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ABSTRACT OF THE DISSERTATION 
 

Modeling of 𝐼"# −	𝑉"# characteristics of short-channel double-gate (DG) MOSFETs 
 

 
by 

 

Chuyang Hong 

 

Doctor of Philosophy in Electrical Engineering (Applied Physics) 

University of California San Diego, 2022 

Professor Yuan Taur, Chair 
 

 

In this dissertation, an above-threshold 𝐼 − 𝑉 model framework is constructed for short-

channel double-gate (DG) MOSFETs. This is a non-GCA model that takes the effect of the 

lateral field gradient into account. By applying the model to the low drain and high drain bias 

cases, useful physical insights are obtained. At low-drain bias voltages, the effect of 

encroachment of the source-drain bands into the channel (i.e., the source-drain encroachment 



xvii 
 

effect) appears as a reduction of the channel resistance, which is gate-voltage dependent. This 

effect is stronger in subthreshold region and weaker in above threshold region. At high-drain 

bias voltages, a point of “virtual cathode” (or minimum potential) at a small distance from the 

source is caused by the intersection of source band encroachment with the gate-controlled 

channel potential. This is in contrast to the drain region non-GCA model which is only 

applicable to device with a channel length of 𝐿 > 20𝑛𝑚. The current model is also extended to 

incorporate the effect of band bending caused by the depletion of carriers in the source and 

drain regions and the source-drain series resistance effect. By implementing the velocity 

saturation in the current continuity equation, the 𝐼"# − 𝑉"#  and 𝐼"# − 𝑉*#  characteristics 

generated by the model are verified by TCAD simulations.  

Moreover, the model is applied to the bulk and the ground plane MOSFETs. It shows 

that as an additional parameter affecting short-channel effect of bulk MOSFETs, the junction 

depth of the source and drain is not taken into account in the short-channel non-GCA model for 

DG MOSFETs. The charge sheet model is not accurate enough to fit parameters like 𝐶DYZ, 𝑉5 

for long channel MOSFETs and a modified charge sheet mode is developed. Moreover, the 

short-channel non-GCA model tends to underestimate the short-channel effect for practical 

source/drain junction depths like 𝑥] = 25𝑛𝑚.       
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CHAPTER 1  INTRODUCTION 
 
 
 
 In the past decades, plenty of studies have been carried out to model the 𝐼 − 𝑉 

characteristics of double-gate (DG) [1]–[16]and bulk ground plane MOSFETs [17]–[30]. By 

approximately solving the potential or charge density profile from the Poisson’s equation, those 

models achieve good accuracy [1], [16], [31]–[35]. For example, the scale length model[32], [36]–

[38] employs the superposition technology to solve the two-dimensional Poisson’s equation where 

the mobile charge term is neglected. It is only valid in the subthreshold region since the 

superposition is disallowed for the nonlinear Poisson’s equation with mobile charge term in the 

above threshold region. The analytic potential model[1], [2] derives an analytical solution to the 

one-dimensional Poisson’s equation based on the gradual channel approximation, which only 

works for the long channel device. In this chapter, we will briefly review three popular models 

focusing on DG MOSFETs and discuss their approximations and weaknesses. 

 

 

1.1 Scale Length Model 
 
 
 

In the scale length model (SLM)[32], [37], [38], the whole potential profile is divided into 

three parts: 𝜓a for the top oxide regions, 𝜓 for the Si channel region and 𝜓= for the bottom oxide 

region. They are governed by the different Poisson’s equation in different regions[32]: 

 

𝜕?𝜓±

𝜕𝑥? +
𝜕?𝜓±

𝜕𝑦? = 0																																																								(1.1) 
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𝜕?𝜓
𝜕𝑥? +

𝜕?𝜓
𝜕𝑦? =

𝑞
𝜀#D
𝑁f																																																				(1.2) 

 
where 𝑁f  is the p-type doping level of the channel. Those three parts are connected by the 

condition of the usual continuity of potential and normal displacement. Note that Equation (1.2) is 

a linear partial differential equation, which can be solved by using the superposition technology 

[38]: 

 

𝜓(𝑥, 𝑦) = 𝑉*# − ∅hD −
𝑞𝑁f𝑡#D𝑡D
2𝜀D

−
𝑞𝑁f
2𝜀#D

ij
𝑡#D
2 k

?
− 𝑥?l 

+m 𝑠Y
sinh[𝑘Y(𝐿 − 𝑦)]
sinh(𝑘Y𝐿)

cos(𝑘Y𝑥)
x

Yy@
+m 𝑑Y

sinh(𝑘Y𝑦)
sinh(𝑘Y𝐿)

cos(𝑘Y𝑥)
x

Yy@
	(1.3) 

 

where 𝑠Y , 𝑑Y  and 𝑘Y  are parameters that can be estimated by the orthogonality relation and 

potential and normal displacement continuity conditions. The total charge density per area is given 

as: 

 

𝑄5(𝑦) = 𝑞z 𝑛D𝑒
{[|(},~)=�(~)]

�� 𝑑𝑥
5��
?

=5��?

																												(1.4) 

 

For given 𝑉*#,  𝜓(𝑥, 𝑦)  is 𝑥 −  and 𝑦 −  dependent, indicating 𝑄5(𝑦)  is 𝑉*# −  and 𝑦 − 

dependent. 
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Figure 1.1: The 𝐼"# − 𝑉*# characteristics generated by the scale length model[38] are compared with 

TCAD simulation. 
 

Figure 1.1 shows the 𝐼"# − 𝑉*#  characteristics generated by the scale length model are 

compared with TCAD simulation. It is obvious that SLM is accurate in subthreshold region but 

large discrepancy is observed on the above threshold region. This is because the mobile charge 

term neglected in Equation (1.2) plays an important role in above threshold region[39]. 

 

 

1.2 Analytic Potential Model 
 
 
 

For a undoped/lightly doped double gate (DG)/bulk MOSFET, the 2-dimensional 

Poisson’s equation is given as: 
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𝜕(𝜀#D𝐸})
𝜕𝑥 +

𝜕(𝜀#D𝐸~)
𝜕𝑦 = 𝜀#D

𝜕?𝜓
𝜕𝑥? + 𝜀#D

𝜕?𝜓
𝜕𝑦? = 𝑞𝑛(𝑥, 𝑦)																										(1.5) 

 

where 𝜓 is the potential and 𝑛 is the carrier density. Equation (1.5) shows the total charge density 

𝑞𝑛(𝑥, 𝑦) consists of two parts: one is the charge part induced by the vertical field from the gate 

terminal (i.e., the first term of LHS) and the other is the charge part caused by the lateral field from 

the source and drain terminals (i.e., the second term of LHS)[40]–[43]. The gradual channel 

approximation (GCA) assumes that the vertical field (perpendicular to the channel) induced charge 

density is much greater than the lateral field (along the channel) induced charge density (i.e., 

𝜀#D
��|
�}�

≫ 𝜀#D
��|
�~�

) so that the second term of Equation (1.5) is negligible[43]–[45]. According to 

GCA, the Poisson’s equation can be simplified as:  

 

𝑑?𝜓
𝑑𝑥? =

𝑞
𝜀#D
𝑛D𝑒{(|=�)/��																																							(1.6) 

 

Unlike the scale length model, the analytic potential model is able to work in the above 

threshold region since the mobile charge term is kept[1], [2]. Equation (1.6) is a one-dimensional 

equation, of which the analytic solution can be gotten as[1][33]: 

 

𝜓(𝑥) = 𝑉 −
2𝑘𝑇
𝑞 ln �

𝑡#D
2𝛽

�
𝑞?𝑛D
2𝜀#D𝑘𝑇

𝑐𝑜𝑠 j
2𝛽𝑥
𝑡#D

k�																										(1.7) 

 

The charge density per area is given as[2]: 
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𝑄5 = 8
𝑘𝑇
𝑞
𝜀#D
𝑡#D
𝛽𝑡𝑎𝑛𝛽																																															(1.8) 

 

where 𝛽 is estimated by: 

 

𝑉*# − 𝑉5 − 𝑉 =
2𝑘𝑇
𝑞 �𝑙𝑛𝛽 − ln(𝑐𝑜𝑠𝛽) + 2

𝜀#D𝑡D
𝜀D𝑡#D

𝛽𝑡𝑎𝑛𝛽�																			(1.9) 

 

We can see that 𝑄5 here is 𝑉*# − dependent but not explicitly 𝑦 − dependent. The drain 

current 𝐼"# is estimated by carrying out Pao-Sah’s integral[46]:  

 

𝐼"# = 𝜇���
𝑊
𝐿
4𝜀#D
𝑡#D

(
2𝑘𝑇
𝑞 )? i𝛽𝑡𝑎𝑛𝛽 −

𝛽?

2 +
𝜀#D𝑡D
𝜀D𝑡#D

𝛽?𝑡𝑎𝑛?𝛽l |��
�� 																					(1.10)	 

 

where 𝜇��� is the effective mobility. 
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Figure 1.2: The 𝐼"# − 𝑉*# characteristics generated by the analytic potential model (i.e., Black lines, 

denoted as “Analytical solution”) for long channel device, compared with TCAD simulation (i.e., Black 
circles, denoted as “2-D numerical simulation”)[2].  

 

Figure 1.2 shows the 𝐼"# − 𝑉"# characteristics generated by the analytic potential model is 

in consistent with the TCAD simulation for a long channel device (e.g., 𝐿 = 1𝜇𝑚 ). As we 

discussed above, the gradual channel approximation (GCA) neglects the effect of lateral field 

gradient on carrier density in Poisson’s equation[47]. It is unable to describe the two-dimensional 

nature of the field in the channel, which plays an important role in saturation region and for a short 

channel device [48], [49].  

 Figure 1.3 shows that the 𝐼"# − 𝑉"# characteristics and the conduction 𝑔", ≡ 𝑑𝐼"#/𝑑𝑉"# 

generated by the analytic potential model. Here the 𝑛 = 1 velocity saturation model is considered, 

i.e.: 
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𝐼"# =
𝜇���𝑊 ∫ 𝑄D

���
H (𝑉)𝑑𝑉

𝐿 + (𝜇���/𝑣#f5)𝑉"#
																																									(1.11) 

 

where 𝑄D(𝑉) as a function of 𝑉 is calculated from Equations (1.8) and (1.9). In Figure 1.3, negative 

slope is also observed in the saturation region of each 𝐼"# − 𝑉"# characteristic. This confirms that 

the drain current 𝐼"# is underestimated by the GCA in the saturation region.  

Hence, the analytic potential model works well only for long channel device with constant 

mobility assumption, but it may be not accurate in velocity saturation region and for short channel 

device. 
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(a) 

 

(b) 

 
Figure 1.3: The (a) 𝐼"# − 𝑉*# characteristics and (b) the output conductance 𝑔", ≡ 𝑑𝐼"#/𝑑𝑉"#, generated 

by analytic potential model (𝑛 = 1 velocity saturation). Here 𝐿 = 10𝑛𝑚	𝑎𝑛𝑑	𝑉5 = 0.247𝑉. 
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1.3 Drain Region Non-GCA Model 
 
 
 

To fix this problem of neglecting the effect of �
�|
�~�

 term in the Poisson’s equation due to 

the gradual-channel approximation, an drain region non-GCA model[47], [50] is developed 

recently. In this model, the mobile charge density per area is given as[47]: 

 

𝑄5 = 𝑄D + ∆𝑄D = 2𝐶DYZ�𝑉*# − 𝑉5 − 𝑉� + 𝜀#D𝑡#D
𝑑?𝑉
𝑑𝑦? 																								(1.12) 

 

where 𝐶DYZ will be given by Equation (2.2) in Section 2. It contains two parts: one is the gate-

induced charge density 𝑄D = 2𝐶DYZ�𝑉*# − 𝑉5 − 𝑉�[43], [50]; the other part is the additional charge 

density term that accounts for the effect of the lateral field gradient on carrier density ∆𝑄D =

𝜀#D𝑡#D
"��
"~�

. The 𝑄5 is more accurate since it is 𝑉*# − and 𝑦 − dependent, compared with the GCA 

model discussed before. The current continuity equation for 𝑛 = 1 velocity saturation is given 

as[50]: 

 

𝐼"# =
𝜇���𝑊 j𝑄D + 𝜀#D𝑡#D

𝑑?𝑉
𝑑𝑦?k

𝑑𝑉
𝑑𝑦

1 + �
𝜇���
𝑣#f5

� 𝑑𝑉𝑑𝑦
																											(1.13) 

 

For given 𝐼"#, Equation (1.13) can be solved to get 𝑉(𝑦) as a function of 𝑦 so 𝑉"# = 𝑉(𝐿). 
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 Figure 1.4 shows that the 𝐼"# − 𝑉"# characteristics generated by the drain region non-GCA 

model is verified by the TCAD simulation for intermediate channel device. In Figure 1.5, the 

output conduction generated by the saturation region non-GCA model is compared with TCAD 

simulation for various channel length 𝐿. It shows that the drain region non-GCA model is accurate 

for intermediate channel length 𝐿 ≥ 2𝜆,			(𝑒. 𝑔., 𝐿 ≥ 20𝑛𝑚) , where 𝜆 = 𝑡#D + 2𝑡D  is the scale 

length[38]. For a shorter channel, it no longer works since the short channel effect become 

prominent. 

 

Figure 1.4: The 𝐼"# − 𝑉*# characteristics generated by the drain region non-GCA model (𝑛 = 1 velocity 
saturation) are compared with TCAD simulation[50]. 𝐿 = 50𝑛𝑚. 
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Figure 1.5: The output conductance 𝑔", ≡ 𝑑𝐼"#/𝑑𝑉"# as a function of channel length 𝐿 generated by the 
drain region non-GCA model and compared with TCAD simulation[50]. 

 

 

Figure 1.6: The potential profile generated by the drain region non-GCA model (D. R. non-GCA) [47], 
[50] along the channel. The source-drain doping level is 𝑁<=> = 10?@𝑐𝑚=B. 

 

Figure 1.6 shows the depth averaged potential profile, 𝜑 = (𝑘𝑇/𝑞)ln[2𝐶DYZ(𝑉*# −

𝑉5)/(𝑞𝑛D𝑡#D)], generated by the drain region non-GCA model along the channel. Note that the 
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potential 𝜓 = (𝑘𝑇/𝑞)ln	(𝑁<=>/𝑛D) is independent of 𝑉*# in the source and drain regions, while 𝜓 

generated by the drain region non-GCA model for the channel region is a function of 𝑉*#. The band 

(i.e., 𝜓 ) and mobile charge density take the channel values at 𝑦 = 0	𝑎𝑛𝑑	𝐿  right away, it is 

unphysical because of the discontinuity with those in the source-drain region. Since the drain 

region non-GCA model doesn’t take the source-drain encroachment into account, it works only 

for the intermediate channel device above threshold region, but not for short channel device. 

 

 

1.3 Summary 
 
 
 
 

In this chapter, we briefly reviewed three popular models for DG MOSFET. The Scale 

length model neglects the mobile charge term in Poisson’s equation, so it is accurate in the 

subthreshold region, but not for the above threshold region; the analytic potential model employs 

the gradual-channel approximation, so it works only for the long channel device with constant 

mobility assumption; the drain region non-GCA model fixed the weakness of GCA model by 

incorporating the effect of the lateral field gradient on the carrier density, but it doesn’t take the 

source-drain encroachment into account and it works only for the intermediate channel device. In 

sum, no existing model works for short-channel device above threshold. 

 

 

  



13 
 

 

CHAPTER 2 AN ABOVE THRESHOLD MODEL FOR 
DOUBLE GATE (DG) MOSFETS 

 
 
 

In this chapter, an above threshold current-voltage model for short channel DG MOSFETs 

is presented. In order to account for the contribution to the carrier density from the encroachment 

of the source-drain bands into the channel, a non-GCA term is incorporated in the model. We can 

gain interesting physical insights from the model: (1) At low-drain bias case, the reduction of the 

channel resistance is gate-voltage dependent, indicating the short-channel effects are weaker at 

low gate overdrives and stronger at high gate overdrives. (2) At high-drain bias case, a point of 

virtual cathode is observed at a short distance from the source side. This is caused by the 

intersection of the source band encroachment with the channel potential controlled by the gate 

terminal. (3) In short-channel devices at the scale of 𝐿 = 10𝑛𝑚, a strong effect from the depletion 

in the source and drain sides to the channel potential is found. By taking the source/drain 

encroachment effect (short channel effect) into account, our model is constructed to generate the 

𝐼"# − 𝑉"# and  𝐼"# − 𝑉*# characteristics, which are verified by TCAD simulations. 

 
 
 

2.1 Short-Channel Non-GCA Model for Low Drain Bias 
Case 
 
 
 

The schematic cross-section diagram of a undoped/lightly doped DG MOSFET is shown 

in Figure 2.1. 
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Figure 2.1: Schematic cross-section diagram of a undoped/lightly doped DG MOSFET. Assume 𝑡#D =
4𝑛𝑚, 𝑡D = 2𝑛𝑚, 𝜀#D = 𝜀D = 11.8𝜀H.	The channel length 𝐿 ranges from 15𝑛𝑚 to 7𝑛𝑚. The gate work 

function is set to be 0.28𝑒𝑉 below that of the intrinsic silicon so that 𝑉5 = 0.247𝑉. 
 

 

The 2-D Poisson’s equation for undoped/lightly doped DG MOSFET is given as: 

 

𝜕?𝜓
𝜕𝑥? +

𝜕?𝜓
𝜕𝑦? = 	

𝑞
𝜀#D
𝑛D𝑒

{(|=�)
�� 																																															(2.1) 

 

 where 𝜓  is the potential and 𝑉  is the quasi-Fermi potential. Under the gradual channel 

approximation (GCA), Equation (2.1) can be simplified to Equation (1.6), an ordinary differential 

equation in the 𝑥 −  direction. Equation (1.6) is widely used in long channel DG MOSFETs 

modeling although the curvature of potential in the 𝑦 − direction is neglected [44], [51]–[54]. As 

discussed in Chapter 1, a simple form of the gate induced inversion charge density per unit area is 
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given as 𝑄D = 2𝐶DYZ(𝑉*# − 𝑉5 − 𝑉) where 𝐶DYZ  takes into account the effect of inversion layer 

capacitor, which is less than the oxide capacity 𝐶¡} =
¢�
5�
. 𝐶DYZ is slightly dependent on 𝑉*# [50]: 

 

𝐶DYZ
𝐶¡}

=
2𝑟𝛽#𝑡𝑎𝑛𝛽#

𝑙𝑛𝛽# − ln(𝑐𝑜𝑠𝛽#) + 2𝑟𝛽#𝑡𝑎𝑛𝛽#
																														(2.2) 

 

where 𝑟 = 𝜀#D𝑡D 𝜀D𝑡#D⁄  and 𝛽# is the value of 𝛽 at 𝑉 = 0 from Equation (1.9). We can estimate the 

gate-induced charge effect by averaging 𝑄D into a volume charge density ¥�
5��

: 

 

𝑑?𝜓
𝑑𝑥? =

2𝐶DYZ(𝑉*# − 𝑉5 − 𝑉)
𝜀#D𝑡#D

																																										(2.3) 

 

Note that the 𝑥 −dependence on the RHS of Equation (2.3) is removed under this smoothing 

approximation. A non-GCA model in the 𝑦 −direction can be developed by inserting Equation 

(2.3) back into (2.1): 

 

𝑑?𝜓
𝑑𝑦? =

𝑞
𝜀#D
𝑛D𝑒{(|=�)/�� −

2𝐶DYZ(𝑉*# − 𝑉5 − 𝑉)
𝜀#D𝑡#D

																																										(2.4) 

 

Here we use the solution to the one-dimensional ordinary differential equation in the gate direction 

to form a one-dimensional ordinary differential equation in the channel direction. Equation (2.4) 

describes the 𝑦 −dependence of 𝜓, which is applicable to the short-channel DG MOSFETs.  
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           To solve Equation (2.4), we have to couple it with the current continuity equation for 𝑉(𝑦) 

in general. Let’s first consider a low drain bias case (e.g., 𝑉"# ≪ 𝑘𝑇/𝑞), where 𝑉 is negligible so 

that Equation (2.4) can be simplified: 

 

𝑑?𝜓
𝑑𝑦? =

𝑞
𝜀#D
𝑛D𝑒{|/�� −

2𝐶DYZ(𝑉*# − 𝑉5)
𝜀#D𝑡#D

																																										(2.5) 

 

Without 𝑉(𝑦), Equation (2.5) is de-coupled to the current continuity equation.  Note that Equation 

(2.5) is a second-order ordinary differential equation that is easier to be solved, given the boundary 

conditions: 

 

𝜓(0) = 𝜓(𝐿) = j
𝑘𝑇
𝑞 k ln j

𝑁<=>
𝑛D

k																																								(2.6) 

 

 where 𝑁<=> is the source and drain doping concentration.  

            Figure 2.2 shows the potential profile generated by Equation (2.5) at various 𝑉*#. A large 

flat portion of potential 𝜓 over the middle region of the channel is observed, which is controlled 

by the gate voltage. It turns out that this depth averaged 𝜓 is about (1 − 2)𝑘𝑇/𝑞 lower than the 

surface potential (i.e., the maximum 𝜓 at the surface), with a value corresponding to an inversion 

charge density ¥�
5��
. We can see 𝜓 goes up rapidly near the source and drain ends of the channel, 

which is caused by the encroachment of the source and drain bands (a.k.a. carrier spillover) into 

the channel. This is the essence of the short channel effect. This source-drain encroachment effect 

appears as a gate-voltage dependent reduction of channel resistance, with stronger effect at low 

gate overdrives. 
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Figure 2.2: Potential 𝜓 in 𝑦 −direction at a low drain bias voltage, by this short-channel non-GCA model 
(low drain biases). Here 𝐿 = 10𝑛𝑚. 

 

 

 

Figure 2.3: Quasi-Fermi Potential 𝑉(𝑦) generated by this short-channel non-GCA model (low drain 
biases) for various 𝑉*# given the same 𝐼"# = 1.5𝐸 − 5𝐴/𝑢𝑚.  
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             After 𝜓(𝑦) is solved, the quasi-Fermi potential profile can be also determined: 

 

𝑉(𝑦) = 	z
𝐼"#

𝑊𝑞𝜇���𝑡#D𝑛D𝑒{|(~)/��
𝑑𝑦

~

H
																																(2.7) 

 

Figure 2.3 shows the quasi-Fermi potential generated by this short-channel non-GCA 

model for different 𝑉*#. It is obvious that the slope of 𝑉(𝑦) is not a constant. Figure 2.4 compares 

the quasi-Fermi potential 𝑉(𝑦) generated by our short-channel non-GCA model and the long 

channel model (i.e., no source-drain encroachment effect). In long channel case (no source-drain 

encroachment), only the gate induced inversion charge is considered: 

 

𝑉(𝑦) = 	
𝐼"#𝑦

2𝑊𝜇���𝐶DYZ(𝑉*# − 𝑉5)
																																																(2.8) 

  

This shows a linear relation between the quasi-Fermi potential 𝑉 and 𝑦. For long channel, the 

device is a simple resistor with conductance 𝑔", ∝ 1/𝐿 due to the uniform resistivity[43]. For 

short channel, however, the source-drain encroachment effect results in a linear region channel 

conductance, which increases faster than 1/𝐿 in short channel devices. Unlike the long channel 

𝑉(𝑦)  with a constant 𝑑𝑉/𝑑𝑦 over the channel, the quasi-Fermi potential of short channel case 

shows lower slope near the source and drain sides, indicating the effect of the source-drain 

encroachment. The reduction of integrated resistance of short channel case due to the short channel 

effect can be quantified by ∆𝐿, defined as the effective shortening of 𝐿 in Figure 2.4, as far as the 

linear region channel resistance is concerned. The ∆𝐿 is due to the non-uniform resistivity with 

higher carrier density at the source and drain ends due to the encroachment. This means that the 
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source-drain encroachment acts like a fixed reduction of 𝐿 such that the linear-region channel 

resistance ���
¨��
	∝ (𝐿 − ∆𝐿).    

 

 

Figure 2.4: Comparison of the quasi-Fermi Potential 𝑉(𝑦) between the long- and short- channel cases. 
For long-channel case, no source-drain encroachment is considered. For short-channel case, with source-

drain encroachment, the effective length is shortened by ∆𝐿. 𝑉*# = 0.5𝑉. 
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(a) 

 

(b) 

Figure 2.5:  1/𝐼"# as a function of 𝐿 for various gate voltage 𝑉*#. Dash line are generated from the linear 
extrapolation of the model data, which is plotted as the solid line and symbol. Note the intercept of the 

line on the 𝑥 −axis ∆𝐿 describes the effect of source-drain encroachment.	𝑉5 = 0.247𝑉. 
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(c) 

 

(d) 

Figure 2.5:  1/𝐼"# as a function of 𝐿 for various gate voltage 𝑉*#, continued. 
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(e) 

 
Figure 2.5:  1/𝐼"# as a function of 𝐿 for various gate voltage 𝑉*#, continued. 

 
 

 

∆𝐿 can also be extracted by plotting the low drain bias channel resistance or 1/𝐼"# versus 

𝐿 , and then linearly extrapolating the intercept with 𝑥 −axis. Figure 2.5 shows 1/𝐼"# versus 𝐿 for 

various 𝑉*#. The solid line and symbol denote the data generated by the low drain non-GCA short 

channel model. The dash line is generated by the extrapolation of the model data. We can see for 

a higher gate voltage drive, a lower ∆𝐿 is obtained, showing the gate voltage dependence of the 

short channel effect.  
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Figure 2.6: 1/𝐼"# versus 𝐿 generated from the drain region non-GCA model[47] and the low drain short 
channel non-GCA model, compared with TCAD simulation[55]. 𝑉5 = 0.327𝑉. 

 

 

Figure 2.6 shows 1/𝐼"#  as a function of 𝐿  given 𝑉*# = 0.6𝑉  generated from the drain 

region non-GCA model[47] and this low drain short-channel non-GCA model and compared with 

TCAD simulation. The extrapolated intercept with 𝑥 − axis of the drain region non-GCA model 

data ∆𝐿>.©.Y¡Yª«¬  is 0 ,  indicating that the source-drain encroachment effect is not taken into 

account. The result generated by the short-channel non-GCA model is consistent with TCAD 

simulation. 
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Figure 2.7: Comparison of ∆𝐿 versus 𝑉*# extracted from Scale length model[32], [38], the low drain short 
channel non-GCA model and TCAD simulations. 

 

 

             Figure 2.7 shows ∆𝐿 versus 𝑉*# extracted from scale length model[32][38], the low drain 

short channel non-GCA model and TCAD simulations. The scale length model achieves a good 

accuracy in subthreshold, but when 𝑉*# goes up further, it no longer works. In the above threshold 

region, the short-channel non-GCA model is in good agreement with TCAD simulation. It is 

obvious the short channel effect (i.e., ∆𝐿) is stronger in subthreshold and weaker above threshold. 

            We can come out with an analytical expression to describe the trend of changing Δ𝐿 with 

respect to 𝑉*#. In Figure 2.2, we see the potential profile is symmetry over the channel, indicating 

"|
"~
= 0 at the midpoint of the channel. For device that is not too short(e.g., 𝐿 ≫	~10 ×	of 𝐿> of 

Equation (2.12) below), the potential at midpoint 𝜓�𝑦 = ¯
?
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𝑞
𝜀#D
𝑛D𝑒

{|°
�� =

2𝐶DYZ(𝑉*# − 𝑉5)
𝜀#D𝑡#D

																																							(2.9) 

 

We can insert Equation (2.9) to Equation (2.5) and get: 

 

𝑑?𝜓
𝑑𝑦? =

𝑞𝑛D𝑒{|°/��

𝜀#D
�𝑒

{(|=|°)
�� − 1�																																					(2.10) 

 

Applying a first-order approximation on the RHS of Equation (2.10) obtains: 

 

𝑑?𝜓
𝑑𝑦? ≈

𝜓 − 𝜓H
𝐿>?

																																																				(2.11) 

 

where  

 

𝐿> = 	�
𝜀#D𝑘𝑇

𝑞?𝑛D𝑒{|°/��
= �

𝜀#D𝑘𝑇𝑡#D
2𝑞𝐶DYZ(𝑉*# − 𝑉5)

																																(2.12) 

 

is the Debye length corresponding to the mid-channel carrier concentration. Figure 2.8 plots the 

Debye length 𝐿> as a function of gate overdrive. It predicts the changing trend that for a lower 

gate overdrive, it takes longer for the band to rise up to the source-drain potential, which is 

consistent with our previous analysis.  
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Figure 2.8 𝐿> as a function of gate overdrive 𝑉*# − 𝑉5. 
 

 

Table 2.1: Comparison between the Debye length 𝐿> and Δ𝐿 value in Figure 2.7. 

𝑉*#	(𝑉) 𝐿>(𝑛𝑚) Δ𝐿(𝑛𝑚) 

𝐿 = 10𝑛𝑚 𝐿 = 15𝑛𝑚 𝐿 = 20𝑛𝑚 

0.3 1.53 4.66 4.74 4.76 

0.5 0.75 2.13 2.14 2.16 

0.7 0.54 1.43 1.43 1.45 

 

In Table 2.1, we compare the Debye length 𝐿> with ∆𝐿 for various channel lengths 𝐿. The 

𝐿>  values are 0.54𝑛𝑚 for 𝑉*# = 0.7𝑉, 0.75𝑛𝑚 for 𝑉*# = 0.5𝑉 and 1.53𝑛𝑚 for 𝑉*# = 0.3𝑉. The 

corresponding ∆𝐿/2 values for various 𝐿 are between 1.3 × and 1.6 × of 𝐿>. 
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2.2 Short-Channel Non-GCA Model for High Drain Bias 
Case 
 
 
 

For high drain bias case, to solve the potential and quasi-Fermi potential, we have to couple 

Equation (2.4) with the current continuity equation[2][43]: 

 

𝐼"# = 𝜇���𝑊𝑞𝑡#D𝑛D𝑒
{(|=�)
��

𝑑𝑉
𝑑𝑦 																																								(2.13) 

 

We have four boundary conditions: 

 

𝑉(0) = 0																																																																				(2.14𝑎) 

𝑉(𝐿) = 𝑉"#																																																																	(2.14𝑏) 

𝜓(0) = j
𝑘𝑇
𝑞 k ln j

𝑁#=>
𝑛D

k																																																		(2.14𝑐) 

𝜓(𝐿) = j
𝑘𝑇
𝑞 k ln j

𝑁#=>
𝑛D

k + 𝑉"#																																								(2.14𝑑) 

 

For given 𝑉"#, 𝜓(𝑦) and 𝑉(𝑦) are generated from Equations (2.4) and (2.13) with an initial 

guess of 𝐼"#. Then compare the value of 𝑉(𝐿) and 𝑉"#. If they are not the same, we adjust 𝐼"# and 

repeat the process until 𝑉"# = 𝑉(𝐿) is satisfied.  

This iteration process is time consuming. To avoid the cumbersome process, we can apply 

a variable transformation technology by introducing a new valuable 𝑢(𝑦) ≡ 𝜓(𝑦) − 𝑉(𝑦). The 

Equation (2.13) can be transformed as: 
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𝑑𝑉
𝑑𝑦 =

𝐼"#

𝜇���𝑊𝑞𝑡#D𝑛D𝑒
{³
��
																																															(2.15) 

 

Meanwhile, we can change Equation (2.4) as: 

 

𝑑?𝑢
𝑑𝑦? = 	

𝑞
𝑘𝑇

𝐼"#

𝜇���𝑊𝑞𝑡#D𝑛D𝑒
{³
��

𝑑𝑢
𝑑𝑦 +	

𝑞
𝜀#D
𝑛D𝑒

{³
�� −

2𝐶DYZ�𝑉*# − 𝑉5 − 𝑉�
𝜀#D𝑡#D

																			(2.16) 

 

In this way, to solve the equations, three boundary conditions are needed: 

 

𝑢(0) = 𝑢hf} ≡ (𝑘𝑇/𝑞)ln	(𝑁<=>/𝑛D)																																											(2.17𝑎) 

𝑢(𝐿) = 𝑢hf} ≡ (𝑘𝑇/𝑞)ln	(𝑁<=>/𝑛D)																																											(2.17𝑏) 

𝑉(0) = 0																																																																	(2.17𝑐) 

 

Here 𝑉"# is not included in those boundary conditions. A finite difference method implemented in 

a standard mathematics tool can be employed[56]–[61]. For a given 𝐼"#, we can solve the coupled 

Equations (2.15) and (2.16) to get 𝜓(𝑦) and 𝑉(𝑦). 𝑉"# is given by 𝑉(𝐿) so that 𝐼"# − 𝑉"# relation 

can be constructed. During this process, no iteration is needed.    
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Figure 2.9: The potential profile generated by the short-channel non-GCA model for low drain bias (e.g., 
𝑉"# = 0.001𝑉) and high drain bias (e.g., 𝑉"# = 0.7𝑉)(constant mobility). 

 
 

Figure 2.9 compares the potential profiles generated from this short-channel non-GCA 

model for low and high drain bias cases. The intersection of the source band encroachment with 

the gate-controlled channel potential results in a point of minimum, or “virtual cathode”[62], a 

small distance from the source. The current is diffusion in nature before this point and drift in 

nature after this point. The Drain Induced Barrier Lowering (DIBL)[43] at the maximum barrier 

(virtual cathode) can be obviously observed. 
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Figure 2.10: Comparison of potential profile 𝜓(𝑦) for various 𝑉*#. The low gate bias curve (i.e.,  𝑉*# =
0𝑉) is generated by the scale length model while the high gate bias curves (i.e., 𝑉*# = 0.3𝑉	𝑎𝑛𝑑	0.7𝑉) are 

generated by this short-channel non-GCA model. 
 
 

 
Figure 2.10 compares the potential profile 𝜓(𝑦) for various 𝑉*#. The curve for 𝑉*# below 

subthreshold (i.e., 𝑉*# = 0𝑉) is generated by the scale length model[32], [38] while the curves (i.e., 

𝑉*# = 0.3𝑉	𝑎𝑛𝑑	0.7𝑉) are generated by the short-channel non-GCA model. It is clear the position 

of the minimum potential is 𝑉*# −dependent. 
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Figure 2.11: The quasi-Fermi potential profile 𝑉(𝑦) along 𝑦, generated by the high drain short-channel 
non-GCA model.  

 

Figure 2.11 shows the quasi-Fermi potential 𝑉 as a function of 𝑦 for various 𝐼"#, generated 

by the high drain short-channel non-GCA model. For each 𝐼"#, we can select the value of 𝑉 at 𝑦 =

𝐿 = 10𝑛𝑚  as 𝑉"#.  For example, 𝑉"# = 0.3, 0.5	𝑎𝑛𝑑	0.7𝑉  are gotten for 𝐼"# = 1.8767𝐸 −

2, 2.5608𝐸 − 2	𝑎𝑛𝑑	3.0600𝐸 − 2𝐴/𝑢𝑚,	respectively. 

 

 

2.3 Velocity Saturation (n=1) 
 
 
 

For high drain biases, with 𝑛 = 1 the velocity saturation model, the current continuity 

equation is rewritten as: 
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𝐼"# = 𝑊𝑡#D𝑞𝑛D𝑒{(|=�)/��
𝜇���𝑑𝑉/𝑑𝑦

1 + �
𝜇���
𝑣#f5

� 𝑑𝑉/𝑑𝑦
																								(2.18) 

 

where 𝑣#f5 is the saturation velocity[50], [63]–[65]. We can solve 𝑑𝑉/𝑑𝑦 from Equation (2.18): 

 

𝑑𝑉
𝑑𝑦 =

𝐼"#/𝜇���
𝑊𝑡#D𝑞𝑛D𝑒{(|=�)/�� − 𝐼"#/𝑣#f5

																																			(2.19) 

 

To solve 𝜓(𝑦) and 𝑉(𝑦), Equation (2.19) is coupled with (2.4) with four boundary condition given 

by (2.14a)-(2.14d). Given a 𝑉*#, 𝐼"# is an unknown parameter in Equation (2.19), which is needed 

to be solved. Similarly, we can change 𝜓(𝑦) to a new variable 𝑢(𝑦) ≡ 𝜓(𝑦) − 𝑉(𝑦) to avoid 

tedious iterative procedure. In this way, Equations (2.4) and (2.19) becomes: 

 

𝑑?𝑢
𝑑𝑦? =

� 𝑞𝑘𝑇� j
𝐼"#
𝜇���

k

�𝑊𝑡#D𝑞𝑛D𝑒
{³
�� − 𝐼"#

𝑣#f5
�
? 𝑊𝑡#D𝑞𝑛D𝑒

{³
��
𝑑𝑢
𝑑𝑦 +

𝑞
𝜀#D
𝑛D𝑒

{³
�� −

2𝐶DYZ�𝑉*# − 𝑉5 − 𝑉�
𝜀#D𝑡#D

				(2.20) 

𝑑𝑉
𝑑𝑦 =

𝐼"#/𝜇���
𝑊𝑡#D𝑞𝑛D𝑒{³/�� − 𝐼"#/𝑣#f5

																												(2.21) 

 

For a given 𝐼"#, to solve 𝑢(𝑦) and 𝑉(𝑦), three boundary conditions needed are given by 

Equations (2.17a)-(2.17c). Figure 2.12 shows the potential 𝜓(𝑦) solved by this model for various 

𝑉*#. As 𝑉*# increases, the minimum potential, the virtual cathode, shifts toward the source. For each 

𝑉*#, due to the Drain Induced Barrier Lowering (DIBL) effect, the minimum potential at mid-
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channel in Figure 2.2 for low drain biases is always lower than the minimum potential at the virtual 

cathode. 

 

Figure 2.12: The 𝜓(𝑦) curves generated by the high drain short-channel non-GCA model for various 𝑉*#.  
 

 

Figure 2.13: The potential profile 𝜓(𝑦) along 𝑦 generated by the high drain short-channel non-GCA 
model for several values of 𝐿.  
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Figure 2.13 shows the model solved potential profile from the source to drain for 𝐿 =

10, 15, 20𝑛𝑚. A virtual cathode point can be observed in each curve with channel length of 𝐿. The 

virtual cathode point is almost the same distant from the source given the same bias condition, 

regardless of the different lengths.  

 

Figure 2.14: Comparison of the potential profiles 𝜓(𝑦) along 𝑦 generated by this short-channel non-GCA 
model and drain region non-GCA model[50]. 

 

Figure 2.14 shows the comparison of the potential profile 𝜓(𝑦) generated by this short-

channel non-GCA model and drain region non-GCA model[47], [50]. It is clear that there isn’t a 

virtual cathode on the drain region non-GCA curve. Figure 2.15 compares the quasi-Fermi 

potential profiles generated by those two models. It is shown that this short-channel non-GCA 

model has a 𝑑𝑉/𝑑𝑦|~yH ≈ 0 while the drain region non-GCA model has high value of 𝑑𝑉/𝑑𝑦|~yH 

because the source-drain encroachment effect is not incorporated. 
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Figure 2.15: Comparison of the quasi-Fermi potential profiles 𝑉(𝑦) along 𝑦 generated by different 
models. 

 

 

Figure 2.16: 𝐼"# − 𝑉"# characteristics generated by solving the coupled Equations (2.20) and (2.21) with 
fixed boundary conditions (2.17) are compared to TCAD. The source-drain doping level is 10?@𝑐𝑚=B. 
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Figure 2.17: 𝑔"# ≡ 𝑑𝐼"#/𝑑𝑉"# generated by solving the coupled Equations (2.20) and (2.21) with fixed 
boundary conditions (2.17) are compared to TCAD. The source-drain doping level is 10?@𝑐𝑚=B. 

 

Figure 2.16 shows the 𝐼"# − 𝑉"# characteristics generated by this short-channel non-GCA 

model are compared to the TCAD simulation with source-drain doping concentration of  

10?@𝑐𝑚=B . Figure 2.17 shows the output conductance, 𝑔", ≡ 𝑑𝐼"#/𝑑𝑉"# , between the short-

channel non-GCA model and TCAD. High accuracy is achieved over the entire range of 𝑉"#.  

 

 

2.4 Matching Model with Source-Drain Depletion 
 
 
 
 

In Section 2.3, we employed fixed boundary conditions, given by Equations (2.17a)-

(2.17c), to solve the coupled equations sets. It turns out these boundary conditions worked well 
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account. It may overestimate 𝐼"#  for more moderate source-drain doping levels (e.g., 𝑁<=> =

10?H𝑐𝑚=B) since there are significant drops of the quasi-Fermi potential in the source and drain 

regions[66]–[72]. To model 𝐼"# accurately, we have to reconstruct better boundary conditions so 

that they may match the potential and quasi-Fermi potential of the source and drain regions at 𝑦 =

0 and 𝐿, respectively. 

            In the source and drain regions, Poisson’s equation with the quasi-Fermi potential 𝑉(𝑦) is 

given as: 

 

𝑑?𝜓
𝑑𝑦? =

𝑞
𝜀#D
�𝑛D𝑒

{(|=�)
�� − 𝑁<=>�																																						(2.22) 

 

 The current continuity equation in the source and drain regions are the same as that of the 

channel, given by Equation (2.19). By changing 𝜓(𝑦) to 𝑢(𝑦) ≡ 𝜓(𝑦) − 𝑉(𝑦), we can transform 

Equations (2.19) to (2.21), and (2.22) to: 

 

𝑑?𝑢
𝑑𝑦? =

� 𝑞𝑘𝑇� j
𝐼"#
𝜇���

k

[𝑊𝑡#D𝑞𝑛D𝑒
{³
�� − 𝐼"#/𝑣#f5]?

𝑊𝑡#D𝑞𝑛D𝑒{³/��
𝑑𝑢
𝑑𝑦 +	

𝑞
𝜀#D
´𝑛D𝑒

{³
�� − 𝑁<=>µ									(2.23) 

 

 The contact-to-contact boundary conditions for the source and drain regions are: 

 

𝑢(−𝑙,) = 𝑢hf} ≡ j
𝑘𝑇
𝑞 k ln j

𝑁<=>
𝑛D

k																																						(2.24𝑎) 

𝑢(𝐿 + 𝑙,) = 𝑢hf} ≡ j
𝑘𝑇
𝑞 k ln j

𝑁<=>
𝑛D

k																																						(2.24𝑏) 
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𝑉(−𝑙,) = 0																																																																						(2.24𝑐) 
 
 
Here, 𝑙, is the source and drain region length. To avoid the cumbersome boundary conditions at 

𝑦 = 0	and	𝐿 for solving the channel region, we introduce a new variable 𝑢 = 𝑢hf} − ∆𝑢 in the 

source-drain regions. Equation (2.23) turns to: 

 

𝑑?∆𝑢
𝑑𝑦? −

� 𝑞𝑘𝑇� j
𝐼"#
𝜇���

k

´𝑊𝑡#D𝑞𝑛D𝑒
{³
�� − 𝐼"#

𝑣#f5
µ
? 𝑊𝑡#D𝑞𝑛D𝑒

{³
��
𝑑∆𝑢
𝑑𝑦 −

𝑞?𝑁<=>
𝜀#D𝑘𝑇

∆𝑢 = 0																						(2.25) 

	 

 
Here only the 1st-order of ∆𝑢 is considered. On the source side, the second term on LHS 

can be neglected since the carrier velocity ≪ 𝑣#f5. There is an analytic solution for Equation 

(2.25): 

 

∆𝑢 = [𝑢hf} − 𝑢(0)]𝑒
~
¯¸°																																																	(2.26) 

 

where  

  

𝐿>H = �
𝜀#D𝑘𝑇
𝑞?𝑁<=>

																																																									(2.27) 

 

is the Debye length in the source side. Since 𝐿>H ≪ 𝑙,, a boundray condition at 𝑦 = 0 can be 

obtained: 
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𝑑𝑢
𝑑𝑦 |~yH = −

𝑢hf} − 𝑢(0)
𝐿>H

																																																(2.28)	

		

On the drain region, however, the second term in Equation (2.25) is not negligible because 

the carrier velocities may be comparable with 𝑣#f5. By approximating the 𝑢(𝑦) factor in that term 

constant as 𝑢(𝐿), we can also get a solution on the drain region: 

 

𝑢hf} − 𝑢 = [𝑢hf} − 𝑢(𝐿)]𝑒=¹(~=¯)																																				(2.29) 

 

where  

 

𝐾 =

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
½

⎩
⎪
⎨

⎪
⎧ � 𝑞𝑘𝑇�j

𝐼"#
𝜇���

k

2 �𝑊𝑡#D𝑞𝑛D𝑒
{³(¯)
�� − 𝐼"#

𝑣#f5
�
? 𝑊𝑡#D𝑞𝑛D𝑒

{³(¯)
��

⎭
⎪
⎬

⎪
⎫
?

+
𝑞?𝑁<=>
𝜀#D𝑘𝑇

 

−
� ÅÆÇ�È

É��
ÊËÌÌ

Í

?iÎ5��{Y��
ÅÏ(Ð)
ÆÇ =

É��
Ñ�ÒÓ

l
� 𝑊𝑡#D𝑞𝑛D𝑒

ÅÏ(Ð)
ÆÇ 	(2.30)  

 

Here 𝐾 is a function of 𝑢(𝐿). In one limit, we have: 

 

𝐾 ≈
1
𝐿>
																																																													(2.31) 

 

In the other limit, we have: 
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𝐾 ≈
�𝑊𝑡#D𝑞𝑛D𝑒

{³(¯)
�� − 𝐼"#

𝑣#f5
�
?

𝐼"#
𝜇���

𝑊𝑡#D𝑛D𝜀#D
𝑁<=>𝑒

={³(¯)�� 																												(2.32) 

 

Then we can get a boundary condition at 𝑦 = 𝐿: 

 

𝑑𝑢
𝑑𝑦 |~y¯ = 𝐾[𝑢hf} − 𝑢(𝐿)]																																									(2.33) 

 

We still need another additional boundary condition to solve the channel coupled 

equations. We can take the average of the values of "�
"~

 at 𝑦 = 0 and 𝑦 = −𝑙, to estimate 𝑉(0): 

 

𝑉(0) =
𝑙,
2 �
𝑑𝑉
𝑑𝑦 |~yH +

𝑑𝑉
𝑑𝑦 |~y=ÕÖ� =

𝑙,
2 ×

𝐼"#
𝜇���

𝑊𝑡#D𝑞𝑛D𝑒
{³(H)
�� − 𝐼"#

𝑣#f5

+

𝐼"#
𝜇���

𝑊𝑡#D𝑞𝑁<=> −
𝐼"#
𝑣#f5

	Ø	(2.34) 

 
Now we can replace the fixed boundary conditions given by Equations (2.17a)-(2.17c) with 

the new ones by Equations (2.28), (2.33) and (2.34) for solving the coupled Equations (2.20) and 

(2.21) in channel region. To take the drop of quasi-Fermi potential in the drain region into account, 

we have to solve the equation (2.23) with two boundary conditions: one is given by Equation 

(2.24b) and the other one is 𝑢(𝐿) solved from the channel region. Then we can integrate Equation 

(2.21) from 𝑦 = 𝐿 to 𝐿 + 𝑙, to get the quasi-Fermi potential profile in the drain region. Note that 

𝑉"# is not 𝑉(𝐿) any more, like we did in the Section 2.3. Instead, we should add the drop of quasi-
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Fermi potential in the drain region to 𝑉(𝐿) we solved from the channel region so 𝑉"# = 𝑉(𝐿 + 𝑙,). 

This process generates a point on the 𝐼"# − 𝑉"# characteristics. 

Figure 2.18 shows the potential 𝜓(𝑦) generated by matching the potential in the source and 

the drain regions with depletion effects in the channel region. Unlike the slight drops of potential 

in the source, substantial drops is observed in the drain due to the high field and carrier velocity 

which approaches 𝑣#f5. 

            Figure 2.19 plots the quasi-Fermi potential 𝑉(𝑦) from the source contact to the drain 

contact, generated by our short-channel non-GCA model with matching boundary conditions, for 

various 𝑉"#. When 𝑉"# moves deeper into the saturation region, a more significant fraction of 𝑉"# 

is dropped in the drain region. 

 

Figure 2.18: Potential profile 𝜓(𝑦) from the source contact to the drain contact generated by this 
matching model (i.e., with boundary conditions Equations (2.28), (2.31) and (2.32)). The source-drain 
doping concentration is 𝑁<=> = 10?H𝑐𝑚=B. The source and drain lengths are assumed to be 𝑙, = 3𝑛𝑚. 
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Figure 2.19: Quasi-Fermi Potential profile 𝑉(𝑦) from the source contact to the drain contact generated by 
the matching model with source-drain depletion. 

 

Figure 2.20 compares the potential 𝜓(𝑦) from our short-channel non-GCA model with 

matching boundary conditions and fixed boundary conditions. The source-drain doping levels are 

𝑁<=> = 10?@𝑐𝑚=B. Only very slight drops are observed in the source and drain regions from the 

matching model. Figure 2.21 compares the quasi-Fermi potential profiles 𝑉(𝑦) from those two 

models with the same high level of the source-drain doping. The potentials 𝜓(𝑦) and quasi-Fermi 

potentials 𝑉(𝑦) generated by the model with fixed boundary conditions are in close agreement 

with that of matching boundary conditions. This means the fixed boundary conditions are good 

approximations for a high source-drain doping concentration. 
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Figure 2.20: Comparison of Potential profile generated from the model with fixed boundary conditions 
and with matching boundary conditions. The source-drain doping levels are 	𝑁<=> = 10?@𝑐𝑚=B. 

 

 

Figure 2.21: Comparison of quasi-Fermi Potential profile generated from the model with fixed boundary 
conditions and with matching boundary conditions. The source-drain doping levels are 	𝑁<=> =

10?@𝑐𝑚=B. 
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Figure 2.22 compares the potential 𝜓(𝑦) from our short-channel non-GCA model with 

matching boundary conditions and fixed boundary conditions, with the source-drain doping 

concentration of 𝑁<=> = 10?H𝑐𝑚=B . Obviously, the fixed boundary conditions are unable to 

account for the large fraction of drops of potential in the drain side and overestimate the potential 

near the drain side. Figure 2.23 shows the quasi-Fermi potential 𝑉(𝑦) generated by the model with 

the two different boundary conditions. A large discrepancy on the value of 𝑉(𝐿) (e.g., ~0.2𝑉) is 

observed from those two types of boundary conditions. This shows the fixed boundary conditions 

don’t work for moderate source-drain doping levels (e.g., 𝑁<=> = 10?H𝑐𝑚=B). 

 

 

Figure 2.22: Comparison of Potential profile generated from the model with fixed boundary conditions 
and with matching boundary conditions. The source-drain doping levels are 	𝑁<=> = 10?H𝑐𝑚=B. 
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Figure 2.23: Comparison of quasi-Fermi Potential profile generated from the model with fixed boundary 
conditions and with matching boundary conditions. The source-drain doping levels are 	𝑁<=> =

10?H𝑐𝑚=B. 
 

 

Figures 2.24 and 2.25 compare 𝐼"# − 𝑉"#  generated from our short-channel non-GCA 

model with different boundary conditions, with the source-drain doping concentration of 𝑁<=> =

10?H	𝑎𝑛𝑑	10?@𝑐𝑚=B, respectively. For a high level of the source-drain doping concentrations, 

𝐼"# − 𝑉"# characteristics from those two types of boundary conditions are in close agreement to 

each other due to the consistent potential 𝜓(𝑦) and the quasi-Fermi potential 𝑉(𝑦), as discussed 

above. However, for the moderate level of the source-drain doping concentrations, the current of 

the fixed boundary conditions is significantly off (e.g., up to 9%) from that of the matching 

boundary conditions. 
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Figure 2.24: Comparison of 𝐼"# − 𝑉"# generated from the model with fixed boundary conditions and with 
matching boundary conditions. The source-drain doping levels are 	𝑁<=> = 10?@𝑐𝑚=B	𝑎𝑛𝑑 𝑉*# = 0.7𝑉. 

 

Figure 2.25: Comparison of 𝐼"# − 𝑉"# generated from the model with fixed boundary conditions and with 
matching boundary conditions. The source-drain doping levels are 	𝑁<=> = 10?H𝑐𝑚=B𝑎𝑛𝑑 𝑉*# = 0.7𝑉.  
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Figure 2.26: 𝐼"# − 𝑉"# characteristics generated by this matching model with the source-drain depletion, 
compared with TCAD. 

 

 

Figure 2.27: 𝑔"# ≡ 𝑑𝐼"#/𝑑𝑉"# generated by this matching model with the source-drain depletion, 
compared with TCAD. 
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Figure 2.26 shows the 𝐼"# − 𝑉"# characteristics generated by this model (matching model 

with the source-drain depletion). They are in good agreement with TCAD simulation results. 

Further verification of the output conductance 𝑔", ≡ 𝑑𝐼"#/𝑑𝑉"#, by TCAD simulations are shown 

in Figure 2.27. 

 

 

Figure 2.28: 𝐼"# − 𝑉*# characteristics generated by this matching model for various channel lengths, 
compared with TCAD. 𝑉"# = 0.7𝑉.  

 

Figure 2.28 shows the 𝐼"# − 𝑉*# characteristics generated by this model for various channel 

lengths 𝐿 at a fixed 𝑉"# = 0.7𝑉, which are consistent with TCAD simulations. The result of the 

device with length of 𝐿 = 7𝑛𝑚 is slight off compared with TCAD simulations at high 𝑉*# bias 

because the short-channel effect becomes rather severe. 
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In the 𝑛 = 1  velocity saturation model, the current continuity Equation (2.18) is only 

applicable for the range of "�
"~
> 0. When "�

"~
< 0, the velocity-field relation becomes: 

 

𝑣 =
𝜇���𝑑𝑉/𝑑𝑦

1 − (𝜇���/𝑣#f5)𝑑𝑉/𝑑𝑦
																																										(2.35) 

 

In other words, the current continuity equation for 𝑛 = 1 velocity saturation model for the full 

range is given as: 

 

𝐼"# = 𝑊𝑡#D𝑞𝑛D𝑒{(|=�)/��
𝜇���𝑑𝑉/𝑑𝑦	

1 + �
𝜇���
𝑣#f5

� | 𝑑𝑉𝑑𝑦 |
																											(2.36) 

 
It turns out that there is a discontinuity at "�

"~
= 0 of Equation (2.36)[25]. To fix this problem, a 

𝑛 = 2 velocity saturation model can be employed where the current continuity equation (2.18) is 

replaced as[43], [62], [64], [65]: 

 

 

𝐼"# = 𝑊𝑡#D𝑞𝑛D𝑒
{(|=�)
��

𝜇���
𝑑𝑉
𝑑𝑦

�1 + �
𝜇���
𝑣#f5

�
?
j𝑑𝑉𝑑𝑦k

?
																											(2.37) 

 

Similarly, with the variable transformation technology, the coupled equation for solving 

𝑢(𝑦) and 𝑉(𝑦) are constructed as: 
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𝑑?𝑢
𝑑𝑦? = j𝑊𝑡#D𝑞𝑛D

𝜇���
𝐼"#

𝑒
{³
��k

? 𝑞
𝑘𝑇

𝑑𝑢
𝑑𝑦

⎣
⎢
⎢
⎢
⎢
⎡ 𝐼"#

𝜇���

��𝑊𝑞𝑡#D𝑛D𝑒
{³
���

?
− � 𝐼"#𝑣#f5

�
?

⎦
⎥
⎥
⎥
⎥
⎤
B

 

+
𝑞
𝜀#D
𝑛D𝑒

{³
�� −

2𝐶DYZ(𝑉*# − 𝑉5 − 𝑉)	
𝜀#D𝑡#D

						(2.38) 

𝑑𝑉
𝑑𝑦 =

𝐼"#
𝜇���

��𝑊𝑞𝑡#D𝑛D𝑒
{³
���

?
− � 𝐼"#𝑣#f5

�
?
																																									(2.39) 

 
 
 
 

To avoid overestimating 𝐼"# by the fixed boundary conditions discussed above, we also 

have to construct boundary conditions by matching the potential in the channel and that in the 

source and drain. The Poisson’s equation in the source-drain regions is given as: 

 

𝑑?𝑢
𝑑𝑦? = j𝑊𝑡#D𝑞𝑛D

𝜇���
𝐼"#

𝑒
{³
��k

? 𝑞
𝑘𝑇

𝑑𝑢
𝑑𝑦

⎣
⎢
⎢
⎢
⎢
⎡ 𝐼"#

𝜇���

��𝑊𝑞𝑡#D𝑛D𝑒
{³
���

?
− � 𝐼"#𝑣#f5

�
?

⎦
⎥
⎥
⎥
⎥
⎤
B

 

+
𝑞
𝜀#D
�𝑛D𝑒

{³
�� − 𝑁<=>�							(2.40) 

 

 By expressing 𝑢 = 𝑢hf} − ∆𝑢 and keeping only the first-order of ∆𝑢, Equation (2.40) 

changes to: 
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𝑑?∆𝑢
𝑑𝑦? −j𝑊𝑡#D𝑞𝑛D

𝜇���
𝐼"#

𝑒
{³
��k

? 𝑞
𝑘𝑇

⎣
⎢
⎢
⎢
⎢
⎡ 𝐼"#

𝜇���

��𝑊𝑞𝑡#D𝑛D𝑒
{³
���

?
− � 𝐼"#𝑣#f5

�
?

⎦
⎥
⎥
⎥
⎥
⎤
B

𝑑∆𝑢
𝑑𝑦 −

𝑞?𝑁<=>
𝜀#D𝑘𝑇

∆𝑢 = 0		(2.41) 

 

In the source side, we can derive a boundary condition in a same form with Equation (2.28) at 𝑦 =

0. In the drain side, we a solution for Equation (2.41) can also be constructed as: 

 

𝑢hf} − 𝑢 = [𝑢hf} − 𝑢(𝐿)]𝑒=¹�(~=¯)																																(2.42) 

 

where  

𝐾? = −
1
2 �𝑊𝑡#D𝑞𝑛D

𝜇���
𝐼"#

𝑒
{³(¯)
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𝑘𝑇
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�j𝑊𝑞𝑡#D𝑛D𝑒
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− � 𝐼"#𝑣#f5
�
?

⎦
⎥
⎥
⎥
⎥
⎤
B

⎭
⎪
⎬

⎪
⎫
?

+
𝑞?𝑁<=>
𝜀#D𝑘𝑇

	(2.43) 

 

So that the boundary condition at 𝑦 = 𝐿 is given as: 

 

𝑑𝑢
𝑑𝑦 |~y¯ = 𝐾?[𝑢hf} − 𝑢(𝐿)]																																								(2.44) 
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Another boundary condition of 𝑉(0) can be written as: 

 

𝑉(0) =
𝑙,
2 �
𝑑𝑉
𝑑𝑦 |~yH +

𝑑𝑉
𝑑𝑦 |~y=ÕÖ� 

=
𝑙,
2

⎩
⎪
⎨

⎪
⎧ 𝐼"#

𝜇���

��𝑊𝑞𝑡#D𝑛D𝑒
{³(H)
�� �

?

− � 𝐼"#𝑣#f5
�
?
+

𝐼"#
𝜇���

�(𝑊𝑞𝑡#D𝑁<=>)? − �
𝐼"#
𝑣#f5

�
?

⎭
⎪
⎬

⎪
⎫

(2.45) 

 
By following the same approach of the matching model described in Section 2.4, we can construct 

the 𝐼"# − 𝑉"# characteristics for 𝑛 = 2 velocity saturation case. 

 

Figure 2.29: Comparison of Potential profile 𝜓(𝑦) generated from the 𝑛 = 1 and 𝑛 = 2 velocity 
saturation models. 𝑁<=> = 10?H𝑐𝑚=B. 𝑉*# = 𝑉"# = 0.7𝑉. 
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Figure 2.30: Comparison of quasi-Fermi Potential profile 𝑉(𝑦) generated from the 𝑛 = 1 and 𝑛 = 2 
velocity saturation models. 𝑁<=> = 10?H𝑐𝑚=B. 𝑉*# = 𝑉"# = 0.7𝑉. 

 
 
 

Figures 2.29 and 2.30 show the potential 𝜓(𝑦)  and quasi-Fermi potential 𝑉(𝑦) , 

respectively, generated from the 𝑛 = 1 and 𝑛 = 2 velocity saturation models. It shows that both 

𝑛 = 1 and 𝑛 = 2 models are able to describe the significant drops of potential and quasi-Fermi 
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2 velocity saturation model, which is in consistent with TCAD simulations. 
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Figure 2.31: 𝐼"# − 𝑉"# characteristics generated by the 𝑛 = 2 model (matching model with S-D depletion) 
are compared with TCAD simulations. 

 

 

2.6 Summary 
 
 
 

In this chapter, an above-threshold 𝐼"# − 𝑉"# model for short-channel double-gate (DG) 

MOSFETs is developed by taking into account the contribution from the source-drain 

encroachment effect to the carrier density. At low-drain biases, the source-drain encroachment 

effect (short-channel effect) appears as a gate-voltage dependent reduction of channel resistance. 

It is strong in subthreshold and weak in above threshold. At high-drain bias voltages, the 

encroachment of the source-drain bands intersects with the gate-controlled channel potential, 

resulting in a point of “virtual cathode”, or minimum potential, at a small distance from the source. 

This non-GCA model is also extended to incorporate the effect of band bending caused by the 
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depletion of carriers in the source and drain region. By applying the 𝑛 = 1 and 𝑛 = 2 velocity 

saturation model, the 𝐼"# − 𝑉"# and 𝐼"# − 𝑉*# characteristics are generated and verified by TCAD 

simulations. 

Chapter 2, in full, is a reprint of the material as it appears in “An Above Threshold Model 

for Short-Channel DG MOSFETs,” by David Chuyang Hong and Yuan Taur, IEEE Trans. 

Electron Devices, Jul. 2021. The dissertation author was the primary investigator and author of 

this paper. 
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CHAPTER 3 SERIES RESISTANT MODEL FOR DG 
MOSFETS 

 
 
 

On Chapter 2, we developed an above threshold 𝐼"# − 𝑉"# model for short-channel DG 

MOSFET. High accuracies are achieved for both 𝑛 = 1 and 𝑛 = 2 velocity saturation models. It 

is worthwhile to note that what we discussed before are about the intrinsic DG MOSFETs[43], 

where the internal terminals are applied by the bias voltages 𝑉*# and 𝑉"# directly. Here perfectly 

conducting source and drain terminals are assumed so that there is no voltage drop showing in 

those regions. This is not valid in practice since there are finite metal contact resistance and silicon 

resistivity needed to be considered[43], [73]–[75]. The effect of the source-drain series resistant 

may significantly degrade the current when it is comparable with the channel resistance, which 

usually happens in the short-channel devices. In this chapter, we will first extend our short-channel 

non-GCA model to incorporate the source-drain series resistant effect. Then we will verify our 

model by the experimental data from Intel FinFET at 14nm[76]. 

 
 
 

3.1 Series Resistant Model 
 
 
 
 

A real DG MOSFET can be modeled as an intrinsic part in series with the two parasitic 

resistances[43]. The schematic of the equivalent circuit of a real DG MOSFET is shown in Figure 

4.1. 𝑅"	𝑎𝑛𝑑	𝑅#  are the source and drain resistant, respectively. 𝑉*#	𝑎𝑛𝑑	𝑉"#  are the external 
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applied bias voltages. 𝑉*#ã	𝑎𝑛𝑑	𝑉"#ã are the internal voltage applied to the terminals of an intrinsic 

DG MOSFET. Two relations between them can be easily found: 

 

𝑉*# = 𝑉*#ã + 𝑅#𝐼"#																																																										(3.1) 

𝑉"# = 𝑉"#ã + 𝑅#"𝐼"# = 	𝑉"#ã + (𝑅# + 𝑅")𝐼"#																																				(3.2) 

 

where 𝑅#" = 𝑅# + 𝑅". 

 

 

Figure 3.1: Schematic diagram showing the equivalent circuit of DG MOSFET with the source-drain 
series resistant[43]. 
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In TCAD[55] and other conventional models[8], [77], [78], 𝐼"# − 𝑉"# characteristics are 

generated by finding 𝐼"# for given 𝑉*# and 𝑉"#. This indicates the unknown 𝑉*#ã	𝑎𝑛𝑑	𝑉"#ã has to be 

solved iteratively because they are needed parameters in Equations (3.1) and (3.2) and the model 

equations for intrinsic DGMOSFET. This iteration process is cumbersome and computationally 

expensive. In contrast, in our short-channel non-GCA model described in Chapter 2, 𝐼"# − 𝑉"# 

characteristics are constructed by solving 𝑉"# for given 𝐼"# and 𝑉*# so no iteration is needed. 

Given 𝐼"#  and 𝑉*# , we can get 𝑉*#ã  from Equation (3.1). With 𝐼"#  and 𝑉*#ã , the short-

channel non-GCA model can be applied to calculate 𝑉"#ã  , hence 𝑉"#  can be obtained from 

Equation (3.2). Finally, 𝐼"# − 𝑉"#	characteristic can be constructed. We can incorporate this 

process into our short-channel non-GCA model. 

For 𝑛 = 1 velocity saturation case, Equation (2.20) should be replaced as: 

 

𝑑?𝑢
𝑑𝑦? =

� 𝑞𝑘𝑇� j
𝐼"#
𝜇���

k

�𝑊𝑡#D𝑞𝑛D𝑒
{³
�� − 𝐼"#

𝑣#f5
�
? 𝑊𝑡#D𝑞𝑛D𝑒

{³
��
𝑑𝑢
𝑑𝑦 +

𝑞
𝜀#D
𝑛D𝑒

{³
�� 

−
2𝐶DYZ′�𝑉*# − 𝐼"#𝑅# − 𝑉5 − 𝑉�

𝜀#D𝑡#D
				(3.3) 

 

where  

  

𝐶DYZ = 𝐶¡}
2𝑟𝛽#′𝑡𝑎𝑛𝛽#′

𝑙𝑛𝛽#′ − ln(𝑐𝑜𝑠𝛽#′) + 2𝑟𝛽#′𝑡𝑎𝑛𝛽#′
																																	(3.4) 

 

and 𝛽#′ is determined by: 
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𝑉*# − 𝐼"#𝑅# − 𝑉5 =
2𝑘𝑇
𝑞
[𝑙𝑛𝛽#ã − ln(cos 𝛽#′) + 2𝑟𝛽#ã tan 𝛽#′]																					(3.5) 

 

After solving quasi-Fermi potential 𝑉(𝑦) from the coupled equation Equations (3.3) and (2.21), 

we get: 

 

 𝑉"#ã = 𝑉(𝐿 + 𝑙,)																																												(3.6)	 

Hence, 

 

	𝑉"# = 𝑉(𝐿 + 𝑙,) + (𝑅# + 𝑅")𝐼"#.																																(3.7)  

 

Similarly, for 𝑛 = 2 velocity saturation model, Equation (2.38) needs to be replaced by: 

 

𝑑?𝑢
𝑑𝑦? = j𝑊𝑡#D𝑞𝑛D

𝜇���
𝐼"#

𝑒
{³
��k

? 𝑞
𝑘𝑇

𝑑𝑢
𝑑𝑦

⎣
⎢
⎢
⎢
⎢
⎡ 𝐼"#

𝜇���

��𝑊𝑞𝑡#D𝑛D𝑒
{³
���

?
− � 𝐼"#𝑣#f5

�
?

⎦
⎥
⎥
⎥
⎥
⎤
B

 

+
𝑞
𝜀#D
𝑛D𝑒

{³
�� −

2𝐶DYZ′�𝑉*# − 𝐼"#𝑅# − 𝑉5 − 𝑉�
𝜀#D𝑡#D

			(3.8) 

 

The coupled equations to solve the potential 𝜓(𝑦) and quasi-Fermi potential 𝑉(𝑦) are given by 

Equation (2.39) and (3.8). Then we can get one point on the 𝐼"# − 𝑉"# characteristics by estimating 

𝑉"# from Equation (3.7). 
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Figure 3.2: 𝐼"# − 𝑉"# characteristics generated by the short-channel non-GCA model with considering 
various 𝑅#". 

 

Table 3.1: Comparison of 𝐼"# from models with and without 𝑅#" for various 𝑉*# and 𝑉"#. Here 𝑅# = 𝑅" =
50Ω − 𝜇𝑚. 

 𝐼"#	𝑤𝑖𝑡ℎ𝑜𝑢𝑡	𝑅#"	 
(𝐴/𝑢𝑚) 

𝐼"#	𝑤𝑖𝑡ℎ	𝑅#"	 
(𝐴/𝑢𝑚) 

𝐷𝑒𝑐𝑟𝑒𝑠𝑒𝑑	𝑏𝑦 

𝑉*# = 0.3𝑉 𝑉"# = 0.01𝑉 1.0 × 10=é 5.26 × 10=ê 47.4% 

𝑉"# = 0.7𝑉 4.2205 × 10=é 3.2648 × 10=é 22.644% 

𝑉*# = 0.7𝑉 𝑉"# = 0.01𝑉 4.8 × 10=é 8.42 × 10=ê 82.458% 

𝑉"# = 0.7𝑉 2.7223 × 10=B 2.0045 × 10=B 26.367% 
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Figure 3.2 shows plots the 𝐼"# − 𝑉"# characteristics generated by the model with various 

𝑅#". It shows that the source-drain resistant causes the degradation of current 𝐼"# for various 𝑉*#. 

When current 𝐼"# flows into the device, it leads to some voltage drops in the source and drain due 

to the source-drain resistant. The resulted lower 𝑉*# and 𝑉"# applied in the intrinsic DG MOSFET 

(i.e., 𝑉*#′ and 𝑉"#′) causes the lowering of 𝐼"#  [43]. The slope of the curve in the linear region 

become lower for a higher 𝑅#". When the source-drain resistant is large (e.g., 1𝑘Ω − 𝜇𝑚 for this 

example), the device basically acts like a resistant. Table 3.1 compares the degree of 𝐼"# 

degradation for various 𝑉*#  and 𝑉"# . 𝑉"# = 0.01	𝑎𝑛𝑑	0.7𝑉  corresponds to the linear and the 

saturation regions, respectively. We can get two observations easily: (1) For the same 𝑉*# , 𝐼"# 

degradation is more severe in the linear region, compared with the saturation region. For example, 

for 𝑉*# = 0.7𝑉, 82.458% and 26.367% of 𝐼"# degradations are observed for linear and saturation, 

respectively. (2) For the same 𝑉"#,  a more severe degradation occurs for higher gate-voltage 

overdrive. For example, 𝑉"# = 0.01𝑉, 47.4% and 82.458% of 𝐼"# degradations are observed for 

𝑉*# = 0.3	𝑎𝑛𝑑	0.7𝑉. This is because the channel resistance is lower in the linear region and for a 

higher 𝑉*#,  and the effect of the source-drain resistant becomes more prominent. Those 

observations are in consistent with our physical insights[43]. 
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Table 3.2: Comparison of 𝐼"# from models with and without 𝑅#" for various 𝐿.  

 𝐼"#	𝑤𝑖𝑡ℎ𝑜𝑢𝑡	𝑅#"	 
(𝐴/𝑢𝑚) 

𝐼"#	𝑤𝑖𝑡ℎ	𝑅#"	 
(𝐴/𝑢𝑚) 

𝐷𝑒𝑐𝑟𝑒𝑠𝑒𝑑	𝑏𝑦 

𝐿 = 7𝑛𝑚 6.019 × 10=é 8.73 × 10=ê 85.496% 

𝐿 = 10𝑛𝑚 4.8 × 10=é 8.42 × 10=ê 82.458% 

𝐿 = 15𝑛𝑚 3.6 × 10=é 7.95 × 10=ê 77.916% 

𝐿 = 20𝑛𝑚 2.88 × 10=é 7.53 × 10=ê 73.854% 

 

 
 
 

Table 3.2 compares the 𝐼"# degradation for various channel length 𝐿. It is clear that for a 

shorter channel, the effect of the source-drain resistant is more prominent, since the channel 

resistance is lower[43].  

 

 

3.2 Intel Data Validation 
 
 
 
 

To further validate our short-channel non-GCA model, we can fit it to the experimental 

data from Intel 14nm FinFET[76]. The parameters used in our model are given by Table 3.3. Note 

the effective channel length is estimated as 𝐿 = 20𝑛𝑚. 𝑅# = 𝑅" = 98Ω − 𝜇𝑚 is used. Figure 3.2 

compares the 𝐼"# − 𝑉"#  characteristics from the data and the result from our model. Close 

agreement is achieved. 
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Table 3.3: Parameters used for fitting Intel 14nm data[76]. 

 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑉𝑎𝑙𝑢𝑒𝑠	 
 

𝜀#D 11.8 × 𝜀H 

𝜀D 6 × 𝜀H 

𝑡#D 8𝑛𝑚 

𝑡D 1𝑛𝑚 

𝑣#f5 10=ì 

𝜇��� 200 

𝐿 20𝑛𝑚 

𝑁<=> 10=?H𝑐𝑚=B 

𝑙, 3𝑛𝑚 

𝑉5 0.3185𝑉 

𝑅# 98Ω − 𝜇𝑚 

𝑅" 98Ω − 𝜇𝑚 
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Figure 3.3: 𝐼"# − 𝑉"# characteristics generated by the short-channel non-GCA model are verified by Intel 
14nm FinFET data[76]. 

 

 

3.3 Summary 
 
 
 

In this chapter, we incorporated the source-drain resistant effect into the short-channel non-

GCA model. The effect of the source-drain resistant on the 𝐼"# degradation is discussed. It shows 

the current degradation due to this effect becomes more severe in the linear region and for a higher 

𝑉*#. We also validate our model by fitting to the experimental data from the Intel 14nm FinFET. 

Close agreement is yielded.  
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CHAPTER 4 AN ABOVE THRESHOLD MODEL FOR BULK 
AND GROUND PLANE MOSFETS 

 
 
 

In Chapter 2, we developed a short channel non-GCA model for DG MOSFET. It achieves 

great performance in predicting the above threshold 𝐼"# − 𝑉"# characteristics. To apply the model 

to bulk and ground plane MOSFETs, we may encounter two problems: (1) The device structures 

of DG, bulk and ground plane MOSFETs are different, there are two gates for DG MOSFET while 

only one for bulk and ground plane MOSFETs. Some parameters like 𝑡#D is only applicable for DG 

MOSFET. (2) Unlike the DG MOSFET we discussed in Chapters 2 and 3 where the channel is 

undoped/lightly doped, the substrate of the bulk MOSFET is heavily/moderately doped in 

general[39], [43]. This means the fixed charge term in Poisson’s equation for bulk MOSFET is not 

negligible. For ground plane MOSFET, the doping profile is even more complex[79], [80]. By 

keeping those in mind, we have to start from Poisson’s equation again and develop a new short-

channel non-GCA model framework for bulk and ground plane MOSFETs.   

 

 

4.1 Short-Channel Non-GCA Model for Bulk MOSFET 
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Figure 4.1: Schematic of bulk MOSFET cross section. 𝑉U# = 0. 
 
 

Figure 4.1 shows schematic of a bulk MOSFET cross section. Poisson’s equation with the 

fixed charge term is given as: 

 

𝜕?𝜓
𝜕𝑥? +

𝜕?𝜓
𝜕𝑦? =

𝑞
𝜀#D
�𝑁f + 𝑛D𝑒

{(|=�)
�� �																						(4.1) 

 

where 𝑁f is the acceptor concentration of the p-type substrate[43]. The inversion charge density 

per area induced by the gate is written as: 

 

𝑄D = 𝐶DYZ′′�𝑉*# − 𝑉5′′ − 𝑚𝑉�																																		(4.2) 

where  
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𝑚 = 1 +
í𝜀#D𝑞𝑁f/4𝜓î

𝐶¡}
																															(4.3) 

 

is the body effect coefficient and 𝜓î = (𝑘𝑇/𝑞)ln	(𝑁f/𝑛D)  [43]. 𝐶DYZ′′  and 𝑉5′′  are adjustable 

parameters that can be chosen for best fitting of the 𝑄D�𝑉*#� or 𝑄D(𝑉)	curve for bulk MOSFETs.  

For given 𝑉, 𝑄D is a function of 𝑉*#, given by the charge-sheet model[44], [81], [82]: 

 

𝑄D = 𝐶¡}�𝑉*# − 𝑉�U − 𝜓#� − í2𝜀#D𝑞𝑁f𝜓#																						(4.4) 

 

where 𝑉�U is the flatband voltage and 𝜓# is the surface potential which can be determined by[83]: 

 

𝑉*# = 𝑉�U + 𝜓# +
í2𝜀#D𝑘𝑇𝑁f

𝐶¡}
i
𝑞𝜓#
𝑘𝑇 +

𝑛D?

𝑁f?
𝑒
{(|�=�)

�� l
@/?

																							(4.5) 

 

Figure 4.2 shows that the charge sheet model tends to underestimate the total charge density 

𝑄D in the above threshold region for device with long channel length. The key assumption of the 

charge sheet model is that the depletion charge is given by 𝑄" = í2𝜀#D𝑞𝑁f𝜓# for the entire bias 

range. While it is accurate below threshold, it overestimates 𝑄"  above threshold because even 

though 𝜓# increases slightly above threshold, 𝑄" stays constant once beyond the strong inversion 

region. We can derive a modified charge sheet model by replacing 𝜓# in 𝑄" with 2𝜓î + 𝑉: 

 

𝑄D = 𝐶¡}�𝑉*# − 𝑉�U − 𝜓#� − í2𝜀#D𝑞𝑁f(2𝜓î + 𝑉)																						(4.6) 
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It would be not valid below threshold, as shown in Figure 4.2 where the 𝑄D < 0 in the subthreshold 

region, but we are concerned with the above threshold only. It is obvious that 𝑄D(𝑉*#) generated 

by the modified charge sheet model is more accurate in the above threshold region.  

 Figure 4.3 compares the 𝐼"# − 𝑉"# characteristic generated by the charge sheet model and 

modified charge sheet model and TCAD simulation. Due to the underestimation of 𝑄D, the charge 

sheet model predicted 𝐼"# is off on the above threshold region. The modified charge sheet model 

is able to accurately predict the 𝐼"# in the linear region. When the device enters into the saturation 

region, the modified charge sheet model also underestimates the 𝐼"#. It is not a problem since we 

only utilize the result of the modified charge sheet model in the linear region to estimate 𝐶DYZ′′ and 

𝑉5′′, which will be discussed later. 

 

 

Figure 4.2: Comparison of 𝑄D(𝑉*#) generated by the charge sheet model[44], [83], modified charge sheet 
model and TCAD simulations for device with a long channel length 𝐿 = 500𝑛𝑚. 𝑉"# = 0.001𝑉. 
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Figure 4.3: Comparison of 𝐼"# − 𝑉*# generated by the charge sheet model[44], [83], modified charge sheet 
model and TCAD simulations for device with a long channel length 𝐿 = 1𝜇𝑚. 𝑉*# = 1.2𝑉. 

 

After generating a 𝑄D(𝑉)	curve for a given 𝑉*# from the modified charge sheet model (i.e., 

Equations (4.5) and (4.6)), we can extract two parameters: 

 

𝑎 = 𝑄D|�yH																																																																											(4.7) 

𝑏 = −
𝑑𝑄D
𝑑𝑉 |�yH																																																																				(4.8) 

 

to fit a linear relation to the curve. From Equation (4.2), we have: 

 

𝑎 = 𝐶DYZ′′�𝑉*# − 𝑉5′′�																																																							(4.9) 

𝑏 = 𝑚𝐶DYZ′′																																																																						(4.10) 
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Then we can extract: 

 

𝐶DYZãã =
−𝑑𝑄D𝑑𝑉 |�yH

𝑚 																																																					(4.11) 

𝑉5ãã = 𝑉*# − 𝑚
¥�|ïð°
=
�ñ�
�ï |ïð°

																																																(4.12)  

 

from each 𝑉*# curve. Figure 4.4 shows that the fitting linear relation of 𝑄D from Equation (4.2) with 

𝐶DYZãã  and 𝑉5ãã extracted from Equations (4.11) and (4.12) are accurate when 𝑉"# is not very large 

(e.g., 𝑉"# ≤ 0.3𝑉), because 𝐶DYZãã  and 𝑉5ãã are chosen to fit the value and slope of 𝑄D(𝑉) curve at 

𝑉 = 0𝑉. When 𝑉"# becomes larger, it may underestimate the 𝑄D and hence the saturation current: 

 

 𝐼"#_#f5 = 𝜇��� �
Î
¯
� ∗ ∫ 𝑄D(𝑉)𝑑𝑉

ax
H 																																							(4.13)  

 

A better improvement is to change to define a new variable 𝑏′ such that the maximum area 

under the linear approximation 𝑄D_ÕDY(𝑉) = 𝑎 − 𝑏′𝑉 curve, i.e., 𝑎?/(2𝑏′), equals ∫ 𝑄D(𝑉)𝑑𝑉
ax
H  

from the charge sheet model. In other words, 𝑏′ is chosen such that 𝜇��� �
Î
¯
� ∗ f�

?Uõ
 equals 𝐼"#_#f5 

of charge sheet model given from Equation (4.13). Considering that the 𝑄D(𝑉) from modified 

charge sheet model becomes negative in the saturation region, we define 𝑏ã as: 

 

𝑏ã =
𝑎?

2 ∫ 𝑄D(𝑉)𝑑𝑉
�ã
H

																																									(4.14) 
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here 𝑉′ is the value of 𝑄D at 𝑉 where 𝑄D(𝑉) = 0. Hence, 𝐶DYZãã  and 𝑉5ãã are extracted as: 

 

𝐶DYZãã =
(𝑄D|�yH)?

2𝑚 ∫ 𝑄D(𝑉)𝑑𝑉
�ã
H

																																																				(4.15) 

𝑉5ãã = 𝑉*# − 𝑚
?∫ ¥�(�)"�

ïõ
°
¥�|ïð°

																																																(4.16)  

 

As shown in Figure 4.4, Equation (4.2) with Equations (4.15) and (4.16) is a good 

approximation of 𝑄D on the above threshold region. Figure 4.5 further verify the approximation by 

comparing it to the TCAD simulation.  

 

 

Figure 4.4: Comparison of 𝑄D(𝑉) generated by the modified charge sheet model, Equation (4.2) with 
𝐶DYZ′′ and 𝑉5′′ extracted from Equations (4.11)-(4.12) and from Equations (4.15)-(4.16). 𝑉*# = 1.2𝑉.  
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Figure 4.5: Comparison of 𝑄D(𝑉*#) generated by the modified charge sheet model, Equation (4.2) with 
𝐶DYZ′′ and 𝑉5′′ extracted from Equations (4.15)-(4.16) at 𝑉*# = 1.2𝑉.  

 

Equations (4.15) and (4.16) indicates the 𝐶DYZãã  and 𝑉5ãã are 𝑉*# − dependent. We have to 

estimate 𝐶DYZãã  and 𝑉5ãã for a given 𝑉*#. Table 4.1 lists the 𝐶DYZãã  and 𝑉5ãã extracted from the modified 

charge sheet model for several 𝑉*#. 

 

Table 4.1: 𝐶DYZ′′ and 𝑉5′′ extracted from the 𝑄D(𝑉) curves which are generated by the modified charge-
sheet model. 

 
	 𝐶DYZ′′	(× 10=ö𝐶/(𝑐𝑚? ∙ 𝑉))	 𝑉5′′	(𝑉)	

𝑉*# = 1.2𝑉	 1.5734	 0.3143	

𝑉*# = 0.9𝑉	 1.5290	 0.3082	

𝑉*# = 0.6𝑉	 1.3923	 0.2890	
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Note that 𝑄D	given by Equation (4.2) corresponds to the 𝑥-curvature term in the Equation 

(4.1). We can write down a 1-Dimensional equation in the 𝑥-direction: 

 

𝑑?𝜓
𝑑𝑥? =

𝑞
𝜀#D
𝑁f +

𝐶DYZ′′(𝑉*# − 𝑉5′′ − 𝑚𝑉)
𝜀#D𝑑#D

																																				(4.17) 

 

where 𝑑#D is the effective thickness, which is similar to 𝑡#D for DG MOSFET. In default, we set the 

value of 𝑑#D as 𝑥] and 𝑥] is the junction depth of the source-drain region. The junction depth 𝑥] is 

an additional parameter that effects the short-channel effect of bulk MOSFETs, which is not taken 

into account in the short-channel non-GCA model for DG MOSFETs. Figure 4.6 compares the 

𝐼"# − 𝑉"# characteristics generated by TCAD simulation with different junction depth 𝑥]. As the 

channel length scales down, the junction depth plays a more important role in 𝐼"# − 𝑉"# 

characteristics. A shorter junction depth leads to a lower output conductance 𝑔", ≡ 𝑑𝐼"#/𝑑𝑉"# 

[84], [85].  
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Figure 4.6: 𝐼"# − 𝑉"# characteristics for MOSFETs generated by TCAD simulation with different junction 
depth 𝑥] for various channel length 𝐿.  𝑉*# = 1.2𝑉. 

 

 
Inserting Equation (4.17) into (4.1) yields: 

 

𝑑?𝜓
𝑑𝑦? =

𝑞
𝜀#D
𝑛D𝑒{(|=�)/�� −

𝐶DYZ′′�𝑉*# − 𝑉5′′ − 𝑚𝑉�
𝜀#D𝑑#D

																									(4.18) 

 

Equation (4.18) is in a similar form as Equation (2.4) for DG MOSFET. The only difference is the 

second term in RHS. There is a "2 × " factor for DG MOSFET due to the symmetric structure 

along the 𝑥 −direction. Moreover, for DG MOSFET, there is no body effect hence 𝑚 = 1. 

To construct the 𝐼"# − 𝑉"# characterics, Equation (4.18) has to be coupled with the current 

continuity equation to solve the potential 𝜓(𝑦) and the quasi-Fermi potential 𝑉(𝑦). To avoid the 

tedious iterative calculation process, we can transform the variable to 𝑢 ≡ 𝜓 − 𝑉. For the constant 

mobility case, the coupled equations are given as: 
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𝑑?𝑢
𝑑𝑦? = 	

𝑞
𝑘𝑇

𝐼"#

𝜇���𝑊𝑞𝑑#D𝑛D𝑒
{³
��

𝑑𝑢
𝑑𝑦 +	

𝑞
𝜀#D
𝑛D𝑒

{³
�� −

𝐶DYZ′′�𝑉*# − 𝑉5′′ − 𝑚𝑉�
𝜀#D𝑑#D

																			(4.19) 

𝑑𝑉
𝑑𝑦 =

𝐼"#

𝜇���𝑊𝑞𝑑#D𝑛D𝑒
{³
��
																																																		(4.20) 

 

 Figure 4.7 compares the 𝐼"# − 𝑉"# characteristics generated by the modified charge sheet 

model, short-channel non-GCA model and TCAD simulation for a device with long channel length 

𝐿 = 1𝜇𝑚 . The short-channel non-GCA model is accurate, although the 𝐶DYZ′′  and 𝑉5′′  are 

extracted from the modified charge sheet model from which the 𝐼"#  predicted is off in the 

saturation region. 

 

 

Figure 4.7: 𝐼"# − 𝑉"# characteristics for MOSFETs generated by the modified charge sheet model, short-
channel non-GCA model and TCAD simulation. 𝐿 = 1𝜇𝑚. 
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For 𝑛 = 1 velocity saturation case, the coupled equations are given as: 

 

𝑑?𝑢
𝑑𝑦? =

� 𝑞𝑘𝑇� j
𝐼"#
𝜇���

k

�𝑊𝑑#D𝑞𝑛D𝑒
{³
�� − 𝐼"#

𝑣#f5
�
? 𝑊𝑑#D𝑞𝑛D𝑒

{³
��
𝑑𝑢
𝑑𝑦 +

𝑞
𝜀#D
𝑛D𝑒

{³
�� −

𝐶DYZ′′�𝑉*# − 𝑉5′′ − 𝑚𝑉�
𝜀#D𝑑#D

				(4.21) 

𝑑𝑉
𝑑𝑦 =

𝐼"#/𝜇���
𝑊𝑑#D𝑞𝑛D𝑒{³/�� − 𝐼"#/𝑣#f5

																															(4.22) 

 

The three boundary conditions are given by Equations (2.17a)-(2.17c). For given 𝐼"#, after the 

quasi-Fermi potential 𝑉(𝑦) is solved, we choose the value of 𝑉(𝐿) as 𝑉"# so one point on the 𝐼"# −

𝑉"# characteristics is gotten. 

 Figures 4.8(a)-(d) compare the 𝐼"# − 𝑉"#  characteristics generated by the short-channel 

non-GCA model (𝑛 = 1) and TCAD simulation. For a long channel device, the model is able to 

achieve high accuracy. But as the channel length becomes shorter, the result becomes worse. It 

shows that this model tends to underestimate SCE.  

There are possible ways to further explore and improve: (1) The parameter 𝑑#D is simply 

assumed to be 𝑥] by default, which is not accurate enough to predict the current behavior of the 

devices. Figure 4.9 shows that 𝑑#D  plays an important role on the 𝐼"# − 𝑉"#  characteristics. A 

smaller 𝑑#D leads to a lower conductance 𝑔", ≡ 𝑑𝐼"#/𝑑𝑉"#. High accuracy of prediction can only 

be achieved with a good choice of 𝑑#D. (2) Another possible reason for the inaccuracy of the model 

for bulk MOSFET is that the depletion charge 𝑁f is not partitioned properly. The model considers 

all 𝑁f to be gate depleted, whereas in reality part of 𝑁f may be source-drain depleted. These point 

to a new direction of future work. 
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(a) 

 

(b) 

Figure 4.8: 𝐼"# − 𝑉"# characteristics for MOSFETs generated by the short-channel non-GCA model (n=1) 
and TCAD simulation for (a) 𝐿 = 1𝜇𝑚, (b) 𝐿 = 200𝑛𝑚, (c) 𝐿 = 100𝑛𝑚 and (d) 𝐿 = 50𝑛𝑚. 𝑑#D = 𝑥] =

25𝑛𝑚. 
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(c) 

 

(d) 

Figure 4.8: 𝐼"# − 𝑉"# characteristics for MOSFETs generated by the short-channel non-GCA model (n=1) 
and TCAD simulation, continued. 
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Figure 4.9: Comparison of 𝐼"# − 𝑉"# characteristics generated by TCAD simulations and models with 
different 𝑑#D. 

 

 

4.2 Short-Channel Non-GCA Model for Ground Plane 
MOSFET 
 

 

 

Figure 4.10 shows the schematic of a ground plane MOSFET. Unlike the bulk MOSFET 

where the substrate is uniformly doped, an ideal ground plane MOSFET introduces a retrograde 

channel layer and a 𝑝a substrate layer above the 𝑝= substrate layer so that the channel doping 

profile is of a low-high-low type[86]–[88]. Since the 𝑝= substrate layer under 𝑝a substrate layer 

is for purpose of the junction capacitance reduction with no effect on SCE or 𝐼"# − 𝑉"# 

characteristics, we can simplify the device structure with the doping profile of a low-high type, as 

shown in Figure 4.10. In the retrograde layer, the doping level is set to be 0. The doping 
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concentration of 𝑝a substrate layer is sufficiently high so that the depletion depth of the channel 

is the same as the retrograde layer depth 𝑡³. This leads to a better performance of the ground plane 

MOSFET on the SCE, compared with the bulk MOSFET[37][89]. Figure 4.11 compares the 𝐼"# −

𝑉"# characteristics for bulk and ground plane MOSFETs. Different gate work function values are 

set for the bulk and the ground plane MOSFETs so that their 𝐼"# − 𝑉"# characteristics are the same 

for a long channel length. It shows that the ground plane MOSFET has a lower output conductance 

𝑔", ≡ 𝑑𝐼"#/𝑑𝑉"# hence better performance.  

 

 

Figure 4.10: Schematic of ground plane MOSFET cross section. 𝑉U# = 0. 
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Figure 4.11: Comparison of 𝐼"# − 𝑉"# characteristics generated by TCAD simulations for bulk and ground 
plane MOSFETs. Here different work function values are set for them so that they have the same 𝐼"# −

𝑉"# characteristics for a long channel length.  
 

Due to the similar structures between two types of MOSFETs, the model for bulk 

MOSFETs is also applicable for ground plane MOSFET, e.g., Equations. (4.21)-(4.22), where 𝑚 

is given by 𝑚 = 1 + B5úû
5Ï
. The parameters 𝑎 and 𝑏 (hence, 𝐶DYZ′′ and 𝑉5′′) are adjusted to fit the 

long channel (e.g., 𝐿 = 1𝜇𝑚 ) 𝐼"# − 𝑉"#  characteristics. Figure 4.12 shows the 𝐼"# − 𝑉"# 

characteristics generated by the short-channel non-GCA model are compared with TCAD 

simulation. Good agreement is observed while the conductance of the model is slightly higher than 

that of the TCAD simulation. 
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Figure 4.12: 𝐼"# − 𝑉"# characteristics generated by the short-channel non-GCA model are compared with 
TCAD simulations for the ground plane MOSFET.  

 

 

4.3 Summary 
 
 
 

In the chapter, we applied the above threshold non-GCA model to short-channel bulk and 

ground plane MOSFETs. The source-drain encroachment effect is taken into account. It shows 

that junction depth is an additional parameter that affects SCE of bulk MOSFETs, which is not 

taken into account in the short-channel non-GCA model for DG MOSFETs. The charge sheet 

model is not accurate enough to fit 𝐶DYZ, 𝑉5 for long channel MOSFETs and a modified charge 

sheet model is developed. For practical junction depths like 𝑥] = 25𝑛𝑚, the short-channel non-

GCA model tends to underestimate SCE. This points to a direction of future work. 
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Chapter 4, in part, is a reprint of the material as it appears in Section 6.2.1.5 “Fundamentals 

of Modern VLSI Devices, third edition” by Yuan Taur and Tak H. Ning, 2021. The dissertation 

author helped to complete this section. 

 

  



84 
 

CHAPTER 5 NUMERICAL METHODS FOR MODEL 
DEVELOPMENT 

 
 
 

In previous Chapters, we developed multiple models, constructed by ordinary differential 

equation systems with initial conditions or boundary conditions in general. In most cases, we are 

unable to derive an analytic solution to the complicated differential equation system, so we have 

to solve it numerically. In this chapter, we will introduce two types of useful numerical methods 

for solving ordinary differential equations: Euler method and finite difference method. Then we 

will provide some practical suggestions and tradeoff discussions for using those methods. 

 
 

5.1 Euler Method 
 
 

Euler method is a well-known numerical method to solve ordinary differential equation 

system with initial condition[90]–[92]. Consider the general form of a first-order ordinary 

equation: 

 

𝑑𝑧
𝑑𝑥 = 𝑓(𝑧(𝑥), 𝑥)																																																															(5.1) 

 

with boundary condition: 

 

𝑧(𝑎) = 𝑧H′																																																														(5.2) 
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Applying the Taylor Expansion of 𝑧(𝑥) around 𝑥H  and using the first order approximation to 

express "þ
"}

 gets: 

 

𝑑𝑧
𝑑𝑥 |}y}° ≈

𝑧(𝑥H + ℎ) − 𝑧(𝑥H)
ℎ 																																														(5.3) 

 

where ℎ is the step size. Substituting Equation (5.1) at 𝑥 = 𝑥H into Equation (5.3) yields: 

 

𝑧(𝑥H + ℎ) = 𝑧(𝑥H) + ℎ𝑓(𝑧(𝑥H), 𝑥H)																																						(5.4) 

 

Equation (5.4) provides an approximate way to estimate the value of 𝑧 at a point (i.e., 𝑥H + ℎ) 

based on its value at its previous point (i.e., 𝑥H). This is how the Euler method (or Forward Euler 

method) works. For higher order differential equation, the general form is given as: 

 

𝑑Y𝑧
𝑑𝑥Y = 𝑓 È𝑧(𝑥),

𝑑𝑧
𝑑𝑥 ,

𝑑?𝑧
𝑑𝑥? , … ,

𝑑Y=@𝑧
𝑑𝑥Y=@ ; 	𝑥Í																			(5.5) 

 

We can apply variable transformation: 

 

𝑝@ = 𝑧(𝑥) 

𝑝? =
𝑑𝑧
𝑑𝑥 

⋮ 

𝑝Y=@ =
𝑑Y=?𝑧
𝑑𝑥Y=? 
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𝑝Y =
𝑑Y=@𝑧
𝑑𝑥Y=@ 																																																																		(5.6) 

 

so that Equation (5.5) transform to a first-order system that can be solved by Euler method: 

 

𝑑𝒑
𝑑𝑥 =

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝑑𝑝@
𝑑𝑥
𝑑𝑝?
𝑑𝑥
⋮

𝑑𝑝Y=@
𝑑𝑥
𝑑𝑝Y
𝑑𝑥 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎛

𝑝?
𝑝B
⋮
𝑝Y

𝑓(𝑝@, 𝑝?, 𝑝B, … , 𝑝Y, 𝑥)⎠

⎟
⎞
																											(5.7) 

 

For example, in Ref [1], a second-order differential equation to be solved is given as: 

 

𝑑?𝜓
𝑑𝑥? =

𝑞
𝜀#D
𝑛D𝑒{|/��																																							(5.8) 

 

with the initial condition: 

𝜓(𝑥 = 0) = 𝜓H																																								(5.9𝑎) 

𝑑𝜓
𝑑𝑥 |}y}° = 0																																										(5.9𝑎) 

 

The analytical solution is given as: 

 

𝜓 = 𝜓H −
2𝑘𝑇
𝑞 ln �𝑐𝑜𝑠)�

𝑞?𝑛D
2𝜀#D𝑘𝑇

𝑒
{|°
?��𝑥*�																								(5.10) 
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If we use Euler method to solve it numerically, we can construct the first-order system: 

 

𝑑𝒑
𝑑𝑥 = +

𝑑𝑝@
𝑑𝑥
𝑑𝑝?
𝑑𝑥

, = )
𝑝?

𝑞
𝜀#D
𝑛D𝑒{-./��

* 																		(5.11) 

  

where  

𝑝@ = 𝜓																																								(5.12𝑎) 

𝑝? =
𝑑𝜓
𝑑𝑥 																																						(5.12𝑎) 

 

The iterative equation is given by: 

 

𝒑(𝑥H + ℎ) = j
𝑝@(𝑥H + ℎ)
𝑝?(𝑥H + ℎ)

k = j
𝑝@(𝑥H)
𝑝?(𝑥H)

k + ℎ)
𝑝?(𝑥H)

𝑞
𝜀#D
𝑛D𝑒{-.(}°)/��

* 															(5.13) 

 

Figure 5.1 shows the 𝜓(𝑥) solved from Equation (5.8) using Euler method is in great consistent 

with analytical solution. 
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Figure 5.1: 𝜓(𝑥) solved from Equation (5.8) using Euler method is compared with analytical 
solution. 𝜓H = 0.5𝑉. 

 

Although Euler method is explicit and simple, it has two limitations: (1) It is numerical 

unstable, when there are some terms in the equation that may cause the solution to change 

rapidly[93]–[95]. To avoid this stability problem, some other variants can be considered, like 

backward Euler method[91] and midpoint method[96], etc. (2) It is applicable for problem with 

initial conditions, rather than boundary condition[92], [95]. In our low drain case in the short-

channel non-GCA model for DG MOSFET, the second-order differential equation (i.e., Equation 

(2.5)) is similar with Equation (5.8). However, it is not easy to be solve using Euler method, 

because it is with Dirichlet boundary condition[97] (i.e., Equation (2.6)) and the initial value of 

𝑝? =
"|
"~

 is difficult to be found. To fix this problem, some other method, like the Shooting 

method[98], [99] and Finite differences method[56], [100]–[102], can be tried. 
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5.2 Finite-Difference Method 
 
 
 

In finite-difference method, the differential equation is solved by approximating the 

derivative as the finite difference[100]–[103]. Consider a first order differential equation in the 

form of Equation (5.1) in the domain of [𝑎, 𝑏] with initial condition (5.2), the finite-difference 

method first partitions the domain into a sequence of subdomain. The length of each subdomain is 

ℎ. The 𝑖𝑡ℎ domain’s end point is denoted as 𝑥D and its corresponding function value is 𝑧D. The "þ
"}

 

at 𝑥D is approximated as: 

 

𝑑𝑧
𝑑𝑥 |}y}� =

𝑧Da@ − 𝑧D=@
2ℎ 																																														(5.14) 

 

Equations (5.1) and (5.2) turn to be: 

 

𝐹H(𝑧H, 𝑧@, 𝑧?, 𝑧B, … , 𝑧Y=@, 𝑧Y, 𝑧Ya@,𝒙) = 𝑧H − 𝑧Hã 																																	(5.15𝑎) 

𝐹D(𝑧H, 𝑧@, 𝑧?, … , 𝑧Y, 𝑧Ya@,𝒙) = 𝑧D=@ + 2ℎ𝑓(𝑧D, 𝑥D) − 𝑧Da@ = 0, 𝑖 = 1,2, 3, 4…𝑛, 𝑛 + 1.		(5.15𝑏) 

 

 Equation (5.15) forms a system of equations: 

 

 𝑭(𝒛,𝒙) =

⎝

⎜
⎛

3°(þ°,þ.,þ�,þ4,…,þ56.,þ5,þ57.,𝒙)
3.(þ°,þ.,þ�,þ4,…,þ56.,þ5,þ57.,𝒙)
3�(þ°,þ.,þ�,þ4,…,þ56.,þ5,þ57.,𝒙)

⋮
35(þ°,þ.,þ�,þ4,…,þ56.,þ5,þ57.,𝒙)
357.(þ°,þ.,þ�,þ4,…,þ56.,þ5,þ57.,𝒙)⎠

⎟
⎞
= 𝟎																													(5.16) 
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The assignment turns to find a root vector 𝒛 = (𝑧H, 𝑧@, 𝑧?, 𝑧B, … , 𝑧Y=@, 𝑧Y, 𝑧Ya@)�	 for 

linear/nonlinear system (5.16). This can be solved numerically by Newton’s method that will be 

discussed in next subsection. For a second order differential equation,  

 

𝑑?𝑧
𝑑𝑥? = 𝑓 j𝑧(𝑥),

𝑑𝑧
𝑑𝑥 , 𝑥k																																(5.17) 

 

with two boundary conditions: 

 

𝑧(𝑎) = 𝑧f																																														(5.18𝑎) 

𝑧(𝑏) = 𝑧U																																													(5.18𝑎) 

 

We can introduce a second-order finite difference approximation: 

 

𝑑?𝑧
𝑑𝑥? |}y}� = 	

𝑧Da@ − 2𝑧D + 𝑧D=@
ℎ? 																															(5.19) 

 

Equations (5.17)-(5.18) transformed to: 

 

𝐹D(𝑧H, 𝑧@, … , 𝑧Y, 𝑧Ya@,𝒙) =
𝑧Da@ − 2𝑧D + 𝑧D=@

ℎ? − 𝑓 �𝑧D,
𝑧Da@ − 𝑧D=@

2ℎ , 𝑥D� = 0, 

	𝑖 = 1,2,3…𝑛. (5.20𝑎) 

𝐹H(𝑧H, 𝑧@, … , 𝑧Y, 𝑧Ya@,𝒙) = 𝑧H − 𝑧f = 0																																	(5.20𝑏) 

𝐹Ya@(𝑧H, 𝑧@, … , 𝑧Y, 𝑧Ya@,𝒙) = 𝑧Ya@ − 𝑧U = 0																															(5.20𝑐) 
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Equation (5.20) constructed an equation system in the form of (5.16) to be solved. We can take the 

short-channel non-GCA model in the low drain bias (i.e., Equation (2.5) with boundary condition 

(2.6)) as an example. The nonlinear system to be solved is built as: 

 

𝑭(𝝍,𝒙) =

⎝

⎜⎜
⎜
⎛

𝐹H(𝜓H, 𝜓@, … , 𝜓Y, 𝜓Ya@,𝒙)
𝐹@(𝜓H, 𝜓@, … , 𝜓Y, 𝜓Ya@,𝒙)
𝐹?(𝜓H, 𝜓@, … , 𝜓Y, 𝜓Ya@,𝒙)

⋮
𝐹Y(𝜓H, 𝜓@, … , 𝜓Y, 𝜓Ya@,𝒙)
𝐹Ya@(𝜓H, 𝜓@, … , 𝜓Y, 𝜓Ya@,𝒙)⎠

⎟⎟
⎟
⎞

 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

𝜓H − �
𝑘𝑇
𝑞 � ln �

𝑁<=>
𝑛D

�	

𝜓? − 2𝜓@ + 𝜓H
ℎ? − 𝑞

𝜀#D
𝑛D𝑒

{|.
�� +

2𝐶DYZ(𝑉*# − 𝑉5)
𝜀#D𝑡#D

𝜓B − 2𝜓? + 𝜓@
ℎ? − 𝑞

𝜀#D
𝑛D𝑒

{|�
�� +

2𝐶DYZ(𝑉*# − 𝑉5)
𝜀#D𝑡#D

⋮
𝜓Ya@ − 2𝜓Y + 𝜓Y=@

ℎ? − 𝑞
𝜀#D
𝑛D𝑒

{|5
�� +

2𝐶DYZ(𝑉*# − 𝑉5)
𝜀#D𝑡#D

𝜓Ya@ − �
𝑘𝑇
𝑞 � ln �

𝑁<=>
𝑛D

�
⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

= 𝟎	(5.21) 

 

The result is shown in Figure 2.2. For higher-order differential equations, the higher-order 

derivative "
5þ

"}5
 has to be approximated by the corresponding finite difference. For example, for 

fourth-order derivative, 

 

𝑑é𝑧
𝑑𝑥é |}y}� = 	

𝑧Da? − 4𝑧Da@ + 6𝑧D − 4𝑧D=@ + 𝑧D=?
ℎé 																												(5.22) 
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For more complicate cases, like the system of differential equations with Neumann boundary 

condition[97] (e.g., the short-channel non-GCA high drain bias case with matching boundary 

conditions), similar approach can be applied. 

 

5.3 Newton’s Method 
 
 
 

In subsection 5.2, we used finite-difference method to convert the ordinary differential 

equation into systems of equations. Those systems of equations are usually nonlinear and not easy 

to find the analytic solution. A useful method to find the root of systems of equations numerically 

is Newton’s method[104]–[106]. Consider a simple case, given a function 𝑧 = 𝑓(𝑥)  and its 

derivative 𝑓ã(𝑥) = "þ
"}

, the tangent line of 𝑓(𝑥) at 𝑥D is given: 

 

𝑧 = 𝑓(𝑥D) + 𝑓ã(𝑥D)(𝑥 − 𝑥D)																																											(5.23) 

 

Newton’s method treats the 𝑥-intercept of this line as the next guess point to approach the root: 

 

𝑥Da@ = 𝑥D −
𝑓(𝑥D)
𝑓ã(𝑥D)

																																												(5.24) 

 

Given an initial guess 𝑥H, Equation (5.24) can be used to generate a sequence of points iteratively, 

which finally converge to the root of function (if the convergence conditions are satisfied). For the 

system of equations 𝑭(𝒙) = 𝟎, a similar form of iterative equation can be derived: 
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𝒙𝒊a𝟏 = 𝒙𝒊 − 𝑱(𝒙𝒊)=@𝑭(𝒙𝒊)																																										(5.25) 

 

where 𝑱(𝒙)  denotes the Jacobian matrix of 𝑭(𝒙)  [107]. By choosing a good initial guess 𝒙𝟎, 

Equation (5.25) can be applied iteratively to get the approximate root of the equation system.  

 

 

5.4 Experience and Improvement 
 
 
 

In the previous subsections, we discussed Euler method and the finite difference method 

with Newton’s method to solve the ordinary differential equations. The Euler method is easy to 

implement, when the differential equation is with initial condition, we can first try the Euler 

method. If the differential equation is with boundary condition, like Dirichlet or Neumann 

boundary conditions, the Shooting method can be considered.  

For some complicate differential equations that contains some terms changing rapidly in 

the range, Euler method may fail to converge since it is numerically unstable. In this case, we 

should switch to consider the finite-difference method. This method works for various types of 

boundary conditions.  

One difficulty for finite-difference method is how to set up appropriate initial guess 

required by Newton’s method[98], [105]. The strategy is to choose a guess vector that is as close 

to the target solution as possible. For example, in our short-channel non-GCA model, when the 

drain bias is low, the potential 𝜓(𝑦) doesn’t change rapidly in large part of the region and its value 

range is small (e.g., 0.55~0.65V). The upper bound is 𝜓(0)	𝑎𝑛𝑑	𝜓(𝐿) given by Equation (2.6); 

the lower bound is: 



94 
 

𝜓 j
𝐿
2k =

𝑘𝑇
𝑞 𝑙𝑛 i

2𝐶DYZ�𝑉*# − 𝑉5�
𝑞𝑛D𝑡#D

l 																											(5.26) 

 

We can set a constant initial guess 𝜓DYD5DfÕ(𝑦) = 𝐶@,	where 𝐶@  is a constant that is between 

𝜓(0)	(𝑜𝑟	𝜓(𝐿))  and 𝜓 �¯
?
�.  Since most part of the derivative of potential "|

"~
 and quasi-Fermi 

potential 𝑉(𝑦)  are small in the low drain bias, we can also set a constant initial guess for 

�"|
"~
�
DYD5DfÕ

(𝑦) = 𝐶? and 𝑉DYD5DfÕ(𝑦) = 𝐶B, where 𝐶? and 𝐶B are constants of a small value (e.g., ≪

10=B). However, those constant initial guesses are unable to work for high drain bias cases. The 

strategy is to use the result of previous bias point as the initial guess of the current 𝐼"# point. For 

example, if we have solved the 𝜓(𝑦) and 𝑉(𝑦) at 𝐼"# = 5 × 10=B𝐴/𝑢𝑚, then we can use those 

result as initial guess of  𝐼"# = (5 + 𝐶é) × 10=B𝐴/𝑢𝑚, where 𝐶é is a small increment of 𝐼"#.  

Another problem is how to select an appropriate increment of 𝐼"#. When the increment of 

𝐼"# is too large, Newton’s method will fail to converge to a correct solution based on the initial 

guess from the previous bias point, since the 𝜓(𝑦) and 𝑉(𝑦) change a lot with respective to a small 

variation of 𝐼"#;  When the increment of 𝐼"#  is too small, it is time-consuming and resource 

expensive since it has to repeat the solving process for more 𝐼"# points than necessary. The strategy 

is to first set a large value of 𝐼"# increment, if it doesn’t work, then try a smaller increment until it 

works.  

The final question is the implementation of finite difference method is cumbersome. Given 

a coupled differential equation set, we have to discretize the domain, convert the equations and 

boundary conditions into system of equations. In Newton’s method, we are also required to write 

down the Jacobian matrix explicitly. It is easy to make mistake in the implementation process. It 

is good to know that the finite-difference method and Newton’s method have been packaged as 
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built-in functions in some software, like MATLAB. We can use those function (e.g., bvp4c and 

bvp5c in MATLAB[57]–[61]) directly to carry out calculations. 

 

 

5.5 Summary  
 
 
 

In this Chapter, we discussed two useful methods for solving differential equations system 

in the models. Euler method is simple but numerically unstable. It is applicable to the problem 

with initial condition, rather than boundary conditions. Finite-difference method converts the 

ordinary differential equation sets into system of equations, which can be solved by Newton’s 

method. It is powerful but requires appropriate initial guess. Some tradeoff considerations and 

strategy suggestion based on our experience are provided. 
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CHAPTER 6 CONCLUSION AND FUTURE WORK 
 
 
 

6.1 Conclusion  
 
 
 

In this dissertation, a short-channel non-GCA model framework is developed for DG 

MOSFETs by taking into account the encroachment of the source and drain bands into the channel. 

Interesting physical insights are obtained from the model: At low drain case, the source-drain 

encroachment effect results in a gate-dependent reduction of channel resistance, which is stronger 

at low gate voltage overdrive and weaker at high gate voltage overdrive; At high drain case, the 

intersection between the encroachment of source-drain bands (carrier spillover) and the gate-

controlled channel potential gives rise to a point of “virtual cathode” at a small distance from the 

source; The effect of depletion in the source and drain region plays an important role on the channel 

potential in the short channel device at the scale of 𝐿 = 10𝑛𝑚. The effect of the source-drain series 

resistance has been discussed. By incorporating the velocity saturation effect, the 𝐼"# − 𝑉"# and  

𝐼"# − 𝑉*#  characteristics are generated by the model and shown to be in good agreement with 

TCAD simulations. 

We also apply the short-channel non-GCA model to bulk and the ground plane MOSFET. 

It shows that junction depth is an additional parameter that affect SCE of bulk MOSFETs, which 

is not taken into account in the short-channel non-GCA model for DG MOSFETs. The charge 

sheet model is not accurate enough to fit parameters like 𝐶DYZ, 𝑉5 for long channel MOSFETs and 
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a modified charge sheet model is developed. For practical junction depths like 𝑥] = 25𝑛𝑚, the 

model tends to underestimate the short channel effects. 

 

 

6.2 Future Work 
 
 
 

This work provides a useful 𝐼 − 𝑉 model framework for modeling the above threshold 

behavior for short-channel DG MOSFETs. Some importance effects in the short-channel device, 

such as the source-drain encroachment effect, the effect of the depletion in the source and drain 

region, and the source-drain series resistant effect, are taken into account and good results are 

yielded. However, there are several aspects that can be further improved in the future works: 

(1) This model is only applicable for above threshold region, it is worthwhile to extend it 

to cover the subthreshold region so that an all-region model can be constructed. 

(2) When the physical dimension of the device shrinks into the deep nanometer regime, the 

quantum effect become prominent. It is good to incorporate the quantum effect into the model. 

(3) When solving the model, we still have to carry out tedious numerical calculation, which 

is time consuming and resource expensive. Another improvement is to derive an analytic model 

that can be used in the practical EDA tools. 
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