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RESEARCH ARTICLE PSYCHOLOGICAL AND COGNITIVE SCIENCES

Overharvesting in human patch foraging reflects rational
structure learning and adaptive planning
Nora C. Harhena,1 and Aaron M. Bornsteina,b ID
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Patch foraging presents a sequential decision-making problem widely studied across
organisms—stay with a current option or leave it in search of a better alternative?
Behavioral ecology has identified an optimal strategy for these decisions, but, across
species, foragers systematically deviate from it, staying too long with an option or
“overharvesting” relative to this optimum. Despite the ubiquity of this behavior, the
mechanism underlying it remains unclear and an object of extensive investigation. Here,
we address this gap by approaching foraging as both a decision-making and learning
problem. Specifically, we propose a model in which foragers 1) rationally infer the
structure of their environment and 2) use their uncertainty over the inferred structure
representation to adaptively discount future rewards. We find that overharvesting can
emerge from this rational statistical inference and uncertainty adaptation process. In a
patch-leaving task, we show that human participants adapt their foraging to the richness
and dynamics of the environment in ways consistent with our model. These findings
suggest that definitions of optimal foraging could be extended by considering how
foragers reduce and adapt to uncertainty over representations of their environment.

foraging | structure learning | reinforcement learning | decision-making

Many real-world decisions are sequential in nature. Rather than selecting from a set of
known options, a decision-maker must choose between accepting a current option or
rejecting it for a potentially better future alternative. Such decisions arise in a variety
of contexts, including choosing an apartment to rent, a job to accept, or a website
to browse. In ethology, these decisions are known as patch-leaving problems. Optimal
foraging theory suggests that the current option should be compared to the quality of the
overall environment (1). An agent using the optimal choice rule given by the marginal
value theorem MVT (2) will leave once the local reward rate of the current patch, or
concentration of resources, drops below the global reward rate of the environment.

Foragers largely abide by the qualitative predictions of MVT but deviate quantitatively
in systematic ways—staying longer in a patch relative to MVT’s prescription. Known
as overharvesting, this bias to overstay is widely observed across organisms (3–10).
Despite this, how and why it occurs remains unclear. Proposed mechanisms include a
sensitivity to sunk costs (9, 10), diminishing marginal utility (3), discounting of future
rewards (3, 10, 11), and underestimation of postreward delays (5). Critically, these all
share MVT’s assumption that the forager has accurate and complete knowledge of their
environment, implying that deviations from MVT optimality emerge in spite of this
knowledge. However, an assumption of accurate and complete knowledge often fails to
be met in dynamic real-world environments (12). Relaxing this assumption, how might
foragers learn the quality of the local and global environment?

Previously proposed learning rules include recency-weighted averaging over all
previous experiences (3, 13) and Bayesian updating (14). In this prior work, learning
of environment quality is foregrounded while knowledge of environment structure is
assumed. In a homogeneous environment, as is nearly universally employed in these
experiments, this is a reasonable assumption as a single experience in a patch can be
broadly generalized from across other patches. However, it may be less reasonable in
more naturalistic heterogeneous environments with regional variation in richness. To
make accurate predictions within a local patch, the forager must learn the heterogeneous
structure of the broader environment. How might they rationally do so? Here, we show
that apparent overharvesting in these tasks can be explained by combining structure
learning with adaptive planning, a combination of mechanisms with potentially broad
applications to many complex behaviors performed by humans, animals, and artificial
agents (15).

We formalize this combination of mechanisms in a computational model. For the
structure learning mechanism, we use an infinite capacity mixture model (16, 17), and for
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the adaptive planning mechanism, we use a dynamically adjust-
ing, uncertainty-sensitive discounting factor (18). The infinite
capacity mixture model assumes that the forager treats structure
learning as a categorization problem—one in which they must
discover not only a particular patch’s type but also the number of
patch types there are in the environment. The categorization
problem is itself cast as Bayesian inference in which these
environmental features can be inferred only from rewards
received. Within a patch, the forager infers the probability of
a patch being of type k. This inference is dependent on their
experience in the current patch, D, and in previous patches.

P(k|D) =
P(D|k)P(k)∑J
j=1 P(D| j)P(j)

, [1]

where J is the number of patch types created up until the
current patch, D is a vector of all the depletions observed in
the current patch, and all probabilities are conditioned on prior
cluster assignments of patches, p1:N .

A priori, a patch type, k, is more likely if it has been com-
monly encountered. However, there is always some probability,
proportional to α, of the current patch being a novel type.

P(k) =

{
nk

N+α if k is old
α

N+α if k is new,

where nk is the number of patches assigned to cluster k, α is a
clustering parameter that can be interpreted as a forager’s prior
over environment complexity, and N is the total number of
patches encountered.

The parameter α is key for allowing the representation of the
environment to grow in complexity as experience warrants it. In
a heterogeneously rich environment, allowing for the possibility
of multiple patch types enables better predictions of future
rewards (Fig. 1 A and B). Specifically, this informs prediction

of the upcoming decay rate and hence determines the value of
staying in the current patch:

Vstay = rt ∗ dk, [2]

where rt is the reward received on the last dig, dk is the predicted
upcoming decay, and k is the inferred patch type or cluster.

dk ∼ N (µk, σk). [3]

Unless foragers have strong prior assumptions that there
is a single patch type, they will be uncertain regarding their
assignment of patches to types.

A rational decision-maker should account for this uncertainty.
Thus, we adjusted the discount factor on each choice propor-
tionally, capturing the suggestion that it is optimal for a decision-
maker using a mental model of the world to set their planning
horizon only as far as is justified by their model certainty (18). We
implemented this principle by setting the effective discount factor
on each choice to be a linear function of the representational
uncertainty, U , with intercept (γbase) and slope (γcoef ) terms fit
to each participant (Fig. 1 C and D).

γeffective =
1

1 + e(−γbase+γcoef ∗U)
. [4]

We quantified representational uncertainty as the entropy of
the posterior distribution over the current patch type given their
experience in the current patch and previous assignments of
patches to types:

U = H(P(k|D)). [5]
This discounting formulation allowed us to test the nested

null hypothesis that discount factors would not be sensitive to
the agent’s fluctuating representational uncertainty.

The computed discounting rate is applied to the value of
leaving.

Vleave =
rtotal
ttotal
∗ tdig ∗ γeffective, [6]

B

DC

A
E

Fig. 1. Structure learning improves prediction accuracy. (A) With structure learning. A simulated agent’s posterior probability over the upcoming decay rate
on each planet is plotted. If the forager’s prior allows for the possibility of multiple clusters (� > 0), they learn with experience the cluster-unique decay
rates. Initially, the forager is highly uncertain of their predictions. However, with more visitations to different planets, the agent makes increasingly accurate
and precise predictions. (B) Without structure learning. If the forager’s prior assumes a single cluster (� = 0), the forager makes inaccurate and imprecise
predictions—either over or underestimating the upcoming decay, depending on the planet type. This inaccuracy persists even with experience because of
the strong initial assumption. Uncertainty adaptive discounting. (C) The effect of coef . The entropy of the posterior distribution over patch type assignment
is taken as the forager’s internal uncertainty and is used to adjust their discounting rate, effective. The direction and magnitude of uncertainty’s influence on
the discounting rate are determined by the parameter, coef . The more positive the parameter is, the more the discounting rate is reduced with increasing
uncertainty, formalized as entropy. If negative, the discounting rate increases with greater uncertainty. (D) The effect of effective on overharvesting. Increasing
base increases the baseline discounting rate, while increasing the slope term increases the extent the discounting rate adapts in response to uncertainty. (E)
Overharvesting increases with � and coef in single patch type environments. Simulating the model in multiple single patch type environments with varying
richness, we find that increasing � and coef , holding base constant, increases the extent of overharvesting (PRT relative to MVT). The richness of the environment
determines the extent of the parameters’ influence, with it being greatest in the poor environment.
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where rtotal
ttotal

is the overall reward rate of the environment computed
by diving the total reward earned and the total time spent. tdig is
the time required to dig or harvest the current patch. Together,
these reflect the opportunity cost of foregoing the current patch.

We tested the model’s predictions with a variant of a serial stay-
switch task Fig. 2A; (3, 19). Participants visited different planets
to mine for “space treasure” and were tasked to collect as much
space treasure as possible over the course of a fixed-length game.
On each trial, they had to decide between staying on the current
planet to dig from a depleting treasure mine or traveling to a new
planet with a replenished mine at the cost of a time delay. To
mimic naturalistic environments, we varied planet richness across
the broader environment while locally correlating richness in
time. More concretely, planet richness was drawn from a trimodal
distribution (Fig. 2B), and transitions between planets of a
similar richness were more likely (Fig. 2C ). Our model predicted
distinct behavioral patterns from structure-learning individuals
versus their nonstructure-learning counterparts in our task.
Specifically, within the multimodal environment, nonstructure
learners are predicted to underharvest on average, while structure
learners overharvest. Furthermore, structure learners’ extent of
overharvesting is predicted to vary across the task, fluctuating
with their changing uncertainty—decreasing with experience and
increasing following rare transitions between planets. In contrast,
nonstructure learners should consistently underharvest. We also
compared the model’s predictions to those of two other models—
an MVT model that learns the global and local reward rates
through trial and error and a temporal-difference learning model
(3). Both models assume a unimodal distribution of decay rates.

We found that principled inference of environment structure
and adaptation to this structure can 1) produce key deviations
from MVT that have been widely observed in participant data
across species and 2) capture patterns of behavior in a novel patch
foraging task that cannot be explained by previously proposed
models. Taken together, these results reinterpret overharvesting:
Rather than reflecting irrational choice under a fixed representa-
tion of the environment, it can be seen as a rational choice under
a dynamic representation.

Results

Structure Learning and Adaptive Discounting Increase Over-
harvesting in Single Patch Type Environments. We examined
the extent of overharvesting and underharvesting as a function

of the richness of the environment and the parameters governing
structure learning (α) and uncertainty adaptive discounting
(γcoef ). We simulated the model in single patch type environ-
ments to demonstrate that overharvesting could be produced
through these two mechanisms in an environment commonly
used in patch foraging tasks. It is important to note that,
because of our definition of uncertainty, discounting adaptation
is dependent on the structure learning parameter. We take
uncertainty as the entropy of the posterior distribution over the
current patch type. If a single patch type is assumed (α = 0), then
the entropy will always be zero and the discounting rate will be
static. In our exploration of the parameter space, we find that as
α increases, overharvesting increases. Similarly, increasing γcoef
also increases overharvesting, however, only if α > 0 (Fig. 1E).
Additionally, the overall richness of the environment interacts
with the influence of these parameters on overharvesting—α
and γcoef ’s influence is attenuated with increasing richness. The
environment’s richness also determines the baseline (when α = 0
and γcoef ≤ 0) extent of overharvesting and underharvesting.
Because our model begins with a prior over the decay rate centered
on 0.5, this produces overharvesting in the poor environment
(mean decay rate = 0.2), optimal harvesting in the neutral (mean
decay rate = 0.5), and underharvesting in the rich (mean decay
rate = 0.8). In sum, we have shown, in multiple single patch
type environments varying in richness, that overharvesting can
be produced through a combination of mechanisms—structure
learning and uncertainty adaptive discounting.

Model-Free Analyses.
Participants adapt to local richness. We first examined a pre-
diction of MVT—foragers should adjust their patch leaving
to the richness of the local patch. In the task environment,
planets varied in their richness or how quickly they depleted.
Slower depletion causes the local reward rate to more slowly
approach the global reward rate of the environment. Thus, MVT
predicts that stay times should increase as depletion rates slow.
As predicted, participants stayed longer on rich planets relative
to neutral (t(115) = 19.77, P < .0001) and longer on neutral
relative to poor (t(115) = 12.57, P < .0001).
Experience decreases overharvesting. Despite modulating stay
times in the direction prescribed by MVT, participants stayed
longer or overharvested relative to MVT when averaging across
all planets (t(115) = 3.88, P = .00018). However, the degree
of overharvesting diminished with experience. Participants over-

C

BA

Fig. 2. (A) Serial stay-switch task. Participants traveled to different planets and mined for space gems across five 6-min blocks. On each trial, they had to
decide between staying to dig from a depleting gem mine or incurring a time cost to travel to a new planet. (B) Environment structure. Planets varied in their
richness or, more specifically, the rate at which they exponentially decayed with each dig. There were three planet types: poor, neutral, and rich—each with its
own characteristic distribution over decay rates. (C) Environment dynamics. Planets of a similar type clustered together. A new planet had an 80% probability
of being the same type as the prior planet (“no switch”). However, there was a 20% probability of transitioning or “switching” to a planet of a different type.
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harvested more in the first two blocks relative to the final two
(t(115) = 3.27, P = .0014). Our definition of MVT assumes
perfect knowledge of the environment. Thus, participants ap-
proaching the MVT optimum with experience is consistent with
learning the environment’s structure and dynamics.
Local richness modulates overharvesting. We next considered
how participants’ overharvesting varied with planet type. As
a group, participants overharvested only on poor and neutral
planets while behaving MVT optimally on rich planets (Fig. 3A;
poor - t(115) = 6.92, P < .0001; neutral - t(115) = 9.00,
P < .0001; rich - t(115) = 1.38, P = .17).
Environment dynamics modulate decision time and overharvest-
ing. We also asked how participants adapted their foraging
strategy to the environment’s dynamics or transition structure.
Upon leaving a planet, it was more common to transition to
a planet of the same type (80%, “no switch”) than transition
to a planet of a different type (“switch”). Thus, we reasoned
that switch transitions should be points of maximal surprise and
uncertainty given their rareness. However, this would be the case
only if the participant could discriminate between planet types
and learned the transition structure between them.

If surprised, a participant should take longer to make a choice
following a rare “switch” transition. So, we next examined
participants’ reaction times (z-scored and log-transformed) for
the decision following the first depletion on a planet. We
compared when there was a switch in planet type versus where
there was none. As predicted, participants showed longer decision
times following a “switch” transition suggesting that they were
sensitive to the environment’s structure and dynamics (Fig. 3B;
t(115) = 2.65, P = .0093).

If uncertain, our adaptive discounting model predicts that
participants should discount remote rewards more heavily and,
consequently, overharvest to a greater extent. To test this, we
compared participants overharvesting following rare “switch”
transitions to their overharvesting following the more common
“no switch” transitions. Following the model’s prediction, par-
ticipants marginally overharvested more following a change in
planet type (t(115) = 1.86, P = .065). When considering

only planets that participants overharvested on average (poor
and neutral), overharvesting was significantly greater following a
change (Fig. 3C ; t(115) = 4.67, P < .0001).

Computational Modeling.
Structure learning with adaptive discounting provides the best
account of participant choice. To check the models’ goodness
of fit, we asked whether the compared models could capture
key behavioral results found in the participants’ data. For each
model and participant, we simulated an agent with the best-
fitting parameters estimated for them under the given model.
Only the adaptive discounting model was able to account
for overharvesting when averaging across all planets (Fig. 4A,
t(115) = 8.87, P < .0001). The temporal-difference learning
model predicted MVT optimal choices on average (t(115) = 1.30,
P = .19), while the MVT learning model predicted underhar-
vesting (t(115) =−7.26, P < .0001). These differences were pri-
marily driven by predicted behavior on the rich planets (Fig. 4B).

Model fit was also assessed at a more granular level (stay times
on individual planets) using 10-fold cross-validation. Comparing
cross-validation scores as a group, participants’ choices were
best captured by the adaptive discounting model (Fig. 4C ;
mean cross-validation scores—adaptive discounting: 16.55, TD:
22.47, MVT learn: 32.31). At the individual level, 64% of
participants were best fit by the adaptive discounting model,
14% by TD, and 22% by MVT learn.
Adaptive discounting model parameter distribution. Because the
adaptive discounting model provided the best account of choice
for most participants, we examined the distribution of indi-
viduals’ best-fitting parameters for the model. Specifically, we
compared participants’ estimated parameters to two thresholds.
These thresholds were used to identify whether a participant 1)
inferred and assigned planets to multiple clusters and 2) adjusted
their overharvesting in response to internal uncertainty.

The threshold for multicluster inference, 0.8, was computed
by simulating the adaptive discounting model 100 times and
finding the lowest value that produced multicluster inference in
90% of simulations. Of note, 76% of participants were above this

A B C

Fig. 3. Model-free results. (A) Planet richness influences overharvesting and underharvesting behavior. Planet residence times (PRT) relative to the marginal
value theorem’s (MVT) prediction are plotted as the median (± one quartile) across participants. The gray line indicates the median, while the white cross
indicates the mean. Individuals’ PRTs relative to MVT are plotted as shaded circles. In aggregate, participants overharvested on poor and neutral planets and
acted MVT optimally on rich planets. (B) Decision times are longer following rare switch transitions. If a participant has knowledge of the environment’s planet
types and the transition structure between them, then they should be surprised following a rare transition to a different type. Consequently, they should take
longer to decide following these transitions. As predicted, participants spent longer making a decision following transitions to different types (“switch”) relative
to when there was transition to a planet of the same type (“no switch”). This is consistent with having knowledge of the environment’s structure and dynamics.
(C) Overharvesting increases following rare switch transitions. On poor and neutral planets, participants overhavested to a greater extent following a rare
“switch” transition relative to when there was a “no switch” transition. This is consistent with uncertainty adaptive discounting. Switches to different planet
types should be points of greater uncertainty. This greater uncertainty produces heavier discounting and in turn staying longer with the current option.*P <
0.05, **P < 0.01, ***P < 0.001.
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Fig. 4. Modeling results. (A) The adaptive discounting model predicts overharvesting. Averaging across all planets, only the adaptive discounting model predicts
overharvesting, while the temporal-difference learning model predicts MVT optimal behavior, and the MVT learning model predicts underharvesting. This
demonstrates that overharvesting, a seemingly suboptimal behavior, can emerge from principled statistical inference and adaptation. (B) Model predictions
diverge most on rich planets. Similar to participants, the greatest differences in behavior between the models occurred on rich planets. (C) The adaptive
discounting model provides the best account for participant choices. The adaptive discounting model had the lowest mean cross-validation score, indicating
that it provided the best account of participant choice at the group level.

threshold (Fig. 5A). Thus, most participants were determined to
be “structure learners” using our criteria.

The threshold for uncertainty-adaptive discounting was
assumed to be 0. A majority of participants, 93%, were above
this threshold (Fig 5C ). These participants were determined to be
“adaptive discounters,” those who dynamically modulated their
discounting factor in accordance with their internal uncertainty.

We next looked for relationships between parameters.
Uncertainty should be greatest for individuals who have prior
expectations that do not match the environment’s true structure,
whether too complex or too simple. Consistent with this, there
was a nonmonotonic relationship between the structure learning
and discounting parameters. γbase and γcoef were greatest when
α was near its lower bound, 0, and upper bound, 10 (γbase:
β = 0.080, P < .0001; γcoef : β = 0.021, P < .0001). An
individual’s base level discounting constrains the range over
which uncertainty can adapt effective discounting. Reflecting
this, the two discounting parameters were positively related to
one another (τ = −0.33, P < .0001).
Parameter validation. Correlations with model-free measures of
task behavior confirmed the validity of the model’s parameters.
We interpret α as reflecting an individual’s prior expectation
of environment complexity. α must reach a certain threshold
to produce inference of multiple clusters and, consequently,
sensitivity to the transitions between clusters. Validating this
interpretation, participants with higher fit α demonstrated
greater switch costs between planet types (Fig. 5B, Kendall’s
τ = 0.17, P = .00076). Moreover, this relationship was specific
to α. γbase and γcoef were not significantly correlated with switch
cost behavior (γbase: τ = −0.036, P = .57; γcoef : τ = -0.10,
P = .11). This is a particularly strong validation as the model
was not fit to reaction time data. Validating γcoef as reflecting
uncertainty-adaptive discounting, the parameter was correlated
with the extent to which overharvesting increased following a rare
transition or “switch” between different planet types (Fig. 5D,
τ = 0.15, P = .016). This was not correlated with α nor the
baseline discounting factor γbase (α: τ = −0.011, P = .86; γbase:
τ = 0.082, P = .20).

Discussion

While marginal value theorem (MVT) provides an optimal solu-
tion to patch-leaving problems, organisms systematically deviate
from it, staying too long or overharvesting. A critical assumption
of MVT is that the forager has accurate and complete knowledge
of the environment. Yet, this is often not the case in real-world
contexts—the ones to which foraging behaviors are likely to have
been adapted (20). We propose a model of how foragers could
rationally learn the structure of their environment and adapt
their foraging decisions to it. In simulation, we demonstrate how
seemingly irrational overharvesting can emerge as a by-product
of a rational dynamic learning process. In a heterogeneous,
multimodal environment, we compared how well our structure
learning model predicted participants’ choices relative to two
other models—one implementing an MVT choice rule with
a fixed representation of the environment and the other a
standard temporal-difference learning algorithm. Importantly,
only our structure learning model predicted overharvesting in
this environment. Participants’ choices were most consistent with
learning a representation of the environment’s structure through
individual patch experiences. They leveraged this structured
representation to inform their strategy in multiple ways. One way
determined the value of staying. The representation was used to
predict future rewards from choosing to stay in a local patch.
The other modulated the value of leaving. Uncertainty over
the accuracy of the representation was used to set the discount
factor over future value. These results suggest that in order
to explain foraging as it occurs under naturalistic conditions,
optimal foraging may need to provide an account of how the
forager learns to acquire accurate and complete knowledge of
the environment and how they adjust their strategy as their
representation is refined with experience.

In standard economic choice tasks, humans have been shown
to act in accordance with rational statistical inference of
environment structure. Furthermore, by assuming that humans
must learn the structure of their environment from experience,
seemingly suboptimal behaviors can be rationalized, including
prolonged exploration (21), melioration (22), social biases (23),
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Fig. 5. Parameter distributions. (A) Participants learned the structure of the environment. Distribution of participants’ priors over environment complexity, �.
Each individual’s parameter is shown relative to a baseline threshold, 0.8. This threshold is the lowest value that produced multicluster inference in simulation.
Most participants (76%) fall above this threshold, indicating that a majority learned the environment’s multicluster structure. (B) Environment complexity
parameters were positively related to reaction time sensitivity to transition frequency. An individual must infer multiple planet types to be sensitive to the
transition structure between them. In terms of the model, this would correspond to having a sufficiently high environment complexity parameter. Validating
this parameter, it was positively correlated with the individual’s modulation of reaction time following a rare transition to a different planet type. (C) Participants
adapted their discounting computations to their uncertainty over environment structure. Distribution of the participant’s uncertainty adaptation parameter,
coef . Each individual’s parameter is shown relative to a baseline of 0. A majority were above this threshold (93%), indicating that most participants dynamically
adjusted their discounting, increasing it when they experienced greater internal uncertainty. (D) Uncertainty adaptation parameters were positively related to
overharvesting sensitivity to transition frequency. If individuals increase their discounting to their internal uncertainty over environment structure, then they
should discount more heavily following rare transitions and consequently, stay longer with the current option. Consistent with this, we found that the extent
to which individuals increased their overharvesting following a rare transition was related to their uncertainty adaptation parameter.

and overgeneralization (24). Here, we extend this proposal
to decision tasks with sequential dependencies, which require
simultaneous learning and dynamic integration of both the
distribution of immediately available rewards and the underlying
contingencies that dictate future outcomes. This form of rela-
tional or category learning has long been associated with distinct
cognitive processes and neural substrates from those thought to
underlie reward-guided decisions (25), including the foraging
decisions we investigate here (7). However, a network of neural
regions thought to support relational learning is more recently
thought to play a role in deliberative, goal-directed decisions
(26, 27).

If foragers are learning a model of the environment and using
it to make decisions for reward, this suggests that they may be
doing something like model-based reinforcement learning (RL).
In related theoretical work, patch-leaving problems have been
cast as a multiarmed bandit problem from RL. Which actions
are treated as the “arms” is determined by the nature of the
environment. In environments where the next patch is unknown
to the foragers, the two arms become staying in the current patch
and leaving for a new patch. In environments in which the forager
does have control over which patch to travel to next, the arms can
become the individual patches themselves. Casting patch leaving

as an RL problem allows for the use of RL’s optimal solutions as
benchmarks for behavior. Applications of these optimal solutions
in foraging have been found to capture search patterns (28, 29),
choice of lower-valued options (30), and risk aversion (31). In
contrast to this work and our own, Constantino & Daw (3)
found human foragers’ choices to be better explained by an
MVT model augmented with a learning rule than a standard
reinforcement learning model. However, importantly, their task
environment was homogeneous, and the RL model tested was
model-free (temporal-difference learning). Thus, the difference
in results could be attributed to differences in task environments
and the class of models considered. A key way our model deviates
from a model-based RL approach is that prospective prediction
is applied in computing only the value of staying, while the
value of leaving is similar to MVT’s threshold for leaving—albeit
discounted proportionally to the agent’s internal uncertainty over
their representation’s accuracy. In the former respect, our model
parallels the framework discussed by Kolling & Akam (15) to
explain humans’ sensitivity to the gradient of reward rate change
during foraging observed by Wittman et al. (32). Given that
computing the optimal exit threshold under a pure model-based
strategy would be highly computationally expensive, Kolling &
Akam (15) suggest pairing model-based patch evaluation with
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a model-free, MVT-like exit threshold. Under their proposal,
the agent leaves once the local patch’s average predicted reward
rate over n time steps in the future falls below the global reward
rate. We build on, formally test, and extend this proposal by
explicitly computing the representational uncertainty at each trial
and adjusting the planning horizon accordingly.

While learning a model of the environment is beneficial, it
is also challenging and computationally costly. With limited
experience and computational noise, an inaccurate model of the
environment may be inferred. An inaccurate model, however,
can be counteracted by adapting certain computations. In this
way, lowering the temporal discounting factor acts as a form
of regularization or variance reduction (18, 33–36). Empirical
work has found humans appear to do something like this in
standard intertemporal choice tasks. Gershman & Bhui (37)
found evidence that individuals rationally set their temporal
discounting as a function of the imprecision or uncertainty
of their internal representations. Here, we found that humans
while foraging act similarly, overharvesting to a greater extent
at points of peak uncertainty. While temporal discounting has
been proposed as a mechanism of overharvesting previously
(3, 10, 11), the discounting factor is usually treated as a fixed,
subject-level parameter, inferred from choice. Thus, it provides
no mechanism for how the factor is set let alone dynamically
adjusted with experience. In contrast, our model proposes a
mechanism through which the discounting factor is rationally set
in response to both the external and internal environments. To
further test the model, future work could examine the model’s
prediction that overharvesting should increase as the environ-
ment’s stochasticity (observation noise) increases. In the current
task environment, noise comes from the variance of the generative
decay rate distributions. An additional source of noise could be
from the reward itself. After the decay rate has been applied to the
previously received reward, white Gaussian noise could be added
to the product. As a result, the distribution of observed decay
rates would have higher variance than the generating decay rate
distributions. This reward generation process should elicit greater
uncertainty for the forager than the current reward generation
process and, consequently, greater overharvesting.

Finally, our observation that humans adjust their planning
horizons dynamically in response to state-space uncertainty
may have practical applications in multiple fields. In psychia-
try, foraging has been proposed as a translational framework
for understanding how altered decision-making mechanisms
contribute to psychiatric disorders (38). An existing body of
work has examined how planning and temporal discounting
are impacted in a range of disorders from substance use and
compulsion disorders (39, 40) to depression (41) to schizophrenia
(42, 43). This wide range has led some to suggest that these
abilities may be a useful transdiagnostic symptom and a potential
target for treatment (44). However, it remains unclear why
they are altered in these disorders. Our findings may provide
further insight by way of directing attention toward identifying
differences in structure learning and uncertainty adaptation.
How uncertainty is estimated and negotiated has been found
to be altered in several mood and affective disorders (45, 46);
theoretical work has suggested that symptoms of bipolar disorder
and schizophrenia may be explained through altered structure
learning (47), and finally, in further support, compulsivity has
been empirically associated with impaired structure learning (48).
Our model suggests a rationale for why these phenotypes co-occur
in these disorders. Alternatively, myopic behavior may not reflect
differences in abilities but rather in the environment. Individuals
diagnosed with these disorders, rather, may more frequently have
to negotiate volatile environments. As a result, their structure

learning and uncertainty estimation are adapted for these envi-
ronments. Potential treatments, rather than targeting planning or
temporal discounting, could address its possible upstream cause
of uncertainty—increasing the individual’s perceived familiarity
with the current context or increasing their self-perceived ability
to act efficaciously in it. Another application could be in the
field of sustainable resource management, where it has recently
been shown that, in common pool resource settings (e.g.,
waterways, grazing fields, fisheries), the distribution of individual
participants’ planning horizons strongly determines whether
resources are sustainably managed (49). Here, we show that
the discount factor, set as a rational response to uncertainty
about environmental structure, directly impacts the degree to
which an individual tends to (over)harvest their locally available
resources. The present work suggests that policymakers and
institution designers interested in producing sustainable resource
management outcomes should focus on reducing uncertainty—
about the contingencies of their actions and the distribution
of rewards that may result—for individuals directly affected by
resource availability, thus allowing them to rationally respond
with an increased planning horizon and improved outcomes for
all participants.

Materials and Methods

Participants. We recruited 176 participants from Amazon Mechanical Turk
(111 males, age 23 to 64, mean = 39.79, SD = 10.56). Participation was
restricted to workers who had completed at least 100 prior studies and had
at least a 99% approval rate. This study was approved by the institutional
review board of the University of California, Irvine, under Institutional Review
Board (IRB) Protocol 2019-5110 (“Decision-making in time”). All participants
gave informed consent in advance. Participants earned $6 as a base payment
and could earn a bonus contingent on performance ($0–$4). We excluded
60 participants according to one or more of three criteria: 1) having average
planet residence times 2 standard deviations above or below the group mean
(36 participants), 2) failing a quiz on the task instructions more than 2 times
(33 participants), or 3) failing to respond appropriately to one or more of the
two catch trials (17 participants). On catch trials, participants were asked to press
the letter “Z” on their keyboard. These questions were meant to “catch” any
participants repeatedly choosing the same option (using key presses “A” or “L”)
independent of value.

Task Design. Participants completed a serial stay-switch task adapted from
previous human foraging studies (3, 50). With the goal of collecting as much
space treasure as possible, participants traveled to different planets to mine for
gems. Upon arrival at a new planet, they performed an initial dig and received
an amount of gems sampled from a Gaussian distribution with a mean of 100
and SD of 5. Following this initial dig, participants had to decide between
staying on the current planet to dig again or leaving to travel to a new planet
(Fig. 2A). Staying would further deplete the gem mine, while leaving yielded
a replenished gem mine at the cost of a longer time delay. They made these
decisions in a series of five blocks, each with a fixed length of 6 min. Blocks
were separated by a break of participant-controlled length, up to a maximum of
1 min.

On each trial, participants had 2 s to decide via key press whether to stay
(“A”) or leave (“L”). If they decided to stay, they experienced a short delay before
the gem amount was displayed (1.5 s). The length of the delay was determined
by the time the participant spent making their previous choice (2 - RT s). This
ensured that participants could not affect the environment reward rate via their
response time. If they decided to leave, they encountered a longer time delay
(10 s) after which they arrived on a new planet and were greeted by a new alien
(5 s). On trials where a decision was not made within the allotted time (2 s),
participants were shown a timeout message for 2 s.

Unlike previous variants of this task, planets varied in their richness within and
across blocks, introducing greater structure to the task environment. Richness
was determined by the rate at which the gem amount exponentially decayed with
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each successive dig (Fig. 2B). If a planet was “poor,” there was steep depletion in
the amount of gems received. Specifically, its decay rates were sampled from a
beta distribution with a low mean (mean = 0.2; sd = 0.05;α= 13 andβ = 51).
In contrast, rich planets depleted more slowly (mean = 0.8; sd = 0.05; α = 50
andβ = 12). Finally, the quality of the third planet type—neutral—fell in between
rich and poor (mean = 0.5; sd = 0.05; α = 50 and β = 50). The environment
dynamics were designed such that planet richness was correlated in time. When
traveling to a new planet, there was an 80% probability of it being the same type
as the prior planet (“no switch”). If not of the same type, it was equally likely to
be of one of the remaining two types (“switch”, Fig. 2C). This information was
not communicated to participants, requiring them to infer the environment’s
structure and dynamics from rewards received alone.

Comparison to Marginal Value Theorem. Participants’ planet residence
times, or PRTs, were compared to those prescribed by MVT. Under MVT, agents
are generally assumed to act as though they have accurate and complete
knowledge of the environment. For this task, that would include knowing each
planet type’s unique decay rate distribution and the total reward received and
time elapsed across the environment.

Knowledge of the decay rate distributions is critical for estimating Vstay , the
anticipated reward if the agent were to stay and dig again.

Vstay = rt ∗ d, [7]

where rt is the reward received on the last dig, and d is the upcoming decay.

d =


0.2 if planet is poor
0.5 if planet is neutral
0.8 if planet is rich,

Vleave is estimated using the total reward accumulated, rtotal , total time passed
in the environment, ttotal , and the time delay to reward associated with staying
and digging, tdig.

Vleave =
rtotal
ttotal
∗ tdig, [8]

rtotal
ttotal

estimates the average reward rate of the environment. Multiplying it by
tdig gives the opportunity cost of the time spent exploiting the current planet.

Finally, to make a decision, the MVT agent compares the two values and acts
greedily, always taking the higher-valued option.

choice = argmax(Vstay , Vleave). [9]

Model.
Making the stay–leave decisions. We assume that the forager compares the
value for staying, Vstay , to the value of leaving Vleave, to make their decision.
Similar to MVT, we assume that foragers act greedily with respect to these values.
Learning the structure of the environment. Learning the structure of the
environment affords more accurate and precise predictions which support better
decision-making. Here, the forager predicts how many gems they will receive
if they stay and dig again, and this determines the value of staying, Vstay . To
generate this prediction, a forager could aggregate over all past experiences in
the environment (3). This may be reasonable in homogeneous environments
but less so in heterogeneous ones where it could introduce substantial noise and
uncertainty. Instead, in these varied environments, it may be more reasonable to
cluster patches based on similarity and only generalize from patches belonging
to the same cluster as the current one. This selectivity enables more precise
predictions of future outcomes.

Clusters are latent constructs. Thus, it is not clear how many clusters a
forager should divide past encounters into. Nonparametric Bayesian methods
provide a potential solution to this problem. They allow for the complexity
of the representation—as measured by the number of clusters—to grow freely
as experience accumulates. These methods have been previously used to
explain phenomena in category learning (16, 51), task set learning (24), fear
conditioning (17), and event segmentation (23).

To initiate this clustering process, the forager must assume a model of
how their observations, decay rates, are generated by the environment. The

generative model we ascribe to the forager is as follows. Each planet belongs to
some cluster, and each cluster is defined by a unique decay rate distribution:

dk ∼ Normal(µk , σk), [10]

where k denotes the cluster number. The generative model takes the form of a
mixture model in which normal distributions are mixed together according to
some distribution P(k), and observations are generated from sampling from
the distribution P(d|k).

Before experiencing any decay on a planet, the forager has prior expectations
regarding the likelihood of a planet belonging to a certain cluster. We assume
that the prior on clustering corresponds to a “Chinese restaurant process” (52).
If previous planets are clustered according to p1:N, then for the current planet,

P(k) =

{ nk
N+α if k is old
α

N+α if k is new,

where nk is the number of planets assigned to cluster k, α is a clustering
parameter, and N is the total number of planets encountered. The probability of a
planetbelongingtoanoldcluster isproportional tothenumberofplanetsalready
assigned to it. The probability of it belonging to a new cluster is proportional
to α. Thus, α controls how dispersed the clusters are—the higher α is, the more
new cluster creation is encouraged. The ability to incrementally add clusters as
experience warrants it makes the generative model an infinite capacity mixture
model.

After observing successive depletions on a planet, the forager computes the
posterior probability of a planet belonging to a cluster:

P(k|D) =
P(D|k)P(k)∑J
j=1 P(D|j)P(j)

, [11]

where J is the number of clusters created up until the current planet, D is a vector
of all the depletions observed on the current planet, and all probabilities are
conditioned on prior cluster assignments of planets, p1:N.

The exact computation of this posterior is computationally demanding as
it requires tracking all possible clusterings of planets and the likelihood of
the observations given those clusterings. Thus, we approximate the posterior
distribution using a particle filter (53). Each particle maintains a hypothetical
clustering of planets which are weighted by the likelihood of the data under the
particle’s chosen clustering. All simulations and fitting were done with 1 particle,
which is equivalent to Anderson’s local MAP algorithm (54).

With 1 particle, we assign a planet definitively to a cluster. This posterior then
determines a) which cluster’s parameters are updated and b) the inferred cluster
on subsequent planet encounters.

If the planet is assigned to an old cluster, k, the existing µk and σk are
updated analytically using the standard equations for computing the posterior
for a normal distribution with unknown mean and variance:

d̄ =
1
n

n∑
i=1

di

µ′0 =
n0µ0 + nd̄

n0 + n

n′0 = n0 + n [12]

ν′0 = ν0 + n

ν′0σ
2
0
′
= ν0σ

2
0 +

n∑
i=1

(di − d̄)2 +
n0n

n0 + n
(µ0 − d̄)2,

where d is a decay observed on the current planet, n is the total number of decays
observed on the current planet, n0 is the total number of decays observed across
the environment before the current planet,µ0 is the prior mean of the cluster-
specific decay rate distribution, and ν0 is its precision. µ′0 and ν′0 are the
posterior mean and variance, respectively.

If the planet is assigned to a new cluster, then a new cluster is initialized with
the following distribution:

dnew ∼ Normal(µ = 0.5, σ = 0.5). [13]
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This initial distribution is updated with the depletions encountered on the
current planet upon leaving.

The goal of this learning and inference process is to support accurate
prediction. To generate a prediction of the next decay, the forager samples
a cluster according to P(k) or P(k|D) depending on whether any depletions
have been observed on the current planet. Then, a decay rate is sampled from
the cluster-specific distribution, dk . The forager averages over these samples to
produce the final prediction.

To demonstrate structure learning’s utility for prediction, we show in simula-
tion the predicted decay rates on each planet with structure learning (Fig. 1A) and
without (Fig. 1B). With structure learning, the forager’s predictions approach
the mean decay rates of the true generative distributions. Without structure
learning, however, the forager is persistently inaccurate, underestimating the
decay rate on rich planets and overestimating it on poor planets.
Adapting the model of the environment. Because the inference process is an
approximation and foragers’ experience is limited, their inferred environment
structure may be inaccurate. Theoretical work has suggested that a rational way
to compensate for this inaccuracy is to discount future values in proportion to
the agent’s uncertainty over their representation of the environment (18). We
quantified an agent’s uncertainty by taking the entropy of the approximated
posterior distribution over clusters (Fig. 1 C and D). We sample clusters 100 times
proportional to the posterior. These samples are multinomially distributed. We
represent them with the distribution X:

X ∼ Multinomial(100, K), [14]

where K is a vector containing the counts of clusters from sampling 100 times
from the distribution, P(k) or P(k|d), depending on whether depletions on the
planet have been observed. Uncertainty is quantified as the Shannon entropy of
distribution X.

We implemented this proposal in our model by discounting the value of
leaving as follows:

Vleave =
rtotal
ttotal
∗ tdig ∗ γeffective, [15]

γeffective =
1

1 + e(−γbase+γcoef∗H(X))
, [16]

where γbase and γcoef are free parameters, and H(X) is the entropy of the
distribution X.
Model simulation: parameter exploration. For each combination of α, γcoef ,
and environment richness, we simulated the model 100 times, with γbase held
constant at 5. Decay rates in each patch in an environment were drawn from
the same beta distribution. Critically, the parameters of the beta distribution
varied between environments but not patches (poor - a = 13, b = 51; neutral
- a = 50, b = 50; poor - a = 50, b = 12). This was done to create single
patch type environments, similar to those commonly used in prior work on
overharvesting (3–5, 55–58). Simulated agents’ choices were compared to those
that would be made if acting with an MVT policy (Comparison to Marginal
Value Theorem). The difference was taken between the agent’s stay time in a
patch and that prescribed by MVT, and these differences were averaged over to
compute a single average patch residence time (PRT) relative to MVT for each
agent.
Model fitting. We compared participant PRTs on each planet to those predicted
by the model. A model’s best-fitting parameters were those that minimized
the difference between the true participant’s and simulated agent’s PRTs. We
considered 1,000 possible sets of parameters generated by quasi-random search
using low-discrepancy Sobol sequences (59). Prior work has demonstrated
random and quasi-random search to be more efficient than grid search (60)
for parameter optimization. Quasi-random search is particularly efficient with
low-discrepancy sequence, more evenly covering the parameter space relative
to true random search.

Because cluster assignment is a stochastic process, the predicted PRTs vary
slightly with each simulation. Thus, for each candidate parameter setting, we
simulated the model 50 times and averaged over the mean squared error
(MSE) between participant PRTs and model-predicted PRTs for each planet. The
parameter configuration that produced the lowest MSE on average was chosen
as the best fitting for the individual.

Model comparison. We compared three models: the structure learning and
adaptive discounting model described above, a temporal difference model
previously applied in a foraging context, and an MVT model that learns the
mean decay rate and global reward rate of the environment.

MVT-learning.In this model, the agent learns a threshold for leaving, which
is determined by the global reward rate, ρ (3). ρ is learned with a simple
delta rule with α as a learning rate and taking into account the temporal
delay accompanying an action τ . The value of staying is d ∗ rt , where d is the
predicted decay and rt is the reward received on the last time step. The value of
leaving,Vleave, is the opportunity cost of the time spent digging, ρ ∗ tdig. The
agent chooses an action using a softmax policy with temperature parameter,
β , which determines how precisely the agent represents the value difference
between the two options.

P(at = dig) =
1

(1 + e(−c−β(d∗rt−ρ∗tdig)))

δi =
ri
τi
− ρt

ρt+1 = ρt + (1− (1− α)τt ) ∗ δt. [17]

TD-learning.The temporal difference (TD) agent learns a state-specific value
of staying and digging, Q(s, dig), and a non-state-specific value of leaving,
Q(leave). The state, s, is defined by the gem amounts offered on each dig. The
state space is defined by binning the possible gems that could be earned from
each dig. The bins are spaced according to log(bj+1) - log(bj) = log(k̄), where

bj+1 and bj are the upper and lower bounds of the bins, and d̄ is the mean
decay rate. This state space specification is taken from ref. 3. We set bj+1 to 135

and bj to 0 as these were the true bounds on gems received per dig. We set k̄
to 0.5 because this would be the mean decay rate if one were to average the
depletions experienced over all planets. The agent compares the two values and
makes their choice using a softmax policy.

P(at = dig) =
1

(1 + e(−c−β(Qt(st ,dig)−Qt(leave))))

Dt ∼ Bernoulli(P(at))

δt = rt + γ τt (Dt ∗ Qt(st) + (1− Dt) ∗ Qt(leave))
− Qt(st−1, at−1)

Qt+1(st−1, at−1) = Qt(st−1, at−1) + α ∗ δt , [18]

where c,α,β , andγ are free parameters, and t is the current time step. c is a
perseveration term, α is the learning rate, β is the softmax temperature, and γ
is the temporal discounting factor.

Cross-validation.Each model’s fit to the data was evaluated using a 10-fold
cross-validation procedure. For each participant, we shuffled their PRTs on all
visited planets and split them into 10 separate training/test datasets. The best-
fitting parameters were those that minimized the sum of squared error (SSE)
between the participant’s PRT and the model’s predicted PRT on each planet in the
training set. Then, with the held-out test dataset, the model was simulated with
the best-fitting parameters, and the SSE was calculated between the participant’s
true PRT and the model’s PRT. To compute the model’s final cross-validation score,
we summed over the test SSE from each fold.

Data, Materials, and Software Availability. All data, data analysis, and
model fitting code will be deposited in a public GitHub repository which
can be found at https://github.com/noraharhen/Harhen-Bornstein-2023-
Overharvesting-as-Rational-Learning.
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