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Abstract

The role of virtual ligand screening in modern drug discovery is to mine large chemical collections and to prioritize for
experimental testing a comparatively small and diverse set of compounds with expected activity against a target. Several
studies have pointed out that the performance of virtual ligand screening can be improved by taking into account receptor
flexibility. Here, we systematically assess how multiple crystallographic receptor conformations, a powerful way of discretely
representing protein plasticity, can be exploited in screening protocols to separate binders from non-binders. Our analyses
encompass 36 targets of pharmaceutical relevance and are based on actual molecules with reported activity against those
targets. The results suggest that an ensemble receptor-based protocol displays a stronger discriminating power between
active and inactive molecules as compared to its standard single rigid receptor counterpart. Moreover, such a protocol can
be engineered not only to enrich a higher number of active compounds, but also to enhance their chemical diversity.
Finally, some clear indications can be gathered on how to select a subset of receptor conformations that is most likely to
provide the best performance in a real life scenario.
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Introduction

For over 20 years, High-Throughput Screening (HTS) has been

one of the leading hit identification strategies in drug discovery [1].

Despite recent technological advances, HTS is still very expensive in

terms of infrastructure, consumables, and personnel [2], being

mainly carried out at the industrial level. Furthermore, HTS has a

relatively high rate of false positives and false negatives, and is

limited to comparatively small screening libraries. In this regard,

Virtual Ligand Screening (VLS) represents a fast and cost-effective

alternative, in which much larger libraries are screened by

computational means [3,4]. Compounds are assigned a predicted

activity profile and are ranked accordingly. Experimental tests can

be limited to the topmost ranking fraction of the compounds where,

if the predictions are correct, the majority of active molecules will

have been placed. VLS protocols can also be devised to improve

‘‘early recognition’’, namely to increase the number of active

compounds that are prioritized for testing [5], and to catch the

broadest possible chemical diversity. Strategies to achieve these

improvements may vary depending on the in silico approach to VLS.

Usually, when a high quality crystallographic structure of the target

(or its homologue) is available, structure-based strategies represent a

suitable alternative to ligand- and pharmacophore-based methods

[6]. Compound libraries are screened by iterating standard docking

procedures against a target of interest, and the estimated binding

score is used to prioritize putative hits. Processing massive libraries

in a reasonable amount of time requires the introduction of several

simplifications [7–9] and approximations [10,11], which sometimes

lead to low-accuracy predictions [12–14]. The use of a single

receptor conformation is one of the major limitations that can

hamper the quality of results [15]. This is particularly detrimental

for early recognition since active compounds will act as true binders

only in the presence of the right receptor conformation [16,17].

Recently, many different implementations have been proposed

to take into account protein flexibility in molecular docking and

screening [18]. Multiple Receptor Conformations (MRC) is a

straightforward and intuitive way to discretely mimic target

plasticity [19]. In MRC docking, also known as ensemble docking,

each putative ligand is docked separately at each receptor

conformation, and the poses obtained in the independent runs

are merged together. The predicted bound pose is assumed to be

the one providing the overall best score. Several groups have

extended the idea of MRC docking to VLS to increase, through

receptor flexibility, the number of retrieved active molecules. The

MRC paradigm can be applied to experimentally solved

structures, computationally generated conformers, or both [20].

Remarkably, most of the studies only included multiple crystallo-

graphic structures. In these cases, protein plasticity could be directly

inferred and no further validation was required. For instance, a

seminal paper by Knegtel and coworkers reported attempts to

increase the enrichment of known binders by using several

crystallographic structures for both HIV protease and ras p21

[21]. For the HIV protease inhibitors, MRC docking systematically

outperformed single conformer runs. In the case of ras p21, MRC

docking performed better than the average, but it was outperformed

several times by certain specific receptor conformations. Interest-

ingly, the authors pointed out that, in a real (non-retrospective)

screening campaign, there is no way to tell in advance which
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conformers are going to provide an optimal separation. Other

studies have reported similar results when analyzing different

systems and employing different docking engines [22–26]. In

particular, Cavasotto and Abagyan have demonstrated how a

limited receptor flexibility can more greatly affect the score

determination (and thus the early recognition) than the reproduction

of ligand-protein x-ray complexes [27]. Barril and Morley carried

out a detailed analysis on the role of binding pocket flexibility in

ligand docking [28]. They observed that an ensemble consisting of

two conformations was enough to improve the enrichments in the

topmost 1% fraction. The addition of further conformations did not

significantly improve the performance and could even deteriorate it.

Finally, Craig and coworkers tested the efficacy of MRC docking

using BACE1 and cAbl with a challenging and purposely compiled

benchmark [29]. Interestingly, their results were analyzed in terms

of both enrichment and chemical diversity. In this context, we also

carried out studies on MRC, focusing on the protocol’s ability to

reproduce ligands’ x-ray poses, and taking into account induced fit

effects. We first used a specific but highly challenging structural set

[30,31], and then a more comprehensive benchmark [32]. This

latter set was further exploited to devise some practical rules for

identifying optimal receptor conformation subsets [33].

Here, the beneficial role of x-ray MRC in VLS campaigns is

explored systematically, carrying out retrospective screening

studies against 36 well-known pharmacological targets. To

improve accuracy, a set of drug-like ligands, compiled indepen-

dently from the receptors, was carefully selected. The results are

reported according to 5 robust figures of merit and evaluated by

means of the following criteria: i) the separation power (binders

from non-binders) as a function of receptor conformations; ii) the

MRC-VLS performance compared to single conformation

protocols (SRC-VLS) in terms of both number of active molecules

and their chemical diversity; iii) contribution of each single

receptor conformation to the MRC-VLS overall performance.

Materials and Methods

Benchmark Composition
The benchmark was obtained by selecting multiple high quality

crystallographic structures for 36 pharmaceutically relevant targets

from the Directory of Useful Decoys (DUD) [34,35]. In the release

adopted here, the original DUD set was filtered and annotated to

avoid an artificial enrichment due to chemical redundancy. The

crystal structures of targets were selected according to the criteria

outlined to compile the previously reported experimental section of

the flexible Pocketome and the 4D docking dataset [32,36]. In the

present study, the ability to provide a near-native pose for the

cognate ligand was excluded from the filtering criteria. Four targets

from DUD were excluded from the selection: HIV-1 Integrase

(UniProt: P35963 – POL_HV1BR) and Peroxisome Proliferator-

Activated Receptor c Ligand Binding Domain (UniProt: P37231 –

PPARG_HUMAN) due to the low number of ligands that were

included in the adopted release of DUD, Human S-Adenosyl

Homocysteine Hydrolase (UniProt: P23526 – SAHH_HUMAN)

and b-type Platelet-derived Growth Factor Receptor (UniProt:

P09619 – PGFRB_HUMAN) due to the lack of multiple high

quality crystallographic structures available.

Preparation of Receptor Structures
The correct atom types were assigned according to a modified

version of ECEPP/3 force field [37]. Hydrogen atoms and missing

heavy atoms were added. Zero occupancy side chains were

optimized and assigned the lowest energy conformation. Tauto-

meric states of Histidines and the positions of Asparagine and

Glutamine side chain amidic groups were optimized to improve

the hydrogen bond pattern. Polar hydrogen atoms were also

optimized. We deleted water molecules together with chains,

heteroatoms, and prosthetic groups not involved in the binding site

definition. The cognate ligands were deleted from the complexes

only after hydrogen optimization.

Preparation of Ligand Structures
3D atomic coordinates, tautomeric forms, stereochemistry,

hydrogen atoms, and protonation states were assigned to ligands

according to DUD. Each ligand was assigned MMFF force field

atom types and charges [38].

Binding Pocket Definition
The boundaries of the binding box were assumed to be known

and directly derived from co-crystallized ligand coordinates. To

achieve a common definition of the binding pocket, the receptor

structures were superimposed using backbone atoms within 3.5 Å

from the ligands. The iterative superimposition algorithm adopted

here assigns different weights to different atomic subsets, gradually

approaching the best solution for aligning the template and the

other structures [39]. All residues with at least one side chain

heavy atom in the range of 3.5 Å from any of the ligands

belonging to the same ensemble were considered part of a

common definition of the binding pocket. In this way, binding

pocket could be defined consistently across the same structural

ensemble, varying in conformation but not in composition.

Single Conformer VLS
A standard screening run was carried out independently on each

target conformer (single receptor conformation procedure or SRC).

The docking engine used was the Biased Probability Monte Carlo

(BPMC) stochastic optimizer as implemented in ICM (Molsoft LLC,

La Jolla) [40–42]. The ligand binding site at the receptor was

represented by pre-calculated 0.5 Å spacing potential grid maps,

representing van der Waals potentials for hydrogens and heavy-

atoms, electrostatics, hydrophobicity, and hydrogen bonding,

respectively. The van der Waals interactions were described by

the 6–12 Lennard-Jones potential. However, since the 6–12

standard implementation is extremely sensitive to even small

deviations in atomic coordinates and can generate a large amount

of noise in the intermolecular energy calculations, the default ICM

docking procedure implements a smoother form of the Lennard-

Jones potential, capping the repulsive contribution to 4 kcal/mol. A

distance-dependent dielectric function was used (dielectric constant

set equal to 4.0). Given the number of rotatable bonds in the ligand,

the basic number of BPMC steps to be carried out was calculated by

an adaptive algorithm [39]. The binding energy was assessed with

the standard ICM empirical scoring function [40–44].

Combining Results from Individual Runs
Several combinations of the results of the individual runs were

probed to identify the most effective one in discerning actual binders

from decoys. Results from independent runs were merged in one list

and then re-ranked according to a descriptor inherited from

individual runs. This post-processing step was carried out by means

of ICM tables, data structures that allow storing, sorting, duplicates

removal, and, in general, database-like handling of docking results.

Re-ranking according to the best score (MRC-score) was a

straightforward procedure: individual scores were merged into

one list, which was then sorted in ascending order. In the unlikely

case that two molecules achieved exactly the same score, the

molecule displaying lower molecular weight achieved a better rank.

MRCs in Virtual Ligand Screening
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As an alternative, we used the combination obtained by re-ranking

all ligands according to the best rank that each compound obtained

across individual runs (MRC-rank). This procedure is not univocal

(there are possibly n molecules ranking first if n runs are carried out)

and therefore the list was processed again so that molecules with the

same best rank were then sorted according to their score.

Figures of Merit
The literature contained several metrics for evaluating the

effectiveness of a docking run in discriminating actual binders from

decoys, some of them addressing the issue of the early recognition

[5]. For evaluating the performance of different combinations of

protein conformers, we considered: the Area Under the Accumu-

lation Curve (AUAC), the area under the Receiver Operating

Characteristic curve (ROC), the Enrichment Factor (EF) [45] at

different thresholds, the Robust Initial Enhancement (RIE) [46],

and the Boltzmann-Enhanced Discrimination of ROC metric

(BEDROC) [5]. RIE as well as BEDROC needed the assignment

of a parameter, termed alpha, for which we chose a value of 20, as

suggested by the literature [5,46].

All 5 metrics rely on the so-called accumulation curve, Fa(k), where

the subscript ‘‘a’’ stands for active molecule, which represents the

count, possibly normalized, of how many true binders obtained a

rank better or equal to a given one in a docking run; Fa(k) contains

all the information needed to assess the performance of a run, and

a combination of multiple runs as well.

The AUAC is the area under the chart of Fa(k) and, in its discretized

version, takes the following expression:
1

nN

XN{1

k~0

Fa(k)zFa(kz1)½ �,

where n is the number of actual binders and N the total number of

screened molecules. It ranges from
n

2N
to 1{

n

2N
, where the higher

the value, the better the performance.

The ROC curve is a widely used way of representing the same

information; it plots the number of actual binders with respect to

the inactive molecules found in a docking run. It takes the

following expression:
1

nN

XN

k~2

Fa(k) Fi(k){Fi(k{1)½ �, where the

subscript ‘‘i’’ stands for inactive molecule. It can be shown that the

area under the ROC curve is a linear transformation of the

AUAC, and more convenient since it ranges from 0 to 1. It follows

that they share the same information content and can be used

interchangeably.

The EFx is the measure of how many more binders are found

within a predefined ‘‘early recognition’’ fraction x of the ordered

list relative to a random distribution. Its expression can be recast in

this concise formula:
Fa txNsð Þ

xN
, where the t.s lower brackets

symbol stands for the greatest integer lower or equal to the

argument. It ranges from a minimum value of 0 to a maximum of
1

x
if x§

n

N
or

N

n
otherwise.

RIE is an early recognition metric that uses a decreasing

exponential weight as a function of rank. This exponential smoothing

should make RIE a more robust metric with respect to EF when a

small number of actives are considered. The counterpart of the 1
x

quantity for EF is the a parameter of the exponential smoothing. The

discretized form of RIE is: a

2nNe{aza e{az2
PN{1

k~1

Fa(k)e{
a
N

k

� �

2nN 1{e{að Þ

and its range is
N 1{e

a
N

n
� �
n 1{eað Þ ;

N 1{e{
a
N

n
� �
n 1{e{að Þ

2
4

3
5.

Finally, the BEDROC metric was defined as a standardization

of the RIE so that it ranges from 0 to 1, and in fact it can be

expressed as:
RIE{RIEmin

RIEmax{RIEmin

. It appears clear from its definition

that it contains the same information as RIE, so they can be used

interchangeably.

Software and Hardware
The receptor and ligand preparations, the virtual ligand

screening simulations, and the energy evaluations were carried

out with ICM 3.7 (Molsoft L.L.C., La Jolla, CA). The statistical

analysis and figures of merit were calculated with purposely

developed in-house scripts in MATLAB v.7-R14 (MathWorks,

Natick, MA).

The hardware facilities used in the present study were a dual

Quad-Core AMD OpteronTM ‘‘Barcelona’’ workstation and a 42

Quad/Esa-Core 64-bit AMD OpteronTM ‘‘Istanbul/Shanghai’’

computer cluster.

Results and Discussion

I. The Dataset
The MRC-VLS simulations were carried out using two

independent datasets: DUD and the experimental Flexible

Pocketome. Thirty-six pharmaceutically relevant targets were

retrieved. For each of them, a series of conformations (Pocketome)

together with a set of known binders and bona fide non-binders

(DUD) were available. In particular, 2 to 30 conformers were

collected for each target (overall 457 high quality crystal

structures). The median intra family RMSD of the side chain’s

heavy atoms of the binding site was 1.6 Å while the median intra

family RMSD of the backbone was 1.0 Å. Ligand sets encom-

passed from 8 to 365 known binders and from 155 to 15,560

decoys. Due to the filtering procedures introduced in the current

version of DUD [34], the average ratio between binders and

decoys was not fixed but varied slightly, with an average value of

0.023 (1:43), slightly lower than the original 0.028 (1:36). The set

includes 6 nuclear receptors and 29 enzymes comprising proteases,

hydrolases, kinases, etc. Details about MRC-VLS benchmark are

reported in Table 1, while a complete list of the PDB structures

included in the MRC-VLS test set is reported in the Supporting

Information (Table S1).

Here, we wanted to explore MRC-VLS capabilities against a set

of ligands compiled independently from the receptors. The choice

to combine already reported test sets for receptors and ligands

rather than compiling a new one from scratch reflected an

endorsement of the growing request in the field of VLS to adopt

accepted and shared standards [47]. To the best of our knowledge,

this is the most comprehensive test set where experimental protein

structures and known ligands are used together to explore the role

of MRC in a VLS study retrospectively. Finally, it should be

mentioned that the non-native protein conformer dataset,

compiled by Verdonk and coworkers [48] and extending the

approach that led to the Astex Diverse Set [49], could represent a

valid and appropriate alternative source of receptor variants for

MRC-VLS validation.

II. Binder Distribution in SRC-VLS runs
First, we focused on the assessment of SRC runs by plotting the

distribution of known binders against their relative rank (see

Figure 1A). The distribution displayed two maxima. The plot of an

ideal situation would present all binders located in the first

positions. However, in the rightmost part of Figure 1A, another

peak was observed. This showed that, in several cases, SRC-VLS

MRCs in Virtual Ligand Screening
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was not only unable to rank known binders in the top scoring

fraction but that these molecules ended up ranking lower than an

average decoy. This behavior was mainly due to the fact that some

receptor conformations could lodge certain ligands remarkably

well but could dump those which required a different binding site

rearrangement. For example, type I protein kinase inhibitor 1 (5,7

diphenylpyrrolo[2,3-d]pyrimidine, Figure 1B) ranked 6th when

screened using a conformation of the proto-oncogene tyrosine

protein kinase SRC (SRC_HUMAN) co-crystallized in complex

with a ligand very similar to 1 (PDBid: 1YOL, see also Figure S1A

in the Supporting Information). Conversely, 1 ranked only 5,118th

when docked at the inactive, DFG-out conformation of the same

protein when it is complexed with Imatinib (PDBid: 2OIQ). This

first example clearly shows the fundamental role of taking into

account several receptor conformations for relatively flexible

protein families (such as kinases). In a further case study, a selective

modulator (2) of the progesterone receptor (PRG_HUMAN) was

ranked 2nd when docked using the conformation solved in

complex with Asoprisnil (PDBid: 2OVH). The exceptionally high

score could be achieved since the N,N-dimethylanilino substituent

of 2 could almost perfectly fill an accessory pocket created by the

conformational rearrangement of Met909 side chain. Remarkably,

in this case too, 2 and the ligand co-crystallized in 2OVH were

structurally very similar (see also Figure S1B in the Supporting

Information). When using a conformer lacking the Met909-based

pocket (PDBid: 1ZUC), 2 could only be placed in position 920.

Table 1. The complete MRC-VLS test set.

TARGET Conformers Binders Decoys Total Ligands
Ratio
Binders/Non Binders Binders Chemotypes

ACE_HUMAN 7 46 996 1042 0.046 18

ACES_TORCA 21 99 3859 3958 0.025 18

ADA_BOVIN 13 23 927 950 0.024 8

ALDR_HUMAN 15 46 1796 1842 0.025 14

AMPC_COLI 16 21 786 807 0.026 6

ANDR_HUMAN 29 68 2848 2916 0.023 10

CDK2_HUMAN 30 47 2070 2117 0.022 32

COMT_RAT 3 11 468 479 0.023 2

DHFR_HUMAN 6 190 8350 8540 0.023 14

EGFR_HUMAN 6 365 15560 15925 0.023 40

ESR1_AG_HUMAN 4 63 2568 2631 0.024 10

ESR1_ANT_HUMAN 13 18 1058 1076 0.017 8

F10A_HUMAN 20 64 2092 2156 0.030 19

FGFR1_HUMAN 4 71 3462 3533 0.020 12

GCR_HUMAN 4 32 2585 2617 0.012 9

HMDH_HUMAN 9 25 1423 1448 0.017 4

HS9A_HUMAN 20 23 975 998 0.023 4

INHA_MYCTU 14 57 2707 2764 0.021 23

KITH_HHV11 19 22 891 913 0.025 7

MCR_HUMAN 11 13 636 649 0.020 2

MK14_MOUSE 19 137 6779 6916 0.020 20

NRAM_INBBE 11 49 1713 1762 0.028 7

PARP1_CHICK 6 31 1350 1381 0.023 7

PDE5A_HUMAN 11 26 1698 1724 0.015 22

PGH1_SHEEP 2 23 910 933 0.025 11

PGH2_MOUSE 2 212 7632 7844 0.027 44

PNPH_BOVIN 19 25 1036 1061 0.024 4

POL_HV1RT 18 34 1494 1528 0.022 17

PRGR_HUMAN 6 22 920 942 0.024 4

PUR3_COLI 3 8 155 163 0.051 5

PYGM_RABIT 20 52 2135 2187 0.024 10

RXRA_HUMAN 15 18 575 593 0.031 3

SRC_HUMAN 14 98 5679 5777 0.017 21

THRB_HUMAN 20 23 1148 1171 0.020 14

TRY1_BOVIN 19 9 718 727 0.012 7

VGFR2_HUMAN 8 48 2712 2760 0.017 31

doi:10.1371/journal.pone.0018845.t001

MRCs in Virtual Ligand Screening

PLoS ONE | www.plosone.org 4 May2011 | Volume 6 | Issue 5 | e18845



Aldose reductase (ALDR_HUMAN) provided another example of

how the binding site plasticity could affect VLS results. 3
(Tolrestat) ranked 1st when docked at the binding site of its

cognate receptor (PDBid: 1FZB). Due to a different rearrangement

of the Leu300 and Phe122 side chains (Figure 1D), 3 was ranked

915th in a VLS run carried out with a receptor conformation

obtained from the crystal structure of the enzyme in complex with

a different inhibitor (PDBid: 1T40, see also Figure S1C in the

Supporting Information). As expected, the analysis of the results

confirmed that true binders were ranked at the first positions,

when a suitable receptor conformation was used. In these cases,

SRC-VLS performed well in terms of early recognition.

Conversely, SRC-VLS could not identify true binders when

non-cognate receptor conformations (or similar) were used. In

these cases, the overall performance of true binders was even

worse than that of smaller decoys that could establish non-specific

interactions. This is in good agreement with previous reports on

the same topic [50,51]. Overall, SRC-VLS outperformed the

‘‘random picking’’ baseline (as expected); however it was unable to

guarantee a systematic ranking of true binders among the first hits.

True binders employed in this study were selected independently

from the receptor structures and annotated according to their

Figure 1. The role of induced fit in MRC VLS. A) Frequency distributions of SRC binders (blue area), MRC score binders (red area), and MRC rank
binders (green area) with respect to the relative rank they obtained in individual VLS runs. Two peaks emerge in the binders’ distribution: the highest
one, on the left, corresponds to the expected behavior where binders rank among the best positions, while the peak on the rightmost part of the
distribution corresponds to the opposite phenomenon. B) Inhibitor 1 at the binding site of SRC kinase. The structure that can accommodate the
ligand is reported in transparent green ribbons and the structure incompatible with the native binding mode in grey. The boundaries of the binding
site are highlighted by a semi-transparent white mesh. Inhibitor 1 and the interacting residues are reported explicitly in ball and stick representation
and labeled. Carbon atoms of inhibitor 1 are light yellow and carbon atoms of the binding site residues are light grey. The clashing residue Phe405
from the incompatible structure is reported explicitly in ball and stick representation with orange carbon atoms. The van der Waals volume of the
clashing Phe405 is highlighted by an orange mesh. Intermolecular hydrogen bonds are reported with dotted lines. C) Modulator 2 at the binding site
of Progesterone receptor. The structure that can accommodate the ligand is reported in transparent green ribbons and the structure incompatible
with the native binding mode in grey. The boundaries of the binding site are highlighted by a semi-transparent white mesh. Modulator 2 and the
binding site residues are reported explicitly in ball and stick representation and labeled. Carbon atoms of modulator 2 are light yellow and carbon
atoms of the binding site residues are light grey. The clashing residue Met909 from the incompatible structure is reported explicitly in ball and stick
representation with orange carbon atoms. The van der Waals volume of the clashing Met909 is highlighted by an orange mesh. D) Inhibitor 3 at the
binding site of aldose reductase. The structure that can accommodate the ligand is reported in transparent green ribbons and the structure
incompatible with the native binding mode in grey. The boundaries of the binding site are highlighted by a semi-transparent white mesh. Inhibitor 3
and the binding site residues are reported explicitly in ball and stick representation. Carbon atoms of inhibitor 3 are light yellow and carbon atoms of
the binding site residues are grey. Clashing residues Phe146 and Leu300 from the incompatible structure are reported explicitly in ball and stick
representation with orange carbon atoms. The van der Waals volumes of the clashing Phe123 and Leu301 are highlighted by orange meshes.
Figure 1B, 1C, and 1D were rendered with ICM3.7.
doi:10.1371/journal.pone.0018845.g001
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reported experimental activity. Unfortunately, a high experimen-

tal affinity does not automatically translate into favorable binding

scores in a docking or VLS experiment (and vice versa). Moreover,

overlooking receptor flexibility is not the only reason that can lead

to inaccurate predictions. Even in presence of a perfectly adapted

receptor structure, docking simulations can fail mainly because of

well known limitations and approximations introduced in

sampling and scoring, extensively reported and discussed else-

where [7–15]. Even in cross-docking, unexpected (if not

counterintuitive) results can be produced. For instance, a ligand

cannot be re-docked into its cognate receptor but can be

accurately lodged in another structure of the same target co-

crystallized with a different ligand [28]. Finally, it is worth to stress

that decoys employed here are bona fide non-binders, since their

lack of activity has not been proven experimentally. It would not

be unheard of that a decoy scored consistently well because it is

actually a binder [52].

The SRC-VLS performance depended on the specific target

and, to a lesser extent, on the figure of merit that was considered

[23,53]. For instance, using BEDROC figure of merit (blue plot in

Figure 2), individual docking runs performed on average four

times better than random picking.

III. Multiple Receptor Conformations Results
The first outcome of this study was a comparison between

MRC-VLS and SRC-VLS. For each target, all binders and

decoys collected in DUD were screened against all the

conformers of the receptor in the set. The MRC results were

generated, as described in the Methods section, according to the

MRC-score and MRC-rank combinations, and assessed using

different figures of merit. In particular, we selected AUAC, EF,

and BEDROC to reduce redundancy. For each of them, a

frequency distribution of the results obtained by MRC protocols

was compiled and the percentile in which these results fell was

reported. For example, six crystallographic structures are

available for the human progesterone receptor (PRGR_HU-

MAN). SRC-VLS runs carried out with each of them provided

the following results in terms of AUAC: 0.72, 0.70, 0.65, 0.62,

0.61, and 0.61. The AUAC corresponding to the MRC-score

protocol was 0.71, falling in the 85th percentile and outperform-

ing 5 SRC-VLS runs (out of 6). The AUAC corresponding to the

MRC-rank protocol was 0.84, outperforming all the SRC-VLS

runs and thus falling in the 100th percentile. We would like to

stress here that, for standard VLS runs (where experimental

information about possible binders and decoys are missing), the

conformation selection is a major issue because it can greatly

affect the VLS results, and also because it is very hard to establish

‘‘a priori’’ which conformer is able to provide the best results

[33]. Besides MRC-score and MRC-rank protocols, already

described in the Methods section, we explored several different

combination schemes, as briefly reported: i) using the second and

third best ranks obtained by a MRC docking campaign to reorder

ligands having the same best rank; ii) treating scores and ranks as

putative energy estimators, using them in a Boltzmann combi-

nation; iii) a second Boltzmann combination that included

molecular weights as a further ranking criterion; iv) testing the

overall combination of the ranks provided by all of the other

mentioned figures. None of these methods outperformed MRC-

score or MRC-rank.

III.A. AUAC. Table 2 and Figure 3A show the performance

of MRC-VLS protocol according to AUAC. In 9 out of 36 targets,

MRC-score performed equally well or better than any single

conformer (100th percentile). It was placed between the 99th and

the 90th percentile 4 times (i.e. for 4 targets), between the 90th and

the 75th percentile 6 times, and between the 75th and the 50th

percentile 10 times. For 5 targets, the MRC-score was placed

below the 50th percentile. On average, the MRC-score AUAC fell

in the 70th percentile or better, suggesting that multiple receptor

conformations enhanced the ability of this protocol to separate

binders from non-binders with respect to SRC-VLS. We then

analyzed in detail the runs that were below the 50th percentile. In

particular, two contrary scenarios were observed: i) for 3 targets

(PUR_ECOLI, PDE5A_HUMAN, and MCR_HUMAN), an

exceptionally high performance of SRC-VLS with all con-

formers was detected, and these results could not be further

improved by our MRC-VLS approach; ii) in contrast, for 2 targets

(ADA_BOVIN and HMDH_HUMAN), we observed very poor

performances (i.e. located below or barely above the threshold of

randomness), which could not be improved even using the MRC-

VLS protocol. ADA_BOVIN (i.e. adenosine deaminase) is a

Figure 2. Frequency distributions describing the performance of different protocols, as assessed by the BEDROC metric, with a = 20.
The red-bordered transparent grey rectangle represents the threshold of randomness. The blue area represents the frequency distribution of the
results for the individual runs (average), the red area represents the frequency distribution of the results for the MRC-score, and the green area
represents the frequency distribution of the results for the MRC-rank.
doi:10.1371/journal.pone.0018845.g002
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metalloenzyme involved in purine metabolism. It bears a very

peculiar network of interactions at the binding site, which revolves

around the coordination complex formed by a zinc ion, three

hystidine residues, and the inhibitor. Furthermore, the binding

pocket is quite large while the known ligands are relatively small.

For these reasons, ADA_BOVIN is widely recognized to be a very

complicated target for computational studies. As a matter of fact,

in the original DUD study by Huang and colleagues [35],

ADA_BOVIN was already reported as a target that did not

provide any significant separation between binders and non-

binders via a fully automated protocol. HMDH_HUMAN (i.e.

HMG-CoA reductase) is an interesting example of how noise

generated in individual runs can accumulate to compromise the

global performance of MRC-VLS. In particular, for several

receptor conformers, decoys systematically outranked true binders

and were assigned very high scores which, in turn, inflated their

final position in our MRC-VLS. Even though it is beyond the

purpose of the present study, it should be pointed out that,

exploiting the knowledge of an expert on the target biology, a

customized tuning of the binding pocket composition and of the

docking protocol parameters could significantly improve both the

SRC and MRC VLS performances [54].

In MRC-rank (Table 2), the results turned out to be slightly

better than in MRC-score. A few significant differences were

observed for the following targets: i) EGFR_HUMAN and

PRGR_HUMAN AUAC’s assessments were improved with

Table 2. SRC and MRC statistics in terms of AUAC.

TARGET
Number of
Conformers

Min SRC
AUAC

Max SRC
AUAC

Mean SRC
AUAC

MRC-score
AUAC

MRC-rank
AUAC

Ideal
AUAC

ACE_HUMAN 7 0.52 0.59 0.55 0.66 0.66 0.99

ACES_TORCA 21 0.43 0.73 0.55 0.67 0.63 0.99

ADA_BOVIN 13 0.20 0.39 0.28 0.15 0.17 0.99

ALDR_HUMAN 15 0.47 0.72 0.57 0.79 0.80 0.99

AMPC_COLI 16 0.28 0.59 0.45 0.47 0.44 0.98

ANDR_HUMAN 29 0.34 0.74 0.61 0.74 0.75 0.99

CDK2_HUMAN 30 0.52 0.81 0.65 0.82 0.81 0.99

COMT_RAT 3 0.51 0.58 0.54 0.54 0.55 0.99

DHFR_HUMAN 6 0.74 0.88 0.79 0.90 0.92 0.99

EGFR_HUMAN 6 0.41 0.65 0.51 0.54 0.65 0.99

ESR1_AG_HUMAN 4 0.71 0.82 0.76 0.82 0.82 0.99

ESR1_ANT_HUMAN 13 0.35 0.53 0.44 0.43 0.43 0.99

F10A_HUMAN 20 0.48 0.86 0.66 0.81 0.80 0.98

FGFR1_HUMAN 4 0.36 0.58 0.43 0.55 0.58 0.99

GCR_HUMAN 4 0.25 0.62 0.42 0.45 0.54 0.99

HMDH_HUMAN 9 0.60 0.77 0.65 0.58 0.61 0.99

HS9A_HUMAN 20 0.28 0.62 0.44 0.41 0.49 0.99

INHA_MYCTU 14 0.35 0.66 0.52 0.63 0.58 0.99

KITH_HHV11 19 0.40 0.75 0.6 0.74 0.72 0.99

MCR_HUMAN 11 0.80 0.87 0.85 0.82 0.84 0.99

MK14_MOUSE 19 0.28 0.70 0.47 0.61 0.62 0.99

NRAM_INBBE 11 0.79 0.90 0.85 0.88 0.86 0.99

PARP1_CHICK 6 0.67 0.79 0.73 0.83 0.83 0.99

PDE5A_HUMAN 11 0.65 0.84 0.77 0.77 0.77 0.99

PGH1_SHEEP 2 0.70 0.70 0.70 0.73 0.75 0.99

PGH2_MOUSE 2 0.58 0.75 0.67 0.71 0.69 0.99

PNPH_BOVIN 19 0.46 0.79 0.60 0.77 0.80 0.99

POL_HV1RT 17 0.46 0.68 0.61 0.72 0.76 0.99

PRGR_HUMAN 6 0.61 0.72 0.65 0.71 0.84 0.99

PUR3_COLI 3 0.80 0.88 0.85 0.85 0.94 0.99

PYGM_RABIT 20 0.21 0.44 0.32 0.22 0.26 0.99

RXRA_HUMAN 15 0.50 0.93 0.76 0.88 0.85 0.98

SRC_HUMAN 14 0.38 0.63 0.52 0.61 0.60 0.99

THRB_HUMAN 20 0.28 0.63 0.47 0.50 0.50 0.99

TRY1_BOVIN 19 0.33 0.89 0.69 0.76 0.79 0.99

VGFR2_HUMAN 8 0.45 0.62 0.55 0.70 0.73 0.99

doi:10.1371/journal.pone.0018845.t002
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respect to MRC-score; ii) the AUAC for GCR_HUMAN and

HS9A_HUMAN improved with respect to the median target

results in MRC-score; iii) PUR3_COLI could be moved from

below the 50th percentile in MRC-score (AUAC of 0.85) to the

100th percentile in MRC-rank (AUAC of 0.94). The one-tailed t-

student’s test for paired samples assessed that both MRC-score

and rank outperformed the average individual docking run with

high significance, p,1025.

III.B. EF. When the figure of merit considered was the EF1%

(Table 3 and Figure 3B), MRC-score was in the 100th percentile

for 9 targets. MRC-score results were placed between the 90th and

the 99th percentile 5 times, between the 75th and the 90th

percentile 5 times, and between the 50th and the 75th percentile 13

times. In only two examples, namely NRAM_INBEE and

DHFR_HUMAN, was the combined EF1% from MRC-score

placed below the 50th percentile. MRC-rank and MRC-score

provided very similar results, with MRC-score performing better

than MRC-rank when the instances that fell within the 90th

percentile were considered (14 for MRC-score and 11 for MRC-

rank). It should be pointed out that, for ADA_BOVIN and

COMT_RAT, both individual runs and MRC protocols

systematically failed to provide any enrichment at 1%. For these

two targets, MRC results were not included among those placed in

the 100th percentile since the fact that MRC performed equally

well with respect to the best SRC did not appear particularly

relevant.

EF1% is a stringent figure of merit and yet, in all but a very few

examples, MRC-VLS provided an early recognition that was

better than or equal to most SRC runs. The one-tailed t-student’s

test for paired samples for EF1% assessed that MRC-score and

MRC-rank protocols outperformed the average individual docking

run with a significance of p,0.0025 and p,0.001, respectively.

With an EF10% the improved performance of MRC-VLS was

indeed evident: MRC-score and MRC-rank were above the 90th

percentile for 16 and 15 targets, respectively. For 27 targets, both

MRC protocols were above the 75th percentile. The complete

results for EF10% are reported in the Supporting Information

(Table S2).

Comparing AUAC – a figure of merit for the overall

performance – and EF – a figure of merit for the early recognition

– we could confirm the general improvement in separating binders

from non-binders, and we could show that this improvement was

particularly marked in the topmost ranking fraction. This is

particularly relevant for VLS protocols, where early recognition of

true binders is a major achievement of this computational drug

discovery approach.

III.C. BEDROC. MRC-VLS combines an increased ability

to separate binders from non-binders with an improved propensity

toward early recognition. This ability can be concisely described

by adopting BEDROC as a figure of merit (see Methods).

According to the frequency distribution of the results (Table 4 and

Figure 3C), MRC-score outperformed or performed as well as the

best of the single rigid conformers 6 times, was between the 99th

and the 90th percentile 6 times, and between the 90th and 75th

percentile 6 times. In 16 targets, MRC-score produced results that

were between the 75th and the 50th percentile. PUR3_COLI and

MCR_HUMAN were the only targets whose MRC-score was

below the 50th percentile. MRC-rank was in the 100th percentile

12 times. It was between the 99th and the 90th percentile 3 times,

between the 90th and 75th percentile 11 times, and between the

50th and the 75th percentile 8 times. In two cases, namely

PDE5A_HUMAN and NRAM_INBBE, the MRC-rank was

below the 50th percentile despite being very close to the average

of SRC-VLS performance.

Figure 3. Distribution of the results of MRC-VLS runs according
to different figures of merit. Blue histograms represent MRC-score
results, red histograms represent MRC-rank results. The average SRC
performance is reported (green histograms) as a term of comparison. A)
Histograms representing the distribution of the results according to
AUAC. B) Histograms representing the distribution of the results
according to EF1%. C) Histograms representing the distribution of the
results according to BEDROC.
doi:10.1371/journal.pone.0018845.g003
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MRC-score (0.33) and rank (0.34) improved with respect to

SRC (0.25) when using BEDROC (see Figure 2). Of 36 targets,

MRC-score and MRC-rank outperformed SRC runs 33 and 32

times, respectively. The one-tailed t-student’s showed that the

significance of these results was p,1026.

MRC-rank outperformed MRC-score 23 times. Despite this

trend, which was also observed with other figures of merit, the

statistical significance of such a difference was not strong enough

to support the exclusive use of MRC-rank.

As it can be seen in Figure 1A, the MRC procedure tended to

enhance the extreme behaviors, leading to the depletion of the

intermediate region of affinity prediction. In fact, both significant

peaks in the MRC distributions, namely the one corresponding to

the best predicted binders and the one corresponding to the worst

ones, were larger than in the SRC derived distribution. Our ‘‘early

recognition’’ oriented approach benefits of the increment of the

first peak, leading to a better performance, and ignoring what

occurs in the other regions of the distribution.

A comparison between the MRC protocols and the so-called

consensus scoring is called for here. Consensus scoring is an

accepted approach which was reported to decrease the number of

false positives and to improve the hit rate [55,56]. It combines

multiple scoring schemes and it enriches those compounds that are

consistently placed in the first positions in each of them. Both

MRC and consensus scoring methods can improve the VLS

performance with respect to traditional SRC protocol. However,

Table 3. SRC and MRC statistics in terms of EF1%.

TARGET
Number of
Conformers

Min SRC
EF1%

Max SRC
EF1%

Mean SRC
EF1%

MRC-score
EF1%

MRC-rank
EF1% Ideal EF1%

ACE_HUMAN 7 6.5 21.7 15.2 23.9 23.9 39.1

ACES_TORCA 21 0 16.1 2.2 4.0 5.0 39.0

ADA_BOVIN 13 0 0 0 0 0 39.1

ALDR_HUMAN 15 0 30.7 17.9 34.6 30.8 38.4

AMPC_COLI 16 0 4.7 0.6 0 4.7 38.0

ANDR_HUMAN 29 2.9 23.5 14.7 25.0 22.0 42.6

CDK2_HUMAN 30 2.1 21.2 10.3 10.6 12.7 44.6

COMT_RAT 3 0 0 0 0 0 36.3

DHFR_HUMAN 6 13.7 33.6 20.3 14.2 20.5 44.7

EGFR_HUMAN 6 3 16.1 9.3 9.9 14.0 43.5

ESR1_AG_HUMAN 4 14.3 19.0 16.2 17.4 12.7 41.2

ESR1_ANT_HUMAN 13 0 22.2 12.4 16.6 11.1 55.5

F10A_HUMAN 20 0 25.0 7.9 15.6 9.3 32.8

FGFR1_HUMAN 4 2.8 7.0 4.5 2.8 9.8 49.2

GCR_HUMAN 4 0 25.0 7.3 25.0 25.0 81.2

HMDH_HUMAN 9 4 36.0 17.7 20.0 24.0 56.0

HS9A_HUMAN 20 0 21.7 6.7 0 17.4 39.1

INHA_MYCTU 14 0 8.7 2.0 5.2 1.7 47.3

KITH_HHV11 19 0 9.1 2.6 9.1 4.5 40.1

MCR_HUMAN 11 30.7 46.1 39.8 38.4 30.7 46.1

MK14_MOUSE 19 0 13.1 3.15 11.7 7.3 50.3

NRAM_INBBE 11 4.1 28.6 16.9 16.3 10.2 34.7

PARP1_CHICK 6 3.22 16.1 8.0 9.7 6.4 41.9

PDE5A_HUMAN 11 3.8 23.0 11.1 15.3 11.5 65.4

PGH1_SHEEP 2 13 17.4 15.2 17.4 13.0 39.1

PGH2_MOUSE 2 0.9 3.8 2.3 2.3 2.3 36.8

PNPH_BOVIN 19 0 16.0 5.0 4.0 16 40.0

POL_HV1RT 18 2.9 20.6 10.5 11.7 14.7 44.1

PRGR_HUMAN 6 13.6 27.2 22.7 27.2 27.2 40.9

PUR3_COLI 3 12.5 12.5 12.5 12.5 12.5 12.5

PYGM_RABIT 20 0 3.8 0.9 1.9 1.9 40.3

RXRA_HUMAN 15 0 22.2 5.9 11.1 5.5 27.7

SRC_HUMAN 14 1.0 15.3 8.4 11.2 10.2 58.1

THRB_HUMAN 20 0 13.0 5.0 4.3 4.3 47.82

TRY1_BOVIN 19 0 11.1 2.9 0 11.1 77.7

VGFR2_HUMAN 8 4.1 18.7 8.1 18.7 12.5 56.2

doi:10.1371/journal.pone.0018845.t003

MRCs in Virtual Ligand Screening

PLoS ONE | www.plosone.org 9 May2011 | Volume 6 | Issue 5 | e18845



although theoretically possible [57], retrospective studies have

clearly demonstrated that consensus scoring was not able to

outperform the best single scoring function [58]. Along the same

lines, MRC-VLS might be expected to display the same behavior,

achieving an overall accuracy that is between the average SRC-

VLS performance and the best one. However, in several

instances, MRC outperformed the best SRC run. Since the

MRC paradigm is based on the coexistence of different

conformers, which are mutually excluded in SRC runs, each

binder can ‘‘select’’ the most suitable conformation (according to

the induced fit paradigm), gaining an exceptionally good score. In

this way, MRC achieved higher levels of accuracy than SRC runs

and consensus scoring.

IV. Chemical Diversity in the Topmost Ranking
Compound Fraction

The MRC results were also analyzed in terms of chemotypes. A

VLS run should be able to enrich as many active compounds as

possible, preserving high chemical diversity [54]. In the DUD version

used herein, known binders underwent chemical-based cluster analysis

and were annotated accordingly. Each binder was converted into a

reduced graph and those sharing the same representation were

Table 4. SRC and MRC statistics in terms of BEDROC.

TARGET
Number of
Conformers

Min SRC
BEDROC

Max SRC
BEDROC

Mean SRC
BEDROC

MRC-score
BEDROC

MRC-rank
BEDROC Ideal BEDROC

ACE_HUMAN 7 0.23 0.37 0.31 0.45 0.44 1

ACES_TORCA 21 0.01 0.37 0.10 0.25 0.17 1

ADA_BOVIN 13 0 0.05 0.01 0.01 0.01 1

ALDR_HUMAN 15 0.04 0.47 0.3 0.66 0.66 1

AMPC_COLI 16 0.01 0.13 0.05 0.06 0.07 1

ANDR_HUMAN 29 0.12 0.45 0.32 0.45 0.45 1

CDK2_HUMAN 30 0.10 0.51 0.27 0.40 0.41 1

COMT_RAT 3 0.01 0.08 0.04 0.07 0.06 1

DHFR_HUMAN 6 0.38 0.71 0.48 0.55 0.64 1

EGFR_HUMAN 6 0.09 0.4 0.23 0.21 0.36 1

ESR1_AG_HUMAN 4 0.40 0.51 0.47 0.54 0.54 1

ESR1_ANT_HUMAN 13 0.01 0.33 0.22 0.30 0.28 1

F10A_HUMAN 20 0.05 0.59 0.26 0.53 0.38 1

FGFR1_HUMAN 4 0.08 0.25 0.14 0.17 0.22 1

GCR_HUMAN 4 0 0.30 0.11 0.27 0.28 1

HMDH_HUMAN 9 0.21 0.46 0.28 0.42 0.42 1

HS9A_HUMAN 20 0 0.37 0.11 0.05 0.23 1

INHA_MYCTU 14 0.01 0.20 0.09 0.19 0.12 1

KITH_HHV11 19 0.01 0.23 0.14 0.22 0.22 1

MCR_HUMAN 11 0.54 0.76 0.67 0.62 0.68 1

MK14_MOUSE 19 0.01 0.31 0.09 0.22 0.18 1

NRAM_INBBE 11 0.37 0.72 0.56 0.61 0.46 1

PARP1_CHICK 6 0.36 0.47 0.42 0.44 0.44 1

PDE5A_HUMAN 11 0.17 0.42 0.31 0.37 0.30 1

PGH1_SHEEP 2 0.25 0.31 0.28 0.30 0.33 1

PGH2_MOUSE 2 0.06 0.28 0.17 0.22 0.17 1

PNPH_BOVIN 19 0.03 0.49 0.2 0.31 0.39 1

POL_HV1RT 18 0.09 0.38 0.24 0.36 0.43 1

PRGR_HUMAN 6 0.24 0.49 0.39 0.53 0.54 1

PUR3_COLI 3 0.50 0.61 0.57 0.60 0.77 1

PYGM_RABIT 20 0 0.07 0.02 0.04 0.04 1

RXRA_HUMAN 15 0.11 0.62 0.35 0.49 0.33 1

SRC_HUMAN 14 0.04 0.27 0.17 0.26 0.22 1

THRB_HUMAN 20 0.03 0.27 0.18 0.24 0.27 1

TRY1_BOVIN 19 0.02 0.39 0.19 0.21 0.23 1

VGFR2_HUMAN 8 0.08 0.23 0.17 0.33 0.33 1

doi:10.1371/journal.pone.0018845.t004
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assigned to the same cluster. This specific partitioning scheme was

driven by chemical scaffolds and was very robust with respect to local

variants and decorations [59]. In the following, we report the case

study of FGFR1_HUMAN (i.e. the basic fibroblast growth factor

receptor 1) to fully illustrate this concept. For this target, there were 4

receptor conformations, 71 known binders, and 3462 non-binders.

The known binders were grouped in 12 chemotypes. Figure 4 reports

the chemotypes 1, 3, 4, and 9, which are those relevant to this case

study. Table 5 shows that each FGFR1_HUMAN conformer

enriched between 2 and 5 binders in the top 36 positions (top 1%).

In three cases (PDBid 1AGW, 1FGI, and 1FGK), these binders were

representative of chemotypes 1 and 3, and in one case (PDBid: 2FGI)

of chemotypes 4 and 9. MRC-score placed 2 binders representative of

chemotypes 3 and 9 in the top 1%. Finally, MRC-rank placed 7

binders representative of chemotypes 1, 3, 4, and 9 among the 36 best

ranked molecules. The improvement in terms of enrichment with

respect to SCR-VLS was absent in MRC-score and modest in MRC-

rank. However, when the same results were analyzed in terms of

diversity, MRC-score performed at the same level of the best SRC-

VLS, while MRC-rank doubled the number of SRC-VLS retrieved

scaffolds.

To investigate the ability of MRC-VLS protocols to preserve

diversity, the results were also analyzed considering only the

contribution of the best-ranked binder of each cluster to the

enrichment [54]. The other members of the same cluster were

labeled as non-binders and their contributions neglected. This

strategy greatly reduced the noise due to overrepresented scaffolds.

Figure 5 reports the complete distribution of the results

considering chemotypes only. When AUAC was used as a figure

of merit (Figure 5A), MRC-rank outperformed or performed as

well as any single conformer for 10 targets, while MRC-score was

in the 100th percentile 5 times. Altogether, MRC-rank and MRC-

score were above the 50th percentile in 23 and 25 instances,

respectively. For HMDH_HUMAN and ESR1_AG_HUMAN,

due to the exceptionally high performance of SRC-VLS, the MRC

results were in the 1st percentile even though calculated areas were

above 0.8. From a chemical diversity standpoint, the AUAC

results suggested that MRC-VLS was still beneficial, even though

improvement with respect to single conformers was reduced.

However, the scenario was completely different if we analyzed the

results in terms of EF1% (Figure 5B). In all but one case

(NRAM_INBEE, MRC-rank EF1% below the 50th percentile),

MRC-VLS based approaches were above the 50th percentile. In

particular, MRC-rank was in the 100th percentile 16 times, while

MRC-score was in the 100th percentile 13 times. Dissimilar

Figure 4. Four different chemotypes enriched in the topmost fraction in single conformer and MRC-VLS studies on basic fibroblast
growth factor receptor 1.
doi:10.1371/journal.pone.0018845.g004

Table 5. Chemotype enrichment in different basic fibroblast
growth factor receptor 1 conformers.

PDBid

N. of Binders
in the
Topmost 1%

N. of Chemotypes
in the
Topmost 1%

Chemotypes
in the
Topmost 1%

1AGW 4 2 1–3

1FGI 2 2 1–3

1FGK 5 2 1–3

2FGI 2 2 4–9

MRC-score 2 2 3–9

MRC-rank 7 4 1–3–4–9

doi:10.1371/journal.pone.0018845.t005
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chemotypes were specifically recognized and assigned a good

score/rank by different conformers and, when the results were

combined together, the final EF1% was synergistically boosted. In

fact, different chemotypes reflect chemically different binders that

likely require different receptor conformations to be suitably

bound into the binding pocket. This is accounted for with our

MRC-VLS approach. The BEDROC results reflect the balanced

between the moderate improvement in overall separation and the

significant enhancement in early recognition that can be obtained

using MRC-VLS (see Figure 5C). In fact, MRC-rank provided

results that were above the 50th percentile in 33 targets. But it

outperformed or matched the results of the best SRC-VLS in only

7 targets. Similarly, MRC-score was placed over the 50th

percentile 34 times, but placed in the 100th percentile only 6

times. These results prove that our MRC-VLS approach increased

the number of active molecules among the top scorers (Figure 3B)

and, more importantly, enhanced the chemical diversity of true

binders. The latter represents the major novelty and added value

of our approach to hit identification campaigns.

Are co-crystals artificially inflating the beneficial role of
MRC?

Because DUD and the experimental Flexible Pocketome were

originally compiled independently, they partially overlap. Some of

the receptor conformers used here were actually extracted from

co-crystals bound to known binders in the set (see also Table S3 in

the Supporting Information). Since crystal structures of holo

proteins may retain a strong memory of their cognate ligands [31],

self-docking could artificially improve the final results. For this

reason, we decided to filter the ligand set by excluding from the

annotated binders: i) all the molecules co-crystallized with one of

the receptor variants and ii) all the binders belonging to the same

chemotype of a co-crystallized molecule (the chemotype of co-

crystallized molecules was defined according to the rules reported

in reference 34). Since highly populated chemotypes were more

likely to include a co-crystallized molecule, the total number of

binders and the diversity of the set were affected by the cognate

ligand filtering. On average, one third of the binders, but only one

fifth of the chemotypes, were excluded from the set. Three targets

(HS9A_HUMAN, KITH_HHV11, and MCR_HUMAN) had to

be excluded from the test set for the purpose of this analysis since

all of their binders were filtered out. In Figure 6, a complete

comparison of the BEDROC values is reported. A very small (and

somewhat expected) deterioration of the overall performance

could be observed. But, on average, the best single conformer,

MRC-score, and MRC-rank VLS provided for the filtered ligand

set are very similar to those of the non-filtered counterpart. The

average fluctuation was 0.03 for the best single conformers and

0.05 for the MRC approaches. Accordingly, the overall distribu-

tion of the results was very similar to the percentile analysis

reported in Figure 3 (see also Figure S2 in the Supporting

Information). The results quality dropped significantly for

GCR_HUMAN and HMDH_HUMAN only, implying that, in

these two targets, only co-crystals and closely related molecules

could be efficiently separated from non-binders. Interestingly, in

several cases, it was possible to detect a performance improvement

after co-crystallized ligands and their analogs were eliminated.

This depended on the noise generated by highly represented

chemotypes, which only provided a satisfactory performance in a

limited number of conformers, if at all. For example, the

acetylcholinesterase (ACES_TORCA) set of binders encompassed

the well-known inhibitor donepezil and twenty variants of the

same chemotype. While members of this cluster could be

separated quite well from non-binders in receptor conformers

Figure 5. Distribution of the results of MRC-VLS runs obtained
by considering only one representative binder for each
chemotype in the ligand set. Results are reported according to
different figures of merit. Blue histograms represent MRC-score results,
red histograms represent MRC-rank results. The average SRC perfor-
mance is reported (green histograms) as a term of comparison. A)
Histograms representing the distribution of the results according to
AUAC. B) Histograms representing the distribution of the results
according to EF1%. C) Histograms representing the distribution of the
results according to BEDROC.
doi:10.1371/journal.pone.0018845.g005
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displaying the right arrangement of the binding cavity, these 20

molecules were dumped at the rank bottom in all the other pocket

variants. Losing the huge amount of noise generated by donepezil

and its analogues more than compensated for their positive

contributions to the final ranking. If we consider Figure 1A, a

small reduction of the leftmost peak was compensated for by a

considerable reduction of the peak on the right. This, in turn,

translated into a better BEDROC score.

These findings are particularly relevant since they imply that

MRC-based approaches can statistically improve the quality of the

results in an actual VLS campaign, even in the absence of

structures specifically adapted to the molecules under examina-

tion. These results are in line with previously reported evidence

corroborating the idea that even a limited number of randomly

selected variants can outperform the traditional single rigid

receptor approach in cross docking and VLS [26–28,33]. In this

light, it appears safe to assume that crystal structures are not the

only valuable source of receptor conformations that can be used to

boost early recognition and chemical diversity in MRC-VLS. The

insights gained in this study can be extended to computer-

generated variants such as snapshots from molecular dynamics

[60] and, as was recently reported, homology models [61,62].

Attempts to Select an Optimal Subset of Receptor
Conformers

It has already been reported that the beneficial role of MRC in

VLS can be improved even further if an optimal subset of

receptor structures is selected from among the available

conformers [33,63,64]. However, it is quite difficult to define

such a subset in advance. In our retrospective study, we noticed a

perfect correspondence between the runs that yielded positive

ICM docking scores for all the molecules in the dataset and those

that presented an EF1%,1, i.e. those performing worse than a

random selection. We were led by this observation to believe that

these runs did not contribute any useful information, and we

therefore performed the tests again after excluding them. The

first consequence was to eliminate three targets from the study,

namely ADA_BOVIN, COMT_RAT and PGH2_MOUSE. As a

matter of fact, the available conformations of the first two targets

were characterized by ‘‘bad runs’’ only, i.e. the yielding of

positive scores only. According to our hypothesis, the relative

ranking provided by the docking runs should have been of very

low significance. Indeed, that was the case. In ADA_BOVIN,

each individual run performed much worse than the random

selection, while the discriminating ability in COMT_RAT was

fairly similar to that of the random selection. In these cases,

consistent with the ‘‘garbage in, garbage out’’ byword, the MRC

procedure could not distil any useful information from the

individual runs. Only two conformations were available for the

PGH2 MOUSE target and, of these, one had to be filtered out.

In this case, there was no sense applying the MRC method.

However, thanks to the filtering protocol, the most capable

conformation could be identified (BEDROC = 0.28 versus 0.06 of

the discarded one).

If we now consider the remaining targets, MRC-score and

MRC-rank with pre-filtering outperformed the corresponding

versions without the filtering protocol with a statistical significance

(assessed via the one-tailed t-test for paired samples) p,0.07 for

every figure of merit considered in this work. The BEDROC

measure, which takes into account both early recognition and

overall performance, particularly benefited from this protocol

because the corresponding statistical significance was p,0.005

and p,0.0001 for MRC-score and MRC-rank, respectively. Even

more impressively, in slightly more than 40% of targets, this

protocol allowed MRC-rank to perform better than the best of the

individual runs. The results for MRC-rank performance after

filtering out receptor structures that yield only positive ICM

docking scores are reported in Figure 6.

In summary, filtering out those individual runs that provided

only positive ICM docking scores seems to be an easy way of

Figure 6. Frequency distributions describing the performance of different protocols, as assessed by the BEDROC metric, with a = 20.
The red bordered transparent grey rectangle represents the threshold of randomness. The indigo area represents the frequency distribution of the
results for the individual runs (average), the blue area represents the frequency distribution of the results for the best single performing conformer
from each ensemble, the red area represents the frequency distribution of the results for the MRC-rank including all available conformer for each
ensemble, and the green area represents the frequency distribution of the results for the MRC-rank, dropping the conformers that provide a positive
score for each ligand.
doi:10.1371/journal.pone.0018845.g006
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removing noise from the calculation and best exploiting the MRC

procedure.

Conclusions
In this work, the role of MRC in VLS has been systematically

analyzed on a diverse and challenging test set, and several

protocols for exploiting MRC availability are suggested. Before

testing our protocols, we first established a baseline to assess the

performance of the docking engine. We found it to be appreciable

and in line with the literature. This preliminary step was necessary

to understand whether or not our protocol provided a real

improvement. The protocols we suggested, namely the MRC-

score and the MRC-rank, statistically outperform the average

single conformation run, and this is particularly true as far as the

topmost ranking fraction is concerned. This latter is the most

relevant fraction when VLS is considered not just as a standalone

exercise, but as part of a drug discovery project. It is not entirely

clear whether MRC-rank should be preferred to MRC-score, even

if the results reported here seem to point in that direction. From a

chemical diversity perspective, we proved that MRC improved not

only the number of active molecules enriched in the top fraction,

but also the variety of scaffolds. Again, this is crucial for real life

drug discovery. Furthermore, we proved that the quality of the

results does not depend on a bias introduced by co-crystals. Even

with co-crystals excluded from the analysis, MRC still outperforms

SRC-VLS. On the other hand, it is reasonable to assume that even

more structurally diverse ensembles would increase the likelihood

of discovering truly novel scaffolds.

We observed that conformations that yield only positive scores

in the docking phase can safely be excluded, leading to a

significant improvement in the final results. This is a simple yet

practical criterion for making a preliminary selection of the

conformers whenever a set of known binders and decoys is

available. Each of the figures of merit considered in this study has

its own peculiarities and privileged domains of application. In a

real VLS scenario, where ‘‘early recognition’’ is often crucial,

enrichment factors and BEDROC seem to be the most

appropriate to evaluate performance.

Finally, we note that MRC strategies significantly increase the

computational burden, since the calculation time scales linearly

with the number of conformers. However, docking engines

purposely developed to integrate MRC in standard protocols

were recently reported and will help limit the impact of this issue

[32,65,66].

Supporting Information

Figure S1 Structural comparison with cognate ligands A)

Inhibitor 1 at the binding site of SRC kinase (PDBid 1YOL).

Inhibitor 1 and the binding site residues are reported explicitly in

ball and stick representation. Inhibitor 1 alpha carbons are colored

green. As a term of comparison, the cognate ligand CGP77675 is

reported explicitly in ball and stick representation with dull grey

carbon atoms. The boundaries of the binding site are highlighted

by a semi-transparent white mesh. Intermolecular hydrogen bonds

are reported with dotted lines. B) Modulator 2 at the binding site

of Progesterone receptor (PDBid:2OVH). Modulator 2 and the

binding site residues are reported explicitly in ball and stick

representation. Modulator 2 alpha carbons are colored green. As a

term of comparison, the cognate ligand Asoprisnil is reported

explicitly in ball and stick representation with dull grey carbon

atoms. The boundaries of the binding site are highlighted by a

semi-transparent white mesh. C) Tolrestat (3) at the binding site of

aldose reductase (PDBid: 2FZB). Tolrestat and the binding site

residues are reported explicitly in ball and stick representation.

Tolrestat alpha carbons are colored green. As a term of

comparison, the cognate ligand IDD552 is reported explicitly in

ball and stick representation with dull grey carbon atoms. The

boundaries of the binding site are highlighted by a semi-

transparent white mesh.

(PDF)

Figure S2 Performance comparison of different protocols, as

assessed by the BEDROC metric, with a= 20, including and

excluding co-crystallized ligands. For each target, six histograms

are reported: best single conformer, all ligands – red; best single

conformer, no co-crystals – yellow; MRC score, all ligands – blue;

MRC score, no co-crystals – white; MRC rank, all ligands – green;

MRC score, no co-crystals – orange.

(PDF)

Table S1 List of PDB structures included in the test set.

(PDF)

Table S2 Distribution of the results expressed by EF10%.

(PDF)

Table S3 Known binders and co-crystallized ligands overlap.

(PDF)
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