indicated in color. Effect sizes are log ratios of normalized 
genera counts. 
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Figure A1.3. Forest plot of results of zero-inflated negative binomial models comparing 
genus-level bacterial counts between HIV+ suppressed (RNA ≥20-200 copies/mL) and 
HIV+ undetectable (RNA < 20 copies/mL, lower limit of detection) participants. Inverse 
probability of treatment-weighted effect sizes and 90% false coverage rate-adjusted confidence 
intervals (truncated at -4, 4) are plotted, with statistical significance (q < 0.1) indicated in color. 
Effect sizes are log ratios of normalized genera counts. 
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Appendix 2. Supplemental content for Chapter 3, “Combined Effects 

of HIV and Obesity on the Gastrointestinal Microbiome of Young Men 

who have Sex with Men” 

 

Inverse probability of treatment weight (IPTW) calculation 

Inverse probability of treatment weighting (IPTW) is a balancing procedure used to 

render the treatment or exposure under study independent of confounding variables. In 

essence, weighting by the inverse probability of treatment/exposure transforms the study 

sample into a “pseudo-population” where exposure status is independent of variables used in 

the IPTW calculation. It has been shown that if the model used to estimate the weights includes 

all relevant confounders and is not misspecified, in a weighted population, the effect estimate of 

exposure on outcome is unbiased.87 With IPTW, the outcome models are “marginal structural 

models” instead of conditional on covariates, as in multiple regression. Modeling microbiome 

data marginally offers several advantages including the ability to control for many confounding 

factors without inducing overfitting bias103 or losing efficiency due to overstratification.104 

For a two-level exposure variable X, the IPTW is defined as 

(�
�)


(�
�|�)
 where x equals 0 or 

1, unexposed or exposed, and C is a (possibly high-dimensional) set of confounding variables. 

We have two such exposures of interest in this study: HIV and obesity, both of which are treated 

as dichotomous variables. As outlined by VanderWeele (2009),197 the IPTW needed for 

estimation of the effects of two exposures depends on whether one wishes to study effect 

modification (the effect of one exposure within strata of another) or interaction (the joint, 

simultaneous, or combined effects of both exposures). In this study we examine both the effects 

of obesity on the microbiome within strata of HIV status (effect modification) and the combined 

effects of HIV and obesity on the microbiome (interaction); accordingly, two sets of weights were 
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generated. IPTW for effect modification were defined as 

(�
�|�
�)


(�
�|�
�,��)
 for obesity status O, HIV 

status H, and set of covariates C1. For a list of covariates included in C1, see Tables 1 and S1. 

IPTW for interaction were defined as 

(�
�)
(�
�)


(�
�|��)
(�
�|��)
, which is the product of the two 

exposure-specific weights 

(�
�)


(�
�| ��)
 and 


(�
�)


(�
�| ��)
. Covariate sets C1 and C2 were the same with 

the exception of two variables, ART type and an indicator for CD4 cell count < 200, which were 

included in the set for obesity (i.e. included in C1) but not for HIV, given that these variables are 

generally not applicable to HIV- participants. 

 In theory, weighting by the IPTW will perfectly balance all covariates used to create the 

weights across exposure groups, thereby eliminating the possibility that these covariates can 

act as confounders. Because of finite sample sizes and the need for parametric models, perfect 

balance is never achieved in practice, except in the most trivial cases. The absolute value of the 

standardized mean difference (SMD), which is the mean difference in a covariate between 

groups in units of its standard deviation, is a metric commonly used to measure the 

performance of IPTW estimates. SMDs for each covariate in the IPTW model are calculated 

before and after weighting, and reductions in covariate-specific SMDs represent reductions in 

confounding by that covariate. A substantial reduction in the average SMD across all covariates 

indicates the IPTW, when applied during the exposure-outcome analysis, will significantly 

reduce confounding. There is no agreed-upon “cut-off” SMD value indicating adequate 

confounding control; some have suggested 0.1,198 but others have indicated that is probably 

unnecessarily conservative.199 Table A2.1 shows the SMD for each covariate included in the 

IPTW models for HIV and obesity, before and after weighting, as well as the average SMD 

before and after applying each IPTW. We achieve an average SMD of .09 for balance across 

HIV status, and .12 for balance across obesity. 

Testing for differential abundance of bacterial genera 
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 We utilized zero-inflated negative binomial (ZINB) or negative binomial (NB) models to 

test for differential abundance of bacterial genera by HIV and obesity status.194 Prior to analysis, 

we conducted a pre-filtering step to exclude genera present in less than 10% of samples and 

those comprised of less than 100 total reads across all samples. After this pre-filtering step, 78 

genera were included in differential abundance analyses. A model selection procedure that has 

been previously described (Appendix 1)119 was used to determine the optimal statistical model 

for each genus. Briefly, we fit Poisson and negative binomial models with IPTW adjustment, 

plus or minus zero-inflation components, to each genus and selected the best fitting model by 

AIC. HIV status, obesity, and their interaction were included as predictors in the count portion of 

every model. As part of the model selection process, we also considered their inclusion in the 

zero-inflation component; however, the coefficients we report come from the count portion of the 

model even if the optimal model also included HIV and obesity in the zero-inflation component. 

All ZINB models included (log) estimates of relative library sizes (“size factors”, calculated using 

the geometric mean of pairwise read ratios method86) as offset terms. All analyses adjusted for 

confounding using IPTW, and standard errors for comparisons of interest were obtained using 

the sandwich estimator. 

  Differences in specific genera associated with obesity, stratified by HIV status. Using the 

optimal statistical model, we estimated the effect of obesity on each of 78 bacterial genera 

within strata of HIV status: HIV+, Obese vs. Non-obese and HIV-, Obese vs. Non-obese. We 

applied a false discovery rate (FDR)89 correction to the resulting vector of 156 p values (two 

comparisons for each genus) and considered effects with q < 0.1 (q being the FDR-corrected p 

value) as statistically significant. In accordance with the FDR correction, we also calculated 90% 

false coverage rate (FCR)-adjusted confidence intervals90. Results are shown graphically in 

Figure 3.3. 
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Effects of HIV and obesity together on microbial abundance. Using the optimal statistical model 

for each genus, we first conducted a joint test of the three hypotheses of interest: HIV+/Obese 

(H+O+) vs. HIV+/Non-obese (H+O-), H+O+ vs. HIV-/Obese (H-O+), and H+O+ vs. HIV-/Non-

obese (H-O-). We applied an FDR correction to the vector of 78 p values resulting from these 

joint tests and retained genera with q < 0.1, indicating that there was a significant difference 

between the H+O+ group and at least one other group, for further investigation. We then 

performed each individual comparison of interest (i.e., H+O+ vs. H+O-, H+O+ vs. H-O+, and 

H+O+ vs. H-O-) for the twenty-one genera that were retained and applied another FDR 

correction to the 63 resulting p values. Results of these comparisons are graphically displayed 

in Figure 3.4. 
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Table A2.1. Distribution of participants characteristics included in inverse probability of 
treatment weight models, N = 381 men who have sex with men in Los Angeles, CA 

 
 

Obese 
 
Mean (sd)/n 
(%) 

Non-Obese SMD 
(Pre, Post) 

HIV+ HIV- SMD 
(Pre, Post) 

n 103 278  182 199  

Age 32.46 (6.6) 30.68 (7.0) .26, .14 33.63 (6.5) 28.90 (6.5) .73, .19 

Race/ 
Ethnicity 

  .23, .13   .10, .05 

  Black-Non 
Hispanic 

43 (41.7) 107 (38.5)  68 (37.4) 82 (41.2)  

  Hispanic 53 (51.5) 134 (48.2)  90 (49.5) 97 (48.7)  

Other-Non 
Hispanic 

7 (6.8) 37 (13.3)  24 (13.2) 20 (10.1)  

Country of  
origin 

  .07, .06   .18, .16 

US 87 (84.5) 227 (81.7)  144 (79.1) 170 (85.4)  

Other       

Homeless in 
past 6  
months 

27 (26.2) 101 (36.3) .23, .09 63 (34.6) 65 (32.7) .03, .07 

Number of R
AI acts in pas
t month 

1.60 (2.89) 2.79 (5.73) .27, .15 2.92 (5.99) 2.07 (4.19) .19, .04 

Number of  
sex partners i
n past 6  
months 

6.08 (7.6) 7.68 (8.7) .20, .06 7.55 (9.0) 6.97 (7.8) .07, .02 

Positive for  
rectal STI 

6 (5.8) 41 (14.7) .30, .24   .11, .07 

Methamph-et
amine use  
in past 6  
months 

  .26, .16   .63, .14 

Daily/ 
Weekly 

13 (12.6) 61 (21.9)  53 (29.1) 21 (10.6)  

Monthly/ 
less 

26 (25.2) 55 (19.8)  49 (26.9) 32 (16.1)  

  Never 64 (62.1) 162 (58.3)  80 (44.0) 146 (73.4)  

Marijuana  
use 

  .08, .10   .26, .10 

Daily/ 
Weekly 

32 (31.1) 97 (34.9)  59 (32.4) 70 (35.2)  

Monthly/ 
less 

26 (25.2) 67 (24.1)  36 (19.8) 57 (28.6)  

  Never 45 (43.7) 114 (41.0)  87 (47.8) 72 (36.2)  

Tobacco  
smoker 

41 (39.8) 126 (45.3) .12, .07 90 (49.5) 77 (38.7) .21, .03 

Binge  
drinking in  
past 6  
monthsb 

  .21, .11   .44, .12 

  Weekly 11 (10.7) 43 (15.5)  31 (17.0) 23 (11.6)  
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Monthly/ 
less 

54 (52.4) 119 (42.8)  62 (34.1) 111 (55.8)  

  Never 38 (36.9) 116 (41.7)  89 (48.9) 65 (32.7)  

Antibiotic  
use 

7 (6.8) 24 (8.6) .07, .05 20 (11.0) 11 (5.5) .20, .13 

Sample  
collection  
strategy 

  .17, .10   .03, .04 

Anoscopy 73 (70.9) 218 (78.4)  138 (75.8) 153 (76.9)  

Self- 
collected 

30 (29.1) 60 (21.6)  44 (24.2) 46 (23.1)  

CD4 count < 
200 

3 (2.9) 11 (4) .06, .07   N/A 

ART  
regimen 

  .38, .24   N/A 

INSTI +  
NRTI 

17 (16.5) 52 (18.7)     

NNRTI +  
NRTI 

5 (4.9) 43 (15.5)     

NRTI + PI 8 (7.8) 22 (7.9)     

NRTIc 12 (11.7) 26 (9.4)     

Other 5 (4.9) 11 (4.0)     

Missing/ 
Not reporte
d/None 

56 (56.4) 124 (44.6)     

Average  
SMD 

  .19, .12   .24, .09 

SMD = Standardized mean difference; RAI = Receptive anal intercourse; STI = Sexually transmitted 
infection; ART = Antiretroviral therapy; INSTI = Integrase strand transfer inhibitor; NRTI = Nucleoside 
reverse transcriptase inhibitor; NNRTI = Non-nucleoside reverse transcriptase inhibitor; PI = Protease 
inhibitor 
aSexually transmitted infections include gonorrhea, chlamydia, and syphilis. 
bBinge drinking defined as 6 or more drinks on one occasion. 
cHIV negative men taking tenofovir disoproxil fumarate/emtricitabine for pre-exposure prophylaxis (PrEP). 
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Table A2.2. Permutational Multivariate ANOVA (PERMANOVA) of the combined effect of 
HIV and obesity on Bray-Curtis, Jaccard, and Jensen-Shannon dissimilarity statistics. 
Values represent the marginal effect of HIV plus obesity after accounting for the variation 
explained by each factor separately. Unadjusted and covariate adjusted results are shown. 

Distance metric Type F R2 p 

Bray-Curtis Unadjusted 2.80 .007 .002 

 Adjusted 3.06 .008 .001 

Jaccard Unadjusted 2.20 .006 .001 

 Adjusted 2.39 .006 .001 

Jensen-Shannon Unadjusted 3.60 .009 .002 

 Adjusted 3.82 .01 .002 
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Table A2.3. Mean differences in alpha diversity statistics between HIV+/Obese (H+O+) 
and HIV-/Non-obese (H-O-), HIV-/Obese (H-O+), HIV+/Non-obese (H+O-) participants. 
Analyses were adjusted for confounding using inverse probability of treatment weighting. 

Contrast Statistic Mean difference Standard error t p 

H+O+ vs. H-O- Observed 15.4 8.3 1.85 0.066 

 Chao1 15.9 8.7 1.82 0.069 

 Shannon 0.2 0.1 1.82 0.069 

 Simpson 0.03 0.02 2.18 0.030 

      

H+O+ vs. H-O+ Observed 16.9 8.4 2.00 0.046 

 Chao1 18.5 8.8 2.10 0.036 

 Shannon 0.18 0.1 1.81 0.071 

 Simpson 0.019 0.011 1.68 0.094 

      

H+O+ vs. H+O- Observed 4.7 8.2 0.58 0.6 

 Chao1 4.9 8.7 0.57 0.6 

 Shannon 0.06 0.09 0.72 0.5 

 Simpson 0.01 0.01 1.03 0.3 
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Figure A2.1. Rectal microbial composition of study participants, N = 383. Columns 
represent the relative composition of each subject’s microbiome at the genus level. HIV and 
obesity status of the subjects is indicated by a colored line below their microbial composition 
[HIV-/Non-obese (H-O-), HIV-/Obese (H-O+), HIV+/Non-obese (H+O-), and HIV+/Obese 
(H+O+)]. Subjects are ordered by the first principal coordinate of a Bray-Curtis pairwise distance 
matrix. Genera representing less than 1% of the composition on average across samples were 
combined into “Other.” 
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Figure A2.2. Rectal microbial composition of study participants, split by HIV and obesity 
status. Columns represent the relative composition of each subject’s microbiome at the genus 
level. Within HIV and obesity groups, subjects are ordered by the first principal coordinate of a 
Bray-Curtis pairwise distance matrix. Genera representing less than 1% of the composition on 
average across samples were combined into “Other.” 
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Figure A2.3. Ordination of Bray-Curtis, Jaccard, and Jensen-Shannon distances using 
principal coordinates analysis (PCoA). Groups are HIV-/Non-obese (H-O-), HIV-/Obese (H-
O+), HIV+/Non-obese (H+O-), and HIV+/Obese (H+O+). Ellipses are 95% confidence regions 
for each group assuming points follow a multivariate t distribution. 
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Figure A2.4. Boxplots of alpha diversity statistics. Groups are HIV-/Non-obese (H-O-), HIV-
/Obese (H-O+), HIV+/Non-obese (H+O-), and HIV+/Obese (H+O+). Boxes represent the lower, 
median, and upper quartile of the data and whiskers are 1.5*interquartile range. 
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Appendix 3. Supplemental content for Chapter 4, “Alterations to the 

Gastrointestinal Microbiome Associated with Methamphetamine Use” 

 

Inverse probability of treatment weight (IPTW) calculation 

For a two-level exposure variable X, the IPTW is defined as 

(�
�)


(�
�|�)
 where x equals 0 or 

1, unexposed or exposed, and C is a (possibly high-dimensional) set of confounding variables. 

In this paper, we consider potential interactions between two such variables: HIV status and MA 

use. As outlined by VanderWeele (2009)197, the IPTW needed for estimation of the effects of 

two exposures depends on whether one wishes to study effect modification (the effect of one 

exposure within strata of another) or interaction (the joint, simultaneous, or combined effects of 

both exposures). In this study we examine the effects of MA use on the microbiome within strata 

of HIV status (effect modification); accordingly, IPTW were defined as 

(�
�|�
�)


(�
�|�
�,�)
 for MA use 

status M (user, non-user), HIV status H (HIV+, HIV-), and set of covariates C. For a list of 

covariates included in C, see Table 4.1. For the dose-response analyses, where MA use was 

treated as a four-category variable, IPTW were defined as 

(�
�)


(�
�|�)
 for MA use frequency M ∈ 

{Never, Monthly or less, Weekly, Daily. HIV status was included as an additional covariate in 

dose-response ZINB models. IPTW were estimated using generalized boosted models193. 

Table 4.1 shows the SMD for each covariate included in the IPTW model, before and 

after weighting, as well as the average SMD before and after applying the weights. Prior to 

weighting, the average SMD for balance across MA use was 0.28; after applying IPTW, it was 

0.14. 
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Table A3.1. p and q values for interaction between HIV and MA use 
Overall composition (PERMANOVA) 

Statistic Interaction p value 

Bray-Curtis .193 

Jaccard .252 

Jensen-Shannon .115 

Alpha diversity 

Statistic Interaction p value 

Observed .236 

Chao1 .285 

Shannon .465 

Simpson .909 

Individual genera 

Genus Interaction q value 

Acetanaerobacterium 0.732 

Acidaminococcus 0.873 

Actinomyces 0.095 

Alistipes 0.801 

Allisonella 0.924 

Alloprevotella 0.791 

Anaerococcus 0.873 

Arcanobacterium 0.924 

Bacteroides 0.786 

Barnesiella 0.791 

Bifidobacterium 0.904 

Bilophila 0.791 

Brachyspira 0.924 

Bulleidia 0.095 

Butyricicoccus 0.904 

Campylobacter 0.857 

Catenibacterium 0.505 

Clostridium_IV 0.904 

Clostridium_XI 0.34 

Clostridium_XVIII 0.783 

Collinsella 0.267 

Corynebacterium 0.924 

Desulfomicrobium 0.924 

Desulfovibrio 0.924 

Dialister 0.445 

Dietzia 0.924 

Enterorhabdus 0.791 

Escherichia/Shigella 0.924 

Eubacterium 0.791 

Faecalibacterium 0.857 

Finegoldia 0.791 

Flavonifractor 0.791 

Fusobacterium 0.873 

Gardnerella 0.873 

Gemmiger 0.791 

Granulicatella 0.924 

Haemophilus 0.873 

Hallella 0.857 

Helicobacter 0.527 
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Holdemania 0.267 

Howardella 0.305 

Hydrogenoanaerobacterium 0.791 

Lactobacillus 0.791 

Mannheimia 0.001 

Megasphaera 0.873 

Methanosphaera 0.402 

Mitsuokella 0.857 

Mobiluncus 0.924 

Mogibacterium 0.873 

Murdochiella 0.904 

Mycoplasma 0.924 

Negativicoccus 0.001 

Oligosphaera 0.106 

Olsenella 0.549 

Oribacterium 0.924 

Oscillibacter 0.857 

Oxalobacter 0.873 

Parabacteroides 0.783 

Paraprevotella 0.267 

Parasutterella 0.924 

Parvimonas 0.904 

Peptoniphilus 0.913 

Peptostreptococcus 0.924 

Porphyromonas 0.791 

Prevotella 0.857 

Pseudoflavonifractor 0.791 

Ruminococcus 0.857 

Slackia 0.267 

Sneathia 0.791 

Streptobacillus 0.095 

Streptococcus 0.873 

Subdoligranulum 0.924 

Succinivibrio 0.627 

Sutterella 0.791 

Turicibacter 0.873 

Varibaculum 0.857 

Veillonella 0.791 

Victivallis 0.873  
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Figure A3.1. Rectal microbial composition of study participants, stratified by 
methamphetamine (MA) use and HIV status.  
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Figure A3.2. Associations between methamphetamine (MA) use and overall microbial 
composition and diversity, stratified by HIV status.  
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Figure A3.3. Replication of Figure 4.1, with participants’ MA status determined by urine 
drug screen.  

 
  



97 
 

Figure A3.4. Replication of Figure 4.2, with participants’ MA status determined by urine 
drug screen. 
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Figure A3.5. Replication of Figure 4.3, with participants’ MA status determined by urine 
drug screen. 
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