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Buildings are vulnerable to earthquake ground motions. To help reduce the loss from 

earthquake events, seismic protective devices emerged in recent decades to improve the 

performance of building structures against earthquake loads. The ultimate goal of this research is 

to explore new devices and/or optimally design existing devices to better protect buildings such 

that the total cost (both direct and indirect) due to earthquake damages can be reduced to a 

minimum level. This is accomplished through the following research tasks:   

First, this study established accurate numerical nonlinear models for different building 

systems so that their seismic performances can be calculated realistically including nonlinear 

behavior. The numerical models are validated by comparing simulated building performances 

with that of the shaking table test data of a full-scale building. Using these validated numerical 

models, the  peak inelastic drift ratio and permanent residual drift ratio are evaluated and 

correlated with building performances.  



 iii 

Second, this research assembles a collection of practical seismic protective devices for 

buildings and their numerical models. The emerging trend of seismic control devices with 

adaptive stiffness and damping properties under different loading scenarios yet still remain 

largely passive is explored. In particular, a novel negative stiffness device is investigated along 

with two other seismic protective devices, namely the base isolation and nonlinear damping 

device through dimensional analysis. In addition, numerical modeling schemes of the these 

devices as well as well as the self-centering device are implemented.  

Third, the proposed research intends to enable performance-based implementation of 

seismic protective devices that can logically take into account of the complexities, uncertainties 

and variability involved with the seismic responses of buildings. A comprehensive performance 

index depicting the total loss of the system has been invented to evaluate the building 

performance. In addition, the optimal range of design parameters of base isolation system for 

building systems is provided under the performance-based earthquake engineering framework.  
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1.  INTRODUCTION 

 

 
1.1  General 
 

Protection of civil structures against earthquakes constitutes a significant task for structural 

engineers. Current practice for designing structures against seismic actions allows and often 

relies on ductile behavior that develops significant inelastic deformations during strong 

earthquakes in order to reduce the inertia forces inside the structure. On the other hand, inelastic 

hysteretic behavior may result with stiffness and strength degradation, increased inter-story 

drifts, and damage with residual drift.  

This chapter briefly introduces earthquake damages to buildings, various building seismic 

behavior, and approaches to improve building performance. The observed damage mechanisms, 

configuration effects and practical engineering techniques not only motivate this research but 

also direct the whole study throughout the following chapters. Meanwhile, typical types of 

existing buildings have been introduced as the reference for implementing various building 

control devices throughout this study. 

 

 

1.2  Historical Earthquake Events and Building Seismic Damages 
 

Buildings reflect the civilization and culture of human beings. The loss of function and 

failure of buildings will result in loss of lives and direct economical suffering, which delays the 

post-earthquake recovery and causes further indirect economy loss. 

For example, the 1964 Alaska earthquake, also known as the Great Alaskan Earthquake, 

caused significant amount of damage. Across south-central Alaska, ground fissures, collapsing 

buildings, and tsunamis directly caused about 139 deaths. The powerful earthquake produced 
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earthquake liquefaction in the region as well. Ground fissures and failures caused major 

structural damage in several communities, much damage to property and several landslides. 

Anchorage sustained great destruction and damage to many inadequately engineered houses, 

buildings, and infrastructure (paved streets, sidewalks, water and sewer mains, electrical systems, 

and other man-made equipment).  

More recently, serious building damage continued being reported in various areas around the 

world. The Kobe region in Japan was once considered to be sufficiently safe in terms of its 

seismic performance. However, the 1995 Kobe earthquake, which lasted for only 20 seconds, 

took away more than 6000 lives. Many of the collapsed buildings in Kobe were built before the 

development of strict seismic codes released in 1981. (vibrationdata.com). The Northridge 

earthquake happened 20 years ago in 1994 centered in the north-central San Fernando Valley 

region of Los Angeles, California. The earthquake shook the ground for about 15 seconds with a 

peak moment magnitude (MW) of 6.7 and an incredibly high ground acceleration of 1.8g 

measured in urban Los Angeles area. The death toll was 57, with more than 8,000 injured. In 

addition, earthquake-caused property damage was estimated to be more than $20 billion, making 

it one of the costliest natural disasters in U.S. history. Buildings were severely damaged or 

collapsed and building code changes have been made since the event to avoid loss from 

buildings for future events. The 1999 Jiji (chi-chi) earthquake in Taiwan is also worth 

mentioning. The peak moment magnitude (MW) was about 7.7, 2,415 people died and 11,305 

people injured during the event. The loss of buildings made 100,000 people homeless. The total 

estimation of loss is about $10 billion. 

Fig. 1.1 shows some severely damaged buildings from the aforementioned historical 

earthquake ground motions. One could easily notice that the conventionally designed buildings 
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are not strong enough to undergo powerful earthquakes. They develop significant inelastic 

deformations that lead to major damages to the buildings under strong earthquake shakes.  

 

 

(a) Penney Building in Anchorage, 1964 

Alaska 

 

(b) Kobe earthquake damage. Failure of the 

first story caused partial collapse of upper 

stories. 

 

(c) Mid-story collapse, Kobe earthquake.  

 

(d) Apartment building seriously damaged by 

1994 Northridge earthquake.  

 

 

(e) A collapsed building located in Nantou 

County from 1999 Jiji earthquake. 

Fig. 1.1  Building failure mechanisms observed in the historical earthquakes. (images from 

vibrationdata.com, eqecat.com, wordpress.com) 
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Building structures, due to the distinct earthquakes and variant building designs, show 

different damage mechanisms. In general, damages are more likely to occur in ground level than 

higher story levels due to the overturning moment and larger base shear applied to the ground 

level structural members. For the local structural elements, the damages are usually lumped at 

the ends. Meanwhile, building damages are often concentrated in their critical regions. For 

examples, for concrete building frame system, the expected critical zones are shown in Fig. 1.2 

(Mahin 1975). The inelastic deformations lead to inelastic hysteretic behaviors, stiffness and 

strength degradations, increased inter-story drifts, and damages with residual drifts. Such 

disadvantages have raised great concerns in practice and improvements are desired to achieve 

better structural seismic performance. Therefore, in the recent decades, seismic protective 

methods have drawn increasing attention from researchers and scholars in the realm of civil 

engineering. 

 

  

 

 

 

Fig. 1.2  Examples of critical regions in reinforced concrete frames 
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1.3  Understanding Building Performance for Structural Control 
 

As buildings come in a wide range of shapes and functions. Much effort has been previously 

devoted to understand the building behaviors. Columns, walls, girders and beams are most 

common building structural elements. In addition, elements of reinforced concrete, steel and 

composite material are generally being used. Two typical types of building systems, the steel 

frame buildings and the reinforced concrete buildings, are introduced here. These two types are 

selected as most of existing building seismic protective technologies are implemented in such 

building systems. 

 

 

1.3.1  Steel Frame Structures 
 

When there is not enough room for the shear wall, an engineer or architect must design a 

special frame, called a moment frame to resist the horizontal forces. Most modern high-rise 

buildings and many mid- and low-rise buildings rely on steel moment frames to resist lateral 

loads arising from winds or earthquakes. Lateral loads from earthquakes result from internal 

inertial loads that develop as the ground, and therefore the building's foundation, accelerates. 

This is similar to the force that a passenger standing on a bus feels when the bus accelerates. In 

the case of a building, inertial forces are primarily at the floor levels, where the weights are 

concentrated. 

According to HAZUS (2003), Steel Moment Frame (S1) is the type of buildings having a 

frame of steel columns and beams. In some cases, the beam-column connections have very small 

moment resisting capacity but, in other cases, some of the beams and columns are fully 

developed as moment frames to resist lateral forces. Usually the structure is concealed on the 

outside by exterior nonstructural walls, which can be of almost any material (curtain walls, brick 
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masonry, or precast concrete panels), and on the inside by ceilings and column furring. 

Diaphragms transfer lateral loads to moment-resisting frames. The diaphragms can be almost any 

material as well. The frames develop their stiffness by full or partial moment connections. The 

frames can be located almost anywhere in the building. Usually the columns have their strong 

directions oriented so that some columns act primarily in one direction while the others act in the 

other orthogonal direction. Steel moment frame buildings are typically more flexible than shear 

wall buildings. This low stiffness can result in large inter-story drifts that may lead to relatively 

greater ductility of the system. Fig. 1.3 shows the in-side view of a real steel moment frame and 

one example modeling of a 4-story steel moment frame building by the software platform 

ETABS. 

 

  

(a) steel moment frame inner-view (b) A moment frame building in ETABS 

Fig. 1.3  Illustration of steel moment frames 

 

 

During strong ground motion, the steel members are expected to behave in a ductile manner: 

stretching and absorbing energy. After the earthquake, permanent deformation of the steel-frame 

members is expected. Several special detailing provisions in the current code are intended to 

ensure ductile performance. In the 1994 Northridge Earthquake, the steel moment frames have 
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not achieved such expected performance, which leads to many topics after the event to improve 

the steel design against severe ground motions.  

Researchers in literature use different computational programs to model steel framing 

systems. The open source finite element framework, OpenSees (http://opensees.- berkeley.edu, 

documented by Mazzoni et al. 2006) is popular these years due to its capability to model fiber 

sections. The interaction of axial force and flexure is automatically incorporated in fiber sections 

such that a more accurate computation is expected. Zhang and Tang (2009) modeled a steel 

moment frame building to discuss the soil-structure interaction; a detailed case study of a 

realistic nine-story 2D steel moment-resisting frame is carried out in OpenSees. The elements are 

modeled using steel fiber section with force-based elements that considers the spread of 

plasticity. And the steel stress-strain curve was modeled with a bilinear model. 

Although many of current OpenSees users are modeling the steel moment frames with fiber 

sections, the choice of inelastic steel sections (non-fiber sections) to model steel elements in 

OpenSees also works decently well. The inelastic sections define the steel section properties such 

as modulus, moment of inertia, and area. Then, the model feed these values into the calculation 

of the global stiffness matrix. Since the steel section is not composite, the result of fiber section 

model is very similar to that of inelastic sections.  

In this study, nonlinear evaluations for steel moment frames were carried out using 

OpenSees. The 2D model of inelastic response of steel elements is using an inelastic steel section 

with steel01 material provided by OpenSees. This material behavior is similar to bilinear 

behavior. Reduced Beam Sections (RBS) can be considered by weakening specific areas of each 

local elements so that plastic deformation will be lumped in those plastic areas.  
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1.3.2  Reinforced Concrete Structures 
 

Reinforced concrete (RC) structures designed according to present building codes as moment 

resisting space frames, shear-walls, coupled shear-walls or any combination thereof to withstand 

strong earthquake motions are expected to deform well into the inelastic range and dissipate the 

energy input by the base motion through stable hysteretic behavior of structural components. RC 

moment resisting frames are similar to steel moment frame buildings except that the frames are 

reinforced concrete. Fig. 1.4 shows a typical parking structure categorized as a concrete moment 

frame building. There are large varieties of RC frame systems. Some older concrete frames may 

be proportioned and detailed such that brittle failure of the frame members can occur in 

earthquakes leading to partial or full collapse of the buildings. Modern frames in zones of high 

seismicity are proportioned and detailed for ductile behavior and are likely to undergo large 

deformations during an earthquake without brittle failure of frame members and collapse. 

When medium- to high-rise reinforced concrete moment resisting frames are subjected to 

severe seismic excitations, the behavior of members in the lower part of the building is 

controlled by lateral loads. Since it is not economically feasible to design RC structures to 

remain elastic during severe earthquake ground motions, the maximum girder moments are 

likely to exceed the yield moment of the cross-section in critical regions of the structure and lead 

to inelastic deformations. 
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(a) Outside view of parking building (b) Inside view of parking building 

Fig. 1.4  Example of a concrete parking structure 

 

 

Models of inelastic response of RC elements are more complicated based on their nature of 

combined material of concrete and steel. Concrete is assumed incapable of carrying tensile 

stress. Once cracking occurs, the concrete fiber cannot supply compressive strength until the 

crack is closed. Due to modern capacity design provisions for RC SMRF buildings (ACI 318R-

02), the joints of RC frames are not expected to control the failure mechanism (Haselton et al. 

2007), so generally RC buildings are modeled with a bilinear element, which accounts for 

cracking but not strength loss. Similarly, shear failure is not expected for the elements of RC 

SMRF buildings, so only flexural damage is modeled. (Goulet et al. 2007) 

Numerical models of RC structures can be simple that no plastic hinges are included or can 

be complicated to capture the behavior that is better correlated with existing empirical 

relationships. Model complexity grows when accuracy is improved. There are two commonly 

observed imperfections of recent modeling approaches such as inelastic fiber models. First, they 

are more likely to fail to converge at some certain time steps. Second, longer computation time is 

consumed.  

Haselton et al. (2007) created a relatively sophisticated model to better evaluate the seismic 

performance of a 4-story benchmark concrete frame building. Their work uses some of the 
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current existing damage models to consider the strength loss, which is remarkable. Two models 

are adopted: a fiber model for low intensity levels (where cracking and initial yielding behavior 

governs) and a plastic hinge model to capture strength and stiffness deterioration and collapse. 

The fiber model consists of fiber beam-column elements with an additional elastic shear degree-

of-freedom at each section, finite joint elements with panel shear and bond-slip springs, and 

column-base bond-slip springs. The plastic hinge model also includes the joint element, but the 

beam-column element lumps the bond slip and beam column yielding response into one 

concentrated hinge. Their element was modeled with in OpenSees (Fig. 1.5(a)). Bilinear material 

model was originally used and extended to a strength degrading model shown in Fig. 1.6(b). P-

Delta effects are accounted for using a combination of gravity loads on the lateral-resisting frame 

and gravity loads on a leaning column element. The model includes 6.5% Rayleigh damping 

anchored to the first and third modal periods. Soil–structure interaction (SSI) was considered in 

some simulations, including foundation flexibility and damping as well as kinematic effects on 

ground motions at the foundation level of the building. SSI effects were found to be insignificant 

(Haselton et al. 2007) and are not discussed further. More details on all aspects of the structural 

modeling can be found in the report by Haselton et al. (2007). 

 

  
(a) RC fiber section model from OpenSees (b) Strength degrading model 

Fig. 1.5  An example of OpenSees modeling scheme for concrete section and material 
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1.4  Structure Control and the Need for ASD devices 
 

Structural control takes advantages of latest advanced computers, electronics, measurement 

techniques, instrumentation, controllers, materials, etc. These techniques make structures behave 

more like machines, aircrafts or human beings in the sense that they can be made adaptive or 

responsive to external forces. As a result, the building damage from earthquakes is reduced. 

 

1.4.1  Passive Structural Control 
 

One of the most intuitive approaches is commonly known as the passive seismic protection 

systems in the form of supplemental damping devices, base-isolation devices, and various energy 

dissipation systems such as the bracing-type visco-elastic and viscous fluid dampers. These 

passive systems have emerged as an effective approach for reducing response and limiting 

damage by shifting the inelastic energy dissipation from the building systems to the passive 

control systems. Passive seismic systems are activated by the structural motions and no external 

power or energy is needed. However, such passive systems are not sufficiently adaptive to ever-

changing external excitation. They do not generally provide self-centering stiffness capability or 

counter stiffness degradation, offering limited help to reduce the residual displacement and 

system damage, etc. For example, design of passive base isolation devices became mature in 

recent decades and a detailed introduction of isolation device will be given in chapter four of this 

study. 

 

1.4.2  Active Structural Control 
 

Modern control theories were developed since 1960s, and it was almost immediately 

successfully applied to space vehicles as well as aeronautical systems. After a few years, ground 

vehicles started to be geared with control devices to reduce vibration. In early 1970s, the 
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application of active control theory to control the vibration of civil engineering structures joins 

people’s discussion. Active Control system has wide ranges of operation for vibration control of 

the structure. It makes the control system automatic in the manner that externally activated 

device supplies the control forces to change the response of the structure, depending on the 

measurement of external disturbance and structural responses. Sensors are employed for the 

measurement purposes, and with the help of computers, the required external forces are 

generated. The direction and magnitude of the control forces to be applied to the structure are 

estimated by designed algorithms (Soong and Reinhorn 1993). Active control systems are fully 

adaptive that are more efficient in reducing the structural response by means of control force 

generated from external power. Comparing to the passive systems, the active systems enhanced 

the effectiveness in motion control, which is only limited to the capacity of the control devices. 

Since Yao proposed the concept of structural control for civil engineering structures in 1972 

(Yao 1972), the reduction of structural response caused by dynamic loading has become a 

popular research subject for the last four decades. Many structural control concepts have been 

developed for this purpose. These research results show that active control has the ability to 

suppress vibration effectively due to its instantaneous response property. In 1989, the first full 

scale active control system was applied to a ten-storey building in Tokyo (Kobori et al. 1991). 

This application accelerated the development of structural control systems for actual buildings 

and widened the range of corresponding research. 

Basic configuration of an active structural control system is shown in Fig. 1.6 (Kumar et al. 

2007). It consists of: (i) Sensors located in the structure to measure either external excitations or 

structural responses, i.e., displacement, velocity and acceleration, (ii) Devices to process the 

measured information and compute necessary forces needed based on a given control algorithm 
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and, (iii) Actuators, which are usually powered by external energy sources, to produce and apply 

the required forces in the desired direction. 

The Active Mass Damper and Active Mass Driver system (AMD) system was the first active 

control system developed for the structural control purpose in late 1980s. Later on, Active 

Variable Stiffness System emerged aiming at the goal to adjust the structural stiffness so that 

resonant modes of the structure can be kept away from the seismic input at each time instant thus 

to suppress the structural responses. Active control using structural braces and tendons has been 

one of the most studied mechanisms. Systems of this type generally consist of a set of tendons or 

braces connected to a structure. Soong et al. (1991) studied Active Bracing System (ABS) 

analytically to show its effectiveness. Some of these active control systems have also been 

summarized in Chapter 4. 

There are many constrains and limitations for the wide application of active control system to 

real civil buildings. Controlling of civil engineering structures has many difficulties due to their 

huge sizes, heavy weight and complicated settings. Active optimal control application is also 

limited for its demand of significant external power supply and huge force generation equipment, 

hence is vulnerable to power supply failure and may destabilize the structure. 
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Fig. 1.6  Flow diagram of active control (adapted from Kumar et al. 2007) 

 

 

1.4.3  Semi-active Structural Control 
 

Semi-active control system is a natural evolution of passive control system as it incorporates 

adaptive factors to improve effectiveness of the passive system. It is often referred as 

controllable or intelligent passive system. Semi-active control system requires orders of 

magnitude smaller external power than a typical active control system, in which the control 

action is produced by the movement of the structure but is regulated by an external source of 

energy. 

A typical semi-active control system consists of sensors, a control computer, an actuator and 

passive devices. The sensors measure the excitation and/or structural response, which are 

transmitted to the control computer for processing. The computer generates control signals based 

on the information from the sensors for the actuator. Then the actuator acts to adjust the behavior 

of the passive device. The actuator is only used to control the behavior of the passive device 
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instead of applying control force directly onto the structure, thus it only requires a small power 

supply such as batteries. Semi-active control system also eliminates harmful potential such as 

destabilization. In addition, they are easy to manufacture and are reliable to operate at a cost of 

being a little more complex than passive system. 

Recent investigations (introduced in following sections) have shown that a combination of 

adaptive stiffness and damping (ASD) devices can provide substantial response modification, 

particularly during near-fault pulse-type earthquakes. ASD devices offer structural response 

modification capability by optimally varying the restoring forces (stiffness) linked to the 

frequencies of vibration and dissipative forces (damping) that govern the behavior of a structural 

dynamic system. To date, adaptive stiffness systems have received relatively little attention in 

real practice as compared to supplemental damping systems and thus represent a significant gap 

in earthquake engineering.  

Hence, development of new ASD devices is necessary to shift the energy dissipation and 

associated stiffness variations from the structural system to the ASD devices to reduce damage to 

building frames, eliminate residual inter-story drift, and provide self-centering capability. 

 

 

1.5  Scope and Objectives 
 

The objective of the research is to link the desired performance of the building structures 

with realistic practice and establish the criteria to select optimal stiffness and damping as well as 

the protection strategy for buildings to improve their performance against earthquakes. The 

passive and semi-active devices with adaptive stiffness and damping are referred as ASD system. 

The study aims at developing such ASD systems that can also adapt stiffness and damping 

automatically during a ground motion.  
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In real design practice, the building performance is earthquake dependent, structure 

dependent, and influenced by other variability. To improve the seismic response of buildings to 

specific performance level, performance-based earthquake engineering framework will be 

adopted with the consideration of all the uncertainties. With the application of structural control 

technology, it is expected that the performances of buildings achieve the design goal by 

optimally determining the mechanical properties and locations of the seismic protective devices. 

Chapter 3 of this work provides a logical and optimized way to optimally design the control 

devices for buildings and the method is applied to optimize the base isolation systems for 

building system in Chapter 5.  

The major tasks of this comprehensive research program are summarized in the following: 

 

1. Fully understand building response from earthquake ground motions. Optimized building 

performance with minimum damage is the design target for all the seismic protective 

devices. Accurate modeling of building system is desired. In addition, prediction of 

inelastic performance of buildings such as its peak transient drift and residual drift is 

desirable. 

2. Develop a framework to evaluate the building performance under the Performance-based 

Earthquake Engineering (PBEE) framework. A performance index shall be specified to 

represent the performance of building against earth shaking and other uncertainties.  

3. Develop the design scheme for the adaptive control devices and find their optimal design 

variables under PBEE framework. Given performance objective of the building 

structures, the design scheme is able to determine the mechanical properties and locations 

of the adaptive control devices. 
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4. Understand the performance of existing building protective devices, their advantages and 

disadvantages. Another objective of work is to present a method that accurately evaluates 

the effectiveness of a certain device. The mechanical properties of the device can be 

revealed without interfered by different excitation inputs. 

5. Perform numerical simulation of the adaptive stiffness and damping devices at system 

level, i.e., apply the developed devices in realistic building model and identify the 

structural response modification, thus to determine the control strategy for real-world 

application.  

6. Analytical and numerical study to discover the effects of stiffness and damping variation 

and identify strategies for varying stiffness and damping for the ASD devices during 

seismic excitation, i.e., to find out what are the best force-displacement loops the passive 

and semi-active control devices should have to provide the optimum performance.  

 

 

1.6  Organization 
 

This dissertation includes seven chapters in order to address the key issues and achieve the 

considered objectives of this research presented in the previous section. 

A general description of existing building systems is presented and the need for seismic 

protective devices to improve building performances is addressed in Chapter 1. Chapter 2 

includes a detailed highlight of current practice of PBEE framework and provides a general 

discussion of performance-based design framework for buildings, which includes the 

performance index, and error analysis, etc. In Chapter 3, estimations to the building nonlinear 

drifts (peak inelastic drift and residual drift) are provided under the dimensional analysis 

framework. Chapter 4 summarizes existing seismic protective devices for buildings and 
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presented numerical modeling methods for a few typical protective devices. In addition, an 

adaptive stiffness device design - negative stiffness devices is introduced. Chapter 5 presents 

optimal isolation design for buildings under the PBEE framework. In Chapter 6, the seismic 

performance of negative stiffness devices is evaluated. The effectiveness of such device has been 

proved in a SDOF system. Ultimately, Chapter 7 provides the major findings and conclusions of 

this research along with the recommendations for the future work. 
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2.  THE PERFORMANCE-BASED EARTHQUAKE 

ENGINEERING FOR BUILDING SYSTEMS 

 

 
2.1  General 
 

Structural engineers conventionally use allowable-stress design (ASD) and/or load-and-

resistance-factor design (LRFD), which focus on individual structural elements and connections, 

and seek to ensure that none will experience loads or deformation greater than it is capable of 

withstanding. PBEE, a new emerging and promising approach, attempts to address performances 

primarily at the system level, i.e. a designed building as a whole will perform in some 

predictable way, in terms of risk of collapse, fatalities, repair costs, and post-earthquake loss of 

function. This chapter is a review of Performance-based earthquake engineering (PBEE). Details 

about current state of PBEE practice, structural control framework based on PBEE, fragility 

functions, ground motions, damage index and limit states and other considerations and 

challenges will be presented. 

PBEE can be defined as the assessment of system level performance of a building, bridge, or 

other individual structural system subjected to seismic excitations, and the detailed design of its 

structural features to achieve prescribed performance goals (Haselton et al. 2007). 

Modern building codes (e.g., ICC 2003; ASCE 2008) provide design guidelines intended to 

achieve a similar performance objective (life safety and some degree of damage control) under a 

specified ground motion hazard. New documents have been published in recent years that seek to 

provide for more-robust performance-based seismic design. Structural Engineers Association of 

California (SEAOC) (1995) proposed Vision 2000, which articulated the goal to “embrace a 

broader scope of design and construction quality assurance issues and … yield more predictable 
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seismic performance over a range of earthquake demands.” Vision 2000 describes various hazard 

levels: the frequent or 50%-in-30-years earthquake event, the occasional or 50%-in-50-years 

earthquake event, rare, or 10%-in-50-years earthquake event, and the very rare, or 10%-in-100-

years earthquake event. Vision 2000 also defines various structural performance levels: fully 

operational, operational, life safety, and near collapse in terms of damage to structural and 

nonstructural components and in terms of consequences to the occupants and functions carried 

on within the facility. Vision 2000 offers relationships between these hazard and performance 

levels for various building categories (e.g., hospitals are considered to be critical facilities). This 

relationship is shown in Fig. 2.1, which indicates that the performance level that should be 

satisfied for the given hazard level and the type of structure.  

Performance-based approaches were further codified with publication of the Seismic 

Evaluation and Retrofit of Concrete Buildings (ATC-40, 1996) and the National Earthquake 

Hazards Reduction Program (NEHRP) Guidelines for the Seismic Rehabilitation of Buildings 

and associated Commentary (FEMA 273 and 274, 1997). These documents addressed the 

rehabilitation of existing structures, and led to the most comprehensive guidelines for PBEE to 

date: the Pre-standard and Commentary for the Seismic Rehabilitation of Buildings (FEMA 356; 

ASCE 2000). 
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Fig. 2.1  Recommended seismic performance objectives for buildings. Mean recurrence intervals 

of 43 yrs, 72 yrs, 475 yrs, and 949 yrs correspond to Poisson arrival events with 50% probability 

of exceedance in 30 yrs, 50% in 50 yrs, 10% in 50 yrs, and 10% in 100 yrs, respectively (after 

SEAOC 1995). (figure from Vision 2000) 

 

 

The FEMA 356 report was intended to encourage wider use of FEMA 273 by converting it 

into mandatory language, and to provide a basis for a future, nationally recognized, American 

National Standards Institute (ANSI) approved standard that incorporates its approaches and 

technologies into mainstream design and construction practice. It defines various target building 

performance levels and earthquake hazard levels similar to those presented in Vision 2000. A 

target building performance for a specific earthquake hazard is selected by the designer and the 

client together, and the building is designed according to the specifications of this standard. 

Performance levels are defined for structural and nonstructural systems, whose approximate 

damage is described in some detail. 
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Table 2.1  Target building performance levels, reproduced from Table C1-2 in FEMA 356 

(ASCE 2000)  

Damage Control and Building Performance Levels 

 

Target Building Performance Levels 

Collapse 

Prevention 

Level 

(5-E) 

Life-safety 

Level (3-C) 

Immediate 

Occupancy 

Level (1-B) 

Operational 

Level (1-A) 

Overall Damage Severe Moderate Light Very Light 

General 

Little residual 

stiffness and 

strength, but 

load bearing 

columns and 

walls function. 

Large 

permanent 

drifts. Some 

exits blocked. 

Infills and 

unbraced 

parapets failed 

or at incipient 

failure. 

Building is near 

collapse. 

Some residual 

strength and 

stiffness left in 

all stories. 

Gravity load-

bearing 

elements 

function. 

No out-of-plane 

failure of walls 

or tipping 

parapets. Some 

permanent drift. 

Damage to 

partitions. 

Building may be 

beyond 

economical 

repair. 

No permanent 

drift. Structure 

substantially 

retains original 

strength and 

stiffness. Minor 

cracking of 

facades, 

partitions, and 

ceilings as well 

as structural 

elements. 

Elevators can be 

restarted. Fire 

protection 

operable. 

No permanent 

drift. Structure 

substantially 

retains original 

strength and 

stiffness. Minor 

cracking of 

facades, 

partitions, and 

ceilings as well 

as structural 

elements. All 

systems 

important to 

normal 

operation are 

functional. 

Nonstructural 

components 

Extensive 

damage 

Falling hazards 

mitigated but 

many 

architectural, 

mechanical, and 

electrical 

systems are 

damaged. 

Equipment and 

contents are 

generally 

secure, but may 

not operate due 

to mechanical 

failure or lack of 

utilities. 

Negligible 

damage occurs. 

Power and other 

utilities are 

available, 

possibly from 

standby sources. 

Comparison 

with 

performance 

intended for 

buildings 

designed under 

the NEHRP 

provisions, for 

the Design 

Earthquake 

Significantly 

more damage 

and greater risk. 

Somewhat more 

damage and 

slightly higher 

risk. 

Less damage 

and lower risk. 

Much less 

damage and 

lower risk. 

 



 23 

The performance levels and descriptions of corresponding physical damage are shown in 

Table 2.1. There are many tables in the standard for specific structural performance levels (e.g., 

for concrete frames, braced steel frames, metal deck diaphragms, etc.) and nonstructural 

performance levels (e.g., for glazing, piping, cladding, etc.). These tables also include some 

engineering limit states (e.g., drift values) believed to correspond to the various performance 

levels for a particular component. These limit states are not intended to be used as acceptance 

criteria or in the post-earthquake evaluation of damage, but are instead indicative of the range 

that exists for the limit states that typical structures undergo. 

Rather recently, PEER is producing an analysis and design methodology that addresses 

seismic performance in terms of damage-repair cost and loss-of-use duration, as well as 

operability, life-safety, and collapse potential. The objective of the methodology is to estimate 

the frequency with which a particular performance metric will exceed various levels for a given 

design at a given location. Fig. 2.2 illustrates the PEER methodology. As it shows, PEER’s 

PBEE approach involves four stages: hazard analysis, structural analysis, damage analysis, and 

loss analysis (Porter 2003). 

 

 

 
Fig. 2.2  PEER PBEE methodology framework. (adapted from Porter 2003) 
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The four stages are defined as follows: 

(1) Hazard analysis: In the hazard analysis, one evaluates the seismic hazard (λ[IM]) at the 

building considering its location, structural, architectural, and other features (jointly denoted by 

design, D). The seismic hazard describes the annual frequency with which seismic excitation is 

estimated to exceed various levels. Seismic excitation is parameterized by an intensity measure 

IM such as Sa(T1), the damped elastic spectral acceleration at the fundamental period of the 

structure. The hazard analysis includes the selection of a number of ground-motion time histories 

whose IM values match different hazard levels of interest, such as 10%, 5%, and 2% exceedance 

probability in 50 years. 

(2) Structural analysis: In the structural analysis, one creates a structural model of the 

building in order to estimate the uncertain structural response, measured in terms of a vector of 

engineering demand parameters (EDP), conditioned on seismic excitation (p[EDP|IM]). EDPs 

can include internal member forces and local or global deformations, including ground failure. 

The structural analysis might take the form of a series of nonlinear time-history structural 

analysis. The structural model need not be deterministic: some PEER analysis have included 

uncertainty in the mass, damping, and force-deformation characteristics of the model. 

(3) Damage analysis: EDP is then input to a set of fragility functions that model the 

probability of various levels of physical damage (expressed by damage measures, or DM), 

conditioned on structural response, (p[DM|EDP]). Physical damage is described at a detailed 

level, defined relative to particular repair efforts required to restore the component to its 

undamaged state. Fragility functions currently in use give the probability of various levels of 

damage to individual beams, columns, nonstructural partitions, or pieces of laboratory 

equipment, as functions of various internal member forces, story drift, etc. They are compiled 
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from laboratory or field experience. For example, PEER has compiled a library of destructive 

tests of reinforced concrete columns for this purpose (Eberhard et al. 2001). 

(4) Loss analysis. The last stage in the analysis is the probabilistic estimation of performance 

(parameterized by various decision variables, DV), conditioned on damage (p[DV|DM]). 

Decision variables measure the seismic performance of the building in terms of greatest interest 

to facility owners, whether in dollars, deaths, downtime, or other metrics. PEER’s loss models 

for repair cost are upon well-established principles of construction cost estimation. 

 

 

2.2  Structural Control Under PBEE Framework 
 

The PBEE framework is simply summarized and illustrated in Fig. 2.3 (shaded blocks). 

Earthquake excitation is defined in terms of an intensity measure, IM. A structural model is used 

to predict the response, EDP, from the intensity measure. A damage model is then used to 

predict the physical damage, DM, associated with the response. Finally, a loss model allows 

prediction of loss, DV, from the physical damage. 

Structural control (SC) technologies, including passive, active and semi-active control 

strategies, can get essentially involved in the PBEE process, by varying the characteristics of the 

structural model (structural stiffness and damping) and consequently changing the EDP, DM, 

and finally the DV. Thus, within the PBEE framework, both the intermediate outputs (EDP and 

DM) and the final gain (DV) can be adjusted to a specific level for the decision maker through 

implementation of structural control devices. The introduction of structural control methods has 

provided structural designers a powerful tool for performance-based design.  
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Fig. 2.3  Illustration of PBEE framework with structural control strategy 

 

 

2.3  Fragility Function Methodology 
 

Fragility functions are useful tools for assessing the seismic vulnerability of buildings in 

terms of prioritizing retrofit, pre-earthquake planning and post-earthquake loss estimation. 

Fragility functions define the conditional probability of attaining or exceeding a specified 

damage state for a given set of input intensity variables. Fig. 2.4 illustrates a typical fragility 

curve, in which damage probability, for several damage states are plotted as a function of 

earthquake intensity measures. In probabilistic term, a fragility curve starts at zero (at the lowest 

demand level that can cause failure) and increases to one (at the demand level causing certain 

failure). 
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Fig. 2.4  A typical fragility curve 

Depending on different data resources, fragility functions can be generated as empirical ones 

with observed damage data from past earthquakes (Basöz et al. 1999; Yamazaki and Hamada 

2000) and analytical ones with numerical analysis results (Mander and Basöz 1999; Shinozuka  

et al. 2000; Mackie and Stojadinovic 2004; Choi and Nielson 2004). Due to the insufficiency of 

recorded damage data and the subjectivity in defining damage states, the application of empirical 

fragility functions is limited. In contrast, analytical fragility functions are increasingly used both 

in academic research and practical application. Analytical fragility functions are developed using 

seismic response data of buildings obtained from nonlinear time history analysis, elastic spectra 

analysis or nonlinear static analysis. Reasonably good agreement can be obtained between the 

analytical and empirical fragility functions (Shinozuka et al. 2000). 

Porter (2007) presented six methods for creating fragility functions including three new ones: 

one for dealing with cases where no failure has been observed, another for situations where one 

must rely on expert opinion, and a third for updating an existing fragility function with new 

damage observations. The procedures are under consideration as a standard for ATC-58, a 

technology-transfer project by the Applied Technology Council to bring PEER’s performance-

based earthquake engineering methodology to practice. 
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In a previous paper (Zhang and Huo 2009); a methodology was presented to estimate the 

seismic fragility for evaluating the effectiveness and optimum design of isolation devices for 

highway bridges. The paper employs the Probabilistic Seismic Demand Model (PSDM) to derive 

analytical fragility functions using nonlinear time history responses of bridges. The PSDM can 

be developed using a ‘scaling’ (like ‘stripe’) approach or ‘cloud’ approach (Baker 2006) to relate 

the engineering demand parameters (EDPs) to the ground motion intensity measures (IMs). With 

the ‘scaling’ approach, all motions are scaled to selective intensity levels corresponding to a 

prescribed seismic hazard level and incremental dynamic analysis (IDA) is performed at 

different hazard levels. On the other hand, the ‘cloud’ approach uses un-scaled earthquake 

ground motions. In this study, the ‘cloud’ approach, which is termed as PSDA (Probabilistic 

Seismic Demand Analysis) is mainly used. The PSDA method utilizes regression analysis to 

obtain the mean and standard deviation for each limit state by assuming the logarithmic 

correlation between median EDP and an appropriately selected IM: 

( )bEDP a IM                                                            (2.1) 

where the parameters a and b are regression coefficients obtained from the response data of 

nonlinear time history analyses. By taking the logarithmic of above equation, one arrives at: 

( ) ( )In EDP Ina bIn IM                                                    (2.2) 

The remaining variability in ( )In EDP at a given IM is assumed to have a constant variance 

for all IM range, and the standard deviation |EDP IM can be estimated as: 
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                                        (2.3) 

  

Subsequently, a capacity model uses the EDPs or functions of EDPs to derive the damage 

index (DI) that can be compared with the limit states (LS) correspondent to various damage 
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states (DS) dictated. For simplicity, the DI is chosen the same as the EDP in this study. By 

further assuming a lognormal distribution of EDP at a given IM, the fragility functions (i.e. the 

conditional probability of reaching a certain damage state for a given IM) can be written as: 

|

( ) ( )
[ | ] 1

b

EDP IM

In LS In aIM
P DI LS IM 



 
     

 

                                   (2.4) 

where |EDP IM is the standard deviation of the logarithmic distribution computed from Eq. (2.3) 

and  (•) is the standard normal distribution function. Alternatively, the fragility function can be 

deployed as: 
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In contrast to the PSDA method, the IDA method requires more computational effort because 

of the scaling of earthquake motions to different IM levels, e.g. through increments. However, no 

a priori assumption needs to be made in terms of probabilistic distribution of seismic demand in 

order to derive the fragility curves. Nonlinear time history analyses are conducted at every IM 

level. The occurrence ratio of a specified damage state is computed and directly used as the 

damage probability at the given IM level, i.e. the damage probability is calculated as the ratio of 

the number of damage cases in  for the damage state i over the number of total simulation cases 

N: 

[ | ]    ( 1 to 4)in
P DI LS IM i

N
                                                  (2.6) 

In most cases, IDA fragility curves can be fitted with either a normal cumulative distribution 

function: 
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or a log-normal cumulative distribution function: 
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where IM  and IM  are the standard deviation and mean value of IM to reach the specified 

damage state based on the normal distribution while IM  and IM  are standard deviation and 

mean value of IM to reach the specified damage state based on the lognormal distribution or a 

log-normal cumulative distribution function. 

 

 

2.4  Earthquake Selection and Intensity Measure 
 

2.4.1  Selected Ground Motions 
 

The aforementioned PSDA method relies on a large number of nonlinear time history 

analyses to derive the fragility functions. Therefore, a significant number of earthquake records 

need to be selected so that a conceptually and statistically better prediction of building response 

can be obtained. In some of previous studies, researchers may either artificially generate ground 

motions or collect them from historical events that represent typical and sever earthquake events 

(Ryan and Chopra 2004). In this study, three ensembles were collected with more than one-

hundred motions that represent pulse-type motions and non-pulse-like (far-field) motions. The 

first two ensembles are the acceleration and velocity pulse motions (Table 2.2 and 2.3) identified 

by Tang and Zhang (2011), representative of ground shaking relatively close to fault rupture 

during a large magnitude earthquake. These pulse-like motions dominate the maximum structural 

responses over a wide period range and they represent the large and sever earthquake motions. In 

addition to these large ground motions, another 50 earthquake records from several ensembles 

are selected as non-pulse-like (far-field) ground motions. These ground motion ensembles 
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represent events with various probability of occurrence at different locations and occurring on 

firm soil conditions.  

 

Table 2.2  Acceleration Pulse-type Motions 
 

Number Earthquake # Year Magnitude Fault Station Pulse Distance  PGA 

Mw mechanism Name Direction to fault (km) (g)

1 COYOTELK/CYC 2 1979 5.7 Strike-slip Coyote Lake Dam (SW Abut) 246 6.13 0.2795

2 LIVERMOR/B-LFA 6 1980 5.4 Strike-slip Livermore—Fagundas Ranch 232 14.88 0.2586

3 COALINGA/A-ATC 8 1983 5.1 Reverse Anticline Ridge Free-Field 45 12.47 0.8608

4 COALINGA/A-ATP 8 1983 5.1 Reverse Anticline Ridge Pad 45 12.47 0.5578

5 COALINGA/E-CHP 10 1983 4.9 Reverse Coalinga-14th & Elm (Old CHP) 252 12.18 0.2047

6 COALINGA/F-CHP 11 1983 5.2 Reverse Coalinga-14th & Elm (Old CHP) 258 12.74 0.7349

7 MORGAN/G06 12 1984 6.2 Strike-slip Gilroy Array #6 58 9.86 0.3365

8 PALMSPR/HCP 13 1986 6.1 Reverse–Oblique Hurkey Creek Park 197 29.83 0.2425

9 WHITTIER/A-NOR 15 1987 6 Reverse–Oblique Norwalk—Imp Hwy,SGrnd 190 20.42 0.2531

10 WHITTIER/B-ALH 16 1987 5.3 Reverse–Oblique Alhambra—Fremont School 77 14.02 0.2485

11 WHITTIER/B-OBR 16 1987 5.3 Reverse–Oblique LA—Obregon Park 77 15.19 0.3892

12 CAPEMEND/PET 21 1992 7 Reverse Petrolia 260 8.18 0.7096

13 NORTHR/LOS 23 1994 6.7 Reverse Canyon Country—W LostCany 32 12.44 0.5389

14 NORTHR/PAC 23 1994 6.7 Reverse Pacoima Dam (downstr) 32 7.01 0.507

15 NORTHR/SCS 23 1994 6.7 Reverse Sylmar—Converter Sta 32 5.35 0.908

16 NORTHR/SYL 23 1994 6.7 Reverse Sylmar—Olive ViewMedFF 32 5.3 0.8439

17 KOBE/KJM 25 1995 6.9 Strike-slip KJMA 140 0.96 0.8547

18 SMADRE/altde 19 1991 5.6 Reverse Altadena—Eaton Canyon 152 13.17 0.4556

19 SMADRE/opark 19 1991 5.6 Reverse LA—Obregon Park 152 27.4 0.2503

20 SMADRE/4734A 19 1991 5.6 Reverse Pasadena—USGS/NSMP Office 152 17.13 0.3278

21 NORTH392/STC 24 1994 5.3 Reverse Northridge—17645 SaticoySt 217 13.87 0.3278

22 NORTH392/GLB 24 1994 5.3 Reverse Sun Valley—Sunland 217 16.49 0.3639

23 CHICHI03/CHY080 28 1999 6.2 Reverse CHY080 270 22.37 0.4751

24 CHICHI06/TCU080 29 1999 6.3 Reverse TCU080 275 10.2 0.646

25 LOMAP/LEX 18 1989 6.9 Reverse–Oblique Los Gatos—Lexington Dam 38 5.02 0.5221  
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Table 2.3  Velocity Pulse-type Motions 
 

Number Earthquake # Year Magnitude Fault Station Pulse Distance  PGA 

Mw mechanism Name Direction to fault (km) (g)

26 SFERN/PUL 1 1971 6.6 Reverse Pacoima Dam (upper left abut) 195 1.81 1.5161

27 IMPVALL/H-AEP 3 1979 6.5 Strike-slip Aeropuerto Mexicali 233 0.34 0.4071

28 IMPVALL/H-AGR 3 1979 6.5 Strike-slip Agrarias 233 0.65 0.3782

29 IMPVALL/H-EMO 3 1979 6.5 Strike-slip EC Meloland Overpass FF 233 0.07 0.3781

30 IMPVALL/H-E03 3 1979 6.5 Strike-slip El Centro Array #3 233 12.85 0.2921

31 IMPVALL/H-E04 3 1979 6.5 Strike-slip El Centro Array #4 233 7.05 0.524

32 IMPVALL/H-E05 3 1979 6.5 Strike-slip El Centro Array #5 233 3.95 0.5457

33 IMPVALL/H-E06 3 1979 6.5 Strike-slip El Centro Array #6 233 1.35 0.4506

34 IMPVALL/H-E07 3 1979 6.5 Strike-slip El Centro Array #7 233 0.56 0.521

35 IMPVALL/H-HVP 3 1979 6.5 Strike-slip Holtville Post Office 233 7.65 0.259

36 MAMMOTH/L-LUL 5 1980 5.9 Strike-slip Long Valley Dam (Upr L Abut) 291 19.83 0.993

37 COALINGA/H-Z14 7 1983 6.4 Reverse Parkfield—Fault Zone14 47 29.98 0.2941

38 COALINGA/D-TSM 9 1983 5.8 Reverse Transmitter Hill 262 9.52 1.1231

39 COALINGA/F-CHP 11 1983 5.2 Reverse Coalinga-14th & Elm (Old CHP) 258 12.74 0.7349

40 MORGAN/G06 12 1984 6.2 Strike-slip Gilroy Array #6 58 9.86 0.3365

41 PALMSPR/NPS 13 1986 6.1 Reverse–Oblique North Palm Springs 197 4.04 0.7827

42 SANSALV/GIC 14 1986 5.8 Strike-slip Geotech Investig Center 302 6.3 0.8965

43 SANSALV/NGI 14 1986 5.8 Strike-slip National Geografical Inst 302 6.99 0.6551

44 WHITTIER/A-DWN 15 1987 6 Reverse–Oblique Downey—Co MaintBldg 190 20.82 0.2487

45 WHITTIER/A-OR2 15 1987 6 Reverse–Oblique LB—Orange Ave 190 24.54 0.2557

46 SUPERST/B-PTS 17 1987 6.5 Strike-slip Parachute Test Site 37 0.95 0.5103

47 LOMAP/G02 18 1989 6.9 Reverse–Oblique Gilroy Array #2 38 11.07 0.4129

48 LOMAP/LEX 18 1989 6.9 Reverse–Oblique Los Gatos—Lexington Dam 38 5.02 0.5221

49 ERZIKAN/ERZ 20 1992 6.7 Strike-slip Erzincan 32 4.38 0.5285

50 CAPEMEND/PET 21 1992 7 Reverse Petrolia 260 8.18 0.7096

51 LANDERS/YER_225 22 1992 7.3 Strike-slip Yermo Fire Station 225 23.62 0.2218

52 NORTHR/LOS_032 23 1994 6.7 Reverse Canyon Country-W Lost Cany 32 12.44 0.466

53 NORTHR/KAT_032 23 1994 6.7 Reverse Simi Valley-Katherine Rd 32 13.42 1.0661

54 NORTHR/SCS_032 23 1994 6.7 Reverse Sylmar-Converter Sta 32 5.35 0.5943

55 NORTHR/SCE_032 23 1994 6.7 Reverse Sylmer-converer Sta East 32 5.19 0.8387

56 KOBE/KJM_140 25 1995 6.9 Strike-slip KJMA 140 0.96 0.8543

57 KOBE/TAZ_140 25 1995 6.9 Strike-slip Takarazuka 140 0.27 0.6452

58 KOBE/TAK_140 25 1995 6.9 Strike-slip Takatori 140 1.47 0.682

59 KOCAELI/GBZ_184 26 1999 7.5 Strike-slip Gebze 184 10.92 0.2383

60 CHICHI/CHY006_292 27 1999 7.6 Reverse–Oblique CHY006 292 9.77 0.3115

61 CHICHI/CHY035_292 27 1999 7.6 Reverse–Oblique CHY035 292 12.65 0.2612

62 CHICHI/CHY101_289 27 1999 7.6 Reverse–Oblique CHY101 289 9.96 0.4513

63 CHICHI/TCU029_306 27 1999 7.6 Reverse–Oblique TCU029 306 28.05 0.2207

64 CHICHI/TCU036_277 27 1999 7.6 Reverse–Oblique TCU036 277 19.84 0.1346

65 CHICHI/TCU040_277 27 1999 7.6 Reverse–Oblique TCU040 277 22.08 0.1452

66 CHICHI/TCU065_272 27 1999 7.6 Reverse–Oblique TCU065 272 0.59 0.8218

67 CHICHI/TCU075_271 27 1999 7.6 Reverse–Oblique TCU075 271 0.91 0.3331

68 CHICHI/TCU103_277 27 1999 7.6 Reverse–Oblique TCU103 277 6.1 0.1323

69 CHICHI/TCU128_306 27 1999 7.6 Reverse–Oblique TCU128 306 13.15 0.1874

70 CHICHI/TCU136_278 27 1999 7.6 Reverse–Oblique TCU136 278 8.29 0.1694

71 CHICHI/TCU141_275 27 1999 7.6 Reverse–Oblique TCU141 275 24.21 0.1043

72 STELIAS/059v2_160 4 1979 7.5 Reverse Icy Bay 160 26.46 0.158

73 YOUNTVL/2016a_061 30 2000 5 Strike-slip Napa Fire Station # 3 61 14.15 0.6006

74 CHICHI03/CHY024_270 28 1999 6.2 Reverse CHY024 270 19.65 0.1868

75 CHICHI03/CHY080_270 28 1999 6.2 Reverse CHY080 270 22.37 0.0593  
 

 

Fig. 2.5(a) to Fig. 2.5(f) shows the fault normal (major) direction and fault parallel 

(secondary) direction acceleration spectra with 5% damping for pulse-type, far-field and all the 
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combined motions. Fig. 2.5(g) is the PGA distribution for the combined motions. The three 

ensembles have average PGA of 0.4796 (g), 0.571 (g) and 0.1466 (g), respectively. In addition, 

the average PGA for all the motions is 0.3359 (g). 
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Fig. 2.5  Information of selected ground motion ensembles and the spectra 

 

 

2.4.2  Definition of Intensity Measure 
 

Intensity measure (IM) is defined as a variable to quantify the ground motion hazard at a site 

due to seismic events. Tothong and Luco (2007) assessed the performance of an IM with three 

indexes ‘efficiency’, ‘sufficiency’ and ‘scaling robustness’. An efficient IM is defined as the one 

that results in relatively small conditional deviation of EDP on IM and a sufficient IM makes the 

distribution of EDP given IM is independent of other intensity parameters. Scaling robustness 
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ensures no change for the IM when the record is scaled. Another judging criterion for IM 

performance given by Padgett et al. (2008) evaluates IM with five indexes: efficiency, 

practicality, proficiency, sufficiency and hazard computability. 

As pointed by Mackie and Stojadinović (2007), the intensity measures can be classified as 

two groups: structure-independent and structure-dependent IMs. In the study of Mackie and 

Stojadinović (2003, 2005), a comprehensive summary with about totally 90 kinds of IMs is done. 

The structure-independent IMs are also divided into two subcategories. The IMs of first sub-

category are defined as the structure-independent IMs acting on earthquake time histories that 

have been filtered with SDOF, and the other subcategory IMs are filtered with other kinds of 

processes. Mackie and Stojadinović (2003, 2005) investigated the efficiencies of the IM. They 

summarized by comparing the dispersion of EDP-IM results of PSDM. Finally, Mackie and 

Stojadinović (2007) concluded that among structure-independent IMs PGA is not sufficient for 

structures with longer periods and PGV is probably the most reasonably efficient IM. 

Based on the aforementioned five item criterion and also with dispersion analysis, Padgett et 

al. (2008) compared the performance of several IM, including PGA, PGV, PGD, Sa, IA, IV, 

CAV and CAD. Their conclusion states that PGA is the optimal one given its synthetic 

advantages. Therefore, in this study, PGA is used as the intensity measure of ground motions. 

 

 

2.5  Damage Index and Limit States 
 

In numerical fragility analysis, the structural responses under earthquakes are depicted and 

monitored by various EDPs. A capacity model is needed to measure the damage of structural 

component or system, described in terms of a damage index (i.e. DI) as a function of EDPs. The 

damage models are often formulated from the experimental data where observed damage and 
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measured capacity of the specimens are correlated to the level of applied demand. The damage 

states (DS) are usually discrete and are marked by the associated limiting values (i.e. limit states 

LS) of the adopted DI to observe the onset of various damage stages. It is noted that uncertainties 

can also be introduced in the capacity model and contribute to the overall fragility. 

 

 

2.5.1  Previous Studies and HAZUS Definition 
 

A number of studies have developed the criteria for DI and corresponding LS based on 

damage status or loss of load-carrying capacity. Often used DI measures are curvature ductility, 

displacement ductility and residual displacement etc, and four damage states defined by HAZUS 

(FEMA 2003) are commonly adopted, namely slight, moderate, extensive and collapse damages. 

For example, when buildings are base-isolated, the isolation devices will experience large 

displacements resulting in damage of isolation devices and neighboring structural members in 

addition to the possible damage in columns. Both the structural elements (i.e. beams, columns, 

and walls) and isolation system (i.e. bearings) can experience different damage states, leading to 

a comprehensive damage state which is difficult to be described by the damage state of only one 

component. Previous studies suggest that system fragility can be derived based on the 

functionality or repair cost after earthquakes (Mackie and Stojadinovic 2005) or be generated as 

a union of the component level fragility using a joint probabilistic seismic demand model 

(Nielson and Desroches 2007). 
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2.5.2  Example: Damage Index and Limit States of MF Buildings 
 

This section provides example according to HAZUS definition about DI and LS for moment 

frame (MF) buildings. Steel moment frame (SMF) is one of the design schemes favored by 

structural engineers. Table 2.4 shows the definition of the four damage states from HAZUS 

about steel moment frame structures S1. 

 

Table 2.4 Definition of damage states for Steel Moment Frame (S1) by HAZUS 2003 
Slight Structural Damage: 

Minor deformations in connections or hairline cracks in few welds. 

Moderate Structural Damage:  

Some steel members have yielded exhibiting observable permanent rotations at 

connections; few welded connections may exhibit major cracks through welds or few 

bolted connections may exhibit broken bolts or enlarged bolt holes.  

Extensive Structural Damage:  

Most steel members have exceeded their yield capacity, resulting in significant permanent 

lateral deformation of the structure. Some of the structural members or connections may 

have exceeded their ultimate capacity exhibited by major permanent member rotations at 

connections, buckled flanges and failed connections. Partial collapse of portions of 

structure is possible due to failed critical elements and/or connections. 
Complete Structural Damage:  

Significant portion of the structural elements have exceeded their ultimate capacities or 

some critical structural elements or connections have failed resulting in dangerous 

permanent lateral displacement, partial collapse or collapse of the building. Approximately 

8% (low-rise), 5% (mid-rise) or 3% (high-rise) of the total area of S1 buildings with 

Complete damage is expected to be collapsed. 

 

 

Building seismic resistance is highly dependent on the structural properties and configuration 

characteristics. For example, because the seismic code and building technology are changed with 

time, buildings with different vintages and design levels show distinctive seismic load carrying 

properties. The 1994 Northridge earthquake did a great impact to US building code. Buildings 

built before or after Northridge earthquake definitely behaviors differently. HAZUS takes this 

into consideration and proposed four different earthquake design levels. HAZUS (2003) 

describes methods for determining the probability of Slight, Moderate, Extensive and Complete 

damage to general building stock. General building stock represents typical buildings of a given 
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model building type designed to either High-Code, Moderate-Code, or Low-Code seismic 

standards, or not seismically designed (referred to as Pre-Code buildings).  

Capacity curves and fragility curves for High-Code, Moderate-Code, Low-Code and Pre-

Code buildings are based on modern code (e.g., 1976 Uniform Building Code, 1985 NEHRP 

Provisions, or later editions of these model codes). Design criteria for various seismic design 

zones has also been specified. Also, HAZUS categorizes special moment frames by height. For 

example, the inter-story drift of a mid-rise steel moment frame at threshold of damage state is 

given by Table 2.5. One could easily see that for high code seismic design level, 0.4% of inter-

story drift corresponds to slight damage of the structure while 5.33% of peak drift corresponds to 

the collapse. Compared with other levels of seismic designs, the high code design level has a 

larger tolerable DS. 

 

Table 2.5 Damage states of different design level for S1 in terms of inter-story drift (from 

HAZUS 2003) 

 Slight Moderate Extensive Complete 

High code seismic design level 0.0040 0.0080 0.0200 0.0533 

Moderate code seismic design level 0.0040 0.0069 0.0157 0.0400 

Low code seismic design level 0.0040 0.0064 0.0135 0.0333 

Pre code seismic design level 0.0032 0.0051 0.0108 0.0267 

 

 

Table 2.6 shows the definition of the four damage states from HAZUS about and RC moment 

frames. Similar to the S1 type building, four states of structural damage is specified in the table. 
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Table 2.6 Definition of damage states for Reinforced Concrete Moment Resisting Frames (C1) 

by HAZUS 2003 

Slight Structural Damage: 

Flexural or shear type hairline cracks in some beams and columns near joints or within 

joints. 

Moderate Structural Damage: 

Most beams and columns exhibit hairline cracks. In ductile frames some of the frame 

elements have reached yield capacity indicated by larger flexural cracks and some concrete 

spalling. Nonductile frames may exhibit larger shear cracks and spalling. 

Extensive Structural Damage: 

Some of the frame elements have reached their ultimate capacity indicated in ductile 

frames by large flexural cracks, spalled concrete and buckled main reinforcement; 

nonductile frame elements may have suffered shear failures or bond failures at 

reinforcement splices, or broken ties or buckled main reinforcement in columns which may 

result in partial collapse. 

Complete Structural Damage: 

Structure is collapsed or in imminent danger of collapse due to brittle failure of nonductile 

frame elements or loss of frame stability. Approximately 13%(low-rise), 10%(mid-rise) or 

5%(high-rise) of the total area of C1 buildings with Complete damage is expected to be 

collapsed. 

 

 

Correspondingly, the inter-story drift of a mid-rise concrete frame at threshold of damage 

state is given by Table 2.7: 

 

Table 2.7 Damage states of different design level for C1 in terms of inter-story drift (from 

HAZUS 2003) 

 Slight Moderate Extensive Complete 

High code seismic design level 0.0027 0.0067 0.0200 0.5333 

Moderate code seismic design level 0.0033 0.0058 0.0156 0.0400 

Low code seismic design level 0.0033 0.0053 0.0133 0.0333 

Pre code seismic design level 0.0021 0.0041 0.0105 0.0267 

 

 

2.6  Background in Earthquake Loss Estimation 
 

A relatively large number of studies have been published dealing with earthquake loss 

estimation. Previous earthquake loss estimation studies can be categorized as regional loss 

estimation studies and building-specific loss estimation studies. 
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2.6.1  Regional Loss Estimation Studies 
 

Regional loss estimation studies are aimed at the estimation of economic losses for a large 

number of buildings within a geographical region such as a city, a part of a city, county, state or 

at a country level. Freeman (1932) performed one of the earliest studies in loss estimation that 

provided rough estimates of probable average earthquake loss ratios for various localities and 

various types of buildings in order to develop a rational basis for estimating earthquake losses for 

the insurance industry. Later on, in 1970s, most regional earthquake loss estimation studies were 

confined within the insurance industry. At the same time, a series of regional loss estimation 

studies were conducted for the United States federal government to estimate economic losses and 

casualties, to evaluate functionality of essential facilities, and to study impacts on lifelines. 

The study was pushed forward by Steinbrugge et al. (1969) and Whitman et al. (1973) in the 

form of damage probability matrices. Later on, the Applied Technology Council (ATC) launched 

a study that was published as ATC-13 (1985) and was entitled as "earthquake damage evaluation 

data for California". In addition to developing damage probability matrices for a vast majority of 

classes of construction, the study provided a well-documented and systematic way to use expert 

opinion for loss estimation. ATC-13 provided a way to estimate earthquake losses in different 

types of facilities in California, such as industrial, commercial, residential, utility and 

transportation facilities. Later on, the study presented in FEMA-177 (1989) was conducted to 

provide some guidelines for a consistent and standardized loss estimation methodology. The idea 

of developing a nationally applicable standardized methodology for estimating potential 

earthquake losses on regional basis was also one of the main objectives in preparation of the 

FEMA-249 (1994) report. Both these Federal Emergency Management Agency (FEMA) reports 



 41 

emphasized on a realistic evaluation of various sources of uncertainty in developing a loss 

estimation methodology. In particular, both FEMA studies emphasized that available loss 

estimation methodologies at that time, did not properly incorporate the uncertainty associated 

with the seismic hazard. Therefore, in 1997, the National Institute of Building Sciences (NIBS), 

Whitman et al., and Kircher et al. introduced a standardized regional loss estimation 

methodology under the name HAZUS®. Instead of using qualitative measures of ground motion 

intensity, HAZUS® uses quantitative measures such as elastic spectral ordinates that intends to 

decrease the reliance on engineering judgment and expert opinion which were extensively used 

before in ATC-13. HAZUS® is implemented through PC-based Geographic Information System 

(GIS) software developed under agreements with NIBS.  

In 2011, Chen and Wills performed a study to estimate the annual earthquake loss using 

HAZUS-MH, a geographic information system-based multi-hazard (MH) loss estimation tool 

developed by FEMA. They estimated the statewide average earthquake loss due to building 

damage to be approximately $2.8 billion per year, nearly 82% of this loss occurring in the top 

four Metropolitan Statistical Areas (MSAs) with the highest estimated annual losses. The 

distribution of estimated annual building losses on census tract level shows relatively higher 

values along the coast and in highly urbanized areas (Fig. 2.6). On the other hand, higher 

annualized percent earthquake losses (APELs) are estimated along the San Andreas Fault 

System, generally reflecting higher ground motion hazards (Fig. 2.7). More recent regional loss 

estimation studies were conducted on developing empirical fragility functions for different 

classes of building construction by investigating the correlation of building performance with 

recorded ground motions. (Sarabandi et al. 2004; King et al. 2004). 
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Fig. 2.6  Distribution of seismic risk in California by estimated annualized building loss on 

census tract level based on ground motions calculated using the 2008 USGS PSHA models and 

incorporating site-specific VS30 values 
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Fig. 2.7  Distribution of estimated annualized building percent loss by census tract based on 

ground motions calculated using the 2008 USGS PSHA models and incorporating site-specific 

VS30 values 

 

 

Although regional loss estimation studies are proved to be useful in the insurance industry, 

they has certain disadvantages that limit their usability for the performance based earthquake 

engineering framework. For example, simple structural models are used based on SDOF systems 

neglecting higher modes and nonlinear effects. The basis of vulnerability functions used for 
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damage assessment are typically not well documented and in many cases do not have a rational 

basis. Moreover, cost variability associated with repair or replacement of the structures is often 

not taken into account. 

 

 

2.6.2  Building Specific Loss Estimation Studies 
 

It is obvious that the regional loss estimation does not provide reliable estimation toward an 

individual structure. Less studies to estimate seismic loss for a specified building compared with 

the regional loss estimation studies.  

In order to measure the performance of buildings, various types of performance indices have 

been invented. For example, for drift sensitive buildings such as parking lots, one could set the 

inter-story drift as the performance index; on the other hand, if a building contains valuable non-

structural facilities, one need to develop a comprehensive performance index that incorporates 

the absolute roof acceleration or base shear.  

Scholl (1979) proposed a deterministic component-based loss estimation methodology to 

identify, evaluate and correlate ground motion and structural parameters to improve predicting 

dollar losses in high-rise buildings. A structural model was created for the building and 

maximum floor responses were recorded. Damage to different structural and non-structural 

component categories in the building was defined as a percentage of the replacement cost of the 

component and was estimated using a library of motion-damage functions. The total damage in 

the building was computed as the sum of the damage estimated at different components. Gunturi 

(1993) evaluates the building damage in structural components, non-structural components, and 

contents of a certain story. They performed a nonlinear response history analysis on the 

structural model of the building and developed the damage indices for all three different damage 
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components. The probabilistic nature of earthquake losses in a specific building has been taken 

into account in methodologies developed in late 1990s. Buildings will be excited with ensemble 

of simulated or selected ground motions rather than an individual motion. Monte Carlo 

simulation was used to develop motion-damage relationships for structural damage in low, mid 

and high reinforced concrete moment resisting frames in order to obtain fragility curves and 

damage probabilistic matrices. Porter and Kiremdjian (2001) proposed an assembly-based 

probabilistic loss estimation methodology that accounts for more sources of uncertainty than 

previous studies. The study incorporated the uncertainty in estimating the damage corresponding 

to each component and the uncertainty associated with estimating repair costs as a function of 

damage estimated in the component. 

There are also limitations of existing building-specific loss estimation studies. For example, 

it is usually hard to incorporate collapse of the buildings. Consequently, the effects of collapse 

when estimating losses have typically not been taken into account. In addition, the effects of 

modeling uncertainty in estimating building losses have not been evaluated or propagated when 

estimating building losses. The existing studies also ignore the component level damage. 

Therefore, estimations of the dispersion of the building loss are either significantly over 

estimated or under estimated. Moreover, the component level fragility function for building does 

not provide realistic estimations of the probability of experiencing damage in the component as a 

function of increasing levels of deformation demands. 

In chapter 5 of this study, in order to select the optimal design variables for base isolation 

systems for a building, a comprehensive performance index called total loss ratio has been 

proposed. The comprehensive total loss ratio is based on fragility curves for structural 

components, non-structural components, and the isolation system. The total loss ratio is trying to 
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overcome the limitations of existing building-specific loss estimation, which has been proved an 

effective way of measuring the performance of a specific building against earthquakes. 

 

 

2.7  Data Sampling for Performance-based Design 
 

In order to achieve a performance-based design, it would be ideal if all the possible design 

features of the system were considered. For each design, a performance index (i.g. total loss 

ratio) is computed based on the presented performance model and compared with that of the 

other designs.  

For example, Fig. 2.8 illustrates to the performance index as a function of two different 

design variables. The surface contains 169 nodes, corresponding to all the possible designs 

adopting different values of the two design variables over the user specified range. The 

performance of each design is generated from a fragility analysis undergoing multiple ground 

motions. For this case, variable one ranges from 1000 to approximately 10000; and variable two 

starts from zero and has an upper bond of 3000. The performance index for this case is reflected 

from the displacement fragility curves. All the 169 indices create the 3D surface of the plot. If 

the performance index corresponds to loss, the bottom points on the contour represents the 

smallest loss of a system leading to the repairing cost of a given hazard intensity, which also 

corresponds to a lowest fragility that incurs the best structural performance. The couple of these 

two variables at the bottom (optimizing) points on the surface therefore represent the optimal 

design. 
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Fig. 2.8  Systematic sampling with generated 

performance surface 

Fig. 2.9  Latin hypercube sampling with 

generated performance values 

 

 

Systematically plotting the 3D surface of the performance index against the design variables 

makes it easier to indentify the optimal design range. Although this kind of performance 

evaluation has been applied to many previous works (Aslani and Miranda 2005, Zhang and Huo 

2009), it still has some short comings. First, this method only evaluates two dimensions of design 

variables. In some optimal design cases, more design variables are coupled such that only 

plotting the performance index against two variables makes less sense. Second, the sampling of 

such method creates a mesh of the two design variables, which is a brutal approach that takes 

long time to run all the fragility analyses. This study applies another sampling method called 

Latin hypercube sampling (LHS) to choose the variables in a smarter way. LHS is a well-known 

statistical method for generating a sample of plausible collections of parameter values from a 

multidimensional distribution. A comparison of sampled variable in the case of optimizing two 

variables has been illustrated in Fig. 2.9. By comparing Fig. 2.8 and Fig 2.9, one could notice 

that the LHS method evaluates less designs compared with the approach generating 3D surface. 

Although the plot of LHS is not easy to read, it approaches the similar value of the optimal 

design. For example, in this case, the 3D surface corresponds to the optimal performance index 
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of 1.8275 and the LHS approach corresponds to an optimal performance index of 1.8294. In 

addition, the LHS method would be able to choose design variables in more than two 

dimensions, which would also be useful for future purpose of optimal performance based design. 

 

 

2.8  Error Analysis 
 

In statistics and optimization, the error of a sample is the deviation of the sample from the 

(unobservable) true function value (Faraway 2004). From Eq. (2.2), lna and b can be estimated 

through linear regression between ln(EDP) and ln(IM). Suppose n pairs of (ln(IM), ln(EDP)) 

observations are available, i.e., 

 

1 1 1( ) ( )In EDP Ina bIn IM    , 

⋯, 

( ) ( )n n nIn EDP Ina bIn IM    .                                                (2.9) 

 

where i  is the error of the i
th

 measurement often assumed to be normally distributed with zero 

expectation and constant variance, i.e., 2~ (0, )i N  . For notational simplicity, a matrix 

equation would replace the set of linear equations by: 

 

y   X  .                                                           (2.10) 

 

where 1( ( ), , ( ))T

ny In EDP In EDP … , ( , )TIna b  , 1( , , )T

n   … , and X = [1, x1], with 1=(1, 

⋯,1)
T
 and x1=(ln(IM1), ⋯, ln(IMn)). Following the least-square criterion, β is estimated from: 

 

βls = (X
T
X)

-1
X

T
y.                                                       (2.11) 

 

and σ is defined by Eq. (2.3) and σ
2
 is also written as: 

 

2
2

RSS

n
 


.                                                             (2.12) 
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In Eq. (2.12), RSS, the residual sum of squares, is computed from the sum of squared 

difference between observations (y) and model predictions (ŷ), i.e., 

 

RSS = || y – ŷ ||
2
.                                                         (2.13) 

 

It can be shown that βls follows normal distribution, i.e., 

 

βls ∼ N(β , (X
T
X)

-1
σ

2
).                                                   (2.14) 

 

Thus, with lnâ,  b̂  and their variances σ11 and σ22 estimated from least-square regression, 

95% confidence intervals could be constructed through: 

 

[
11

ˆ 1.96Ina  ,
11

ˆ+1.96Ina  ], 

 [
22

ˆ 1.96b  ,
22

ˆ 1.96b  ]                                             (2.15) 

 

Consequently, a 95% confidence interval for a and b is: 

 

[ 111.96
â e


 , 111.96ˆ+ea


], 

             [
22

ˆ 1.96b  ,
22

ˆ 1.96b  ]                                             (2.16) 

 

Fig. 2.10 shows the fragility curve within 95% confidence interval for inter-story drift and 

absolute acceleration. Inter-story drift regressions usually correspond to larger errors than floor 

acceleration and this is also revealed in Fig. 2.10. In this study, 95% confidence interval 

corresponds to errors around 18% for inter-story drift fragility curves and 4% for the floor 

acceleration fragility curves. Considering sufficient amount of ground motion that provided 

enough sampling points, the general trend concluded from this study is fully reliable and serves 

as an enlightening PBD approach. 
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Fig. 2.10  Fragility curve within 95% confidence interval for inter-story drift and absolute 

acceleration 

 

 

2.9  Other Considerations and Challenges 
 

 

2.9.1  Uncertainties 
 

Uncertainties exist at all stages of the PBEE framework. They are basically classified into 

aleatory uncertainty (i.e., randomness) and epistemic uncertainty. In the hazard analysis, it is 

uncertain what levels of seismic intensity (IM) the building will experience during its lifetime. 

The detailed ground motions that yield those IMs are also uncertain. In the structural analysis, 

the structural mass, damping, and force-deformation behavior are also with some random 

features. Furthermore, the other modeling assumptions during the structural analysis add 

uncertainties to the performance estimation as well. In the damage analysis, it is uncertain that to 

which structural response parameters the structural components are sensible. The 

characterization of damage states is also uncertain. There are uncertainties introduced when 

developing fragility functions, too. In the loss analysis, the economic modeling about cost of loss 

has several assumptions, hence results in uncertainties. All these sources of uncertainty should be 

taken into account in the PBEE framework.  
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The treatment of uncertainties can be performed using a deterministic sensitivity study, 

called tornado-diagram analysis, which measures the change in output performance resulting 

from varying one uncertain input from a lower-bound to upper-bound value, while holding all 

others at their best-estimated values.  

 

 

2.9.2  Soil Structure Interaction 
 

For bridge structure, when considering the structure alone, the actual behavior of the bridge 

under seismic load may significantly differ from that from the analysis since the response of a 

bridge during an earthquake depends not only on the bridge itself, but also on the characteristics 

of the ground motion and the subsoil conditions. Particularly for soft soils, the foundation input 

motion during the earthquake differs from the so-called free-field ground motion that may exist 

in the absence of the bridge. Soil structure interaction (SSI) is proved to be important while 

modeling a bridge structure.  

For buildings, however, SSI effect is found to be insignificant from the aforementioned 

PEER report (Haselton et al., 2007). The report studied in detail about the overview of Soil-

Foundation-Structure Interaction (SFSI) mechanisms. Kinematic and inertial SSI Modeling is 

implemented to the benchmark building using the platform of OpenSees. From the report, it is 

observed that for the benchmark structure, the effects of SFSI on EDPs are minimal. The 

observation is based on the IDA plots comparing EDP response for fixed-base and flexible 

models. Based on the conclusion from the report, SSI effects are not intended to be included in 

this study either. 
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3.  ESTIMATION OF STRUCTURAL DEMAND FOR 

GENERALIZED NONLINEAR CIVIL STRUCTURES 

 

 
This chapter offers an innovative way to realistically predict the residual drift of bilinear 

SDOF systems directly from structural and ground motion characteristics. Along with total drift, 

residual drift provides key information on structural damages. This work proposes a simple yet 

reliable demand model to estimate the residual drift based on the nonlinear time history analyses 

of with different bilinear configurations that subject to a suite of near-fault ground motions. The 

model also incorporates a dimensionless nonlinearity index that takes into account of the pre-

yielding strength, ground motion amplitude, and softening or hardening post-yield behavior. 

Guided by the rigorous dimensional analysis, both the maximum displacement responses and the 

residual drift of bilinear SDOF systems are presented in dimensionless form showing remarkable 

order. Strong correlation is revealed between the normalized nonlinear drift demands, the 

dimensionless structure-to-pulse frequency, and the dimensionless nonlinearity. Regressive 

equations for maximum displacement and residual drift demands are proposed and validated with 

the simulation results. The corresponding error of this approach is shown to be significantly 

lower than any of previous studies. 

 

 

3.1  Introduction 
 

Conventional seismic design approaches rely on the post-yielding behavior to dissipate the 

energy from earthquake motions. However, despite most of these structures are still standing 

after large motions, they end up unusable or irreparable. Larger inelastic behaviors may also 

introduce huge and permanent residual drifts throughout a structure. These residual drifts have 
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become an important consideration in judging a structure’s post-earthquake safety and the 

economic feasibility of repair. Modest amounts of residual drift may require costly and difficult 

adjustments to nonstructural components (e.g., re-plumbing of elevator rails, adjustments to 

building facades) and can lead to judgments that a building is unsafe during post-earthquake 

inspections. Larger residual drifts may require straightening of the structural frame or alternative 

measures to strengthen the frame for stability. At some stage, residual drifts may be large enough 

to seriously jeopardize structural stability to earthquake aftershocks and uneconomical to repair, 

in which case the cost of repair is on par with complete building replacement. (Mackie et al. 

2011). 

It is desirable to evaluate the likely magnitude of residual drifts for both retrofitting existing 

structures and designing new civil structures. In order to accurately measure a residual drift, two 

techniques are usually used: lab tests and nonlinear simulation. Existing shaking table tests 

reveal that the magnitude of residual drift is influenced by the material type and structure 

configuration. Kawashima et al. (1992) showed some individual tested specimen in Public 

Works Research Institute (Tsukuba, Japan). For some ground motions, the tested specimen 

yielded predominantly in one direction. In other words, on the other hand, the residual drifts for 

this case were close to the peak maximum drift. For some other cases, shaking table tests of 

reinforced concrete structures showed significant yielding occurring in both directions of loading 

and residual drifts were much lower than peak maximum drifts (MacRae et al. 1994). In addition, 

tests of some base-isolated structures indicated almost no residual drifts at all (Kawashima et al. 

1991). These lab tests are usually time consuming and the test specimen are relatively expensive 

to construct compared with simulations that requires no lab resources or construction of 

specimen. However, accurate statistical simulation of displacements/drifts requires advanced 
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nonlinear response-history analyses, with a large number of ground motions and with careful 

attention paid to cyclic hysteretic response of the models and numerical accuracy of the 

solutions. 

Since the requirements for lab tests and direct simulations are complicated to implement, 

direct equations trying to estimate residual drifts would be desirable. In fact, researches in the 

past decades have presented equations both estimating maximum inelastic displacement and the 

residual drift. 

Various efforts have been made to estimate the maximum inelastic displacement demand of 

structures under earthquakes. The first widely used approach is the displacement coefficient 

method assuming the inelastic displacement of a yielding structure can be obtained from 

multiplying displacement modification factor(s) and the spectral displacement of a linear elastic 

single degree-of-freedom (SDOF) system having the same initial stiffness and damping 

coefficient as the original nonlinear structure. In additional to the displacement coefficient 

method, the capacity spectrum method adopted by ATC-40 is also commonly used, which 

superposes capacity diagram plots on demand diagram plots to estimate the maximum 

displacement demand through an iterative procedure using a series of equivalent linear systems. 

However, replacing the inelastic spectra with highly damped elastic spectra is questionable, and 

the procedure may not converge to the correct response or it may significantly underestimate the 

deformation for a wide range of periods (Chopra and Goel 2000). Zhang et al. 2011 further 

elaborated the estimation of the maximum displacement for bridge columns by introducing a 

dimensionless nonlinearity index that better captures the bilinear mechanism. 

Similar to estimating maximum displacements, the idea of estimating residual 

displacements/drift has been investigated for decades and various improved procedures on the 
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same subject keep appearing. Riddell and Newmark (1979) and Mahin and Bertero (1981) first 

identified some of the key behavioral aspects associated with calculating residual drifts. MacRae 

and Kawashima (1997) investigated residual displacements in SDOF bilinear oscillators with a 

focus on bridge design. In 2003, Christopoulos et al. and Pampanin et al. conducted analyses of 

SDOF models with the primary emphasis on characterizing the effect of post-yield hardening 

stiffness and hysteretic unloading behavior on response. All the above studies reported residual 

drifts equal to a certain percentage of the total transient drift, depending on the hardening and 

hysteretic model. 

Ruiz-Garcia and Miranda (2005, 2006a-c) had a slightly different approach that expressed 

their results in terms of a parameter, Cr, which related residual drift to elastic spectral 

displacement. They provided different ranges for this ratio within different periods of oscillators. 

After this study, in 2010, they developed a probabilistic estimation of residual drift demands of 

existing multi-story buildings. The proposed method selects an intensity measure of ground 

motions that are scaled to reach the same maximum inelastic displacement demand of an 

equivalent elasto-plastic SDOF system having the same initial lateral stiffness. Advantages of 

this approach are based on the fast computation of SDOF problems and great results from 

regression analysis were presented. Later on, ATC-58 completed the 75% draft in 2011, where a 

set of equations are proposed to relate residual story drift to peak transient story drift. The ATC 

summarized many factors that might influence the residual drift and the document finally 

proposed an estimation of residual drift that incorporates the yielding displacement of a building 

system. 

Previous researches led to the conclusion that predicted residual drifts are sensitive to many 

features from two categories. First, the residual drift is related with the nonlinear system 
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configurations. For example, for a bilinear system, parameters that would influence the 

magnitude of residual drift are the lateral strength of the structure (Qd) relative to the earthquake 

demand, the inelastic post-yield stiffness (ε), and the cyclic unloading configuration of the 

system. The second category is related with earthquake input and response, which includes the 

magnitude of peak transient inelastic drifts, identification of pulses in the ground motions, and 

the duration of ground shaking. Hence, it seems hard but desirable to develop a method to 

evaluate residual drifts without doing much lab tests or running nonlinear analyses. Now that 

research have shown the significance for all these parameters on the residual drift, an ideal 

prediction would incorporate these features. However, because the difficulty to logically put 

many parameters together into an equation, not many studies has achieved this goal so far. 

A mathematically sound approach based on physics method, the dimensional analysis, was 

developed recently to estimate the inelastic response by Makris and co-workers (Makris and 

Psychogios 2006, Makris and Black 2004a-c). The normalized displacement shows remarkable 

similarity, i.e. independent of the earthquake amplitude, for given normalized yielding 

displacement and strength. This work adopts the same concept and provides the estimation of 

maximum inelastic drift as well as the residual drift for a SDOF bilinear system with a focus on 

residual drift. The provided equation relates the drift demands with structure-to-pulse frequency 

ratio, normalized yielding displacement, and normalized strength. The method is efficient in 

reducing the scatter in the engineering demands and can directly estimate the inelastic 

displacement/drift and the residual drift without resorting to the linear response or the maximum 

inelastic displacement. 

The objective for this study is to offer a new way to realistically predict the residual drift 

directly from structural and ground motion characteristics. This part of work is organized as 
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follows. The first section is an introduction of the dimensional analysis framework for a bilinear 

system. The second section include numerical case studies of two famous ground motions 

shaking a sample nonlinear civil structure with observed permanent residual drifts. After that, 

this work proposed equations to estimate peak inelastic drift and residual drift under the 

dimensional analysis framework. Then, the authors proposed a validation of the proposed 

demand model by performing a detailed error analysis. 

 

 

3.2  Dimensional Analysis and Simulation Framework for Nonlinear 

Structures 
 

In order to evaluate the post earthquake residual drift, this study applies a set of 

dimensionless parameters to describe the normalized structural responses of a SDOF bilinear 

systems with remarkable order. The near-fault ground motions are selected because of their 

devastating effects on structures and kinematic characteristics of exhibiting distinguishable 

pulses that are compatible with the dimensional analysis. 

 

 

3.2.1  Dimensional Analysis Framework for Nonlinear Structures 
 

This study adopts a comprehensive study of nonlinear response under the framework of 

dimensional analysis. The proposed approach emerges from formal dimensional analysis first 

used by Makris and co-workers (Makris and Black 2004a-c) on elastic fixed-base structures and 

later extended to inelastic soil-structure systems (Zhang and Tang 2009), bridge columns (Zhang 

et al. 2011), and the nonlinear damping systems (Zhang and Xi 2012). The powerful framework 

provides an effective way of interpreting the otherwise largely scattered inelastic structural 

responses from time history analysis using recorded ground motions. By normalizing the 

inelastic drift demand with respect to the energetic length scale of ground motions, the similar 
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response (i.e. independent of the intensity of ground motions) can be obtained. Here the 

dimensional analysis of a bilinear SDOF system is briefly discussed to provide the logical and 

mathematic background behind the proposed residual drift demand model for civil structures. 

The dimensional analysis framework is based on the existence of a distinct time scale and 

length scale that characterize the most energetic component of the ground shaking. Such time 

and length scales emerge naturally from the distinguishable pulses and pulse-like near-fault 

ground motions (e.g. the acceleration amplitude pa  and duration pT  of the pulses), which 

dominate a wide class of strong earthquake record. For a bilinear SDOF system subject to a 

general pulse-type ground motion that can be characterized by its amplitude pa  and frequency 

p  (or equivalently 2 /p pT   ), its equation of motion can be expressed as: 

 

2 ( , ) ( )s s s y s p pu u u f u u a g t                                                  (3.1) 

 

 

where yu  is the yield displacement, /s s sk m  is the circular frequency computed using the 

initial stiffness sk and structural mass sm , and the function ( , )sf u u  describes the nonlinear 

resisting force-displacement relationship that depends on the yield displacement yu and post-

yield stiffness hardening ratio  . Given a specific waveform ( )g t  of input ground acceleration, 

the peak displacement and the residual displacement of a bilinear SDOF system becomes a 

function of six variables (seven terms in the expression): 

 

max max(| ( ) |) ( , , , , , )s s y p p
t

u u t f u a                                            (3.2) 

end(| ( ) |) ( , , , , , )R s s y p p
t

u u t f u a                                              (3.3) 
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The seven terms appearing in Eq. (3.2) involves only two reference dimensions that are 

length [L] and time [T]. According to Buckingham’s  -theorem (Barenblatt 1996), the number 

of independent dimensionless  -parameters is determined as: (7 variables) – (2 reference 

dimensions) = 5  -parameters. By normalizing the response to the characteristic length scale of 

ground motion, the normalized peak displacement ( 2

max /u p pu a  ) and the normalized 

residual displacement ( 2 /R end p pu a  ) become functions of the normalized frequency 

( /s p    ), structural damping ratio ( s   ), normalized structural yielding displacement 

( 2 /uy y p pu a  ) or equivalently the normalized strength ( /Q y s pQ m a  ), and post-yield 

stiffness ratio (    ), which is formulated as follows. 

 
2

max
( , , , ) ( , , , )

p

u u uy u Q

p

u

a
     


                                   (3.4) 

2

( , , , ) ( , , , )
end p

R R uy R Q

p

u

a
     


                                   (3.5) 

 

 

For a bilinear SDOF system, by normalizing the inelastic displacement demand with respect 

to the energetic length scale of ground motions, the similar response (i.e. independent of the 

intensity of ground motions) can be obtained. Under this powerful framework, one could 

conjecture that meaningful physical quantities involved in the nonlinear drift demand model for 

the SDOF bilinear system will include ground motion intensity measure (i.e. pulse acceleration, 

pa  or peak ground acceleration, ga ), ground motion frequency content (i.e. pulse frequency, p ), 

and structural characteristics (i.e. yield strength yQ , yield displacement yu , post-yield stiffness 

pk , and natural frequency, s ), etc. 
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In order to estimate the residual drift accurately, appropriate dimensionless quantities need to 

be derived and then evaluated in terms of their influence on the dimensionless drift demand. In 

additional to the above-defined  terms, Zhang et al. (2011) introduced another dimensionless 

measure NL  to capture the complex hysteretic nonlinear behavior of a bilinear oscillating 

system with the understanding of the direct impact of the energy dissipation mechanism. This 

term is expressed as follows: 

1 1

1 / 1

s g s g

NL

y p e y

m a m a

Q k k Q 

   
         

                                      (3.6) 

 

where ms is the deck mass; ga  is the input peak ground acceleration; yQ  and yu  are yield 

strength and yield displacement of the bilinear system; and ( yQ / yu ) and pk  are pre-yield and 

post-yield stiffness, respectively. The first term /s g ym a Q  in Eq. (3.6) is similar to the inverse of 

the normalized strength Q  identified before in dimensional analysis except the pulse amplitude 

pa  is replaced by the peak ground acceleration ga . This term indicates that the smaller the 

strength relative to the structural mass or the larger the input ground motion will result in larger 

nonlinearity in the structure. The second term 1/ (1 )  represents either reduced or increased 

energy dissipation capability due to softening ( pk <0) or hardening ( pk >0) behavior with 

reference to the elasto-plastic system. 

 

 

3.2.2  Pulse Type Ground Motions 
 

In this study, seventy-five near-fault ground motions are selected to study the nonlinear 

responses. Various studies have demonstrated that near-fault motions can impose extreme 

demands on structures, much more than the far-field records (Bertero et al. 1978, Hall et al. 1995, 
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Malhotra 1999, Alavi and Krawinkler 2004). Near-fault ground motions often show impulsive 

characteristics exhibiting distinguishable pulses in their velocity and displacement time histories, 

occasionally also in acceleration time histories. The relatively long period pulses in near-fault 

ground motions are closely related to the seismological aspects of earthquakes, such as source 

mechanism, fault slip, and rupture directivity (Somerville 2003). 

The pulses are directly related with the rise time and slip velocity of faulting, and can be 

formally extracted with various established methods. The peak inelastic drift and the residual 

drift is found to correlate well with the structure-to-pulse period ratio, /s pT T  (Cuesta and 

Aschheim 2001, Alavi B, Krawinkler 2001, Mavroeidis et al. 2004, Akkar et al. 2004, Gillie et 

al. 2010). In 2010, Tang and Zhang proposed an improved method to derive the pulse 

representations using different pulse models. Their work also identified seventy-five pulse-like 

ground motions (twenty-five acceleration pulse motions and fifty velocity pulse motions) and 

their respective pulse representations. This ensemble of pulse-type motions are inherently used 

for this study and the detailed information has been provided in Chapter 2. 

 

 

3.3  Inelastic Drifts for Bilinear SDOF Systems 
 

Although estimating the inelastic drift is an uneasy goal, the aforementioned study to 

estimate peak inelastic displacement by Zhang et al. (2011) have been proved an innovative and 

accurate approach. On the other hand, that study was focused on the performance of a series of 

shear flexural interacted concrete columns. Therefore, in additional to the defined   term that 

captures the general nonlinearity of a bilinear system, aspect ratio of the column is involved in 

their prediction as well as the regression was made considering the shear flexural interaction 

(SFI) effects. Actually, real structures may include other complicated behaviors based on 
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different structure configurations. For example, in a recent paper by Dupuis et al. (2013), six 

shaking table tests show that by increasing the axial load helps to reduce the horizontal inelastic 

drift. However, this study tends not to incorporate such specified features into the estimation of 

residual drift for two reasons: first, these configurations are sometimes structure-specific and 

none of them can represent most of the other structures; second, incorporating various structure-

specific features significantly complicates the model. 

Another purpose of this study is to propose a general methodology of predicting the residual 

drift demand based on which extensive studies could be followed for specific structures. The 

bilinear model, on the other hand, has been generally recognized as a fundamental model to 

capture the nonlinear behavior. As an example, a bilinear system (Period 0.8 sec) is created with 

properties given in Table 3.1. The bilinear model was sampled to match the behavior of a real 

bridge column system, which is introduced in the validation part of this study. The system has a 

linear damping ratio of 1.5%, 0% nonlinear damping, and a 5% post-yielding stiffness. Such 

system is excited with two presented motions (Record #17, #26 from table 2.2 and 2.3) and the 

nonlinear time history responses are illustrated in Fig. 3.1(a). It can be clearly observed that 

residual drifts occurred after both ground motions hit the structure. 

 

Table 3.1  Sample bilinear system configuration modeled according to a bridge column 
 

Mass w o ξ D y ε Π ξn

N-sec 2 /m rad/sec - m - -

926360 7.85 1.50% 0.0295 5% 0  
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 Max Drift: 3.66%; Estimated: 2.61%; 

Error: 28% 

 Max Residual Drift: 0.45%; Estimated: 

0.46%; Error: 1.8% 

 Max Drift: 5.46%; Estimated: 5.85%; 

Error: 7.3% 

 Max Residual Drift: 0.95%; Estimated: 

0.73%; Error: 23% 

Fig. 3.1  Nonlinear response from two presented motions (#17 KJMA and #26 Pacoima Dam), 

(a) Time history, (b) System acceleration-drift behavior with 5% damping ratio 

 

 

The hysteretic behavior of the bilinear system is illustrated by Fig. 3.1(b). The red circles 

locate the positions where the system motion stopped. Record #17 pushes the system to a peak 

transient drift of 3.66%. The motion of the SDOF system stopped at 0.45% residual drift. The 

next section of this study proposes a detailed method of estimating these inelastic drift demands. 

According to the proposed equations, the estimated peak transient drift is about 2.61%, 

corresponding to a 28% error. However, the estimated residual drift is 0.46%, which is very 

close to the computed residual. For record #26, the estimation has a 7.3% error for peak transient 

drift and a 23% error for residual drift. 

(a) 

(b) 
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3.4  Estimation of Inelastic Drift Ratios for Nonlinear Systems 
  

3.4.1  Estimation of Peak Inelastic Drift Ratio 
 

Before estimating the residual drift, an estimation of peak transient inelastic drift ratio is 

presented. For a generalized civil structure, this study recommends an estimated inelastic drift in 

the following format: 

 
2 3 3

1 4

c c c

U NL NLc c


                                                          (3.7) 

 

 

where 1c  to 3c are constants to be determined from regression analysis aiming at minimizing 

error compared with numerical analyses. One could also notice that the normalized peak inelastic 

drift ratio is related with the structure-to-pulse frequency ratio /s p     and the nonlinear 

index NL  shown in Eq. (3.6). 4c  in Eq. (3.7) is the upper bound for the first term 2

1

c
c


  in 

case  and 1c are close values. For a simplified bilinear system, the estimation formula for the 

inelastic drift ratio under the dimensional framework is expressed in Eq. (3.8): 

 
1.4 0.15 0.152.0U NL NL

                                                        (3.8) 

 

Fig. 3.2 plots the normalized drift demand U  of a bilinear SDOF system against the 

structure-to-pulse frequency ratio   for the same sample bilinear case listed in Table 3.1. The 

dotted curve corresponds to the simulated values and the squares are the predictions from Eq. 

(3.8). For this specific case, the overall error between these curves is less than 25%. The 

validation section of this study will further evaluate the presented formulas and their accuracy 

compared with other approaches provided previously. 
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Fig. 3.2  U -   relation for a bilinear system (T = 0.8 sec, 5% post yield hardening, 1.5% 

linear damping ratio) 

 

 

In the later part of this chapter, this proposed approach will be compared with the ATC-40 

approach, which superposes capacity diagram plots on demand diagram plots to estimate the 

maximum displacement demand through an iterative procedure using a series of equivalent linear 

systems. Better accuracy of Eq. (3.8) has been proved over the ATC-40 approach from error 

analysis. 

 

 

3.4.2  Estimation of Residual Drift Ratio 
 

The residual drift is not only sensitive to U  and  , but also highly sensitive to the post-

yielding stiffness ratio  . Based on this understanding, a set of regressive models are proposed 

to predict the inelastic drift ratio and the residual drift. 

For prediction of residual drift R , the regression procedure first adopts Weibull function to 

identify the relation between R  and  . Weibull function is chosen here because it 

comprehends different variations for nonlinear curve fitting. Fig. 3.3 shows four variations of 
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Weibull function. Mathematically, the Weibull function between variable y and x is presented in 

Eq. (3.9): 

 

1
b

xb
ax

y c e
a

         
  

 
                                                          (3.9) 

 

where a, b, c are constants, x is non-zero and not infinitely large or small. Taking log for both 

side of Eq. (3.9), one could get: 

 

1log log (log log )
b

b b

b

x
y x ac a

a

                                         (3.10) 

 

Eq. (3.10) shows that a Weibull function provides the option to fit log( )R  with functions of 

 and/or log( ) . This study performed a nonlinear fitting to study the correlation between 

R  and  . In order to minimize the error, the fitting procedure suggests constant zero value 

for b, which indicates that a linear relationship between R and   in log space. 

 

0 2 4 6 8
0

5

10

15

x

y

C
1
 = 2, C

2
 = 0, C

3
 = 1.5

0 2 4 6 8
0

0.5

1

1.5

x

y

C
1
 = 2, C

2
 = 1.5, C

3
 = 3

0 2 4 6 8
0

0.5

1

1.5

2

x

y

C
1
 = 10, C

2
 = 1.5, C

3
 = 4

0 2 4 6 8
0

0.2

0.4

0.6

0.8

x

y

C
1
 = 2, C

2
 = 5, C

3
 = 1.4

 

Fig. 3.3  Demonstrations for different variations for Weibull function 
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Although the Weibull function suggests a correlation between log( )R  and log( ) , it is 

still hard to provide the estimation formula for residual drift. Different formats of functions are 

systematically chosen with values of  , NL , R and   that makes physical sense and 

minimizes overall error at the same time. 

Similar to estimating the peak inelastic drift, an initial guess of the residual drift would be in 

the format of: 

 
6 7

5

c c

R NLc                                                            (3.11) 

 

where 5c , 6c , and 7c are constants to be determined. However, this format could not incorporate 

the post-yielding stiffness ratio . In addition, by setting 5c , 6c , and 7c constants, the influence of 

the nonlinearity is not significant enough to capture the change of residual drift. 

With these remarks, huge effort of trial and error lead to the finalized formula of estimating 

the residual drift 

 
1

2.4
0.1520

1
( )     ( 25%)
4

0   ( 25%)

NL

NL
R

 



 
   

  
 

                                (3.12) 

 

 

Eq. (3.12) is generally applicable for most of civil structures as they have smaller post-

yielding stiffness than 25%. Compared with Eq. (3.11), 5c  and 6c  are not fixed as constants in 

the proposed formula and the updated coefficients involve the post-yielding stiffness ratio and 

the nonlinearity term NL . One could notice that R  increases with NL , which means when a 

system has larger nonlinearity, the estimated magnitude of residual drift gets larger. In addition, 
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R  decreases when the system's post yield stiffness   gets larger. Notice that when   is 

approaching 25%, estimation from Eq. (3.12) would be zero. This would not be the fact since the 

system is still nonlinear where residual drift could occur. However, when   gets larger, most of 

the post-earthquake residual drifts can be minimized that estimation of zero residual would still 

be reasonable with small errors. 

Fig. 3.4 plots the normalized residual drift R  of two different bilinear SDOF systems versus 

 . One could easily see that the system with 1% post-yielding stiffness and earlier yielding 

(smaller /DQ W values) corresponds to larger residual drifts than the other system that yields 

later with 5% post-yielding stiffness. The estimated values for the two bilinear cases are 

expressed with solid red line and dotted black line in Fig. 3.4, which are reasonably close to the 

simulated data. 
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Fig. 3.4  Two different systems and their estimation of residual drifts 

 

Notice that all the residual drifts less than 0.1% have been removed in this study as they are 

negligible. This filtering procedure will be further discussed as it also helps the error analysis in 

the later part of this chapter. 
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3.4.3  Correlation between Peak Inelastic Drift Ratio and Residual Drift Ratio 
 

Existing studies tend to estimate residual drift by modifying the peak inelastic drift of the 

yielding structure. For example, In 2000 JSCE code, the residual drift after a system exceeds the 

yielding strength is provided as Eq. (3.13): 

 

max max
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                                     (3.13) 

 

where, maxU , y and R are the maximum inelastic displacement, yield displacement and residual 

displacement, respectively; R is response ductility factor of a bilinear system (i.g. columns) 

( R = maxU / y ); is the post-yield stiffness ratio; RC  is a displacement factor depending on  , 

and RC  is set as 0.5 for RC piers based on the residual displacement response spectrum 

(Kawashima et al. 1998). 

However, setting RC at a constant value turns out to be inaccurate, which is illustrated in Fig. 

3.5. In fact, for an inelastic response ( maxU y  ), RC  can be back-computed from Eq. (3.13) 

when its residual drift and maximum drift are provided: 

 

max

=
( )(1 ) ( )(1 )

R R
R

U y U Dy

C


   




    
                                     (3.14) 

 

Fig. 3.5(a) shows the calculated RC  from Eq. (3.13) compare with the normalized results 

obtained from numerical analyses. It is obvious that the JSCE code is generally under estimating 

RC . In addition, a significant over estimation happens near 2.5 of normalized displacement U . 
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This  indicates a big error of JSCE estimation. Fig. 3.5b shows the relationship between RC  and 

 , which is highly scattered. Fig. 3.5c shows the relationship between log( )RC  and log( ) , 

which is also scattered. Nevertheless, the relation between log( )RC  and log( ) is relative 

closer to a linear fit, which corresponds to the following relation: 

 
2

1

C

RC C                                                                (3.15) 

 

where 1C and 2C  are coefficients that are related to the bilinear system configuration yet to be 

determined. However, this approach becomes pointless because the large scattering of the data 

from the proposed equations. 
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Fig. 3.5  JSCE formula. (a) Comparison of JSCE code and analytical data, (b) Relation between 

RC  and  , (c) Relation between RC  and   in log space 

 

 

Different from the above approach, this study establishes a better correlation between U and 

R  using the dimensional analysis. The variable RC  is redefined by dividing R  by U . For a 

system with  smaller than 25%, the new expression is presented in Eq. (3.16): 
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Eq. (3.16) indicates that RC  and   are correlated in such format closer to Eq. (3.15). The 

coefficients 1 25%C    and 2 / 20 1NLC    are now dependent on the system configuration. 

Instead of a constant value, this newer RC  establishes a dynamic relation between the maximum 

absolute drift and the residual drift that considers the system nonlinearity and the ground motion 

characteristics. 

The proposed predictions for R  and RC  represent significant improvements over the 

existing residual drift demand models. The estimation of residual drift does not simply apply a 

coefficient to peak inelastic displacement. Instead, residual drifts are directly evaluated by the 

normalized drift demands without running nonlinear time history analyses. There are four 

benefits of such approach: 1) the prediction does not rely on a provided peak inelastic drift. An 

accurate peak inelastic drift can only be obtained from lab tests or numerical approaches. On the 

other hand, existing estimation of maximum inelastic drift creates an error that will be 

propagated if the result is further used to estimate residual drift. 2) The result of the prediction is 

in an ordered form under the framework of dimensional analysis. The prediction is more reliable 

and meaningful than any other existing approaches as it not only incorporates the features of 

different bilinear systems but also considers the ground motion characteristics. 3) A better 

relationship between the inelastic drift U and the residual drift R has been established. 

 

 

3.5  Validations of the Proposed Method 
 

This section tests the accuracy of the proposed residual drift demand model provided in Eq. 

(3.12) above. Different bilinear configurations and different near-fault pulse-type ground 

motions are used to compute the nonlinear responses. Errors of the proposed method and other 
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existing approaches are presented. Different configurations of bilinear systems have been used 

for the validation and the results are presented in tables. In order to keep these tables short, ten 

out of seventy-five near-fault pulse type motions are randomly selected for this study. Table 3.2 

lists the ten ground motions selected for the validation section. 

 

Table 3.2  Ten pulse-type motions for validation of dimensionless residual drift 
 

Number Earthquake Year Magnitude Fault mechanism Station Pulse Distance to fault PGA 

Mw
Name Direction (km) (g)

8 PALMSPR/HCP 1986 6.1 Reverse–Oblique Hurkey Creek Park 197 29.83 0.2425

9 WHITTIER/A-NOR 1987 6 Reverse–Oblique Norwalk-Imp Hwy, SGrnd 190 20.42 0.2531

10 WHITTIER/B-ALH 1987 5.3 Reverse–Oblique Alhambra-Fremont School 77 14.02 0.2485

25 LOMAP/LEX 1989 6.9 Reverse–Oblique Los Gatos-Lexington Dam 38 5.02 0.5221

26 SFERN/PUL 1971 6.6 Reverse Pacoima Dam (upper left 

abut)

195 1.81 1.5161

27 IMPVALL/H-AEP 1979 6.5 Strike-slip Aeropuerto Mexicali 233 0.34 0.4071

34 IMPVALL/H-E07 1979 6.5 Strike-slip El Centro Array #7 233 0.56 0.521

50 CAPEMEND/PET 1992 7 Reverse Petrolia 260 8.18 0.7096

54 NORTHR/SCS 1994 6.7 Reverse Sylmar-Converter station 32 5.35 0.5943

69 Chichi/TCU 1999 7.6 Reverse–Oblique TCU136 136 8.29 0.1874  
 

 

3.5.1  Six Bilinear Configurations to Represent Generalized Civil Structures 

 

In addition to different ground motions, the proposed method has been evaluated by 

investigating the inelastic response of a real bridge column model whose primary curve shows 

close enough behavior to a bilinear SDOF system. The sample system has a total deck mass of 

926 Mg and the initial elastic stiffness ek  equals 57 /MN m , corresponding to a structural period 

around 0.75 sec. The post-yielding stiffness =5% =2.85 /p ek k MN m  and yield strength 

0.8yQ MN . In additional to the given column model, five other SDOF systems with same 

elastic stiffness ek  but different post-yielding stiffness pk and yield strength yQ are simulated: 

 Small post-yielding stiffness =1%p ek k with yield strength yQ ; 

 Larger post-yielding stiffness =10%p ek k with yield strength yQ ; 

 Intermediate post-yielding stiffness =5%p ek k  with yield strength 2 yQ ; 
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 Intermediate post-yielding stiffness =5%p ek k  with yield strength 4 yQ ; 

 Intermediate post-yielding stiffness =5%p ek k with yield strength 8 yQ ; 

 

 

3.5.2  Comparison of the Proposed Formula with Existing Methods 

 

Two existing methods to predict the residual drift ratio, the ATC-58 equation and the 

aforementioned JSCE formula, have also been evaluated and their estimations have been 

compared with the proposed method. These two models were selected because they were also 

developed using the non-degrading bilinear SDOF models subject to ground motions. 

The method presented by ATC-58 is a piece-wise estimation of residual drift, which 

categories the residual drift to three expressions at different peak inelastic drift levels, which are 

shown in Eq. (3.17). 
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                                          (3.17) 

 

where r is the notation for residual drift,  stands for the peak transient drift, and y is the 

yielding drift. Residual drift is considered zero for the first phase when the system moves within 

its elastic range. The second phase and the third phase are calibrated such that when the ductility 

ratio is around four, the ratio of residual to peak transient drift is 0.23. Moreover, for ductility 

ratios near two and six, the ratios of residual to peak transient drift are 0.15 and 0.5, respectively. 

Ultimately, as the collapse point is reached, the residual drift will approach the peak transient 

drift. 

The advantage of this approach is the dynamic calibrated coefficient that links the residual 

drift with the peak transient response. For example, at 3% total peak drift, the predicted residual 



 74 

drift would be 0.2 times the peak drift ratio. At 5% total drift, the predicted residual would be 

0.38 times the peak transient drift. Then, the coefficient goes up to 0.56 times the peak transient 

when 7% total peak drift is reached. This Drift - intensity relation is illustrated in Fig. 3.6. 
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Fig. 3.6  ATC-58  Idealized model to estimate residual story drift from peak transient drift as a 

function of ground motion (GM) intensity 

 

 

 

However, the ATC-58 formula comes with short comings. First, ATC equations won't be 

functional without estimated peak inelastic drift. Before estimating residual drift, one should 

provide methods to obtain the peak inelastic response and the accuracy of the peak inelastic drift 

can be questionable. In addition, the ATC equations only predict residual drifts for a narrow 

range of building systems. The equations do not consider nonlinearity effects for more 

generalized structures or distinguish between many of the behavioral effects that affect residual 

drifts. One could notice that the ATC equations contain no post-yielding stiffness. Therefore, the 

influence from post-yielding stiffness to the residual drift is not reflected in the equations except 

insofar as the post-yielding stiffness affects the peak transient drift ratio. The equations are 

presented in this simple format owing to the lack of physical data to validate modeling of 

residual displacements and due to the complexity of obtaining significant improvements in the 
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residual drift estimates. These deficiencies are eliminated by Eq. (3.12) of this study, which fully 

captures the bilinear behavior for estimating residual drifts under the dimensional analysis 

framework. 

Another approach that has been compared with Eq. (3.12) is the prediction of residual drift 

from the 2000 JSCE code. As shown in Eq. (3.13), the estimation of residual drift R  is also 

based on the peak inelastic drift maxU , which is hard to obtain without running simulations. 

Estimation of the inelastic displacement may introduce an error that will propagate to a larger 

error. In addition, the variable RC  has been proved far from being accurate. The estimated 

residual drift would be inaccurate due to the lack of connections between residual drift and the 

bilinear configurations. 

Fig. 3.7 shows the normalized residual drifts R  solved from the nonlinear time history 

analyses and those predicted by the proposed demand model as well as the two published 

methods mentioned above. In this case, a system with 5% post-yielding stiffness and 17.5% 

strength to weight ratio is simulated and plotted with black squares. In addition, the proposed 

prediction in this study, the ATC prediction, and the JSCE prediction are plotted with red pluses, 

blue circles, and greed dots, respectively. The proposed model yields acceptable predictions on 

residual drift (64% error) whereas the ATC and JSCE formula produce larger dispersion, 

generating huge errors. In addition, when structure frequency is very close to the pulse frequency 

( 1  ), the dispersion of the simulated data becomes relatively large such that the errors 

increase near this range of normalized frequency. 
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Fig. 3.7  Validation of proposed method by comparing with analytical data and the existing 

methods 

 

 

 

3.5.3  Error Estimation for the Proposed Method 

 

The accuracy of the proposed method is further proved by an error analysis. Traditionally, 

the overall normalized error is computed by the Eq. (3.18): 
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where N is the number of cases computed, R
i
 stands for the simulated residual drift for the i

th
 

ground motion, and i

predictR is the predicted residual drift. However, Eq. (3.18) is not the best 

formula to compute the error for residual drifts. One observation from the simulated results is 

that some ground motions may cause large peak inelastic displacements while those bilinear 

systems rest at their original locations. In other words, for some situations, the residual drifts 

might be extremely small and negligible. On the other side, these tiny residual drifts tends to 

create huge errors from Eq. (3.18). Therefore, an updated equation to estimate error for residual 

drift ratio is given as: 
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where N  excluded all the cases with residual drifts smaller than 0.1%. For example, this 

approach eliminates about 10%-15% cases for bilinear systems with post-yielding stiffness pk  

around 1%-5% of the elastic stiffness ek . Increasing the post-yielding stiffness and/or increasing 

the yielding displacement will tend to reduce the residual drift. Consequently, the eliminated 

cases will also increase. 

In order to cover a wider range of civil structures, estimations of residual drifts for all the six 

aforementioned cases of bilinear systems have been performed. Each table from Table 3.3(a) to 

Table 3.3(e) corresponds to one configuration of bilinear system. The second and the third 

column in each of the tables are the numerically simulated peak inelastic drifts and residual drifts 

for the bilinear system. The fourth to seventh column is the ATC predictions of peak inelastic 

drifts and residual drifts and their corresponding error. The eighth column is the JSCE prediction 

of residual drifts and the errors are given in the ninth column. The last four columns are the 

estimations and errors of peak inelastic drifts and residual drifts from this study. 
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Table 3.3  Validation data from ten motions for six different systems 
Qd/Weight = 8.77% ε = 0.01

Eq # Dmax (%) DR (%) Dmax est (%) error (%) DR est (%) error (%) DR est (%) error (%) Dmax est (%) error (%) DR est (%) error (%)

8 0.343 0.177 0.442 28.744 0.033 81.157 0.055 68.909 0.330 3.910 0.207 17.004

9 0.762 0.375 0.578 24.199 0.159 57.529 0.263 29.922 0.588 22.815 0.154 58.890

10 0.343 0.202 0.523 52.280 0.033 83.467 0.055 72.721 0.330 3.937 0.180 10.781

25 5.239 2.500 1.097 79.067 5.099 104.005 2.754 10.171 1.800 65.637 0.301 87.967

26 5.614 4.344 3.158 43.743 6.349 46.168 3.373 22.359 5.483 2.319 0.800 81.589

27 2.161 0.343 0.780 63.905 1.465 327.297 0.955 178.493 1.763 18.433 0.160 53.279

34 6.366 1.117 0.606 90.482 8.856 692.872 4.613 313.037 3.177 50.094 0.188 83.151

50 5.541 1.166 1.351 75.616 6.107 423.637 3.253 178.894 3.412 38.422 0.276 76.348

54 6.430 0.637 0.865 86.543 9.072 1323.882 4.720 640.873 3.565 44.554 0.266 58.272

69 2.379 1.553 0.270 88.662 1.683 8.388 1.063 31.557 1.717 27.845 0.059 96.216

average 63.324 314.840 154.694 27.796 62.350

Computed ATC prediction JSCE prediction Our prediction

 
(a) 

Qd/Weight = 8.77% ε = 0.05

Eq # Dmax (%) DR (%) Dmax est (%) error (%) DR est (%) error (%) DR est (%) error (%) Dmax est (%) error (%) DR est (%) error (%)

8 0.338 0.150 0.382 12.979 0.029 80.694 0.046 69.433 0.330 2.487 0.172 15.083

9 0.793 0.315 0.343 56.742 0.165 47.443 0.262 16.785 0.593 25.240 0.129 58.913

10 0.340 0.164 0.477 40.295 0.029 82.065 0.047 71.604 0.330 2.974 0.150 8.631

25 5.265 0.242 1.005 80.912 5.158 2031.982 2.680 1007.628 1.930 63.345 0.273 12.814

26 5.460 0.948 3.586 34.327 5.809 512.955 2.989 215.390 5.861 7.330 0.728 23.151

27 2.022 0.441 0.483 76.110 1.296 194.162 0.846 91.846 1.814 10.256 0.139 68.433

34 5.397 0.394 1.082 79.950 5.597 1321.352 2.888 633.477 3.369 37.581 0.176 55.416

50 5.110 0.335 1.249 75.557 4.641 1285.683 2.434 626.787 3.615 29.249 0.253 24.377

54 5.958 0.237 0.801 86.557 7.470 3048.820 3.778 1492.520 3.841 35.529 0.255 7.427

69 1.954 0.529 0.418 78.611 1.229 132.340 0.813 53.787 1.764 9.717 0.052 90.262

average 62.204 873.750 427.926 22.371 36.451

Computed ATC prediction JSCE prediction Our prediction

 
(b) 

Qd/Weight = 8.77% ε = 0.1

Eq # Dmax (%) DR (%) Dmax est (%) error (%) DR est (%) error (%) DR est (%) error (%) Dmax est (%) error (%) DR est (%) error (%)

8 0.335 0.119 0.452 35.148 0.024 79.957 0.036 69.936 0.330 1.341 0.129 8.579

9 0.824 0.233 0.458 44.450 0.171 26.823 0.256 9.765 0.600 27.138 0.098 57.903

10 0.337 0.140 0.510 51.424 0.024 82.468 0.037 73.702 0.330 1.885 0.113 19.259

25 5.379 0.250 0.873 83.763 5.499 2097.315 2.704 980.571 2.046 61.963 0.221 11.515

26 5.310 0.302 2.088 60.679 5.268 1643.848 2.600 760.767 6.133 15.492 0.584 93.418

27 1.783 0.315 0.803 54.974 1.018 223.101 0.688 118.311 1.850 3.748 0.107 65.886

34 4.729 0.410 0.978 79.312 3.963 867.265 2.013 391.335 3.457 26.897 0.139 65.966

50 4.798 0.196 1.399 70.833 4.032 1957.313 2.044 942.993 3.755 21.732 0.204 4.261

54 6.081 0.161 0.938 84.580 7.838 4767.269 3.757 2232.906 4.097 32.620 0.223 38.472

69 1.536 0.107 0.355 76.881 0.771 620.518 0.577 438.961 1.788 16.400 0.040 62.914

average 64.204 1236.588 601.924 20.922 42.817

Computed ATC prediction JSCE prediction Our prediction

 
(c) 
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Qd/Weight = 17.54% ε = 0.05

Eq # Dmax (%) DR (%) Dmax est (%) error (%) DR est (%) error (%) DR est (%) error (%) Dmax est (%) error (%) DR est (%) error (%)

8 0.351 0.007 0.542 54.717 0.005 * 0.000 0.313 10.759 0.166

9 0.937 0.197 0.404 56.850 0.136 30.978 0.215 9.284 0.587 37.315 0.128 34.979

10 0.406 0.119 0.296 27.180 0.005 95.806 0.000 100.000 0.320 21.221 0.147 23.055

25 5.332 0.052 0.681 87.222 4.656 2.671 1.841 65.469 0.257

26 5.301 0.178 2.100 60.381 4.553 2452.117 2.622 1369.772 5.535 4.420 0.675 278.101

27 0.889 0.181 0.738 16.991 0.122 32.901 0.193 6.241 1.744 96.153 0.132 27.452

34 4.473 0.200 0.689 84.607 3.022 1414.567 1.895 849.630 3.148 29.615 0.154 22.622

50 3.923 0.466 1.382 64.772 2.472 431.007 1.634 250.895 3.395 13.467 0.228 51.012

54 5.212 0.218 1.141 78.109 4.255 1849.079 2.481 1036.244 3.547 31.941 0.220 0.615

69 0.737 0.200 0.288 60.925 0.076 61.904 0.121 39.681 1.696 130.028 0.048 76.014

average 59.175 796.045 457.718 44.039 64.231

* The error for residual drift smaller than 0.1% is considered meaningless

Computed ATC prediction JSCE prediction Our prediction

 
(d) 

Qd/Weight = 35.10% ε = 0.05

Eq # Dmax (%) DR (%) Dmax est (%) error (%) DR est (%) error (%) DR est (%) error (%) Dmax est (%) error (%) DR est (%) error (%)

8 0.351 0.007 0.458 30.516 0.005 * 0.000 0.282 19.571 0.153

9 1.068 0.017 0.505 52.702 0.030 0.048 0.584 45.367 0.127

10 0.406 0.119 0.325 19.936 0.005 95.806 0.000 100.000 0.288 29.001 0.135 12.919

25 5.279 0.188 0.953 81.949 3.029 1514.592 2.358 1156.646 1.779 66.301 0.247 31.760

26 4.164 1.424 3.527 15.297 1.262 11.323 1.518 6.661 5.293 27.105 0.638 55.194

27 1.187 0.306 0.692 41.665 0.066 78.495 0.104 65.950 1.735 46.216 0.131 57.351

34 3.527 0.212 0.792 77.550 0.768 262.859 1.216 474.526 3.050 13.534 0.147 30.758

50 2.526 0.373 1.321 47.721 0.468 25.371 0.740 98.504 3.281 29.890 0.217 41.856

54 4.656 1.746 1.264 72.844 1.755 0.471 1.752 0.335 3.414 26.680 0.207 88.159

69 1.125 0.051 0.241 78.536 0.047 0.075 1.692 50.391 0.048

average 51.872 284.131 271.803 35.406 45.428

* The error for residual drift smaller than 0.1% is considered meaningless

Computed ATC prediction JSCE prediction Our prediction

 
(e) 

 

 

First, the estimation of peak inelastic drift this study proposed directly from structural and 

ground motion characteristics has been proved an accurate one. Errors of the presented method 

range from 20% to 50%. Compared with the proposed approach, the ATC-40 approach of 

estimating peak inelastic drifts is less accurate with approximately more than 50% error. ATC-40 

replaces the inelastic spectra with highly damped elastic spectra, and the procedure may not 

converge to the correct response. Table 3.3 shows its significantly underestimated deformation 

for a wide range of periods, which matches the conclusion made by Chopra and Goel (2000). 

Table 3.3 also proves that the proposed estimation of residual drift is more accurate than the 

two summarized existing approaches. For a structure with post-yielding stiffness ratio ε smaller 
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than 10%, which is the case for generalized civil structures, the proposed estimation of residual 

drift receives error over the range of 40%-65%. On the other side, the ATC-58 and 2000 JSCE 

formulas produce huge error ranging from 150% to more than 1000%, which makes the 

estimations meaningless for real applications. Table 3.3(d) and Table 3.3(e) correspond the last 

two cases when the strength to weight ratio /DQ W  is large, which leads to smaller residual 

drifts. The shaded areas in the tables indicate that the errors are not estimated when simulated 

residual drifts are less than 0.1%. 

 

 

3.6  Concluding Remarks 
 

Estimating the residual drift has always been a challenging task. This study aims to develop a 

simple yet reliable demand model for estimating the residual drift for generalized non-degrading 

bilinear SDOF system under near-fault earthquake motions. Nonlinear time history analyses on 

six different configurations of SDOF bilinear systems are conducted under seventy-five selected 

near-fault ground motions. In additional to estimating the residual drift, a prediction of the peak 

inelastic displacement has also been presented and compared with previous approaches. 

The study was presented under the framework of the rigorous dimensional analysis that 

represents responses with better order than common approaches. First, the residual drift is 

expressed in dimensionless form, which is normalized to the energetic length scale of ground 

motions. A dimensionless nonlinearity index is inherited from a previous paper to take into 

account of the structure strength, ground motion amplitude, and softening or hardening post-

yield behavior. The normalized residual drift demand ( 2 /R end p pu a  ) is revealed to be 

strongly correlated to the post-yielding stiffness ratio  , the structure-to-pulse frequency ratio 

/s p    , and the dimensionless nonlinear index NL . The dimensionless residual drift will 
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increase if NL increases and/or   and  decreases. Two regressive equations are proposed to 

directly estimate the inelastic displacement and residual drift demand imposed by earthquake 

motions, respectively. 

Compared with the simulated results from nonlinear time history analyses, the proposed 

model is able to give dependable predictions with a normalized error range from 40%-65%. The 

error is larger for the cases when structure frequency is smaller or near the neighborhood of the 

pulse frequency (i.e. 1  ). Existing estimations of residual drift has also been studied and 

compared with the proposed methods in this study. Validations show that previous studies 

predicting the demand of residual drift produce errors that are too large such that these formulas 

are not desirable for the design of civil structures. In summary, the study offers a comparably 

reliable method to estimate the residual drift without relying on a provided maximum transient 

drift and a certain regressed coefficient. Such estimation is consistent with the underlying 

physics of the problem, which hinges upon the realistic features for the nonlinear systems. 
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4.  SEISMIC PROTECTIVE DEVICES FOR BUILDINGS AND 

NUMERICAL MODELING SCHEME FOR SELECTED 

DEVICES 

 

 
4.1  Introduction 
 

To achieve the best structural responses during earthquakes, the optimal control theory of the 

civil structures had been proposed decades ago (Yang 1975). Structural control takes advantages 

of latest advanced computers, electronics, measurement techniques, instrumentation, controllers, 

materials, etc. These techniques make structures behave more like machines, aircrafts or human 

beings in the sense that they can be made adaptive or responsive to external forces. Over the past 

three decades, numerous control devices and strategies have been proposed to improve the safety 

and performance of civil engineering structures.  

Through extensive research in the United States and throughout the world over the last 

several decades, innovative earthquake-resistant systems have been developed that have the 

potential to improve seismic performance levels significantly at reasonable cost. Chapter 1 

briefly introduced three categories of the seismic protective systems: passive, semi-active, and 

active systems. This chapter provides examples and numerical models for some of the well-

known building protective devices. In addition, a relative new passive ASD called the negative 

stiffness device has been introduced with a detailed explanation of its mechanical properties and 

numerical modeling scheme. 

The presented seismic protective devices possess different mechanical behaviors, which 

manifests the supreme intelligence of civil engineers. Meanwhile, all these different devices 
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serve the same goal, which is to provide safer civil structures that mitigate the seismic hazards to 

the minimum possible level. 

 

4.2  Damping Systems 
 

4.2.1  Passive Fluid Dampers 
 

Passive fluid viscous dampers have been implemented in a number of structures for the 

primary purpose of dissipating energy from earthquake ground motion or sustained wind loading 

(Symans et al.  2008a, b). In the case of earthquake ground motion, the dampers prevent or limit 

structural damage whereas, for wind loading, the dampers reduce vibration levels to relieve 

occupant discomfort. The seminal testing of passive fluid dampers for seismic applications was 

performed by Constantinou and Symans (1993) and clearly demonstrated the ability of such 

dampers to improve the performance of building structures. Fluid viscous dampers consist of a 

metallic cylinder, filled with a low-viscosity fluid, and containing a piston head, which separates 

the two sides of the cylinder. As the damper is stroked, fluid passes around and/or through the 

piston head due to a pressure differential across the piston head. The orificing of the fluid results 

in the development of heat, which is dissipated through the metallic cylinder. For the range of 

frequencies typical of the fundamental mode of most structures, fluid dampers can be designed to 

exhibit insignificant restoring forces, resulting in behavior that is primarily rate-dependent (linear 

or nonlinear viscous) (Symans and Constantinou 1998). Fluid dampers also offer the advantage 

that they provide high-energy dissipation density (i.e., due to high internal fluid pressure, they 

are able to dissipate large amounts of energy for their size). The high-energy dissipation density 

results in physically compact dampers. 

 

 

 



 84 

4.2.2  Variable Damping Systems 
 

Symans et al. have developed variable damping systems that utilize variable orifice fluid 

dampers for structural systems and experimentally tested them at both the component level 

(Symans and Constantinou 1997a) and within multi-story building frames (Symans and 

Constantinou 1997b) and base-isolated structures (Madden et al. 2002; Symans and Reigles 

2004). The variable damper consists of a metallic cylinder containing a piston rod/head 

assembly, a piston rod make-up accumulator (to minimize restoring forces) and is filled with 

silicone oil, as shown in Fig. 4.1(a) An external bypass loop containing a control valve is 

attached to the damper for modulating fluid flow. The pressure differential across the piston 

head, and thus the output force, was therefore modulated by the external control valve. 

Depending on the type of valve used, either two-stage (on-off) or continuously variable damping 

was generated. More complex models for describing the damper behavior over a wide frequency 

range were presented by Symans and Constantinou (1997a), which include a Maxwell model of 

linear visco-elasticity and a fundamental model based on fluid mechanics principles. Shaking 

table tests were performed by Symans and Constantinou (1997b) on a reduced-scale model of a 

three-story steel structure. The structure was subjected to historical earthquake records and was 

controlled by variable fluid dampers located in the diagonal bracing of the structure. The shaking 

table tests demonstrated that the peak response of the uncontrolled structure could be 

significantly reduced with the use of the variable damper control system.  

The significant development in semi-active control is that Magnetorheological (MR) fluids 

have been developed and used in controllable fluid dampers (Carlson et al. 1996a, b). MR fluids 

typically consist of micron-sized, magnetically polarizable particles dispersed in a carrier 

medium such as mineral or silicone oil. Spencer et al. (1997) and Dyke et al. (1996) have 
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conducted a number of studies to assess the usefulness of MR dampers (see Fig. 4.1(b)) for 

seismic response reduction. Spencer et al. (1998) and Yang et al. (2002) have developed and 

tested a large-scale MR damper suitable for full-scale applications. The first full-scale 

implementation of MR dampers - built by Sanwa Tekki using Lord Corporation MR fluid - have 

been implemented in the Tokyo National Museum of Emerging Science and Innovation. Since 

then MR dampers have been implemented in several cable stayed bridges and a smart base 

isolated building and a bridge. Gavin (1994) developed controllable fluid based variable 

damping systems using electrorheological (ER) fluids. 

 

  

(a) Variable orifice fluid damper (b) MR damper 

Fig. 4.1  Variable damping devices. (from Symans and Constantinou 1997a, Spencer et al. 1997, 

and Dyke et al. 1996) 

 

 

Kajima Corp. of Japan has recently developed a significant and unique passive damper, 

HiDAXe, that has a performance equivalent to that of the semi-active switching oil damper, 

HiDAX (Tagami et al. 2004). Fig. 4.2 shows the HiDAXe damper and its force-displacement 

relationship. HiDAXe damper can maximize or minimize its damping coefficient by regulating 

the opening of an internal flow control valve housed within the device. It is fully adjustable, 

passive and has been implemented in several multistory high rise buildings in Japan by Kajima 
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as reported in its Annual report for 2006, which also describes 20+ buildings in Japan with iDAX 

dampers. However, HiDAXe cannot adjust stiffness. 

  

(a) HiDAXe Adjustable Passive Damper by 

Kajima 
(b) Force-displacement relationship of HiDAX 

Fig. 4.2  Variable damping systems by Kajima Company, Japan. (figure from Tagami et al. 

2004) 

 

 

4.3  Base Isolation Systems 
 

4.3.1  General 
 

Base isolation, also known as seismic base isolation or base isolation system, is one of the 

most popular means of protecting a structure against earthquake forces. It is meant to enable a 

building or non-building structure to survive a potentially devastating seismic impact through a 

proper initial design or subsequent modifications. Base isolation system can shift most of the 

structural motion to the base level and dissipates energy inside them (Kelly 1986). 

The first use of rubber for earthquake protection was in an elementary school in Skopje, 

Yugoslavia (Seigenthaler 1970). In later on approaches to seismic isolation, the natural rubber 

sheets are laminated to steel plates. Considerable research effects were going on from 1970-1985 

about the base isolation devices. 

Isolation devices are relatively easy to manufacture. Many isolation mechanisms have been 

invented over the past decades for designing or retrofitting the buildings. Until now, three types 
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of isolators are commonly used: elastomeric bearings (ERB), lead-rubber bearings (LRB), and 

friction pendulum systems (FPS) (Kelly 1986). Fig. 4.3(a-c) shows the sketches and the 

correspondent cyclic behaviors of these isolators. Table 4.1 summarizes the seismic performance 

of these isolation systems compared with un-isolated building. The general bilinear behaviors of 

the three types of bearings are different. For elastomeric bearings, the post-yielding stiffness K2 

is proportional to their area (A) multiplied by shear modulus (G) and is inversely proportional to 

their total thickness (∑tr) of the rubber layers, i.e. K2 = GA/ ∑tr. The yielding displacement Uy is 

usually five to ten percent of the rubber layers' thickness ∑tr and the pre-yielding stiffness K1 is 

usually as 5-15 times of post-yielding stiffness K2. For lead rubber bearings, the Qd is influenced 

by the yielding strength of the lead core Fy. The post-yielding stiffness will be usually a little 

stronger that of the elastomeric bearings due to the additional stiffness contribution from the lead 

core. The elastic stiffness K1 of LRB is about 15-30 times of the post-yielding stiffness K2. For 

the friction pendulum systems, Qd is determined by the friction coefficient (μs) and sliding 

surface radius (R) and post-yielding stiffness K2 = W/R, where W is the vertical load or structure 

weight. Due to the friction effect, this system usually has rigid pre-yielding stiffness (50-100 

times the post-yielding stiffness K2). The ratio between the pre-yielding stiffness K1 and post-

yielding stiffness K2 is measured by a parameter N = K1/K2. In the subsequent parametric study, 

different parameters are selected to represent various isolation devices and the bearing pre- to 

post- stiffness ratio N will be set to 10, 20 and 50 to represent these types of isolation systems. 
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Fig. 4.3  Sketch and bilinear modeling of three most common seismic isolation devices 

 

 

 

 

 

Table 4.1  Formulas of bilinear modeling for the three kinds of isolation devices (from Zhang 

and Huo 2009) 

 Elastic stiffness K1 Characteristic strength Q Post-yielding stiffness K2 

ERB K1=NK2 ( N = 5-15 ) From hysteresis loop K2 = GA /∑tr 

LRB K1=NK2 ( N = 15-30 ) Fy = fy ALead K2 = ( 1.15 – 1.20 ) GA /∑tr 

FPS K1=NK2 ( N = 50-100 ) Q = μ W K2 = W / R 

 

 

 

 

 

 

 

 

 

 

 

(a) Elastomeric bearing 

(b) Lead rubber bearing 

(c) Friction Pendulum 

bearing 
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Table 4.2  Properties for the three types of commonly used bearings 

 Un-isolated ERB LRB FPS 

Structural 

deformation 

high low low low 

Isolator 

displacement 

- moderate/high low/moderate low/moderate 

Acceleration of 

structure 

high low low/moderate moderate 

 

 

 

Advantages 

- ■ low short-period 

attack on contents 

■ simple uniform 

acceleration 

responses controlled 

by isolator properties, 

intensive to structural 

irregularities 

■ low seismic forces 

■ low base shears 

■ low/moderate 

attack on contents 

■ isolator 'locks' 

during wind 

■ low isolator 

displacements 

■ isolator 'locks' 

during wind 

 

Disadvantages - ■ susceptible to wind 

■ large isolator 

displacement 

■ moderate isolator 

damage 

 

■ high attack on 

contents 

 

 

 

  
(a) Standard lead rubber bearing (b) Mechanism of rubber bearing isolation 

Fig. 4.4  LRB base isolation systems 

 

 

In 1986, the first base-isolated building in the United States was dedicated, which is the 

Foothill Communities Law and Justice Center located in the municipality of Rancho Cucamonga 

in San Bernardino County. The building is a 30 million dollar legal service centre for the county. 

The building sits on 98 isolators, which are multilayer natural rubber bearings reinforced with 
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steel plates. And the energy of the high frequency component of the ground motion is isolated 

and cannot be transmitted to the superstructure (Kunde and Jangid 2003) 

 
Fig. 4.5  Communities Law and Justice Center, San Bernardino, CA 

 

 

By the year of 2000, the concept of Friction Pendulum Seismic Isolation Bearings were 

implemented worldwide: By placing these concave spherical bearings at each support point, the 

structure sways with a gentle pendulum motion during earthquake ground shaking. This allows 

the ground to shake without damaging the structure. Friction Pendulum seismic isolation 

provides structures with a higher level of seismic protection than conventional structural strength 

and ductility design. Compared to elastomeric bearings, friction pendulum bearings can be used 

for a wider range of applications, have simpler and more predictable properties, and are less 

expensive to install. 
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(a) FPS bearing configuration (b) FPS system construction 

Fig. 4.6  Friction Pendulum systems 

 

 

Base isolation is also used on a smaller scale - sometimes down to a single room in a building. 

Isolated raised-floor systems are used to safeguard essential equipment against earthquakes. The 

technique has been incorporated to protect statues and other works of art such as Rodin's Gates 

of Hell at the National Museum of Western Art in Tokyo's Ueno Park (Reitherman 2012). 

 

4.3.2  Researches on Base Isolation Systems 
 

Through the George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES), 

researchers are studying the performance of base isolation systems in 2012. The project, a 

collaboration among researchers at University of Nevada, Reno; University of California, 

Berkeley; University of Wisconsin, Green Bay; and the University at Buffalo, SUNY is 

conducting a strategic assessment of the economic, technical, and procedural barriers to the 

widespread adoption of seismic isolation in the United States. NEES resources have been used 

for experimental and numerical simulation, data mining, networking and collaboration to 

understand the complex interrelationship among the factors controlling the overall performance 

of an isolated structural system. This project involves shaking table and hybrid tests at the NEES 

experimental facilities at the University of California, Berkeley, and the University at Buffalo, 
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aimed at understanding ultimate performance limits to examine the propagation of local isolation 

failures (e.g., bumping against stops, bearing failures, uplift) to the system level response. These 

tests, including a full-scale, three-dimensional test of an isolated 5-story steel building on the E-

Defense shake table in Miki, Hyogo, Japan, will help fill critical knowledge gaps, validate 

assumptions regarding behavior and modeling, and provide essential proof-of-concept evidence 

regarding the importance of isolation technology. 

 

 

4.3.3  1D and 2D Coupled Bilinear Modeling of Isolation Devices 
 

A bilinear model shown in Fig. 4.7 generally represents the hysteretic behavior of isolation 

system (Naeim 1999).  

 

Force

Displacement

Qd

Fy

k1

k2

Dy

 
Fig. 4.7  Bilinear force to displacement relation 

 

Kinematic hardening behavior gives a standard stress-strain relationship with a fixed yielding 

surface. In many metals subjected to cyclic loading, it is experimentally observed that the center 

of the yield surface experiences a motion in the direction of the plastic flow. This is called the 

isotropic hardening. A simple phenomenological model that captures the aforementioned effect 
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is constructed by introducing an additional internal variable, denoted by q and called back stress, 

which defines the location of the center of the yield surface. 

The 1D Rate-Independent Plasticity with combined kinematic and isotropic hardening is 

provided by Simo and Hughes (Simo and Hughes 1997). The elastic stress-strain relation is 

expressed as    (  -   )pE   , where ε  is the total strain and 
pε is referred to as the plastic 

strain; The flow rule which is the change rate of the plastic strain is defined as: 

    (  -   )p sgn q   , where   0   is the absolute value of the slip rate and σ is the applied 

stress. The isotropic and kinematic hardening laws are expressed by the following equations: 

  |    |      (  -   )

  |   |   

p

kin

p

q H H sgn q  

  

 

 
                                 (4.1) 

where ( )sgn  is the sign function. The yield condition is: 

( , ,  )  |  -  |  -  (     )  0y isof q q H                                        (4.2) 

The Kuhn-Tucker condition is: 

 0,     ( , ,  ) 0,      ( , ,  )  0f q f q                                         (4.3) 

The consistency condition is: 

 ( , ,  )  0        ( , ,  )  0f q if f q                                          (4.4) 

The tangent elasto-plastic modulus is: 

  (  -   ) 
  

    iso kin

E sgn q

E H H

 
 

 
                                                    (4.5) 

The procedure of return mapping algorithm is summarized in the following table: 
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Table 4.3  Return mapping for combined kinematic and isotropic hardening (from Simo and 

Hughes book 1998) 

1. Database at :  { , , }p

n n nx B q   

2. Given strain field at 1:   n n nx B       

3. Compute elastic trial stress and test for plastic loading 
 

1 1   (  -   )    trial p

n n n n nE E        
;   1 1   -  trial trial

n n nq  
;    

 

1   p trial p

n n  
;    1   trial

n n  
;
 

1   trial

n nq q 
;    1 1 |   |  -  (     )trial trial

n n y iso nf H      

IF 
1  0trial

nf    THEN 

Elastic step: set 
1 1( )   ( )trial

n n   & EXIT 

ELSE 

Plastic step: Proceed to step 4. 

ENDIF 

4. Return mapping: 

1    0
    

trial

n

iso kin

f

E H H
   

 
 

1 1 1   -     (  )trial trial

n n nE sgn        

1 1        (  )p p trial

n n nsgn        

1 1         (  )trial

n n kin nq q H sgn      

1     n n       

 

The above method is the classical approach to the problem given the yielding strength and 

the stiffness, and this approach is a stress-strain relationship. To fully define a bilinear behavior, 

only three out of following five values are required: the zero P-u intercept, QD; the pre-yielding 

stiffness, K1; the yield displacement, uy; the yield force, Fy ; and the post-yielding stiffness K2. 

In real structural control practice, a force-displacement relationship is preferred. The 

following is a brief summary about 1D Rate-Independent Plasticity with Kinematic Hardening 

(Makris and Zhang 2002). 

The elastic force-displacement relation, flow rule, kinematic hardening laws, yielding 

condition, Kuhn-Tucker condition and consistency condition is summarized as follows: 
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1     pF K U F                                                           (4.6) 

1    (  )p n

pU sgn F                                                       (4.7) 

     (  -   )kinq H sgn q                                                    (4.8) 

( )  || ||  -   0p p DF F Q                                                     (4.9) 

 0,     ( ) 0,      ( )  0p pF F                                         (4.10) 

 ( )   0        ( )  0;
|| ||

T

p p

p p

p

F F
F if F

F
   


                                  (4.11) 

 

 

The return-mapping scheme of bilinear behavior is given in Table 4.4. The physical 

meaning of variables have been illustrated in Fig. 4.8. pF  stands for the plastic force, K1, K2 are 

the pre- and post- yielding stiffness, and U is used for displacement. 

 

 

F
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K
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p-( )

Un+1

p

 
Fig. 4.8  Illustration of bilinear model 
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Table 4.4  Return mapping procedure for kinematic hardening 

1. Database at :  { }p

nx B U  

2. Given displacement field at 1:   n n nx B U U U    

3. Compute elastic trial force and test for plastic loading 

 1   trial p

p n nU U 
;    1 1 2 1  1  (  -   ) (  -   ) trial trial

p n n p nF K K U U  
;  1  || ||  -   0trial trial

p n DF Q    

IF  0trial   THEN 

Elastic step: set 1 1( )   ( )trial

n n   & EXIT 

ELSE 

Plastic step: Proceed to step 4. 

ENDIF 

4. Return mapping: 

1 2

    0
 -  

trial

K K



    

 1  1    ( )trial

p n D p nF Q sgn F   

1  1  1      ( )p trial trial

n p n p nU U sgn F      

5. Calculate force for next step 

1  1 2 1    n p n nF F K U     

 

After introduction about 1D bilinear behavior, 2D bilinear behavior with combined hardening 

law is presented as follows. For a system shown in Fig. 4.9(a), assuming two directional 

excitation (i.e. x direction and y direction) happens. The x-y directions are orthogonal and the 

plastic stress/force is coupled in a circular yielding surface, which is 2 2

     p p x p yF F F  . This is 

shown in Fig. 4.9(b). 
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(a) Two directional excitation (b) a typical yielding surface of plastic force 

Fig. 4.9  Two directional coupled bilinear model 

 

 

For 2D coupled case, the plasticity rules and conditions are same as 1D case and the return-

mapping scheme is summarized as follows: 

 

Table 4.5  Return mapping procedure for 2D kinematic hardening  

1. Database at 
  :  { , }p p

x n y nx B U U  

2. Given displacement field at  

 1   :   x n x n x nx B U U U  
     1   :   y n y n y ny B U U U    

3. Compute elastic trial force and test for plastic loading 

  1    trial p

x p n x nU U 
      1    trial p

y p n y nU U   

  1 1 2  1   1  (  -   ) (  -   ) trial trial

x p n x n x p nF K K U U  
      1 1 2  1   1  (  -   ) (  -   ) trial trial

y p n y n y p nF K K U U    

2 2

  1   1  trial trial trial

norm x p n y p nF F   
;   

   -  trial trial

norm DQ   

IF  0trial   THEN 

Elastic step: set 1 1( )   ( )trial

n n    

Tangent Matrix = 1

1

0

0

K

K

 
 
 

 & EXIT 

ELSE 

Plastic step: Proceed to step 4. 

ENDIF 

4. Return mapping: 

1 2

    0
 -  

trial

K K


    
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  1   1 1 2   1   -     -    ( )trial trial

x p n x p n x p nF F K K sgn F    （ ）
; 

  1   1 1 2   1   -     -    ( )trial trial

y p n y p n y p nF F K K sgn F    （ ）
;
 

 1   1   1      ( )p trial trial

x n x p n x p nU U sgn F    
 ;    

 1   1   1      ( )p trial trial

y n y p n y p nU U sgn F      

2 2

   1   1  p norm x p n y p nF F F    

Tangent Matrix = 

2

  1   1   11 1 2

22

  1   1   11  

0  -  
 -   

0

x p n x p n y p n

x p n y p n y p np norm

F F FK K K

F F FK F

  

  

  
  

    
 

5. Calculate force for next step 

 1   1 2  1    x n x p n x nF F K U   
     1   1 2  1    y n y p n y nF F K U     

 

 

Along with this study, the 2D coupled section behavior has been developed as an OpenSees 

section called Bisec2. The Bisec2 command is used to construct a bidirectional object, which is 

two-dimensional generalization of one-dimensional elasto-plastic model with linear hardening. 

The material modeling method and its variables is demonstrated in Table 4.6. 

 

Table 4.6  OpenSees modeling of bidirectional bilinear coupled section model 

section  Bisec2  $secTag  $K1  $QD  $K2 

$secTag  

$K1 

$QD 

$K2 

Unique section object integer tag  

the elastic stiffness for both directions 

the yielding strength illustrated in Fig. 4.8 

the post yielding stiffness 

 

This model is well tuned up and can be useful for 3D models such as studying torsional 

behavior of an unsymmetrical building. 

 

 

4.3.4  1D and 2D Coupled Bouc-Wen Model for Isolation Devices 
 

The uni-axial Bouc-Wen model, originally proposed by Bouc (1971) and subsequently 

extended by Wen (1975, 1976), is used extensively in random vibration studies of inelastic 

systems. During this work, 1D Bouc-Wen model called BoucWenS1D has also been developed 
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for OpenSees platform. Casciati (1989) considered the Bouc-Wen model as a smoothed form of 

the rate independent plasticity model and generalized it to a bidirectional case. The Bouc-Wen 

model is very versatile for modeling various seismic protection devices, such as sliding, 

elastomeric, or lead-rubber bearings. As the numerical computation becoming popular these 

days, the Bouc-Wen model has received large application in the structure-modeling field. The 

material modeling method and its variables is demonstrated in Table 4.7. Compared with the 

existing Bouc-Wen model in OpenSees, the developed model allows the user to specify the 

yielding displacement whereas the existing model always assume the value to be 1. 

 

Table 4.7  OpenSees modeling of 1D Bouc-Wen material model 

uniaxialMaterial  BoucWenS1D  $matTag $alpha $ko $n $Ao $gamma  $beta  $Ep  

$matTag  

$alpha  

$ko  

$n  

Unique material object integer tag  

the ratio of the post-yielding to elastic stiffness  

elastic stiffness 

defines how smooth the curve will turn when it yields  

$Ao  

$gamma  

$beta   

Ao, beta and gamma effects the shape and define BoucWen nonlinear 

function:  

 

 

$Ep  

 

Is the strain value when the first yielding happens  

 

 

1{ | | | | | | }n n

o

p

A z z z
z

E

    

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displacement Ep or -Ep

 
Fig. 4.10  A typical hysteretic behavior for 1D Bouc-Wen model 

 

 

The stress is defined as the sum of a linear part and a hysteretic part: 

 

(1 )o o pk k E z                                                   (4.12) 

 

In the above,   is the strain, z represents the hysteretic deformation, ko is the elastic stiffness 

and   is the ratio of the post-yielding to elastic stiffness. To accommodate degradation, Baber 

and Noori (1985) formulated the rate of hysteretic deformation in the form: 

 
1{ | | | | | | }n n

o

p

A z z z
z

E

    


                                      (4.13) 

 

where β, γ , and n are parameters that control the shape of the hysteretic loop, while Ao is given. 

Ep defines the strain where it starts to yield. The model may be rewritten as 

 

| | [ sgn( ) ]
*

n

o

p

A z z z
z

E t

   




   
 

 
                                 (4.14) 
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This leads to the following expression for the continuum tangent (not the algorithmically 

consistent tangent): 

 

| | [ sgn( ) ]
(1 )

n

o
o o

p

A z z
k k k

E

  
 



 
   


                                 (4.15) 

 

It is seen that the stiffness is composed of a linear term and a hysteretic contribution. 

One must first derive incremental response equations to make the governing equations 

computational implementable. From the above equations the stress at time t(n+1) is obtained as: 

 

( 1) ( 1) ( 1)(1 )n o n o p nk k E z                                              (4.16) 

 

The rate equation for z is next discretized by a Backward Euler solution scheme. For a first-

order ordinary differential equation of the form y = f(y(t)), the scheme reads y(n+1) = yn 

+ t f(y(n+1)). Applied to Eq. (4.13) the following is obtained: 

 

( 1) ( )

( 1) ( 1)
( 1) ( )

( 1) ( )

( )
| | [ sgn( )] ( )

n nn

o n n
n n

n n

p

A z z
tz z t

E t

 
   



 





   


                      (4.17) 

 

It is seen that t  cancels from the equation, yielding a nonlinear equation in z(n+1). A Newton 

scheme of the form 1 ( ) / '( )m m mx x f x f x    to solve a general nonlinear equation f(x) = 0 may 

be used to solve for z(n+1) in Eq. (4.17). The procedure implemented in OpenSees to compute the 

stress for a given strain (given
( 1)n 

to get
( 1)n 

) can now be summarized as follows: 

 

 

 

 

Table 4.8  Computing the stress for a given strain 

1. While (
( 1) ( 1)| |old new

n nz z tol   ) 
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(a) Evaluate function f(z(n+1)): 

( 1) ( ) ( 1)sgn(( ) )n n nz                (4.18) 

( 1)| |no nA z    

(n+1) (n+1) (n) ( 1) ( )f(z ) = z z ( )n n

pE


        (4.19) 

(b) Evaluate function derivatives (prime denotes derivative with respect to z(n+1)): 

1

( 1) ( 1)' | | sgn( )n

n nn z z 

               (4.20) 

(n+1) ( 1) ( )

'
f '(z )=1 ( )n n

pE


               (4.21) 

(c) Obtain trial value in the Newton scheme: 

( 1)

( 1) ( 1)

( 1)

( )

'( )

nnew

n n

n

f z
z z

f z



 



                                                     (4.22) 

(d) Update z(n+1) (and store the old value for the convergence check): 

( 1) ( 1)

old

n nz z   and 
( 1) ( 1)

new

n nz z                                                (4.23) 

2. Compute stress:  

( 1) ( 1) ( 1)(1 )n o n o p nk k E z                                               (4.24) 

 

 

In addition to the stress, the material algorithm must return the current algorithmically 

consistent tangent. This tangent is used in the global scheme to compute the nonlinear structural 

response. One needs to derive the tangent 
( 1) ( 1)/n n     by utilizing the formulation by which 

the stress 
( 1)n 

 is actually computed. Hence, the equations used in the Newton scheme must be 

differentiated with respect to
( 1)n 

. It turns out that the equation for ( 1) ( 1)/n nz     is linear. The 

resulting implementable equations for the algorithmically consistent tangent read as follows: 

 

 

Table 4.9  Implementable equations for the algorithmically consistent tangent for Bouc-Wen 

model 

1. Compute auxiliary parameters: 
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( 1) ( ) ( 1)sgn(( ) )n n nz                                                   (4.25) 

( 1)| |no nA z                                                            (4.26) 

2. Compute 
( 1)

( 1)

n

n

z










 and tangent ( (a) is more stable than (b) ): 

( 1) ( 1) ( 1) ( 1) ( 1) ( ) ( 1) ( 1)

2

( 1) ( 1) ( 1) ( ) ( 1) ( 1)

| |{ | | | | [| | ( )sgn( )

{ | | ( ) | | sgn( ) }

n

n p n o n n n n n n

n

n p n n n n n

z E z A z z z n z z z

E z n z z



   

      

    

   


  
  

       (4.27) from (4.22) 

( 1)

( 1)

n

n p

z

E













                                         (4.28) from (4.17) 

( 1) ( 1)

( 1) ( 1)

(1 )
n n

o o p

n n

z
k k k E


 

 

 

 

 
   
 

                                      (4.29) 

 

 

For the two-direction motion input of our building model, a coupled Bouc-Wen model is 

developed by Casati (1989). The pF rate equation can be written as: 

 

1 2 1 2 2
( ) ( ) ( ) ( )

|| ||

T

p

p p

p

K K K K  
 

     
 

F
F u F H H

F
                                 (4.30) 

 

where ( )H  is the Heaviside function. ( )H   can be approximated with a smoothed function: 

 

|| ||
( ) (|| || )

p

p D

D

H Q
Q




   

F
H F                                                 (4.31) 

 

where 0   describes the smoothness of the transition and ( )H  is defined as: 

 

1 sgn( )
( ) ( )

2

T

pT

p p


 
F u

H H F F                                                (4.32) 

 

Therefore, the rate of plastic force is approximated with: 
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2

1 2 1 2

|| || 1 sgn( )
( ) ( )( )

2

T

p pT

p p p

D

K K K K
Q

 
   

F F u
F u F u F                          (4.33) 

 

Defining a dimensionless plastic variable Z such that p DF Q Z  and uni-axial “yield” 

displacement, 1 2/ ( )Y

DU Q K K  , Eq. (4.33) becomes: 

 

2 1 1
|| || *( ) sgn( )

2 2

Y T T  
   

 
Zu u Z Z u Z u Z                                      (4.34) 

 

Eq. (4.34) can be written in a more general form: 

 
2|| || *( )[ sgn( )]Y T TA     Zu u Z Z u Z u Z                                       (4.35) 

 

where   and   are dimensionless quantities that control the shape of the hysteretic loop. In this 

study, A = 1 and 0.5   . This results in the bound of variable Z as || || 1Z  . By using Eq. 

(4.31) and 1 2/ ( )Y

DQ U K K  , the rate of restoring force can be written as: 

 

 2

2 2 1 2 1 2{ ( ) ( ) || || [ sgn( )] }T T

pK K A K K K K          P u F Z Z u ZZ u         (4.36) 

 

 

i.e.  2

2 1 2 1 2( ) ( ) || || [( sgn( )]T TK A K K K K   
     



P
Z Z u ZZ

u
                   (4.37) 

 

Therefore, the tangent stiffness matrix is: 

 

K

  
  

  
  

   

P P

u u

P P

u u

                                                             (4.38) 

 

Different isolation devices possess different Bouc-Wen behaviors in terms of transition 

smoothness parameter η. The transition smoothness parameter is set to be two for elastomeric 
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bearings, four for lead rubber bearings and eight for friction pendulum bearings. Fig. 4.11 

illustrates the dynamic response for the three types of isolations under Kobe/KGM motion. 

 

 

   

Fig. 4.11  Dynamic behaviors for different isolation system in major direction 

 

 

4.4  Negative Stiffness Device 
 

4.4.1  Introduction 
 

Recent studies show that the Negative Stiffness Device (NSD) may serve as an innovative 

generation of adaptive stiffness and damping devices (ASD) that inherently benefits civil 

structures.  

More than 50 years ago, the pioneering concept of negative stiffness was proposed and 

realized in vibration isolation systems (Molyneux 1957). Since then the application of NSD has 

been used but limited to vibration isolation of small, highly sensitive equipment and of seats in 

automobiles (Lee et al. 2007). For larger structures such as buildings and bridges, Reinhorn et al. 

(2005) proposed the concept of retrofitting them by weakening their stiffness and by 

simultaneously adding supplementary viscous damping to reduce the structural acceleration and 

horizontal drifts. To better improve the performance by reducing inelastic action, Nagarajaiah et 

al. (2010) and Pasala et al. (2011) proposed the novel design of negative stiffness device (NSD) 

that will provide a negative force onto the structure that is in the same direction as the ground 
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motion over a specified displacement range. This study investigates the behavior of the negative 

stiffness system, which shifts the yielding away from the main structural system. The proposed 

NSD system eventually leads to the idea of apparent weakening that ensures structural stability at 

different displacement amplitudes. 

 

 

4.4.2  The Proposed Negative Stiffness System 
 

The proposed NSD system model this study investigates is based on the improved "true" 

NSD system Sarlis et al. (2012) introduced, in which a highly compressed machined spring 

develops the force in the direction of motion. Besides the pre-compressed spring, the proposed 

design includes a double chevron self-containing system that can resist the preload in the 

compressed spring and prevent the transfer of the vertical component of the preload to the 

structure. In addition, a gap spring assembly system is placed at the bottom that provides a 

predefined initial displacement after which the negative force is triggered. The NSD is 

implemented within an Adaptive Negative Stiffness System (ANSS), e.g. a combination of NSD 

and a viscous damper. The supplementary viscous damping devices parallel to the NSD serves to 

limit the displacement within the demand. 

Sarlis et al. (2012) described the details in design and proposed an analytical model of NSD 

according to the design. The detailed description of the device and its mathematical expressions 

for is presented in the original paper; however, a brief summary of the system is included here 

for completeness. Fig. 4.12 shows the photo of designed NSD when it is at rest and being tested. 

To further explain the mechanism of the device, Fig. 4.13 shows schematically the un-deformed 

and deformed shape of the system. The two parts of the chevron bracer, the top "V" shape and 

the bottom " " shape, are crossed with each other. Both point A and point E are pin connected 
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to the top part of the bracer. When a motion happens, the lever AB imposes a displacement to 

point B, which causes the pivot plate BCD to rotate about the point C. The lever is axially rigid 

and its rigid body rotation can be neglected such that the horizontal displacement at point A is 

equal to the displacement at point B. Hence, due to the kinematics of points D and E, the pre-

compressed spring rotates and its force facilitates the ground motion rather than opposing it. The 

motion of point D relative to point E is magnified by comparison to the motion of point A by the 

ratio of the lever of the pivot plate (DC to CB) and by additional factor due to combination of 

movement of point E (same as the displacement at A). The spring exhibits its minimum length 

when the device is un-deformed. As the device deforms horizontally, the spring extends, its pre-

compression force reduces and its angle of inclination increases. The Gap Spring Assembly 

(GSA) system constraining the bottom side of the top part of the bracer eliminates the NSD 

effect within a small drift range. 

 

  

(a) Tested NSD frame at rest 
(b) Tested NSD frame undergoing a 

displacement input 

Fig. 4.12  Tested NSD specimen 
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(a) Tested NSD frame at rest 
(b) Tested NSD frame undergoing a 

displacement input 

Fig. 4.13  Details and the mechanism of the NSD design 

 

To provide the numerical expression for the NSD force, a detailed NSD center mechanism 

with its deformed shape is illustrated in Fig. 4.14. Define l2 as the length of the pivot plate 

between point C and point B, l1 is the length between point C and point D. Then, the relation of 

the displacement is: 2 1/B E Du u u l l u    . Define θs as the inclination angle of the spring and 

define θp as the angle of the pivot plate with respect to vertical. Expressions for angles θs and θp 

are given by:  1

2 1sin [ (1 / ) / ]s su l l l    and 1

2sin ( / )p u l  . 

The pre-compressed spring force Fs is given by: ( )s in s s pF P K l l   , where inP is the pre-

compression force of the vertical spring and should have a positive value and sK  is the stiffness 

of the pre-compressed vertical spring, sl  is the spring length at the deformed configuration, and 

pl  is the length of the spring when the NSD is un-deformed. 
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Fig. 4.14   Illustration of the NSD center mechanism 

 

 

The spring force-displacement relation is shown in Fig. 4.15(a) and the formula for the NSD 

force is derived and expressed in Eq. (4.39): 

 

cos ( / )NSD C g s sF F F F u h                                                       (4.39) 

2 2

1 1 1 2 21 2

2 2
2 1

( / )
        = 2

in s p p p

s g

s p

P K l l l h l l l l l ul l
K u F

l l l hl u

        
       
     

 

 

where h is the height of the double-hinged column. sl  is given as: 

 
2 2

2 2 2
1 1

2 1

1 ( ) 1s p

lu
l l l l u

l l

   
         

  
                                            (4.40) 

 

where Fg is the GSA force. Fig. 4.15(b) shows the GSA force-displacement relationship. One 

could notice that the GSA behaves in a linear elastic manner within a designed range of 

displacement 'yu and stays at a constant magnitude after the displacement. The GSA is designed 
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such as to cancel the negative force generated by the compression spring within the small 

displacement range '| | yu u , which serves to control the onset of the NSD system. 

For most practical implementations, one could assume that 1 2ph l l l   . Therefore, Eq. 

(4.39) can be reduced to: 

 

11 2

2 2
2 1

2
in s p p

NSD s g

s p

P K l l ll l
F K u F

l l l l u

    
        
     

                           (4.41) 

 

The negative stiffness generated by the NSD in the absence of the gap spring assembly can 

then be calculated as that force divided by displacement u. The NSD stiffness is expressed as: 

 

11 2

2 2
2 1

2
in s p peff

NSD s

s p

P K l l ll l
K K

l l l l u

    
       
     

                                  (4.42) 

 

The component force-displacement relation is shown in Fig. 4.15(d). 
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Fig. 4.15  Force displacement characteristics of (a) pre-compressed spring; (b) nonlinear elastic 

spring (GSA); (c) NSD system; (d) System force-displacement relationship at component level 
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The above expressions produce a force displacement illustrated in Fig. 4.15(c). The NSD 

behaves elastically that is fully defined by a series of physically meaningful variables such as 

1 2 1 2, , , , ,  ,  in s p s sP K l l l k k . In the next section, an equivalent model with less parameter to 

characterize the NSD behavior is proposed such that one could characterize the NSD behavior in 

a simpler manner. In addition, the presented reduction of parameters has negligible error. The 

systematic parametric analyses in this study provide a clear understanding of the NSD behavior 

based on the presented NSD model. 

 

 

4.4.3  Four Different Stages for NSD System 
 

 

The equations presented in the previous section were summarized from the mechanical 

properties of the NSD system. The expression of the negative stiffness force includes many 

parameters that are physically obtained from the geometry of the design such as 

1 2 1 2, , , , ,  ,  ,in s p s sP K l l l k k  etc. All of these parameters as a whole define a negative stiffness 

system. The NSD force-displacement relationship modeled by the aforementioned 

comprehensive model is plotted as follows in Fig. 4.16: 
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Fig. 4.16  Different stages for NSD system 

 

 

This study categorizes the NSD response into four different stages (shown in Fig. 4.16): 

Stage one starts when system is at rest and covers the displacement range smaller than the gap 

width. The device moves together with the structure with minimum force applied onto the 

system. For this stage, the NSD could be considered inactive while only a very small positive 

stiffness is provided by the system. Stage two happens when the system displacement exceeds 

the gap length and engages the pre-compressed spring. Negative force is introduced to the 

system since this stage, which pushes the structure in the direction of its displacement. The gap 

assembly system extends the activation of the negative stiffness force to this stage so that forces 

transferred on the superstructure are reduced. Stage three happens when the negative stiffness 

gradually starts fading until the compressed spring is relaxed to its natural length. This 

characteristic helps to eliminate tensional effects and prevents further negative force at an 

excessive displacement level. Stage four corresponds to the case when the spring eventually 

becomes positive when huge horizontal displacement occurs. The stage that the spring reaches 

positive stiffness is defined as stiffening effect of NSD that happens for earthquakes beyond the 
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maximum considered earthquake where NSD can act as displacement restrainer. However, the 

cost to reduce the displacement is to increase the system internal force rapidly. The system 

internal force / absolute acceleration will be easily doubled or tripled within short displacement 

range after this stage is reached, which might lead to the damage of NSD incorporated system. 

Further study about this stage will be discussed later in chapter 6. 

 

 

4.4.4  Numerical Model for NSD System with Reduced Parameters 
 

From the above introduction, one could find the aforementioned numerical model from Eq. 

(4.39) to Eq. (4.42) physically depicts the designed mechanism with a serious of variable such as 

, ,in sP K 1 2, , ,pl l l 1 2,  s sk k . This study names such model as the physical model where each of 

these parameters has physical meanings related with NSD behavior. However, the fact that too 

many parameters are coupled in the equation impedes the parametric study of the NSD system. 

Based on the demand, this study proposes a "cleaner" model with fewer variables that are 

connected with the characteristics of the tested NSD force-displacement response. The model 

would have less parameters and its behavior should match that of the given model. With a trial 

and error process, a cubic function model was developed and its equations are given as: 

 
3

0 0

3

0 0

3

 ( - ) +  ( - )          

 ( ) +  ( )      
;

 -                 < 
8

neg

neg
NSD

neg neg

a x x c x x x x

a x x c x x x x
F

c
a x x x x x

 

    

 


 


                                     (4.43) 

 

In Eq. (4.43), four parameters are needed: a, c, x0, and negx . x0 defines the transition of stage 

one and two when negative stiffness starts as shown in Fig. 4.19. The displacement x0 is the 

threshold when NSD produces zero force and it is slightly different from negx , which remarks the 
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horizontal displacement where the maximum gap length is reached (NSD engaged). Hence, 

negx can be computed by solving the equation: 3 3

0 0 ( - ) +  ( - ) =  -  / 8a x x c x x a x c x . Therefore, 

there are only three parameters, i.e. a, c, x0, which are coefficients and variables for the cubic 

function that helps fully characterize the behavior of the NSD system. This study names such 

model as the cubic model. 

Assuming the original structural system is a bilinear system, one could define Dy as the 

system yielding displacement, and QD is the characteristic strength of the system, which is given 

as Dy (K1-K2), where K1 and K2 are the pre- and post- yielding stiffness. To compute a, c, x0, the 

following expressions are given: 
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 


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 
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,   

0 yx D                                                             (4.44) 

 

Eq. (4.44) establishes a link from the variables a, c, and x0 to ,  ,  and      that are directly 

related with design criteria of the NSD system. To make NSD best effective, one should design 

x0  such that it is proportional (  times) to the system yielding displacement Dy. 
  is the ratio 

of the peak amplitude for the NSD to the QD of the bilinear system, which is related to the 

capacity of the pre-compressed spring.  xr defines the relaxation length, where the NSD system 

goes from stage three to stage four. After the displacement xr, the spring will be in tension and is 

not a negative stiffness spring anymore. When designing NSD, one could assume that xr is 

usually proportional (  times) to the system yielding displacement, i.e.  

/r yx D c a                                                          (4.45) 
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Fig. 4.17 gives a clear picture of different displacement levels xneg, x0, xcr, xr. The variable xcr 

is the critical displacement when the maximum NSD force is reached and it is expressed as: 

0 / (3 )crx x c a   . To sum up, this study defines three terms that fully characterizes the NSD 

system, i.e. xo
-
=   Dy, Q

-
=   QD, and xr =  Dy. This means providing the set [  ,   ,   ] or 

the set [xo
-
, Q

-
, xr ] can fully define a given NSD system for a bilinear system. 
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Fig. 4.17  Definitions for xneg, x0, xcr, xr. xcr for the cubic NSD model 

 

 

A further study of the system has been performed in chapter 6, where a comprehensive 

dimensional study shows the effectiveness of the proposed system. Also, recommendations for 

the design of NSD system are also provided. 

 

 

4.5  Self-centering Device 
 

For moderately strong or strong earthquakes, the building structures may behave inelastically 

resulting in cracks or residual deformations of the structural members. To address such drawback 

of traditional yielding systems, research efforts have developed new earthquake-resistant systems 

called self-centering (SC) systems with the potential to eliminate residual drifts and inelastic 
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deformations under strong earthquakes. SC systems exhibit a softening flag-shaped force-drift 

behavior due to: (1) separations developed in structural interfaces (e.g., beam-to-column 

connections); (2) elastic pre-tensioning elements (e.g., high strength steel tendons); and (3) 

energy dissipation elements (EDs: friction-based, yielding or viscous) which are activated when 

separation in structural interfaces initiates. The most recent self-centering devices are realized by 

the application of shape memory alloys (SMA) materials, which exhibit stable flag-shaped 

hysteresis and have been proved useful for seismic hazard mitigation for building systems.  

SMA-based devices have been studied by a large number of researchers for vibration control 

of building structures (Clark et al. 1995; Krumme et al. 1995; Higashino and Aizawa 1996; 

Aizawa et al. 1998; Salich et al. 2001; Xue and Li 2007; Zuo et al. 2008; Ma and Yam 2011). In 

2005, Han et al. developed an SMA damper that can simultaneously work in tension, 

compression, and torsion. The damper utilizes super-elastic NiTi wires that are subjected to 

tensile strains for all loading cases. To the verify effectiveness of the damper for tensile, 

compressive, and torsional motion, analytical and experimental studies were carried out on three 

reduced-scale dampers. 

The Basilica of San Francesco in Assisi, Italy is another case when SMA devices are 

implemented. The 1997 Umbria-Marche earthquake severely damage the building, which left the 

main challenge to restore the building to an adequate safety level, while maintaining the original 

concept of the structure. In order to reduce the seismic forces transferred to the tympanum, a 

connection between the tympanum and the roof was created using super-elastic SMAs (Fig. 

4.18). The SMA devices have demonstrated different structural properties for different horizontal 

forces. Under low horizontal forces, they are stiff and they bear insignificant displacements; for 

cases when horizontal drifts are large, such as an earthquake, their stiffness reduces for 
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controlled displacements of the masonry walls; in addition, under extreme intense horizontal 

loads, their stiffness increase to prevent collapse. 

 

             
Fig. 4.18  Seismic retrofit of the Basilica of San Francesco in Assisi: particular of the SMA 

device 

 

 

In 2011, Ozbulut et al. reviewed the SMA material, which introduces in detail about the 

shape memory alloys and their mechanical properties including strain rate effects, temperature 

effects, and corrosion and aging. The same article also listed some existing applications of SMA 

system against earthquakes.   

Fugazza (2013) presented the uni-axial constitutive model for pseudo-elastic SMAs. In this 

study, a brief summarization of such model is provided. The model is a modification of the one 

proposed by Auricchio and Sacco (1997), which is capable of describing the material behavior 

under arbitrary loadings such as those involved in seismic excitations, where the response is 

mainly composed by sub-hysteresis loops internal to the main one associated with complete 

phase transformations. The model formulation, developed in the small deformation regime, relies 

on the assumption that the relationship between stresses and strains is represented by a series of 

straight lines whose form is determined by the extent of the transformation experienced. Further 
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assumptions made are that no strength degradation occurs during cycling and that austenite and 

martensite branches have the same modulus of elasticity. 

 

 

4.5.1  Time-continuous Model 
 

The study assume to work with one scalar internal variable, S , representing the martensite 

fraction, and with two processes which may produce its variations: the conversion of austenite 

into martensite ("A to M"), and the conversion of martensite into austenite ("M to A"). (Fig. 

4.19) 

AM

start
AM

finish

MA

startMA

finish





L

E

E

 
Fig. 4.19  Stress-strain relationship exhibited by the super-elastic shape-memory alloy 

constitutive model. Sketch of the material response under tensile loads 

 

 

For both processes, linear kinetic rules to describe the evolution in time of the martensite 

fraction are chosen. In particular, the activation conditions for the conversion of austenite into 

martensite are:  

| |AM AM

S F     and | | 0                                             (4.45) 
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where AM

S  and AM

F  are material parameters representing the stress levels at which the "A to 

M" transformation starts and finishes respectively. |    |  is the absolute value and a superpose dot 

indicates a time derivative (i.e. | | /d dt ). The corresponding evolutionary equation is set equal 

to: 

| |
(1 )

| |
S S AM

F


 

 
  


                                                 (4.46) 

On the other hand, the activation conditions for the conversion of martensite into austenite 

are: 

| |MA MA

F S     and | | 0                                              (4.47) 

where MA

F  and MA

S  are material parameters representing the stress levels at which the "M to A" 

transformation starts and finishes respectively. The corresponding evolutionary equation is set 

equal to: 

| |

| |
S S MA

F


 

 



                                                       (4.48) 

 

4.5.2  Strain Decomposition and Elastic Relation 
 

Limiting the discussion to a small deformation regime, the following additive decomposition 

of the total strain,  , is assumed: 

sgn( )el L S                                                        (4.49) 

where el  is the elastic strain, L  is the maximum residual strain and sgn( )  is the sign function. 

The maximum residual strain L , regarded as a material constant, is a measure of the maximum 

deformation obtainable only by a multiple-variant martensite detwinning, hence, a measure of 
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the maximum deformation obtainable aligning all the multiple-variant martensites in one 

direction. Moreover, the presence of sgn( )  in Eq. (4.49), indicates that the direction of the 

effect relative to the martensite fraction  is governed by the stress. The elastic stress is assumed 

to be linearly related to the stress: 

elE                                                               (4.50) 

 

with E the elastic modulus of both the austenitic and martensitic branch. 

 

 

4.5.3  Time-discrete Model 
 

While during the development of the time-continuous model, the stress is assumed to be the 

control variable. On the other hand, the strain is assumed as the control variable during the 

development of the time-discrete model. The choice is consistent with the fact that, from the 

point of view of the integration scheme, the time-discrete problem is considered strain-driven. 

Accordingly, knowing the strain at time 1nt   and the solution at time nt , one should compute the 

new solution at time 1nt  . To minimize the appearance of subscripts (and to make the equations 

more readable), the following convention is made: 

 

 ( )n na a t , 1( )na a t                                                         (4.51) 

 

where a is a generic quantity. Therefore, the subscript n indicates a quantity evaluated at time nt , 

while no subscript indicates a quantity evaluated at time 1nt  . 

The model uses a backward-Euler scheme to integrate the time-continuous evolutionary 

Equations (4.46) and (4.48). Written in residual form and after clearing the fractions, the time-

discrete evolutionary equations specialized to: 
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(| | ) (1 )(| | | |) 0AM AM

M F S n                                            (4.52) 

(| | ) (| | | |) 0MA MA

M F S n                                             (4.53) 

 

where the martensite fraction increment M  is defined as: 

 

,S S n M     or 
1n

n

t

M S

t

dt 


                                               (4.54) 

 

The quantity M  can be computed expressing the stress as a function of M  and requiring the 

satisfaction of the evolutionary equation corresponding to the active phase transformation. 

Introduction of Eq. (4.50) into Eq. (4.49) indicates that: 

 

sgn( ) sgn( )                                                          (4.55) 

 

Hence, Eq. (4.49) can be rewritten as: 

 

sgn( )el L S                                                            (4.56) 

 

Making use of Eq. (4.56), substitution of Eq. (4.50) into Eq. (4.52) and (4.53) transforms the 

time-discrete evolutionary equations in two equations which can be solved in terms of M . 

 

 

4.5.4  Algorithmic Tangent Modulus 
 

A discussion of the construction of the tangent modulus consistent with the time-discrete 

model is followed. The use of a consistent tangent modulus preserves the quadratic convergence 

of the Newton method. 
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From the linearization of the Eq. (4.49), one could get: 

 

[ sgn( ) ]L Md E d d                                                      (4.57) 

 

Assuming that: 

Md Hd                                                                (4.58) 

 

One could solve Eq. (4.57) in terms of d , obtaining the relation: 

 
Td E d                                                                (4.59) 

 

where the tangent elastic modulus TE is given by: 

 

[1 sgn( )]T

LE E H                                                          (4.60) 

 

The quantity H is computed from the linearization of the discrete evolutionary equations 

corresponding to the active phase transformation. Then, from Equations (4.52) and (4.53), one 

could get: 

 

,(1 ) | | (| | ) 0AM AM

S n M n Fd d d                                            (4.61) 

, | | (| | ) 0MA MA

S n M n Fd d d                                             (4.62) 

 

Since | | sgn( ) sgn( )d d d      , relation (4.57) allows to solve Eqs. (4.61) and (4.62) in 

terms of Md  obtaining respectively: 

 

,

,

sgn( )(1 )

(1 )[ sgn( ) ] sgn( )

S nAM

AM

S n L n F

E
H H

E

 

     

 
 

   
                             (4.63) 
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,

,

sgn( )

[sgn( ) ] sgn( )

S nMA

MA

S n L n F

E
H H

E

 

     
 

 
                                  (4.64) 

 

Also, substituting Eq. (4.57) into Equations (4.52) and (4.53), it is possible to get the value of 

martensite fraction during the deformation history. 

In particular, for the conversion of austenite into martensite, one has: 

 

, ,

,

sgn( )

sgn( ) sgn( ) sgn( )

AM

S n S n F nAM

AM

F S n L L n

E E

E E

      
 

       

  
 

   
                         (4.65) 

 

while for the conversion of martensite into austenite, one has: 

 

, ,

,

sgn( )

sgn( ) sgn( )

MA

S n S n FMA

MA

F S n L n

E

E

    
 

     


 

  
                                   (4.64) 

 

 

4.5.5  Numerical Assessment 
 

A SDOF bilinear system is created to study the model presented above. The system has a 

period of 0.8 sec and a 1% linear damping ratio. The numerical assessment is evaluated in 

Matlab and OpenSees platform using self-centering material model. Compared to the material 

model in section 4.5.4, which captures the material level stress-strain relations, the implemented 

model focuses more on the performance of the self-centering devices. The modeling procedure 

of the material in OpenSees is shown in Table 4.10. The code was written by Jeff Erochko from 

University of Toronto.  
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Table 4.10  Self-centering material model in OpenSees developed by Jeff Erochko 

uniaxialMaterial SelfCentering $matTag $k1 $k2 $sigAct $beta <$epsSlip> <$epsBear>   

                                                     <rBear> 

$matTag integer tag identifying material 

$k1 Initial Stiffness 

$k2 Post-Activation Stiffness (0<$k2<$k1) 

$sigAct Forward Activation Stress/Force 

$beta Ratio of Forward to Reverse Activation Stress/Force 

$epsSlip slip Strain/Deformation (if $epsSlip = 0, there will be no slippage) 

$epsBear Bearing Strain/Deformation (if $epsBear = 0, there will be no bearing) 

$rBear Ratio of Bearing Stiffness to Initial Stiffness $k1 

 

Fig. 4.20 presents all the physical meaning of the variables from Table 4.10. The variable 

sigAct is same as AM

start  from section 4.5.4. The k1 and k2 variable corresponds to the elastic 

stiffness and transition stiffness from section 4.5.4. In addition, the model incorporates the 

slippage where three additional yet optional variables are defined. For beta value, this work 

assumes to be one as being compatible with the behaviors obtained from many material tests. 
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Fig. 4.20  OpenSees model of self-centering device (from online OpenSees document) 

 

In order to show the effectiveness of the self-centering system, the numerical analysis is 

divided to three steps: first, the bilinear system is excited with a set of ground motions; second, 

the bilinear system is equipped with additional damper (10% of nonlinear damping ratio); last, 

the bilinear system is equipped with the self-centering devices. A typical displacement time 

history analysis is presented in Fig. 4.21. 
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Fig. 4.21  Self-centering effect illustrated by time history analysis 

 

 

From Fig. 4.21, one could easily notice some significant residual drift left inside the bilinear 

system after the ground motion is over. In addition, it is obvious that only adding the damper 

does not help eliminate the residual drift. On the other hand, the self-centering system can 

always drive the system back to its original position after the motion is over. The internal force 

of the self-centering model is presented below in Fig. 4.22. 
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Fig. 4.22  Numerical behavior of SMA device 
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4.6  Concluding Remarks 
 

This chapter covers the study target of this study - seismic protective devices for building 

systems. Various types of devices have been presented. One could refer to these technologies to 

design or retrofit a certain building to improve its performance against earthquakes.  The 

emphasis is on base isolation, NSD and self-centering system. In addition, numerical modeling 

schemes for these devices have been proposed and implemented in OpenSees. This enables the 

numerical evaluation for such devices and future PBEE implementation of the optimum design 

for these protective devices. 
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5.  OPTIMAL ISOLATION DESIGN FOR BUILDING 

SYSTEMS 

 

 
Seismic isolation is a viable method to reduce seismic damages to buildings under moderate 

and severe earthquake events. In order to systematically evaluate and optimize the building 

responses, this chapter develops and applies the performance-based analysis and design 

methodology to assess the seismic vulnerability of buildings and to optimally design the isolation 

devices to reduce the direct losses due to earthquake damages. An isolated steel moment frame 

building tested in the 2011 E-Defense blind contest is selected and modeled in detail in 

OpenSees. Its modeling details and seismic responses are validated against the full scale shaking 

table test results. Subsequently, the fragility functions are derived for the test structure when 

subject to a suite of near-fault ground motions exhibiting distinctive acceleration or velocity 

pulses. In order to quantify the system level damage states of the building, a total loss ratio is 

proposed to account for the direct loss due to structural, nonstructural and isolation components 

in relation to the total repair cost of the original structure. With the consideration of 

uncertainties, the fragility functions are derived for conventionally designed and base-isolated 

steel moment frame structure. Finally, the total loss ratios are computed for various isolation 

designs. The optimal isolation is derived for cases with the minimum total loss ratio. It is shown 

that the optimal design of isolation devices can reduce the total loss ratio more than 50% of that 

of the un-isolated structure and it also outperforms the adopted design in the test program. The 

study demonstrates a systematic way of achieving the optimal isolation design with 

considerations of uncertainties in earthquake input and the combined structural and non-

structural damages. 
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5.1  Introduction 
 

Buildings may be susceptible to earthquake damages resulting both direct and indirect loss.   

In order to mitigate seismic hazards on buildings, seismic design codes can be improved and 

seismic protective devices in the form of passive or semi-active can be used (Lafontaine et al. 

2009; Lee et al. 2006). Base isolation is an effective passive device, which can significantly 

reduce the seismic lateral force demands in the superstructure relative to a fixed-base building. It 

improves the seismic resistances of structures by dissipating and deflecting earthquake input 

energy (through lengthening the fundamental structural period to avoid the dominant frequency 

of ground motions) and consequently reduces the cost for repair and rehabilitation after 

earthquake events (Kelly 1986; Skinner et al. 1993). 

Although the current design codes (e.g. ASCE 7-10 (2010)) provide descriptive method for 

designing the base isolation systems for buildings, they cannot incorporate uncertainties inherent 

with ground motion characteristics, building modeling parameters (such as material properties, 

member stiffness and strength, etc.), capacity estimation and variations in geometric properties 

of buildings etc. More importantly, the isolation design cannot be directly related to the expected 

performance of buildings. The recent development of performance-based earthquake engineering 

(PBEE) methodology provides a probabilistic framework to assess and improve the seismic 

performance of buildings to achieve the desired performance objectives. (Ghobarah 2001; 

SEAOC 1995; Porter et al. 2007). Through fragility functions, which define the conditional 

probability of engineering demand parameters (EDPs) exceeding the damage states (DS) at given 

earthquake intensity measure (IM), uncertainties and variabilities can be incorporated to evaluate 
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the vulnerability of structural components and the system level performance (Hwang et al. 2000; 

Karim and Yamazaki 2001; Zhang and Huo 2009). 

The PBEE framework is particularly attractive in the case of base isolation design if the 

device parameters can be directly related to a probabilistic performance index.  This facilitates 

comparing different designs under a consistent performance index. Sayani and Ryan (2009) 

developed a response index to compare the relative performance of many systems or to predict 

the best system to achieve a given performance objective for both base-isolated and fixed-base 

buildings. Zhang and Huo (2009) developed a performance index that considers both column and  

isolator damage for isolated bridges. Besides performance index, PBEE can also provide the 

expected losses to stakeholders to provide direct economic comparisons for different systems. 

Recent study by Mander et al. (2012) determines losses without need for customary fragility 

curves and proposes a closed-form stochastic loss estimation model for seismically damaged 

structures. Graf and Lee (2009) presented a simple framework to evaluate the cost to repair 

building damage using engineering parameters related to seismic building codes. Most current 

loss approaches use probabilistic integrated methodologies such as fragility curves to estimate 

the losses due to structural damage (i.e. combines fragility curves with loss functions) (Dhakal et 

al. 2006; Solberg et al. 2008; Aslani and Miranda 2005, Bai et al. 2009). 

This section adopts the performance-based methodology to evaluate the effectiveness and 

optimum design parameters of isolation devices such that the overall damaging potential of 

seismically isolated building system is minimized. A total loss ratio is defined to account for the 

direct loss due to both structural and nonstructural damage in relation to the total repair cost of 

the original structure. By relating fragility functions at different damage states to the total loss 

ratio, isolation devices with various mechanical properties can be evaluated under this 
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probabilistic framework to derive the optimal design based on minimum damage probability in 

terms of the total loss ratio. 

The section is organized as follows. Following the introduction of the PBEE framework is 

provided for deriving the fragility functions and defining the damage states of buildings in 

Chapter 3. A loss model that defines the total loss ratio is proposed. A numerical model of a five-

story steel moment-resisting frame is developed and calibrated with test data. The fragility 

curves are derived for the model building for both un-isolated and isolated cases. A detailed 

parametric study of various isolation parameters is conducted and the total loss ratio is obtained 

to serve as the criteria for evaluating the merit of each design. The optimal design range for 

isolation devices is finally determined along with its 95% confidence interval. 

 

 

5.2  Loss Model and Total Loss Ratio 
 

Loss estimation is compatible with PBEE framework and the study about loss has been going 

on for years. The major stream of loss estimation study is to find the economic losses for large 

number of buildings within a geographical region such as a city and a county. This type of 

regional loss estimation studies is used mainly for insurance industry and sometimes for the 

federal government. On the other side, relatively less research has been done for individual 

structure loss estimation. To estimate the loss to a specific building, the damage is usually 

categorized into different components such as structural damage and non-structural damage. 

Damage to each of these components is evaluated in terms of percentage of the replacement cost 

of the component. Evolutions of the loss to a specific building include using a set of ground 

motions rather than only using one motion, and incorporating probabilistic approaches while 

evaluating the structural performance. 
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In this study, besides the investigation of building damage potential, a probabilistic loss 

estimation framework is presented, which directly relates earthquake hazard to building response 

and hence to total losses in the form of percentage. The loss estimation framework is closely tied 

with the fragility functions that define the damage that incurs the performance of a certain 

design. The loss model has been calibrated and validated with designed buildings documented 

empirically such as ATC-40 (1996), ATC-58 (2011) and RSmeans construction cost data (2009). 

 

 

5.2.1  Damage Indicators 
 

Many existing studies define the performance of a certain building by evaluating both inter-

story drifts and floor accelerations (Lafontaine et al. 2009). To incorporate the comprehensive 

damage states for the isolated building system, this study uses peak transient inter-story drift 

ratio, absolute floor accelerations, and horizontal bearing drift ratio as the damage indicators for 

the isolated building. Correspondingly, the physical meanings related with these EDPs are 

structural damage, non-structural damage and bearing damage. 

The structural components include all the elements needed for the superstructure such as 

columns and beams that provide support against lateral and gravity loads. Williams et al. (1997) 

demonstrate that plastic displacement and ductility are consistently reliable indicators of severe 

damage to the structural members. Mander et al. (2007) choose the maximum pier drift ratio as 

the parameter to study the damage to bridges. In additional to these studies, numerous studies 

have also proved that the damage to the structural components is usually indicated by the 

structural curvature or displacement/drift. 

The non-structural elements usually refer to all the equipments and building facility, 

suspended ceiling, automatic sprinklers, elevators, etc. Current studies often consider the damage 
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of non-structural components being highly relevant to absolute floor acceleration. Previous 

studies found that seismic damage to non-structural systems can be triggered at response 

intensities smaller than those required to produce structural damage. Consequently, a big part of  

building seismic losses were related to the damage of nonstructural components. For example, 

Reinhorn et al. (2010) show that after Miranda earthquake in 2003, 82%, 87% and 92% loss are 

due to the general nonstructural components to office buildings, hotels and hospitals 

respectively. Overall, the general non-structural systems represent 75% of the loss exposure of 

U.S. buildings to earthquakes, and account for over 78% of the total estimated national 

annualized earthquake loss. (Reinhorn et al. 2010). To reduce the damage to the non-structural 

building components, some previously studies suggest to reduce the floor acceleration of 

buildings where the concept of base-isolation are highly recommended. (Lafontaine et al. 2009)  

Other than these non-structural components, Haselton et al. (2007) also points out in a PEER 

report about some non-structural components that are sensitive to other intensity indicators. For 

example, the report adopts EDP of transient drift ratio to indicate damages to drywall partitions 

and finishing; adopts inter-story drift ratio to indicate damages to exterior glazing; and adopts 

damaged area to indicate damages to interior paint. This loss model in this study relates non-

structural level damage to the maximum top floor acceleration. 

With the purpose of shifting the superstructure's damage to the isolation system, repairing 

and/or replacing isolators are unpreventable from medium and large ground motions. One of the 

discussions address the issue that base-isolated buildings can be vulnerable to the large pulse-like 

ground motions generated at near-fault locations (Hall and Heaton 1995). The nonlinear shear 

strain of the isolation system is significantly large under near-fault motions. Such large response 

can cause undesired instability issue of the bearings, which leads to intensive damage to the 
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bearings and the super-structural members. In fact, isolation devices possess various mechanical 

properties and their behaviors are often highly nonlinear and sometimes frequency- and rate-

dependent (Naeim and Kelly 1999). Existing studies usually relate the damages of the bearings 

with their shear ratio, displacement or drift (Zhang and Huo 2009). The detailed components for 

these three above categories are summarized in Table 5.1 according to RSMeans building 

construction cost data (2009) given. 

 

Table 5.1  Components of the base-isolated building system 

Structural components SUBSTRUCTURE Foundation

Basement Excavation

SHELL Superstructure

Exterior Enclosure

Roofing

INTERIORS Partitions

Fittings

Stair 

Floors and 

Non-structural components EQUIPMENT Suspended 

Commercial 

Institutional 

Vehicular

SERVICES Conveying

Plumbing

HVAC

Fire 

Electrical

Base isolators BEARINGS

 
 

 

5.2.2  Building Performance Index: Total Loss Ratio 
 

The total loss ratio (TLR) serves as a factor to evaluate the performance of a given design and 

the ratio quantifies the cost of structural repairs as a percentage of the replacement value of the 

structural portion of a building. In order to compute TLR, this study maps the damage categories 

with the developed damage states. The expression for TLR for a base-isolated building is given 

as: 
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                                     (5.1) 

 

where i = 1 to 4 stands for the four damage states. ( )

st

ir ,
( )

ns

ir , and ( )

iso

ir  are the percentage damaged 

for each of the damage state for structural components, non-structural components, and isolation 

system with detailed values presented in Table 5.2. cstr, cnon-str and ciso stands for the cost for the 

three aforementioned EDPs and 
( )

st

iP , 
( )

ns

iP , 
( )

iso

iP  are the probabilities that are bounded by the four 

fragility curves within each fragility curves of these three components. 

To make calculation simpler, one could assume that structural components has a value of A, 

and the other two categories cost α A (non-structural components) and β A (isolation systems), 

respectively. The coefficients α and β, are obtained based on previous observations and value 

estimations of total non-structural components and isolation system. The value of α varies with 

different types of building according to their functions and placement of force sensitive 

components. For this study, α values of 0%, 50% and 100% are chosen and studied. β is set to 

8% in this study as the total cost for a base isolation system is usually within 10% of the 

structural cost (the upper bound of β). Then Eq. (5.1) can be formed as: 
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The total loss of the isolated building system is the sum of loss in each state and the total 

value of the base isolated system is (1 )A    and this is the denominator by which the TLR 

is normalized. Since the loss ratio at different damage states are proportional to damaged 
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percentage of the building, this study follows HAZUS definition, where four damage states are 

defined in Table 5.2: 

 

Table 5.2  Damage states and damage ratio 

Description                                            Percent Damage Accel. (non-str.) Disp. (str.) Bearing Drift (iso.)

1 Slight 2% 0.25 g 0.40% 100%

2 Moderate 10% 0.50 g 0.69% 150%

3 Extensive 50% 1.0 g 1.57% 200%

4 Complete 100% 2.0 g 4.00% 250%
 

 

The presented loss model includes three fragility analyses for maximum inter-story drift, 

absolute maximum top floor acceleration, and bearing drift. For each of these cases, the damage 

states are bounded by the four fragility curves for each state, as shown in Fig. 5.1. The 

probability of being in each damage state can be computed as the difference between the 

conditional probabilities of the bounding fragility curves. For each of the three components (e.g. 

structural components), conditional probability values (P(1), P(2), P(3), and P(4)) that correspond to 

each performance level can be obtained for a given intensity measure from the fragility curves 

and they satisfy 
4
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Fig. 5.1  Illustration of bounded probability in percentage for each state 
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In order to make the concept of TLR clearer, an example of how the TLR is calculated for a 

base-isolated building system is provided. Suppose our goal is to estimate the expected TLR of 

earthquakes with return frequency of 10% in 50 years (e.g. PGA = 0.55g). For the structural 

damage, the probability bounded by each damage state can be shown from the fragility curve for 

structural members that are dominated by inter-story drift. Similarly, for the non-structural 

damage probability and isolator damage probability, which can be shown from acceleration 

fragility curves and bearing drift fragility curves. Suppose one could get the following 

probabilities:  

( ) [10% 25% 35% 15%]strP  , ( ) [8% 32% 46% 14%]non strP   , ( ) [21% 23% 22% 12%]isoP  .  

The loss of structural elements would be:  

(10% 2%+25% 10%+35% 50% 15% 100%) 0.352A A       .  

As the non-structural members cost A , the loss of non-structural elements would be:  

(8% 2%+32% 10%+46% 50% 14% 100%) 0.4036A A        ,  

In addition, given the isolation system cost A , the loss of the isolation system is computed 

as: (21% 2%+23% 10%+22% 50% 12% 100%) 0.2572A A        . 

Therefore, the TLR is computed as: 
0.352 0.4036 0.2572

100%
(1 )

A A A
TLR

A

 

 

 
 

 
. For 

example, when 100%  and 8%  ,  TLR can be calculated as: 

0.352 0.4036 1 0.2572 0.08
100% 37.32%

(1 1 0.08)
TLR

   
  

 
. 
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5.3  Fragility Analysis and Results 
 

In this section, the methodology described in the previous section is applied to derive the 

fragility curves of a typical as-built and shake table tested steel building constructed in Japan and 

of the retrofitted building using seismic isolation devices. 

 

 

5.3.1  Building layout 
 

The selected building model for this study adopts the building specimen in contest 2011 

tested by the E-Defense shaking table. The E-Defense shaking table facility, whose construction 

was completed in 2005, is the largest earthquake simulator capable of subjecting full-scale 

structures to the strongest earthquakes recorded in the world. The structural layout of the studied 

building is depicted in Fig. 5.2, which represents a two bay by two bay plane with 7-m and 5-m 

span in one direction and two 5-m spans in another. Fig. 5.2(a) shows the elevation view of the 

frame with a 3.85-m first story and four 3-m stories above. Fig. 5.2(b) shows the plan view also 

in the unit of mm. The entire building sample is seated on nine FPS bearings, which are fixed to 

the E-defense shaking table. The general force-displacement relationship for the isolation system 

is assumed to be smoothed bilinear as shown in Fig. 5.2(c). The first seven frequencies of the 

building is 1.52 Hz, 1.58 Hz, 1.87 Hz, 4.81 Hz, 4.98 Hz, 5.87 Hz, 9.35 Hz and the first mode 

period T1 is 0.65 second. The mode for story torsion is the eighth mode and is insignificant for 

this case. 
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(a) Elevation Plan                                       (b) Floor Plan    

 

 

 
(c) Smoothed bilinear loop 
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Fig. 5.2  Plan and elevation of full-scale 5-story steel MF building with triple pendulum isolation 

bearings 

 

 

The nonlinear building model follows a bilinear hysteretic behavior, which include elastic 

stiffness K1, post-yielding stiffness K2, characteristic strength Qd, yielding displacement Dy and 

yielding force Fy. Any three of these five properties can be used to completely describe the shape 

of the bilinear model. For this study, the bilinear behavior is characterized with K1, K2 and Qd. 

The static pushover analysis (Fig. 5.2(d)) reveals that the bilinear parameters of the designed 

building is Qd_B = 4194 kN; K1_B = 25 MN/m and K2_B = 1700 kN/m. The story weights are 842 

kN, 841 kN, 822 kN, 816 kN, 798 kN, 1153 kN for the ground level to the roof level respectively 

which adds up to 5309 kN above the isolation system. Nine FPS bearings are placed under the 

building and they were all tested before being installed into the building. The bearing geometry 
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is given in Fig. 5.3(a), the design presented a triple pendulum isolation system with two sliding 

surfaces. Makris and Vassiliou (2011) discovered similar response between friction along the two 

sliding surfaces and a bilinear behavior with large initial stiffness.  Solid line in Fig. 5.3(b) 

shows the real FPS response from the test and the dotted line completes the bilinear hysteretic 

loop that is being used for this study. Based on the conclusion from Makris and Vassiliou (2011), 

this study considers a bilinear behavior of the triple pendulum isolation system. This has also been 

proved from shaking table tests of the isolation system shown in Fig 5.3(c). These designed isolators 

add up to Qd_I = 386 kN; K1_I = 35 MN and K2_I = 760 KN/m. This design corresponds to a Qd_I / 

Qd_B = 9.2% and K1_I / K1_B = 1.4 and a stiffness ratio of N = K1_I / K2_I = 46. 
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Bearing

Displacement
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(a) Geometry of the tested TFP bearings (b) Equivalent bilinear behavior 
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Bearing: FPT15651/10-18/4-3 Test: 

Bearing 1 

Real Time Test

Horizontal Displacement (inches)

 

(c) Real time tested data of the bearings 

Fig. 5.3  Triple pendulum isolation bearings and their bilinear behavior 

 

 

To reduce the computation work and model parameters, one common engineering approach 

is to develop calibrated simplified models to replace the usually complicated 3D models. For 

example, Zhang and Huo (2009) simplified the 3D bridge model into 2D and they reasonably 

matched the simplified model with the original model. Mander et al. (2007) also simplified 

bridge pier into a one-DOF model before running IDA analysis. This study conducted 3D 

nonlinear dynamic response history analyses using the selected ground motions in the software 

platform OpenSees. The original 3D model assumes all diaphragms are rigid. The sophisticated 

model has thousands of nodes and elements, which simulate all the beams and columns with 

displacement-based elements considering nonlinear spreading plasticity along the elements. The 

simulation results from the 3D model closely matches well with the tested sample building. 

However, it is very time-consuming to analyze all one-hundred motions with this model. In fact, 
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this work performs an extensive parametric study that requires much more computation running 

the original 3D model. Therefore, a simplified 3D model has been established guided by the 

performance of the original 3D model. Due to the rigid diaphragm and the in-significance 

torsional effect, a 3D lumped mass model with equivalent story stiffness is chosen for the 

simplified model (Fig. 5.4(a)). The story stiffness K1-K5 still follows the bilinear relationship and 

provides 2.5% of the elastic stiffness after they yield. Fig. 5.4(b) and 5.4(c) indicates that the 

simplified 3D model matches pretty well with the tested data of the real structure for both fixed-

base and isolated building. For more ground motions, this study also performed PSDA analysis 

and created fragility curves for both the original model and the simplified model. Fig. 5.4(d) and 

5.4(e) illustrate that the fragility curves for the simplified model is also very close to the original 

model. 

 

 

 

                                                

 

M1 

 

M2 

M4 

M5 

M3 

U1 

 

U2 

U4 

U5 

U3 

K1 

 

K2 

K4 

K5 

K3 

 Shake table 
 

0 100 200 300 400

1

2

3

4

5

6

Floor Displacement (mm)

S
to

ry

Max story disp. for base isolated building

 

 

simplified x

simplified z

tested x

tested z

(b) 

0 50 100 150
1

2

3

4

5

6

Floor Displacement (mm)

S
to

ry

Max story disp. for fixed base building

 

 

simplified x

simplified z

tested x

tested z

(c) 

(a) Simplified Model 

3D model 

Simplified 2D model 



 143 

0 0.5 1 1.5

0

20

40

60

80

100

ac
ce

le
ra

ti
o

n
 e

x
ce

d
en

ce
 (

%
)

PGA (g)

Acc as the EDP only

 

 

Thick: tested fragility

Narrow: simplified fragility

0 0.5 1 1.5

0

20

40

60

80

100

B
ea

ri
n

g
 

 e
x

ce
d

en
ce

 (
%

)

PGA (g)

Drift as the EDP only

 

 

Thick: tested fragility

Narrow: simplified fragility

 

(d) Compare of acceleration fragility curve (e) Compare of inter-story drift fragility curve 

Fig. 5.4  Simplified building model compared with 3D building model 

 

 

5.3.2  Fragility Curves of the Fixed Base Building and the Isolated Building 
 

Fig. 5.5 illustrates the relationship between computed EDP and the corresponding PGA(g) of 

un-scaled ground motions in logarithmic scale. The closer each point gets to the regressed linear 

line, the better EDP and IM are correlated, indicating better regression results. 
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Fig. 5.5  Lognormal matching for the three EDPs: inter-story drifts; acceleration and bearing 

drift 

 

 

Fig. 5.6 shows the fragility curves for base-fixed and base-isolated building. Fig. 5.6(a) 

shows the inter-story drift exceedance 1.0%. It is obvious that the building is well protected by 

the isolation device and the drift has zero chance to reach 1.0% at a 1.5 (g) ground motion PGA 

level; Fig. 5.6(b) shows that the roof absolute acceleration has also been reduced. The figure 
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shows that for PGA near 0.5 (g), the un-isolated building roof acceleration has nearly 100% 

chance to reach 1.0 (g) whereas the chance for isolated building is close to zero. 
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(a) Inter-story drift fragility (b) Acceleration fragility 

Fig. 5.6  Isolation effect in terms of inter-story drift and absolute acceleration 

 

 

5.4  Optimal Design for the Seismic Isolation System 
 

Although the designed and tested isolators for the building are triple pendulum bearing, other 

types of isolators can also be used for base isolation design. Until now, three types of isolators 

are commonly used: elastomeric bearings (ERB), lead-rubber bearings (LRB), and friction 

pendulum systems (FPS). Details about isolation systems and their numerical modeling scheme 

has been explained in Chapter 4. This section systematically investigates the influence of 

mechanical properties of isolation devices to the dynamic response, potential damage, and TLR 

of an isolated building. In addition, a parametric study has been conducted to explore the 

optimum design for isolation system. 

To launch the performance-based design of base-isolation system, all the possible design 

features of the isolation system should be considered. For each design, a performance index - 

TLR will be computed based on the presented loss model and compared with that of the other 
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designs. In this study, the author systematically selects the isolation system features with various 

combinations of isolation parameters, which is summarized as follows: The ratio between the 

pre-yielding stiffness K1 and post-yielding stiffness K2 is measured by a parameter N = K1_I/K2_I. 

In this study, N is chosen to be 10, 20, and 50 respectively to represent these different isolation 

systems, where I stands for isolators. Then, for each of the three specified N, the post yielding 

stiffness K2_I for the isolation system is varied from 0.01 to 0.08 times of the building elastic 

stiffness K1_B, and the bearing yielding strength Qd_I is varied from 0.03 to 0.45 times the 

building yielding strength Qd_B. 

To interrogate the performance over the expected range of earthquake ground motion 

intensities, nonlinear time-history analysis are conducted at different hazard levels. Haselton et 

al.  (2007) selected seven hazard levels for LA Bulk Mail site, ranging from IM levels that have a 

50%-in-5-years probability (7.2 years recurrence) to high-intensity motions that have a less than 

2%-in-50-years probability (2475-years recurrence). Beyond the 2%-in-50-years hazard, ground 

motions intensity are incremented to the collapse level. In this study, four hazard levels are 

selected and they are given in Table 5.3.  The TLR for each hazard level are computed, recorded 

and compared to show the efficiency of isolation. A lower mean value corresponds to a smaller 

total loss implying a better isolation design.  

 

 

Table 5.3  Uniform mean hazard results 
 

Spectral acceleration for each hazard level 

Hazard level 20% in 5 years 10% in 50 years 2% in 50 years collapse 

Equivalent mean 

return period 
22 475 2475 - 

    0.20 (g) 0.55 (g) 0.82 (g) 1.20 (g) 
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Fig. 5.7 illustrates to the TLR as a function of Qd_I / Qd_B and K2_I / K1_B to reach the different 

hazard levels for the given steel building with a stiffness ratio N = 20. The bottom point on the 

contour represents the smallest loss ratio leading to the repairing cost of a given hazard intensity, 

which also corresponds to a lowest fragile probability that incurs the best structural performance. 

The bearing parameters at these bottom (optimizing) points therefore represent the optimal 

design. Fig. 5.8 shows similar surfaces for TLR for pulse type motions with non-structural 

parameter α set to zero and N=50 (close to the tested FPS bearings). Four figures are presented 

for the four different hazard levels. It is very easily identified that the optimal range for this case 

is Qd_I = 0.12 Qd_B and K2_I = 0.08 K1_B. 
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Fig. 5.7  Influence of Qd_I and K2_I of isolation devices (N = 20) on TLR with Far-field motions 

and α = 0.0 at 50%-in-5-years hazard level 
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Fig. 5.8  Influence of Qd_I and K2_I of isolation devices (N = 50) on TLR with Pulse-type motions 

and α = 0.0 at different hazard levels 
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Fig. 5.9  Influence of Qd_I and K2_I of isolation devices (N = 50) on TLR with Pulse-type 

motions and α = 0.5 at different hazard levels 
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Fig. 5.10  Influence of Qd_I and K2_I of isolation devices (N = 50) on TLR with Pulse-type 

motions and α = 1.0 at different hazard levels 
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Fig. 5.11  Influence of Qd_I and K2_I of isolation devices (N = 50) on TLR with Far-field 

motions and α = 0.0 at different hazard levels 
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Fig. 5.12  Influence of Qd_I and K2_I of isolation devices (N = 50) on TLR with Far-field motions 

and α = 0.5 at different hazard levels 
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Fig. 5.13  Influence of Qd_I and K2_I of isolation devices (N = 50) on TLR with Far-field 

motions and α = 1.0 at different hazard levels 
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For a triple pendulum system with the stiffness ratios at around 50, Fig. 5.9 to Fig. 5.13 

covers all the cases considering different α for non-structural component levels, different hazard 

intensity levels, and different types of ground motions. The approximated optimal parameter 

combinations for the isolation system as identified by the bottom points on these plots are 

summarized in Table 5.4. The presented data first indicate that the optimum range is not 

sensitive to stiffness ratio N. Then, tables show that the optimal bearing characteristic strength 

Qd_I is averaged around 10% of Qd_B. Pulse-type motions without non-structural components (α 

= 0) may give larger Qd_I up to 0.21 Qd_B. However, since non-structural loss is usually 

unpreventable, Qd_I optimal range is hence narrowed down to 0.03-0.12 of Qd_B. One could also 

notice that small PGA (0.20g) hazard level may result some in different locations of the bottom 

points than other levels with a much larger return period. This is because the damage of isolation 

system becomes more crucial affecting the TLR for smaller hazard levels. Another important 

observation is that when considering non-structural components, K2_I range is almost fixed at a 

small value 0.01. This means that in order to minimize the TLR, the study suggests to replace the 

isolation system rather than allowing earthquakes to damage the structural members. 

Although the locations of the minimum points are slightly different for all the different 

situations, it can be generally concluded that the bearing with Qd_I = (0.06-0.12) Qd_B and K2_I = 

0.01 K1_B would be a good choice for retrofitting the prototype building. The designed isolation 

system, which has Qd_I / Qd_B = 9.2% and K2_I / K1_B = 0.03, provides a reasonable design near to 

the optimized range from this study. Another observation is that K1_I / K1_B increases 

proportionally with stiffness ratio N. Since the elastic stiffness K1_I is N times the post-yielding 

stiffness K2_I, the results once more imply that K1_I is insignificant whereas K2_I plays a much 
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more crucial role for optimal design of isolation devices. This matches the isolator design theory 

where the post yielding stiffness K2_I dominates the bearing behavior for severe ground motions. 

 

 

Table 5.4  Optimal range for design variables when structure experiences pulse-type motions  

Stiffness ratio N = K1_I/K2_I = 10 0.20 (g) 0.55 (g) 0.81 (g) 1.20 (g)   Range 

α = 0.0 QD_I/QD_B 0.21 0.15 0.12 0.09   0.09 - 0.21 

  K2_I/K1_B 0.08 0.08 0.08 0.08   0.08 - 0.08 

  K1_I/K1_B 0.8 0.8 0.8 0.8   0.8 - 0.8 

α = 0.5 QD_I/QD_B 0.03 0.03 0.03 0.03   0.03 - 0.03 

  K2_I/K1_B 0.01 0.01 0.01 0.01   0.01 - 0.01 

  K1_I/K1_B 0.1 0.1 0.1 0.1   0.1 - 0.1 

α = 1.0 QD_I/QD_B 0.06 0.03 0.03 0.03   0.03 - 0.06 

  K2_I/K1_B 0.01 0.01 0.01 0.015   0.01 - 0.015 

  K1_I/K1_B 0.1 0.1 0.1 0.15   0.1 - 0.15 

Stiffness ratio N = K1_I/K2_I = 20 0.20 (g) 0.55 (g) 0.81 (g) 1.20 (g)   Range 

α = 0.0 QD_I/QD_B 0.18 0.15 0.12 0.09   0.09 - 0.18 

  K2_I/K1_B 0.08 0.08 0.08 0.08   0.08 - 0.08 

  K1_I/K1_B 1.6 1.6 1.6 1.6   1.6 - 1.6 

α = 0.5 QD_I/QD_B 0.12 0.03 0.03 0.03   0.03 - 0.12 

  K2_I/K1_B 0.01 0.01 0.01 0.01   0.01 - 0.01 

  K1_I/K1_B 0.2 0.2 0.2 0.2   0.2 - 0.2 

α = 1.0 QD_I/QD_B 0.06 0.03 0.03 0.03   0.03 - 0.06 

  K2_I/K1_B 0.01 0.01 0.01 0.01   0.01 - 0.01 

  K1_I/K1_B 0.2 0.2 0.2 0.2   0.2 - 0.2 

Stiffness ratio N = K1_I/K2_I = 50 0.20 (g) 0.55 (g) 0.81 (g) 1.20 (g)   Range 

α = 0.0 QD_I/QD_B 0.18 0.12 0.12 0.09   0.09 - 0.18 

  K2_I/K1_B 0.08 0.08 0.08 0.08   0.08 - 0.08 

  K1_I/K1_B 4 4 4 4   4 - 4 

α = 0.5 QD_I/QD_B 0.03 0.03 0.03 0.03   0.03 - 0.03 

  K2_I/K1_B 0.03 0.01 0.01 0.01   0.01 - 0.03 

  K1_I/K1_B 1.5 0.5 0.5 0.5   0.5 - 1.5 

α = 1.0 QD_I/QD_B 0.03 0.03 0.03 0.03   0.03 - 0.03 

  K2_I/K1_B 0.01 0.01 0.01 0.01   0.01 - 0.01 

  K1_I/K1_B 0.5 0.5 0.5 0.5   0.5 - 0.5 
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Table 5.5  Optimal range for design variables when structure experiences far-field motions  

Stiffness ratio N = K1_I/K2_I = 10 0.20 (g) 0.55 (g) 0.81 (g) 1.20 (g)   Range 

α = 0.0 QD_I/QD_B 0.06 0.03 0.03 0.03   0.03 - 0.06 

  K2_I/K1_B 0.08 0.08 0.08 0.08   0.08 - 0.08 

  K1_I/K1_B 0.8 0.8 0.8 0.8   0.8 - 0.8 

α = 0.5 QD_I/QD_B 0.03 0.03 0.03 0.03   0.03 - 0.03 

  K2_I/K1_B 0.01* 0.08 0.02 0.02   0.01 - 0.08 

  K1_I/K1_B 0.1 0.8 0.2 0.2   0.1 - 0.8 

α = 1.0 QD_I/QD_B 0.03 0.03 0.03 0.03   0.03 - 0.03 

  K2_I/K1_B 0.01 0.01 0.02 0.02   0.01 - 0.02 

  K1_I/K1_B 0.1 0.1 0.2 0.2   0.1 - 0.2 

Stiffness ratio N = K1_I/K2_I = 20 0.20 (g) 0.55 (g) 0.81 (g) 1.20 (g)   Range 

α = 0.0 QD_I/QD_B 0.06 0.03 0.03 0.03   0.03 - 0.06 

  K2_I/K1_B 0.065 0.08 0.08 0.08   0.065 - 0.08 

  K1_I/K1_B 1.3 1.6 1.6 1.6   1.3 - 1.6 

α = 0.5 QD_I/QD_B 0.03 0.03 0.03 0.03   0.03 - 0.03 

  K2_I/K1_B 0.02 0.045 0.01 0.08   0.01 - 0.08 

  K1_I/K1_B 0.4 0.9 0.2 1.6   0.2 - 1.6 

α = 1.0 QD_I/QD_B 0.03 0.03 0.03 0.03   0.03 - 0.03 

  K2_I/K1_B 0.01 0.01 0.01 0.08   0.01 - 0.08 

  K1_I/K1_B 0.2 0.2 0.2 1.6   0.2 - 1.6 

Stiffness ratio N = K1_I/K2_I = 50 0.20 (g) 0.55 (g) 0.81 (g) 1.20 (g)   Range 

α = 0.0 QD_I/QD_B 0.03 0.03 0.03 0.03   0.03 - 0.03 

  K2_I/K1_B 0.08 0.08 0.08 0.08   0.08 - 0.08 

  K1_I/K1_B 4 4 4 4   4 - 4 

α = 0.5 QD_I/QD_B 0.03 0.03 0.03 0.03   0.03 - 0.03 

  K2_I/K1_B 0.01 0.02 0.03 0.03   0.01 - 0.03 

  K1_I/K1_B 0.5 1 1.5 1.5   0.5 - 1.5 

α = 1.0 QD_I/QD_B 0.03 0.03 0.03 0.03   0.03 - 0.03 

  K2_I/K1_B 0.01 0.01 0.03 0.03   0.01 - 0.03 

  K1_I/K1_B 0.5 0.5 1.5 1.5   0.5 - 1.5 

* the tilted data implies that a wide range close to the values is also close to optimal 

 

 

The TLR for pulse-type motions and for far-field motions are summarized in Table 5.6 and 

5.7, respectively. By choosing TLR as the performance index for the isolated building, this study 

discovered that the major total loss of the isolated building system comes from non-structural 

components. This is true because the isolation design helps to significantly reduce the inter-story 

drifts, which protects the structural members. After optimization, it is obvious that the minimum 
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total loss resulted from near fault pulse-type motions is larger than the total loss from far-field 

motions. Moreover, it has been proved again that with K2 fixed at a specific range, N value has 

small impact in terms of TLR. 

 

Table 5.6  Minimum loss from pulse-type motions 

Stiffness ratio N = K1_I/K2_I = 10 0.20 (g) 0.55 (g) 0.81 (g) 1.20 (g) 

α = 0.0 Minimum Loss 0.0475 0.8665 1.8569 3.1654 

α = 0.5 Minimum Loss 0.4449 4.9161 12.1373 20.8383 

α = 1.0 Minimum Loss 0.5613 6.6987 17.1603 29.7979 

Stiffness ratio N = K1_I/K2_I = 20 0.20 (g) 0.55 (g) 0.81 (g) 1.20 (g) 

α = 0.0 Minimum Loss 0.0289 0.6492 1.5038 2.6624 

α = 0.5 Minimum Loss 0.4613 4.9816 12.15 20.6912 

α = 1.0 Minimum Loss 0.6 6.8023 17.173 29.5618 

Stiffness ratio N = K1_I/K2_I = 50 0.20 (g) 0.55 (g) 0.81 (g) 1.20 (g) 

α = 0.0 Minimum Loss 0.0082 0.4639 1.218 2.3568 

α = 0.5 Minimum Loss 0.4996 5.0801 12.331 20.6194 

α = 1.0 Minimum Loss 0.6785 6.9901 17.5198 29.5549 

 

 

Table 5.7  Minimum loss from far-field motions 

Stiffness ratio N = K1_I/K2_I = 10 0.20 (g) 0.55 (g) 0.81 (g) 1.20 (g) 

α = 0.0 Minimum Loss 0.0177 0.3944 0.9125 1.8339 

α = 0.5 Minimum Loss 0.2626 3.3991 8.0201 17.0322 

α = 1.0 Minimum Loss 0.301 4.7994 11.3366 24.5639 

Stiffness ratio N = K1_I/K2_I = 20 0.20 (g) 0.55 (g) 0.81 (g) 1.20 (g) 

α = 0.0 Minimum Loss 0.0153 0.3674 0.8431 1.6636 

α = 0.5 Minimum Loss 0.2668 3.4168 7.9258 16.2316 

α = 1.0 Minimum Loss 0.3147 4.7844 11.2301 23.7958 

Stiffness ratio N = K1_I/K2_I = 50 0.20 (g) 0.55 (g) 0.81 (g) 1.20 (g) 

α = 0.0 Minimum Loss 0.0118 0.2985 0.765 1.6056 

α = 0.5 Minimum Loss 0.2812 3.4866 8.3668 16.1135 

α = 1.0 Minimum Loss 0.3734 4.9724 12.1609 23.4974 

 

 

Table 5.8 provides the TLR for from pulse-type motions with different non-structural values 

and isolation stiffness pre-post yielding stiffness ratios. For example, by assuming value of the 

non-structural components is same as structural components (i.e. α = 1.0), the designed isolation 

system according to ASCE 7-05 reduced about 500% loss for small PGA motions (50%-in-5-
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years) and reduced about 300% loss rare ground motions (2%-in-50-years). It is also noticed that 

the optimal designs gives even better protection of 770% loss for small PGA motions (50%-in-5-

years) and reduced about 500% loss rare ground motions (2%-in-50-years). A noticeable 30-40% 

better performance can be improved from the optimal design over the designed isolation for this 

case with the presented PBEE framework. 

 

Table 5.8  TLR (%) for different designs from pulse-type ground motions 

α = 0.0

Case 0.2 (g) 0.55 (g) 0.82 (g) 1.20 (g)

Fixed 1.56 12.04 23.56 38.72

Designed 0.07 1.26 2.58 4.21

Optimal when N=10 0.05 0.87 1.86 3.17

Optimal when N=20 0.03 0.65 1.50 2.66

Optimal when N=50 0.01 0.46 1.22 2.36

α = 0.5

Case 0.2 (g) 0.55 (g) 0.82 (g) 1.20 (g)

Fixed 4.50 31.10 47.84 59.13

Designed 0.68 7.13 17.87 27.65

Optimal when N=10 0.44 4.92 12.14 20.84

Optimal when N=20 0.46 4.98 12.15 20.69

Optimal when N=50 0.50 5.08 12.33 20.62

α = 1.0

Case 0.2 (g) 0.55 (g) 0.82 (g) 1.20 (g)

Fixed 5.97 40.63 59.98 69.34

Designed 0.99 10.06 25.51 39.37

Optimal when N=10 0.56 6.70 17.16 29.80

Optimal when N=20 0.60 6.80 17.17 29.56

Optimal when N=50 0.68 6.99 17.52 29.55

Pulse-type Motions

 
 

 

Table 5.9 provides the TLR for from far-field motions with different non-structural values 

and isolation stiffness pre-post yielding stiffness ratios. Compared with results from pulse-type 

motions, the TLR out of far-field motions is much smaller. However, the conclusion is the similar 

that the optimal isolation design is obviously desirable. 

 



 155 

Table 5.9  TLR (%) for different designs from far-field ground motions 

α = 0.0

Case 0.2 (g) 0.55 (g) 0.82 (g) 1.20 (g)

Fixed 0.92 9.22 15.45 33.94

Designed 0.04 0.92 1.99 3.20

Optimal when N=10 0.02 0.39 0.91 1.83

Optimal when N=20 0.02 0.37 0.84 1.66

Optimal when N=50 0.01 0.30 0.77 1.61

α = 0.5

Case 0.2 (g) 0.55 (g) 0.82 (g) 1.20 (g)

Fixed 2.61 22.36 35.98 51.26

Designed 0.40 4.68 11.95 23.69

Optimal when N=10 0.26 3.40 8.02 17.03

Optimal when N=20 0.27 3.42 7.93 16.23

Optimal when N=50 0.28 3.49 8.37 16.11

α = 1.0

Case 0.2 (g) 0.55 (g) 0.82 (g) 1.20 (g)

Fixed 3.19 28.20 42.95 55.95

Designed 0.59 6.84 17.22 29.97

Optimal when N=10 0.30 4.80 11.34 24.56

Optimal when N=20 0.31 4.78 11.23 23.80

Optimal when N=50 0.37 4.97 12.16 23.50

Far-field Motions

 
 

 

5.5  Concluding Remarks 
 

This study applies the performance-based methodology to assess the seismic performance for 

the base isolated building system. First, a nonlinear numerical model was created that matches 

well with the shaking table tested steel moment frame building. Then, the seismic performance is 

evaluated with the established loss model that defines the total loss ratio of the building 

considering damage for structural, nonstructural and isolation system. Fragility curves are 

generated with PSDA method for base-fixed and base-isolated building using a large number of 

nonlinear time history analyses. A composite total loss ratio is developed to measure the global 

damage states of building systems. The proposed performance-based framework accounted for 

important sources of uncertainty in the ground motion hazard, the structural response, structural 

and nonstructural damage, repair costs, etc. Hence, this approach serves to build a link between 
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the building performances with isolation parameters to design. The fragility function method 

with the established loss model builds up a good measurement to investigate the optimum 

isolation design for building systems. Therefore, this study not only shows the significant 

reduction of damage probability of building system from isolation system, but also identifies the 

optimal range of isolation parameters throughout an extensive parametric study. The optimal 

range covers various isolation devices of different post-yielding stiffness and characteristic 

strength. The study reveals distinguishable trends that lead to the following conclusions. 

 This study presents the total loss ratio as the damage index for building seismic 

performance. Three EDPs used as the damage indicators are building inter-story drifts, floor 

accelerations and bearing drifts. The presented TLR equation is compatible with the general 

PBEE framework and provides an intuitive grasp of building damage. 

 The three commonly used types of bearings are created with coupled Bouc-Wen model 

and their dynamic behaviors are illustrated in this study. The coupled Bouc-Wen model is 

implemented in OpenSees as a user element and can be used as an ideal material model for base-

isolation systems. 

 The optimal design parameters for isolation devices, which will result in the minimum 

damage probability for buildings for different hazard levels, are functions of structural properties 

and damage states. It is shown that the elastic stiffness of isolation devices, K1_I is not sensitive 

in affecting the damage potential, which agrees with previous studies. In addition, the bearing 

yield strength remains in a reasonable range. The superstructure will experience minimum 

damage probability when the characteristic strength Qd_I of isolation devices is about 0.06-0.12 

Qd_B and the post-yielding stiffness K2_I is about 0.01 K1_B. For a given isolation device, the 



 157 

optimum design parameters can be determined based on the known value of pre- to post-yielding 

stiffness ratio N. 

To conclude, the study offers an efficient way to select optimum isolation design parameters 

based on structural properties and performance objective while incorporating the uncertainties in 

ground motions and variability of structural properties under the fragility function framework. 
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6.  DIMENSIONAL ANALYSIS OF INELASTIC STRUCTURES 

WITH NEGATIVE STIFFNESS DEVICES AND 

SUPPLEMENTAL DAMPING DEVICES 

 

 
The NSF funded project group successfully designed and presented the NSD as a passive 

control device. Since 2009, three phases of lab experiments and numerical analysis have been 

performed to test the idea of negative stiffness as well as the presented design. However, since 

this is a brand new system, very little analysis in terms of studying the behavior of the proposed 

NSD system was made other than the lab tests and a limited number of numerical simulations. 

Chapter 4 of this study presented various seismic protective devices for building system, where 

the concept of the negative stiffness devices is new and innovative. This chapter systematically 

investigates the performance of the NSD system through a couple steps. First, the study proposes 

a numerical model incorporating the frictional damping effect for NSD that behaves closer to the 

tested NSD system. This study evaluates the performance of NSD under near-fault pulse type 

motions, whose effect on the dominant frequency and peak amplitude can be disarmed from the 

system itself. Then the dimensional analysis is performed based on a SDOF bilinear system to 

study the effectiveness of the NSD as well as the other parameters related with the system. 

Results show that, over certain range, the NSD can reduce acceleration without increasing the 

displacement of the system. Finally, a case study is performed to deepen the understanding of the 

NSD system. 
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6.1  Introduction 
 

In the fifth section of Chapter 4, the numerical cubic model for NSD system has been 

proposed. The elastic behavior of such system can be fully captured from the model and four 

different stages according to horizontal drift of the NSD behavior have been introduced. 

One more objective is to evaluate NSD's performance and to propose a design method for the 

NSD as well as the retrofitted system. Due to the NSD being a new concept that has not be 

standardized in the design code, this study introduces the performance-based design for the 

system. In terms of performance, previous studies found that several factors could influence the 

structural dynamic responses, among which the characteristics of the input motion are the critical 

ones. These input characteristics and the structure's mechanical properties (include NSD and 

damping system) together determine the final structural responses. To investigate only the NSD 

system without the disturbance of these ground input motion characteristics, a comprehensive 

study is conducted in this chapter under the framework of dimensional analysis. 

NSD is implemented in single degree of freedom (SDOF) bilinear structures for the 

dimensional analysis. The SDOF system has four components (Fig. 6.1): the original bilinear 

system, the original damping, the supplemental damping to the system before implementing the 

NSD system, and the NSD system. The following sections of this study shows that the NSD 

should never be added to the original system unless sufficient amount of damping has been 

added first. 
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um

 
Fig. 6.1  Illustration of the single DOF system 

 

The dimensional analysis has been proved effective and it has been introduced in Chapter 3. 

In order to evaluate the significance of NSD system, this study derives in section 6.5 a new set of 

dimensionless parameters based on existing ones to fully describe the normalized structural 

responses of the system equipped with NSD, which show remarkable order. As for ground 

motions, this study selected distinguishable pulses that represents the kinematic characteristics of 

devastating near-fault earthquakes. Individual case studies with some random and famous 

earthquakes are also presented to show the "NSD effect". 

The structure of this part of work is summarized here: First, the study proposes the modified 

cubic model with slight friction damping and validated the model with the tested data. Then, the 

paper proposes the dimensional analysis framework for the NSD system. After that, the results 

from the dimensional analysis are presented, which reveals the effectiveness of the NSD system. 

 

 

6.2  Modified Cubic Model with Friction Damping 
 

A series of shaking table tests of the presented NSD mechanism were performed for the NSD 

project. Compared with the numerical elastic model presented in section 4.4, some frictional 

damping is observed from the shaking table tests. The presented model also allows one to add 

some damping into the system. It is obvious that the NSD model matches the tested data even 
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better by incorporating the frictional damping behavior. However, considering the damping is 

usually small and sometimes can be neglected, the presented model sets this part as an option. 

The damping is a nonlinear damping with the expression: ( ) ( )d df u c u sgn u


  , where 

( )sgn  is the sign function. In this study, the authors fix the variable   at 0.2. The variable 

02
d n

c m    is the damping coefficient and the NSD damping ratio 
n

   is specified by the user. 

Testing data recommend 
n

  smaller than 5%. The NSD friction damping is different from the 

supplementary damping this study recommends for the NSD system in the later part of this 

study. It turns out that the NSD damping ratio 
n

   is 1/10 to 1/6 of the supplementary nonlinear 

damping ratio. Fig. 6.2 shows the NSD model incorporating the aforementioned friction 

damping. 
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(a) the behavior of the NSD 

friction damping 
(b) the original NSD behavior (c) NSD with friction damping 

Fig. 6.2  Refining the model by adding the option of small nonlinear damping 

 

 

Fig. 6.3 demonstrates the comparison of the two models presented above. The dotted blue 

curve is the cubic model and it matches perfectly with the solid red line, which is defined by Eq. 

(4.39) to (4.42). The dotted grey curve corresponds to the NSD model considering the effect of 

friction damping.  
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Fig. 6.3  Comparison of the two different numerical models 

 

Fig. 6.3 shows a case when NSD behavior stops at the third stage. One could notice that the 

cubic model matches perfectly with the physical model from stage one to stage three. For the 

fourth stage that is not reached in this case, the cubic function produces a lower NSD magnitude 

than the physical model. However, the fourth stage is a rare case when an un-desirable 

extraordinary displacement occurs to the system. Later on in the study, it is shown that NSD 

should always work with sufficient supplemental damping as a combined system such that this 

stage 4 could be avoided. 

 

 

6.3  Validation of the Presented Model 
 

In this section, validations of the cubic numerical model are presented. First, the proposed 

numerical model is verified with two different numerical methods: the Runge-Kutta method and 

the Newmark method. Fig. 6.4 shows a designed NSD system excited by a pulse. Results show 

that these two solution methods lead to same numerical results. In this study, major analysis are 

performed using the Newmark integration approach, which is supposed to be computationally 

faster. 
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Fig. 6.4  Results from different solution methods 

 

 

Then, the cubic model is compared with the experimental data sampled from a shaking table 

test. The tested case is sampled from the second phase test of the project, which is a three-story 

building with the NSD system built at the base level shown in Fig. 6.5. The real time NSD force-

displacement relationship is demonstrated in Fig. 6.6(a). It can be noticed that the system 

displacement reached the second stage. The cubic model simulates the system well as illustrated 

in Fig. 6.6(b). One could easily tell from the hysteresis loop that both the shape and magnitude of 

the presented model reasonably matches the tested data. 

 

 
Fig. 6.5  Three-story test specimen to study NSD behavior (Development of Next Generation 

Adaptive Seismic Protection Systems Completion of first phase experiments for proof of 

concept, Aug 2010) 
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The comprehensive physical model given by Salis et al. (2012) and the cubic model are 

closely related: if one is given all the parameters for the physical model 

( 1 2 1 2, , , , ,  ,  ,in s p s sP K l l l k k  etc.), there will be a corresponding and unique set of   ,   , and 

  values for the cubic model. On the other hand, given a set of cubic parameters (i.e.   ,  , 

and   ), one could logically choose/design all the variables for the comprehensive model. As a 

brief summary, the cubic function model successfully reduced the NSD variables to three, which 

lays a foundation for the parametric study and dimensional analysis presented later in the 

chapter. With the help of the presented model, this work explores the effectiveness of negative 

stiffness system as well as the suggesting the optimal design criteria for its variables. 
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Fig. 6.6  Matching the cubic model with tested results 

 

 

6.4  Case Studies for NSD Specimen 
 

After the detailed introduction of the numerical models for NSD, this section provides 

individual cases that reflect the working algorithm of NSD system. The behavior of the device is 

demonstrated from time history analysis and force-to-displacement plots. In order to represent 
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general civil structures, this study selects a SDOF bilinear system with the structure properties 

provided in Table 6.1: 

 

Table 6.1  Sample SDOF structural properties for NSD study 

variable Mass D y w o ε ξ Π ξn α δ β γ ξ
-
/Π ξn

units (kg) (m) (rad/sec) - - - - - - - -

5000 0.036 10.472 0.06 2.50% 20% 0.4 0.3 0.5 3 10%  
 

 

Three case studies have been presented corresponding to three different ground excitations. 

The earthquake ground motions selected are the 2011 Tōhoku earthquake and the well known 

1940 El Centro quake. In addition, a type-A pulse with a smaller frequency is selected. Fig 6.7 

shows the time history of the selected ground motions. Since pulses are explained in detail in 

section 6.5, the time-history of the type-A pulse is not illurstrated here. 
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(a) Two direction time history of 2011 Tōhoku ground motion, Japan 
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(b) Time history of 1940 El Centro ground motion, California, USA 

Fig. 6.7  Time history of the studied ground motions 

 

In addition, the detailed descriptions of these motions are summarized in Table 6.2: 

 

Table 6.2  Ground motion Characteristics 

Motions ω p a p ∆t Ө o

(rad/s) (g) (sec) -

Tōhoku Iwanuma 14.45 0.409 0.01 0

El Centro 10.68 0.3188 0.02 0

Pulse A 5 0.4 0.01 0
 

 

 

Fig. 6.8 shows the simulated results for the system excited with Tōhoku earthquake. In order 

to test the NSD effectiveness, analyses were performed in three different steps: The first step 

analyzes the nonlinear response of the original bilinear system; second, before adding NSD, this 

study adds sufficient damping into the system; at last, the NSD is attached into the system. Fig. 

6.9 shows simulated results for the El Centro earthquake. The solid black narrow curve 

corresponds to the step where only the bilinear system is excited with the earthquake force. This 

gives the initial stage when no controls are introduced to the system. The thick dotted red curve 

shows the bilinear system behavior with the help of nonlinear damping system. The solid thick 
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blue curve correspond to the step when both nonlinear damping and the NSD system is added 

onto the original bilinear system. 
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Fig. 6.8  Simulated results for the Tōhoku ground motion- (a) displacement time history; (b) the 

system hysteresis loop; (c) the NSD force-displacement relationship; (d) the internal force-

displacement curve for the original system 
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Fig. 6.9  Simulated results for the El Centro ground motion - (a) displacement time history; (b) 

the system hysteresis loop; (c) the NSD force-displacement relationship; (d) the internal force-

displacement curve for the original system 
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These two cases demonstrate clearly the benefit of the NSD system. In the Tōhoku Iwanuma 

case, when the supplemental damping is added to the original system, the displacement is 

obviously reduced. However, the acceleration was increased to a larger level. This is because the 

effect of nonlinear damping will sometimes cause the increase of a bilinear system's acceleration. 

Zhang and Xi (2012) have further discussed this effect. This condition is resolved by adding the 

NSD: the combination of nonlinear damping and the NSD reduce not only the displacement, but 

also the absolute acceleration of the system. In addition to the displacement and acceleration, one 

could noticed that the NSD reduced the system's residual drift. This wasn't achieved by only 

adding the nonlinear damping to the system. For the El Centro case, the NSD system is also 

effective by reducing the around 50% of original displacement and 30% of original acceleration. 

In fact, NSD does not always benefit for all different situations. There are still a few cases 

that NSD has very little benefit. In addition, if not properly designed, NSD might be harmful 

such as causing unstable issues to the original system. Fig. 6.10 corresponds a case that the 

proposed type-A pulse excites the system. One could notice from Fig. 6.10(d) that the system 

receives only a minor decrease of both peak displacement and peak acceleration, which means 

the NSD system renders little help despite the NSD had been triggered to the second stage for 

this specific case. 
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Fig. 6.10  Simulated pulse A results - a case when NSD provides little benefit - (a) displacement 

time history; (b) the system hysteresis loop; (c) the NSD force-displacement relationship; (d) the 

internal force-displacement curve for the original system 
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6.5  Simulation Framework for Parametric Studies 
 

6.5.1  Characteristics of Near-fault Ground Motions and Distinguishable Pulses 
 

Researchers have observed from the increasing database of ground motion records that near-

fault ground motions of major earthquakes usually contain distinguishable velocity and 

displacement pulses (Bertero 1976, Bertero et al. 1978, Mavroeidis and Papageorgiou 2003). The 

near-fault ground motion are hard to avoid and would be destructive to most civil structures if 

the peak ground velocity is the integral of a distinguishable acceleration pulse (Bertero 1976, 

Makris and Black 2004b). Alavi and Krawinkler (2004) demonstrated that fixed-base structures 

with a period longer than the pulse period behave very differently from structures with a shorter 

period. Since NSD elongates the fundamental natural period of a civil structure, cautions need to 

be exercised when evaluating the NSD effects on the seismic demands imposed by near-fault 

shakings. 

The theoretical justifications in seismology (Bolt 1971, Somerville et al.) have confirmed and 

highlighted the presence of severe energetic pulses in the near-fault region of an earthquake due 

to either rupture directivity or tectonic fling. After that, various researchers have developed 

closed-form approximation models to capture the leading kinematic characteristics of near-fault 

ground motions (Hall et al. 1995, Mavroeidis and Papageorgiou 2003, Makris and Chang 2000). 

Tang and Zhang (2011) proposed an approach to identify the pulse-like motions based on the 

congruence relationship between the response spectrum and the established dimensionless Π- 

response spectrum. On the other hand, for earthquake motions that do not exhibit distinguishable 

pulses, the potential hazard of these motions to the civil structures are much less compared with 

the pulse-type motions. At the same time, one could estimate the frequency content on the 

predominant period of the ground motion. 
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This study resembles near-fault ground motions with the cycloidal pulse models proposed by 

Makris and Chang (2000). The model is physically realizable for its zero final velocity and finite 

acceleration. The cycloidal pulse model classifies pulse excitations into three distinctive types, 

i.e. type A, type B and type Cn. A certain type of pulse contains only two input parameters, the 

acceleration amplitude, ap (or velocity amplitude, vp) and period Tp (or often used frequency, ωp).  

Fig. 6.11 shows the four different types of pulses used in this study: Pulse type A, B, C1 and C2. 

Type A pulse (one-sine acceleration pulse) results in a forward ground displacement that is not 

recovered at the end of earthquake. Type B pulse (one-cosine acceleration pulse) is characterized 

by a forward-back velocity time history and a fully recovered ground displacement at the end of 

earthquake. Type Cn pulse exhibits n main cycles in its displacement history. 
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Fig. 6.11  Acceleration, velocity, and displacement for pulse type A,B,C1, and C2 
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6.5.2  Dimensional Analysis of Nonlinear Structure with NSD 
 

Traditional nonlinear analysis for a fixed structure usually produces different or scattered 

inelastic structural responses from time history analysis using recorded ground motions. As 

shown from Chapter 3, the dimensional analysis is an effective method to interpret inelastic 

response especially for near fault pulse type motions. This study derives the dimensionless 

parameters for the proposed NSD system through rigorous dimensional analysis and examines 

the significance of these parameters in terms of affecting the structural responses. 

By normalizing the inelastic displacement demand with respect to the energetic length scale 

of ground motions, the similar response (i.e. independent of the intensity of ground motions) can 

be obtained. The dimensional analysis of a bilinear SDOF system is briefly discussed to provide 

the logical and mathematic background behind the proposed numerical model for NSD system in 

this chapter. 

For a SDOF bilinear system (Fig 6.1) subject to a general ground acceleration that can be 

characterized by characteristic amplitude ap and characteristic frequency ωp (or equivalently 

2 /p pT   ), its equation of motion is expressed as: 

 

( ) ( )  ( ) ( ) ( ) ( )d s NSD gmu t cu t f u f u f u mu t                                           (6.1) 

 

where m  is the system mass, c  is the inherent structural damping (linear) and ( )gu t  is the 

ground acceleration input. The term ( )sf u  represents the inelastic structural force, whose 

stiffness drops to usually less than 10% after the structure yields. To fully characterize a bilinear 

system, one shall identify its yielding displacement Dy or characteristic strength QD, its pre-

yielding stiffness K1, and the post-yielding stiffness K2. The nonlinear damping force ( )df u from 
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Eq. (6.1) is defined as )()( usignucuf dd



 , where dc  is the damping factor of the nonlinear 

damper (in the units of )/( 1msN ) and  is a constant controlling damper nonlinearity ranging 

from 0 to 1. The NSD force is defined in detail in section 4.4. By dividing Eq. (6.1) by the 

structural mass for both sides of the equation, it can also be written in another form: 

 
2

0 0 0( ) 2 ( ) 2 ( ) ( , ) ( ) / ( )n y s NSD p pu t u t u sign u D f u u f u m a g t


                    (6.2) 

 

where 0 /ek m   is the pre-yielding circular natural frequency of the structure, 0/ (2 )c m   

and )2/( 0 mcdn   are the damping ratio of linear and nonlinear viscous damping respectively. 

The function ( , )sf u u  describes the nonlinear resisting force–displacement relationship that 

depends on the yield displacement Dy and post-yield stiffness hardening ratio εs. The NSD term 

involves three terms, xo
-
, Q

-
, and xr

-
 (expressions of  ,   , and   ). The structural response u(t)  

from Eq. (6.2) is therefore a function of eleven independent parameters involved: 

 

0( ), ( ) ( , , , , , , , , , , )n y p p o ru t a t f D a x Q x                                          (6.3) 

 

According to the Buckingham’s Π-theorem and choosing pa  and p  as the repeating 

variables, the number of independent dimensionless Π-parameters is determined as: (11 

variables)-(2 reference dimensions) = 9 Π-parameters.  Eq. (6.3) can be reformulated in terms of 

the dimensionless parameters as: 

 

,, ( , , , , , , , , )
o r

u a n Dy D Q D                                                  (6.4) 

 

where 2( ) /u p pu t a  is the structural displacement normalized by the characteristic length 

scale of ground motion, ( ) /a pa t a  is the normalized acceleration, 0 / p     is the 
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dimensionless frequency ratio,    is the linear viscous damping ratio, 2 /Dy y p pD a   is 

normalized yielding displacement,   is the fractional exponent of nonlinear viscous 

damper and    is the post- to pre-yielding ratio. Zhang and Xi (2012) gives an accurate 

expression of the dimensionless nonlinear damping ratio as: 

 








1

0

1,
)/(2)/( pp

d

pp

n
n

am

c

a
          

                               (6.5) 

 

Table 6.3 summarizes the identified dimensionless Π-parameters for bilinear structure, linear 

and nonlinear damping system, and the NSD system. 

 

Table 6.3  Π-parameters for bilinear structure, linear and nonlinear damping system, and NSD 

system 

Target of the dimensionless analysis formula Range

Π u relative displacement u(t)ω p
2
/a p -

Π a absolute acceleration a(t) /a p -

Π ω natural frequency ω o/ω p 0.1 - 10.0

Π Dy yielding displacement D y  ω p
2
/a p 0.01 - 5

Π ε post yielding stiffness ratio ε 0.01 - 0.2

Π ξ linear damping ratio ξ 0.02 - 0.1

Π α nonlinear damping coefficient α 0.1 - 1.0

Π ξn nonlinear damping ratio Cd/(2 m ω o)/(a p/ω p)
1-α

0.02 - 0.35

Π Q NSD internal force (F NSD )/m /a p -

Π xo- NSD gap length δ
-
 D y  ω p

2
/a p -

Π Q- NSD peak amplitude β
-
 Q D /ma p -

Π xr- NSD relaxation length γ
-
 D y  ω p

2
/a p -

 
 

 

The study in the following part of this work fixes four Π-parameters , , ,        as they 

usually don't change significantly for different systems. For example, the linear damping ratio Πξ 

= ξ is fixed at 1.5% and the coefficient Πα is equal to 0.4 for the nonlinear damping. The 

remaining five terms, ΠDy, Πξn, Πxo-, ΠQ-, Πxr- are important variables that affects the NSD system. 
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Therefore, extraordinary focus is placed on these five terms as well as different pulse type 

motions, which as a whole controls the fundamental NSD performance. 

 

6.6  Simulated Results 
 

In this section, a sequence of nonlinear acceleration and displacement spectra are presented 

for the four different pulse types mentioned above. The performance of NSD system is evaluated 

using different approaches. All of these approaches in this section fix the normalized NSD terms, 

(i.e. Πxo-, ΠQ-, and Πxr-). First approach fixes the nonlinear damping ratio Πξn, aiming at working 

out an optimal range for ΠDy over which NSD produces its best effect. Second approach 

compares effectiveness of NSD with both linear and nonlinear damping. Third approach the 

damping ratio Πξn is modified to provide an optimal range for the supplementary damping. 

 

 

6.6.1  NSD Effectiveness 
 

The first approach explores type of system that NSD system receives the best effect. Similar 

to the case studies, this part of work compares the results from bilinear system, bilinear system 

with nonlinear damping, and bilinear system with NSD plus nonlinear damping. First, the 

authors fix the NSD parameters at 0.3,  0.5,  and 3       , which corresponds to a fixed 

set of Πxo-, ΠQ-, Πxr- values in the dimensional analysis. With NSD parameters fixed, different ΠDy 

values are selected to detect the features of bilinear systems that implementing the NSD system 

would be most effective. First, ΠDy is chosen from 0.1 to 10.0 and the response spectra are 

plotted in Fig. 6.12. Smaller ΠDy indicates the structural system is highly nonlinear while larger 

ΠDy (e.g. ΠDy =10) represents an essential linear system. 
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Fig. 6.12  Study of the effectiveness of NSD system over different ranges of ΠDy. (a) pulse 

type A, (b) pulse type B, (c) pulse type C1, (d) pulse type C2 
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The above results indicate that the NSD provides benefit to the structural system over the ΠDy 

range between 0.5 and 5.0, which covers a typical range for most civil structures. For a ΠDy  

between 0.5 and 5.0, the NSD effect is remarkable over the frequency range of   from 0.6 to 

2.0. For a Dy  smaller than 0.5, since the cubic model proportions the NSD engaging point 

according to the Dy of the bilinear system, stage four is easily reached such that huge positive 

force is generated by the NSD system. The positive force helps to constrain the displacement 

rapidly at the cost of significantly increasing the internal force of structural system. This 

situation has not been tested in the lab for two reasons: (1) extreme soft system can be 

constructed for this test, which will easily collapse even without NSD system; and (2) the design 

to choose the NSD engaging point smaller than Dy does not necessary work for such bilinear 

systems that yields at an extreme early stage of displacement. Therefore, for smaller Dy, it is 

recommended to increase the gap length and further extend the relaxation length to avoid the 

fourth stage. On the other hand, for a Dy larger than 5.0, the NSD effect becomes small and 

negligible. 

For different types of pulse, this study gets the following observations: Type A pulse inputs 

the largest energy to the system such that a large increase of absolute acceleration takes place 

over ΠDy range from 0.01 to 0.25. All the other types of pulses do not have large acceleration 

increase for the case ΠDy = 0.25. For pulse type B, the NSD is most effective near ΠDy = 1. For 

pulse type C1 and C2, the NSD is most effective near ΠDy = 2. 
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6.6.2  Difference of Linear or Nonlinear Damping Modeling for NSD 
 

This section tests the difference between linear and nonlinear modeling scheme of the 

supplemental damping system for the NSD system. Fig. 6.12 shows the simulated results where 

five curves are plotted and compared for each spectrum: original bilinear system with 2.5% 

linear damping, original bilinear system with linear supplemental damping, original bilinear 

system with nonlinear damping, original bilinear system with linear supplemental damping and 

the NSD system, original bilinear system with nonlinear damping and the NSD system. First, it is 

obvious that NSD helps to reduce the absolute acceleration without increasing the relative 

displacement. In addition, the solid red line in the spectra has a lower peak value than the solid 

blue line, which indicates that the NSD is most effective considering the supplemental damping 

system being a nonlinear damping system. In fact, the original nature of the damping system 

would never be linear. Therefore, the conclusion here would also be preferable. 
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Fig. 6.13  Comparison of linear and nonlinear damping. (a) pulse type A, (b) pulse type B, (c) 

pulse type C1, (d) pulse type C2 
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6.6.3  Optimal Nonlinear Damping Ratio for NSD 
 

The previous section suggests modeling a nonlinear damping behavior for the supplemental 

damping system; this section evaluates the effectiveness of the nonlinear damping ratio. This 

study evaluated NSD system with different nonlinear damping ratios when ΠDy is fixed at 1.5. 

Three different Πξn values are selected to represent different levels of supplement damping. From 

Fig. 6.14, this study observed that NSD effect is more obvious for Πξn between 15% to 25%. For 

an even larger damping after 25%, it seems harder to implement such large damping in real 

practice. In addition, the marginal effect brought by the damping to the system decreases, which 

is shown from the case with 35% damping ratio. In fact, the damping is really a choice made by 

the designer of the NSD system. This study recommends a supplement nonlinear damping ratio 

at around 20%-25% such that NSD benefits the system while the damping is sufficient but not 

costing too much. Notice that less than 15% nonlinear damping ratio might not be sufficient. 

This is shown in Fig. 6.14(d) when pulse type C2 is exciting the system. One could observe that 

when Πξn is less than 15%, the displacement for NSD system over the spectrum occasionally 

(when Πω is near one) exceeds that of the original bilinear system. This effect is defined as 

instability effect of the NSD system, which should be avoided by adding sufficient damping. 
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Fig. 6.14  Illustration of the effect from different levels of nonlinear damping for the system. (a) 

pulse type A, (b) pulse type B, (c) pulse type C1, (d) pulse type C2 
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At last, Fig. 6.15 shows a comprehensive set of dimensional spectra. In additional to the 

curves from Fig. 6.14, Fig. 6.15 investigated the cases without NSD (represented by dotted lines). 

One could easily notice from this approach that the solid lines (with the help of NSD) correspond 

to lower spectral displacement and acceleration, which again proves that NSD is incredibly 

potent. 
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Fig. 6.15  Comparison of different levels of nonlinear damping with and without NSD system. (a) 

pulse type A, (b) pulse type B, (c) pulse type C1, (d) pulse type C2 

 

 

6.7  Optimal Design of the NSD System 
 

Analyses from previous sections lead to the following discussion to study and determine the 

optimal range that NSD can best benefit the bilinear structural system. The purpose of this 

section is to examine and to suggest the best parametric range for designing a NSD system. The 

study anchors the ΠDy and Πξn at a recommended value from the above studies, trying to find an 

optimal design of NSD parameters (i.e. Πxo-, ΠQ-, Πxr-). 

The purpose of this approach is to understand completely the best system performance based 

on different NSD designs. Since the proposed NSD system is new, a performance-based 

evaluation with a Monte-Carlo method is launched here based on the results from the presented 

dimensionless spectra. The three different coupled dimensions: Πxo-, ΠQ-, Πxr- are repeated over 

the range of Πxo-=[0.1~0.9]ΠDy, ΠQ-=[0.1~0.7] ΠQD, and Πxr-=[2.0~6.0]ΠDy. In addition, considering 

the capacity of the NSD pre-compressed spring, this study categories a bilinear system by the 

size of an engineering structure. For smaller structures such as wood frame buildings, the NSD 

system capacity can be as large as 70% of the characteristic strength ΠQD; however, for larger and 

heavier structures, this work assumes the capacity of NSD to be less than 50% of the structural 
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strength. Similar to the previous sections, the NSD system is tested with four different types of 

pulses. In addition, three different levels of ΠDy values (0.5, 1.0, and 1.5) were chosen to 

represent different structures. 

For a performance-based approach, one should define the performance index from the 

measured damage. In this case, this study defines the "better" or "worse" performance of a NSD 

system based on the displacement and acceleration spectra. The performance index for 

acceleration is based on the optimal acceleration at Πω=1. This is because an acceleration 

spectrum usually has only one peak value near Πω=1, which is shown from Fig. 6.12 to 6.15. In 

addition, due to the observation that an acceleration spectrum with smaller peak magnitude 

usually corresponds to smaller overall acceleration, a spectrum with less peak magnitude is 

considered to have a better acceleration response. For displacement spectra, the situation is a bit 

more complicated since there might be multiple local maximum values within a single 

displacement curve. Therefore, the performance index for displacement spectra is based on the 

average weighted value at Πω = 0.5, 1.0, and 1.5. In addition, similar to the acceleration spectra, 

the displacement curve with a less performance is considered a better performance. 

Tables 6.4 and 6.5 summarize the best performance of acceleration and displacement by 

optimizing the NSD parameters. These tables reflect the behaviors of smaller systems where 

NSD capacity can reach 70% of the system characteristic strength. For Table 6.4, the first 

column is the range for ΠDy. The second to fourth column provides the optimal range of NSD 

system in order to optimize the acceleration. Fifth column is the optimized performance index 

for acceleration from the adaptive system (i.e. bilinear system plus damping plus NSD). The 

sixth column is the performance index of acceleration from bilinear system plus damping but no 

NSD. The seventh column is the index for only the bilinear system. The eighth column is the 
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displacement index for the adaptive system with NSD parameters optimized for acceleration. 

The ninth column is the displacement index for bilinear system plus damping with NSD 

parameters optimized for acceleration. And the last column is the displacement index for bilinear 

system only without NSD system. The contents in the columns of Table 6.5 are similar to Table 

6.4 but with the focus to optimize the stuctural displacement. The last three columns in Table 6.5 

correspond to the acceleration indices with NSD parameters optimized for displacement. From 

such performance-based approach, the best ranges of NSD parameters for such system 

undergoing different types of pulse are presented. 

 

Table 6.4  Optimized NSD parameters to reduce absolute acceleration 

Pulse A

Π Dy δ
-

β
-

γ
-

Π A
NSD

 Optm  * Π A
NLDp

Π A
BL

Π U
NSD

Π U
NLDp

Π U
BL

0.5 0.5 0.7 4 1.451 1.639 1.816 1.469 1.667 2.854

1 0.1 0.7 2 1.334 1.860 1.760 1.677 2.466 2.711

1.5 0.1 0.7 2 1.263 1.936 2.816 1.575 1.645 2.811

Pulse B

Π Dy δ
-

β
-

γ
-

Π A
NSD

 Optm  * Π A
NLDp

Π A
BL

Π U
NSD

Π U
NLDp

Π U
BL

0.5 0.1 0.7 3 1.359 1.630 2.286 1.144 1.261 2.019

1 0.1 0.7 2 1.290 1.794 2.690 1.253 1.352 2.070

1.5 0.1 0.7 2 1.324 1.794 3.216 1.284 1.348 2.182

Pulse C1

Π Dy δ
-

β
-

γ
-

Π A
NSD

 Optm  * Π A
NLDp

Π A
BL

Π U
NSD

Π U
NLDp

Π U
BL

0.5 0.3 0.5 3 1.552 1.649 2.286 1.176 1.261 2.019

1 0.1 0.7 2 1.440 2.073 2.690 1.334 1.398 2.068

1.5 0.1 0.7 2 1.414 2.211 3.216 1.396 1.573 2.212

Pulse C2

Π Dy δ
-

β
-

γ
-

Π A
NSD

 Optm  * Π A
NLDp

Π A
BL

Π U
NSD

Π U
NLDp

Π U
BL

0.5 0.3 0.3 2 1.586 1.649 2.286 1.192 1.325 2.103

1 0.3 0.7 3 1.833 2.102 2.690 1.392 1.415 2.207

1.5 0.1 0.7 2 1.492 2.545 3.216 1.421 1.573 2.212

* All the optimal accelerations are the smallest peak value of acceleration among all the different design

δ
-
 from 0.1 to 0.9 increased by 0.2; β

-
 from 0.1 to 0.7 increased by 0.2; γ

-
 from 2 to 6 increased by 1

Optimizing Acceleration

Optimizing Acceleration

Optimizing Acceleration

Optimizing Acceleration
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Table 6.5  Optimized NSD parameters to reduce relative displacement 

Pulse A

Π Dy δ
-

β
-

γ
-

Π U
NSD

 Optm  ** Π U
NLDp

Π U
BL

Π A
NSD

Π A
NLDp

Π A
BL

0.5 0.9 0.7 2 1.219 1.667 2.854 6.001 1.639 1.816

1 0.9 0.7 2 1.579 2.466 2.711 1.905 1.860 1.760

1.5 0.9 0.7 2 1.404 1.645 2.811 2.064 1.936 2.816

Pulse B

Π Dy δ
-

β
-

γ
-

Π U
NSD

 Optm  ** Π U
NLDp

Π U
BL

Π A
NSD

Π A
NLDp

Π A
BL

0.5 0.9 0.7 2 1.065 1.261 2.019 2.553 1.630 2.286

1 0.1 0.7 2 1.253 1.352 2.070 1.440 1.794 2.690

1.5 0.9 0.1 6 1.280 1.348 2.182 1.666 1.794 3.216

Pulse C1

Π Dy δ
-

β
-

γ
-

Π U
NSD

 Optm  ** Π U
NLDp

Π U
BL

Π A
NSD

Π A
NLDp

Π A
BL

0.5 0.9 0.7 2 1.121 1.261 2.019 2.734 1.649 2.286

1 0.7 0.3 2 1.296 1.398 2.068 1.759 2.073 2.690

1.5 0.3 0.7 2 1.346 1.573 2.212 2.092 2.211 3.216

Pulse C2

Π Dy δ
-

β
-

γ
-

Π U
NSD

 Optm  ** Π U
NLDp

Π U
BL

Π A
NSD

Π A
NLDp

Π A
BL

0.5 0.9 0.3 2 1.171 1.325 2.103 2.423 1.649 2.286

1 0.5 0.1 2 1.383 1.415 2.207 2.035 2.102 2.690

1.5 0.1 0.7 2 1.421 1.573 2.212 2.365 2.545 3.216

** All the optimal displacements are the smallest average weighted value at Π ω  = 0.5, 1.0, and 1.5 among all the different design

Optimizing Displacement

Optimizing Displacement

Optimizing Displacement

Optimizing Displacement

δ
-
 from 0.1 to 0.9 increased by 0.2; β

-
 from 0.1 to 0.7 increased by 0.2; γ

-
 from 2 to 6 increased by 1

 
 

 

The systematic study presented above shows clearly that NSD is desirable with its advantage 

of reducing both the structural acceleration and displacement. One could confidently conclude 

that the NSD is especially helpful to reduce the floor acceleration of the system. By looking at 

multiple individual cases (such as the ones shown in section 6.4), one would notice that for a 

fixed type of pulse and ΠDy, the NSD contributes the most to the system when its performance 

falls into the second stage and close to the third stage. Result from Table 6.4 and 6.5 also 

matches this conclusion, which provides the optimal NSD design, when maximum NSD drift 

falls into the second stage for most cases. 

The above study shows that if one could offer the NSD capacity (β
-
) up to 70% of the 

structural strength (QD), the system may benefit from a reduction of acceleration up to 70% (33% 

on average for all the scenarios with different Pulse types and ΠDy value) with the help of the 

NSD system. In addition, NSD can also reduce the maximum displacement up to half of the 
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damped system with an average reduction of 11.3%. Similar work has been done for lager size 

systems whose β
-
 value can only be 50%, 30%, and 10%. The study shows that these systems 

receive average acceleration reduction of 22%, 14%, and 5%, respectively. For displacement, 

when β
-
 value is set to 50%, 30%, and 10%, the average reduction will be 10.0 %, 9.11% and 

8.47%. Fig. 6.16 shows the NSD effect influenced by the provided capacity. 
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(a) Average acceleration reduction (b) Average displacement reduction 

Fig. 6.16  NSD benefit provided its capacity 

 

 

In order to reduce and to get the optimal acceleration, Table 6.4 and 6.5 suggests the 

applications of NSD system at maximum capacity (β
-
=0.7). Table 6.4 shows that the 

performance indices for displacement corresponding to the optimal acceleration are small and 

not harmful to the system. Comparing the eighth column from Table 6.4 with the fifth column 

from Table 6.5, one could find that the system responses while optimizing NSD parameters for 

acceleration have small difference from that while optimizing NSD parameters for displacement. 

On the other hand, the eighth column from Table 6.5 generates huge difference from the fifth 

column in Table 6.4, which suggests not optimizing displacement without considering the 

significant increase of the system acceleration. To conclude, this indicates that NSD is powerful 
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to reduce the structural acceleration and displacement. By optimizing the system acceleration, 

the system displacement is also close to the optimized values but not vise versa. Hence, this 

study recommends optimizing the NSD variables by optimizing the system acceleration. 

The above analysis reveals how each NSD parameter affects the SDOF system. A couple 

observations are concluded below: 

1) Sufficient damping is required for NSD system such that one could design a NSD system 

with larger capacity. Especially for the NSD system with smaller ΠDr- or γ
-
 valus, at least 20% of 

damping should be provided.  Without enough damping, NSD might be unstable over certain Πω 

range. 

2) For the four different pulse types, pulse A has the largest response. At the same time, the 

NSD becomes more effective for pulse type A. For the other three types of pulse, NSD effect 

reduces. 

3) When fixing ΠDy and providing sufficient damping, a stronger NSD force capacity will 

bring better results. The definition of stronger NSD force corresponds to a smaller ΠDo- or δ
-
 so 

that the NSD force comes to effect earlier, a bigger ΠQ- or β
-
 so that NSD peak magnitude is 

higher; and a smaller ΠDr- or γ
-
 such that the peak of the NSD reaches earlier. Fig. 6.17 are the 

spectra using some of the δ
-
, β

-
, and γ

-
 values selected from Table 6.4 and 6.5. It is remarkable 

that the case with NSD parameters δ
-
 =0.1, β

-
 =0.7, and γ

-
 =2.0 (red dotted line) helps to reduce 

the structure's absolute acceleration up by 50%. 
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(d) 

Fig. 6.17  Four cases of different NSD design. (a) pulse type A, (b) pulse type B, (c) pulse type 

C1, (d) pulse type C2 

 

 

6.8  Discussions of the Fourth Stage 
 

One might observe from Table 6.5 that the optimal displacement occasionally happens when 

no NSD is used such as the case ΠDy=1.5 with pulse type B. For these cases, the best 

displacement happens when NSD kicks in late (δ
-
=0.9), magnitude is small (β

-
=0.1), and relaxes 

at a larger displacement (γ
-
=6.0). This kind of scenario happens when the system equipped with 

NSD stretches into the fourth stage. An example is shown from Fig. 6.18 (Pulse type A, ΠDy =0.5, 

δ
-
=0.1, β

-
=0.9, and γ

-
=2.5). 
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Fig. 6.18  A case that the NSD reaches its fourth stage 

 

 

It is concluded that keeping NSD within the first three stages is desirable in real application. 

For the last stage when extreme displacement happens, the system becomes unstable and NSD 
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usually brings little help, if not being harmful. In fact, the fourth stage is quite rare. In real 

practice, severe ground motions such as the 2011 Tōhoku motion in the first case study usually 

triggers a well-designed NSD system to the second stage. However, there are still scenarios when 

the fourth stage is reached. Researches on how to avoid the fourth stage would be a great topic 

for future studies. 

 

 

6.9  Concluding Remarks 
 

As an innovative generation of adaptive stiffness and damping devices, the negative stiffness 

device might inherently benefits civil structures by weakening it in a smart way. The NSD 

project team proposed a new design for NSD system and tested the system in three phases in 

recent years. However, there are no further tests or simulations to show the effectiveness of the 

device or to prove whether it can be used in real world civil structures. Therefore, the goal of this 

study is to better explore the NSD behavior. First, the study proposed a cubic elastic model that 

numerically simulates the NSD system, which gives a detailed explanation of three parameters to 

fully characterize (1) the horizontal displacement when NSD effect starts; (2) the peak NSD 

amplitude; (3) the horizontal displacement where NSD force becomes to zero (pre-compressed 

spring relaxes to its natural length). In the second part of the study, the dimensional analyses 

framework was presented for NSD system. Three dimensionless Π-terms for the three proposed 

NSD parameters were developed. Then, the third part of this work provides the simulated results 

and shows the optimal range ΠDy range that NSD can help better the system response. This part 

also gives the recommendation of the minimum supplemental nonlinear damping ratio needed 

for the NSD system. Finally, the last part of this work provided the optimal design range for the 

proposed NSD parameters. 
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A couple conclusions can be reached from this work: 

(i) A large number of simulations have been made in the work from which prove the NSD 

being effective in a systematic way. The NSD helps to reduce both the structural acceleration and 

displacement. NSD effect is extremely remarkable to reduce the acceleration. 

(ii) NSD is most effective over the ΠDy range between 0.5 and 5.0, which covers most of the 

civil structures. 

(iii) As an adaptive stiffness and damping system, supplemental damping is needed for the 

NSD system. This study recommends a nonlinear damping ratio Πξn of 20% to 25%. 

(iv) Optimal design variables for NSD system (i.e.   ,   , and   ) was given from a 

performance-based approach. Due to the nature of NSD system helps to reduce the structural 

acceleration, this study suggests optimizing the NSD parameters according to reducing the 

structural acceleration. The conclusion is that: (a) the force magnitude    is constrained by the 

size and type of the civil structure. The larger    one could provide to the system, the better 

response a system can benefit from NSD. (b) The adaptive system receives the best performance 

over the range [0.1,0.3]   and [2,3]  . 

(v) Forth stage that significantly increases the system internal force to constrain displacement 

is proved undesirable. Option to avoid NSD falling into this stage shall be discussed in the future 

study. 
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7.  CONCLUSIONS AND FUTURE WORK 

 

 
7.1  Conclusions 
 

Historical earthquake events damaged or destroyed countless numbers of buildings.  The goal 

of modern seismic design is to achieve a controlled response that does not jeopardize the 

integrity of structures and safety of their occupants during and immediately after major 

earthquakes. This is usually achieved through numerous structural lateral load-resisting systems 

such as ductile moment-resisting frames, braced frames, and shear walls that are designed to 

provide displacement capacity through inelastic ductile action at carefully detailed locations 

while limiting the seismic forces induced in the structure. However, because of their hysteretic 

characteristics, yielding systems are expected to sustain damage through repeated inelastic 

actions as well as residual deformations, which can greatly impair the structure and increase 

repair costs.  

To overcome this deficiency, there have been intensive research efforts in the field of 

structural engineering over the past decades to employ smart structure technologies in seismic 

response control of structures. A large number of innovative systems and devices have been 

developed either to reduce the earthquake forces acting on a structure or to absorb a part of the 

seismic energy. These proposed seismic protective devices, in either passive or adaptive passive 

forms, could be used to significantly improve the seismic performances of buildings in high 

seismicity regions. In the meanwhile, optimal design of the stiffness and damping properties of 

these devices is important to fulfill their advantages and achieve multi-performance objectives 

when the devices are subjected to earthquakes with various mechanisms, frequency contents and 

intensities. 
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The ultimate goal of this research is to explore new seismic protective devices and/or 

optimally design existing devices to better protect buildings such that the total cost (both direct 

and indirect) due to earthquake damages can be reduced to a minimum level. In order to 

minimize seismic loss of buildings, understanding their seismic performances would be 

necessary for future seismic designs. Therefore, a comprehensive study to estimate the peak 

inelastic drift ratio as well as the residual drift ratio for generalized bilinear systems has been 

presented. The proposed formula is guided by the rigorous dimensional analysis such that both 

the peak transient drift responses and the residual drift of bilinear SDOF systems are presented in 

dimensionless form showing remarkable order. The proposed formula also incorporates a 

dimensionless nonlinearity index that takes into account of the pre-yielding strength, ground 

motion amplitude, and softening or hardening post-yield behavior. Strong correlation is revealed 

between the normalized nonlinear drift demands, the dimensionless structure-to-pulse frequency, 

and the dimensionless nonlinearity. Regressive equations for peak transient drift and residual 

drift demands are proposed. The proposed equations estimating the structural response have been 

validated with the simulation results. The study have shown that the proposed model is able to 

give dependable predictions with a normalized error range from 40%-65%, which is a huge 

improvement compared with existing approaches. 

This study also tries to improve the accuracy of numerical modeling and simulations. In 

particular, this study adopts the open source software OpenSees to model and analyze the 

performance of buildings equipped with various protective devices. Numerical models for 

protective devices are first developed and calibrated in Matlab. Dynamic behaviors for SDOF 

bilinear system equipped with protective devices have also been tested.  For the next step, the 

authors developed user specified materials and sections in OpenSees such as the 1D and 2D 
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coupled Bouc-Wen model to capture the behavior of isolation systems, the cubic material model 

for negative stiffness device, and hysteretic material model for the self-centering devices. 

In addition, the development of performance-based earthquake engineering, more 

specifically the aim to achieve multiple performance levels under multiple earthquake hazard 

levels, has highlighted the importance of minimizing the damage that is sustained during 

moderate earthquakes. As a pioneering application of the performance-based framework, the 

study investigates the performance of seismic isolation system and proposed an innovative 

method of designing such system for buildings in an optimized way such that the potential loss 

from earthquakes can be minimized. The method develops a practical and intuitive performance 

index named the total loss ratio for a certain building based on the results produced from fragility 

analyses. For a given isolation device, the optimum design parameters can be determined based 

on the known value of pre- to post-yielding stiffness ratio N. The optimal design parameters for 

isolation devices, which will result in the minimum damage probability for buildings for 

different hazard levels, are functions of structural properties and damage states. It is shown that 

the elastic stiffness of isolation devices, K1_I is not sensitive in affecting the damage potential. In 

addition, the bearing yield strength remains in a reasonable range. The superstructure will 

experience minimum damage probability when the characteristic strength Qd_I of isolation 

devices is about 0.06-0.12 Qd_B, which is the characteristic strength of the superstructure. In 

addition, the post-yielding stiffness K2_I is about 1% of the post-yielding stiffness of the 

superstructure (K1_B). This approach can be also applied to other seismic protective devices to 

study and explore the optimal ranges for their design variables. 

As an innovative generation of adaptive stiffness and damping devices, the negative stiffness 

device might inherently benefit civil structures by weakening it in a smart way. Therefore, 
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another study of this work evaluates the effectiveness of the NSD system under the dimensional 

analysis framework. It has been shown from a large number of simulations that NSD is only 

effective while sufficient damping is added to the system. In addition, the adaptive stiffness and 

damping system helps to reduce both the structural acceleration and displacement. NSD effect is 

extremely remarkable in terms of reducing the absolute acceleration. The study also provided 

suggestions for the NSD design. 

 

 

7.2  Recommendations for Future Work 
 

 

Through the findings of this research, a number of important areas related to the optimal 

design of seismic control devices and risk evaluation of buildings can be further studied. 

Recommendations for future research directions are as follows. 

(i) The completed study is based on the 2011 E-defense tested 5-story steel moment frame 

building. However, various types of buildings were not evaluated in this study, such as high rises, 

wood frame buildings, and special functional buildings (hospital buildings and nuclear power 

plants, etc.)  One of the future goals is to apply the PBEE framework to more building structures 

and apply the result from performance-based design to real structures. 

(ii) The author would also like to provide an extensive study of self-centering device, taking 

advantage of the developed numerical model of such devices. The goal is to minimize if not to 

eliminate the permanent residual drift of buildings using such devices. The close-to-optimal 

design variables could be chosen under the proposed PBEE framework in this study. In addition, 

the performance of the protected system can be evaluated under the dimensional analysis 

framework to see the effectiveness of the device.  
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(iii) The fourth stage of negative stiffness device will sharply increases the system internal 

force to constrain displacement, which has been proved unrealistic and undesirable. Therefore, 

another goal of the author in the future is to propose some adjustment of NSD to avoid the fourth 

stage of performance. 

(iv) At last, the author would put more effort to develop other innovative design schemes and 

strategies for passive control devices under PBEE framework. Given certain performance 

objective of buildings, the design scheme will lead to the determination of optimal mechanical 

properties and locations of the seismic protective devices such that general engineering or social 

objectives could be achieved. 
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