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Current LEP data on rare Z decays constrain nonminimal technicolor models that
contain light neutral pseudo-Nambu-Goldstone bosons (P%). We discuss the production
and decay of such particles, and show how LEP data on 77y, v + K and ~y+hadrons
constrain the size of the technicolor gauge group and the strength of the Z~vP® coupling.

The limits are then applied to several specific technicolor scenarios.
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1. Introduction

Data from experiments at the Z pole provide valuable information about models of
electroweak symmetry breaking. In particular, LEP now probes rare Z decays with branch-
ing ratios at the 107° — 1076 level. This allows the possibility of detecting non-standard
particles that couple very weakly to the Z.

Many non-minimal technicolor models include electrically neutral pseudo-Nambu-
Goldstone bosons that couple anomalously to the photon and Z. These non-standard
pseudoscalar particles (P?®) can be produced at LEP through the process Z — vP* [I].
If the pseudoscalar’s mass is less than about 65 GeV, the branching fraction can be of
order 107°. A dramatic feature of these rare Z decays is the fact that the photon energy
is uniquely fixed by the scalar’s mass. Previous investigations [PJ[B] of the production
and decay modes of these neutral pseudoscalars have shown that all decays yield distinc-
tive signatures for which the LEP experiments can search. Among the most interesting
are events with three final state photons, because neither composite nor supersymmetric
models should yield a visible signal in this channel [J].

This paper evaluates the limits that LEP data on rare Z decays [[]][B][B][[ place on
non-minimal technicolor models. We begin by discussing the rate of P* production and
the available decay modes. Next, we explore the kinematics of the final states for which
experiments can search. We study the limits on each final state and express them in terms
of bounds on the size of the technicolor gauge group and the strength of the Z~P® coupling.

Finally, we apply our bounds to several specific technicolor scenarios.

2. Production and Decay of P“

At /s = My, the primaryﬁ production mode for a neutral pseudo-Nambu-Goldstone
boson (PNGB) of mass less than My is the two-body process Z — vP®. For technifermions
in the fundamental representation of technicolor, a PNGB couples to a pair of gauge bosons
G1, G4y with charges g1, g2, momenta k1, ko and polarizations €1, €5 just as a pion couples
to a pair of photons []:

NT0A01G2 o feu,,mk“kgei‘eg (2.1)

Here Ag,q, is the anomaly factor for the axial current 7 associated with P¢

A G, = Tr [T*(T'T* + T°TY) L] + Tr [T*(T'T? + T°T") ] (2.2)

3 The sub-dominant processes Z — Z*P* — ffP® and Z — bb — bbP® are discussed in [E] [E]
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T' and T? are the generators associated with the gauge bosons, L and R refer to left—
and right-handed technifermions, and f is the PNGB decay constant. In particular, the

anomaly factor relevant for Z — yP® is
1 .
Azy = 5Tr [T*(T51, + T3k — 2Q sin® 6)Q)] . (2.3)

so that if right handed technifermions are weak singlets, a PNGB with custodial isospin 0
(1,2) has A,z proportional to sin® @y or 1 — 2sin” Oy (1 — 4sin® Oy, 1 — 2sin” O 1.
The Z-boson decays to yP®* with width [[I]
123

2
Lz pe = 2.3x107°GeV (—) (NTCAZv)Q(

7 w)g (2.4)

M3
where My and Mp are the Z and scalar masses, It is reasonable to expect a branching
ratio of order 1075, which is large enough to be visible in current LEP experiments.

Once produced, the PNGB has many possible decay paths [

e In models where P® only decays to electroweak gauge bosons, the dominant mode is
a two-photon decay.

e Another possibility is that the PNGB mainly decays into particles in an invisible
sector. In this case, the event contains a single hard photon and missing energy.

o If P?® gets its mass from effective four-fermion couplings due to extended tech-
nicolor interactions, then it could decay to a fermion/anti-fermion pair via two-
technifermion /two-fermion couplings. In many models, the coupling between P and
the fermions is proportional to the fermion mass [{].

e If some technifermions are colored, a color-neutral PNGB can decay to a pair of gluons
through a triangle diagram with internal technifermions.

e Any PNGB produced by the process Z — vP® can decay through a photon and off-
shell Z. This three-body mode is significant only when no two-body decay paths are
open []. For this reason, and because there is no data suggestive of this decay path

[Ld], we do not consider this mode further.

As we examine the LEP data for signs that PNGBs are being produced at the Z pole,
we will study the final states that correspond to each of the two-body decay modes. In

this way, we will cover a range of scenarios for the dominant decay modes of the PNGB.
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3. Final State Kinematics

To search the data for evidence of a light PNGB, we must determine how the exper-
imental cuts would affect the size of the signal. Hence, we need to find the energies and
directions of the various final state particles. We can divide the decay process into two
steps: the two-body decay Z — P%y and the subsequent decay of P“.

However P® decays, the final state at LEP always contains one photon of energy

M2 — M3

E. —
7 2M 5

(3.1)

For example, if Mp is less than 65 GeV then E, always exceeds 20 GeV. If the P decays
invisibly, no further kinematic information is required.

If the P* decays to pairs of photons, gluons, or fermions, we will need the energies
and directions of the decay products. We will consider P* — bb explicitly. The results
may be applied to other final states by substituting the appropriate mass for my in the
final formulae.

Starting in the P® rest frame, where the b-quarks are produced back-to-back, the

four-momenta for the b and b quarks are, respectively,

1
Py = (§Mp, P2 cos @, pa sin 6 cos w, po sin O sin w)

(3.2)
Py = <§Mp, —p2 cos, —pa sin O cos w, —ps sin f sinw),

/1
p2 = ZMI% — M2, (3.3)

while 6 and w are defined such that if the P* boost is in the (1,0,0) direction, the b-quark

where

moves along (cos#,sinf cosw, sin 6, sinw).
Boosting to the lab frame with the beamline in the % direction and the P® three-

momentum pointing along (cos «, sin acos 3, sin a, sin 3) , we get:

E, = [1+\/7C089 )+ (1 (l—y)cose)]
E; = Ve [ — /(1 —y)cosh) + (1 + (1—y)c089)]

where y = 4M?/M?% and © = M3 /M2%.

(3.4)



To apply experimental cuts to our signal, we will need the direction cosines of the
particle momenta and the angles of separation between the various particles. The direction

cosine between the beamline and the b-quark is

(14 +/(1—=y)cosh) —x(1 —+/(1 —y)cosf)] cosa — 2y/xsinf cosw sin «

: (3.5)
\/[(1 + /(1 —y)cost) —x(1 — /(1 —y) cosd)]” + dxsin® 6

cos Xy =

The direction cosine cos X3 for the b-quark is obtained by reversing the sign of each cos @

and sin # in equation (B.5]). The direction cosine between the photon and the b-quark is

—[(14 /(1 —y)cosf) —x(1 — /(1 —y)cosh)] (3.6)
\/[(1 + /(1 —y)cosf) —x(1 — /(1 —y)cos 9)]2 + 4z sin? @

The direction cosine cos X13 between the photon and the anti-b-quark follows by sending

cos X9 =

cos — —cosf in equation (B.6)). The angle between the quark and anti-quark is
Aoz = 2m — (X2 + A13) (3.7)

since the event is planar.

4. Z — yP* = yyy

The three photon events should yield a distinctive signal, including a hard photon
whose energy is fixed by Mp. We used a Monte Carlo integration over 6, o and w to

calculate the effects of the DELPHI experimental cuts [[]] on the signal:

e The energy of each photon is greater than 10 GeV. This eliminates the signal
for P* heavier than 80 GeV.

e A1l three photons in a given event should have polar angles between 20°
and 160°; two of the three should lie in the restricted range 42° < 6 <
138°. This uniformly removes about 20% of the signal.

e The most energetic photon should carry energy greater than 20 GeV. This
has no effect on the number of signal events.

e The most energetic photon should have polar angle between 40° and 140°.
Like the second cut, this one removes 20% of the signal.

e The angular separations between the least energetic photon and each of

the other two should be greater than 20°. This cut mainly affects light P¢
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which are produced with large momenta and therefore decay into two photons with

small angular separation.

In addition, the DELPHI experiment [[] required the absence of vertex detector tracks
pointing to the clusters in the electromagnetic calorimeter (‘photons’) and the general
absence of energetic tracks coming from the beam-crossing point.

Depending on the PNGB mass, between 40% and 75 % of the signal survives the cuts
on the photons, as shown in fig. 1.

The size of the expected signal may now be compared with the experimental upper
limit [A] on the branching ratio: B.R.(Z — yyv) < 1.7 x 107°. We set the PNGB decay
constant to f = 123 GeV, and used (.4) to find the maximum value of [NpcAz,| as a
function of Mp, as shown in fig. 2. The limit is of order 2-3 for masses below about 60
GeV, and weakens with increasing mass. The lowest mass for which the bounds apply is

set by the angular separation cut; the highest mass, by the 10 GeV photon energy cut.

0.8

0.6

04 r

Percentage of signal surviving

0.2

0.0

0.0 | 26.0 | 46.0 | 66.0 | 86.0 | 100.0
PNGB mass (GeV)
Fig. 1. Percentage of Z — yP® — ~7 signal surviving cuts
used by the DELPHI experiment, as a function of PNGB mass.

The left boundary comes from the angular separation cut; the shape at
low mass and the right-hand boundary, from the 10 GeV photon energy cut.
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Fig. 2. Upper bound (at 95% c.l.) on Npc Az, as a function of P* mass
in models where P® decays dominantly to photons and f = 123 GeV.
Derived from eq. (2.5) and DELPHI data on Z — vvy~.

5. Z > +yP*—>~y+ K

If the scalar’s dominant decay is invisible, only the photon from the Z decay will be
directly observeable. The experimental candidate events are characterized by one energetic
photon in an otherwise empty detector: no tracks, muon hits, or other energy deposits
(except as consistent with noise). To suppress background to new physics, cuts are also
placed on the single photon. To assess the effects of these on the signal, we performed a
Monte Carlo integration over the variable 6, imposing the following conditions [[H] used by
the L3 Collaboration:

e The energy of the photon should be greater than 15 GeV. This eliminates the
signal for PNGB’s heavier than 75 GeV.

e The photon must have a polar angle between 20° and 160° (excluding the
regions 34.5°—44.5° and 135.5°—145.5°) . Since the Z decay to scalar plus photon

is isotropic, this cut uniformly reduces the signal by approximately one third.

The L3 paper [[] plots the number of events as a function of photon energy, using

energy bins 2 GeV wide. No bin shows an excess of more than one event over expected
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standard model backgrounds from vy, ete™v and vy final states. Assuming f = 123
GeV and applying Poisson statistics, we find at 95%c.l. that [NpcAz,] S 1.5 for 40 <
Mp < 70 GeV. The precise limit as a function of Mp is shown in Figure 3.

We performed a similar analysis based on the OPAL data [f]. In this experiment,
single-photon events were selected if the photon carried energy above 1.75 GeV and re-
stricted to the polar region | cosa| < 0.7. OPAL reports [[f] an upper bound (at 95% c.l.)
of 4.3 x 107% on the branching ratio for radiative decay of the Z to an invisibly-decaying
scalar particle X with mass less than 64 GeV, and an upper bound of 1.4 x 1072 for a
mass less than 84 GeV. This sets the approximate limit [N7¢Az,] < 1 for PNGB masses
less than 40 GeV. As shown in fig. 3, the bounds from the OPAL data are weaker than

those from L3 for values of Mp accessible to both experiments.

25

15

05 ]

0 Il Il Il Il Il Il
10 20 30 40 50 60 70 80
PNGB mass (GeV)

Figure 3. Upper bound (at 95% c.l.) on Npc Az, as a function.
of PNGB mass in models where PNGB decays invisibly and f = 123 GeV.
Derived from eq. (2.5) and L3 and OPAL data on Z — v+ K.

6. Z — vP* — v jet jet

If P* can decay into gluons, this mode dominates. Otherwise, if the PNGB couples
directly to ordinary fermions in proportion to the fermion masses, then P% — bb is expected
to be the most important mode, with decays to c¢ and 777~ taking over for Mp < 2m,.

In either case, the L3 data on isolated hard photons in hadronic Z decays [[]], can be
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used to search for P®. We explicitly discuss the case in which fermionic decays of P¢
predominate. The limits on models in which P* — gg dominates are nearly identical since
no flavor tagging is employed in the selection cuts and since the jet-jet angular separation
cut essentially eliminates most P® lighter than 2mg,.

Following the L3 experimental analysis [[], we applied the following cuts to our signal:

e The photon energy is greater than 5 GeV. This suppresses the signal for P¢
heavier than 85 GeV.

e The photon should lie between polar angle 45° and 135°. This uniformly re-
duces the signal strength by about 30%.

e The hadronic jets should lie in the region 5° < 6§ < 175°. This reduces the
signal by another few percent.

e The jets should be separated by at least 20° from one another and from

the photon. The main effect is to suppress the signal for low scalar masses.

About 70% of the signal survives these cuts for P* masses between 8 and 85 GeV.
The L3 collaboration [[] reports a limit on radiative Z decay to a hadronically decaying

narrow resonance, Y, that may be approximately written as
olete” = Z = ~Y)-B.R.(Y — hadrons) S 5 pb, for My S 85 GeV. (6.1)

Comparison with our expected signal for a hadronically decaying P implies [Ny Az, <5
for Mp < 50 GeV and f = 123 GeV. The bound loosens to [NrcAz,] < 10 for Mp ~ 60
GeV and becomes even weaker for heavier P® because the production rate declines so

steeply with increasing Mp.

7. Applications to Technicolor Models

Having reported the bounds that LEP sets on neutral PNGB in the general form of
limits on [NrcAz4|, we now apply them to several technicolor scenarios. This allows us
to see what classes of models are most strongly constrained now and which will be probed
by more stringent experimental limits on rare Z decays.

The benchmark technicolor model which includes PNGB is one-family technicolor [[LT].
In this model, the technipion decay constant is f = v/2 = 123 GeV, and the neutral PNGB

can be described in terms of technifermion quantum numbers as

P' ~ (Qv5Q — 3LvsL) , P? ~ (Qv573Q — 3Lvs73L) (7.1)



where the superscript on P indicates the dimension of the custodial isospin representation.
These can decay to two jets either through direct ETC couplings to quarks or through the

coupling of gluons to the techniquarks. The corresponding anomaly factors are

1 1

1
AL = ——s% ~0.044 A = G- 52))

3v/3

Note that, as mentioned in section 2, the state with I=1 has an anomaly factor suppressed

~ 0.012 . (7.2)

by (% — s%,). Both anomaly factors are so small that the LEP limits on radiative hadronic
Z decays set no useful bounds on one-family technicolor.

Since I'(Z — P) goes as (Npc Az, /f)?, models more likely to be probed by the
LEP data will need to have smaller f or larger Az, than one-family technicolor. Several
models with small technipion decay constants have recently been proposed; we consider
these first.

In ref. [[J], the authors introduce one-family technicolor models in which the QCD in-
teractions combine with near-critical ETC interactions to enhance the techniquark masses
relative to those of the technileptons. The main attraction of such models is that non-
degenerate technifermions can potentially lead to a small value of the electroweak radiative
correction parameter, S [[J]. The side-effect of interest here is that the technipions com-
posed of technineutrinos and technileptons can be relatively light — with masses as low as
50-100 GeV — and have small decay constants (of order 40 GeV). Due the splitting between
the techniquarks and technileptons, the model has a smaller chiral flavor symmetry than

one-family technicolor, and the neutral PNGB are
PS ~ QysT°Q P} ~ Lys7°L, P' ~ QysQ — 3LvsL . (7.3)

The NGB that is eaten by the Z is largely composed of techniquarks (fg >> fr) and
the remaining PNGB mass eigenstates are approximately (in the limit of large isospin
breaking)

Pn ~ NvsN | Py ~ EvsE . (7.4)

The lighter of these, Py, has Az, = 0 since the technineutrino carries no electric charge.
The heavier Pgr can still be light enough to be produced at LEP. Although Pgp has an
I = 0 component, the terms in its anomaly factor proportional to —28%/1/ and to 1 — 25%,
have identical coefficients, so the full anomaly factor is
E
AZ7 =

(5 —sw) - (7.5)

g

S
V2
9



Even the reduced fr in this model is not sufficient to overcome this. In consequence, Pg
will not be visible at LEP no matter how it decays.

The multiscale TC models introduced in [[4] include technifermions in large techni-
color representations and can also have light neutral PNGB with small decay constants
[ [LT][LG]. While the lightest PNGB canll have a mass below M z, this PNGB, however,
is largely composed of the I=1 state P} ~ Lys73L so that although f; ~ 30 GeV, the
anomaly factor is suppressed by (i — s%/v) In the most optimistic case, in which the PNGB
decays half the time to a pair of photons [[7], the model with Ny = 6 gives a signal 10
times smaller than the LEP bound. If the decays are primarily hadronic (through ETC
interactions), the signal lies even further below the relevant limit. P.

Clearly, small f is not enough: we also need models with large Az, e.g., those in
which the lightest technifermions belong to larger representations of SU(2)y . Consider,
for example, a scenario suggested in [[] in which the left-handed technifermions are a
weak isotriplet of techniquarks, Q, with hypercharge y and one of technileptons, L, with
hypercharge —3y, while the right-handed technifermions are weak singlets. In this case,
f =v/4 and there are I=0 and I=2 states

P' ~ (QvsQ —3LsL) P~ (QsT*Q + LysT°L) | (7.6)
where T® = diag(1, —2,1), with sizeable anomaly factors:
1
Ay, = 6V2sh17 AY = ﬁ(l —2s2,) . (7.7)

No matter what the (model-dependent) dominant decays of these technipions, the LEP
data place strong limits on the size of Np¢ as a function of Mp.
If the PNGB decay invisibly, with f = v/4 the experimental limit is (cf. section 5)

2NTCAZ'y S 1 (2) when Mp S 65 GeV (75 GeV) . (78)
If the I=2 state is sufficiently light, then ([.§) combined with ([7.7) yields
Nre < 1 (3) when Mps S 65 GeV (75 GeV) . (7.9)

so that LEP has excluded all such models with M P5 < 65 GeV and allows only Ny¢o = 2,3
if 65 S Mps < 75 GeV. If only the I=0 state is light enough to be produced at LEP, then

4 Based on the results of [[7] and lowering the scaling factor, &, to 1.0 [I4].
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for techniquark hypercharge y > 1/3, the limits are equivalent to those shown above. The
non-observation of these PNGB therefore implies that either P* and P} are heavy or y is
small.

If v+ decays dominate, the LEP data tell us (cf. section 4)
2NTC’A27 S 2.5 (5) for Mp S 50GeV (70 GeV) . (710)

This excludes models in which P! has a mass less than 50 GeV and the techniquark
hypercharge exceeds % Models in which P_? is light or the techniquark hypercharge is

smaller are allowed within the following constraints

Nro <4 for Mpy S 50GeV

1 (7.11)
Nre <5 for Mp: $50GeV and y > 3

The extension to heavier PNGB and smaller y follows from ([.7) and (7.10).

Finally, if hadronic decays of P! or Pji dominate, the data (B.1]) place an upper bound
of 5 pb on the quantity [70% - o7, - B.R.(Z — vP*)] where the B.R. comes from (P-4) and
the factor of 70% is the roughly mass-independent acceptance of the cuts. In the range

20 < Mp < 60 GeV, this quantity is approximately linear in Mp:

Mp
20GeV

1
1 |35 +22(1- )| pb - (NrcAz,)? (7.12)
where f = v/4. Eq. ([-13) does not set a strong lower limit on the mass of P?; even if
Mp3 is as small as 20 GeV, Ny = 6 is allowed. On the other hand, for y = 1, the P!
must weigh at least 60 GeV; if y = %, then Mp: > 40 GeV unless Npo < 5.

8. Summary

LEP data on rare Z decays are beginning to set limits on the presence of the light
neutral pseudo Nambu-Goldstone bosons characteristic of non-minimal technicolor models.
Not surprisingly, the data most strongly constrains models with a large Z~vP® coupling.
Probing multiscale technicolor models which have a smaller ZvP® coupling but also have
small technipion decay constants will be possible with an improvement of order a factor of

10 in the LEP bounds on rare Z decays.
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