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ABSTRACT OF THE DISSERTATION

High-Level Verification of System Designs

by

Sudipta Kundu

Doctor of Philosophy in Computer Science and Engineering

University of California, San Diego, 2009

Professor Rajesh K. Gupta, Chair
Professor Sorin Lerner, Co-Chair

Given the growing size and heterogeneity of Systems on Chip (SOC), the design

process from initial specification to chip fabrication has become increasingly complex.

The growing complexity provides incentive for designers to use high-level languages such

as C, SystemC, and SystemVerilog for system-level design. While a major goal of these

high-level languages is to enable verification at a higher level of abstraction, allowing

early exploration of system-level designs, the focus so far has been on traditional testing

techniques such as random testing and scenario-based testing.

This dissertation focuses on high-level verification of system designs. We envision

a design methodology that relies upon advances in synthesis techniques as well as on

incremental refinement of the design process. These refinements can be done manually

or through elaboration tools. Our work addresses verification of specific properties in

high-level languages as well as checking that the refined implementations are equivalent

to their high-level specifications. The novelty of each of these techniques is that they

use a combination of formal techniques to do scalable verification of system designs

completely automatically.

Our work falls into two categories: (a) methods for verifying properties of high-

xvi



level designs and (b) methods for verifying that the translation from high-level design to a

low-level Register Transfer Language (RTL) design preserves semantics. Taken together,

these two parts guarantee that properties verified in the high-level design are preserved

through the translation to low-level RTL. By performing verification on the high-level

design, where the design description is smaller in size and the design intent information

is easier to extract, and then checking that all refinement steps are correct, we expand

hardware development methodology to provide strong and expressive guarantees that

are difficult to achieve by directly analyzing the low-level RTL code. Our techniques

for high-level verification have been implemented in a framework, which consists of four

tools, namely Satya, Candor, Surya, and PEC. We demonstrate the value of our techniques

by verifying various industrial strength designs and a complex CAD-tool package called

Spark.

xvii



Chapter 1

Introduction

The quantitative changes brought about by Moore’s law in design of integrated

circuits (ICs) affect not only the scale of the designs, but also the scale of the process to

design and validate such chips. While designer productivity has grown at an impressive

rate over the past few decades, the rate of improvement has not kept pace with chip

capacity growth leading to the well known design-productivity-gap [Kah01]. The problem

of reducing the design-productivity-gap is crucial in not only handling the complexity

of the design, but also combating the increased fragility of heterogeneous components

that are composed in a design. Unlike software programs, integrated circuits are not

repairable. The development costs are so high that multiple design spins are ruled

out, a design must be correct in the one and often the only one design iteration to

implementation.

High-Level Synthesis (HLS) [GDWL92, Mic94, Mic90, WC91, Lin97, GR94,

GDGN03, GB08] is often seen as a solution to bridge the design-productivity-gap.

HLS is the process of generating the Register Transfer Level (RTL) design consisting

of a data path and a control unit from the behavioral description of a digital sys-

tem, expressed in languages like C, C++ and Java. The synthesis process consists

of several inter dependent sub-tasks such as: specification, compilation, scheduling,

allocation, binding and control generation. HLS is an area that has been widely ex-

plored and relatively mature implementations of various HLS algorithm have started to

emerge [WC91, Lin97, GDGN03, GB08]. This shift in design paradigm enables designers

to avoid many low-level design issues early in the design process. It also enables early de-

sign space exploration, and faster functional verification time. However, for verification

1
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of high-level designs, the focus so far has been on traditional testing techniques such as

random testing and scenario-based testing. Over the last few decades we have seen many

unfortunate examples of hardware bugs (like Pentium FDIV bug, Killer poke, and Cyrix

coma bug) that have eluded testing techniques. Recently, many techniques inspired

from formal methods have emerged as an alternative to ensure the correctness of these

high-level designs, overcoming some of the limitations of traditional testing techniques.

The new techniques and methodology for verification and validation at higher

level of abstraction are collectively called high-level verification techniques. The high-

level verification problem can be further divided into two parts. The first part deals with

verifying properties of high-level designs. The methods for verifying high-level designs

allow designers to check for certain properties such as functional behavior, absence of

deadlocks and assertion violations in their designs. Once the properties are checked,

the designers refine their design to low-level RTL manually or using a HLS tool. HLS

tools are large and complex software systems, and as such they are prone to logical and

implementation errors. Errors in these tools may lead to the synthesis of RTL designs

with bugs in them. As a result, the second part deals with verifying that the translation

from high-level design to low-level RTL preserves semantics. Taken together, these two

parts guarantee that properties satisfied by the high-level design are preserved through

the translation to low-level RTL.

Unfortunately, despite significant amount of work in the area of formal verifi-

cation we are far from being able to prove automatically that a given design always

does the right thing, or a given synthesis tool always produces target programs that

are semantically equivalent to their source versions. However, with recent advances in

SAT solvers [MMZ+01, GN07], automated theorem proving [ORS92, Gor88, Pau94], and

model checking [BCM+90, COYC03, TVGSV95] researchers are at least able to prove

that the designs and tools satisfy important properties. Also, in many cases they are

able to guarantee the functional equivalence between the initial behavioral description

and the RTL output of the HLS process.

In this thesis, we envision a design methodology that relies upon advances in

synthesis techniques as well as on incremental refinement of design process. These re-

finements can be done manually or through elaboration tools. Our work addresses veri-

fication of specific properties in high-level languages as well as checking that the refined

implementations are equivalent to their high-level specifications. While experience shows
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that no single technique (including the ones we developed specifically for high-level ver-

ification) can be universally useful, we have found that an intelligent combination of a

number of these techniques driven by well considered heuristics is likely to prove parts

of a design or tool correct, and also in many cases find bugs in them. The key contribu-

tion of this thesis is that it explores a combination of formal techniques to do scalable

verification of system designs completely automatically.

1.1 Overview of High-Level Verification

The HLS process consists of performing stepwise transformations from a behav-

ioral specification into a structural implementation (RTL). The main benefit of HLS is

that it provides faster time to RTL and faster verification time. Figure 1.1 shows the

various components involved in high-level verification and how they interact. The design
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flow from high-level specification to RTL is shown along with various verification tasks.

These tasks can be broadly classified as follows:

1. High-level property checking

2. Translation validation

3. Synthesis tool verification

4. RTL property checking

Traditionally, designers start their verification efforts directly for RTL designs.

However, with the popularity of HLS, these efforts are moving more toward their high-

level counterparts. This is particularly interesting because it allows faster (sometimes by

three orders of magnitude [Var07]) functional verification time, when compared to a more

detailed low-level RTL implementation. Furthermore, it enables more elaborate design

space exploration, which in turn leads to better quality of design. Since RTL property

checking techniques have been widely explored in earlier works [Gup92, KG99, McF93a],

here we focus only on the first three verification tasks.

The first category of methods, high-level property checking, allow various prop-

erties to be verified on the high-level designs. Once the important properties that the

high-level components need to satisfy have been checked, various other techniques are

used in order to prove that the translation from high-level design to low-level RTL is

correct, thereby also guaranteeing that the important properties of the components are

preserved.

The second category translation validation include techniques that try to show,

for each translation that the HLS tool performs, that the output program produced by

the tool has the same behavior as the original program. Although this approach does not

guarantee that the HLS tool is bug free, it does guarantee that any errors in translation

will be caught when the tool runs, preventing such errors from propagating any further

in the hardware fabrication process.

The third category synthesis tool verification consists of techniques whose goal

is to prove automatically that a given optimizing HLS tool itself is correct. Although,

these techniques have same goal as translation validation i.e., to guarantee that a given

HLS tool produces correct result, these techniques are different because they can prove

the correctness of parts of the HLS tool once and for all, before they are ever run.
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In this thesis, we have explored techniques for each one of the three areas outlined

above, namely high-level property checking, translation validation, and synthesis tool

verification. In the following section we briefly describe our techniques from each of

these areas, outlining the connections and trade-offs between them.

1.2 Overview of Our Approach

As mentioned in the previous section our work falls into three categories. The key

insight behind our approach is that by performing verification on the high-level design,

where the design description is smaller in size and the design intent information is easier

to extract, and then checking that all refinement steps are correct, we expand hardware

development methodology to provide strong and expressive guarantees that are difficult

to achieve by directly analyzing the low-level RTL code. In the following subsections we

briefly discuss each of the techniques we developed specifically for high-level verification.

1.2.1 High-Level Property Checking

Starting with a high-level design, we use model checking techniques to verify

that the design satisfies a given property such as the absence of deadlocks or assertion

violations. Model checking in its pure form suffers from the well-known state explosion

problem. To cope with this problem, some systems give up completeness of the search

and focus on the bug finding capabilities of model checking. This line of thought lead

to execution-based model checking approach, which for a given test input and depth,

systematically explores all possible behaviors of the design (due to asynchronous concur-

rency). The most striking benefit of execution-based model checking approach is that it

can analyze feature-rich programming languages like C++, as it sidesteps the need to

formally represent the semantics of the programming language as a transition relation.

Another key aspect of this approach is the idea of stateless search, meaning it stores no

state representations in memory but only information about which transitions have been

executed so far. Although stateless search reduces the storage requirements, a significant

challenge for this approach is how to handle the exponential number of paths in the pro-

gram. To address this, one can use dynamic partial-order-reduction (POR) techniques

to avoid generation of two paths that have the same effect on the design’s behavior.

Intuitively, POR techniques exploit the independence between parallel threads to search
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a reduced set of paths and still remain provably sufficient for detecting deadlocks and

assertion violations.

We implemented Satya (Chapter 4), a novel query-based model checking tool

that combines static and dynamic POR techniques along with high-level semantics of

SystemC to intelligently explore all possible behaviors of a SystemC design. We reduce

the runtime overhead by computing the dependency information statically and using it

during runtime, without significant loss of precision. In our experiments Satya was able

to automatically find an assertion violation in the FIFO benchmark (distributed as a

part of the OSCI repository), which may not have been found by simulation.

Another approach for model checking is to use symbolic algorithms that manip-

ulate sets of states instead of individual states. These algorithms avoid ever building the

complete state graph for the system; instead, they represent the graph implicitly using

a formula in propositional logic. Bounded Model Checking (BMC) is one such algorithm

that unrolls the control flow graph (loop) for a fixed number of steps (say k) and checks

whether a property violation can occur in k or fewer steps. This typically involves encod-

ing the bounded model as an instance of Satisfiability (SAT) problem. This problem is

then solved using a SAT or SMT (Satisfiability Modulo Theory) solver. A key challenge

for BMC is to generate efficient verification conditions that can be easily solved using

the appropriate solver.

We developed a new symbolic method (Chapter 5), which combines POR with

an asynchronous modeling approach that generate verification conditions directly with-

out an explicit scheduler. We introduce the notion of Mutually Atomic Transactions

(MAT): two transactions are mutually atomic when there exists exactly one conflict-

ing shared-access pair between them and it appears at the end of the transactions.

Previous approaches add interleaving constraints between all pairwise global accesses,

thereby allowing redundant interleavings. We reduce the verification conditions by al-

lowing pairwise interleaving constraints only between MATs. To evaluate our approach

we implemented our algorithms in a tool called Candor. Our experimental results show

that our approach improves the current state of the art both in performance and in size

of the verification condition [GK09].



7

1.2.2 Translation Validation

Once the important properties of the high-level components have been verified,

the translation from the high-level design to low-level RTL still needs to be proven

correct, thereby guaranteeing that the important properties of the components are pre-

served. One approach to prove that the translation from high-level design to low-level

RTL is correct is to show – for each translation that the HLS tool performs – the output

program produced by the tool has the same behavior as the original program.

We developed a translation validation algorithm (Chapter 6) that uses a bisimu-

lation relation approach to automatically prove the equivalence between two concurrent

systems. We implemented our algorithm in a system called Surya and used it to validate

the synthesis process of Spark [GDGN03], a parallelizing HLS framework. Surya validates

all the code transformation phases (except for parsing, binding and code generation) of

Spark against the initial behavioral description. Furthermore, our experiments showed

that with only a fraction of the development cost of Spark, our algorithm can validate the

translations performed by Spark, and it even uncovered two previously unknown bugs

that eluded testing and long-term use.

1.2.3 Synthesis Tool Verification

Another approach to guarantee correctness of the translation from high-level

design to low-level RTL, is by proving the HLS tool itself correct (Chapter 7). Unlike

translation validation, this approach proves the correctness of an HLS tool once and for

all, before it is ever run. Because some of the most error prone parts of an HLS tool are

its optimizations, we developed a technique that proves the correctness of optimizations

using Parametrized Equivalence Checking (PEC) [KTL09]. Furthermore, our approach

is not limited to only HLS tools; it can be used for any domain that transforms an input

program using semantics-preserving optimizations, such as optimizers, compilers, and

assemblers.

The PEC technique is a generalization of translation validation that proves the

equivalence of parameterized programs. A parameterized program is a partially specified

program that can represent multiple concrete programs. For example, a parameterized

program may contain a section of code whose only known property is that it does not

modify certain variables. To highlight the power of PEC, we designed a language for

implementing complex optimizations using many-to-many rewrite rules, and used this
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language to implement a variety of optimizations including software pipelining, loop

unrolling, and loop unswitching. Using our PEC implementation, we were able to au-

tomatically verify that all the optimizations we implemented in our language preserve

program behavior.

1.3 Contributions

The primary contribution of this thesis is to explore various formal techniques

that can be used for high-level verification. We believe by performing verification on the

high-level design, and then checking that all refinement steps are correct, the domain

of high-level verification can provide strong and expressive guarantees that would have

been difficult to achieve by directly analyzing the low-level RTL code. Our goal is to

move the functional verification tasks earlier in the design phase, thereby allowing faster

verification time and possibly quicker time to market.

To systematically explore the domain of high-level verification, we classified the

various verification tasks into three main parts, namely high-level property checking,

translation validation, and synthesis tool verification. We developed techniques for each

of the above mentioned verification tasks. The novelty of our approaches is that it

combines a number of formal techniques along with well considered heuristics to do

scalable verification of high-level designs completely automatically.

To evaluate our approaches we developed a high-level verification framework that

consists of four tools and complemented methodology to use these tools. The four tools

are: Satya and Candor for high-level property checking, Surya for translation validation,

and PEC for synthesis tool verification. These tools use state-of-the-art techniques from

areas such as model checking, theorem proving, satisfiability modulo theories, static

analysis and compiler correctness. Apart from these techniques our framework exploits

structures specific to high-level designs, thereby in many cases simplifying our algo-

rithms and improving their performance. For example, Satya exploits SystemC specific

semantics to efficiently explore a reduced set of possible executions, and Surya relies on

structure preserving transformations that are predominantly used in HLS.

Our framework enables experimentation with large “real-world” designs and

tools. The key characteristics of our approach to high-level verification are as follows:

Scalable: Most of our analyses are modular as they work on one entity at a time. For

example, Surya works on one procedure at a time, and PEC works on one transformation
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at a time. Furthermore, in the cases where we have to analyze the entire design together

we apply various reduction techniques like partial-order reduction, context bounding,

and program structure based reduction (e.g. lock-unlock, fork-join, wait-notify, etc.).

While these software engineering decisions and reductions theoretically limits the scope

of the verification tasks on a given design, it is rarely an issue in practice as it follows

the designer’s and tool developer’s programming abstractions.

Practical: Our tools are practical enough to be applied to industrial strength designs

and tools. In particular, we used Satya to check an industrial benchmark namely the TAC

platform [Mic05], and used Surya to validate the synthesis process of Spark [GDGN03], a

state-of-the-art academic HLS framework. We compared the results obtained using our

tools with previous approaches. For example, in our experiments Candor outperforms

previous approaches [GG08, WYKG08] in most cases, both in performance and size of

the verification problem.

Useful: Our tools are able to automatically guarantee the correctness of various prop-

erties and transformations. Apart from correctness guarantee, these tools are also quite

useful for finding bugs. For example, Satya was able to automatically find an assertion

violation in the FIFO benchmark (distributed as a part of the OSCI repository), and

Surya was able to uncover two previously unknown bugs in the Spark HLS framework.

1.4 Thesis Organization

The organization of this thesis is shown in Figure 1.2. Chapter 2 presents a

detailed discussion of the related works in the area of high-level verification. In particular,

we divide the related works in to three main areas, namely high-level property checking,

translation validation, and synthesis tool verification. We discuss the various tools and

techniques explored in these areas. Apart from these we again discuss some more related

works specific to the chapters in each of the following chapters, where we compare our

approach with the existing approaches.

In Chapter 3, we present a brief overview of the three different parts of high-

level verification on which our approaches are applied. More specifically, we present a

brief introduction of high-level designs, RTL designs, and high-level synthesis. We also

introduce in this chapter our representation of concurrent programs, which we use in the

rest of this thesis.

Chapter 4 and Chapter 5 discuss two high-level property checking techniques.
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In Chapter 4, we present an execution-based model checking approach for the high-level

language SystemC. In this approach, we start with a design written in SystemC, and then

intelligently explore a subset of the possible executions till a certain depth to verify that

the design satisfies a given property such as absence of deadlocks or assertion violations.

Chapter 5, on the other hand discuss a symbolic analysis approach for concurrent C

programs. We introduce the concept of MATs, which allows us to do partial-order

reduction for symbolic algorithms. In both the chapters we present the details of our

algorithm and experimental results.

Chapter 6 discusses a translation validation approach that proves the transla-

tion from high-level design to the scheduled design is correct. We describe in detail our

algorithm that uses a bisimulation relation approach to automatically prove the equiv-

alence between two concurrent programs. In this chapter, we also report our efforts to

check the refinement of CSP programs and to validate the synthesis process of Spark, a

parallelizing HLS framework.
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In Chapter 7 we describe another approach that also proves the result of HLS

process is correct. Our approach called Parametrized Equivalence Checking falls in the

synthesis tool verification category. In this approach we generalize the translation valida-

tion technique of Chapter 6 to prove the optimizations performed by a HLS tool correct

once and for all. We describe the details of our algorithm and experiments.

Finally, Chapter 8 wraps-up the thesis with a conclusion and a discussion of

future work.



Chapter 2

Related Work

Each one of the three areas of high-level verification outlined in Chapter 1, namely

high-level property checking, translation validation, and synthesis tool verification, have

been explored in a wide variety of research efforts. In this chapter, we discuss various

techniques from each of these areas that are directly relevant to our work.

2.1 High-Level Property Checking

The high-level designs written using languages like C, SystemC, SystemVerilog

are mostly software programs with support for specialized hardware data types and other

hardware features like synchronous concurrency, synchronization, and timing [GL97].

Thus, many efforts to use software verification tools to verify these designs have been

explored. Model checking is the most prevalent automatic verification technique for

software and hardware. It is a technique for verifying that a hardware or software system

satisfy a given property (specification). These properties, which are usually expressed in

temporal logic, typically encode deadlock and safety properties (e.g. assertion violations).

In this section, we survey several software model checking techniques grouped as explicit

and symbolic techniques.

2.1.1 Explicit Model Checking

In explicit state enumeration model checking, the reachable states of a design

are generated using an exhaustive search algorithm. This technique explicitly stores

the entire state space in memory and checks if certain error states are reachable. For

12
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finite state system this technique is both sound (i.e. whenever model checking cannot

reach a given error state, it is guaranteed to not reach that error state ever in real

execution) and complete (i.e. whenever model checking finds an error, it is guaranteed

to be an error in real execution). However, as the size of the finite state spaces grow

larger and larger, this technique suffers from the well known state explosion problem. To

address the state explosion problem, researchers use techniques to construct the state

space on-the-fly [Hol97] during the search, rather than generating all the states and

transitions before the search. In addition, they use bit-state hashing [Hol97], in which

the hash value of the reachable state is stored, instead of the state itself. Due to possible

hash collision the bit-state hashing technique is unsound. Other techniques include

partial-order-reduction [God95], symmetry reduction [ES96, CD93] and compositional

techniques [CLM89].

Intuitively, the partial-order-reduction technique exploits the independence be-

tween parallel threads to compute a provably sufficient subset of the enabled transitions

in each visited states such that if a selective search is done using only the transitions

from these subsets the detection of all the deadlocks and safety property violations is

guaranteed. Symmetry reduction on the other hand exploits symmetries in the program,

and explores one element from each symmetry class. Compositional techniques decom-

pose the original verification problem to related smaller problems such that the result of

the original problem can be obtained by combining the smaller ones.

The most popular finite state explicit model checker for concurrent programs

are SPIN [Hol97] and MURPHI [Dil96]. Both tools have been successfully used for

verification of sequential circuits and protocols.

Moreover, in order to achieve scalability some systems give up completeness of

the search and focus on the bug finding capabilities of model checking. For instance, one

can bound the depth of the search and/or bound the number of context switches [MQ07].

This line of thought also leads to the execution-based model checking approach. These

methods are typically used for improving the coverage of a test. Traditionally, in testing

the user writes a test bench and runs it. Typically, the operating system scheduler exe-

cutes only one fixed schedule out of the many possible behaviors. However, the scheduler

of the execution based model checker systematically explore all possible behaviors of the

program for a given test input and depth. The most striking benefit of this approach is

the ease of implementing it, as it sidesteps the need to formally represent the semantics of
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the programming language as a transition relation. Another key aspect of this method is

the idea of stateless [God97] search i.e., it stores no state representations in memory but

only information about which transitions have been executed so far. Although stateless

search reduces the storage requirements, a significant challenge for this approach is how

to handle the exponential number of paths in the program. Here again various reduction

techniques like symmetry, partial-order [FG05], and abstraction have been explored.

Verisoft [God97] is the first tool in this domain, and it explores arbitrary code

written in full fledged programming language like C or C++. It does so by modi-

fying the OS scheduler and systematically exploring all possible interleavings. Java

PathFinder [VHBP00] is a tool for Java programs that uses the virtual machine rather

than OS scheduler to explore the different behaviors. CMC [MPC+02] is another tool for

C programs that improves the efficiency of the search by storing a hash of each visited

state. Dynamic validation using execution-style model checking is also well adapted for

validating SystemC designs [HMMCM06].

2.1.2 Symbolic Model Checking

The above reduction techniques like partial-order, address the state explosion

problem for asynchronous concurrent systems (by reducing the number of interleavings

that need to be explored). However, they are not so effective in the case of synchronous

concurrent systems, which do not involve interleaving. Symbolic model checking tech-

niques, on the other hand, are quite effective for both synchronous and asynchronous

concurrent systems. Furthermore, the reduction techniques discussed in Section 2.1.1

including partial-order reduction are orthogonal and can be used in conjunction with

symbolic techniques.

Symbolic algorithms manipulate sets of states, instead of individual states. These

algorithms avoid ever building the complete state graph for the system; instead, they

represent the graph implicitly using a formula in propositional logic. They can also

represent infinite states using a single formula. For example the predicate (x > 1 ∧
y > 1) denotes the set of all states in which the value of the variables x and y are

both greater than 1. The first major step toward symbolic representation is the use of

Binary Decision Diagrams (BDD) [Bry92]. BDDs are a canonical form representation

for boolean formulas, and are particularly important for finite state programs, as these

programs can be represented using boolean variables. BDDs are used in symbolic model
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checker like SMV [McM00] and have been instrumental in verifying hardware designs

with very large state spaces [BCM+90].

As in explicit model checking, one sometimes trades off completeness for bug find-

ing capabilities of symbolic model checking. Bounded Model Checking (BMC) [BCC+99]

is one such algorithm that unroll the control flow graph (loop) for a fixed number of steps

(say k), and check whether a property violation can occur in k or fewer steps. This typ-

ically involves encoding the restricted model as an instance of Satisfiability (SAT) prob-

lem. This problem is then solved using a SAT [MMZ+01] or SMT (Satisfiability Modulo

Theory) [MB08] solver. BMC tools like CBMC [CKY03] and FSoft-BMC [IYG+08] use

iterative deepening depth-first search so that the above process can be repeated with

larger and larger values of k until all possible violations have been ruled out.

Another area that has recently received lot of attention is abstract model check-

ing, which trades off precision for efficiency. Abstraction [CC77, CC02] attempts to prove

properties of a program by first simplifying it. Next, the reachability analysis is per-

formed on the simplified (or abstract) domain, which usually satisfies some, but not all

the properties of the original (or concrete) program. Generally, one requires the abstract

domain and its semantics to be sound (i.e. the properties proved in the abstract seman-

tics implies properties in the concrete semantics). However, typically, the abstraction is

not complete (i.e. not all true properties in the concrete semantics are true in the ab-

stract semantics). An example of abstraction is, to only consider boolean variables and

the control flow of a program and ignore the values of non boolean variables. Although,

such an abstraction may appear coarse, it is sometimes sufficient to prove properties like

mutual exclusion.

The polyhedral abstract domain has been successfully used to check for array

bounds violations [CH78]. Another interesting domain, predicate abstraction [GS97,

BMMR01, DDP99, LBC05] is parameterized by a fixed finite set B = {B1, B2, · · · , Bk}
of first-order formulas (predicates) over the program variables, and consists of the lattice

of Boolean formulas over B ordered by implication. A cube over B is a conjunction of

possibly negated predicates from B. The domain of predicate abstraction is the set of

all cubes, and one cube is computed at each program point.

The goal of predicate abstraction is to compute a set of predicates from B at

every program point. Thus, given a set of predicates B, a program statement s, and a

cube over B flowing into the statement, it computes the cube over B that flows out of the
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statement. For example, consider the set of predicates B = {B1, B2}, where B1 ≡ (a = b)

and B2 ≡ (a = b + 1). Given the cube B1 ∧ ¬B2 and the statement a := b + 1, then

predicate abstraction would compute that the cube ¬B1∧B2 should be propagated after

the statement.

A problem with abstract model checking is that although the abstraction simu-

lates the concrete program, when the abstraction does not satisfy a property, it does not

mean that this property actually fails in the concrete program. When a property fails,

the model checker produces a counterexample. A counterexample can be genuine i.e.,

can be reproduced on the concrete program, or spurious i.e., does not correspond to a

real computation but arises due to the imprecision in the analysis. Counterexamples are

checked against the real state space to make sure they are genuine. In the case when it

is spurious, methods have been developed to automatically refine the abstract domain

and get a more precise analysis which rules out the current counterexample and pos-

sibly many others, without losing soundness. This iterative strategy is called Counter

Example Guided Abstraction Refinement (CEGAR).

SLAM [BMMR01] is a popular CEGAR based model checker for C programs.

It was used successfully within Microsoft for device driver verification [BBC+06]

and has been developed into a commercial product (Static Driver Verifier, SDV).

BLAST [BHJM07] is also a CEGAR based model checker that uses lazy abstrac-

tion [HJMS02]. The main idea of Blast is the observation that the computationally

intensive steps of abstraction and refinement can be optimized by a tighter integration

which would allow it to reuse the work performed in one iteration toward subsequent iter-

ations. Lazy abstraction tightly couples abstraction and refinement by constructing the

abstract model on-the-fly, and locally refining the model on-demand. MAGIC [CCG03]

is another CEGAR based compositional model checking framework for concurrent C pro-

grams. Using MAGIC, the problem of verifying a large implementation can be naturally

decomposed into the verification of a number of smaller, more manageable fragments.

These fragments can be verified separately, enabling MAGIC to scale up to industrial

size programs.

Advances in model checking and related techniques in the past several decades

have allowed researchers to verify increasingly ambitious properties of software programs

including device drivers, operating systems code, and large commercial applications.

They have also enabled the verification of large hardware components like microproces-
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sors. Although this is a significant step forward toward reducing the design-productivity-

gap, state-of-the-art verification techniques are still far away from proving full correctness

of programs.

2.2 Translation Validation

Once the design has been checked to satisfy certain properties using techniques

discussed in Section 2.1, the next step is to make sure that those properties are preserved

through the synthesis process. In this section we discuss a category of methods called

translation validation which guarantee the preservation of safety properties through the

synthesis process. Translation validation techniques are employed during synthesis to

check that each transformation performed by the HLS tool preserves the semantics of

the initial design. The initial design is called specification and the transformed design

is called implementation. The validation step check for either refinement or equivalence.

Typically, the implementation is said to be a refinement of the specification if the set

of execution traces of the implementation is a subset of the set of execution traces of

the specification. They are equivalent when the two sets are equal. In this section, we

discuss different techniques for translation validation. Depending upon the core approach

these techniques are primarily based on, they are divided into three categories: relational

approach, model checking, and theorem proving.

2.2.1 Relational Approach

Relational approaches [KKM04, DBJ98, BDP00, KMS+06] are used to check the

correctness of the synthesis process by establishing a functional equivalence between the

Control-Data Flow Graphs (CDFG) of the program, before and after each step of HLS.

The equivalence is defined on some predefined observable events that are preserved across

the transformations. Intuitively, the idea is to show that there exists a simulation relation

R that matches a given program state in the implementation with the corresponding state

in the specification. This simulation relation guarantees that for each execution sequence

of observable events in the implementation, a related and equivalent execution sequence

exists in the specification. The relation R ⊆ S tate1 × S tate2 operates over the program

states S tate1 of the specification and the program states S tate2 of the implementation. If

S tart1 is the set of start states of the specification, S tart2 is the set of start states of the

implementation, and σ →e σ′ denotes state σ stepping to state σ′ with observable event
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e, then the following conditions summarize the requirements for a correct refinement:

∀σ2 ∈ S tart2 . ∃σ1 ∈ S tart1 . R(σ1, σ2)

∀σ1 ∈ S tate1, σ2 ∈ S tate2, σ′2 ∈ S tate2 .

σ2 →e σ′2 ∧R(σ1, σ2) ⇒
∃σ′1 ∈ S tate1 . σ1 →e σ′1 ∧R(σ′1, σ

′
2)

These conditions respectively state that (1) for each starting state in the implementation,

there must be a related state in the specification; and (2) if the specification and the

implementation are in a pair of related states, and the implementation can proceed

to produce observable events e, then the specification must also be able to proceed,

producing the same events e, and the two resulting states must be related. The above

conditions are the base case and the inductive case of a proof by induction showing that

the implementation is a refinement of the specification.

One example of using the relational approach is Karfa et al.’s technique [KMS+06]

for establishing the equivalence between the initial Finite State Machine with Datapath

(FSMD) and a scheduled FSMD. The technique introduces cut-points in the original

and transformed FSMD automatons, which allows computations through the original

and transformed FSMD to be seen as the concatenation of paths from cut-points to

cut-points. The technique then establishes the equivalence by exploiting the structural

similarities between related cut-points using weakest pre-condition.

Another example of the relational approach can be found in Dushina et al.’s

proposed method [DBJ98] for checking the functional equivalence between a scheduled

abstract FSM and the corresponding RTL after binding. The method establishes the

equivalence transition by transition. In particular, for each transition in the RTL con-

troller, it performs a symbolic execution of the associated RTL data path. The symbolic

execution results are then syntactically compared with the data operations specified in

the equivalent transition of the abstract FSM.

In general, relational approaches work well when the transformations preserve

most of the program’s control flow structure. Such transformations are called structure-

preserving [ZPFG03] transformations. Unfortunately, relational approaches tend to be

ineffective in the face of non structure-preserving transformations like loop unrolling,

loop tiling and loop reordering. Despite these limitations, relational approaches are very

useful in practice: with only a fraction of the development cost of an HLS tool, they can

uncover bugs that elude testing.
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2.2.2 Model Checking

Techniques involving model checking [ABRM98, Bla00] are used for verifying

register-transfer logic against its scheduled behavior. The key idea is to partition the

equivalence checking task into two simpler subtasks, verifying the validity of register

sharing/binding, and verifying correct synthesis of the RTL interconnect and control.

The success of these methods can be attributed to the observation that the state space

explosion in most designs is caused by the data path registers rather than the number

of control states.

The following algorithm outlines the method of verifying the validity of register

sharing.

• Identify paths in the scheduled graph along which potential conflicts can occur.

During this step no interpretation of the data path is done. If no conflict is iden-

tified then verification successfully terminates.

• Otherwise for each violation the set of all conflict paths is summarized in a reduced

Conflict Sub-Graph (CSG).

• The reduced CSG is then checked to find out if the conflict was benign. If a conflict

is detected during the checking, then a logically possible path with incorrect register

binding has been detected. In this case the appropriate path is shown to the user

as a counterexample.

• Else, if it ends without any conflict detected, all possible conflict paths are logically

impossible and the verification algorithm successfully terminates.

Ashar et al. [ABRM98] analyzed potential conflicts by means of structural meth-

ods, and then the reduced CSG is checked for satisfiability by the VIS model

checker [TVGSV95]. Whereas Blank [Bla00] identifies possible conflicts using a sym-

bolic model checker [BCM+90]. The result of the analysis is summarized in a reduced

internal representation called Language of Labeled Segments (LLS) [Hin98], which is

then checked by symbolic simulation [Moo98]. However, symbolic simulation allows rea-

soning for a defined finite number of steps. Thus, loops in the program cannot be verified

for an arbitrary number of iterations.

Ashar et al. also presented an algorithm to verify the correct synthesis of the

RTL interconnect and control [ABRM98]. This part of equivalence checking is done
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state-by-state, i.e., for each state in the schedule, the computations performed in that

state are shown to be equivalent to those performed in the RTL implementation for the

same state. The equivalence is shown using symbolic simulation.

2.2.3 Theorem Proving

Although most of the translation validation approaches discussed so far use the-

orem provers in some way, the theorem prover is not at the center of the approach. The

Correctness Condition Generator [MV00], on the other hand, is primarily based on a

theorem proving technique. This approach assumes that the synthesis tool can identify

the binding relation between specification variables and registers in the RTL design, and

between the states in the behavior and the corresponding states in the RTL design. A

correctness condition generator is tightly integrated with the high-level synthesis tool

to automatically generate (1) formal specifications of the behavior and the RTL design

including the data path and the controller, (2) the correctness lemmas that establish

equivalence between the synthesized RTL design and its behavioral specification, and

(3) proof scripts for these lemmas that can be submitted to a higher-order logic proof

checker without further human interaction. The tight integration of the synthesis process

with the theorem prover allows the theorem prover to gather information about what

kinds of transformations were performed, and therefore better reason about them.

2.3 Synthesis Tool Verification

Another attractive way of proving that an HLS tool produces correct RTL is to

verify the correctness of HLS tool once and for all, before it is ever run once.

One can categorize such techniques into three broad classes: (1) formal asser-

tions, which can be used to guarantee the correctness of the synthesis tool, (2) transfor-

mational synthesis tools, which are correct by construction, and (3) witness generators,

which recreate the steps that an existing HLS tool has performed using formally verified

transformations.

2.3.1 Formal Assertions

Narasimhan et al. proposed a Formal Assertions approach [NTR+01, Nar98,

NV98] to building a verified high-level synthesis system, called Asserta. The approach
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works under the following premise: If each stage in the system, like scheduling, register

optimization, interconnect optimization etc. can be verified to perform correct trans-

formations on the input specification, then by compositionality, we can assert that the

resulting RTL design is equivalent to its input specification. This technique has the

following four main steps.

1. Characterization: A base specification model is identified for each synthesis task.

The base specification model is usually a tight set of correctness properties that

completely characterizes the synthesis task.

2. Formalization: The base specification model is then formalized as a collection of

theorems in a higher order logic theorem proving environment, which form the

base formal assertions. An algorithm is also chosen to realize the corresponding

synthesis task and is described in the same formal environment.

3. Verification: The formal description of the algorithm is verified against the base

theorems. Inconsistencies in the base model are identified during the verifica-

tion exercise. Furthermore, the model is enhanced with several additional formal

assertions derived during verification. The formal assertions now represent the

invariants in the algorithm.

4. Formal Assertions Embedding : In the next step a software implementation of the

algorithm that was formally verified in the previous stage is developed. The much

enhanced and formally verified set of formal assertions is then embedded within

this software implementation as program assertions.

During synthesis, the implementation of each task is continually evaluated against its

specification model specified by these assertions and any design error during synthesis

can be detected.

Asserta [Nar98] is a high-level synthesis system developed to show the effec-

tiveness of assertion-based verification techniques to generating first-time correct RTL

designs. The synthesis engine has three main stages, namely scheduling, register opti-

mization and interconnect generation. The proof effort was conducted using Prototype

Verification System (PVS) [ORS92], a higher order logic theorem prover.

Since the main tasks of Asserta have been verified, it can be used with an in-

creased degree of confidence. This approach is also not affected by the state space or
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complexities of any synthesized RTL design. However, the correctness of the system

depends on the completeness and correctness of the base assertions. Another concern

is that during the formal assertions embedding step, due to difference in the expressive

power of logic and software program, the translation process often could get quite com-

plicated and finally, the correctness of the method hinges on this translation process. It

is also hard to generate a tight base specification for all the steps of the synthesis process.

Thus, although Asserta is a first step toward achieving correct synthesis, verifying large

synthesis programs is quite tedious and complex.

2.3.2 Transformational Synthesis Tools

The basic idea of this method is to determine a set of transformations, which

when applied to an initial specification, transform the source into the required imple-

mentation. This transformations are then embedded in a theorem prover to prove their

correctness. The correctness of the HLS system thus follows from a ‘correct by construc-

tion’ argument.

Transformational synthesis is an area that has been widely explored [SR97, JB91,

HDL89, Lar96, EBK96, Raj95]. Various tools have been developed in the recent past,

which mainly differ in the expressiveness of their input language, the theorem prover

used and the type of transformations allowed. Sharp et al. [SR97] developed the T-Ruby

design system, where the Ruby language is used for specifying VLSI circuits and the

theorem prover Isabelle [Pau94] is used to formalize the correctness-preserving transfor-

mations. DDD [JB91] is another system, which is a based on functional algebra. Both

systems uses hardware specific calculus to describe a design. The following are few sys-

tems based on behavioral transformations. Veritas [HDL89] is a theorem prover based on

an extension of typed higher order logic, which provides an interactive environment for

converting the specification into an implementation. Larsson [Lar96] presented a trans-

formational approach to digital system design based on the HOL proof system [Gor88].

Hash [EBK96] is another system based on the theorem prover HOL [Gor88]. McFar-

land [McF93b] investigated the correctness of behavioral transformations using behavior

expressions. Rajan [Raj95] on the other hand, used the PVS [ORS92] theorem proving

system to specify and verify behavioral transformations.

However, unlike the formal assertion technique presented in Section 2.3.1, tech-

niques based on transformational synthesis reason only about the specification of the
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Figure 2.1: Using a witness generator system to validate synthesis tools

transformations, not their software implementations, which is where many of the bugs

arise.

2.3.3 Witness Generator

The main idea behind witness generator techniques [RTV00, MHMP02, EHR99]

is to use a set of behavior-preserving elementary transformations for validating an exist-

ing non transformational synthesis system by discovering and to some extent isolating

software errors.

Figure 2.1 shows an overview of the witness generator approach. The source

program is first converted into a CDFG, after which point the CDFG passes through

a regular unverified HLS process. Following the regular HLS process, the CDFG is

also passed to a transformational system that consists of a set of elementary structural

transformations, all of which have been formally verified given a set of preconditions.

These transformations are sequenced together by the witness generator, whose goal is

to find a sequence of elementary transformations which when applied to the initial de-

sign, achieve the same RTL outcome. For this technique to be broadly applicable, the

set of elementary transformations must collectively capture a wide variety of synthesis

algorithms.

The task of the witness generator is facilitated by the following information,

which is provided by the synthesis tool:
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• The outcome of a synthesis task can be captured by a simple data structure (bind-

ing data structure) such that any algorithm for this task can record its outcome

in this data structure. For example, the outcome of any scheduling algorithm can

be recorded as a schedule table which records the mapping between operations to

control steps and the outcome of any register allocation algorithm can be recorded

as mapping from variables to registers.

• It is possible to generate a sequence of elementary transformations to perform the

same task by examining this data structure, without any knowledge of the synthesis

algorithm used to perform the task.

When a precondition fails during the execution of the sequence of transformations iden-

tified by the witness generator, the sequence applied so far forms a counter-example that

can be presented to the user.

Radhakrishnan et al. [RTV00] identified a set of six elementary transformations

which were sufficient to emulate the effect of many existing high-level synthesis algo-

rithms. Each of these transformations is mechanically proved in PVS [ORS92] to preserve

the computational behavior.

Eveking et al. [EHR99] uses a similar approach to verify the correctness of various

scheduling algorithms. They represented the initial CDFG using the LLS [Hin98] inter-

nal language. After that, the process of equivalence verification consists of a number

of computationally equivalent LLS transformation steps which assimilate the original

design to the scheduled design.

Recently, Mend́ıas et al. [MHMP02] used equational specification to describe be-

haviors and/or structures, in a elaborate formal framework called Fresh. In Fresh, seven

formal derivation rules, classified into structural and behavioral were used to transform

the initial design to the RTL design.

The above systems essentially recreate, within a formal framework, each of the

design decisions taken by an external (and potentially incorrect) HLS algorithm. The

latest HLS tools are complex and use a variety of transformations to optimize the syn-

thesis result for metrics like area, performance and power. As a result, it is becoming

increasingly difficult to find a small set of correct transformations that can recreate all

the design decisions taken by external HLS tools.
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2.4 Summary

In this chapter we discussed various state-of-the-art related work in the area of

high-level verification. The last decade witnessed great improvements in formal methods

and HLS. Recently, many commercial formal verification tools for system-level designs

such as Hector [KBP07], SLEC [Sys], SCADE Design Verifier [Tec], and Statemate [Cor]

have become available. However, their adoption is in the early stages and the tools are

often limited in the quality of the results and the kinds of correctness guarantees that are

provided. In the following chapters we will discuss the high-level verification techniques

that we developed. Moreover, in each of the following chapters, we again discuss some

more related works specific to the chapter and compare them with our approach.
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Chapter 3

Background

We envision a design methodology that is built around advances in high-level

design and verification to improve the quality and time to design microelectronic systems.

In this chapter, we will present a brief overview of the three different parts of high-level

verification as shown in Figure 1.1 on which our algorithms are applied. We first present

in Section 3.1 and in Section 3.2 a description of high-level designs and RTL designs

respectively. We then in Section 3.3 give a brief introduction of high-level synthesis.

Finally, in Section 3.4 we introduce our program representation scheme that is used

throughout the dissertation.

3.1 High-Level Design

A high-level design is a behavioral or algorithmic specification of a system. This

specification typically is written in a high-level language such as behavioral VHDL,

C and C++ (and variants). The main reason to use a high-level language is to be

able to describe both the hardware and software components of a design, and to allow

large system designs to be modeled uniformly. The enormous flexibility in describing

computations in a high-level language enables a designer to capture design description at

multiple levels of abstraction from behavioral descriptions to transaction level modeling

(TLM) [Swa06, GLMS02, CG03]. Intuitively, high-level design gives an abstract view

of the system. When describing behaviors in a high-level language, designers often use

programming constructs such as conditionals and loops for programming convenience

often with no notion of how these constructs may affect synthesis results. For example,

26
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SystemC [GLMS02] TLM supports new synchronization procedures such as wait-notify,

which makes current techniques for synthesis inapplicable. One of the key aspects of

high-level design is the ability to provide a golden reference of the system in an early

phase of the development process.

In this thesis, we use various high-level languages as input for our techniques. In

Chapter 4 we will discuss a property checking approach for the SystemC language. In

Chapter 5 we describe another approach that works on a concurrent C program. For our

translation validation approach described in Chapter 6, we use two high-level languages

namely, C and CSP.

3.2 RTL Design

At the current state of practice, RTL designs are generally considered low-level

designs consisting of structural implementation details. The RTL describes the exact

behavior of the digital circuits on the chip, as well as the interconnections to inputs and

outputs. The structural implementation usually consists of a data path, a controller and

memory elements. Figure 3.2 shows the controller and data path for a RTL design. The

data path consists of component instances such as ALU, multiplier, registers, and multi-

plexers selected from a RTL component library. The controller is a finite-state machine

(FSM) describing an ordering of the operations in the data path. A tiny functional error

in the RTL design can sometimes make the entire chip inoperable. Furthermore, writing

RTL designs are often tedious, complex, and error-prone as such it is desirable to have a

good high level design and then use incremental refinement process to generate the final

RTL.

In this thesis, we do not consider RTL property verification. However, for the

purpose of translation validation we want to check the equivalence between a pair of high-

level design and RTL design. Unfortunately, checking equivalence between the high-level

design and RTL design is a hard problem. As such in Chapter 6 we describe an approach

that validates the equivalence between a high-level design written in C and the scheduled

design (described in the next section), which is an intermediate low-level design.
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….
x = a * b;
c = a < b;
if (c) then

a = b – x;
else

a = b + x;
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Figure 3.1: Stepwise transformation during high-level synthesis process

3.3 High-Level Synthesis

HLS can be seen as stepwise transformation of a high-level design into a RTL

design as shown in Figure 3.1. Figure 3.2 shows the RTL design for the example in Fig-

ure 3.1. Different HLS tool produces different RTL design for the same high-level input

as it minimizes various metrics like area, power and timing. HLS starts by capturing

the behavioral description in an intermediate representation, usually a control data flow

graph (CDFG). Thereafter the HLS problem has usually been solved by dividing the

problem into several sub-tasks [GDGN03]. Typically the sub-tasks are:

1. Allocation: This task consists of determining the number of resources that need

to be allocated to synthesize the hardware circuit (not shown in the Figure). Typi-

cally, designers can specify an allocation in terms of the number of resources of each

resource type. Resources consist of functional units (like adders and multipliers),

registers and interconnection components (such as multiplexers and buses). The

allocated resources constitute the resource library for the design.

In our example (Figure 3.1 and Figure 3.2), the resource library contains a mul-

tiplier, an ALU, 2 multiplexers, 4 registers, 2 buses and a memory component

(not all components are shown in the Figure). Usually, a designer chooses these

components based on several design constraints like area, performance and power.

2. Scheduling: This step determines the time step or the clock cycle in which each

operation of the design executes. The ordering between the “scheduled” opera-
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Figure 3.2: The controller and the data path for the example in Figure 3.1

tions is constrained by the data (and possibly control) dependencies between the

operations. Scheduling is often done under constraints on the number of resources.

Resource constraint scheduling algorithms are highly dependent on the resource

allocation task. For example, since in the allocation step the designer chose a

multiplier and an ALU, we were able to schedule both the statements (x = a ∗ b
and c = a < b) in one cycle (C1). In contrast, if only an ALU is chosen then both

the operations have to be scheduled in different cycles.

Schedulers also do code motions to enhance concurrency and hence improving

resource utilization. In our example, the statement b = b∗x has been moved inside

the ‘if block’ by the scheduler to schedule it in cycle C2 instead of cycle C3.

3. Resource selection: This task of determines the resource type from the resource

library that an operation executes on. The need for this task arises because there

are several resources of different types (and different area and timing) that an oper-

ation may execute on. For example, an addition may execute on an adder, an ALU,

or a multiply-accumulate unit. Resource selection must make a judicious choice

between different resources such that a metric like area or timing is minimized.

In the example, all multiplication operations are done using the multiplier and
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the addition and comparison operations are executed in the ALU (see Figure 3.1

and 3.2).

4. Binding and Optimization: This task determines the mapping between the

operations, variables and data (and control) transfers in the design graph and the

specific resources in the resource library. Hence, operations are mapped to func-

tional units, variables to registers and data/control transfers to interconnection

components. Optimizations deals with the minimization of the physical compo-

nents in the synthesized design.

In our case, the variables a, b, c, and x in the behavioral description are bound to the

registers A,B,C, and X respectively. Figure 3.1 shows the binding of the variable a

to the register A and the operation + to the ALU. Notice that multiple operations

can be bound to the same resource. The complete binding of the operations and

the data/control transfers to functional units and interconnection components are

shown in Figure 3.2.

5. Control Generation and Optimization: Control synthesis generates a control

unit (usually FSM) that implements the schedule. This control unit generates

control signals that control the flow of data through the data path (i.e. through

the multiplexers). Control optimization deals with minimizing metrics such as area

and power.

Operations in the scheduled CDFG are replaced by the concrete values of control

signals going to the data path. Thus, for example the concurrent operations (x =

a ∗ b and c = a < b) are replaced by the following signals.

M1 CS <= ‘0’, M2 CS <= ‘1’, MT CS <= ‘1’,

B1 CS <= ‘1’, B2 CS <= ‘1’, A WR <= ‘0’,

B WR <= ‘0’, C WR <= ‘1’, X WR <= ‘1’,

ADD CS <= ‘<’

According to these control signals, the contents of the registers A and B are simul-

taneously fed as inputs to the MULT and the ALU units and then the result of

MULT and ALU is saved in the registers X and C respectively.

HLS is an area that has been widely explored and relatively mature implementa-

tions of various HLS algorithm have started to emerge [WC91, Lin97, GDGN03]. These
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Figure 3.3: Our Concurrent Control Flow Graph (CCFG) representation

tools are usually very large and complex piece of software, as such their implementation

are prone to errors. In Chapter 6 we discuss an approach that validates parts of a par-

allelizing HLS tool called Spark [GDGN03]. Furthermore, in Chapter 7 we describe a

technique to once-and-for-all prove the correctness of important parts of HLS tools.

3.4 Representation of Concurrent Programs

We visually represent a concurrent program using an internal Concurrent Control

Flow Graph (CCFG) representation. Concurrent behavior of programs can be modeled as

synchronous or asynchronous (described in Section 5.1). The CCFG of a simple example

is shown in Figure 3.3. In general, we omit the details of the actual code, because the

CCFG representation is complete. Our example consist of two processes P1 and P2. We

use a node with the symbol || to denote the asynchronous parallel composition of child

processes. This example computes the sum from 1 to 10 in the variable sum if the process

P1 is executed before P2, otherwise sum is 0.

We represent the behavior of a concurrent program using a state transition sys-
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tem or a transition diagram (defined below), depending on if our technique works over

program states or over control and data states separately. Semantically a concurrent

program in our case consists of a set of processes (threads). The control structure of

a program is represented in terms of generalized program locations. A generalized pro-

gram location represents a point of control in the program (possibly concurrent). A

generalized program location can either be a node identifier, or it can be a pair of two

generalized program locations, representing the state of two processes running in paral-

lel. For instance, a generalized program location for the example in Figure 3.3 is (2, 6),

which means the control of the program is at location 2 in P1 and at location 6 in P2.

Let L denote the finite set of generalized program locations, VAR denote the set of

variables and VAL denote the domain of values. Next we define the two representations.

3.4.1 State Transition System

In this representation, we define a program state to be a function VAR × L →
VAL, assigning values to variables and program locations. A transition then describes

how the system moves from one state to a subsequent state. Let T denote the set of all

transitions of the system and Σ the set of all program states. An ith transition of process

P is denoted by P i. For t = P i ∈ T we denote, Process(t) as the process P .

Definition 1 (Runnable). A transition t ∈ T is runnable in state σ ∈ Σ, written

t ∈ runnable(σ) if it can be executed in σ.

If t ∈ runnable(σ), then we say the execution of t from σ produces a successor

state σ′, written σ
t−→ σ′. We write σ

w=⇒ σ′ to mean that the execution of the

finite sequence w ∈ T ∗ leads from σ to σ′. A state σ, where runnable(σ) = ∅ is called a

deadlock, or a terminating state. Formally a state transition system is defined as follows.

Definition 2 (State Transition System). A state transition system is a tuple M =

(Σ, σ0,Δ), where σ0 is the initial state of the system and Δ ⊆ Σ × Σ is the transition

relation defined by

(σ, σ′) ∈ Δ iff ∃ t ∈ T : σ t−→ σ′

Definition 3 (Co-Runnable). Two transitions t1, t2 ∈ T are co-runnable, written

CoRunnable(t1, t2) if ∃ σ ∈ Σ such that both t1, t2 ∈ runnable(σ).

An execution of the program is defined by a trace of the system.
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Definition 4 (Trace). A trace φ ∈ T ∗ of M is a finite (possibly empty) sequence of

transitions t0, · · · , tn−1 where there exists states σ0, · · · σn such that σ0 is the initial state

of M and σ0
t0−→ σ1 · · ·

tn−1−→ σn.

For a given trace φ = t0, · · · , tn; φi represents the transition ti; φ0···i denotes the

trace t0, · · · , ti; Pre(φ, i) denotes the state σi and Post(φ, i) denotes the state σi+1.

3.4.2 Transition Diagram

In this representation, the program states are described using separate control

states and data states. The program is described in terms of generalized program locations

and program transitions. A transition describes how the data state changes from one

program location to another. We represent these transitions by instructions.

More formally, we define a data state to be a function VAR → VAL assigning

values to variables. We denote by Σ the set of all data states. Note that we make

some notation abuse here for ease of readability. We use Σ for program states in state

transition system and again Σ for data states in transition diagram. Also when there is

no ambiguity, we use state to mean data state in the context of transition diagram. We

define an instruction to be a pair (c, f) where c : Σ → B is a predicate and f : Σ → Σ is

a state transformation function. The predicate c is the condition under which the state

transformation function f can happen. For instance, in Figure 3.3 the instruction on the

edge (2, 3) has c(σ) = (σ(k) < 10) and f(σ) = σ, whereas the instruction on the edge (3,

4) has c(σ) = true and f(σ) = σ[k �→ (σ(k) + 1)].

Finally a transition diagram is defined as follows.

Definition 5 (Transition Diagram). A transition diagram π is a tuple (L,I,→, ι), where

I is a finite set of instructions, → ⊆ L× I × L is a finite set of triples (gl , i, gl ′) called

transitions, and ι ∈ L is the entry location. We write gl i−→ gl ′ to denote (gl , i, gl ′) ∈ →.

We use ε to represent the exit location of π.

Definition 6 (Configuration). Given a transition diagram π = (L,I,→, ι), we define a

configuration to be a pair 〈gl , σ〉, where gl ∈ L and σ ∈ Σ.

Definition 7 (Semantic Step). Given a transition diagram π = (L,I,→, ι), two con-

figurations 〈gl , σ〉 and 〈gl ′, σ′〉, and an instruction i ∈ I, the semantic step relation is

defined as follows:

〈gl , σ〉 i� 〈gl ′, σ′〉 iff gl i−→ gl ′ ∧ i = (c, f) ∧ c(σ) = true ∧ σ′ = f(σ).
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Definition 8 (Execution Sequence). For a given transition diagram π = (L,I,→, ι),

an execution sequence η starting in configuration 〈gl0, σ0〉 is a sequence of configurations

such that:

〈gl0, σ0〉
i1� 〈gl1, σ1〉

i2� · · · in� 〈gln, σn〉

We denote by N the set of all execution sequences. We use the shorthand notation

η〈π, gl 0, σ0〉 to represent an execution sequence η starting in configuration 〈gl0, σ0〉 in π.

3.5 Summary

In this chapter, we presented a brief overview of the three main concepts related

to our formulation of high-level verification namely, high-level design, RTL design, and

HLS. We first presented a description of high-level design and RTL design in Section 3.1

and Section 3.2. We also mentioned the different high-level languages and RTL repre-

sentation that we use in this thesis. We then briefly discussed in Section 3.3 the various

steps of HLS using a simple example. Finally, in Section 3.4, we introduced the two

kind of concurrent program representation that we use throughout this dissertation. In

particular, we defined state transition system and transition diagram representation and

related definitions. We use state transition system if our technique works over program

states, and we use transition diagram if our technique works over control and data states

separately.



Chapter 4

Execution-based Model Checking

for High-Level Designs

In this chapter, we present an high-level property checking approach. We begin

with a general description of verification of concurrent programs, and then describe it

for a high-level language called SystemC [GLMS02]. In this approach, we start with a

design written in SystemC, and then use model checking techniques to verify that the

design satisfies a given property such as the absence of deadlocks or assertion violations.

4.1 Verification of Concurrent Programs

Verification of multi-threaded concurrent programs is hard due to complex and

unexpected interleaving between the threads. In general, the problem of verifying two-

threaded programs (with unbounded stacks) is undecidable [Ram00]. Therefore for prac-

tical reasons, the verification techniques often trades off completeness or precision or

sometimes both, to address the scalability of the problem, thereby focusing only on

their bug finding capabilities. The verification model is typically obtained by composing

individual thread models using interleaving semantics, and model checkers are applied

to systematically explore the global state space. Due to the potentially large num-

ber of interleavings of transitions from different threads, the global state space can be,

in the worst case, the product state space of individual thread state space. To com-

bat the state explosion problem, most methods employ partial-order reduction (POR)

techniques to restrict the state-traversal to only a representative subset of all interleav-

35
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ings, thereby, avoiding exploring the redundant interleaving among independent transi-

tions [God95]. Explicit model checkers [Hol97, God97, Dil96, FG05] explore the states

and transitions of concurrent system by explicit enumeration, while symbolic model

checkers [ABH+01, KGS06, RG05, WYKG08, GG08] manipulate sets of states, instead

of individual states. Symbolic algorithms avoid explicitly building the complete state

graph for the system; instead, they represent the state space implicitly using a formula

in decidable subset of first-order logic. This formula is then solved using a SAT or SMT

solver. In this chapter, we discuss an explicit model checking technique for SystemC

designs, and in the next chapter we focus on a symbolic approach based on SMT.

4.2 Overview of SystemC

SystemC is a system description language that enables a designer to write designs

at various levels of abstraction. These are particularly useful in behavioral/algorithmic

and transaction level modeling (TLM) [Swa06, GLMS02, CG03]. The idea of SystemC

TLM is to provide a golden reference of the system in an early phase of the development

process and allow fast simulation. This design abstraction supports new synchronization

procedures such as wait-notify, which make current techniques for RTL validation inap-

plicable. SystemC is a set of library routines and macros implemented in C++, which

makes it possible to simulate concurrent processes, each described by ordinary C++

syntax. Instantiated in the SystemC framework, the processes described in this manner

may communicate in a simulated real-time environment, using shared variables, events

and signals. SystemC is both a description language and a simulation kernel. The code

written will compile together with the library’s simulation kernel to give an executable

that behaves like the described model when it is run. In Section 4.5 and Section 4.6 we

will discuss some more language features of SystemC.

4.3 Problem Statement

Simulation has so far been the “workhorse” for validating SystemC designs. As

pointed out in [Var07], adapting software formal verification techniques to SystemC

has been formidable task, mainly due to its object-oriented nature and its support

for both synchronous and asynchronous semantics of concurrency along with a notion

of time. Furthermore, SystemC allows features such as co-operative multitasking, de-
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layed/immediate notification, wait-to-wait atomicity, blocking and non-blocking variable

updates. In the absence of accepted formal semantics, SystemC models and methods

attempt to speed up simulation. However, simulation can not guarantee completeness

without being exhaustive, hence the need for formal verification techniques to improve

system level simulation coverage.

4.4 Overview of Our Approach

Our goal is to devise methods to check all possible execution traces of a SystemC

description. We focus on using formal verification techniques developed for software to

extend dynamic validation of SystemC TLM designs. We use an execution-based model

checking approach, which for a given test input and depth, systematically explores all

possible behaviors of the design (due to asynchronous concurrency). The most strik-

ing benefit of this approach is that it can analyze feature-rich programming languages

like C++, as it sidesteps the need to formally represent the semantics of the program-

ming language as a transition relation. Another key aspect of this approach is the idea

of stateless [God97] search, meaning it stores no state representations in memory but

only information about which transitions have been executed so far. Although state-

less search reduces the storage requirements, a significant challenge for this approach is

how to handle the exponential number of paths in the program. In what follows, we

assume the representative inputs are already provided, possibly using techniques pre-

sented in [GED07] and the execution terminates. Thus, we focus our discussion mainly

on detecting deadlocks, write-conflicts and safety property violations such as assertion

violations. Note that termination can be guaranteed in SystemC by bounding the exe-

cution length during simulation.

To cope with the exponential number of paths, we use a combination of static

and dynamic POR techniques. In particular, we first use static analysis techniques

to compute if two atomic blocks are independent, meaning that their execution does

not interfere with each other, and changing their order of execution will not alter their

combined effect. Next, we start by executing one random trace of the program until com-

pletion, and then dynamically compute backtracking points along the trace that identify

alternative transitions that need to be explored because they may lead to different final

states. However, unlike dynamic techniques [HMMCM06, FG05] we use the information

obtained by static analysis in a query-based approach, rather than dynamically collect-
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ing the information and analyzing it during runtime. Using static information we trade

off precision for performance. We chose performance since for most SystemC designs

we can find the dependency relation quite precisely by using static analysis only. Intu-

itively, our approach infers the persistent sets dynamically using information obtained

by static analysis. To further reduce the number of explored traces we use the sleep sets

in conjunction with the above technique.

Moreover, we adapt the POR techniques by using SystemC specific semantics

to further improve the efficiency of the algorithms. Adaptations are needed because

in SystemC: processes are co-operatively multitasking; supports the concept of δ-cycle,

which reduces the analysis of backtracking points immensely; supports signal variables

that do not change values until an update phase; synchronization is done using events

instead of locks; and enabled processes cannot be disabled by another one.

Contributions

The main contributions of our approach are:

1. We propose a novel query-based approach that combines static and dynamic POR

techniques to cover all possible executions of a SystemC design. We reduce the

runtime overhead by computing the dependency information statically, and use it

during runtime, without much loss of precision.

2. We use SystemC specific semantics to further improve the efficiency of the POR

techniques. In SystemC, processes are co-operatively multitasking and supports

the concept of δ-cycle. This synchronous semantics of SystemC reduces the size

of persistent set and consequently reduces the analysis of backtracking points im-

mensely.

3. We use the Open SystemC Initiative’s (OSCI) SystemC simulator [Ini05] to im-

plement our algorithm of exploring all possible behaviors of a SystemC design in

a validating system called Satya. We use Satya to check the correctness of a vari-

ety of small examples and two benchmark designs. In particular, we were able to

automatically find an assertion violation in the FIFO benchmark (distributed as a

part of OSCI repository), which may not have been found by simulation. We also

applied our tool on an industrial benchmark namely the TAC platform [Mic05].
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1. int MAX, num = 0, i = 0

2. char data[2]

3. sc event e

4. Boolean timer = false

5. process P1()

6. while (i < MAX)

7. data [num] = ‘A’

8. + + num

9. wait (4, SC NS)

10. return

11. process P2()

12. while (i < MAX)

13. data [num] = ‘B’

14. + + num

15. if (timer)

16. timer = false

17. notify (e)

18. wait (4, SC NS)

19. return

20. process C1(int x)

21. while (i < MAX)

22. if (num == 0)

23. timer = true

24. i + +

25. wait (e)

26. num −−
27. assert (num ≥ 0)

28. c = data [num]

29. i + +

30. wait (x, SC NS)

31. return

Figure 4.1: Simple producer-consumer example

4.5 SystemC Example

Let us start by examining the salient features of SystemC using a simple producer-

consumer example shown in Figure 4.1. A SystemC program is a set of interconnected

modules communicating through channels using transactions, events and shared variables

collectively called communication objects. A module comprises of a set of ports, vari-

ables, processes and methods. Processes are small pieces of code that run concurrently

with other processes and are managed by a non-preemptive scheduler. The semantics

of concurrency is cooperatively multitasking : a type of multitasking in which the pro-

cess currently executing must offer control to other processes. As such, a wait-to-wait
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block in a process is atomic. The processes exchange data between themselves using

shared variables (signals and non-signals). During the execution of a SystemC design,

all signal values are stable until all processes reach the waiting state. When all processes

are waiting, signals are updated with the new values (see Update Phase in Section 4.6).

In contrast, the non-signal variables are standard C++ variables which are updated

immediately during execution.

For clarity the syntactic details of SystemC are not shown in Figure 4.1. It has

three processes namely P1 (lines 5-10), P2 (lines 11-19) and C1 (lines 20-31). The global

variables of the program are shown in lines 1-4. The program uses a shared data array

as a buffer, and an integer num, which indicates the total number of elements in the

buffer. The producer P1 in a loop writes to the buffer and then syncronizes by waiting

(or blocking) (line 9) on time for 4 nanoseconds (SC NS). Similarly, producer P2 writes

to the buffer and if timer is set then notifies the event e and then synchronizes using

time. The consumer C1 on the other hand, waits (or blocks) (line 25) on the event e

when the buffer is empty, until the notify (line 17) on e is invoked in the P2 process. If

there are elements in the buffer then C1 consumes it and synchronizes on time like the

other processes. For synchronization SystemC uses wait-notify on events and time. In

what follows, we will use this example to guide our discussion.

4.6 SystemC Simulation Kernel

Simulation involves the execution of a discrete event scheduler, which in turn

triggers or resumes the execution of processes within the application. The functionality

of the scheduler (as per IEEE std. [Ini05]) can be summarized as follows:

1. Initialization Phase: Initialize every eligible method and thread process instance

in the object hierarchy to the set of runnable processes.

2. Evaluation Phase: From the set of runnable processes, select a process instance

in an unspecified order and execute it non-preemptively. This can, in turn, notify

other events, which can result in new processes being ready to run. Continue this

step till there are processes to run.

3. Update Phase: Update signal values for all processes in step 2, that requested for

it.
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4. δ-Notification Phase: Trigger all pending δ-delayed notifications, which can wake

up new processes. If, at the end of this phase, the set of runnable processes is

non-empty, go back to the evaluation phase.

5. Timed-Notification Phase (τ): If there are pending timed notification, advance

simulation time to the earliest deadline. Determine the set of runnable processes

that can run at this time and go to step 2. Otherwise, end simulation.

To simulate synchronous concurrent reactions on a sequential computer SystemC

supports the concept of δ-cycle. A δ-cycle is an event cycle (consisting of evaluate, update

and δ-notification phase) that occurs in 0 simulation time.

Nondeterminism

For a given input, a SystemC program can produce different output behavior due

to nondeterministic scheduling. To illustrate this let us consider the processes P1 and C1

from the example in Section 4.5 with MAX = 2 and x = 4 (line 20). It has the following

4 possible executions, where τ denotes a time elapse:

• P1C1τP1C1τP1C1 and P1C1τP1C1τC1P1 leads to a successful termination of the

program with 2 A’s being produced and consumed.

• P1C1τC1P1 leads to a deadlock situation. As C1 is waiting for the event e (line 25)

and P1 has terminated.

• C1(P1τ)∗ leads to an array bound violation as C1 waits for the event e and P1 goes

on producing in the array data .

In general, a simulator will execute only one of the 4 possible executions. For instance

with the reference OSCI simulation kernel [Ini05], only the first execution will be sched-

uled and the other buggy executions will be ignored. Thus, it is important to test all

possible execution of a SystemC design.

Now consider the same example with all 3 processes and MAX = 8 and x = 2

(line 20). It has 3701 possible executions. A naive algorithm will try to explore all

possible executions one by one and will face scalability issues. In the following sections

we discuss our approach of exploring these executions and how we adapt POR techniques

for SystemC. For this example, our approach will explore only 767 executions and still

remain provably sufficient for detecting deadlocks and assertion violations.
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4.7 Happens-Before Relation

In this section, we describe some standard definitions used in the context of

POR [HMMCM06, FG05, God95], which have been adapted here for SystemC.

We represent the behavior of a SystemC program using a state transition system

M = (Σ, σ0,Δ) (see Definition 2). Recall that a transition moves a system from one

state to a subsequent state and T denote the set of all transitions of the system. In

SystemC there are three types of transitions:

1. Immediate-transition change the state by executing a finite sequence of operations

of a chosen process followed by a wait operation or termination of the same process.

2. δ-transition change the state by updating all the signals, and by triggering all the

δ-delayed notification that were requested in the current δ-cycle.

3. A time-transition change the system state by updating the simulation time.

In SystemC two transitions of the same process cannot be co-runnable (Definition 3).

Our goal is to explore all possible traces of the system M. However, M typically

contains many traces that are simply different execution order of uninteracting transi-

tions that leads to the same final state. This observation has been exploited by partial

order reduction techniques to explore a subset of the possible traces, while still being

provably sufficient for detecting deadlocks and assertion violations as shown in [God95].

The following definition states the condition when two transitions are independent, mean-

ing that they result in the same state when executed in different orders.

Definition 9 (Independence Relation). A relation I ⊆ T ×T is an independence relation

of M if I is symmetric and irreflexive and the following conditions hold for each σ ∈ Σ

and for each (t1, t2) ∈ I:

1. if t1, t2 ∈ runnable(σ) ∧ σ
t1−→ σ′ then t2 ∈ runnable(σ′)

2. if t1, t2 ∈ runnable(σ), then there is a unique state σ′ such that σ t1t2=⇒ σ′ ∧ σ
t2t1=⇒ σ′

Transitions t1, t2 ∈ T are independent in M if (t1, t2) ∈ I. Thus, a pair of

independent transitions cannot make each other runnable when executed and runnable

independent transition commute. The complementary dependence relation D is given

by (T × T ) − I.
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Two traces are said to be equivalent if they can be obtained from each other

by successively permuting adjacent independent transitions. Thus, given a valid inde-

pendence relation, traces can be grouped together into equivalence classes. For a given

trace, we define a happens-before relation between its transitions as follows:

Definition 10 (Happens-before). Let φ = t0 · · · tn be a trace in M. A happens-before

relation ≺φ is the smallest relation on {0 · · · n} such that

1. if i ≤ j and (φi, φj) ∈ D then i ≺φ j.

2. ≺φ is transitively closed.

We use a variant of the above happens-before relation which is defined as follows:

for a given trace φ = t0 · · · tn in M and i ∈ {0 · · · n}, i happens-before process P , written,

i ≺φ P if either

1. Process(φi) = P or

2. ∃k ∈ {i+ 1, · · · , n} such that i ≺φ k ∧ Process(φk) = P .

4.8 Our Approach

We obtain partial-order of runnable processes statically by identifying the de-

pendent transitions. A transition in SystemC is an atomic block, which in turn is a

non-preemptive sequence of operations between wait to wait. Note, due to branching

within an atomic block, such blocks may not be derived statically. An atomic execution

is dependent on another atomic execution if it is enabled or disabled by the other or

there exists read-write conflicts on the shared variable accesses in these blocks. In our

approach, we first derive wait-notify control skeleton of the SystemC design, and then

enumerate all possible atomic blocks. We then perform dependency analysis on the set

of atomic blocks, and represent the information symbolically. These static information

are used later, while exploring the different executions of the design. In particular, we

query to check if a given pair of atomic blocks (corresponding to the runnable processes)

need to be interleaved. If not, we do not consider that interleaving of runnable processes.

In the following sections we describe our algorithm in more detail.
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4.8.1 Static Analysis

Our goal is to execute only one trace from each equivalence class for a given

dependence relation. Thus, the first step is to compute this dependence relation. We

use static analysis techniques to compute if two transitions are dependent. Intuitively,

two transitions are dependent if they operate on some shared communication objects.

In particular, we use the following rules to compute the dependence relation D, i.e.

∀ t1, t2 ∈ T , (t1, t2) ∈ D if any of the following holds:

1. a write on a shared non-signal variable v in t1 and a read or a write on the same

variable v in the other transition t2.

2. a write on a shared signal variable s in t1 and a write on the same variable s in t2.

3. a wait on an event e in t1 and an immediate notification on the same event e in t2.

Note here that the order in which the statements occur within a transition does not

matter. For each transition t ∈ T , we maintain four sets - read and write sets for

shared non-signal variables and shared signal variables (written, Rt,ns,Wt,ns, Rt,s,Wt,s

respectively). Thus, rule 1 can be re-written as, (Wt1,ns ∩Rt2,ns)∪ (Wt1,ns ∩Wt2,ns) �= ∅.
And rule 2 can be re-written as, Wt1,s ∩Wt2,s �= ∅.

In the rules mentioned above, in general, two transitions with write operations

on a shared variable are dependent. But to exercise more independency we consider

special cases of write operations (called symmetric write) that can be considered as being

independent (applying Definition 9). For instance, two constant addition or constant

multiplication with the same variable can be considered as being independent. We also

use static slicing techniques to remove irrelevant operations to further extract more

independency between the transitions [HDZ00]. Intuitively, if a statement does not

influence the property that we are checking than that statement can be removed in the

sliced program.

To illustrate the above rules, consider the example from Figure 4.1. Consider

the wait to wait atomic transition consisting of the lines (6-9) in process P1 and the

transition consisting of the lines (12-18) in process P2. In general, these two transitions

are dependent because they both write to the variable data and num . However, if the

property that we are checking is the assertion in line 27 then we can get a sliced program

by removing the statements inside the boxes, while still remaining correct for detecting

the assertion violation. Now, if we consider only the rules 1, 2 and 3 from above then
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1. type Runnable := list of Transition

2. type TSet := set of Transition

3. type State := Runnable × TSet × TSet

4. type Schedule := sequence of State

5. function Explore() : void

6. let sched := Simulate(∅)
7. let depth := sched .Size− 1

8. while depth ≥ 0 do

9. let t := sched .Trace

10. let σ := sched .At(depth)

11. Analyze(t , depth)

12. if ∃t ∈ σ.Todo \ σ.Sleep then

13. σ.Runnable.Add(0, σ.Runnable.Remove(t))

14. let newSched := sched .Copy(0, depth)

15. sched := Simulate(newSched )

16. depth := sched .Size − 1

17. else

18. depth := depth − 1

19. return

Figure 4.2: The Explore algorithm

the two transitions are still dependent in the sliced program because they both write to

the variable num. But, notice that both the writes to the variable num are symmetric

(increment). Thus, we have that the two transitions are independent if the property that

we are checking is only the assertion (num ≥ 0) at line 27.

4.8.2 The Explore Algorithm

Our Explore algorithm shown in lines 5-19 of Figure 4.2, explores a reduced set

of possible executions of a SystemC design. Our algorithm presented here is state-

less [God97], i.e., it stores no state representations in memory but only information
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about which transitions and traces have been executed so far. Although, our approach

will be slower than an algorithm that maintains full state information, it requires consid-

erably less amount of memory, especially when the design has a large number of variables.

It explores each non-equivalent trace of the system by re-executing the design from its

initial state.

The algorithm maintains a sched of type Schedule . A Schedule is a sequence of

States. Each State s is a 3-tuple (Runnable,Todo,Sleep) where, Runnable is a sequence

of Transitions that are runnable in state s, Todo is a set of Transitions that needs to

be explored from s, and Sleep is the set of Transitions that are no longer needed to be

explored from s. The algorithm also uses a function Simulate (not shown here) that takes

as input a prefix schedule and then executes it according to the trace corresponding to

the schedule. Once the prefix trace ends, it randomly chooses a runnable transition that

is not in the Sleep Set of the current state and executes it. The function continues the

above step till completion of the simulation and returns the Schedule for the current

execution. To further reduce the explored transitions, the Simulate function maintains a

sleep set for each state in the same way as explained in VeriSoft [God95, God97].

The Explore function starts by executing a random schedule (as the prefix trace is

∅) and returns the schedule in sched (line 6). Our algorithm traverses the execution-tree

bottom up and depth maintains the position in the tree such that the sub-tree below

depth has been fully explored. Note that by traversing the execution-tree bottom-up we

need to maintain very little state information. While we have not traversed the entire

execution-tree, let sched = s0, · · · sdepth , · · · sn then φ = t0, · · · ti, · · · tn−1 (line 9) is the

trace corresponding to sched such that φi = si.Runnable.At(0) and s = sdepth (line 10).

Using the computed trace φ, Explore then finds out the transitions that can be dependent

with the transition φdepth using the function Analyze (line 11) and adds those in the Todo

set of the corresponding state. Next, if there exists any transition t ∈ Todo\Sleep in the

state s (line 12), then the Explore function swap the transition t with the first element of

Runnable in state s (line 13), copies the prefix schedule (line 14) and simulate it using

the Simulate function (line 15). Otherwise, we have explored all required transitions in

the sub tree below depth and now will explore all the transitions in the sub tree below

depth − 1 (line 18). Our algorithm traverses the execution-tree bottom up and depth

maintains the position in the tree such that the sub-tree below depth has been fully

explored. Note that by traversing the execution-tree bottom-up we need to maintain
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20. function Analyze(t : Trace , depth : int) : void

21. let start := StartOfDeltaCycle(tdepth)

22. for each i | start ≤ i < depth do

23. if Query(ti , tdepth) = Dependent

24. and CoRunnable(ti , tdepth)) then

25. let σ := Pre(t , i)

26. let p := Process(tdepth)

27. if Runnable(σ, p) then

28. σ.Todo := σ.Todo ∪ {Transition(σ, p)}
29. elseif ∃ j > i | Runnable(σ,Process(tj ))

30. and j ≺t0···depth p then

31. σ.Todo := σ.Todo ∪ {Transition(σ,Process(tj ))}
32. else

33. σ.Todo := σ.Runnable

34. return

Figure 4.3: The Analyze function

very little state information.

The Analyze function shown in lines 20-34 of Figure 4.3 takes as argument a trace

φ and an integer depth . Next, it finds the start of the δ-cycle to which φdepth belongs

(line 21). Then, for each transition φi such that i < depth and belongs to the same delta

cycle (line 22), we check if φi and φdepth are dependent using a query function (line 23)

and may be co-runnable (line 24). If true, then it computes the state s = Pre(φ, i) and p

as the process to which the transition φdepth belongs. Next, if there exists a transition of

p that is runnable at s (line 27) then it adds that transition to the Todo set of s (line 28).

Else, if there exists j > i such that j ≺t0···depth p (see Definition 10) and the runnable set

of s contains a transition that belongs to the process to which φj belongs (line 30) then

it adds that transition to the Todo set of s (line 31). Otherwise, it adds all runnable

transitions to the Todo set of s (line 33).

To review our approach, consider the example from Figure 4.1 with all 3 processes

and MAX = 1 and x = 2 (line 20). A partial execution-tree for this example consisting of
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Figure 4.4: A partial execution-tree showing only the first δ-cycle

only the first δ-cycle is shown in Figure 4.4. The jth transition of the process Proc is given

by Procj. In particular, Figure 4.4 shows the following wait to wait atomic transitions

P 1
1 (lines 6-9), P 2

1 (lines 6, 10), P 1
2 (lines 12-18), P 2

2 (lines 12, 19), C1
1 (lines 21, 22, 26-30)

and C2
1 (lines 21-25). Using static analysis (as explained in Section 4.8.1), we obtain the

independence relation I = {(P 1
2 , P

1
1 ), (P 1

1 , P
1
2 ), (P 2

2 , P
2
1 ), (P 2

1 , P
2
2 )}. Intuitively, if two

transitions t1 and t2 are such that (t1, t2) /∈ I, then t1 and t2 are dependent. We use

slicing of data and symmetric writes on num to determine the independency relation.

For a given data-input, let φ be a trace (P 1
1 , C

1
1 , P

1
2 , · · · ) and its corresponding

state sequence be (s0, s1, s2, s3, · · · ). Using the trace φ, we present an overview of our

algorithm to explore all possible behaviors of a design for a given data-input. The state

s0 is the initial state with three runnable processes, i.e., P1, P2, C1. Our Explore algorithm

examines the current trace bottom up and restrict its analysis for adding backtracking

points within a δ-cycle. Intuitively, for every state si, it checks if the transition φi, which

is executed from state si is dependent on any other transition φj for j < i, i.e., in its

prefix trace, that belongs to the same δ-cycle. If true, then it finds the runnable transition

tk in the pre-state sj of φj (see trace in Definition 4), which has a causal order with φi
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Figure 4.5: Our prototype Satya tool

and adds tk to the backtracking set of sj. For example, when the algorithm examines

the state s2, it adds P 1
2 to the backtracking set of s1 (since, P 1

2 and C1
1 are dependent).

Next, when it analyzes the state s1 the algorithm adds C2
1 to the backtracking set of s0

and then explores the trace ψ = (P 1
1 , P

1
2 , C

1
1 , · · · ) (as P 1

2 was in s1’s backtracking set).

Next, it analyzes the new trace ψ in a similar fashion. The algorithm continues in this

way, till it reach state s7, at this point P 1
2 is added to the backtracking set of s0. The

transition and state shown in dashed line is not explored. The state s8 is a deadlock

state. Note that the transition P 1
1 is not explored in the state s10 because it is in the

Sleep set of s10 (as P 1
1 and P 1

2 are independent). Our algorithm explores only 4 different

traces out of the 8 possible traces for this example.

4.9 The Satya Tool

We implemented our algorithm to explore all possible valid traces of a SystemC

design in a prototype tool called Satya. The implementation of Satya consists of 2 main

modules - a static analyzer and a verification module. The Satya software tool is over

18,000 lines of C++ code and uses the EDG C++ front-end parser [(ED92] and the

OSCI SystemC simulator [Ini05]. Of those, about 17,500 lines are the intermediate rep-

resentation (IR) and utility functions needed by the static analyzer and the verification

module (explore and query engine) is only about 800 lines.

Figure 4.5 presents an overview of the Satya tool. It takes a SystemC design as

input - currently with the restriction of no dynamic casting and no dynamic process cre-

ation. After parsing the design description, we capture the EDG intermediate language

into our own IR that consists of basic blocks encapsulated in Hierarchical Task Graphs

(HTGs) [GP92]. We choose HTG over other IR’s like CDFG, as HTG maintains the
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heirarchical structuring of the design such as if-then-else blocks and for- and while-loops

which are used during static analysis. The static analyzer work on the HTGs in a com-

positional manner to generate the dependency relation, which is then used by the query

engine. The implementation of the explore engine follows closely the algorithm described

in Section 4.8.2.

The SystemC design is compiled with the verification module which contains a

modified OSCI’s SystemC kernel. The modified kernel implements the Simulate function

of our Explore algorithm (Figure 4.2). It takes as input a prefix schedule and executes

it till completion such that the prefix of the executed trace is same as the trace corre-

sponding to the input prefix schedule. The modifications are still in compliance with the

SystemC specification [Ini05]. In particular, the modifications are to replace the election

algorithm of the scheduler by one, which takes as input a prefix trace that acts as a

golden reference for that run and execute it till completion.

4.10 Experiments and Results

Using Satya, we experimented on several small examples and two benchmark

designs. In this section, we discuss the results for the two benchmarks.

4.10.1 FIFO Benchmark

The first benchmark is a FIFO channel example obtained from the OSCI’s exam-

ple repository [Ini05]. The example has an hierarchical channel FIFO. To use the FIFO

channel it uses a producer-consumer scenario. The example works fine when executed

in one producer and one consumer scenario. However, if we use two producers writing

to the channel and one consumer reading from that channel then we have an assertion

violation. Moreover, since this bug is not visible in every trace of the example, simulation

may not find it. Our tool was able to find the bug and consequently we changed the

code to correct it. The following results are measured on the corrected example. The

example has 3 processes executing concurrently. The total number of possible traces is

directly proportional to the number of elements produced by the producers. To quantify

the scalability of our tool, we report in Table 4.1 for different number of elements pro-

duced by the two producers, the time required using POR and the number of reduced

traces explored by our tool, along with the total number of possible traces and the time

required without POR.
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Table 4.1: Results for the FIFO benchmark

Elements Reduced Time (POR) Total Time (no-POR)

produced #traces sec:msec #traces sec:msec

14 6 00:032 8 00:046

28 42 00:265 80 00:469

44 318 02:313 992 06:344

62 2514 19:031 13376 93:563

4.10.2 TAC Benchmark

Memory1Memory2

Traffic TrafficTimer

Router

Traffic
Generator2

Traffic
Generator1

Timer

Figure 4.6: SystemC TAC benchmark

The second benchmark is the industrial Transaction Accurate Communication

(TAC) example [Mic05] developed by ST Microelectronics, which includes a platform

composed of the following 6 modules: two traffic generators, two memories, a timer and

a router to connect them as shown in Figure 4.6. These modules are based on the TAC

protocol built on top of OSCI’s TLM standard. This benchmark is over 12,000 lines of

SystemC code and consists of 349 functions. The example can be executed for certain

number of transactions. A transaction is a read or write by the masters, namely the two

traffic generators. When executed for 80,000 transactions, there are 12032 total possible

traces. It took 89.47 minutes to explore all these traces, whereas while checking for

deadlocks in the program, we did a static slicing of the router and then our tool found

all these traces to be equivalent to only one trace, which was executed in 1.3 seconds.
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It is interesting that all the different traces of the program is equivalent to one trace for

this case. This is because the way this benchmark is written the traffic generator1 writes

only to memory1 and traffic generator2 writes only to memory2, and as such there are

no conflict between them. Furthermore, for this example simulation has same coverage

as our tool, however simulation cannot provide correctness guarantee that is provided

by our tool.

4.11 Related Work

SystemC Verification: Prior work on SystemC focuses mainly on improving simula-

tion performance [MVD03] and generating representative inputs for the design [GED07]

and formalizing the semantics of SystemC [MMMC05, KS05, HT05, SDGK07], while ig-

noring the problem of generating all possible behaviors of the design. However, recently

researchers address the above problem by automatically generating all valid scheduling

of the design [HMMCM06]. Their work used dynamic partial-order reduction (POR)

techniques [FG05] to avoid generation of two schedulings that have the same effect on

the system’s behavior.

Partial-Order Reduction: POR techniques are extensively used by software model

checkers for reducing the size of the state space of concurrent system at the imple-

mentation level [God97, Hol97]. Other state space reduction techniques, such as slic-

ing [HDZ00, SG07] and abstraction [BMMR01], are orthogonal and can be used in

conjunction with POR. The POR techniques can be divided in two main categories:

static [God95] and dynamic [FG05].

The main static POR techniques are persistent/stubborn sets and sleep

sets [God95]. Intuitively, the persistent/stubborn set techniques compute a provably

sufficient subset of the enabled transitions in each visited states such that if a selec-

tive search is done using only the transitions from these subsets the detection of all the

deadlocks and safety property violations is guaranteed. All these algorithms infer the

persistent sets from the static structure (code) of the system being verified. On the

other hand, the sleep set techniques exploits independences between the transitions in

the persistent sets to reduce interleavings. Both these techniques are orthogonal and can

be applied simultaneously [God95]. In contrast, the dynamic POR technique evaluates

the dependency relation dynamically between the enabled and executed transitions for
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a given execution.

4.12 Summary

In this chapter, we have presented a scalable approach for testing SystemC de-

signs. We have implemented it in a query-based tool called Satya. Our approach combines

static and dynamic POR techniques to reduce the number of interleavings required to

expose all behaviors of SystemC. Furthermore, our approach exploits SystemC specific

semantics to reduce the number of backtracking points, and thereby improving the effi-

ciency of the approach. Our experiments on a set of examples show the efficacy of our

approach and finds bugs that may not have been found using a simulator. In the next

chapter we will discuss another property checking approach which is based on symbolic

model checking.
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Chapter 5

Efficient Symbolic Analysis for

Concurrent Programs

In this chapter, we describe a method for verifying concurrent programs based

on symbolic approach as a part of our high-level property verification strategy. In the

previous chapter, we discussed a technique that explores the state space of a program by

explicit enumeration. In contrast, the technique in this chapter manipulate sets of states,

instead of individual states. This algorithm avoids explicitly building the complete state

graph for the system; instead, they represent the state graph implicitly using a formula

in propositional logic. Furthermore, in this chapter we will discuss some more reduction

techniques including partial-order reduction for symbolic algorithms.

5.1 Synchronous vs. Asynchronous

Based on how verifications models are built, symbolic approaches can be broadly

classified into: synchronous and asynchronous modeling. Both these methods have

inherent advantages and disadvantages, in regards, to applicability of state-reduction

and state-representation for addressing scalability.

Synchronous modeling : In this category of symbolic approaches [ABH+01,

KGS06], a synchronous model of concurrent programs is constructed with a scheduler.

The scheduler is then constrained – by adding more constraints, i.e., guard strengthen-

ing – to explore only a subset of interleaving. To guarantee correctness, the scheduler

must allow context-switch between accesses that are conflicting. For scalability issues,

54
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one determines statically (i.e., conservatively) which pair-wise locations require con-

text switches, using persistent [God95] set computations. One can further use lock-set

and/or lock-acquisition history analysis [SC06, FQ03, KGS06], and conditional depen-

dency [GP93, WYKG08] to reduce the set of interleavings need to be explored.

Asynchronous Modeling: In this category, the symbolic approaches such as

TCBMC [RG05] and token-based [GG08] generate verification conditions directly with-

out constructing a synchronous model of concurrent programs, i.e., without using a

scheduler. The concurrency constraints that maintain interleaving semantics are in-

cluded in the verification conditions on-the-fly for a bounded depth analysis.

Relative Strengths: In synchronous modeling approaches, underlying model

checker used is a standard one, typically geared for synchronous hardware models. Most

reduction techniques for these approaches add more constraints to reduce the search

space of the program. Asynchronous modeling approaches, on the other hand, uses

customized model checkers built for software programs. In these techniques, first, the

constraints are added to allow necessary interleavings, and then reduction techniques

remove some of the redundant constraints. It turns out, for systems with a small in-

terleavings, the latter suits better than the former as it reduces size of the verification

conditions.

5.2 Overview of Our Approach

We present a new symbolic method combining partial order reduction with an

asynchronous modeling approach to reduce verification problem size and state space for

multi-threaded concurrent system with shared variables and locks. To our knowledge so

far, the partial-order reduction has hardly been exploited in the asynchronous modeling

approaches [RG05, GG08].

We combine our method with a previous token-based approach [GG08] that oth-

erwise allows redundant interleavings. We introduce the notion of Mutually Atomic

Transactions (MAT), i.e., two transactions are mutually atomic when there exists ex-

actly one conflicting shared-access pair between them. We propose to reduce the verifica-

tion conditions and remove redundant interleavings by allowing pair-wise (token-passing)

constraints only between MATs, i.e., token can pass from the end of one transaction to

the beginning of the other (and not in between), and vice versa.

We exploit static analysis techniques based on fork-join structure and lock set
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information to further reduce the necessary pair-wise constraints. Furthermore, we seam-

lessly integrate context-bounding [QR05] in our approach. Context bounding is an in-

complete technique that bounds the number of context switches allowed by an interleav-

ing. Context switch is defined in Operating Systems as the computing process of storing

and restoring the state (context) of a CPU such that multiple processes can share a

single CPU resource. Researchers have shown that most concurrency bugs can be found

within a small number of context switches [LR08, Mus08, QR05]. Context bounding is

an effective technique for bug finding, while still remaining scalable.

We implemented our approach in a prototype tool called Candor, and

demonstrated the efficacy of our approach against the state-of-the-art symbolic ap-

proaches [GG08, WYKG08]. In this chapter, we will discuss the implementation of

the various parts of our algorithm.

Contributions

Our main contributions can be summarized as follows:

1. We are first to exploit partial order reduction techniques for symbolic model check-

ing using asynchronous modeling. We developed a novel approach – based on MAT

– to reduce verification problem size and state space for concurrent systems.

2. Our approach based on MAT, exploits simultaneous unreachability of conflict ac-

cess – due to happens-before relation such as fork-join and mutual exclusion due

to locking pattern in program structure – to further reduce pair-wise constraints,

thereby integrating them easily and uniformly under one framework.

3. We efficiently encode thread-specific context bounding, and fork-join semantics in

verification conditions.

4. We demonstrate that our approach outperforms previous approaches [GG08,

WYKG08] in most cases, both in performance and size of the verification problem.

5. When our approach finds an error, we present the counterexample using a trace in

the control-flow graph. This visual representation makes debugging of bugs easier

and faster.
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5.3 Illustrative Example

This section presents an overview of our approach. We start out by describing

a simple concurrent program that we will use to guide our discussion. The concurrent

control flow graph (CCFG) of our two-threaded example is shown in Figure 5.1. The

program consists of two unrolled threads M1 and M2. The variables a1, a2 and b1, b2 of

threads M1 and M2 respectively are local; and the variables x, y, and z are shared. The

shared variables of the program are initialized with non deterministic values (represented

using question mark, ? in Figure 5.1) such that (x > −7) and (y < z + 5). The

thread M1 forks the thread M2 and then joins it later on, before asserting that y > 0

holds. The statements associated with an edge in the CCFG is atomic, i.e., it cannot be

interrupted. Each edge in the CCFG is further labeled with W (v)/R(v) based on the

shared write/read access of variable v for the statements in that edge.

Our goal is to model check the concurrent program for properties like data races,

deadlocks, and assertion violations. For our example, we want to check if the assertion

y > 0 (in Figure 5.1) is ever violated. In general, an asynchronous concurrent system can

have many different possible behaviors or executions due to nondeterministic scheduling

of the statements in different threads. In the following subsection we discuss an approach

to efficiently model an asynchronous multi-threaded system.

5.3.1 Token-passing Model

The main idea of the token-passing approach [GG08] is to introduce a single

boolean token tk and a clock vector variable cs in the system, and then manipulate the

passing of the token to allow different interleavings of the concurrent system. For each

thread, the clock vector variable cs records the number of times the token tk is passed

by the thread. In this approach, the verification model is obtained in two phases.

In the first phase, each thread is decoupled from the other threads by localizing

all the shared variables, and is abstracted by letting these localized shared variables take

non-deterministic values at every shared access. The token-passing model for our exam-

ple is shown in Figure 5.2. The two threads M1 and M2 are first decoupled by renaming

each shared variable in the threads. For instance, the shared variable x is renamed to

x1 and x2 in the threads M1 and M2 respectively. For clarity of presentation, unless

there is an ambiguity we avoid renaming of the variables (for example, the renaming of

variables is not shown in Figure 5.2). The algorithm then introduces two new control
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Figure 5.1: The CCFG of our running example

states (locations) for each edge (transition) with shared accesses. For each such edge, a

pre-access control state (pre) is inserted before the edge and a post-access control state

(post) is inserted after the edge. The new edge corresponding to the pre node is then

initialized such that all the localized shared variables get a non-deterministic value. In

our example, for clarity, we highlight such instrumentations only for the edge (2b, 3b).

The statements x=?, y=?, z=?, tk=?, cs=? are added in the edge corresponding to
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Figure 5.2: The token passing model for our running example

the pre node and the statement tk=? is added in the edge corresponding to the post

node. (Recall that ? denotes non-deterministic values.) Since the transition (update)

relation only uses local variables (as shared variables have been localized), each thread

model is independent. However, due to abstraction (by using non-deterministic values

for the localized shared variables), the model now have additional behaviors, hence, it is

imprecise.

The goal of the second phase is to remove the imprecision caused due to abstrac-
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tion and also to cover all possible behavior of the program. In this phase, constraints are

added on-the-fly to restrict the introduced non-determinism and to obtain a total order

in the shared accesses. More specifically, for each pair of shared accesses in different

threads, token-passing constraints are added from the post node of a shared access to

the pre node of the other shared access. Intuitively, these token-passing constraints al-

low passing of the token from one thread to another. Furthermore, these constraints also

allow to synchronize the values of the localized shared variables from one thread to an-

other. Together the token-passing constraints restrict the choice for the non-deterministic

values in order to satisfy sequential consistency (see Definition in Section 5.4).

In Figure 5.2, we denote a token-passing constraint using a directed edge from

a post node of one thread to a pre node of the other. As shown in the figure such

token-passing constraints are added for all pairs of shared accesses. For example, a

constraint from M1 to M2 will have the statements x2=x1, y2=y1, z2=z1, tk2=tk1, and

cs2=cs1 (Recall that for a shared variable v, vi is the localized variable in the thread

Mi). The above statements allow the two threads to synchronize. In this example we

exploit happens-before relation due to fork-join such that token-passing constraints are

not added between thread M2 and the shared accesses before the fork or after the join.

The token-passing constraints allow the model to capture all possible interleavings. Note

that an execution of the concurrent system, includes the firing of only a subset of these

constraints. As shown, the algorithm adds 4 ∗ 4 ∗ 2 = 32 such token-passing constraints

for our example. The following theorem summarizes the completeness and soundness of

the token passing approach.

Theorem 1 (Ganai et al., 2008 [GG08]). The token-based model is both complete (i.e.,

it allows only sequentially consistent traces) and sound (i.e., it does not miss any nec-

essary interleaving) for a bounded depth analysis. Further, the number of token-passing

constraints added grow quadratically (in the worse case) with the analysis depth.

In the next subsection, we build our partial-order reduction approach over such

a token-passing model. In particular, we identify token-passing constraints that can be

safely removed (24 for our example), without affecting soundness and completeness, and

maintaining optimality by not allowing redundant interleavings. Previous approaches on

partial-order reduction for explicit model [Hol97, God97, Dil96, FG05, GFYS07] would

not be applicable here as those techniques cannot deal with symbolic representation of the

concurrent program. Also, previous partial-order reduction approaches for synchronous
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Figure 5.3: (a) m=(tr1, tr2), (b) m′=(tr′1, tr
′
2), (c) m′′=(tr′′1 , tr

′′
2)

symbolic model checking [ABH+01, KGS06, RG05, WYKG08, GG08] would not work

for the token-passing approach. This is because those techniques work by constraining

the scheduler to explore only a subset of interleavings, however such a scheduler is not

present in the asynchronous approaches. Furthermore, in Section 5.10 we show that our

approach i.e. token passing model with MAT, outperforms in most cases a state-of-the-

art synchronous symbolic technique [WYKG08].

5.3.2 Mutually Atomic Transactions

Our partial-order reduction approach is based on the concept of MAT. Intuitively,

let a transaction be a sequence of statements in a thread, then we say two transactions

tri and trj (i �= j) of threads Mi and Mj respectively, are mutually atomic transactions

if and only if there exist exactly one conflicting shared-access pair between them and the

statements containing the shared-access pair is the last one in each of the transactions.

A more formal definition of MAT is presented in Section 5.4.
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Figure 5.3 illustrates the concept of MAT using our example from Figure 5.1.

From the control state pair (1a, 1b), there are two reachable conflicting pairs, i.e., (4a, 3b)

(for read-write conflict on the variable z) and (2a, 5b) (for write-write conflict on the

variable y), and two MATs m = (tr1 = 1a · · · 4a, tr2 = 1b · · · 3b) and m′ = (tr′1 =

1a · · · 2a, tr′2 = 1b · · · 5b), respectively. Similarly, from (1a, 2b) we have another MAT

m′′ = (tr′′1 = 1a · · · 2a, tr′′2 = 2b · · · 5b). In general, although we don’t show it here, there

are multiple possible MATs for our example.

Given a MAT m = (tri, trj), an interesting fact is that there are only two different

program behavior possible by interleaving the various statements in the transactions.

For example, consider the MAT m = (tr1 = 1a · · · 4a, tr2 = 1b · · · 3b) from Figure 5.3(a),

the order of execution of (1a, 2a) and (1b, 2b) or (3a, 4a) and (1b, 2b) does not produce

different behaviors. In fact only the order of execution of (3a, 4a) and (2b, 3b) (the

conflicting pair) can possibly produce different behaviors. In general, the execution of

tri before trj and trj before tri succinctly captures the two possible different behaviors.

Note that reordering of statements within a transaction are not allowed due to program

order.

The above observation gives an intuition that there exists a set of MATs such that

by adding token-passing constraints only between the MATs, we will be able to capture

all possible interleavings of the system. In Section 5.7 we describe an algorithm GenMAT

to compute such a set of MATs. For our example one such set is { (1a · · · 4a, 1b · · · 3b),
(4a · · · 5a, 1b · · · 5b), (1a · · · 2a, 3b · · · 5b), (4a · · · 5a, 3b · · · 5b), (2a · · · 5a, 3b · · · 5b)}. In Sec-

tion 5.7 we describe in details how we compute this set. Figure 5.9 shows that the total

number of token-passing constraints we add are 8, much less compared with all pair-wise

constraints in Figure 5.2.

5.4 Preliminaries

Having illustrated our approach using a simple example, we now present a formal

description. We first describe some related definitions that we will use in the following

sections. We consider a multi-threaded system CS comprising a finite number of de-

terministic bounded-stack threads communicating with shared variables, some of which

are used as synchronization objects such as locks. We represent each thread model

Mi(1 ≤ i ≤ N) using a transition diagram πi = (Li,Ii,→i, ιi) (Definition 5). Let

T =
⋃

i →i be the set of all transitions. Let Vi be set of local variables in πi and V
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be set of (global) shared variables. A global transition diagram for CS is an interleaved

composition of the individual thread models. Each transition consists of global firing of

a local transition ti ∈ T .

Notation: We define the notion of a run of a multi-threaded program as observation of

events such as global accesses, thread creations and thread termination. If the events are

ordered, we call it a total order run. We define a set Ai of shared accesses corresponding

to a read Ri(x) and a write Wi(x) of a thread Mi where x ∈ V. For ai ∈ Ai, we use

var(ai) to denote the accessed shared variable. We use �i to denote the beginning and �i

to denote the termination of thread Mi, respectively. The alphabets of events of thread

Mi is a set Λi = Ai ∪ {�i,�i}. We use Λ = ∪iΛi to denote a set of all events. A word

ω defined over the alphabet set Λ, i.e., ω ∈ Λ∗ is a string of alphabet from Λ, with ω[i]

denoting the ith access in ω, and ω[i, j] denoting the access substring from ith to jth

position, i.e., ω[i] · · ·ω[j] (· denotes concatenation). |ω| denotes the length of the word

ω. We use π(ω) to denote a permutation of alphabets in the word ω. We use ω |i to

denote the projection of ω on thread Mi, i.e., inclusion of the actions of Mi only.

Definition 11 (Transaction). A transaction is a word tri ∈ Λ∗
i that may be atomic (i.e.,

uninterrupted by other thread) with respect to some other transactions. If it is atomic

with respect to all other thread transactions, we refer it as independent transaction.

Definition 12 (Schedule). Informally, we define a schedule as a total order run of a

multi-threaded program where the accesses of the threads are interleaved. Formally, a

schedule is a word ω ∈ Λ∗ such that ω |i is a prefix of the word �i ·A∗
i · �i.

Definition 13 (Happens-before Relation (≺,�)). Given a schedule ω, we say e happens-

before e′, denoted as e ≺ω e
′ if i < j where ω[i] = e and ω[j] = e′. We drop the subscript

if it is obvious from the context. Also, if the relation is not strict, we use the notation

�. If e, e′ ∈ Λi and e precedes e′ in ω, we say that they are in a thread program order,

denoted as e ≺po e
′.

Definition 14 (Sequentially Consistent). A schedule ω is sequentially consis-

tent [Lam79] iff (a) ω |i is in thread program order, (b) each shared read access gets

the last data written at the same address location in the total order, and (c) synchroniza-

tion semantics is maintained, i.e., the same locks are not acquired in the run without a

corresponding release in between.
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For our purpose, we restrict our analysis to schedules that are sequentially con-

sistent.

Definition 15 (Conflicting Access Cij). We define a pair ai ∈ Ai, aj ∈ Aj , i �= j

conflicting, if they are accesses on the same shared variable (i.e., var(ai) = var(aj))

and one of them is write access. We use Cij to denote the set of tuples (ai, aj) of such

conflicting accesses.

We use Shij to denote a set of shared variables – between Mi and Mj threads

– with at least one conflicting access, i.e., Shij = {var(ai)|(ai, aj) ∈ Cij}. We define

Shi =
⋃

i�=j Shij, i.e., a set of variables shared between Mi and Mk, k �= i with at least

one conflicting access. In general, Shij ⊆ (Shi ∩ Shj).

Definition 16 (Dependency Relation (D)). A relation D ⊆ Λ × Λ is a dependency

relation iff for all (e, e′) ∈ D, one of the following holds: (1) e, e′ ∈ Λi and e ≺po e
′, (2)

(e, e′) ∈ Cij , (3) e =�i, e′ =�j for i �= j.

Note, the last condition is required when the order of thread termination is

important. If (e, e′) �∈ D, we say the events e, e′ are independent. The dependency

relation in general, is hard to obtain; however, one can obtain such relation conservatively

using static analysis [God95], which may result in a larger dependency set than required.

For our reduction analysis, we assume such a relation is provided.

Definition 17 (Equivalence Relation (�)). We say two schedules ω1 = u · e · e′ · v and

ω2 = u ·e′ ·e ·v are equivalent (Mazurkiewicz’s trace theory [Maz87]), denoted as ω1 � ω2,

if (e, e′) �∈ D.

An equivalent class of schedules can be obtained by iteratively swapping the

consecutive independent events in a given schedule. Note, all equivalent schedules agrees

on e ≺ e′ if (e, e′) ∈ D. Final values of both local and shared variables remains unchanged

when two equivalent schedules are executed.

Definition 18 (Mutually Atomic Transactions). We say two transactions tri and trj

of threads Mi and Mj , respectively, are mutually atomic iff except for the last pair,

all other event pairs in the corresponding transactions are independent. Formally, a

Mutually Atomic Transactions (MAT) is a pair of transactions, i.e., (tri, trj), i �= j iff

∀k, h 1 ≤ k < |tri| ∧ 1 ≤ h < |trj| ∧ (tri[k], trj [h]) �∈ D ∧ (tri[|tri|], trj [|trj |]) ∈ D
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Figure 5.4: Our SMT-based symbolic analysis tool (Candor)

As mentioned briefly in Section 5.3.2, given a MAT (tri, trj), an interesting ob-

servation is that a word ω = tri ·trj is equivalent to any word π(ω) obtained by swapping

any consecutive events tri[k] and trj[h] such that k �= |tri| and h �= |trj|. Similarly, the

word ω′ = trj · tri is equivalent to any word π(ω′) obtained as above. Note, ω �� ω′.

Therefore, for a given MAT, there are only two equivalent classes, represented by ω and

ω′. In other words, given a MAT, the associated transactions are atomic pair-wise.

5.5 The Candor Tool

In the following sections, we describe in details our SMT-based symbolic analysis

tool called Candor. Candor is based on the token-passing model [GG08], and combines

various static analysis techniques to generate a reduced verification condition. Figure 5.4

presents an overview of Candor. In the next sections we discuss the various components

of Candor. Candor takes as input a unrolled concurrent program and converts it into a

CCFG. Our symbolic analysis like any bounded model checking approaches is a bounded

depth analysis. In Candor the unrolling of the loops in the program till the bound D is

done a priori (eager), however an approach where the unrolling is done on demand basis
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(lazy) can also be used with our approach.

5.6 Unreachability Analysis

A concurrent program consists of a set of unrolled interacting threads M1 · · ·MN ,

communicating using shared variables and synchronization primitives like lock and un-

lock. For each pair of thread Mi and Mj , we first compute the set Cij of pair of transitions

that are in conflict (Definition 15). The conflict set Cij in general, is hard to obtain; how-

ever, one can obtain such a set conservatively using static analysis, which may result in

a larger set than required. In this component, we update the set Cij by removing the

pair that are unreachable simultaneously. In particular, we use happens-before relation

due to fork-join and mutual exclusion due to lock-unlock pattern.

5.6.1 Fork-Join Analysis

We use static analysis to compute the happens-before relation due to program

order and also due to fork-join. For this purpose, we annotate each transition with a

pair of integers (ρ, η) where, ρ names the different path in the transition diagram and

η represents the ordering within a path. The algorithm in Figure 5.5 computes the

happens-before ordering of the transition diagram. The ComputeHB function performs a

depth first search of the transition diagram and assigns the ρ and the η of each transition.

In particular, within a path in the transition diagram, it assigns the η’s with increasing

values and also every path gets a different id. Since within a path the id’s are increasing,

we only have to store the happens-before relation between the start and the end of

the paths. In ComputeHB function, we store the above information in the set setHB

as shown in line 12 for start of path and in line 4 for end of path. The ComputeHB

algorithm visits each transition exactly once and as such this analysis is bounded by the

number of transitions.

We use the function IsHB(t1, t2) to check if the transition t1 happens-before tran-

sition t2. We then update the set Cij as follows:

Cij = Cij\{(t, t′) ∈ Cij | IsHB(t, t′) ∨ IsHB(t′, t)}

Example: Consider the example from Figure 5.1. The ComputeHB algorithm will

assign the transitions between nodes 0a − 6a in thread M1, the ρ = 0 and the η from
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1. setHB : (int × int) × (int × int)

2. function ComputeHB(t ∈ T , ρ : int, η : int) : void

3. if t.visited then

4. setHB .Add((ρ, η), t.(ρ, η))

5. let t.visited := true

6. let η := η + 1

7. let t.(ρ, η) := (ρ, η)

8. let ( , , gl ′) = t /* ‘ ’ represent variables not used */

9. let flag := false

10. for each {t′ ∈ T | t′ = (gl ′, , )} do

11. if flag then

12. setHB .Add(t.(ρ, η), (ρ, η + 1))

13. ComputeHB(t′, ρ, η)

14. let ρ := ρ+ 1

15. let flag := true

16. return

Figure 5.5: The compute happens-before function

0 − 7 respectively. Note that the transition between 0a and the fork and the transition

between join and 6a are also assigned an id. It will also assign the transitions between

the fork node and the join node in thread M2 the ρ = 1 and the η from 0−5 respectively.

The set setHB will contain the two elements ((0, 0), (1, 0)) and ((1, 5), (0, 7)). Note that

there is no strict happens-before relation between the transitions in the two threads,

between the fork and join nodes.

5.6.2 Lock-Unlock Analysis

We model a lock variable as a semaphore lk. The semaphore lk is represented as a

global integer variable initialized to one. The statement lock(lk) acquires the semaphore

when (lk > 0) and decreases lk by one, while unlock(lk) releases the semaphore and

increases lk by one.

We use static analysis to compute the mutual exclusion due to lock-unlock pat-
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17. function IsHB(t1 ∈ T , t2 ∈ T ) : Boolean

18. let (ρ1, η1) = t1.(ρ, η)

19. let (ρ2, η2) = t2.(ρ, η)

20. if ρ1 = ρ2 then

21. return η1 < η2

22. for each ((ρ, η), (ρ′, η′)) ∈ setHB do

23. if (ρ = ρ1) ∧ (η1 ≤ η) ∧ (ρ′ = ρ2) ∧ (η′ ≤ η2) then

24. return true

25. return false

Figure 5.6: This function checks if transition t1 happens-before t2

tern. We compute the set O as defined below using a simple conservative algorithm (not

shown here).

(lk, t, t′) ∈ O iff t = (gl , i0, gl1) ∧ t′ = (gln, in, gl
′) ∧

gl i0−→ gl1
i1−→ · · · gln

in−→ gl ′ ∧ i0 = lock(lk) ∧ in = unlock(lk)

∧ ∀k∈{1...(n−1)} ik �∈ {lock(lk), unlock(lk)}

Using O we then update the set Cij as follows:

Cij = Cij \ {(t, t′) ∈ Cij | ∃(lk, t1, t′1), (lk, t2, t
′
2) ∈ O. t1 �po t �po t

′
1 ∧ t2 �po t

′ �po t
′
2}

5.7 MAT Analysis

Notation Shortcuts: Before we get into details, we make some notation abuse for

ease of readability. Let t(e) represent the transition of the thread where the corresponding

event e occurs. When there is no ambiguity, we use an edge to represent a transition.

We use ei to also indicate t(ei), the transition of thread Mi where the access event ei

belongs. Further, we use +ei to denote the event immediately after ei in program order,

i.e., t(+ei) = next(t(ei)). Similarly, we use −ei to denote event immediately preceding

ei, i.e., t(ei) = next(t(−ei)). We sometimes refer tuple (a, b) as a pair.

We provide a simple algorithm, GenMAT (Figure 5.7) for generating MAT ij ,

given a pair of threads Mi and Mj and dependency relation D. We first initialize a queue
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26. function GenMAT(D) : SetOfMATs

27. let MAT ij := ∅
28. let worklist := new worklist of Transition × Transition

29. let done := new queue of Transition × Transition

30. worklist .Add(�i,�j)

31. while worklist not empty do

32. let (fi, fj) := worklist .Remove

33. done .Add(fi, fj)

34. let Mc := {m | m = (tri = fi · · · li, trj = fj · · · lj) is MAT w.r.t D. }
35. for each m ∈ Mc s.t ∀m′ ∈ Mc m

′ �= m ∧ lj �po l
′
j do

36. /* i.e., Mj has higher priority */

37. let MAT ij := MAT ij ∪ {m}
38. if li =�i ∧ lj =�j then

39. continue

40. elseif li =�i then

41. let Q := {(fi,+lj)}
42. elseif lj =�j then

43. let Q := {(+li, fj)}
44. else

45. let Q := {(+li,+lj), (+li, fj), (fi,+lj)}
46. let worklist := worklist ∪Q\done

47. return MAT ij

Figure 5.7: The GenMAT Algorithm to obtain a set of MATs

worklist with transition pair (�i,�j) representing the beginning of the threads (line 30).

Next, while the worklist is not empty (line 31), for any pair (fi, fj) in the worklist

(line 32), representing the current transitions, we obtain a set of MAT candidates Mc

(line 34) just by using the definition of MAT (Definition 18) for the given dependency

relation D. Note that in general there may be many possible MAT starting from a pair

(fi, fj), but if they are in the same path, we select only one of them such that condition

at line 35) is satisfied. In other words, we give Mj the priority over Mi. Note, the choice
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Figure 5.8: MATs for branches

of Mj over Mi is arbitrary, but is required for optimality result. For example, out of the

two choices m and m′ in Figure 5.3, we prefer m′ if we give M2 a higher priority over

M1.

Furthermore, in a more general setting with conditional branching, we identify

MATs by exploring beyond branches, as illustrated in Figure 5.8. Starting from (A1, A2),

we have following control path segments, tr11 = A1 · · ·B1, tr12 = A1 · · ·C1, tr21 =

A2 · · ·B2, and tr22 = A2 · · ·C2 (shown as ovals). For each of the four combinations of

tr1i, tr2j , we define MAT separately. Also, note our algorithm do not need to consider

loops as the input model is already unrolled.

Due to branches even after pruning of the set Mc using priority, we may still

have more than one MATs in it. For each such MAT m, we update MAT ij with m and

then selectively update the worklist as shown in the algorithm (lines 38-46).

Theorem 2. The algorithm GenMAT terminates.

Proof. For bounded depth, number of pair-wise accesses are bounded. As each

transition pair is picked only once (line 32), the procedure terminates. �.
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Table 5.1: Run of algorithm GenMAT on example in Figure 5.1

Iter (fi, fj) MAT 12 worklist

0 ((1a, 2a), (1b, 2b))

1 ((1a, 2a), (1b, 2b)) (1a · · · 4a, 1b · · · 3b)

((4a, 5a), (1b, 2b));

((1a, 2a), (3b, 4b));

((4a, 5a), (3b, 4b))

2 ((4a, 5a), (1b, 2b)) (4a · · · 5a, 1b · · · 5b)
((1a, 2a), (3b, 4b));

((4a, 5a), (3b, 4b))

3 ((1a, 2a), (3b, 4b)) (1a · · · 2a, 3b · · · 5b)
((4a, 5a), (3b, 4b));

((2a, 3a), (3b, 4b))

4 ((4a, 5a), (3b, 4b)) (4a · · · 5a, 3b · · · 5b) ((2a, 3a), (3b, 4b))

5 ((2a, 3a), (3b, 4b)) (2a · · · 5a, 3b · · · 5b) ∅

For a given MAT m = (fi · · · li, fj · · · lj), we define a set of interleaving ordered

pairs, TP (m) = {(li, fj)), (lj , fi))}. Given a set of MAT ij , we define TP (MAT ij) =
⋃

m∈MAT ij
TP (m), and denote it as TPij . We then define a set TP− as (

⋃
i�=j TPij).

Intuitively, the set TP− captures succinctly the token-passing constraints.

Unfortunately, for more than two threads the set TP− generated using the pro-

cedure GenMAT may not be adequate i.e., may miss interleavings. This is due to inter-

ference between a MAT and other threads. To overcome this scenario, we define a set of

extra token-passing pairs set eTPij using MAT ij .

eTPij = { (li,+mj), (lj ,+mi) | (fi · · · li, fj · · · lj) ∈ MAT ij,

(fi � mi ≺ li) ∧ ∃k �=jck.(mi, ck) ∈ TPik ∧ ¬∃cj.(mi, cj) ∈ TPij,

(fj � mj ≺ lj) ∧ ∃k �=ick.(mj , ck) ∈ TPjk ∧ ¬∃ci.(mj , ci) ∈ TPij }

For every pair of threads Mi and Mj , if Shij � Shi ∪ Shj , we generate the set

eTPij from MAT ij. Finally, we construct the set TP as follows:

TP = (
⋃
i�=j

TPij) ∪ (
⋃
i�=j

eTPij)

Example: We show a run of GenMAT in Table 5.1 for the example in Figure 5.1. We

gave M2 higher priority over M1. Note that out of the two MATs m = (tr1, tr2) and
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m′ = (tr′1, tr
′
2) (Figure 5.3(a),(b)), GenMAT selects m as 2b ≺po 4b. The table columns

provide each iteration step (Iter), the current pair (fi, fj) selected, the chosen MAT, and

the current worklist where, the new pairs added to it are shown in bold.

5.8 Annotation and Path-Balancing

In this component we perform few source-to-source transformations, so that we

can use an uniform algorithm to build the model. In the first step, we introduce a global

boolean variable token (tk) and a clock vector variable (cs) in the system. The purpose

of these variables are defined below:

• Token: Intuitively, the thread with the token variable asserted can execute the

current enabled transition. Initially, only one thread, chosen non-deterministically

is allowed to assert tk and then it is passed around such that at any time only one

thread asserts the token.

• Clock vector: To model passage of time and thereby to obtain a total ordering

on token passing events, we use the concept of Lamport’s clock vector [Lam79].

The variable cs is a N-tuple (cs1, . . . , csN ) and is initialized to 0. Whenever, the

token is acquired by a thread Ti, it increments the clock csi corresponding to this

thread by 1. Intuitively, the clock vector corresponding to the thread with the

token captures the number of times the token has been acquired by each thread.

Next, each thread is decoupled from the other threads by localizing all the shared

variables. This is done by introducing new local variables for each shared variable v ∈ V
and then substituting every access of v with the new local variable. For clarity, each

shared variable v ∈ V is represented using the local variable vtid, where tid is the id of

the thread to which the variable belongs.

In the next steps, we perform thread independent tasks such as node-annotation

and path-balancing. We define the set Γ = {t | ∃t′.(t, t′) ∈ TP ∨ (t′, t) ∈ TP} as the set

of transitions in TP . For each t ∈ Γ, we then add two new locations in the transition

diagram, a pre-access location (pre) is inserted before t and a post-access location (post)

is inserted after t. Furthermore, we add instructions in the transitions corresponding to

these locations, in particular, for the pre location we add that each localized shared

variables get a non-deterministic value, while for the post location only tk gets non-

deterministic value. These instrumentations are partly shown in the Figure 5.2. For
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each transition with a fork instruction we also add a pre-access location called fs and

add the instruction that the token tk gets non-deterministic value. Similarly, for each

transition with a join instruction we add a pre-access location called js and add in-

structions that the localized shared variables get non-deterministic values. By adding

these extra instructions, our model now have additional behaviors, hence, it is impre-

cise. In Section 5.9.1 we discuss our representation of each of these thread models using

quantifier-free first order logic and then in Section 5.9.2 we describe the constraints that

will make these models precise.

We also do path balancing [GG06] in each of the threads. The main idea behind

path balancing is to insert dummy nop locations and transitions in the transition diagram

such that the two sides of the branch have same depth. The purpose of this step is two

fold, it allows us to use a simpler uniform algorithm for thread model generation and it

also reduces the size of the model. Since, the threads are unrolled, we can use a simple

bottom-up traversal algorithm to perform this step.

5.9 Generating Verification Conditions

Given a concurrent program CS, we derive a set of thread models and symbol-

ically check all its schedules for property violations up to a given bounded depth (say

D). For this, we create a formula ΦCS called verification condition such that ΦCS is

satisfiable iff there exists a schedule in CS that violates the property. In particular, we

use an encoding that creates the formula in a quantifier-free first-order logic to facilitate

the application of off-the-shelf SMT solvers as shown in Figure 5.4. The formula ΦCS

can be further subdivided into the following smaller formulas:

ΦCS = ΦT M ∧ ΦT PM ∧ ΦCB ∧ ¬ΦPRP

where, ΦT M is the formula corresponding to the thread models, ΦT PM is the formula

corresponding to the token-passing constraints that captures all possible behaviors, op-

tionally we also add context bounding constraints (ΦCB), and ΦPRP is the formula cor-

responding to the correctness property that we want to check. In the following sections,

we discuss each of this constraints in details.
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5.9.1 Thread Models

In this section, we discuss our representation of each of the thread models using

quantifier-free first order logic. Recall each thread model Mi(1 ≤ i ≤ N) is represented

using a transition diagram πi = (Li,Ii,→i, ιi). For each transition diagram we perform

a control state reachability (CSR) analysis. CSR is a breadth-first traversal of the tran-

sition diagram (also can be seen as a CCFG). For a given Mi, we define Ri(d), 0 ≤ d ≤ D

to be the set of locations statically reachable at depth d.

Ri(d) = {gl ′ ∈ Li | ιi
i1−→i gl1 · · ·

id−→i gl ′}

We also use vd
i to denote the expression for the variable v in the unrolled model Mi at

depth d. We define a boolean predicate Bd
gli

≡ (PCd
i = gl i), where PCd

i is the program

counter that tracks the current location in the thread Mi and gl i ∈ Li.

We represent the control relation of a thread Mi using the following constraints.

For each transition (gl , (c, f), gl ′) ∈→i such that gl ∈ Ri(k − 1) and gl ′ ∈ Ri(k) we add:

Bk
gl ′ ⇐⇒ c ∧ Bk−1

gl

We initialize the transition relation by asserting for each thread Mi that B0
ιi is true.

Furthermore, we encode the data relation using similar constraints. For each

transition (gl , (c, f), gl ′) ∈→i such that gl ∈ Ri(k − 1) and gl ′ ∈ Ri(k) and f is an

assignment of the form v := e we add:

vk = Bk
gl ? ek−1 : vk−1

where, ek−1 is the expression such that every variable u in e is replaced with variable

uk−1. And, for all other variables x ∈ Vi, x �= v at depth k we add xk = xk−1

We use the CSR analysis to further reduce the size of the verification condition

and also the number of new variables introduced for a depth. Intuitively, for all the

variables v that are not written at a depth d, we hash the expression representation for

vd to the existing hash expression for vd−1. This hashing, i.e., reusing of expressions

reduces the size of the formula significantly [GG06].

5.9.2 Token-passing Model using MAT

In this section we describe the constraints that makes our model of CS sound (i.e.,

it does not miss any necessary interleaving) and complete (i.e., it allows only sequen-

tially consistent traces). Previous approach [GG08] does this by adding token-passing
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constraints between all pairs of shared accesses. However, our approach reduces such

constraints by adding token-passing constraints only between MATs. We exploit the

pair-wise atomicity of MATs in a token-based model as follows: We compute the set TP

as described in Section 5.7. For each ordered pair (a, b) ∈ TP , we only add token-passing

constraints from a to b. Recall, such constraints are added between the corresponding

pre and post nodes as discussed in Section 5.3.2. In general, transactions associated with

different MATs may not be atomic. For example, tr1 is not atomic with tr′′2 (Figure 5.3).

The following theorem summarizes the adequacy and optimality of the token-passing

model using MAT.

Theorem 3 (Ganai et al., 2009 [GK09]). The token-passing model with MATs is ade-

quate i.e., does not miss interleavings. Furthermore, given a dependency relation D, the

set TP is optimal i.e., it does not allow two equivalent schedules.

Next, we describe the various token-passing constraints added in each verification

condition in some details. Some of these constraints were first introduced in the token-

passing approach [GG08]. We restate them here for completeness of the description.

These constraints capture the inter- and intra- thread dependencies due to interleav-

ings, and thereby, eliminate the imprecision introduced in the model by allowing non-

deterministic values for the shared variables, up to a bounded depth. The constraints

can be divided in four kinds: global constraints, inter-thread constraints, intra-thread

constraints, and fork-join constraints,.

Global Constraints

We initialize the token-passing model by allowing exactly one thread to have the

token. This is captured by the following constraint:

(
∨

1≤i≤N

tk0
i ) ∧ (

∧
i�=j

tk0
i ⇒ ¬tk0

j )

Inter-Thread Constraints

In this subsection we discuss the constraints that are required to capture the

token passing from one thread to another. Our goal for the model is to capture every

feasible schedule in the concurrent system CS. For this, we introduce few constraints as

follows:
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Token-Passing Enabling Constraint: For every pair of pre locations gl i ∈ Ri(k)

in thread Mi and post locations gl j ∈ Rj(h) in thread Mj , j �= i, we introduce a boolean

variable rwkh
ij , and add the following constraints:

rwkh
ij =⇒ (Bk

gl i
∧ ¬tkk

i ∧ Bh
glj

∧ tkh
j ∧ csk

ii = csh
ij)

Intuitively, this constraint captures when a token can be passed between threads.

More specifically, the token can be passed from the post location gl j at depth h of thread

Mj to pre location gl i at depth k of thread Mi if the following holds: (a) The thread Mi

is in location gl i at depth k and does not hold the token, (b) The thread Mj is in location

gl j at depth h and holds the token, and (c) The clock variable csi is same in both the

threads. If the above condition holds then we say that the token-passing condition is

enabled. Note that at any point the token-passing condition may be enabled for more

than one thread and as such we use the following exclusivity constraints.

Token-Passing Exclusivity Constraint: For every pre locations gl i ∈ Ri(k), we

define a set rsk
i = {rwkh

ij | i �= j, 0 ≤ h ≤ d} which represent the number of locations

that can send a token to gl i. To allow at most one post location from another thread

to match (pair) with this pre location, we assign an unique id, (0 < id ≤ |rsk
i |) to each

element of rsk
i . We also introduce a new variable rcki for each gl i and require it to take

non-zero value iff rwkh
ij = 1. Similarly, we define the set wsh

j and the variable wchj for

every post location in gl j ∈ Rj(h).

(rwkh
ij ⇐⇒ rcki �= 0) ∧ (0 ≤ rcki ≤ |rsk

i |)
(rwkh

ij ⇐⇒ wchj �= 0) ∧ (0 ≤ wchj ≤ |wsh
j |)

Intuitively, these exclusivity constraints makes sure that if a token-passing event occurs

between a pair of pre and post locations then all other pairs are implied invalid. These

constraints along with the enabling constraints defines rwkh
ij . We say a token passing

event is triggered iff rwkh
ij = 1.

Token-Passing Update Constraint: Once the token-passing event is triggered (i.e.

rwkh
ij = 1), then we have to update the state of the thread Mi with the state of the

thread Mj . For this, each localized shared variables at gl i ∈ Ri(k + 1) is updated with

the current state values of the localized shared variables at gl j ∈ Rj(h). We also assert

the token in Mi and deny it in Mj , to indicate the passing of token. The clock variable
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corresponding to Mi is incremented by one, while the remaining clock variables are sync-

ed with that of thread Mj . Thus, for every rwkh
ij variable introduced we add the following

update constraints:

rwkh
ij =⇒ (

m∧
p=1

gk+1
pi = gh

pj) ∧ (tkk+1
i ∧¬tkh+1

j ) ∧ (csk+1
ii = csk

ii+1) ∧ (
N∧

q=1,q �=i

csk+1
qi = csh

qj)

Intra-Thread Constraints

In this subsection we discuss the constraints that are required to capture the

scenario when none of the token-passing events are triggered for a location in a thread

(i.e. no context-switches).

No Token-Passing Update Constraint: For every pre locations gl i ∈ Ri(k), if

none of the token-passing events are triggered for gl i then the next state values should

be unchanged for each localized shared variable in Mi as encoded using the following

formula.

rcki = 0 =⇒ (
m∧

p=1

gk+1
pi = gk

pi) ∧ (tkk+1
i = tkk

i ) ∧ (
N∧

q=1

csk+1
qi = csk

qi)

Similarly, for every post locations gl j ∈ Rj(h), the next state values should be unchanged

for the tk variable.

wchj = 0 =⇒ (tkh+1
j = tkh

j )

Note that we have to add the above constraints because in Section 5.8 we have intro-

duced imprecision in our model by allowing the localized shared variables to have non-

deterministic values. These constraints along with the inter-thread constraints makes

our model precise.

Write Commit Constraint: To make our model sequentially consistent we want

every shared variable write operation to be visible to all other threads. To achieve this

our model allows a thread to write to a shared variable only when it has the token. For

this, we add for every post locations gl j ∈ Rj(h) corresponding to only write operations

the following constraint:

Bh
glj

=⇒ tkh
j
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Fork-Join Constraints

To model the fork instruction we have to make sure that each newly created

thread gets the values of the shared variables from the parent thread, and that among

the possible threads the token is with exactly one thread. Let F be the set of thread

ids of the newly created threads. For each pair of fs location gl i ∈ Ri(k) in thread Mi

at depth k and the start location of the newly created threads Mj , j ∈ F , we add the

following constraints:

(
m∧

p=1

gk
pi = g0

pj) ∧ (
N∧

q=1

csk
qi = cs0qj)

Furthermore, if the thread Mi had the token then after fork exactly one of parent thread

and the newly created thread has the token as shown below:

tkk
i ⇐⇒ (((

∨
j∈F tk

0
j ) ∨ tkk+1

i ) ∧
(
∧

j∈F (tkk+1
i ⇒ ¬tk0

j ) ∧ (tk0
j ⇒ ¬tkk+1

i )) ∧ (
∧

p,q∈F ,p �=q tk
0
p ⇒ ¬tk0

q))

We treat a js location as a slightly modified version of a pre location. Let J be the set of

thread ids of the joined threads. For every pair of js location gl i ∈ Ri(k) and end location

gl j ∈ Rj(h), j ∈ J we define a new boolean variable rwkh
ij , and add constraints similar

to token-passing enabling constraint. Similarly, we also add the token-passing exclusivity

constraint corresponding to the pre location. The token-passing update constraint is

slightly modified as shown below:

rwkh
ij =⇒ (

m∧
p=1

gk+1
pi = gh

pj) ∧ tkk+1
i ∧ (

N∧
q=1

csk+1
qi = csh

qj)

We also add the no token-passing update constraint corresponding to the pre location

for the js locations. We add a program order constraint between the end location of

each joined threads and the js location to capture the happens-before relation between

them.

Example: We show in Figure 5.9 the token-passing model using MAT for our example

in Figure 5.1. We use the set TP (MAT 12) generated from the set MAT 12 as shown in

Table 5.1. We add token-passing constraints (shown as directed edges) in the figure be-

tween every ordered pair in the set TP (MAT 12). Total number of pair-wise constraints

we add is 8, much less compared with all pair-wise constraints (shown in Figure 5.2). The

fork/join constraints, shown as dotted edges, provide happens-before ordering between

the accesses.
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Figure 5.9: The token-passing model using MAT for our running example

5.9.3 Context Bounding

In this section we present a symbolic encoding for the token-based approach that

effectively bounds the number of context switches allowed by an interleaving. We add

the following constraints to bound the number of times a token could be passed to a

specific thread model Mi.

CBl
i ≤ csji ≤ CBu

i , 1 ≤ j ≤ N

where, CBl
i and CBu

i are user-provided lower and upper context-bounds respectively. In

our approach, we allow thread specific fine-grained context bounding. With this flexivity

we can now have different context bounds for different threads. These constraints are
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Table 5.2: Details of the benchmarks checked during our experiments

Ex #SA #C− #C+ #TP #TPU #TPM #M #SV #T

E1 (3,3,1) 8 1 30 6 4 2 2 15

E2 (3,4,4) 20 7 80 32 18 10 2 28

E3 (3,5,4) 24 9 94 40 23 14 2 32

E4 (2,2,2) 8 2 24 8 6 3 1 15

E5 (1,4,4) 12 8 48 32 23 14 2 19

E6 (2,8,8) 36 4 192 8 8 4 3 29

E7 (1,20,20) 220 200 880 800 591 390 2 51

E8 (2,40,40) 660 100 3520 200 200 100 3 93

E9 (1,100,100) 5100 5000 20400 20000 14951 9950 2 211

E10 (2,200,200) 15300 2500 81600 5000 5000 2500 3 413

#SA - No. of Shared Accesses in each thread. #T - No. of Transitions.

#M - No. of MATs. #SV - No. of Shared Variables.

#C− and #C+ - No. of Conflict before and after UA.

#TP - No. of Token-Passing (TP) constraints in basic encoding [GG08].

#TPU - No. of TP constraints using UA.

#TPM - No. of TP constraints using MATs.

optional and are not required for the correctness of the model. In general, by adding

these constraints we make our approach incomplete, however, recent findings show that

in practice concurrency bugs can often be exposed in interleavings with a surprisingly

small number of context switches [QR05, LR08, Mus08].

Finally, we generate verification conditions comprising of the transition relation of

each thread model, token-passing constraints, context-bounding constraints (optionally),

and negated property constraints. These constraints are then expressed in a quantifier-

free formula and passed to a SMT solver for a satisfiability check as shown in Figure 5.4.
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Table 5.3: Timing results of the benchmarks checked during our experiments

Benchmarks B [GG08] B+M Ext [WYKG08]

(S/U) NCB C1 C2 NCB C1 C2 NCB

1. E1S 00.01 00.01 00.01 00.01 00.01 00.01 00.02

2. E2S 00.03 00.04 00.04 00.02 00.02 00.03 00.04

3. E3S 00.03 00.04 00.04 00.03 00.03 00.02 00.06

4. E4S 00.01 00.01 00.02 00.01 00.01 00.01 00.01

5. E4U 00.01 00.01 00.01 00.01 00.01 00.01 00.01

6. E5S 00.06 00.03 00.07 00.02 00.02 00.03 00.04

7. E6S 00.18 00.12 00.13 00.01 00.02 00.01 00.24

8. E7S 22.10 00.90 01.10 07.29 00.54 00.68 00.84

9. E8S 1550.56 08.50 61.92 00.17 00.16 00.19 04.18

10. E8U TO 13.72 413.48 50.54 00.16 01.30 99.71

11. E9S TO 497.81 1742.57 TO 150.81 515.95 MO

12. E10S TO TO TO TO 16.44 20.57 MO

B - Basic token-based approach [GG08]. M - Using MAT. Ext [WYKG08].

NCB: No context bound C1: One context bound. C2: Two context bound.

MO: Memory out. TO: Time out. Time is in secs.

5.10 Experiments and Results

We implemented our approach in a token-based symbolic tool called Candor sim-

ilar to [GG08], using the SMT solver Yices-1.0.13 [SRI]. Figure 5.4 presents an overview

of Candor. The implementation of the Unreachability analysis (UA) and the MAT anal-

ysis follows closely the algorithm described in Section 5.6 and Section 5.7 respectively. It

then incrementally adds concurrency constraints at the current depth k using the MAT

table and the context bound information. The resultant verification condition is then

given to the SMT solver. Next, depending on the result of the SMT solver and the cur-

rent depth, our algorithm either produces a counterexample or repeats the above steps

again or aborts.

In our experiments, we automatically checked several benchmarks of varied com-
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plexity with respect to the number of shared variable accesses. These benchmarks cor-

respond to two or three-threaded systems. We obtained these benchmarks by combining

several trace programs each corresponding to a concurrent run of two-threaded con-

current system. We also replaced fixed program input values in the trace program by

symbolic values. The property constraints correspond to assertion violations. All bench-

marks are checked at a depth D equal to the longest path in the program (as it is already

unrolled).

The details of the benchmarks that we checked are shown in Table 5.2, along with

the number of shared variable accesses in each thread, the number of conflicts before and

after UA, the number of pair-wise constraints in the basic encoding and then using UA

and then using MATs, the number of MATs, the number of shared variables in the

program, and the number of transitions in the program. Note that by using MATs the

number of pair-wise constraints are reduced. For example, benchmark E7 has a reachable

violation with three threads with 1, 20, and 20, number of shared accesses, respectively.

Also, E7 benchmark has 220 and 200 conflicts before and after UA respectively, 390

MATs, 2 shared variables, and 51 transitions.

Table 5.3 presents the timing results of the benchmarks checked by Candor. We

conducted our experiments on a Linux box with Intel Core 2 CPU T7200 at 2.0 GHz

Processor with 1GB physical memory running Ubuntu Linux 8.04, using a 1800 secs

time limit (represented using TO in Table 5.3). Each benchmark is suffixed with S or U

corresponding to the satisfiable (i.e., has a reachable violation) or unsatisfiable instance.

Column 1 gives the name of the benchmarks. In Columns 2 – 4, we present the results

of token-based approach [GG08] using TP constraints, referred to as the encoding B.

In these columns, we provide the time taken (in secs) with no context-bound constraint

(NCB), time taken with one context-bound per thread (C1), and time taken with two

context-bound per thread (C2). In Columns 5 – 7, we present similar results for our

approach using MAT analysis, denoted as B+M, i.e., token-based approach using TPM

constraints. In the last column, we compare our results with another state-of-the-art

symbolic approach [WYKG08] based on synchronous modeling, referred to as Ext. Since

Ext does not support context-bounding, and it is not clear how to add those constraints

efficiently, we do not have any reportable data.

The encoding using MAT (B+M) significantly outperforms the basic encoding B,

and Ext in timing performance. Encoding using MATs with context bounding (B+M+C1
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Table 5.4: Size of the formula for the depth D (i.e. entire program)

Benchmarks B B+M Ext

1. E1 16K 11K 73K

2. E2 35K 27K 118K

3. E3 42K 34K 149K

4. E4 16K 13K 34K

5. E5 32K 26K 174K

6. E6 98K 18K 497K

7. E7 487K 375K 1.7M

8. E8 1.9M 163K 6.9M

9. E9 12M 8.7M 51M

10. E10 48M 3.3M 256M

Table 5.5: Depth at which witness was found for the benchmarks checked

Benchmarks B B+M Ext

1. E1 9 9 10

2. E2 12 12 17

3. E3 14 14 19

4. E4 9 9 10

5. E5 11 11 14

6. E6 15 15 24

7. E7 27 27 46

8. E8 47 47 88

9. E9 107 107 206

10. E10 - 207 408

and B+M+C2) can find the SAT instances very quickly, whereas other encoding cannot

find it within the time limit.

Table 5.4 further compares the size of the B+M encoding with Ext and the B encod-
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ing. Each row gives the size of the formula for the verification condition corresponding

to the bound D (i.e. entire program). Note that this is not the amount of memory

used by the SMT solver while checking for a SAT or UNSAT instance. The table shows

that the size in B+M encoding is significantly smaller (up to 1 - 2 orders of magnitude)

than that of Ext and B encoding. This in turn may allow the SMT-solver to solve bigger

instances.

Table 5.5 shows the depth at which the witness was found for all the benchmarks,

while checking for SAT instances. Note, due to synchronous modeling, the witness length

D tends to be larger for Ext, also noted in [GG08].

5.11 Counterexample

The SMT solver generates a counterexample once it finds a satisfiability instance.

This counterexample usually consists of a set of values for the variables in our model

corresponding to an interleaving in the program such that the assertion (property) we

are checking is violated. Unfortunately, the counterexample generated by the solver

is usually very hard to debug. In our tool we rebuild the counterexample trace over

our CCFG representation of the program. We believe this visual representation makes

debugging of bugs easier and faster.

Example: We show in Figure 5.10 a counterexample for our running example

from Figure 5.1. The variables x, y, z all gets the value zero which is in accordance to

the initial assumption. The trace in the CCFG is shown using solid bold arrows. Each

transition has the value of the variable it updates. The context switches between the

threads are shown using dashed bold arrows.

5.12 Related Work

In Section 5.1 we discussed various related work for state-space reduction for sym-

bolic approaches. We now give a brief overview, with a few representative related work

in combining partial-order reduction method to address state-space explosion problem

in explicit approaches.

In explicit approaches, typically, the concurrent system is executed with interleav-

ing semantics using a scheduler. In such model checkers [God97, AQR+04], the scheduler

is constrained – by adding more constraints, i.e., guard strengthening – to explore only
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Figure 5.10: A counterexample on the CCFG for our running example

a subset of interleaving that guarantee the correctness. At a given global state, only a

subset of transitions (for e.g., persistent set [God95]) are explored. One can obtain the

persistent set using conservative static analysis. Since the static analysis does not pro-

vide precise dependency relation, one can obtain the set dynamically [FG05]. One can

also use conditional dependency relation to declare two transitions being dependent with

respect to a given state [GP93]. One can also use sleep set [God95] to eliminate redun-

dant interleaving not eliminated by persistent set. In previous works, researchers have

also used lockset-based transactions to cut down interleaving between access points that

are provably unreachable [FQ03, SC06, LPQR05]. In spite of these efforts, the scalability

problem remains. To overcome this limitation, some researchers have employed sound

abstraction [AQR+04] with bounded (i.e., under-approximation) number of context
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switches [QR05], while some others have used finite-state model abstractions [CKS05],

combined with proof-guided method to discover the context switches [GLST05].

There have been parallel efforts [AHMN91, YGL04, BAM07] to detect bugs for

weaker memory models. As shown in [YGLS03], one can check these models using

axiomatic memory style specifications combined with constraint solvers. We are not

aware of any approach combining partial-order reduction with these axiomatic style to

reduce constraints.

5.13 Summary

In this chapter we described a bounded depth symbolic analysis tool called

Candor for concurrent programs. We are first to exploit partial-order reduction tech-

niques in a symbolic analysis effort that generates verification conditions directly with-

out an explicit scheduler. We discussed a novel approach to reduce verification problem

sizes and state space for concurrent systems using MATs. We also leverage our ap-

proach using static analysis techniques that identifies simultaneously unreachable con-

flicting accesses. We also efficiently encode thread-specific context bounding in our

approach. Our experimental results demonstrates the efficacy of our approach. Our

MAT-based approach is orthogonal to the approaches that exploit transaction-based

reductions [SC06, FQ03, KGS06]. Nevertheless, we can exploit those to identify un-

reachable conflicting pairs, and further reduce the necessary token-passing constraints.
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Chapter 6

Translation Validation of

High-Level Synthesis

Once the important properties of the high-level components have been verified

possibly using techniques presented in Chapter 4 and 5, the translation from the high-

level design to low-level RTL still needs to be proven correct, thereby also guaranteeing

that the important properties of the components are preserved. In this chapter we will

discuss an approach that proves that the translation from high-level design to a scheduled

design is correct, for each translation that the HLS tool performs. In the next chapter

we will describe another approach that will allow us to write part of these tools in a

provably correct manner.

6.1 Overview of Translation Validation

HLS tools are large and complex software systems, often with hundreds of thou-

sands of lines of code, and as with any software of this scale, they are prone to logical

and implementation errors. Apart from applying a monolithic tool, HLS process is char-

acterized by significant user intervention from recoding to directing the synthesis goals.

Consequently, the HLS process, even with automated HLS tools, is error prone and may

lead to the synthesis of RTL designs with bugs in them, which often have expensive ram-

ifications if they go undetected until after fabrication or large-scale production. Hence,

correctness of the HLS process (manual or automatic) has always been an important

concern.

87
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In general, proving that the HLS process always produces target RTL designs that

are semantically equivalent or refinement to their source versions is usually very hard.

However, even if one cannot prove the HLS process correct once and for all, one can

try to show, for each translation that HLS performs, that the output program produced

by these steps has the same behavior as the original program. Although this approach

does not guarantee that the HLS process is bug free, it does guarantee that any errors in

translation will be caught when the particular steps of HLS are performed, preventing

such errors from propagating any further in the hardware fabrication process. This

approach to verification, called translation validation, has previously been applied with

success in the context of optimizing compilers [PSS98, Nec00, RM99, ZPFG03, GZB05].

6.2 Overview of Our Approach

During the HLS process, an engineer starts with a high-level description of the de-

sign, usually called a specification, which is then refined into progressively more concrete

implementations. Checking correctness of these refinement steps has many benefits, in-

cluding finding bugs in the translation process, while at the same time guaranteeing that

properties checked at higher-levels in the design are preserved through the refinement

process, without having to recheck them at lower levels. For example, if one checks that

a given specification satisfies a safety property, and that an implementation is a correct

trace refinement of the specification, then the implementation will also satisfy the safety

property. In this chapter, we show using a novel algorithm how translation validation

can effectively be implemented in a previously unexplored setting, namely HLS. The

novelty of our approach comes from the fact that it can account for concurrency which is

inherent in hardware design. Our algorithm deals with this concurrency using standard

techniques for computing weakest preconditions and strongest postconditions of parallel

programs [Cha88].

Our translation validation algorithm uses a simulation relation approach to prove

refinement. Our algorithm consists of two components. The first component is given

a relation, and checks that this relation satisfies the properties required for it to be

a correct refinement simulation relation. The second component automatically infers

a correct simulation relation just from the specification and the implementation pro-

grams. In particular, our inference algorithm automatically establishes a relation that

states what points in the implementation program are related to what points in the
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specification program. This relation guarantees that for each execution sequence in the

implementation, an equivalent execution sequence exists in the specification. Apart from

refinement checking, we also generalize both of our checking and inference algorithms to

prove equivalence between the specification and the implementation programs using a

bisimulation relation approach.

To evaluate our approach, we used the Simplify theorem prover [DNS05] to imple-

ment our algorithms in a validating system called Surya. We then used Surya to check the

correctness of a variety of refinements of infinite state concurrent systems represented us-

ing Communicating Sequential Processes [Hoa85] (CSP) programs. Next, we used Surya

to validate the results of a realistic HLS tool. In particular, we validate all the phases (ex-

cept for parsing, binding and code generation) of the Spark HLS tool [GDGN03] against

the initial behavioral description. With over 4,000 downloads, and over 100 active mem-

bers in the user community, Spark is a widely used tool. Although commercial HLS tools

exists, these tools are not available for academic experimentation – Spark represents the

state of the art in the academic community.

Our verification approach is modular as it works on one procedure at a time.

Furthermore, for Spark our validation tool took on average 6 seconds to run per pro-

cedure, showing that translation validation of HLS transformations can be fast enough

to be practical. Finally, in running Surya, two failed validation runs have lead us to

discover two previously unknown bugs in the Spark tool. These bugs cause Spark to gen-

erate incorrect RTL for a given high-level program. This demonstrates that translation

validation of the HLS process can catch bugs that even testing and long-term use may

not uncover.

Contributions

Our main contributions can be summarized as follows:

1. We show using a novel algorithm how translation validation can effectively be

implemented in a previously unexplored setting, namely HLS.

2. We developed a fully automated algorithm that uses an automated theorem proving

component in order to handle infinite state spaces.

3. Our approach can be seen as a generalization of existing translation validation

techniques to account for concurrency and for trace refinement checking.
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Figure 6.1: CCFGs of our running example along with a simulation relation

4. We implemented our algorithm in a prototype tool called Surya using the Simplify

theorem prover.

5. In our experiments, we used Surya to check the correctness of a variety of CSP

refinements and also to validate all the phases (except for parsing, binding and

code generation) of the Spark HLS tool [GDGN03] against the initial behavioral

description.

6.3 Illustrative Example

At the heart of a HLS process is a model of a system consisting of concurrent

pieces of functionality, often expressed as sequential program-like behavior, along with

synchronous or asynchronous interactions [LSV98, SJ04]. CSP is a calculus for describing

such concurrent systems as a set of processes that communicate synchronously over

explicitly named channels. In this chapter we describe our algorithm using CSP-style

concurrent programs. While CSP presents a good model for a large number of hardware

models described using HDLs, we note that the core algorithms of our approach do not
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Figure 6.2: Communication diagrams of our running example

depend on the choice of the input language. For example, in our experiments we have

used our approach for programs that may include arrays, and function calls that are

generally not part of CSP programs.

We start out by describing the salient features of CSP required for understanding

the examples in this chapter. A CSP program is a set of (possibly mutually recursive)

process definitions. A asynchronous parallel composition of two processes P and Q is

written as (P || Q). Asynchronous parallel processes in our version of CSP (and Hoare’s

original version [Hoa85]) can only communicate through messages on channels. Although

there are no explicit shared variables, these can easily be simulated using a process that

stores the value of the shared variable, and that services reads and writes to the variable

using messages. c?v denotes reading a value from a channel c into a variable v and c!v

denotes writing a variable v to a channel c. Reads and writes are synchronous. Channels

can be visible or hidden. Visible channels are externally observable, and these are the

channels that we preserve the behavior of when checking for correctness. We also allow

simple C-style control instructions and synchronous parallel composition. By allowing

both asynchronous (inherent in CSP) and synchronous semantics of concurrency we

support system designs which are Globally Asynchronous Locally Synchronous (GALS).

We now present a simple example that illustrates our approach (Figure 6.1).

For now ignore the dashed lines in the figure. The specification is a sequential process

X shown in Figure 6.1(a) using our internal Concurrent Control Flow Graph (CCFG)

representation after tail recursion elimination has been performed. We omit the details

of the actual CSP code, because the CCFG representation is complete, and we believe

the CSP code only makes the example harder to follow. This process is continually

reading values from an input channel called inp into a variable p and then computes the

sum from (2×p+1) to 10 using a loop. Finally, it writes the sum out to a channel named

outp. In refinement based hardware development, the designer often starts with such a
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Table 6.1: A simulation relation for our running example

(gl1, gl2, φ)

A. (a0, b0, true)

B. (a2, (b2, b5), ps = pi)

C. (a4, (b4, b7), ks = ni ∧ sums = sumi ∧ (ks + 1) = ti)

D. (a7, (b4, b9), sums = sumi)

high-level description of a sequential design, refining the details of the implementation

later on.

An implementation (Figure 6.1(b)) may use two separate parallel processes (com-

ponents) Y and Z, communicating via a hidden channel mid and an acknowledgment

channel ack as shown in Figure 6.2(b). Like its specification it also takes a value from

the inp channel into a variable p and outputs the sum from (2× p + 1) to 10 in the outp

channel. However, now it does so in 2 steps, first the process Y multiplies p by 2 and

sends it to the component Z then process Z computes the sum and writes it to the outp

channel. One additional subtlety of this example is that, in order for the refinement

to be correct, an additional channel needs to be added for sending an acknowledgment

token (in this case the value 1) back to the process Y, so that a new value isn’t read from

the inp channel until the current value has been written out to the outp channel. The

value read from the ack channel is not used, and so we use an “ ” for the variable being

read. Instructions on the same transition edge are executed in parallel (synchronously).

Apart from the architectural differences, the loop-structure in the implementa-

tion is different from the one in the specification in several ways. First, a loop-shifting

transformation has moved the operation i4 from the beginning of the loop body to the

end of the loop body (j42), while also placing a copy of the operation in the loop header

(j41) using the temporary variable t. The effect of this loop-shifting transformation is

a form of software pipelining [Lam88]. Note that without this pipelining transforma-

tion it would not have been possible to schedule the operation i4 and i5 together due

to the data dependence between them. In addition to loop-shifting, a copy propagation

of instruction j4 to j5 and j42 are also performed. This ability to make large scale code

transformations via parallelizing code transformations as shown here is an important

aspect of parallelizing HLS implemented in SPARK. Even without HLS tools, similar
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source-level transformations are often done manually by the designer to optimize the

generated code as a part of high-level design process.

Translation Validation Approach

Our translation validation approach consists of two parts, which theoretically

are independent, but for practical reasons, we have made one part subsume the other as

explained below. The first part is a checking algorithm that, given a relation, determines

whether or not it satisfies the properties required for it to be a valid simulation relation.

The second part is an inference algorithm that infers a relation given two programs,

one of which is a specification, and the other is an implementation. To check that one

program is a refinement to another, one therefore runs the inference algorithm to infer

a relation, and then one uses the checking algorithm to verify that the resulting relation

is indeed the required relation. Because the inference algorithm does a similar kind of

exploration as the checking algorithm, this leads to duplicate work. To reduce this work,

we have made the inference algorithm also perform checking, with only a small amount

of additional work. This avoids having the checking algorithm duplicate the exploration

work done by the inference algorithm. The checking algorithm is nonetheless useful by

itself, in case our inference algorithm is not capable of finding an appropriate relation,

and the relation is manually provided by the system designer.

Simulation Relation

The goal of the simulation relation in our approach is to guarantee that the

specification and the implementation interact in the same way with any surrounding

environment that they would be placed in. The simulation relation guarantees that

the set of execution sequences of visible instructions in the implementation is a subset

of the set of execution sequences in the specification. In what follows, we consider

visible instructions to be read and write operations to visible channels. However, in

Section 6.8.2, we define visible instructions to be function calls and return statements.

The simulation relation (defined formally in Section 6.5) consists of a set of entries

of the form (gl1, gl2, φ), where gl1 and gl2 are program locations in the specification and

implementation respectively, and φ is a predicate over variables of the specification and

implementation. The pair (gl1, gl2) captures how the control state of the specification

is related to the control state of the implementation, whereas φ captures how the data
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is related. For our running example, the entries in the simulation relation are labeled A

through D in Figure 6.1, and each entry has a predicate associated with it as shown in

Table 6.1.

The first entry ‘A’ in the simulation relation relates the start location of the

specification and the implementation. For this entry, the relevant data invariant is true,

as we have no information about the states of the programs in those locations. The

second entry ‘B’ shows the specification just as it finishes reading a value from the inp

channel. The corresponding control state of the implementation has the Y process in

the same state, just as it finishes reading from the inp channel and the other process

Z is at the top of its loop. We use subscript s to denote variables in the specification

and subscript i for variables in the implementation. For this entry, the relevant data

invariant is ps = pi, which states that the value of p in the specification is equal to

the value of p in the implementation. This is because both the specification and the

implementation have stored in p the same value from the surrounding environment. In

the next subsection Inference Algorithm, we explain in further detail how our algorithm

models the environment as a set of separate processes that are running in parallel with

the specification and the implementation. For now we hide these additional processes

for clarity of exposition.

The next entry ‘C’ in the simulation relation relates the loop head (a4) in the

specification with the loop head (b7) of the Z process in the implementation. This entry

represent two loops that run in synchrony, one loop being in the specification and the

other being in the implementation. The invariant can be seen as a loop invariant across

the specification and the implementation, which guarantee that the two loops produce

the same effect on the visible instructions. The data part of this entry guarantee that

the two loops are in fact synchronized. Nominally, we need at least one entry in the

simulation that “cuts through” every loop pair, in the same way that there must be at

least one invariant through each loop when reasoning about a single sequential program.

The last entry ‘D’ in the simulation relation relates the location a7 in the speci-

fication with the location (b4, b7) of the implementation. The relevant invariant for this

entry is sums = sumi, since the specification is about to write sum to the externally

visible outp channel and the implementation is about to write sum to the same channel

(our correctness criterion).

Simultaneous execution from the last entry ‘D’ can reach back to ‘B’, establish-
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ing the invariant ps = pi, since by the time execution reaches the second entry again,

both the specification and the implementation would have read the next value from the

environment (details of how our algorithm establishes that the two next values read from

the environment processes are equal is explained in the Inference Algorithm subsection).

Checking Algorithm

a2

i2: sum = 0

i1: k = 2 * p

ps = pi

(b2, b5)

(b4, b7)a4

j2: sum = 0
j41: t = n + 1

j11& j12: n = k (mid!k mid?n)

j1: k = 2 * p

ks = ni ks + 1 = ti sums = sumi

j4: n = t
j5: sum = sum + t
j42: t = t + 1

j3: (n < 10)

a4 (b4, b7)

(b4, b7)a4

i5: sum = sum + k

i3: (k < 10)

i4: k = k + 1

ks = ni ks + 1 = ti sums = sumi

ks = ni ks + 1 = ti sums = sumi

(a) B - C

(b) C - C

Figure 6.3: Checking the simulation relation. (a) Traces from B to C (b) Traces from C
to C

The entries in the simulation relation must satisfy some simple local requirements

(which are made precise in Section 6.5). Intuitively, for any entry (gl1, gl2, φ) in the

simulation relation, if the specification and implementation start executing in parallel at

control locations gl1 and gl2 in states where φ holds, and they reach another simulation

entry (gl ′1, gl
′
2, φ

′), then φ′ must hold in the resulting states.

Given a simulation relation, our checking algorithm checks each entry in the rela-

tion individually. For each entry (gl1, gl2, φ), it finds all other entries that are reachable

from (gl1, gl2), without going through any intermediate entries. For each such entry

(gl ′1, gl
′
2, ψ), we check using a theorem prover that if (1) φ holds at gl1 and gl2, (2) the
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Figure 6.4: Steps of the 2nd iteration for computing the simulation relation

specification executes from gl1 to gl ′1 and (3) the implementation executes from gl2 to

gl ′2, then ψ will hold at gl ′1 and gl ′2.

For our example, the traces in the implementation and the specification from B

to C and the trace from C to itself are shown in Figures 6.3(a) and 6.3(b) respectively.

The communication events have been transformed into assignments and the original

communication events are in brackets.

For the B - C path shown in Figure 6.3(a), our algorithm uses a theorem prover to

validate that if ps = pi holds before the two traces, then ks = ni∧sums = sumi∧(ks+1) =

ti) holds after the traces have been executed. Similarly, it checks the traces from C to C

shown in Figure 6.3(b) and also all the other entries in the simulation relation. If there

were multiple paths from an entry, our algorithm checks all of them.
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Table 6.2: Iterations for computing the simulation relation

(gl1, gl2) 1st iteration 2nd iteration 3rd iteration (φ)

A. (a0, b0) true true true

B. (a2, (b2, b5)) ps = pi ps = pi ps = pi

C. (a4, (b4, b7)) ks = ni

ks = ni ∧ sums = sumi ks = ni ∧ sums = sumi

∧(ks + 1) = ti ∧(ks + 1) = ti

D. (a7, (b4, b9)) sums = sumi sums = sumi sums = sumi

Inference Algorithm

Our inference algorithm starts by finding the pairs of locations in the implementa-

tion and the specification that need to be related in the simulation. In the given example,

our algorithm first adds (a0, b0) as a pair of interest, which is the entry location of both

programs. Then it moves forward simultaneously in the implementation and the speci-

fication until it reaches a branch or an operation (read or write) on a visible channel. In

the example from Figure 6.1, our algorithm finds that there is a branch, an input and an

output event that must be matched (the specification events inp?p and outp!sum should

match, respectively, with the implementation events inp?p and outp!sum). This amounts

to computing the first column of Table 6.2. While finding these pairs of locations, our

algorithm also does two things. First, it correlates the branch in the specification and

the implementation (details of how we establish branch correlations is explained in Sec-

tion 6.6). Next, it finds the local conditions that must hold for the visible events to

match. For events that output to externally visible channels, the local condition states

that the written values in the specification and the implementation must be the same.

For example, the local condition for the output event is sums = sumi.

For events that read from externally visible channels, the local condition states

that the specification and the implementation are reading from the same point in the

conceptual stream of input values. To achieve this, we use an environment process that

models each externally visible input channel c as an unbounded array values of input val-

ues, with an index variable i stating which value in the array should be read next. This

environment process runs an infinite loop that continually outputs values[i] to c and in-

crements i. Assuming that i and j are the index variables from the environment processes
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that model an externally visible channel c in the specification and the implementation,

respectively, then the local condition for matching events c?a (in the specification) and

c?b (in the implementation) would then be is = ji. The equality between the index

variables implies that the values being read are the same, and since this fact is always

true, we directly add it to the generated local condition, producing is = ji ∧ as = bi.

Once the related pairs of locations have been collected we define, for each pair of

locations (gl1, gl2), a constraint variable ψ(gl1,gl2) to represent the state-relating formula

that will be computed in the simulation relation for that pair. We then define a set

of constraints over these variables to ensure that the would-be simulation relation is a

simulation.

There are two kinds of constraints. First, for each pair of locations (gl1, gl2)

that are related, we want ψ(gl1,gl2)
to imply that the local condition at those locations

hold. For example, ψ(a7,(b4,b9)) should imply sums = sumi, so that the output values are

the same. Such constraints guarantee that the computed simulation relation is strong

enough to show that the visible instructions behave the same way in the specification

and the implementation. A second kind of constraint is used to state the relationship

between one pair of related locations and other pairs of related locations. For example,

if starting at (gl1, gl2) in states satisfying ψ(gl1,gl2), the specification and implementation

can execute in parallel to reach another related pair of locations (gl ′1, gl
′
2), then ψ(gl ′1,gl ′2)

must hold in the resulting states. As shown in Section 6.6, such constraints can be stated

over the variables ψ(gl1,gl2)
and ψ(gl ′1,gl ′2) using the weakest precondition operator (wp).

This second kind of constraint guarantees that the computed simulation relation is in

fact a simulation.

Once the constraints are generated, we solve them using an iterative algorithm

that starts with all constraint variables set to true and then iteratively strengthens

the constraint variables until a theorem prover is able to show that all constraints are

satisfied. Although in general this constraint-solving algorithm is not guaranteed to

terminate, in practice it can quickly find the required simulation relation.

The constraint solving for our example is shown in Table 6.2. Our algorithm

first initializes the constraint variables with the local conditions that are required for the

visible instructions to be equivalent. Then it chooses any entry from the table, say C

and finds the entries that can reach it (i.e. C and B). Consider the synchronized loop

from C to C shown in Figure 6.4(a). Our algorithm computes the weakest precondition
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of the formula at the bottom (ks = ni) over the instructions in the implementation and

in the specification, which happens to be δ = [(ks < 10) ⇒ (ni < 10) ⇒ (ks + 1) = ti].

Next, it asks a theorem prover if the condition at the top i.e. ks = ni implies δ. Since it

does not, our algorithm strengthens the constraint variable at the top with (ks + 1) = ti

which is a stronger condition than δ. A similar pass through Figure 6.4(b) strengthens

the constraint variable at C with (sums = sumi). For the other paths B - C, D - B, and

A - B shown in Figure 6.4 the theorem prover is able to validate the implication, and

as such we do not need to strengthen. Our constraint solving continues in this manner

until a fixpoint is reached.

6.4 Definition of Refinement

We now present a formal description of our approach that builds upon the illus-

tration shown earlier. Our approach verifies each procedure from the specification against

the corresponding procedure from the implementation. We represent each process in the

specification and the implementation using a transition diagram (Definition 5).

We define ϑ to be the set of visible instructions. These are the instructions

whose semantics we would like preserved between the specification and implementation.

Because our algorithm is parameterized by the set ϑ of visible events, we can apply

our approach to various settings. For example, in this discussion we consider visible

instructions to be input and output to visible channels. In Section 6.8.2, however we

define visible instructions to be function calls and return statements. For v1, v2 ∈ ϑ, we

write 〈v1, σ1〉 ≡ 〈v2, σ2〉 to represent that v1 in program state σ1 is equivalent to v2 in

program states σ2. In the case of channels, two visible instructions are equivalent iff they

both are inputs, or both outputs on the same channel and their values are the same. In

the case of function calls and returns, we say that two function calls are equivalent iff

the state of globals, the arguments and the address of the called function are the same.

Furthermore, we say that two returns are equivalent iff the returned value and the state

of the globals are the same. This concept of equivalence for visible instruction can be

extended to execution sequences as follows.

Definition 19 (Equivalence of Execution Sequences). Two execution sequences η1 ∈ N
and η2 ∈ N are said to be equivalent, written η1 ≡ η2, if the two sequences contain visible

instructions that are pairwise equivalent.
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Definition 20 (Refinement of Transition Diagrams). Given two transition diagrams

π1 = (L1,I1,→1, ι1) and π2 = (L2,I2,→2, ι2), we define π1 to be a refinement of π2

(written π1 � π2) iff for every σ1 ∈ Σ and η1〈π1, ι1, σ1〉 ∈ N there exists σ2 ∈ Σ and

η2〈π2, ι2, σ2〉 ∈ N such that η1 ≡ η2.

6.5 Simulation Relation

A verification relation between two transition diagrams π1 and π2 is a set of

triples (gl1, gl2, φ), where gl1 ∈ L1, gl2 ∈ L2 and φ is a predicate over the variables live

at locations gl1 and gl2. Let the set of such predicates be denoted by Φ
def
= Σ × Σ → B.

We write φ(σ1, σ2) = true to indicate that φ is satisfied in (σ1, σ2) ∈ Σ × Σ.

Simulation relations are verification relations with a few additional properties.

To define these properties, we make use of a cumulative semantic step relation �+,

which works like �, except that it can take multiple steps at once, and it accumulates

the steps taken into an execution sequence.

Definition 21 (Cumulative Semantic Step). Given configurations 〈gl0, σ0〉 and 〈gln, σn〉,
and an execution sequence η that contains at least one transition, we define �+ as

follows:

〈gl0, σ0〉
η

�+ 〈gln, σn〉 iff η = 〈gl0, σ0〉
i1� · · · in� 〈gln, σn〉

Definition 22 (Simulation Relation). A simulation relation R for two transition dia-

grams π1 = (L1,I1,→1, ι1) and π2 = (L2,I2,→2, ι2) is a verification relation such that:

R(ι1, ι2, true)

∀gl2, gl ′2 ∈ L2, gl1 ∈ L1, σ1, σ2, σ
′
2 ∈ Σ, φ ∈ Φ, η2 ∈ N .⎡

⎢⎣ 〈gl2, σ2〉
η2

�+
2 〈gl ′2, σ′2〉 ∧

R(gl1, gl2, φ) ∧ φ(σ1, σ2) = true

⎤
⎥⎦ ⇒

∃gl ′1 ∈ L1, σ
′
1 ∈ Σ, φ′ ∈ Φ, η1 ∈ N .⎡

⎢⎣ 〈gl1, σ1〉
η1

�+
1 〈gl ′1, σ′1〉∧

R(gl ′1, gl
′
2, φ

′) ∧ φ′(σ′1, σ′2) = true ∧ η1 ≡ η2

⎤
⎥⎦

Intuitively, these conditions respectively state that (1) the entry location of π1

must be related to the entry location of π2; and (2) if π1 and π2 are in a pair of related

configurations, and π2 can proceed one or more steps producing an execution sequence
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η2, then π1 must also be able to proceed one or more steps, producing a sequence η1 that

is equivalent to η2, and the two resulting configurations must be related.

The following lemma and theorem connect the above relation with our definition

of refinement for transition diagrams (Definition 20).

Lemma 1 (Refinement). If R is a simulation relation for π1, π2, then for each ele-

ment (gl1, gl2, ψ) ∈ R, σ2 ∈ Σ, and η2〈π2, gl2, σ2〉 ∈ N , there exists σ1 ∈ Σ, and

η1〈π1, gl1, σ1〉 ∈ N such that η1 ≡ η2 ∧ ψ(σ1, σ2) = true.

Theorem 4 (Refinement). If there exists a simulation relation for π1, π2, then π2 � π1.

The conditions from Definition 22 are used as the base case and the inductive

case of a proof by induction showing that π2 is a refinement of π1. Thus, a simulation

relation is a witness that π2 is a refinement of π1.

6.6 Translation Validation Algorithm

Our translation validation algorithms consists of two parts, checking and infer-

ence. To show that a transition diagram is a refinement of another transition diagram,

we show there exist a simulation relation. In the following sections we describe our

algorithms for computing a simulation relation.

Given a transition diagram π and a set of locations S, we define the skipping

transition relation ↪−→, which is a version of −→ that skips over all locations not in S.

This transition allows us to focus our attention on only those locations that are in S.

Definition 23 (Skipping Transition). Let π = (L,I,→, ι) be a transition diagram,

gl , gl ′ ∈ S, and w ∈ I∗, where w = i0 · · · in. We define the skipping transition relation

↪−→ for π as follows:

gl
(w,S)
↪−→π gl ′ iff ∃gl1, · · · , gln ∈ (L − S). gl i0−→ gl1 · · · gln

in−→ gl ′

Throughout the rest of this chapter, we assume that π1 = (L1,I1,→1, ι1) rep-

resents the procedure in the specification, and π2 = (L2,I2,→2, ι2) represents the cor-

responding procedure in the implementation. Thus, our goal is to show that π2 is a

refinement of π1 (i.e. π2 � π1).
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6.6.1 Checking Algorithm

In this section, we present the details of our algorithm for checking that a veri-

fication relation is indeed a correct simulation relation. We let R ⊆ L1 × L2 × Φ to be

the verification relation that needs to be checked. We first define two sets of locations

P1 and P2, which are of interest to our algorithm.

P1 = {gl1 | ∃gl2, φ. (gl1, gl2, φ) ∈ R}

P2 = {gl2 | ∃gl1, φ. (gl1, gl2, φ) ∈ R}

To focus our attention on only those locations in P1 and P2, we use the skipping transition

relation ↪−→. In this section, we use the shorthand notation gl1
w1
↪−→1 gl ′1 for gl1

(w1,P1)
↪−→π1

gl ′1, and gl2
w2
↪−→2 gl ′2 for gl2

(w2,P2)
↪−→π2 gl ′2.

Given an entry in R, we then define the next transition relation −→−→, which tra-

verses the two transition diagrams π1 and π2 simultaneously to the next entries reachable

from it.

Definition 24 (Next Transition). Given (gl1, gl2, φ) ∈ R, (gl ′1, gl
′
2, ψ) ∈ R, w1 ∈ I∗

1

and w2 ∈ I∗
2 , we define −→−→ as follows:

(gl1, gl2, φ)
(w1,w2)−→−→ (gl ′1, gl

′
2, ψ) iff gl1

w1
↪−→1 gl ′1 ∧ gl2

w2
↪−→2 gl ′2

For the verification relation R to be a simulation relation we require it to satisfy

certain conditions. In particular, we want the conditions to make sure that the entry

locations are related, and the exit locations are related. Furthermore, the conditions

should make sure that for every path in the implementation there is a corresponding

path in the specification (our refinement criterion). These conditions are made precise

by the following definition of well-formed relation. If the relation R is not well-formed,

then our checking algorithm immediately rejects the verification relation R.

Definition 25 (Well-Formed Relation). We define the relation R to be well formed if

the following holds:

1. (ι1, ι2, true) ∈ R

2. ∃φ ∈ Φ. (ε1, ε2, φ) ∈ R

3. ∀(gl1, gl2, φ) ∈ R, gl ′2 ∈ P2, w2 ∈ I∗
2

gl2
w2
↪−→2 gl ′2 =⇒ ∃gl ′1 ∈ P1, ψ ∈ Φ. (gl ′1, gl

′
2, ψ) ∈ R
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1. function CheckRelation(R)

2. for each (gl1, gl2, φ) ∈ R do

3. for each (gl1, gl2, φ)
(w1,w2)−→−→ (gl ′1, gl

′
2, ψ) do

4. if ¬IsInfeasible(w1, w2, φ) then

5. if ¬WellPaired(w1, w2, φ) then

6. Error(“Traces are not well formed”)

7. if ATP(φ⇒ wp(w1,wp(w2, ψ))) �= Valid then

8. Error(“Cannot verify relation entry”)

9. function IsInfeasible(w1 ∈ I∗
1 , w2 ∈ I∗

2 , φ ∈ Φ) : Boolean

10. return ATP(¬sp(w1, sp(w2, φ))) = Valid

Figure 6.5: Algorithm for checking a simulation relation

The checking algorithm is shown in Figure 6.5. The CheckRelation procedure

takes as input a well-formed relation R, and verifies each entry in the verification relation

individually. For each possible entry (line 2), the algorithm iterates through all the next

transitions as shown in line 3. In doing this search, infeasible paths are pruned out on

line 4.

The IsInfeasible function (lines 9-10), checks using an automated theorem prover

(ATP) whether or not it is in fact feasible for the specification to follow trace w1 and

the implementation to follow w2. The trace combination is infeasible if the strongest

postconditions (computed using the sp function) with respect to w2 and then with respect

to w1 is inconsistent. This takes care of pruning within a single program, but also

across the specification and the implementation. For a given formula φ and trace w, the

strongest postcondition sp(w,φ) is the strongest formula ψ such that if the instructions

in the trace w are executed in sequence starting in a program state satisfying φ, then ψ

will hold in the resulting program state. The sp computation itself is standard, except

for the handling of communication events, which are simulated as assignments. When

computing sp with respect to one sequence, we treat all variables from the other sequence

as constants. As a result, the order in which we process the two sequences does not

matter.
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Once we have identified that the two sequences w1 and w2 may be a feasible

combination, we check that they are well formed using the WellPaired predicate (lines 5-

6). The WellPaired predicate (not shown here) checks that there is at most one visible

instruction in the sequences w1 and w2. It also checks that the visible instructions are

equivalent.

Next, for well formed sequences, we check that if we start at states that satisfy

the predicate φ and execute w1 in π1 and w2 in π2 then the resulting states should satisfy

the predicate ψ. To do this we first compute the weakest precondition of ψ with respect

to the two traces, and then asks an ATP to show φ implies it (line 7). We perform the

weakest precondition computation on one trace and then the other. For a given formula

ψ and trace w, the weakest precondition wp(w,ψ) is the weakest formula φ such that

executing the trace w in a state satisfying φ leads to a state satisfying ψ. Here again,

the wp computation itself is standard, and the order in which we process the two traces

does not matter. If at the end of the algorithm there is no error then the verification

relation is indeed a simulation relation.

There are additional optimizations we perform that are not explicitly shown in the

algorithm from Figure 6.5. These are however important in improving the efficiency of

our refinement checking process. When exploring the control state (both in the checking

and in the inference algorithm), we perform a simple partial order reduction [Pel98] that

is very effective in reducing the size of the control state space: if two communication

events happen in parallel, but they do not depend on each other, and they do not involve

externally visible channels, then we only consider one ordering of the two events.

6.6.2 Inference Algorithm

Since there can be many possible paths through a loop, writing simulation re-

lations by hand can be tedious, time consuming and error prone. We therefore need

methods for generating these relations automatically, not just checking them. This in

turn also allow us to automate the validation process entirely. Nevertheless our checking

algorithm is useful by itself, in case our inference algorithm is not capable of finding an

appropriate relation, and a human wants to provide the relation by hand.

Here again to focus our attention on only those locations for which our approach

infers the relation entries, we define two sets of locations Q1 and Q2 for the transition

diagrams π1 and π2 respectively. These include all locations corresponding to visible
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events and also all locations before branch statements. In this section, we do notation

abuse by re-using the shorthand gl1
w1
↪−→1 gl ′1 for gl1

(w1,Q1)
↪−→π1 gl ′1, and gl2

w2
↪−→2 gl ′2 for

gl2
(w2,Q2)
↪−→π2 gl ′2.

We now define a parallel transition relation ↪−→↪−→ that essentially traverses the

two transition diagrams (specification and implementation) in synchrony, while focusing

on only those locations for which our approach infers the relation entries.

Definition 26 (Parallel Transition). Given (gl1, gl2) ∈ Q1 × Q2, (gl ′1, gl
′
2) ∈ Q1 ×Q2,

w1 ∈ I∗
1 and w2 ∈ I∗

2 , we define ↪−→↪−→ as follows:

(gl1, gl2)
(w1,w2)
↪−→↪−→ (gl ′1, gl

′
2) iff

gl1
w1
↪−→1 gl ′1 ∧ gl2

w2)
↪−→2 gl ′2 ∧ Rel(w1, w2, gl1, gl2) ∧ WellMatched(w1, w2).

We now describe the two predicates Rel and WellMatched used in the above

definition. The predicate Rel : I∗×I∗×Q1×Q2 → B is a heuristic that tries to estimate

when a path in the specification is related to a path in the implementation. Consider for

example the branch in the specification of Figure 6.1 and the corresponding branch in

the implementation. For any two such branches, the Rel function uses heuristics to guess

a correlation between them: either they always go in the same direction, or they always

go in opposite direction. Using these correlations, Rel(w1, w2, gl1, gl2) returns true only

if the paths w1 and w2 follow branches in a correlated way.

Our implementation of Rel correlates branches in two ways. First, using the

results of a strongest postcondition pre-pass over the specification and the implemen-

tation, Rel tries to use a theorem prover to prove that certain branches are correlated.

If the theorem prover is not able to determine a correlation, Rel uses the structure of

the branch predicate and the structure of the instructions on each side of the branch

to guess a correlation. For instance, in the example of Figure 6.1, since the strongest

postcondition involves the input parameter p, the theorem prover is unable to reason

about it. However, because the structure of the branch predicate is not changed in the

implementation, Rel can conclude that the two branches go in the same direction.

The other predicate WellMatched : I∗ × I∗ → B prunes some of these pair of

transitions if the sequence of instructions are not similar (well-matched). We say two

sequences (w1, w2) of instructions are well-matched if neither of them contain a visible

instruction or they each contains a single visible instruction of the same type; i.e. they

are both input or both output on the same channel. Although Rel and WellMatched make
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guesses about the correlation of branches and visible instructions, the later constraint

solving phase of our approach makes sure that these guesses are correct.

We now define the relation R ⊆ Q1 × Q2 of location pairs that will form the

entries of our simulation relation.

Definition 27 (Pairs of Interest). The relation R ⊆ Q1×Q2 is defined to be the minimal

relation that satisfies the following three properties:

R(ι1, ι2)

R(ε1, ε2)

R(gl1, gl2) ∧ (gl1, gl2)
(w1,w2)
↪−→↪−→ (gl ′1, gl

′
2) =⇒ R(gl ′1, gl

′
2)

The set R defined above can easily be computed by starting with the empty set,

and applying the above three rules exhaustively.

For our approach to successfully infer a simulation relation, the computed set R
must cover every path in the implementation (our refinement criterion). This condition

is made precise by the following definition of well-formed pairs of interest. The well-

formed condition here is similar to the one described in Definition 25, except that now

it is for the pairs of interest relation R. We do not need the first two conditions here as

they are satisfied by construction. Here again if the computed set R is not well-formed,

then our validation approach immediately rejects the translation from specification to

implementation.

Definition 28 (Well-Formed Pairs of Interest). We define the pairs of interest relation

R to be well formed if the following holds:

∀(gl1, gl2) ∈ R, gl ′2 ∈ Q2, w2 ∈ I∗
2

gl2
w2
↪−→2 gl ′2 =⇒ ∃gl ′1 ∈ Q1. (gl ′1, gl

′
2) ∈ R.

We now describe our inference algorithm in terms of constraint solving. In par-

ticular, for each (gl1, gl2) ∈ R we define a constraint variable ψ(gl1,gl2) representing the

predicate that we want to compute for the simulation entry (gl1, gl2). We denote by

Ψ the set of all such constraint variables. Using these constraint variables, the final

simulation relation will have the form:

{(gl1, gl2, ψ(gl1,gl2)) | R(gl1, gl2)}
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To compute the predicates that the constraint variables ψ(gl1,gl2) stand for, we

define a set of constraints on these variables, and then solve the constraints. The con-

straints are defined as follows.

Definition 29 (Constraint). A constraint is a formula of the form ψ1 ⇒ f(ψ2), where

ψ1, ψ2 ∈ Ψ, and f is a boolean function.

Definition 30 (Set of Constraints). The set C of constraints is defined by:

For each (gl1, gl2)
(w1,w2)
↪−→↪−→ (gl ′1, gl

′
2):

[
ψ(gl1,gl2) ⇒ CreateSeed(w1, w2)

]
∈ C[

ψ(gl1,gl2) ⇒ wp(w1,wp(w2, ψ(gl ′1,gl ′2)))
]
∈ C

The CreateSeed function above creates for each pair of instruction sequences

(w1, w2) a formula, which does not refer to any constraint variables. There are two cases

either they are well-matched or they are branches (Definition 26). If the instructions are

well-matched, then the formula returned by CreateSeed states that the visible instructions

in them are equivalent as defined in Section 6.4; and if they are branches, then the formula

states the two branches are correlated (either they both go in the same direction, or in

opposite directions).

The other function wp used above computes the weakest precondition with re-

spect to w2 and then with respect to w1. The weakest precondition computation is the

same as the one described in Section 6.6.1.

Having created a set of constraints C, our validation approach now solves these

constraints using the algorithm in Figure 6.6. The algorithm starts by setting each con-

straint variable to true (line 13) and initializing a worklist with the set of all constraints

(line 14). Next, while the worklist is not empty, it removes a constraint from the work-

list (line 16), and checks using a theorem prover if it is Valid (line 17). If not, then

it appropriately strengthens the left-hand-side variable of the constraint (line 20) and

adds to the worklist all the constraints that have this variable in the right-hand side

(lines 21-21).

6.7 Equivalence of Transition Diagrams

Apart from checking refinements, we also sometimes want to check equivalence

between two transition diagrams. In this section, we describe how we can generalize
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11. function SolveConstraints(C)

12. for each (gl1, gl2) ∈ R do

13. ψ(gl1,gl2)
:= true

14. let worklist := C
15. while worklist not empty do

16. let [ψ(gl1,gl2) ⇒ f(ψ(gl ′1,gl ′2))] := worklist .Remove

17. if ATP(ψ(gl1,gl2)
⇒ f(ψ(gl ′1,gl ′2))) �= Valid then

18. if (gl1, gl2) = (ι1, ι2) then

19. Error(“Start Condition not strong enough”)

20. ψ(gl1,gl2) := ψ(gl1,gl2)
∧ f(ψ(gl ′1,gl ′2))

21. worklist := worklist ∪ {c ∈ C | ∃ψ, g . c = [ψ ⇒ g(ψ(gl1,gl2)
)]}

Figure 6.6: Algorithm for solving constraints

our algorithms to check for equivalence. We first define two transition diagrams to be

equivalent as follows:

Definition 31 (Equivalence of Transition Diagrams). Two transition diagrams π1 and

π2 are said to be equivalent iff π1 � π2 and π2 � π1.

We define a bisimulation relation using the definition of simulation relation.

Definition 32 (Bisimulation Relation). A verification relation R is a bisimulation re-

lation for π1, π2 iff R is a simulation relation for π1, π2 and R−1 = {(gl2, gl1, φ) |
R(gl1, gl2, φ)} is a simulation relation for π2, π1.

The following theorem connects the above relation with our definition of equiv-

alence for transition diagrams.

Theorem 5 (Equivalence). If there exists a bisimulation relation for π1, π2, then π1 and

π2 are equivalent.

Like simulation relation, a bisimulation relation is a witness that two transition

diagrams are equivalent. Therefore, to check if the specification is equivalent to the

implementation our algorithms now have to show that there exists a bisimulation relation
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between them. We can use both our checking and inference algorithms for this purpose

with just slight modifications.

For the checking algorithm, we only have to strengthen the definition of well-

formed relation (Definition 25) with this fourth condition.

∀(gl1, gl2, φ) ∈ R, gl ′1 ∈ P1, w1 ∈ I∗
1

gl1
w1
↪−→1 gl ′1 =⇒ ∃gl ′2 ∈ P2, ψ ∈ Φ. (gl ′1, gl

′
2, ψ) ∈ R.

Similarly, for the inference algorithm, we only have to strengthen the definition

of well-formed pairs of interest (Definition 28) with this condition.

∀(gl1, gl2) ∈ R, gl ′1 ∈ Q1, w1 ∈ I∗
1

gl1
w1
↪−→1 gl ′1 =⇒ ∃gl ′2 ∈ Q2. (gl ′1, gl

′
2) ∈ R.

6.8 Experiments and Results

We implemented our algorithms in a tool called Surya using the Simplify

ATP [DNS05]. We have used Surya to validate programs in two different settings. First,

we used it to automatically check refinements of various concurrent programs, written

in CSP. Next, we used Surya to validate the result of the high-level synthesis framework

Spark.

6.8.1 Automatic Refinement Checking of CSP Programs

For refinements our goal is to infer a simulation relation (if possible). The visible

events in this case are input and output on visible channels. We wrote a variety of CSP

refinements, and checked them for correctness automatically. The refinements that we

checked are shown in Table 6.3, along with the number of parallel threads, the number

of instructions, the number of simulation relation entries, the number of calls to the

theorem prover, and the time required to automatically check them. Apart from the

theorem prover calls discussed in this chapter, we also use the theorem prover to reduce

the size of the formulas used in our algorithms. The number of calls to the theorem

prover mentioned in Table 6.3 include all these calls.

The first 11 refinements were inspired from examples that come with the FDR

tool [Ltd]. FDR is a state-of-the-art tool to check CSP refinements. The approach

that FDR uses for checking refinement is to perform an exhaustive search of the
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Table 6.3: Timings for the refinement examples checked using our tool

Description T I SRE TP Time

mins

1. Simple buffer 7 29 3 14 00.00

2. Simple vending machine 2 20 9 32 00.00

3. Cyclic scheduler 6 65 157 11082 00.49

4. Student tracking system 3 63 12 115 00.01

5. 1 comm link 11 54 3 14 00.01

6. 2 parallel comm links 18 105 37 486 00.04

7. 3 parallel comm links 25 144 45 1861 00.21

8. 4 parallel comm links 32 186 124 7228 01.11

9. 5 parallel comm links 39 228 315 24348 02.32

10. 6 parallel comm links 46 270 762 74991 08.29

11. 7 parallel comm links 53 312 1785 217131 37.28

12. SystemC refinement 8 39 3 14 00.00

13. EP2 system 3 173 208 5648 01.47

T: Number of parallel Threads.

I: Number of Instructions.

SRE: Number of Simulation Relation Entries.

TP: Number of Theorem Prover calls.

implementation-specification combined state space. Although in its pure form this ap-

proach only works for finite state systems, there is one way in which it can be extended

to infinite systems. In particular, if an infinite state system treats all the data it manipu-

lates as black boxes, then one can use skolemization and simply check the refinement for

one possible value. Such systems are called data-independent, and FDR can check the

refinement of these systems using the skolemization trick, even if they are infinite [RV01].

Unfortunately, for high-level programs, there are many refinement examples that
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are not finite, because they do not specify the bit-width of integers (in particular, we want

the refinement to work for any integer size). Nor are the processes data-independent,

as they manipulate the data during the refinement process. In particular, our example

from Figure 6.1 is neither finite nor data-independent, since both the specification and

the implementation are “inspecting” the variables when manipulating them. Indeed, it

would not at all be safe to simply check the refinement for any one particular value,

since, if we happen to pick 0 for p, and the implementation erroneously sets the output

to 4 times the input (instead of 2 times), we would not detect the error. FDR cannot

check the refinement of such infinite data-dependent CSP systems, except by restricting

them to a finite subset first, for example by picking a bit-width for the integers, and then

doing an exhaustive search. Not only would such an approach not prove the refinement

for any bit-width, but furthermore, despite many techniques that have been developed

for checking larger and larger finite state spaces [BCM+90, CD93, Pel98, RGG+95], the

state space can still grow to a point where automation is impossible. For example, we

tried checking the refinement example ‘2 parallel comm links’ from Table 6.3 in FDR

using 32-bit integers as values, and the tool had to be stopped because it ran out of

memory after several hours (Our tool, in contrast, is able to check this example for any

sized integers, not just 32-bit integers, in about 4 seconds).

We implemented generalizations of these 11 FDR examples to make them data-

dependent and operate over infinite domains. We were able to check these generalized

refinements that FDR would not be able to check.

The 12th refinement in the list is a hardware refinement example taken from a

SystemC book [GLMS02]. This example models the refinement of an abstract FIFO com-

munication channel to an implementation that uses a standard FIFO hardware channel,

along with logic to make the hardware channel correctly implement the abstract com-

munication channel.

In the 13th refinement from Table 6.3, we checked part of the EP2 system [EP],

which is a new industrial standard for electronic payments. We followed the imple-

mentation of the data part of the EP2 system found in a recent TACAS 2005 paper on

CSP-Prover [IR05]. The EP2 system states how various components, including service

centers, credit card holders, and terminals, interact.

In all of the above examples, we check for trace subset refinement (see Defini-

tion 20). Since trace subset refinement preserves safety properties, we can also conclude
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Figure 6.7: Overview of the Spark framework along with Surya

that the implementation has all the safety properties of the specification.

We also have a large test suite of incorrect refinements that we run our tool on,

to make sure that our tool indeed detects these as incorrect refinements.

6.8.2 SPARK: High-Level Synthesis Framework

Spark is a C-to-VHDL parallelizing high-level synthesis framework that employs

a set of compiler, parallelizing compiler, and synthesis transformations to improve the

quality of high-level synthesis results. Figure 6.7 shows an overview of the Spark HLS

framework. What makes Spark an excellent candidate for experimenting is not only

the easy availability of source code but also the fact that it uses a single intermediate

representation, called Hierarchical Task Graphs (HTGs) [GP92]. Spark starts with a be-

havioral description in ANSI-C as input – currently with the restrictions of no pointers,

no recursion, and no irregular control-flow jumps. It converts the input program into

its own IR, and then applies a set of code transformations, including loop unrolling,
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Table 6.4: Spark benchmarks successfully checked

Benchmarks No. of bisimulation No. of calls to Time

relation entries theorem prover secs

1. Incrementer 6 9 00.52

2. Integer-sum 6 20 00.81

3. Array-sum 6 24 00.83

4. Diffeq 7 41 01.68

5. Waka 11 79 02.61

6. Pipelining 12 75 02.30

7. Rotor 14 71 02.57

8. Parker 26 281 05.23

9. S2r 27 570 26.73

10. Findmin8 29 787 14.86

loop fusion, common sub-expression elimination, copy propagation, dead code elimina-

tion, loop-invariant code motion, induction variable analysis, and operation strength

reduction. Following these transformations, Spark performs a scheduling phase using re-

source allocation information provided by the user. This scheduling phase also performs

a variety of transformations, including speculative code motion, dynamic renaming of

variables, dynamic branch balancing, chaining of operations across conditional blocks,

and scheduling on multi-cycle operations. The scheduling phase is followed by a resource

binding phase and finally by a back-end code generation pass that produces RTL VHDL.

Our tool Surya takes as input the IR program that is produced by the parser,

and the IR program right before resource binding (see Figure 6.7), and verifies that

the two are equivalent by showing that there exist a bisimulation relation. Our tool

therefore validates the entire HLS process of Spark, except for parsing, resource binding

and code generation. Note that Surya is around 7,500 lines of C++ code, whereas Spark’s

implementation excluding the parser consists of over 125,000 lines of C++ code. Thus,

with around 15 times less effort compared to Spark’s implementation we can build a tool

that validates its synthesis process.
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We tested our tool on 12 benchmarks obtained from Spark’s test suite. Of these

benchmarks, 10 passed and 2 failed. The benchmarks that were succesfully checked are

shown in Table 6.4, along with the number of bisimulation relation entries, the number

of calls to the theorem prover, and the time required to check each benchmark. All these

benchmarks are single threaded. For the ones that passed, our tool was able to quickly

find the bisimulation relation, taking on average around 6 seconds per procedure, and a

maximum of 27 seconds for the largest procedure (80 lines of code). Furthermore, the

computed bisimulation relations were small, ranging in size from 6 to 29 entries, with an

average of about 14. To infer these bisimulation relations, our approach made an average

of 189 calls to the theorem prover per procedure (with a minimum of 9 and a maximum

of 797). Our approach is compositional since it works on one procedure at a time, and

the above results show that our approach can handle realistically size procedures.

As mentioned previously, two benchmarks failed our validation test. Upon further

analysis each of them lead us to discover previously unknown bugs in Spark. One bug

occurs in a particular corner case of copy propagation for array elements. The other bug

is in the implementation of the code motion algorithm in the scheduler. The fact that

Surya found two previously unknown bugs in a widely-used HLS framework emphasizes

the usefulness and bug-isolating capabilities of our tool.

In general, our tool will perform well when the transformations that are per-

formed preserve most of the program’s control flow structure. Such transformations

are called structure-preserving transformations [ZPFG03]. The only non structure-

preserving transformation that Spark performs is loop unrolling, but in our examples

this transformation did not trigger.

6.9 Related Work

Our work is related to translation validation [PSS98, Nec00, RM99, ZPFG03,

GZB05, ZPG+05, KLG07], relational approaches to reasoning about programs [FV99,

BG00, LJWF02, Ben04, Jos88], CSP refinement checking [Ltd, DS97, TW97, IR05], and

HLS verification [ABRM98, EHR99, NTR+01, KKM04, KLG08]. We now discuss each

area in more detail.

Translation Validation: Our inference algorithm was inspired by Necula’s translation

validation algorithm for inferring simulation relations that prove equivalence of sequential
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programs [Nec00]. Necula’s approach collects a set of constraints in a forward scan of the

two programs, and then solves these constraints using a specialized solver and expression

simplifier. Unlike Necula’s approach, our algorithm must take into account statements

running parallel, since hardware is inherently concurrent and one of the main tasks that

HLS tools perform is to schedule statements for parallel execution. Furthermore our

algorithm is expressed in terms of calls to a general theorem prover, rather than using

specialized solvers and simplifiers. In this sense our algorithm is more modular, since

the theorem proving part of the algorithm has been modularized into a component with

a very simple interface (it takes a formula and returns Valid or Invalid). This allows us

to easily substitute the current Simplify theorem prover with another one.

Relational approaches: Relational approaches are a common tool for reasoning

about programs, and they have been used for a variety of verification tasks, includ-

ing model checking [FV99, BG00], translation validation [PSS98, Nec00], and reasoning

about optimizations once and for all [LJWF02, Ben04]. In this context, our work is in-

spired by Josephs’s approach [Jos88] for proving refinements. However, Josephs proved

refinements by hand, whereas our tool is fully automated.

CSP refinement checking: There has been a long line of work on reasoning about

refinement of CSP programs. Our searching algorithm through the control state of the

program is similar to FDR’s searching technique [Ltd], which exhaustively explores the

state space. However, as mentioned previously, our tool can handle infinite state spaces

that do not trivially reduce using skolemization to finite state spaces. We achieve this

by capturing the possibly infinite state space of data using formulas and using a theorem

prover to reason about these formulas. Although, this technique is well known and

has been used in dataflow analysis [GS97, FLL+02], model checking [CCG03, HJMS02,

BMMR01], and translation validation [PSS98, Nec00]. The use of this technique in the

context of checking CSP refinements appears to be novel.

Various interactive theorem provers have been extended with the ability to rea-

son about CSP programs. As one example, Dutertre and Schneider [DS97] reasoned

about communication protocols expressed as CSP programs using the PVS theorem

prover [ORR+96]. As another example, Tej and Wolff [TW97] have used the Isabelle

theorem prover [Pau94] to encode the semantics of CSP programs. Isabelle has also

been used by Isobe and Roggenbach to develop a tool called CSP-Prover [IR05] for
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proving properties of CSP programs. All these uses of interactive theorem provers follow

a common high-level approach: the semantics of CSP is usually encoded using the native

logic of the interactive theorem prover, and then a set of tactics are defined for reasoning

about this semantics. Users of the system can then write proof scripts that use these

tactics, along with built-in tactics from the theorem prover, to prove properties about

particular CSP programs. Our approach does not have the same level of formal un-

derpinnings as these interactive theorem proving approaches. However, our approach is

fully automated, whereas these interactive theorem proving approaches all require some

amount of human intervention.

Our tool checks one particular property of CSP programs, namely trace subset

refinement. This kind of refinement only preserves safety properties. Algorithms and

tools exist for checking other kinds of refinements. For example, CSP-Prover [IR05]

can check refinements using a failures semantics that preserves liveness properties and

deadlock freedom (in addition to safety properties). The FDR [Ltd] tool can also check

refinements in a failures/divergence model, which can also preserve livelock freedom.

HLS verification: Techniques like correctness-preserving transformations [EHR99],

formal assertions [NTR+01], symbolic simulation [ARGB99], and relational approaches

for functional equivalence of FSMDs [KKM04, KMS+06] have been used to validate the

scheduling step of HLS. However, all these techniques assume that the scheduler does not

move code across basic blocks and variable names do not change, which would prevent

them from validating Spark’s HLS process. Also, in work that is complementary to ours,

model checking was used to validate the binding step of HLS [ABRM98], which is the

only internal step of Spark that our tool does not validate.

6.10 Summary

In this chapter, we have presented an automated algorithm for translation vali-

dation of the HLS process. We have implemented our algorithm in a validation system

called Surya and demonstrated its effectiveness through its application in two differ-

ent settings. The innovation in our work lies in showing that translation validation

approaches work well in the application domain of high-level synthesis.

Our experiments with Spark showed that with only a fraction of the development

cost of Spark, our algorithm can validate the translations performed by Spark, and it
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also uncovered bugs that eluded long-term use. Our work also solves the critical prob-

lem of handling more sophisticated datatypes than finite bit-width enumeration types

associated with typical RTL code and thus enables stepwise refinement of system de-

signs expressed using high-level languages. In the next chapter we discuss how we can

generalize this translation validation algorithm to perform once-and-for-all validation of

parts of HLS tools.
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Chapter 7

Parameterized Program

Equivalence Checking

In the previous chapter we discussed an approach to verify if two programs are

equivalent, thereby proving that the translation (performed by an HLS tool) from high-

level design to low-level design is correct. In this chapter, we discuss another approach

that guarantees correctness of the translation from high-level design to low-level design,

by proving the HLS tool itself correct. Unlike translation validation, this approach proves

the correctness of an HLS tool once and for all, before it is ever run. In the following

sections we describe in details our approach called Parametrized Equivalence Checking

(PEC) that generalizes the translation validation approach discussed in the previous

chapter to automatically establish the correctness of semantics preserving transforma-

tions once and for all.

7.1 Overview of Synthesis Tool Verification

HLS tools are a fundamental component of the tool chains hardware designers rely

on for system-level designs. As a result, correctness of HLS tool is crucially important.

A bug in a HLS tool can in turn introduce errors in each generated RTL. Furthermore,

HLS tool bugs can invalidate strong guarantees that were established on the original

source program (discussed in Chapter 4 and 5). Unfortunately, as discussed throughout

this thesis building reliable compilers is difficult, error-prone, and requires significant

manual effort.

118
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One of the most error prone parts of a HLS tool is its optimization phase. Many

optimizations require an intricate sequence of complex transformations. Often these

transformations interact in unexpected ways, leading to a combinatorial explosion in the

number of cases that must be considered to ensure that the optimization phase is correct.

Once-And-For-All vs. Translation Validation

Previous techniques for providing correctness guarantees for optimizations can

be divided into two categories: once and for all and translation validation.

The primary advantage of once-and-for-all techniques is that they provide a very

strong guarantee: optimizations are known to be correct when the tool is built, before

they are run even once. In contrast, translation validation provides a weaker correctness

guarantee. This is because translation validation guarantees that only a particular run

of the optimization is correct. Tools that include translation validation may still contain

bugs and it is unclear what a designer should do when the translation validator flags a

particular translation to be incorrect.

On the other hand, translation validation techniques have a clear advantage over

once-and-for-all techniques in terms of automation. Most of the techniques that provide

once-and-for-all guarantees require user interaction. Those that are fully automated, for

example Cobalt [LMC03] and Rhodium [LMRC05] approaches for compilers, work by

having programmers implement optimizations in a domain-specific language using flow

functions and single-statement rewrite rules. Unfortunately, the set of optimizations

that these techniques can prove correct has lagged behind translation validation. In

particular, translation validation can already handle complex loop optimizations like

skewing, splitting and interchange, which have thus far eluded automated once-and-for-

all approaches. A common intuition is that once-and-for-all proofs are harder to achieve

because they must show that any application of the optimization is correct, as opposed

to a single instance.

7.2 Overview of Our Approach

In this chapter, we present a new technique for proving optimizations correct

called Parameterized Equivalence Checking (PEC) that bridges the gap between trans-

lation validation and once-and-for-all techniques. PEC generalizes translation validation
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to handle parameterized programs, which are partially specified programs that can rep-

resent multiple concrete programs. For example, a parameterized program may contain

a section of code whose only known property is that it does not define or use a particular

variable.

The key insight of PEC is that existing translation validation techniques can be

adapted to work in the broader setting of parameterized programs. This allows transla-

tion validation techniques, which have traditionally been used to prove concrete programs

equivalent, to prove parameterized programs equivalent. Most importantly, because op-

timizations can be expressed as nothing more than parameterized transformation rules,

using before and after parameterized code patterns, PEC can prove once and for all that

such optimizations preserve semantics.

To highlight the power and generality of PEC, we designed a new language for

writing optimizations, and implemented a checker based on PEC that can automatically

check the correctness of optimizations written in this language. Our language for imple-

menting and proving optimizations correct is much more expressive than previous such

optimization languages, like Cobalt [LMC03] and Rhodium [LMRC05]: whereas Cobalt

and Rhodium only supported local rewrites of a single statement to another, our lan-

guage supports many-to-many rewrite rules. Such rules are able to replace an entire set

of statements, even entire loops and branches, with a completely different set of state-

ments. Using these rules, we can express many more optimizations than in Cobalt and

Rhodium, and we can also prove them all correct using our PEC algorithm.

Contributions

The main contributions of our approach are:

• We developed a technique for performing Parameterized Equivalence Checking.

PEC adapts the traditional translation validation approach presented in Chapter 6

to the setting of once-and-for-all correctness proofs.

• We developed a new language for implementing optimizations. Our language is

more expressive than previous languages that can be checked for correctness au-

tomatically: it has explicit support for expressing many-to-many transformations,

meaning that a set of statements can be transformed to another set of statements

in a single rewrite.
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i := 0

while (i < n) {

a[i] += 1;

b[i] += a[i];

i++;

}

(a)

i := 0

a[i] += 1;

while (i < n - 1) {

b[i] += a[i];

i++;

a[i] += 1;

}

b[i] += a[i];

i++;

(b)

Figure 7.1: Loop pipelining: (a) original code, and (b) optimized code

• We implemented and proved correct a variety of complex optimizations in our

system, which have been difficult or impossible to prove in previous systems.

7.3 Illustrative Example

In the previous chapter we discussed the validation of the Spark [GDGN03] HLS

tool. In Spark it was shown that compiler optimizations and various other source-to-

source transformations can be extremely useful for generating highly parallel designs.

In this section we illustrate the main ideas of our approach through one such compiler

optimizations: loop pipelining. Loop pipelining can break dependencies inside a loop

body without increasing the code size of the loop body, and thus provides more flexibility

during the scheduling phase of HLS.

As an example, consider the code in Figure 7.1(a). The statements in the original

loop cannot be scheduled together (to be executed in parallel) as there is a dependency

between them – the instruction b[i] += a[i] must wait until the instruction a[i] += 1

finishes. Figure 7.1(b) shows the result of applying loop pipelining on this loop. The

statements in this transformed loop does not depend on each other and can be sched-

uled together. In particular, the instruction b[i] += a[i] can be scheduled with the

instructions i++; a[i] += 1. However, to make this transformation correct, one has to

add a prologue at the beginning of the transformed loop in order to setup the pipelining
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I := 0

L1 : while (I < E) {

L2 : S1

L3 : S2

L4 : I++

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I := 0

S1

while (I < E-1) {

S2

I++

S1

}

S2

I++

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

DoesNotModify(S1, I)@L2 ∧ DoesNotModify(S2, I)@L3 ∧
StrictlyPositive(E)@L1 ∧ DoesNotModify(S1,E)@L2 ∧
DoesNotModify(S2,E)@L3 ∧ DoesNotModify(I++,E)@L4

Figure 7.2: Loop pipelining transformation

fact StrictlyPositive(E)

has meaning eval(σ,E) > 0

fact DoesNotModify(S,E)

has meaning eval(σ,E) = eval(step(σ,S),E)

Figure 7.3: Meanings of some facts that we use in our system

effect. There is also an epilogue after the loop to execute the remaining instructions.

7.3.1 Expressing Loop Pipelining

We implement loop pipelining in our language as shown in Figure 7.2. The

transformation simply moves some instructions (namely S1) from the current iteration to

the next iteration. Optimizations in our language are written as parameterized rewrite

rules with side conditions: P1 =⇒ P2 where φ, where P1 and P2 are parameterized

programs, and φ is a side condition that states when the rewrite rule can safely be fired.

An optimization P1 =⇒ P2 where φ states that when a concrete program is found
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that matches the parameterized program P1, it should be transformed to P2 if the side

condition φ holds.

Parameterized Programs

A parameterized program is a partially specified program that can represent

multiple concrete programs. For example, in the original and transformed programs from

Figure 7.2, S1 ranges over concrete statements (including branches, loops, and sequences

of statements) that are single-entry-single exit; I ranges over concrete program variables;

and E ranges over concrete expressions. Because variables like S1, I and E range over

the syntax of concrete programs, we call such variables meta-variables. To simplify

exposition, rather than provide explicit types for all meta-variables, we instead use the

following naming conventions: meta-variables starting with S range over statements,

meta-variables starting with E range over expressions, and meta-variables starting with

I range over variables.

Side Conditions

The side conditions are boolean combinations of facts that must hold at certain

points in the original program. For example the side condition DoesNotModify(S1, I)@L2

in Figure 7.2 states that at location L2 in the original program S1 should not

modify I. In general, side conditions are first-order logic formulas with facts like

DoesNotModify(S1, I)@L1 as atomic predicates.

Each fact used in the side condition must have a semantic meaning, which is

a predicate over program states. Figure 7.3 gives the semantic meanings for the two

primary facts that we use in our system. In general, meanings can be first-order logic

formulas with a few special function symbols: (1) σ is a term that represents the program

state at the point where the fact holds. (2) eval evaluates an expression in a program

state and returns its value; (3) step executes a statement in a program state and returns

the resulting program state.

The semantic meanings are used by the PEC algorithm to determine the seman-

tic information that can be inferred from the side conditions when proving correctness.

Although optimization writers must provide these meanings, in our experience we have

found that there is a small number of common facts used across many different optimiza-

tions (for example DoesNotModify), and since these meanings only need to be written
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once, the effort in writing meanings is not onerous.

Executing Optimizations

Optimizations written in our language are meant to be executed by an execution

engine. When running an optimization P1 =⇒ P2 where φ, the execution engine must

find concrete program fragments that match P1. Furthermore, it must perform some

program analysis to determine if the facts in the side condition φ hold. One option for

implementing these program analysis is to use a general purpose programming language.

Although this provides the most flexibility, it does not guarantee that the facts in the

side condition are computed correctly. Alternatively, if one wants stronger correctness

guarantees, the facts in the side conditions can be computed in a way that guarantees

that their semantic meanings hold, for example using the Rhodium system of Lerner et al.

[LMRC05], or using Leroy’s Compcert system [Ler06]. Note that it is straight forward

to see how the rewrite rule in Figure 7.2 performs loop pipelining on our example in

Figure 7.1.

7.3.2 Proving Correctness of Loop Pipelining

Our goal is to show that the loop pipelining optimization written in our language

is correct, once and for all, before it is even run once. To do this, we must show that the

rewrite rule from Figures 7.2 satisfies the following property: given the side conditions,

the original parameterized program and the transformed parameterized program have

the same behavior. We next discuss our approach in details.

Parameterized Equivalence Checking

In Chapter 6 we discussed Translation Validation (TV), a technique that proves

concrete, fully specified programs equivalent. In our setting, we are attempting to prove

parameterized programs equivalent. To achieve this, we developed a technique called

Parameterized Equivalence Checking (PEC) that generalizes traditional TV techniques

to the setting of parameterized programs.

There are two simple observations that intuitively explain why techniques from

translation validation can be generalized to parameterized programs. The first observa-

tion is that if a program fragment S in the original program executes in a program state

σ, and the same program fragment S executes in the transformed program in the same
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state σ, then we know that the two resulting states are equal. This shows that we can

reason about state equality even if we don’t know what the program fragments are. The

second observation is that when proving equivalence, we are usually interested in some

key invariants that justify the optimization. The insight is that the semantic meaning

of the side condition captures precisely when these key invariants can be propagated

throughout statements that are not fully specified. For example, if the correctness of

an optimization really depends on I not being modified in a region of code, the side

condition will allow us to know this fact, and thus reason about I across such unknown

statements.

Bisimulation Relation

PEC proves equivalence using bisimulation relation (Definition 32). Recall that

bisimulation relation is defined in terms of the more basic concept of verification relations,

which is a set of entries of the form (gl1, gl2, φ), where each entry relates a program point

gl1 in the original program with a corresponding program point gl2 in the transformed

program, and the predicate φ indicates how the state of the two programs are related at

that point. Moreover, a bisimulation relation is simply a verification relation that satisfies

the property that the predicate on any entry in the relation implies the predicate on all

entries reachable from it. In the following we denote the original parameterized program

as the specification and the transformed parameterized program as the implementation.

The PEC approach generalize the inference algorithm described in the previous

chapter. Similar to the TV algorithm, our PEC approach works in two steps. In the first

step we start by finding pairs of locations in the specification and the implementation

that need to be related in the bisimulation and then for each pair of locations (gl1, gl2),

we define a constraint variable ψ(gl1, gl2) to represent the state-relating formula that will

be computed in the bisimulation relation for that pair. We next define a set of constraints

over these variables that must be satisfied in order for the would-be bisimulation relation

to in fact be a bisimulation. In the second step, we solve the constraints using an iterative

algorithm.

Figure 7.4 shows the concurrent control flow graph (CCFG) for the two param-

eterized programs of our example, along with the related locations that our approach

generates. The related locations are shown using a dashed line (labelled A – F), and

each entry has a predicate associated with it which is shown in Table 7.1. These predi-
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I:=0
I<E

S2

S1

I++

I E

a0

a1

a2

a4

a3

a5

I:=0

I<E-1

S2

S1

I++

I E-1

b0

b2

b3

b5

b4

b6

b1

S1

S2
b7

b8

I++

A

B

C

E

F

D

Figure 7.4: CCFGs of running example with the related locations

cates operate over the program states σ1 and σ2 of the specification and implementation

programs. To make the notation cleaner, we use some shorthand notation. For example,

E1 means eval(σ1,E). Using this notation, the predicate at C states that (1) the two

programs states σ1 and σ2 are equal, (2) I < E holds in σ1 and (3) I < E − 1 holds in

σ2. Together the related locations and the predicates form the bisimulation relation for

this example.

Generating Constraints

Our PEC algorithm first relate the start locations of the two programs and then

adds the constraint that the constraint variable at A (ψ(a0,b0)) should imply the predicate

σ1 = σ2; this indicates that we can assume the program states are equal at the start



127

Table 7.1: A bisimulation relation for our running example

(gl1, gl2) φ

A. (a0, b0) σ1 = σ2

B. (a2, b1) σ1 = σ2 ∧ I1 < E1

C. (a3, b3) σ1 = σ2 ∧ I1 < E1 ∧ I2 < E2 − 1

D. (a2, b5) σ1 = σ2 ∧ I1 < E1 ∧ I2 < E2

E. (a3, b6) σ1 = σ2 ∧ I1 < E1 ∧ I2 ≥ E2 − 1

F. (a5, b8) σ1 = σ2

of the two code fragments. Similarly, it also adds the constraint ψ(a5,b8) ⇒ (σ1 = σ2)

corresponding to the end locations (F); this constraint indicates that we must establish

that the program states are equal after the two programs execute. To generate the loca-

tions in between, our algorithm traverses both programs in parallel from the top entry.

Each time a statement is reached like S1, and S2, the algorithm finds the corresponding

location in the other program, and adds a relation entry between the two locations with

the corresponding constraint variable implying the predicate σ1 = σ2 (since this is the

only mechanism we have to preserve equivalence of arbitrary statements). Apart from

these, our algorithm also generates constraints such that the constraint variable for each

related pair that is under a branch, implies the strongest post condition of the branch

condition. These constraints lead to the various predicates relating I and E in Table 7.1.

This allows entries in the bisimulation relation to encode information about what branch

conditions they are under, thereby pruning some pair of paths that are simultaneously

unreachable.

Recall from Section 6.3 that the constraints described above are the one that

ensures the predicate at a pair of locations (gl1, gl2) imply that any visible instructions

about to execute at (gl1, gl2) behave the same way. The visible instruction in this case

are the parameterized statement variables like S1, and S2. The intuition behind choosing

these statements as visible instructions is that since very little is known about them, we

predict they should behave in the same way in the two programs.

Apart from the above kind of constraint there is another kind of constraint, which

is used to state the relationship between one pair of related locations and other pairs
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of related locations. For example, if starting at (gl1, gl2) in states satisfying ψ(gl1,gl2)
,

the specification and implementation can execute in parallel to reach another related

pair of locations (gl ′1, gl
′
2), then ψ(gl ′1,gl ′2) must hold in the resulting states. As shown

in Section 6.6.2 and again here in Section 7.6, such constraints can be stated over the

constraint variables ψ(gl1,gl2) and ψ(gl ′1,gl ′2) using the weakest precondition operator (wp).

This second kind of constraint guarantees that the computed bisimulation relation is in

fact a bisimulation. In our example from Figure 7.4, the paths that our algorithm would

discover between relation entries are as follows: A to B, B to E, B to C, C to D, D to

C, D to E, and E to F.

During this step our algorithm also prune the infeasible paths. For example,

when starting at E, it is impossible for the specification to stay in the loop – it must

exit to F. Our algorithm can determine this from the predicate corresponding to the

branch condition at E. In particular, let i and e be the original values of I and E at E

(in either σ1 or σ2 since they are equal). The value e does not change through the loop

as stated by the side conditions. If the original program chooses to stay in the loop, the

assume(I < E) would lead to i+ 1 < e (where the “+1” comes from the increment of I

and the fact that S2 does not modify I). This would be inconsistent with the assumption

from E stating that i ≥ e− 1, and thus the path is pruned.

Solving Constraints

Once the constraints are generated, we solve them using an iterative algorithm

that starts with all the constraint variables set to true and then iteratively strengthens

the constraint variables until a theorem prover is able to show that all constraints are

satisfied. Our algorithm first initializes the constraint variables with the conditions

that are required for the visible instructions to be equivalent, thereby solving all the

constraints of the first kind. Then it chooses any constraint of the second kind and

iteratively solves it till it reaches a fix-point.

As an example, consider the constraint corresponding to the B-C path, our tool

would ask a theorem prover to show that, for any σ1 and σ2: if (1) ψ(a2,b1) := (σ1 =

σ2 ∧ eval(σ1, I) < eval(σ1,E)) holds and (2) the original program executes [S1] and

(3) the transformed program executes [S1; assume(I < E − 1)], then ψ(a3,b3) := (σ1 =

σ2 ∧ eval(σ1, I) < eval(σ1,E) ∧ eval(σ2, I) < eval(σ2,E) − 1) will hold after the two

statements have executed. In this case, the implication follows immediately from the
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assume and the fact that S1 produces the same program state if started in the same

program state. In fact for this example, the value of the constraint variable after solving

the constraints of the first kind is indeed the bisimulation relation. If for some path

pair X to Y, the implication does not hold (this is not the case in Figure 7.4), our

algorithm would strengthen the current value of the constraint variable at X with the

weakest precondition of the current value of the constraint variable at Y. Using such

iterative strengthening, our algorithm tries to convert the original guessed relation into

a bisimulation relation.

7.4 Parameterized Equivalence Checking

We now describe our approach in more detail. Our goal is to show that two

parameterized programs P1 and P2 are equivalent under side conditions φ. We represent

each program P as a transition diagram (Definition 5), which we denote by π = (L,I,→
, ι). In particular, we assume that π1 = (L1,I1,→1, ι1) is the transition diagram of the

original program, and π2 = (L2,I2,→2, ι2) is the transition diagram of the transformed

program. Moreover, we use ε1, ε2 to represent the exit locations of π1, π2.

We use a stronger definition of equivalence (redefined below) between two pa-

rameterized program, because parts of these programs are unknown. Furthermore, the

programs we consider here are deterministic as such starting at a configuration 〈ι, σ〉
there is at most one execution sequence that end in the exit location ε of the program.

Definition 33 (Final State). Given a transition diagram π = (L,I,→, ι) and a state

σ ∈ Σ, we use the notation π(σ) to represent the final state after executing π starting in

state σ. i.e.

π(σ) = σ′ iff ∃ η. 〈ι, σ〉
η

�+ 〈ε, σ′〉

Definition 34 (Equivalence). Given two transition diagram π1 and π2, we define π1 to

be equivalent to π2 if for any state σ ∈ Σ, we have π1(σ) = π2(σ).

The above definition of equivalence allows us to use our optimizations anywhere

inside in a program: by establishing program state equivalence, we guarantee that the

remainder of the program, after the optimization, runs the same way in the original

and the transformed programs. We can model observable events such as IO using heap

updates. For example, a call to printf can just append its arguments to a linked list
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on the heap. In this setting, our approach guarantees that the order of IO events is

preserved.

The instructions in our transition diagram are taken from a concrete program-

ming language of instructions, extended with meta-variables. The main components of

our approach do not depend on the choice of the concrete language of instructions that

we start with: this language can for example include pointers, arrays, and function calls.

We do however make one exception to this rule: we assume the existence of assume

instructions. In particular, we model conditionals using assume instructions on the tran-

sitions that flow away from a branch location (as shown for example in Figure 7.4).

We also use assume instructions to insert the information from side conditions into the

original or transformed program as needed, so that our tool can reason about the side

conditions. The choice of concrete language only affects the semantics of instructions,

which is entirely modularized in a function called step (which we have already seen).

The only part of the system that knows about step is the theorem prover, which is given

background axioms about the semantics of instructions (so that it knows for example

how I++ updates the store). All other parts of the system treat step as a black box.

Bisimulation Relation

Our approach is based on using a bisimulation relation to relate the execution

of the original program and the transformed program. We use the same definitions as

described in Section 6.4, however we redefine some of them again here to adapt them in

the setting of parameterized programs. In our PEC system, we consider visible instruc-

tions to be the statement meta-variables (e.g. S1,S2 ∈ ϑ). We define two statement

meta-variables to be equivalent if the variable name and the state of the program are

the same. We also slightly modify the definition of simulation relation (Definition 22) to

reflect the stronger definition of equivalence defined above.

Definition 35 (Simulation Relation). A simulation relation R for two transition dia-
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grams π1 = (L1,I1,→1, ι1) and π2 = (L2,I2,→2, ι2) is a verification relation such that:

R(ι1, ι2, σ1 = σ2) and R(ε1, ε2, σ1 = σ2).

∀gl2, gl ′2 ∈ L2, gl1 ∈ L1, σ1, σ2, σ
′
2 ∈ Σ, φ ∈ Φ, η2 ∈ N .⎡

⎢⎣ 〈gl2, σ2〉
η2

�+
2 〈gl ′2, σ′2〉 ∧

R(gl1, gl2, φ) ∧ φ(σ1, σ2) = true

⎤
⎥⎦ ⇒

∃gl ′1 ∈ L1, σ
′
1 ∈ Σ, φ′ ∈ Φ, η1 ∈ N .⎡

⎢⎣ 〈gl1, σ1〉
η1

�+
1 〈gl ′1, σ′1〉∧

R(gl ′1, gl
′
2, φ

′) ∧ φ′(σ′1, σ′2) = true ∧ η1 ≡ η2

⎤
⎥⎦

The definition of bisimulation relation in this context is the same as in Defi-

nition 32. Furthermore, from Theorem 5 we know that if there exists a bisimulation

relation between π1 and π2 then π1 and π2 are equivalent. Thus, a bisimulation relation

is a witness that two transition diagrams are equivalent. Our approach is based on The-

orem 5. In particular, our general approach is to try to infer a bisimulation relation to

show that π1 and π2 are equivalent.

As before the GenerateConstraints and SolveConstraints module implement our

bisimulation approach. These modules are similar to the one presented in Section 6.6.

In particular, the GenerateConstraints module first generates a set of pair-of-interest

locations R from the two transition diagrams π1 and π2, and then generates a set of

constraints C. The SolveConstraints module next solves these constaints such that the

properties from Definitions 35 and 32 hold, possibly strengthening the relation in order

to guarantee property 3 of Definitions 35. The next two sections describe these modules

of our system.

7.5 GenerateConstraints Module

To prove that two parameterized programs are equivalent our approach attempts

to discover a bisimulation relation between them. To do this, the GenerateConstraints

module computes a set of constraints for the set of pair-of-interests, which will then be

strengthened to a bisimulation relation by the SolveConstraints module.

Here again to focus our attention on only those locations for which our approach

infers the relation entries, we define two sets of locations Q1 and Q2 for the transition

diagrams π1 and π2 respectively. These are the locations that immediately precede a
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statement meta-variable. We use the skipping transition relations gl1
(w1,Q1)
↪−→π1 gl ′1 and

gl2
(w2,Q2)
↪−→π2 gl ′2 (Definition 23) that skips over all locations not in Q1 and Q2 respec-

tively. We also use the definition of parallel transition relation ↪−→↪−→ (Definition 26) that

essentially traverses the two transition diagrams (specification and implementation) in

synchrony, while focusing on only those locations that are in Q1 and Q2 respectively.

The predicate Rel : I∗×I∗×Q1×Q2 → B used in the parallel transition definition

checks if the pair of paths are feasible. To do this we conservatively compute if two paths

are infeasible, and if not then we say they are feasible i.e.

Rel(w1, w2, gl1, gl2) = ¬Infeasible(w1, w2, gl1, gl2)

For infeasiblity check, we first define two sets of locations A1 and A2 for π1 and π2 respec-

tively. These sets consists of locations that immediately precede an assume statement.

We define for each pair (gl1, gl2) ∈ Q1 ×Q2 a variable X(gl1,gl2) such that:

X(gl1,gl2)
= Post(gl1,A1, π1) ∧ Post(gl2,A2, π2) ∧ σ1 = σ2 and

Post(gl ,A, π) =
∨

{gl ′
(w,A)
↪−→πgl}

sp(w, true)

Here X(gl1,gl2)
computes a conservative formula over σ1 and σ2 that should hold when π1

and π2 are at locations gl1 and gl2 respectively. Within X , the predicate Post(gl ,A, π)

is the disjunction of the strongest post conditions with respect to true over paths w for

which there exists some gl ′ such that gl ′
(w,A)
↪−→π gl .

Our implementation of the Infeasible function can be succinctly represented as

follows:

ATP(¬(sp(w1,X(gl1,gl2)) ∧ sp(w2,X(gl1,gl2)))) = Valid

Infeasible first computes the strongest postcondition of w1 and w2 with respect to the

formula X(gl1,gl2)
. If an automated theorem prover (ATP) can show that the two post-

conditions are inconsistent, then the combination of those two paths is infeasible, and can

be pruned. The Infeasible function performs the pruning that was intuitively described

for the loop pipelining example in Section 7.3.2.

The other predicate WellMatched : I∗ × I∗ → B in the definition of parallel

transition ↪−→↪−→ checks if the two sequences w1 and w2 of instructions are well-matched

i.e. neither of them contain a statement meta-variable or they each contains the same

statement meta-variable. Using these definitions of Rel, WellMatched and relation ↪−→↪−→,

we now use the relation R ⊆ Q1 ×Q2 of location pairs that will form the entries of our
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bisimulation relation (see Definition 27). As before the set R can easily be computed by

starting with the empty set, and applying the three rules exhaustively. We then check if

the computed set R is a well-formed pairs of interest relation using Definition 28.

To uniformly handle the side conditions φ, we insert the side condition assump-

tions into the original and transformed programs in the form of assume statements. An

assume statement takes as argument a predicate over the program state σ that occurs

at the point where the assume holds. To ease presentation, we make the simplifying

assumption that φ = φ1@L1 ∧ . . . ∧ φn@Ln (our implementation handles the general

case). For each side condition φi, we define �φi� to be a predicate over σ that directly

encodes the side condition’s meaning provided by the optimization writer. Then for each

φi@Li, we find the location Li in either the original or the transformed program, and

insert assume(�φi�) at that location.

Similar to Section 6.6.2, we now describe our PEC algorithm in terms of constraint

solving. In particular, for each (gl1, gl2) ∈ R we define a constraint variable ψ(gl1,gl2)

(Definition 29) representing the predicate that we want to compute for the bisimulation

entry (gl1, gl2). Using these constraint variables, the final bisimulation relation will have

the form:

{(gl1, gl2, ψ(gl1,gl2)) | R(gl1, gl2)}

To compute the predicates that the constraint variables ψ(gl1,gl2) stand for, we

generate a set of constraints on these variables, and then solve the constraints. We use

a slightly modified version of Definition 30 to compute the set of constraints C.

Definition 36 (Set of Constraints). The set C of constraints is defined by:

[
ψ(ι1,ι2) ⇒ σ1 = σ2

]
∈ C and

[
ψ(ε1,ε2) ⇒ σ1 = σ2

]
∈ C

For each (gl1, gl2) in R:
[
ψ(gl1,gl2) ⇒ X(gl1,gl2)

]
∈ C

For each (gl1, gl2)
(w1,w2)
↪−→↪−→ (gl ′1, gl

′
2):

[
ψ(gl1,gl2)

⇒ pwp(w1, w2, ψ(gl ′1,gl ′2))
]
∈ C

There are three kinds of constraints. The first kind of constraints make sure

that if the two parameterized programs start in equal states then they end in equal

states. The next kind of constraints implies that for each pair of locations (gl1, gl2) the

instructions about to execute at gl1 and gl2 are equivalent. This condition in our PEC

setting is captured using the formula X(gl1,gl2)
.

The last kind of constraints state that for each pair of paths between two entries

in R, the predicate at the beginning of the paths must imply the predicate at the end of
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the paths. We express this condition using the weakest precondition computation pwp,

which is a parameterized version of the regular weakest precondition.

The main challenge in expressing this weakest precondition is that the traditional

formulation of weakest precondition depends on the structure of the statements being

processed. As a result, it is difficult to use this definition for statements like S1 and S2

in our parameterized programs, because the precise structure of these statements is not

known. To address this challenge, we use an alternate yet equivalent definition of weakest

precondition. In particular, consider the traditional weakest precondition computation,

and assume that the predicate we are computing is a function from program states to

booleans. Then the traditional weakest precondition wp can be expressed as:

wp(S, ϕ)(σ) = ϕ(step(σ,S))

If we assume that the program state σ is simply a free variable in the predicate ϕ, then

wp can be expressed as:

wp(S, ϕ) = ϕ[σ �→ step(σ,S)]

Generalizing this to two parallels paths in two different programs, the predicates

now have free variables σ1 and σ2, and we can express pwp as follows:

pwp(w1, w2, ϕ) = ϕ[σ1 �→ step(σ1, w1), σ2 �→ step(σ2, w2)]

7.6 SolveConstraints Module

Once the set of constraints C have been generated, the SolveConstraints module

tries to solve these constraints iteratively by starting with the all the constraint variables

initialized to true, and iteratively strengthening the constraint variables in the relation

until all the constraints are satisfied. The SolveConstraints function used here is the exact

function presented in Figure 6.6. As before one subtlety is that we cannot strengthen

the relation at the entry points ι1, ι2. If we ever try to do this, we indicate an error.

Here again because SolveConstraints is trying to compute a fixed-point over the very

flexible but infinite domain of boolean formulas, it may not terminate. However, in our

experiments we found that in practice SolveConstraints can quickly find a fix-point.



135

7.7 Experiments and Results

We implemented our PEC algorithm using the Simplify theorem prover [DNS05]

to realize the ATP module from Section 7.5. Using our language we expressed vari-

ous transformations and proved them correct using the PEC tool. The transformations

proved correct by the PEC tool are: copy propagation, constant propagation, common

sub-expression elimination, partial redundancy elimination, loop invariant code hoist-

ing, conditional speculation, software pipelining, loop unswitching, loop unrolling, loop

peeling, and loop splitting.

The trusted computing base for our system includes: (1) the PEC checker, com-

prising 2,408 lines of OCaml code (2) the Simplify automated theorem prover, a widely

used and well tested theorem prover, and (3) the execution engine that will run the

optimizations. Within the execution engine, the trust can be further subdivided into

two components. The first component of the execution engine must perform the syn-

tactic pattern matching for rewrite rules, and apply rewrite rules when they fire. This

part is always trusted. The second component of the execution engine must perform

program analysis to check each optimization’s side-conditions in a way that guarantees

their semantic meaning. Here our system offers a choice. These analysis can either be

trusted and thus implemented inside the compiler using arbitrarily complex analysis, or

untrusted and implemented using a provably safe analysis system like Rhodium.

7.8 Related work

Our work presented here is related to long lines of work in translation validation,

proving loop optimizations correct, automated correctness checking of optimizations,

human-assisted correctness checking of optimizations, and languages for expressing op-

timizations. We now discuss each area in more detail.

Translation Validation: Our approach is heavily inspired by the work that has been

done on translation validation [PSS98, Nec00, RM99, GZB05, KLG07, KLG08]. How-

ever, unlike previous translation validation approaches, our equivalence checking algo-

rithm addresses the challenge of reasoning about statements that are not fully specified.

As a result, our approach is a generalization of previous translation validation techniques

that allows optimizations to be proved correct once and for all. Furthermore, because
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our PEC approach can handle concrete statements as well as parameterized statements,

it subsumes many of the previous approaches to translation validation.

Automated correctness checking of optimizations: As with our PEC algorithm,

the Cobalt [LMC03] and Rhodium [LMRC05] systems are able to check the correctness

of optimizations once and for all. However, Cobalt and Rhodium only support rewrite

rules that transform a single statement to another statement, thus limiting the kinds of

optimizations they can express and prove correct. Our PEC approach can handle complex

many-to-many rewrite rules explicitly, allowing it to prove many more optimizations

correct.

Human-assisted correctness checking of optimizations: A significant amount of

work has been done on manually proving optimizations correct, including abstract in-

terpretation [CC77, CC02], the work on the VLISP compiler [GRW95], Kleene algebra

with tests [Koz97], manual proofs of correctness for optimizations expressed in temporal

logic [Ste91, LJWF02], and manual proofs of correctness based on partial equivalence

relations [Ben04]. Analyses and transformations have also been proven correct mechan-

ically, but not automatically: the soundness proof is performed with an interactive the-

orem prover that requires guidance from the user. For example, Young [You89] has

proven a code generator correct using the Boyer-Moore theorem prover enhanced with

an interactive interface [KB95]. As another example, Cachera et al. [CJPR04] show how

to specify static analyses and prove them correct in constructive logic using the Coq

proof assistant. Via the Curry-Howard isomorphism, an implementation of the static

analysis algorithm can then be extracted from the proof of correctness. Leroy’s Comcert

project [Ler06] has also used a similar technique to manually develop a semantics pre-

serving, optimizing compiler for a large subset of C. The Comcert compiler provides an

end-to-end correctness guarantee, and does not just focus on optimizations, as we do in

our approach. Tristan et al. has also proved that certain translation validators are cor-

rect once and for all, but here again by implementing the proof manually [TL08, TL09].

In all these cases, however, the proof requires help from the user. In contrast to these

approaches, our proof strategy is fully automated but trusts that the side conditions are

computed correctly when the compiler executes.
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Languages for expressing optimizations: The idea of analyzing optimizations writ-

ten in a specialized language was introduced by Whitfield and Soffa with the Gospel lan-

guage [WS97]. Many other frameworks and languages have been proposed for specifying

dataflow analyses and transformations, including Sharlit [TH92], System-Z [YHI93], lan-

guages based on regular path queries [SdML04], and temporal logic [Ste91, LJWF02].

None of these approaches addresses automated correctness checking of the specified op-

timizations.

7.9 Summary

In this chapter we presented Parameterized Equivalence Checking (PEC), a tech-

nique for automatically proving optimizations correct once and for all. PEC bridges the

gap between translation validation and once-and-for-all techniques. Our PEC approach

generalizes previous translation validation techniques to handle parameterized programs,

which are partially specified programs that can represent multiple concrete programs,

thereby adapting them to provide once and for all correctness proofs. Furthermore, our

use of expressive many-to-many rewrite rules and a robust proof technique enables PEC

to automatically prove correct optimizations that have been difficult or impossible to

prove in previous systems. We have also implemented our PEC algorithm and proved a

variety of optimizations correct.
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Chapter 8

Conclusions and Future Work

We have addressed the need for high-level verification methodologies that allows

us to do functional verification early in the design phase and then iteratively use cor-

rect refinement steps to generate the final RTL design. We believe that by performing

verification on the high-level design, where the design description is smaller in size and

the design intent information is easier to extract, and then checking that all refinement

steps are correct, the domain of high-level verification can provide strong and expressive

guarantees that would have been difficult to achieve by directly analyzing the low-level

RTL code.

The high-level verification methods can be broadly seen as methods for verifying

properties of high-level designs and methods for verifying that the translation from high-

level design to low-level RTL preserves semantics. We classified the high-level verification

area into three main parts, namely high-level property checking, translation validation,

and synthesis tool verification. In this thesis we have explored techniques in each of the

above three areas.

High-Level Property Checking

For high-level property checking, we use model checking techniques to verify that

a design satisfies a given property such as absence of deadlocks or assertion violations.

In particular, we explored two techniques one on execution-based model checking and

the other on symbolic model checking.

We implemented Satya, an execution-based model checking tool that combines

static and dynamic POR techniques along with high-level semantics of SystemC to in-

138
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telligently explore all possible behaviors of a SystemC design. Our approach reduces the

runtime overhead by conservatively computing the dependency information statically

and using it during runtime, without significant loss of precision. In our experiments

Satya was able to automatically find an assertion violation in the FIFO benchmark (dis-

tributed as a part of the OSCI repository), which may not have been found by simulation

(Section 4.10).

We also developed Candor, a symbolic analysis tool for concurrent C programs

that combines POR with a previous asynchronous modeling approach called token-

passing approach. The token-passing approach generates verification conditions directly

without an explicit scheduler, thereby avoiding some of the limitations of synchronous

modeling approach. However, this approach add interleaving constraints between all

pairwise global accesses, thereby allowing redundant interleavings. To address this we

introduce the notion of Mutually Atomic Transactions (MAT): two transactions are mu-

tually atomic when there exists exactly one conflicting shared-access pair between them.

Using MATs, we then reduce the verification conditions by allowing pairwise interleav-

ing constraints only between MATs. Our experimental results show that our approach

improves the current state of the art both in performance and in size of the verification

condition (Section 5.10).

Translation Validation

To verify the translation from the high-level design to low-level RTL is correct, we

developed a translation validation tool called Surya. Our algorithm uses a bisimulation

relation approach to automatically prove the equivalence between two concurrent systems

represented as transition diagrams. We used Surya to validate the synthesis process of

Spark, a parallelizing HLS framework. Surya validates all the phases (except for parsing,

binding and code generation) of Spark against the initial behavioral description. Our

experiments showed that with only a fraction of the development cost of Spark, Surya

can validate the translations performed by Spark, and it even uncovered two previously

unknown bugs that eluded long-term use.

Synthesis Tool Verification

For synthesis tool verification, we developed a technique that proves the correct-

ness of optimizations using Parametrized Equivalence Checking (PEC). Our approach
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proves the correctness of the optimizations once and for all, before it is ever run. The

PEC technique is a generalization of translation validation that proves the equivalence

of parameterized programs. To highlight the power of PEC, we designed a language for

implementing complex optimizations using many-to-many rewrite rules, and used this

language to implement a variety of optimizations including software pipelining, loop

unrolling, and loop unswitching. Using our PEC implementation, we were able to au-

tomatically verify that all the optimizations we implemented in our language preserve

program behavior.

Future Work

In this thesis we focused on exploring techniques in the area of high-level verifica-

tion. Recent advances in formal methods and HLS have invigorated interest in high-level

verification both in industry and academics. Various verification tools and techniques

focused toward high-level design are starting to emerge. However, their adoption is in

the early stages and the tools are often limited in the quality of the results and the kinds

of correctness guarantees that are provided. Naturally there are many things to be done

in this area. In this section we discuss promising future research areas in verification of

high-level designs and the tools associated with them.

Hardware-Software modeling: High-level hardware languages support many fea-

tures that are useful for both software and hardware designs. For example, SystemC

allows both asynchronous and synchronous semantics of concurrency, and also both

software and hardware data types. However, existing symbolic analysis tools includ-

ing ours often either target software or hardware. For example, most software model

checkers only support software data types and asynchronous semantics of concurrency,

and most hardware model checker only support hardware data types and synchronous

semantics of concurrency. As a result, researchers often use abstraction or complicated

techniques while modeling the non-supported features of a given model checker. This

gap points to a possible research direction that would unify techniques for hardware

models and techniques for software models into combined methodology for reasoning

about hardware-software models.

Compositional techniques: Although many techniques presented in this thesis use

compositional methods to make the verification problem tractable, these techniques are
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still limited in their application. Even after decomposition using the current techniques

the problem is still quite large and complex. Advanced and more efficient methods

are needed for decomposing a computationally demanding global property into local

properties whose verification is simpler.

Modular framework: One observation of this thesis is that there are variety of over-

lap between various verification techniques. However, each verification tool is highly

tuned toward the particular problem it is solving with its own input language or API,

and as such it is hard to modify or extend. Hence, every time a new methodology is

proposed a new tool has to be written, often from scratch. Unfortunately, the tools

discussed in this thesis are not designed from a software engineering perspective. Thus,

there is a need for a modular and reusable framework, which can be quickly used to

prototype new ideas and test them.

Debugging: The tools discussed in this thesis except Candor provide only limited

feedback to the user. When a bug is found, these tools cannot typically pin-point the

error in the code. All the methods are able to output an error trace, but figuring out

the cause of the error from it, is not straightforward and requires expertise in formal

methods. Although not directly related to high-level verification, there has been work

in this area [BNR03], however adapting such techniques to the this domain is still a

challenge. Another limitation of our methods is that they often stop searching when a

bug is found, rather than providing a list of all bugs. More broadly, the goal should be

to fit formal verification into the regular develop-edit-debug flow, which would require

the development of verification tools for speed and ease of use.

Synthesis-For-Verification: HLS process focuses mainly on three design constraints:

area, timing and power. These methodologies tend to ignore verification, which takes

about 70% of the design cycle, as a constraint. Recently, Ganai et al. [GMGW07]

proposed a new paradigm ‘Synthesis-For-Verification’ which involves synthesizing

“verification-aware” designs that are more suitable for functional verification. There-

fore, another research direction may be to use existing infrastructure of HLS to generate

“verification friendly” models that are relatively easier to verify using state-of-the-art

techniques.
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Compiler techniques: Many techniques used in HLS are similar to those used for

compilers. As a result, advances in fields like compiler correctness can provide inspira-

tion for developing techniques for high-level verification. For example, our translation

validation and synthesis tool verification work are inspired from the work done in the

area of compiler correctness such as Necula’s translation validation technique [Nec00],

Zuck et al. [GZB05] work on proving various non-structure preserving transformation,

and Lerner et al. [LMC03, LMRC05] approach to automatically prove the correctness

of compiler optimizations once and for all. There are many other techniques that have

been successfully applied to the compiler domain, and can provide new directions for

verification of the HLS process.
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