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Behavioral/Cognitive

Rapid Extraction of the Spatial Distribution of Physical
Saliency and Semantic Informativeness from Natural Scenes
in the Human Brain

John E. Kiat, Taylor R. Hayes, John M. Henderson, and Steven J. Luck
Center for Mind & Brain and Department of Psychology, University of California–Davis, Davis, California 95618

Physically salient objects are thought to attract attention in natural scenes. However, research has shown that meaning maps,
which capture the spatial distribution of semantically informative scene features, trump physical saliency in predicting the
pattern of eye moments in natural scene viewing. Meaning maps even predict the fastest eye movements, suggesting that the
brain extracts the spatial distribution of potentially meaningful scene regions very rapidly. To test this hypothesis, we applied
representational similarity analysis to ERP data. The ERPs were obtained from human participants (N= 32, male and female)
who viewed a series of 50 different natural scenes while performing a modified 1-back task. For each scene, we obtained a
physical saliency map from a computational model and a meaning map from crowd-sourced ratings. We then used represen-
tational similarity analysis to assess the extent to which the representational geometry of physical saliency maps and meaning
maps can predict the representational geometry of the neural response (the ERP scalp distribution) at each moment in time
following scene onset. We found that a link between physical saliency and the ERPs emerged first (;78ms after stimulus
onset), with a link to semantic informativeness emerging soon afterward (;87ms after stimulus onset). These findings are in
line with previous evidence indicating that saliency is computed rapidly, while also indicating that information related to the
spatial distribution of semantically informative scene elements is computed shortly thereafter, early enough to potentially
exert an influence on eye movements.

Key words: attention; EEG; ERP; meaning map; representational similarity analysis; saliency

Significance Statement

Attention may be attracted by physically salient objects, such as flashing lights, but humans must also be able to direct their
attention to meaningful parts of scenes. Understanding how we direct attention to meaningful scene regions will be important
for developing treatments for disorders of attention and for designing roadways, cockpits, and computer user interfaces.
Information about saliency appears to be extracted rapidly by the brain, but little is known about the mechanisms that deter-
mine the locations of meaningful information. To address this gap, we showed people photographs of real-world scenes and
measured brain activity. We found that information related to the locations of meaningful scene elements was extracted rap-
idly, shortly after the emergence of saliency-related information.

Introduction
Visually guided behavior relies on rapid prioritization of incom-
ing visual information. The precise mechanisms by which our
brains perform this prioritization, however, remain unclear. Two

distinct theoretical perspectives have emerged: one emphasizing
physical saliency and the other emphasizing cognitive guidance.
Physical saliency theories propose that attention is drawn to loca-
tions that differ from their surroundings in low-level features
(Koch and Ullman, 1985; Itti et al., 1998; Itti and Koch, 2001;
Harel et al., 2007; for review, see Veale et al., 2017). By contrast,
cognitive guidance theories propose that, from the very earliest
viewing moments, attention is instead guided by the distribution
of semantic or task-relevant content within scenes (Wolfe, 1994;
Henderson, 2003, 2017; Hayhoe and Ballard, 2005).

To distinguish between these possibilities, recent studies have
compared physical saliency maps (maps indicating physical sali-
ency at each location) with meaning maps (maps indicating
semantic informativeness levels at each location) (Henderson
and Hayes, 2017). Although saliency is thought to have largely
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equivalent effects on covert and overt atten-
tion, most research on models of saliency
have focused on overt shifts of gaze. Several
recent studies have shown that eye movement
patterns are predicted better by meaning
maps than by physical saliency (Henderson
and Hayes, 2017; Henderson et al., 2019).
This advantage has been observed across
multiple tasks, including visual search (Hayes
and Henderson, 2019), simple free viewing
(Peacock et al., 2019a), and scene and action
description (Henderson and Hayes, 2018;
Rehrig et al., 2020). The predictive advantage
of meaning maps is present even when the
task is to count the number of physically sa-
lient scene regions (Peacock et al., 2019b).

Although one might expect that informa-
tion related to meaning would be extracted
relatively slowly, the explanatory advantage
of meaning maps is often present from the
very first saccade (Hayes and Henderson,
2019; Peacock et al., 2020). This suggests that
meaning-related computations arise quickly
enough to overcome physical saliency in the
control of attention.

Although the representation of physical
saliency emerges very rapidly in nonhuman
primates (e.g., superior colliculus: 65ms,
White et al., 2017; V1: 90-100ms, Li et al.,
2006), less is known about when the brain
determines which regions are likely to
contain meaningful objects. Here, we con-
sidered two competing possibilities. First,
information related to semantic informa-
tiveness might be extracted substantially
later than physical saliency-related infor-
mation, reflecting the additional computa-
tions involved in computing meaning. For example, previous
research suggests that it takes the human brain ;150ms to
complete the extraction of meaning from complex scenes
(Thorpe et al., 1996; Fabre-Thorpe et al., 2001; Gordon, 2004).
However, it may be sufficient to determine that a location is
likely to contain meaningful information before shifting covert
or overt attention to that location, which is presumably faster
than computing the meaning itself at that location. This raises
the alternative hypothesis that brain extracts the locations of
semantically informative regions almost as rapidly as it extracts
saliency-related information.

To distinguish between these alternatives, we assessed the
onset of information related to physical saliency maps and mean-
ing maps in neural responses elicited by photographs of real-
world scenes, leveraging the high temporal precision of ERPs.
Subjects viewed a series of 50 different scenes while performing a
modified 1-back task (Fig. 1). Because we were examining the
processes that precede covert and overt shifts of attention, and
because eye movements create large electrical artifacts, sub-
jects maintained central fixation throughout the task. We
used representational similarity analysis (RSA) to link the
ERP scalp distribution at each moment in time with compu-
tationally generated maps of physical saliency (Harel et al.,
2007) and crowd-sourced meaning maps (Henderson and
Hayes, 2017) (Fig. 2). We predicted that representational sim-
ilarity between the ERPs and meaning maps would arise

shortly after representational similarity between the ERPs
and physical saliency maps, consistent with the fact that the
fastest eye movements are better explained by semantic infor-
mativeness than by physical saliency.

Materials and Methods
Participants. Thirty-two college students (17 female, 15 male; 18-30

years of age) with normal or corrected-to-normal visual acuity partici-
pated in this study for monetary compensation. Given the small number
of prior ERP studies using RSA, and the lack of any ERP RSA studies of
this specific issue, it was difficult to conduct a conventional power analy-
sis to determine an appropriate sample size. Instead, we made an initial
choice of N=32 by doubling (out of an abundance of caution) the
N=16 used in prior ERP studies from our laboratory using other multi-
variate pattern analysis methods (Bae and Luck, 2018, 2019). We then
conducted simulations (10,000 runs; for code, see https://osf.io/zg7ue/)
using this N=32 sample size and found that we could detect 80% of the
time points exhibiting a significant effect in our target analysis with this
target N. Specifically, we created simulated data with a small representa-
tional similarity effect (r= 0.05) that extended for 100ms within a
500ms analysis window. On average, our method was able to detect sig-
nificant effects for 80% of the time points within this 100ms period after
correcting for multiple comparisons over the 500ms analysis window
(using the analytic approach described in Statistical analysis). From this,
we concluded that N=32 was sufficient for the present study. All study
procedures were approved by the University of California-Davis
Institutional Review Board.

Stimuli and task. All task elements were presented in MATLAB (The
MathWorks) using PsychToolbox (Brainard, 1997; Pelli, 1997; Kleiner et

Figure 1. Example stimulus sequence from the experimental task. The target stimuli were photographs of real-world
scenes presented at the center of the screen. Subjects were tested on a randomly selected 10% of trials. In each test, four
quadrants from four different images (one matching the immediately preceding scene, three selected at random from the
other task scenes).
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al., 2007) (all scene images are available at https://osf.io/ptsvm/). The
stimuli were presented on an LCD monitor (HP ZR2440W) with a gray
background (31.2 cd/m2) at a viewing distance of 100 cm. The monitor
presentation delay was measured (24ms), and all timing values were
adjusted accordingly.

The experimental task is illustrated in Figure 1. Throughout the task,
an empirically optimized fixation symbol (Thaler et al., 2013) was con-
tinuously present in the middle of the screen. Because the goal of the
present study was to examine processes that precede both covert and
overt shifts of attention, subjects were instructed to maintain central fix-
ation on this symbol throughout the task.

The primary stimuli consisted of 50 digitized
photographs of real-world scenes (Henderson
and Hayes, 2017, 2018; Henderson et al., 2020).
Sample images are presented in Figures 2 and
3, and all 50 of the images are available in
a public repository (https://osf.io/ptsvm/).
Mean local contrast energy and spatial coher-
ence statistics (Groen et al., 2013) for these
images were also calculated and are provided
in the repository. Each image subtended 8� 6
degrees of visual angle. On each trial of the
task, a scene was presented for 200ms, fol-
lowed by a 1300ms interstimulus interval.
The brief stimulus duration was designed to
discourage eye movements.

To promote general attentiveness, subjects
were instructed to remember the most recent
scene, and their memory was tested after a ran-
domly selected 10% of trials. As illustrated in
Figure 1, each test display contained four
options: one matching the immediately preced-
ing scene and the others selected at random
from the other 49 scenes. Each option consisted
of one quadrant of a given scene so that subjects
could not perform the task by focusing on a
narrow region when encoding the scenes. For
example, if participants focused narrowly on
the center of the house scene in Figure 1, they
would have difficulty determining which of the
four test options matched this scene. The posi-
tion of the selected quadrant was selected at

random, with all four options being extracted from the same quadrant
(e.g., all four from the upper left quadrant of the scenes). Each option
subtended 3.2� 2.4° and was embedded within a 12.9� 9.7° black
region. The position of a given option relative to the black background
corresponded with the quadrant’s position in the original scene. Subjects
were instructed to indicate which of the four options matched the imme-
diately preceding scene by pressing one of four trigger buttons on a
gamepad with the index and middle fingers of the left and right hands,
mapped to the corresponding four locations in the test display. This task
was designed to minimize task-based categorization or response-related

Figure 2. a, Example scene along with its corresponding physical saliency map and meaning map. The blue rectangles were not present in the scene but were added here to highlight spe-
cific regions in each map type. In this example, the region highlighted on the left is high in physical saliency (being brighter than the surrounding regions) but low in meaning (being largely
homogeneous). By contrast, the region highlighted on the right is high in semantic saliency (as it contains easily identifiable objects) while being relatively low in physical saliency. b,
Examples of the patches used to construct the meaning maps and their ratings. Subjects viewed and rated the meaningfulness of each individual patch in isolation.

Figure 3. Examples of three scenes used in the present study and their corresponding physical saliency maps and meaning
maps. The blue rectangles and grid were not present in actual scenes but were added here to highlight correspondences
between the maps and the scenes.
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activity until the test display so that these factors would not influence the
RSA results.

Before the main task began, subjects were required to achieve at least
75% accuracy in a 50 trial practice block. This block was repeated until
the required performance level was achieved. The images in this practice
block were not used in the main task.

In the main task, the trials were divided into a series of 32 blocks,
each containing one trial with each of the 50 scenes. Thus, each of the 50
scenes was presented 32 times for each subject, yielding a fully balanced
within-subjects design. Image presentation order was randomized within
each block with the restriction that the last image in one block could not
be the first image in the next block. Participants were given a break after
every block.

Generation of physical saliency maps and meaning maps. The term
saliency can be defined in different ways. Following in the tradition of
Koch and Ullman (1985) and Itti and Koch (2000, 2001), the present
study uses the phrase physical saliency to refer to information about sali-
ency that is computed by early visual cortex on the basis of low-level
physical features in the sensory input. With this aim in mind, we selected
the Graph-Based Visual Saliency (GBVS) Toolbox as our model of phys-
ical saliency given its biological plausibility (Harel et al., 2007) along
with its track record of performance (Walther and Koch, 2006;
Nuthmann et al., 2017).

We applied the GBVS algorithm to our scenes using the default pa-
rameter settings (saliency map size: 32; selected channels: color, orienta-
tion, intensity; Gabor angles: 0, 45, 90, 135; contrast width: 0.10; blur
fraction: 0.02). The GBVS method first extracts low-level color, orienta-
tion, and contrast features, vectors from an image using biologically
inspired filters. These features are then used to compute activation maps
for each unique feature type. Subsequently, these activation maps are
normalized and additively combined to form a single global saliency
map. Finally, the resulting map is blurred using a Gaussian kernel.

Akin to how physical saliency maps represent physical saliency at
each location in an image, meaning maps aim to quantify the extent to
which meaningful information is present at each location. Meaning
maps for the scenes used in the present study were previously generated
by Henderson and Hayes (2017). In the map generation process, each
scene (768� 1024 pixels) was decomposed into a series of partially over-
lapping and tiled circular patches at two spatial scales (fine: patch diame-
ter of 87 pixels, 300 patches per scene; coarse: patch diameter of 205
pixels, 108 patches per scene; for full details, see https://osf.io/suzex/).
An example scene and patches from that scene are shown in Figure 2.

These patches were then evaluated by 204 Amazon Mechanical Turk
subjects who rated how informative or recognizable each patch was on
a 6 point Likert scale. The subjects viewed each patch in isolation, with-
out any context (e.g., they never saw the intact scenes). The patches
from multiple scenes were intermixed and presented in random order.
Thus, the ratings reflect the extent to which a given patch contains
meaningful information, not the specific meaning of that patch or the
relationship of that patch to the rest of the scene. Each unique patch
was then rated by three unique raters. Given the substantial spatial
overlap between patches, any given point in a scene typically received
dozens of ratings. A meaning map was generated for each scene by
averaging the rating data at each spatial scale separately at the pixel
level, then averaging the spatial scale maps together, and finally
smoothing the average rating map with a Gaussian filter (i.e., s = 10,
FWHM= ;23 px; for the image processing code, see https://osf.io/
654uh/).

Given that images in this study were centered on the target fixation
point, it is important to account for the expected center bias in the proc-
essing of each scene in both the GBVS and meaning maps. Maps from
the GBVS model are intrinsically center-biased, with the center-bias
being an emergent property of the distribution of graph node locations
used to compute the image maps (Harel et al., 2007). To implement the
same center-bias weighting to the meaning maps, the center-bias weights
included in the GBVS package were applied to the meaning maps via
pointwise multiplication. Through this procedure, the weighting of map
features across the two map types was effectively standardized. Examples
of these maps are shown alongside the original scene images in Figure 3.

EEG recording and preprocessing. Continuous voltages were
recorded from 64 electrodes using a Brain Products ActiCHamp record-
ing system (Brain Products). Electrodes were located at a broad set of 59
scalp sites (AF3, AF4, AF7, AF8, FC1, FC2, FC3, FC4, FC5, FC6, FP1,
FP2, F1, F2, F3, F4, F5, F6, F7, F8, C1, C2, C3, C4, C5, C6, CP1, CP2, CP3,
CP4, CP5, CP6, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, PO3, PO4, PO7,
PO8, T7, T7, TP7, TP8, O1, O2, Fz, FCz, Cz, CPz, Pz, POz, and Oz), at the
left and right mastoids, and at three electrooculogram (EOG) sites. The
two horizontal EOG electrodes were placed lateral to the external canthi
and were used to record horizontal eye movements; the vertical EOG elec-
trode was placed below the right eye and was used to record eyeblinks and
vertical eye movements (for a comprehensive description of the electrode
application and recording procedures, see Farrens et al., 2020). Electrode
impedances were maintained at,15 kV. All signals were recorded single-
ended with a customized version of the PyCorder EEG recording software
and then referenced offline. The EEG was filtered online with a cascaded
integrator-comb antialiasing filter (half-power cutoff at 130Hz) and digi-
tized at 500Hz.

The EEG preprocessing began by referencing the scalp EEG to the aver-
age of the left and right mastoid sites. A bipolar horizontal EOG derivation
was then computed as the difference between the two horizontal EOG elec-
trodes, with a vertical EOG derivation computed as the difference between
Fp2 and the vertical EOG electrode. All the signals were then bandpass fil-
tered (noncausal Butterworth impulse response function, DC offset
removed, half-amplitude cutoffs at 0.1 and 30Hz, 12dB/oct roll-off), and
resampled at 250Hz. Portions of EEG containing large muscle artifacts or
extreme voltage offsets (identified by visual inspection) were removed.

Independent component analysis (ICA) was then performed on the
retained continuous EEG for each subject to identify and remove com-
ponents that were associated with blinks (Jung et al., 2007) and eye
movements (Drisdelle et al., 2017). The criterion for excluding an ICA
component was the consistency between the shape, timing, and spatial
location of the component compared with the HEOG and VEOG sig-
nals. The data for each channel (excluding HEOG and VEOG) were
then reconstructed from the other ICA components. Individual trials
were rejected if the peak-to-peak voltage was .200mV in any 200ms
window in any electrode, or if a blink or eye movement (defined as a
step-like voltage change) (see Luck, 2014) was detected in the uncor-
rected HEOG or VEOG signals between 200ms before stimulus and
200ms after stimulus (and might therefore impact the perception of the
stimulus).

The ICA-corrected EEG signals were then segmented for each trial
from �500 to 1500ms relative to the onset of the target scenes. Epochs
preceded by test trials were discarded to reduce trial-by-trial variability.
The retained trials were then baseline-corrected using the mean voltage
from �500 to 0ms, and the averaged ERP waveform was computed for
each of the 50 scenes. The key experimental effects occurred within
200ms of stimulus onset, minimizing any concern that residual EOG ac-
tivity or secondary effects of eye movements might have impacted the
results. Moreover, there was little motivation for subjects to move their
eyes in a scene-dependent manner because the task required perceiving
the entirety of each scene, the scenes were centered at the fixation point,
and the scenes terminated after 200ms. Additional analyses are provided
in Results to demonstrate that eye movements had little or no impact on
the RSA findings.

Statistical analysis. RSA (Kriegeskorte et al., 2008) was used to link
the ERPs with the physical saliency and meaning maps. RSA makes it
possible to compare multiple distinct measurement spaces for a set of
stimuli, in this case ERP topographies and the spatial distribution of sali-
ency and meaning. RSA is widely used in fMRI research to assess the
correspondence between computational models and the pattern of acti-
vation across voxels, and it solves the fundamental problem of linking
data modalities that have intrinsically different measurement spaces.
Specifically, the RSA approach abstracts away from the activity patterns
themselves to compute, for each measurement modality of interest, rep-
resentational similarity matrices (RSMs) (or complementary representa-
tional dissimilarity matrices), which represent the overall pattern of
similarity observed between the activity patterns produced by a set of
stimuli.
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For example, if we had conducted an fMRI experiment in which we
showed an observer 50 different scenes, we could take the pattern of
BOLD activation across the voxels in visual cortex for each scene and
then compute the correlation between the pattern of activation for each
pair of scenes. This would yield a 50� 50 correlation matrix. A matrix
calculated in this manner is termed an RSM because each cell of the ma-
trix indicates the similarity between the representations of a given pair of
stimuli. We could then take those same scenes and construct another
50� 50 correlation matrix in which each cell contains the correlation
between the maps from a given pair of images (correlated at the pixel-
by-pixel level). Each of these RSMs would provide information about the
representational geometry of the system that produced it. In other
words, each RSM indicates how similar or dissimilar different scenes are
with regard to (1) the fMRI voxel patterns they evoke and (2) the outputs
they produced in the model.

By assessing the relationship between these two RSMs (using a rank-
order correlation to avoid assuming linearity), we could assess the rela-
tionship between the representational geometry of the two measurement
spaces. In other words, the correlation between the RSMs indicates the
degree to which stimuli evaluated as being similar/dissimilar in one sys-
tem are considered similar/dissimilar in the other. Only the lower or
upper triangle of each RSM is used in computing this correlation
(because the upper and lower triangles are mirror images of each other,
and the cells along the diagonal always have values of 1). A rank-order
correlation was selected here as it provides a robust method that does
not depend on the assumption of a linear relationship between the true
similarities produced by the systems underlying the RSMs (Diedrichsen
and Kriegeskorte, 2017). Furthermore, there is reason to believe that a
monotonic transform best accounts for the expected effect of the activ-
ity-pattern noise of given system on its RSM (Kriegeskorte et al., 2008).

In the present study, we used the voltage pattern across electrode
sites at a given latency rather than the pattern of BOLD activation across
voxels to construct the neural RSMs. This provides much better tempo-
ral resolution because the EEG is a measurement of the actual extracellu-
lar potentials produced by the neurons, with zero delay (but spatially
blurred by the brain, meninges, skull, and scalp). We applied RSA to the
averaged ERPs in a three-step process. First, for the ERP data from a
given subject, a separate RSM was computed at each moment in time rel-
ative to stimulus onset. Each cell in one of these RSMs represents the
similarity in scalp distribution between the ERPs elicited by two of
the scenes at that moment in time. Second, RSMs were computed for the
saliency and meaning maps; these RSMs were identical across subjects.
Third, the relationship between the ERP and saliency/meaning RSMs
was estimated using rank regression, separately for each subject. All
reported p values are two-tailed unless otherwise specified.

To take full advantage of the ERP technique’s temporal resolution,
we computed a separate ERP RSM at each time point for each subject.
We began by taking the scalp distribution of the averaged ERP for a
given scene and storing it as a vector of 59 voltages (i.e., a list with one
voltage for each electrode). To represent the similarity between the scalp
distributions for two scenes at a given time point, we computed the

Pearson r correlation between the ERP scalp distribution vectors for
those two scenes. This was done separately for each pair of scenes, yield-
ing a 50� 50 RSM for each time point. These computations were per-
formed independently at each time point for each subject to avoid
representational geometry distortions associated with the averaging of
distance data (Ashby et al., 1994). We repeated this process for each time
point in the 2000 ms ERP epoch (500 time points at 4ms per sample),
producing 500 different 50� 50 ERP RSMs for each subject. We used
the Pearson r correlation between scalp distributions as our measure of
similarity because it quantifies similarity in the spatial pattern of the
scalp distribution, disregarding differences in overall amplitude.

For the saliency map RSMs, we began by reshaping each two-dimen-
sional saliency map (one saliency value per pixel) into a single 1-dimen-
sional vector (list) of saliency pixel values. We then computed the
Pearson r correlation between the vectors for a given pair of scenes to
represent the saliency-based similarity between those scenes. This
yielded a 50� 50 saliency RSM. This process was repeated for the mean-
ing maps to produce a 50� 50 meaning map RSM. Figure 4 presents the
physical saliency and meaning map RSMs alongside an example ERP
RSM from one recording time point from a single subject.

When choosing the 50 scenes for this study, we intentionally selected
scenes in which the physical saliency and meaning maps were not overly
similar (Pearson r, 0.50). To assess the degree of correlation between
the saliency and meaning RSMs, we computed the Spearman r rank-
order correlation between them, with a permutation test (10,000 itera-
tions) to assess statistical significance. Consistent with our selection
criteria, we found that the physical saliency and meaning map RSMs
were only modestly correlated (r =0.243, p= 0.007).

To assess the link between the ERPs, physical saliency maps, and the
meaning maps, a rank regression procedure (Iman and Conover, 1979)
was used to regress the ERP RSMs onto the physical saliency and mean-
ing map RSMs. The estimated parameters of interest were the semipar-
tial correlations between the rank-ordered ERP RSMs and the rank-
ordered saliency and meaning RSMs. These semipartial correlations
quantify how much of the variance in the representational geometry
of the neural activity (the ERP RSMs) is uniquely accounted for by
the representational geometry of the saliency and meaning maps (the
saliency and meaning RSMs). In other words, variance in the ERP
RSM that was explained by the physical saliency map RSM was parti-
alled out when examining the correlation between the ERP RSM and
the meaning map RSM, and vice versa. This approach allows us to
examine the unique representational contribution of each source of
information with regard to the ERP response. This procedure was
repeated independently for each of the 500 time points for each of
the 32 unique subjects, resulting in two sets of separate 32 semipar-
tial correlations (one for each subject) at each time point for physical
saliency maps as well as for meaning maps.

We used parametric (Pearson) correlations to assess the similarity
between the scalp distributions when constructing the RSMs because dif-
ferent scalp distributions from the same subject can be directly related to
each other. However, we used nonparametric (rank-order) correlations

Figure 4. RSMs for the physical saliency and meaning maps, as well as an example RSM from the ERP data (drawn from a single subject from 100 ms after stimulus onset). The ordering of
items in each matrix is identical and corresponds to the arbitrary numbering assigned to each scene in the experimental task. Similarity values are presented in Pearson r units. Shading in each
cell represents the computed similarity between a pair of scenes.
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to assess the similarity between the ERP and saliency RSMs because
these RSMs come from different sources of data that may not be linearly
related.

Given that our hypotheses focused on sensory/perceptual activity,
our analytic window focused on the 500ms period following stimulus
onset. Negative RSA correlations are typically uninterpretable and were
treated as noise. We therefore used a one-tailed Wilcoxon sign-rank test
against zero to determine whether the average of the 32 single-subject
semipartial correlations at a given time point within the analytic window
was significantly .0. This was done separately for the physical saliency
and meaning map RSMs. A FDR correction (q=0.05) was then applied
to each set of saliency and meaning p values as an adjustment for multi-
ple comparisons (Benjamini and Yekutieli, 2001).

Data and code accessibility. All EEG preprocessing methods were
implemented in MATLAB using the open-source EEGLAB
(Delorme and Makeig, 2004) and ERPLAB (Lopez-Calderon and
Luck, 2014) toolboxes. The EEG data, experimental control scripts,
EEG preprocessing scripts, and in-house custom MATLAB func-
tions that implement the RSA analyses are available at https://osf.io/
zg7ue/ whereas the meaning maps used in this study are available at
https://osf.io/ptsvm/.

Results
Behavioral results
The mean accuracy across subjects for the behavioral task was
86% (SD=9.68), with a mean response time of 2.22 s (SD=0.72).

Representational similarity time course analyses
Figure 5a shows the representational similarity (semipartial rank
correlations) between the ERP data, the physical saliency map
RSM, and the meaning map RSM within the analytic window.
Values that were significantly greater than chance (after correc-
tion for multiple comparisons) are indicated using horizontal
lines. In general, the representational similarity values rose above
chance rapidly after scene onset, with a slightly later onset for
meaning than for saliency. The representational similarity was
significantly above chance from 84 to 112ms for saliency and
from 100 to 120ms for meaning. Saliency also exhibited a second
period of significant representational similarity from 152 to

248ms. We would like to stress that these are semipartial correla-
tions, in which variance explained by saliency maps was parti-
alled out of the meaning map values and vice versa. Thus, the
data in Figure 5 reflect the unique contribution of each map
type.

Figure 5b presents the RSA results for the full epoch, along
with the noise ceiling, which reflects the highest representational
similarity values that would be expected given the noise in the
ERP data. The lower and upper bounds of the noise ceiling were
estimated independently for each time point using the technique
described by Nili et al. (2014). Specifically, the upper bound was
estimated by computing the correlation between a given subject’s
ERP RSM at a specific time point and the grand average of the
ERP RSMs across all subjects at that time point and then averag-
ing the correlations across subjects. The lower bound was esti-
mated using a similar approach, except that the grand average
RSM used for the correlation with a given subject excluded that
subject.

Onset latencies for the RSA waveforms were estimated using
the fractional onset latency technique (Hansen and Hillyard,
1980; Luck, 2014) in ERPLAB. In this approach, the peak value is
first determined to normalize for differences in magnitude.
Then, the onset latency is defined as the time point at which the
value reaches 50% of the peak value. Simulations have shown
that this approach provides an accurate and precise metric of
onset latency (Kiesel et al., 2008). These measurements were
obtained using the jackknife approach (Miller et al., 1998; Ulrich
and Miller, 2001; Kiesel et al., 2008). Because jackknifing
increases precision, a spline interpolation algorithm was applied
to the RSA waveforms to provide a 1 ms measurement precision
(Luck, 2014).

Figure 5c presents the estimated onset latencies for the physi-
cal saliency map RSA waveform (mean= 77.88ms, SE= 3.10)
and the meaning map RSA waveform (mean= 87.02ms,
SE= 4.25). We then compared the onset latencies of these peaks
using a jackknife-adjusted paired t test (Miller et al., 1998). The
observed difference in latency (mean difference = 9.14ms,
SEM=3.96) between these onset latencies was statistically

Figure 5. a, Representational similarity time course between the ERP data (i.e., the ERP representational dissimilarity matrices computed from all scalp electrodes) and each of the two map
types (saliency and meaning) from �200 ms before stimulus to 500 ms after stimulus. Representational similarity was computed separately for each participant, with the mean across partici-
pants being shown here. Horizontal line segments across the top indicate time periods in which the representational similarity values were significantly.0 (p, 0.05 correcting for the FDR).
b, Full time course of the representational link shown in a. The upper and lower edges of the gray region denote the upper and lower bound estimates of the estimated noise ceiling (i.e., the
highest expected observed correlation) of the ERP data. c, Jackknifed mean onset latency for physical and semantic saliency in the ERP data. Error bars indicate the jackknife-corrected SE.
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significant (jackknifed-adjusted t=2.31, p=0.027). Thus, infor-
mation related to the spatial distribution of physical saliency
within the scenes was present in the neural responses quite early,
followed;10ms later by information related to the spatial distri-
bution of meaningful scene features.

To put these latencies into context, Figure 6 shows the ERP
waveforms from a set of representative electrode sites over visual
cortex. The earliest ERP responses began at ;75ms, which was
close to the onset time of the representational similarity wave-
form for physical saliency. Thus, physical saliency-related infor-
mation was present from near the beginning of the cortical
activity that could be detected on the scalp, with meaningfulness-
related information following rapidly.

Ruling out eye movement confounds
Although subjects were instructed to maintain central fixation,
and we rejected trials with clear eye movements and used ICA to
correct for any remaining eye movements, it is possible that
some small eye movements escaped rejection and correction,
varying systematically across scenes. The initial RSA effects were
too early to have been a result of such scene-driven changes in

eye position, but the later effects may have been influenced by
eye movements.

To assess this possibility, we repeated our analyses with ERP
RSMs computed in two ways. First, we computed RSMs using
the ICA-corrected HEOG and VEOG channels that were
excluded during the construction of the original ERP RSMs (Fig.
7a). If residual EOG activity that survived correction drove the
main RSA results, then these RSA results should be even clearer if
we limit the RSA analyses to the channels where these signals are
largest. Second, we computed RSMs from ERPs reconstructed
using only the ICA components associated with ocular activity
(i.e., the components that were removed from the data during the
preprocessing phase), eliminating all sources of brain activity cap-
tured by the other ICA components (Fig. 7b). These ocular ICA
components should isolate eye movement signals, allowing us to
see if they contain information that can be predicted from the
physical saliency and meaning maps. As shown in Figure 7, nei-
ther of these ocular RSMs exhibited a statistically significant rela-
tionship to the physical saliency or meaning map RSMs during
the analytic time window. Thus, it is unlikely that the main ERP
RSA results were substantially influenced by eye movements.

Figure 6. a, Grand average ERPs, collapsed across scenes and subjects, at nine different electrode sites. b, Mean GFP (Skrandies, 1990) collapsed across scenes and subjects. Time zero is the
onset of the scene in all waveforms. c, Grand average ERPs for all scenes, collapsed across subjects at nine different electrode sites. The grand average waveform is highlighted in black in each
panel.
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Topographical assessment
The RSA time course analyses used all 59 scalp sites, provid-
ing no information about which sites were most important
in producing the observed effects. To obtain information
about scalp topography, we used a leave-one-electrode-out
approach. Specifically, we repeated the rank regression pro-
cedure 59 times, each time leaving out one of the 59 electro-
des when constructing the ERP RSMs. We then examined
how much the representational similarity values dropped
when a given electrode was excluded relative to when all 59
electrodes were included, using the magnitude of the drop
as a metric of the contribution of that electrode to the rep-
resentational similarity link. As before, these changes were
computed at the single-subject level before being averaged
across participants. Given the large number of electrodes
and the high intercorrelations between them, we expected
that the contribution from each individual electrode would
be small but that the pattern across electrodes would be in-
formative. These values were used to construct scalp topog-
raphies in which the value at each electrode was set to the
magnitude of its unique contribution to the rank-order
relationship between a given map type and the ERP RSM at
a single point in time. A biharmonic spline interpolation
was applied to all maps to facilitate visualization. This
leave-one-out approach was used to produce topographic
maps at each time point between 72 and 108ms, encom-
passing the earliest ERP components as well as the initial
portion of the physical saliency and meaning map RSMs.

As shown in Figure 8, the resulting topographies had a focus
over visual cortex for both the saliency and meaning RSA data,
with a slight lateralization to the right. Importantly, neither of
these topographies included a substantial contribution from elec-
trodes close to the eyes. Given the complex relationship between
ERP generator locations and scalp electrodes (Nunez et al.,
2006), and the large number of steps between the data and these
topographic maps, it would be inadvisable to draw any strong
conclusions from the topographies shown in Figure 8.
Nonetheless, they do provide some descriptive information
about the electrode sites that contributed most to the observed
RSA effects, showing that electrodes over posterior midline and
right lateral regions of visual cortex played a relatively strong
role. Moreover, electrodes near the occipital pole showed a
strong effect for the meaning map RSA data, suggesting that pos-
terior visual areas may have played an important role in the
meaning map RSA effects (Henderson et al., 2020). This is con-
sistent with recent fMRI evidence indicating that information
coded by GBVS maps is more strongly represented in occipital
cortex and information related to meaning maps is more

strongly represented in more anterior visual areas (Henderson et
al., 2020).

Supplementary analyses
Our main analyses used semipartial correlations to assess the
unique ability of the saliency maps to predict the ERP data after
partialling out variance explained by the meaning maps and the
unique ability of the meaning maps to predict the ERP data after
partialling out variance explained by the saliency maps.
However, it is possible that saliency and meaning also interact,
which would not be captured by our primary analyses. To assess
this possibility, we conducted an exploratory analysis in which
we added an interaction term for the two map types to our rank
regression analysis. This was calculated by assessing the effect
size and significance of an interaction term computed via multi-
plying the centered meaning and saliency map RSM rank values.
This analysis showed no evidence of an interaction between the
two map types at any point in time, with near-zero values at all
time points (peak r = 0.017) and no statistically significant effects
after FDR correction.

In our main analyses, we used the Pearson r correlation coef-
ficient to quantify the similarity in ERP scalp distributions for
each pair of scenes, which assesses similarity in the pattern of ac-
tivity over the scalp independent of the amplitude of the ERP
response. We therefore conducted an additional analysis to
determine whether the overall amplitude of the ERP response
has a representational link to the saliency and meaning maps. In
this analyses, we quantified the magnitude of the ERP response
as the global field power (GFP), which is the SD of the voltage
across electrode sites (Skrandies, 1990). This approach aggregates
the data from all electrode sites into a single magnitude value at
each time point. The difference in GFP between a given pair of
scenes was used to quantify the (dis)similarity between the
scenes. We used these values to construct a representational dis-
similarity matrix, and then we reversed the ranks in this matrix
to create an RSM. We then assessed the relationship between this
RSM and the saliency and meaning RSMs at each time point for
each participant using the same methods as in our main analyses.
This metric of electrode-independent neural response magnitude
was not clearly associated with either meaning or saliency, with
no statistically significant effects at any time point after FDR
adjustment. Thus, whereas the pattern of voltage over the scalp
was clearly linked to both the saliency and meaning maps in the
main analysis, we found no evidence for a link with the overall
ERP magnitude.

Finally, we also conducted a supplementary analysis to assess
the extent to which the spatial distribution of low versus high

Figure 7. a, Representational similarity time course from�200 ms before stimulus to 500 ms after stimulus between each of the map types (saliency and meaning) and the ERP data, but
using only the horizontal and vertical EOG channels (after artifact correction). This makes it possible to estimate the effects of any residual eye movement activity. b, Representational similarity
time course when the ERP data at each electrode site were computed from the independent components flagged as being generated by ocular artifacts. This makes it possible to assess whether
eye movements were systematically related to the physical saliency and meaning maps. a, b, Representational similarity was computed separately for each participant, and the mean across
participants is shown here. The upper and lower edges of the gray region represent the upper and lower bound estimates of the estimated noise ceiling (i.e., the highest expected observed
correlation).
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spatial frequencies played a role in the observed results. In this
analysis, we created versions of the images that contained either
only the low spatial frequencies or only the high spatial frequen-
cies. Specifically, in line with the approach used by Dima et al.
(2018), we converted the images to grayscale and applied either a
low-pass Gaussian filter with a 3 cycles/degree cutoff (computed
based on the visual angle of the scenes as presented in the task)
or a high-pass filter with a 6 cycles/degree cutoff. Then, as was
done with the saliency and meaning maps, we correlated the
resulting maps at the pixel-by-pixel level to form a low spatial
frequency RSM and a high spatial frequency RSM.We then com-
pared these RSMs with the ERP RSMs using the same methods
as in our primary analyses. This analysis yielded no link between
these two RSMs and the ERP RSM at any point in time, with no
significant time points after FDR correction (peak r= 0.014).
Thus, similarity in the spatial distributions of low versus high
spatial frequency information in the images does not appear to
impact the similarity of ERP scalp distributions, at least for the
set of images used in the present study.

Discussion
The results of this study indicate that the human brain rapidly
extracts information associated with the spatial distribution of
meaningful scene features shortly after the onset of cortical activ-
ity, almost as rapidly as it extracts information associated with
physical saliency. These findings are consistent with the hypothe-
sis that physical saliency is available first, but information about
the locations of potentially meaningful scene regions is available
soon after. To the best of our knowledge, the current study is the
first to compare the processing time course of physical saliency
and meaning-related information for natural scenes. This result
extends prior work showing that the spatial distribution of physi-
cal saliency is rapidly represented in the frontal eye fields, in early
visual cortex, and in parietal cortex (Gottlieb et al., 1998; Bogler
et al., 2011; Henderson et al., 2020).

The rapid extraction of meaning-related information is con-
sistent with behavioral work showing that the spatial distribution
of meaningful scene features exerts an influence on even the ini-
tial shift of overt attention in real-world scenes (Henderson and
Hayes, 2017, 2018; Hayes and Henderson, 2019; Peacock et al.,
2020; Rehrig et al., 2020). Specifically, the 86 ms onset latency of
the meaning-related activity observed in the present study is suf-
ficiently fast to potentially influence even the earliest shifts of
overt attention (Thorpe et al., 1996; Fabre-Thorpe et al., 2001;
Gordon, 2004).

However, it is important to note that participants maintained
central fixation throughout the present task (to avoid electroocu-
lographic artifacts). This makes it impossible to determine
whether the observed ERP effects play a causal role in shifts of
overt attention (which would be difficult to ascertain even if eye
movements were allowed). Nonetheless, these results clearly
demonstrate that the brain extracts information that is predictive
of semantic features sufficiently rapidly to guide scene-related
eye movements.

More broadly, these RSA results indicated that similarities in
scalp voltage patterns across scenes are associated with similar-
ities in physical saliency maps and in meaning maps of these
scenes. This implies that the neural representations of the spatial
distribution of both saliency and potentially meaningful scene
elements are mapped at a sufficiently large cortical scale in the
brain that they can be detected even after the substantial spatial
filtering that occurs when electrical potentials are recorded from
the scalp.

Finer-grained information was provided by the topographical
analysis shown in Figure 8, in which both physical saliency and
meaning-related RSA effects were primarily accounted for by sig-
nals overlying visual cortex, with some indication of a right
hemisphere lateralization for physical saliency. This right laterali-
zation for physical saliency is interesting given prior transcranial
magnetic stimulation work showing evidence for a right laterali-
zation in posterior regions involved in maintaining physical sali-
ency maps across saccades (van Koningsbruggen et al., 2010).
While these results should be taken with caution given the com-
plex dynamics underlying the generation of observed scalp-level
EEG topographies (Nunez et al., 2006), it is not unreasonable to
hypothesize that the effects observed in this study arise from reti-
notopic activations in visual cortex (DeYoe et al., 1996; Brewer et
al., 2005) or other topographically mapped cortical regions
(Arcaro et al., 2009; Silver and Kastner, 2009; Arcaro and
Livingstone, 2017).

Finally, these results also draw on and contribute to an
extensive body of work on the neurophysiological processes
underlying scene perception. Of particular interest, previ-
ous work (Harel et al., 2007; Groen et al., 2012, 2013; Cichy
et al., 2017; Henriksson et al., 2019; Kaiser et al., 2020) indi-
cates that the time course of processing for low-level global
statistics and scene geometries is similar to the time courses
observed for the spatial maps of meaning and saliency in
the present study. Further research into how these various
factors interact, particularly with regard to spatial and non-
spatial features, has significant potential for expanding our

Figure 8. Scalp topographies derived from the leave-one-electrode-out analysis. Each scalp map presents the unique contribution (in rank correlation units) of each scalp electrode to the
representational relationship between a given saliency map type and the neural RSM at a specific time point.

Kiat et al. · Saliency Maps and Meaning Maps J. Neurosci., January 5, 2022 • 42(1):97–108 • 105



understanding of the perceptual processing of scenes and
how those processes drive shifts of overt attention.

Varieties of saliency
The original model of visual saliency by Koch and Ullman
(1985) defines physical saliency based on a model of biologically
plausible features that mimic the response of early visual process-
ing regions (e.g., V1/LGN). Since then, computational models of
saliency have been developed that instead rely on deep neural
networks, such as AlexNet (Krizhevsky et al., 2017), VGG16
(Simonyan and Zisserman, 2015), or Resnet (He et al., 2016).
These models therefore go well beyond the response properties
of early visual processing regions. As a result, the models include
more abstract, higher-level representations of the visual input, so
they are not pure models of physical saliency. They do not con-
tain semantics per se, but they are trained on human response
data (e.g., human classification judgments or visual fixations
from large datasets). As a result, they may be influenced by both
physical saliency and the higher-level computations that presum-
ably underlie the processing of meaning (Damiano et al., 2019).
This makes it difficult to isolate physical saliency from semantic
features in these models, so they were not relevant for the present
study’s goal of assessing the time courses of these two factors.

It is worth noting, however, that previous research has found
links between the activation outputs of such models with pat-
terns of EEG/MEG activity (Dima et al., 2018; Greene and
Hansen, 2018). Such findings, taken in conjunction with the con-
tinued development of more biologically inspired neural network
models (Schrimpf and Kubilius, 2018; Dapello et al., 2020), indi-
cate that this line of research holds considerable promise for
shedding light on other mechanisms of human vision.

Limitations and future directions
Although the present results provide strong evidence for the
rapid emergence of information about the spatial distribution of
semantic information in the human brain, some limitations
must be considered. First, we examined only a single task and a
limited number of scenes, and it is possible that the time course
of physical saliency and meaning-related information may differ
across tasks and scenes. The majority of behavioral work in this
area suggests that meaning maps override physical saliency maps
in the control of attention across a broad set of scenes and tasks
(Henderson and Hayes, 2017, 2018; Hayes and Henderson, 2019;
Peacock et al., 2019b), but it will be important for future research
to explore a broader range of tasks and scenes. It will also be im-
portant for future research to assess the potential moderating
influences of other scene-related features, such as naturalness
and openness.

A second limitation is that these RSA results are, by defini-
tion, correlational. Thus, we cannot conclude that the brain was
extracting physical saliency and meaningfulness per se, but only
that the brain was extracting information that is associated with
physical saliency and meaningfulness. This point is particularly
important to note with regard to how quickly the representa-
tional effect of the meaning maps arose. That is, the fast onset of
the meaning-related effects may indicate that neurons in visual
cortex are tuned to features that are likely to be associated with
meaningful objects either directly or indirectly (the former being
more likely given the rapidity of the effect) via feedback from
scene/object-selective regions. The causal direction of this effect
could potentially be assessed with recently developed approaches
using transcranial magnetic stimulation (Wischnewski and
Peelen, 2021). Furthermore, recent work by Kiat et al. (2021)

suggests that this tuning arises as a product of real-world experi-
ence and/or other developmental processes, presenting addi-
tional directions for further research.

Third, given the nature of scalp-based EEG, it is difficult to
draw firm conclusions regarding the specific neural generators
and systems underlying these effects. Future investigations
involving representational similarity-based fusion of EEG/MEG
and fMRI data (Cichy and Oliva, 2020) could shed light on this
issue.

Fourth, the meaning maps used in this study likely do not
fully represent all stages of semantic activity related to visual
processing. Specifically, the meaning maps largely represent the
context-free semantic density of local scene regions, excluding
contextualized elements, such as object-scene semantic relations.
These maps were selected as they are currently the best candidate
available for representing the earliest stages of semantic feature
processing. However, as scene processing progresses, repre-
sentations of meaning are likely to become more context-
dependent and less spatiotopically precise. As a result, these
representations may no longer match the context-inde-
pendent, spatially precise meaning maps, leading to low
representational similarity between the ERPs and the mean-
ing maps at later time points. Given prior work regarding
the time course of contextual and semantic processing
(Mudrik et al., 2010; Demiral et al., 2012), it is likely that a
later, more sustained, link for contextually relevant seman-
tic features would be obtained if we used maps that capture
actual concepts and/or more contextualized aspects of
semantic feature processing (Hayes and Henderson, 2021).

Finally, it is worth noting that the meaning maps used in the
present study do not represent a theory of the processes underly-
ing scene semantics. These maps instead provide an operational
tool to quantify the spatial distribution of semantically informa-
tive scene elements, setting the stage for future investigations
focused on disentangling how low-level image features are proc-
essed and integrated to give rise to semantic informativeness.
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