
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Rapid Onboard Trajectory Design for Autonomous Spacecraft in Multibody Systems

Permalink
https://escholarship.org/uc/item/84827994

Author
Trumbauer, Eric Michael

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/84827994
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Rapid Onboard Trajectory Design for Autonomous Spacecraft in Multibody Systems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Mechanical and Aerospace Engineering

by

Eric Michael Trumbauer

Dissertation Committee:
Professor Kenneth D. Mease, Chair

Professor Athanasios Sideris
Professor Faryar Jabbari

2015

© 2015 Eric Michael Trumbauer

DEDICATION

To Damara, my family, and my friends for their love and laughter.

The world is big and I want to have a good look at it before it gets dark.

- John Muir

When the going gets weird, the weird turn pro.

- Hunter S. Thompson

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES ix

LIST OF TABLES xi

LIST OF ABBREVIATIONS xii

NOTATION xiii

ACKNOWLEDGMENTS xv

CURRICULUM VITAE xvi

ABSTRACT OF THE DISSERTATION xviii

SECTION I: Introduction
1 Introduction 1

1.1 Motivation 1
1.2 Problem Statement 3

1.2.1 Problem De4nition 3
1.2.2 Assumptions 3

1.3 Overview of the Proposed Solution Method 4
1.3.1 Step 1 – Of8ine: Catalogue Relevant Dynamical Features 6
1.3.2 Step 2 – Of8ine: Partition the Domain 7
1.3.3 Step 3 – Of8ine: Create a Discrete System Representation 8
1.3.4 Step 4 – Onboard: State Boundary Conditions as Graph Nodes 9
1.3.5 Step 5 – Onboard: Search for the Transfer Itinerary 10
1.3.6 Step 6 – Onboard: Select Arcs to Create an Initial Transfer Guess 10
1.3.7 Step 7 – Onboard: Differential Correction to Establish Feasibility 10
1.3.8 Step 8 – Onboard: Locally Optimize Transfer V 11
1.3.9 Step 9 – Onboard Create Additional Transfers with Graph Feedback 11

1.4 Contributions 13
1.5 Outline of the Dissertation 15

SECTION II: Initial Guess Generation for Impulsive Transfers
in Multibody Systems

2 Standard Methods for Initial Guess Generation 18
2.1 Introduction 18

iii

2.2 The Impulsive Assumption 19
2.3 Two-Body Model Based Methods 20

2.3.1 Transfers in the Restricted Two-Body Model 21
2.3.2 Multibody Transfers Using Patched Conics 21
2.3.3 Limitations for this Application 22

2.4 Three-Body Model Based Methods 22
2.4.1 Transfers in the Restricted Three-Body Problem 23
2.4.2 Limitations for this Application 26

2.5 Summary 28

3 Directed Graph Approximation of the Impulsive Transfer Problem 29
3.1 Introduction 29
3.2 Related Work 30
3.3 Partitioning the Domain 32

3.3.1 Periapsis Poincaré Maps 33
3.3.2 Coordinate Partition 34

3.4 Directed Graph Construction 36
3.4.1 The Symbolic Image of Osipenko 36
3.4.2 Additional Structural Elements 39
3.4.3 Impulsive Connections 40
3.4.4 Ballistic Link Costs 42

3.5 Resulting Graph Structure 44
3.6 Summary 45

4 Initial Guess Generation via Heuristic Search 47
4.1 Introduction 47
4.2 From Boundary Conditions to Graph Nodes 48

4.2.1 Boundary Conditions as States 48
4.2.2 Boundary Conditions as Periodic Orbits 49

4.3 Search Method 51
4.3.1 Graph vs. Tree Search 52
4.3.2 Uninformed Search Methods 53
4.3.3 Search Heuristics 54
4.3.4 Heuristic Search Methods 56

4.4 Initial Guess Generation using the Search Results 57
4.5 Generating Additional Transfers with Graph Updates 59
4.6 Summary 59

SECTION III: Local Optimization of Impulsive Transfers

5 The Impulsive Transfer Optimization Problem and its Approximations 61
5.1 Introduction 61
5.2 Convex Programming 62

5.2.1 De4nition 62
5.2.2 Convergence and Complexity of Solutions 63
5.2.3 Applications in Space8ight 63
5.2.4 Suitability for the Impulsive Transfer Problem 64

5.3 Second Order Cone Problems 65

iv

5.3.1 De4nition 65
5.3.2 Convergence and Complexity of Solutions 65

5.4 Quadratically Constrained Quadratic Problems 66
5.4.1 De4nition 66
5.4.2 Convergence and Complexity of Solutions 66

5.5 Original NLP Formulation of the Impulsive Transfer Problem 67
5.5.1 Variables and Notation 67
5.5.2 Cost Function 67
5.5.3 Equality Constraints 68
5.5.4 Inequality Constraints 68
5.5.5 NLP Statement 70

5.6 The Iterative NLP 71
5.6.1 Replacement Constraints 71
5.6.2 Iterative NLP Statement 72
5.6.3 Comparison of KKT Points 73

5.7 Convex Problem Approximation 76
5.7.1 Variables and Notation 76
5.7.2 Convex Cost Function 77
5.7.3 Epigraph Transformation for the Minimum Fuel Cost 79
5.7.4 Linear/Af4ne Equality Constraints 80
5.7.5 Convex Inequality Constraints 82
5.7.6 General Convex Program 86
5.7.7 Minimum Fuel as a Second Order Cone Problem 87
5.7.8 Minimum Energy as a Quadratically Constrained Quadratic Program 88
5.7.9 Comparison of KKT Points 90
5.7.10 KKT Points vs. Fixed Points 91

5.8 Avoiding Degenerate Solutions for Feasible Iterations 91
5.8.1 Motivation 91
5.8.2 De4ning the Projection Matrix 92
5.8.3 The Augmented Constraints 93
5.8.4 Equivalence of Fixed KKT Points 94

5.9 Summary 94

6 The Iterative Process 96
6.1 Introduction 96
6.2 General Sequential Convex Programming 97

6.2.1 Basic Algorithm 97
6.2.2 Suitability for this Application 98

6.3 Two-Level Differential Corrector 99
6.3.1 Method Description: Level I 99
6.3.2 Method Description: Level II 100
6.3.3 Suitability for this Application 101

6.4 Proposed Iterative Method 101
6.4.1 Algorithm with Line Search 101
6.4.2 Variant Algorithm without Line Search 105

6.5 Use of SQP in the Correction Phases 107
6.6 Summary 108

v

7 Proof of Global Descent with Feasible Iterates 109
7.1 Introduction 109
7.2 Theorem Statement and Assumptions 110
7.3 Proof 111

7.3.1 Continuity Only 111
7.3.2 Additional Constraints 120

7.4 Additional Algorithmic Implications 124
7.4.1 Simpli4cation of Subproblems Solved for Better Performance 124
7.4.2 Conditions for the Elimination of Line Search 125

7.5 Summary 129

8 Zangwill's Global Convergence Theorem 131
8.1 Introduction 131
8.2 Iterates Are within a Compact Domain 132
8.3 The Cost is a Global Descent Function of the Algorithm 133
8.4 The Algorithm is Closed 133

8.4.1 General Point to Set Maps 133
8.4.2 The Feasible Set Map 134
8.4.3 The SOCP/QCQP Solution is Closed 135
8.4.4 Line Search is Closed 137
8.4.5 Closure Under Composition 139

8.5 Conclusion 139

9 Initial Correction of Graph Search Based Initial Guesses 140
9.1 Introduction 140
9.2 Feasibility and Infeasibility of the Arc Selection Process Results 141
9.3 Infeasibility Minimization 142

9.3.1 A Standard Second Order Cone Form for Infeasibility Minimization 142
9.3.2 The Infeasibility Minimization SOCP and NLP 143
9.3.3 Problem Analysis 144

9.4 Summary 147

SECTION IV: Applications

10 Application to an Orbiter at Phobos 148
10.1 Introduction 148

10.1.1 Relevance 149
10.1.2 Contribution 149

10.2 Models Used 150
10.2.1 Discretization and Arc Database Model 150
10.2.2 Onboard Model 152

10.3 Periodic Orbits and Invariant Manifolds 153
10.3.1 Orbits in JPL Mission Scenarios 153
10.3.2 Other Periodic Orbits 155
10.3.3 Invariant Manifolds 155

10.4 Algorithm Setup 156
10.4.1 Domain Partition 156
10.4.2 Graph Creation 157

vi

10.4.3 Constraint Values 159
10.5 Test Case Descriptions 160

10.5.1 Test Scenario 1 – Abort to Distant Retrograde Orbit 161
10.5.2 Test Scenario 2 – Closed Loop Redesign After Large Perturbation 162
10.5.3 Test Scenario 3 – Return to Libration Point Orbit 162

10.6 Test Case Results 163
10.6.1 Test Scenario 1 163
10.6.2 Test Scenario 2 165
10.6.3 Test Scenario 3 167
10.6.4 Further Computation Time Analysis 169

10.7 Summary 170

11 Implementation of Phobos Test Scenarios on Jet Propulsion Laboratory Flight Hardware 171
11.1 Introduction 171
11.2 The Test Platform 172
11.3 Review of Design Decisions Informed by Onboard Application 173

11.3.1 Feasible Major Iterates of the Optimization Process 173
11.3.2 Second Order Cone Problems and Interior Point Solvers 173
11.3.3 A* Search Algorithm 174
11.3.4 Integration: A Remaining Challenge 175

11.4 Graph Memory Reduction via Run Time Impulsive Connections 176
11.4.1 Background 176
11.4.2 Identifying Connection Candidates 177
11.4.3 Link Costs 179
11.4.4 Memory Reduction and Search Time Impact 180

11.5 Porting Process 181
11.5.1 Conversion to C 181
11.5.2 Platform Porting Phases 181

11.6 Simulation Results 182
11.6.1 Test Case Performance Data 182
11.6.2 Result Comparison 185

11.7 Future Opportunities: Parallelization 185
11.7.1 Naive Transfer Problem Parallelization 186
11.7.2 Search Process Parallelization 187
11.7.3 Run Time Ballistic Connections and Uncertainty Constraints 187
11.7.4 Naive Parallelization during the Optimization Stages 188

11.8 Summary 189

12 Libration Point Orbit Based Near Earth Asteroid Interceptor 190
12.1 Introduction 190
12.2 Boundary Conditions 191

12.2.1 Candidate Periodic Orbits 191
12.2.2 Initial Conditions Used 192
12.2.3 Candidate Asteroids 192

12.3 Method Setup and Modi4cations 194
12.3.1 Model Selection 194
12.3.2 Domain Partition 195
12.3.3 Resulting Directed Graph 196

vii

12.3.4 Optimization Modi4cation for Flybys 197
12.3.5 Specifying Boundary Conditions 198

12.4 Results 198
12.4.1 Flybys 198
12.4.2 Rendezvous 200
12.4.3 Sample Transfer Visualizations 201

12.5 Summary 205

SECTION V: Conclusion

13 Conclusion 206
13.1 Overview 206
13.2 Future Research 208

References 210

Appendices

A Constraint Quali=cations for Subproblems 219
A.1 Introduction 219
A.2 Types of Constraint Quali4cations 220

A.2.1 De4nitions 220
A.2.2 Implications and Equivalences 221

A.3 Regularity at Each Iteration 223
A.4 Summary 227

B Additional Constraints 228
B.1 Introduction 228
B.2 Intermediate, Maneuverless Patch Points 228

B.2.1 The NLP Constraint 229
B.2.2 The CP Approximation 229
B.2.3 De4ning the Modi4ed Recorrection Problem 230
B.2.4 Existence of Solutions to the Modi4ed Recorrection Problem 231
B.2.5 Magnitude of Correction 234

B.3 Thrust Angle Limitations 235
B.3.1 The Standard Geometric Cone 235
B.3.2 De4ning the Angle Constraint as a Second Order Cone 236
B.3.3 Inclusion into the Proof of Descent with Feasible Iterates 239

B.4 Conical Observation Regions 241

C Dynamical Models 242
C.1 Introduction 242
C.2 The Circular Restricted Three-Body Problem 242
C.3 Spherical Harmonic Gravity 244
C.4 The Bicircular Restricted Four-Body Problem 248

viii

LIST OF FIGURES
Page

1.1 Onboard transfer redesign system context 4
1.2 On-the-ground and onboard phases of the transfer redesign tool 5
1.3 Important orbit families near Phobos 7
1.4 Approximating system 8ow with directed graph connections 9
1.5 Transfer initial guess using heuristic search results to select arcs 12
1.6 Differential correction of initial guess to establish feasibility 12
1.7 Local optimization resulting in 4nal transfer 13

2.1 Structure of an Impulsive Transfer 20
2.2 Example of Trajectory Selection Using Manifold Intersection 25
2.3 Example of Dynamical Map for Third-body Driven Plane Change Maneuvers 27

3.1 A region within the periapsis Poincaré section 35
3.2 Approximating system 8ow with directed graph connections 37
3.3 Example periodic orbit families of interest in multibody systems 39
3.4 Conceptual model of the layered graph structure 44
3.5 Example sparsity diagram of the layered graph structure 44

4.1 Generating multiple transfers for periodic boundary conditions 51
4.2 Transfer initial guess using heuristic search results to select arcs 58

5.1 Minimum impulse magnitude replacement constraint 71
5.2 Visualization of the equality constraint in the convex approximations 82
5.3 NLP and CP Karush-Kuhn-Tucker conditions match at 4xed points 91

6.1 Flowchart of the iterative optimization algorithm 102

7.1 Correcting CP solution velocity to reestablish continuity 110
7.2 FONC of convex functions with function value decrease 112
7.3 CP solution de4nes descent direction for the NLP cost function 113
7.4 The discontinuity function: de4nition 113
7.5 The discontinuity function: Implicit Function Theorem implications 114
7.6 Derivative of velocity adjustment magnitude w.r.t. step size is 0 115
7.7 Derivative of the increase to the cost function after recorrection w.r.t. step size is 0 117
7.8 An open solution set exists of continuous, lower cost transfers 119

10.1 Relative magnitudes of forces near Phobos 152
10.2 Important orbit families near Phobos 154
10.3 Sparsity diagram of the graph constructed for Phobos 158
10.4 Test scenario 1: 4nal transfers 163
10.5 Test scenario 2: 4nal transfers 166
10.6 Test scenario 3: 4nal transfer 168

12.1 Trajectory of asteroid 2006 RH120 193
12.2 Sparsity diagram of the graph constructed for NEA interceptor testing 197

ix

12.3 Flyby transfer to 2006 RH120 from a Halo orbit 202
12.4 Flyby transfer to 2006 RH120 from a Vertical Lyapunov orbit 203
12.5 Rendezvous transfer to 2006 RH120 from a Vertical Lyapunov orbit 203
12.6 Flyby transfer to 2011 UD21 from a Vertical Lyapunov orbit 204
12.7 Flyby transfer to 2004 BL86 from a Vertical Lyapunov orbit 205

x

LIST OF TABLES

Page

10.1 Constraint values for Phobos test cases 159
10.2 Example 1 boundary conditions 161
10.3 Example 2 boundary conditions 162
10.4 Example 3 boundary conditions 163
10.5 Example 1, transfer 1 results 164
10.6 Example 1, transfer 2 results 164
10.7 Example 2, local correction and optimization only results 167
10.8 Example 2, full replanning results 167
10.9 Example 3 results 169

11.1 Example 1, transfer 1 results 182
11.2 Example 1, transfer 2 results 183
11.3 Example 2, local correction and optimization only results 183
11.4 Example 2, full replanning results 184
11.5 Example 3 results 184

12.1 Comparison of lowest ΔV 8yby transfer costs for initial orbit/asteroid Pairs 199
12.2 2006 RH120 – Characteristics of lowest ΔV 8yby transfer per initial orbit 199
12.3 2011 UD21 – Characteristics of lowest ΔV 8yby transfer per initial orbit 199
12.4 2005 YU55 – Characteristics of lowest ΔV 8yby transfer per initial orbit 200
12.5 2004 BL86 – Characteristics of lowest ΔV 8yby transfer per initial orbit 200
12.6 Comparison of lowest ΔV rendezvous transfer costs for initial orbit/asteroid Pairs 200
12.7 2006 RH120 – Characteristics of lowest ΔV rendezvous transfer per initial orbit 201
12.8 2011 UD21 – Characteristics of lowest ΔV rendezvous transfer per initial orbit 201

xi

LIST OF ABBREVIATIONS

AFRL Air Force Research Laboratory
BCBF Body Centered, Body Fixed frame
BR4BP Bicircular Restricted Four Body Problem
CCS Compressed Column Storage
CP Convex Problem
CR3BP Circular Restricted Three Body Problem
CRMFCQ Constant Rank Mangasarian-Fromovitz Constraint Quali4cation
DRO Distant Retrograde Orbit
FSW Flight Software
GN&C Guidance, Navigation, and Control
GSFC Goddard Space Flight Center
I/O Input/Output
JPL Jet Propulsion Laboratory
KKT Karush-Kuhn-Tucker
LICQ Linear Independence Constraint Quali4cation
MFCQ Mangasarian-Fromovitz Constraint Quali4cation
NASA National Aeronautics and Space Administration
NEA Near Earth Asteroid
LSC-B Lower Semi-Continuous in the sense of Berge
LSC-H Lower Semi-Continuous in the sense of Hausdorff
NLP Non-Linear Program
QCQP Quadratically Constraint Quadratic Problem
SOCP Second Order Cone Problem
SCP Sequential Convex Programming
SQP Sequential Quadratic Programming
STM State Transition Matrix
USC-B Upper Semi-Continuous in the sense of Berge
USC-H Upper Semi-Continuous in the sense of Hausdorff

xii

NOTATION

(By chapter in which notation is $rst used, or when a prior usage is replaced)

Chapter 3
μ Mass parameter of the CR3BP
x , y , z Position coordinates in the CR3BP rotating frame
ẋ , ẏ , ż Velocity coordinates in the CR3BP rotating frame
r1 Distance from the center of mass of the larger massive body to the spacecraft

r 2 Distance from the center of mass of the smaller massive body to the spacecraft

E CR3BP energy
Ω Domain
r ,θ ,φ ,α Partition coordinates
Ri Region of the domain partition

ni Node of a directed graph corresponding to Ri

C Finite covering of the domain
f Poincaré map
G Directed graph
s(i) Set of indices of those regions intersecting the image of the 8ow of Ri

d Maximum diameter of regions within a partition
ΔV Impulsive maneuver
t Coasting time
Φ State Transition Matrix
σ̄ Maximum Singular Value
λ ,μ Eigenvalues

Chapter 4
 P Periodic boundary conditions within the directed graph
 p Number of nodes within P
 n,m,q Nodes of the directed graph
 c(n,n') Cost in the directed graph from the current to successor node
 g(n) Path cost to from start node to node n
 F Frontier set
 b Branching factor
 C* True optimum path cost
 ε Minimum link cost in the directed graph
 VG Number of vertices in the directed graph G
 EG Number of edges in the directed graph G
 hE(n) Heuristic estimate of the remaining cost from the node n to the goal node
 hT(n) True remaining cost from the node n to the goal node
 f Best 4rst search selection function

Chapter 5
 J() Cost function
 hj Equality constraint
 gk Inequality constraint
 n Dimension of the domain

xiii

 m Number of constraints
 N Number of ballistic arcs in the transfer being optimized
 i Index of the ith patch point between arcs
 (xi,vi) Initial state of the arc beginning at patch point i
 (x-

i,v
-
i) Terminal state of the arc ending at patch point i

 ti Coasting time of the arc ending at patch point i
 φt() System 8ow for a given state for over time t
 X Combined state of all transfer arc initial conditions and coasting times
 ε Fuel weighting constant
 RF Radius of the forbidden region
 Kk A second order cone

xi
ref

, vi
ref

,t i
ref Variable values for the reference value taken from the prior iteration

x̃ i , ṽ i , t̃ i Variations from the reference values so that xi=xi

ref + x̃ i , etc.

Φ i+1, i STM for the reference arc beginning at patch point i and ending at periapsis

Ai+1, i Top left quadrant of Φ i+1, i

Bi+1, i Top right quadrant of Φ i+1, i

C i+1, i Bottom left quadrant of Φ i+1, i

Di+1, i Bottom right quadrant of Φ i+1, i

Φ i
p STM for the reference arc beginning at patch point i and ending at periapsis

Ai

p Top left quadrant of Φ i
p

Bi

p Top right quadrant of Φ i
p

C i

p Bottom left quadrant of Φ i
p

Di

p Bottom right quadrant of Φ i
p

J̃ () Cost function of the CP in terms of variation variables

h̃j () Equality constraint of the CP in terms of variation variables

g̃k () Inequality constraint of the CP in terms of variation variables

σ i Epigraph transformation variables

 λ, μ Lagrange multipliers

Chapter 6

X̃
* Optimal solution of the CP subproblem

α Step length in direction of CP solution
δv i Initial velocity adjustment to the arc beginning at patch point i for recorrection

Chapter 7
κ(,) Discontinuity function in terms of step length and velocity correction

 Ui,Vi Open sets in the Implicit Function Theorem
γ i Function de4ning velocity corrections in terms of step length

 ci() Increase to the uncorrected cost due to the velocity correction δv i

Chapter 8
Ξ Set of points in the domain satisfying the KKT conditions of the NLP
Γ Point to set mapping
M () Feasible set map
S () Solution set map

xiv

ACKNOWLEDGMENTS

My sincerest gratitude to my advisors, Dr. Kenneth D. Mease and Dr. Benjamin Villac. To
Benjamin for eagerly taking on a new student with no engineering background, for encouraging
exploration, for his good humor, and for truly being a fount of knowledge in space8ight. To
Professor Mease for taking me on as a student on short notice and jumping in to a research project
years in development, bringing new perspectives, and encouraging leadership. I am honored to be
their student.

At UC Irvine, thank you to my committee members for their time and feedback with this
research. Thanks as well to the members of the Mechanical and Aerospace Engineering and the
Computer Science departments for their classes that aided and inspired many part of this research.
Thank you to Louise Yeager for years of always having exactly the answer I needed before I knew I
needed it.

At Jet Propulsion Laboratory, special thanks to my NSTRF mentor and Autonomous Systems
Deputy Division Manager MiMi Aung. Being at JPL was the goal of going to graduate school, and
MiMi opened every door there for me. Her efforts ensured that rather than just studying space8ight
in the abstract that I would be able to meet with mission designers and 8ight software engineers
and see projects development and missions as they happened. Special thanks as well to to Steve
Broschart for his years of input, inspiration, and support, effectively taking on yet another NSTRF
student. Thank you to Lloyd Manglapus and Kim Gostelow of the Flight Software Section (349), for
their patience and to whom all credit is given for the transition of this project from yet another
trajectory design algorithm to a program implemented on the RAD750 8ight processor. Thank you
to the Guidance, Navigation, and Control (344) and Mission Design and Navigation (392) sections
for hosting me these past few years, in particular to Jordi Casoliva, Roby Wilson, Rodney
Anderson, Jules Lee, Andrew Johnson, and Nikolas Trawny for sharing their time, insight, or
cubicle. Thanks as well to Fernando Peralta for a view into the Voyager mission, and to Lois
Berumen for joyfully bringing order to chaos.

At Goddard Space Flight Center, thank you to Dave Folta and Brent Barbee of the
Navigation and Mission Design branch for their invitation to GSFC and their enthusiastic
introduction to a very interesting application.

Thank you to the NASA Of4ce of the Chief Technologist and everyone on the NASA Space
Technology Research Fellowship team for their amazing program that provided the generous
support for this research along with the opportunity to spend each Summer at a NASA facility
(grant NNX11AM78H). Thanks to Dr. Michael Gazarik, former NASA Director of Space
Technology, for his role in initiating this program and selecting members of its inaugural class. It
truly has been an extraordinary experience.

To Dr. Navid Nakhjiri and Dr. Channing Chow, for brotherhood.

xv

CURRICULUM VITAE

Eric Trumbauer

EDUCATION

University of California, Irvine. Irvine, CA

Ph.D., Mechanical and Aerospace Engineering March 2015

• Advisors: Kenneth D. Mease (1/2014 – present), Benjamin Villac (12/2010-1/2014)

• Thesis: Rapid Onboard Trajectory Design for Autonomous Spacecraft in Multibody Systems

M.S., Mechanical and Aerospace Engineering June 2012

• Advisor: Benjamin Villac

University of California, Berkeley. Berkeley, CA

B.A., Mathematics May 2004

HONORS AND AWARDS

NASA Space Technology Research Fellowship August 2011 - Present

Honors, Department of Mathematics May 2004

Graduated with Honors in General Scholarship May 2004

ACADEMIC AND PROFESSIONAL EXPERIENCE

Jet Propulsion Laboratory. Pasadena, CA

NASA Space Technology Research Fellow July 2012- August 2014
Autonomous trajectory redesign research, Autonomous Systems Division 34 and Mission Design
and Navigation Section 392 (Mentor: MiMi Aung).

xvi

University of California, Irvine. Irvine, CA

NASA Space Technology Research Fellow August 2011-Present
Project research, Grant NNX11AM78H: Automated Trajectory Design Using Resonant Dynamics.
UCI Flight Dynamics and Control Lab (Advisors: Benjamin Villac, Kenneth Mease).

Bank of America. Tustin, CA

Business Systems Analyst, LaSalle Global Trust Services 2007-2009
Expand, modify, and maintain the RMBS external reporting system with a focus on the calculation
engine. Requirements, testing, create and modify SQL stored procedures, user acceptance testing.

Paci=c Life. Foothill Ranch, CA.

Systems Analyst, Life IT – Product Admin 2005-2007
Business, technical, and testing analysis at all stages of the Software Development Life Cycle.

PAPERS

Trumbauer, E., and Villac, B., “Heuristic Search Based Framework for Onboard Trajectory
Redesign,” AIAA Journal of Guidance, Control, and Dynamics. Vol 37.1. January 2014.
http://arc.aiaa.org/doi/abs/10.2514/1.61236

Trumbauer, E., Villac, B., Mease, K.D., “In-Flight Trajectory Redesign Using Sequential Convex
Programming,” 2014 SIAM Conference on Optimization, San Diego, CA, May 2014. [Poster
Session]

Trumbauer, E., and Villac, B., “Autonomous Trajectory Redesign for Phobos Orbital Operations,”
2014 AAS/AIAA Space8ight Mechanics Conference, Santa Fe, NM, January 2014.

Trumbauer, E., and Villac, B., “Sequential Convex Programming for Impulsive Transfer
Optimization in Multibody Systems,” 2013 AAS/AIAA Space8ight Mechanics Conference, Kauai,
HI, February 2013.

Trumbauer, E., and Villac, B., “Search and Representation Strategies for Automated Trajectory
Design,” 2012 AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, MN, August 2012.

Trumbauer, E., and Villac, B., “Expanding Transfer Representations in Symbolic Dynamics for
Automated Trajectory Design,” 2012 AAS/AIAA Space8ight Mechanics Conference, Charleston,
SC, January 2012.

Trumbauer E., Villac B., “An Analysis of Multiple Revolution Third Body Driven Plane Change
Maneuvers”, 2011 AAS/AIAA Astrodynamics Specialist Conference, Girdwood, AK, August 1-4,
2011.

xvii

ABSTRACT OF THE DISSERTATION

Rapid Onboard Trajectory Design for Autonomous Spacecraft in Multibody Systems

by

Eric Trumbauer

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2015

Professor Kenneth D. Mease, Chair

This research develops automated, on-board trajectory planning algorithms in order to

support current and new mission concepts. These include orbiter missions to Phobos or Deimos,

Outer Planet Moon orbiters, and robotic and crewed missions to small bodies. The challenges stem

from the limited on-board computing resources which restrict full trajectory optimization with

guaranteed convergence in complex dynamical environments. The approach taken consists of

leveraging pre-mission computations to create a large database of pre-computed orbits and arcs.

Such a database is used to generate a discrete representation of the dynamics in the form of a

directed graph, which acts to index these arcs. This allows the use of graph search algorithms on-

board in order to provide good approximate solutions to the path planning problem. Coupled with

robust differential correction and optimization techniques, this enables the determination of an

ef4cient path between any boundary conditions with very little time and computing effort.

Furthermore, the optimization methods developed here based on sequential convex programming

are shown to have provable convergence properties, as well as generating feasible major iterates in

case of a system interrupt – a key requirement for on-board application. The outcome of this

project is thus the development of an algorithmic framework which allows the deployment of this

approach in a variety of speci4c mission contexts. Test cases related to missions of interest to

xviii

NASA and JPL such as a Phobos orbiter and a Near Earth Asteroid interceptor are demonstrated,

including the results of an implementation on the RAD750 8ight processor. This method 4lls a gap

in the toolbox being developed to create fully autonomous space exploration systems.

xix

Chapter 1

Introduction

1.1 Motivation

Spacecraft autonomy has been recognized as a key technology needed for further progress

in space exploration. Within this broad area, automated guidance and trajectory design plays an

important role. NASA's Space Technology Roadmap section on Robotics, Tele-Robotics and

Autonomous Systems: Autonomy highlights this when noting that “onboard maneuver planning

and execution monitoring will increase the vehicle agility, enabling new mission capabilities and

reducing costs.”[NRC12] This ability will impact a wide variety of mission types, including manned

deep space exploration, robotic science missions, and planetary landers.[Cang12] In a Jet

Propulsion Laboratory survey on technologies needed for the next generation of small body and

planetary missions, it was noted that in cases of extremely perturbed gravitational environments

that course adjustments may be required on the timescale of minutes, [Ried09] which even for

nearby Mars rules out on-the-ground intervention due to the round trip communication times.

1

Even with recent advances in autonomous guidance, navigation, and control with systems like

AutoNAV and AutoGNC, [RiedAN] mission risks in these settings due to maneuver execution

errors, missed maneuvers, temporary loss of power, divergence due to system safng, change of

goals, or other off-nominal situations will require a level of replanning beyond standard control

methods. This research develops a method to enable such automated maneuver planning, in

particular the ability to perform rapid onboard trajectory redesigns in dynamically complex

environments.

Within these mission types, several specifc targets exist which would beneft from

autonomous trajectory design capabilities. For example, planetary moons of interest such as

Phobos, Deimos, Europa, and Enceladus have highly perturbed dynamics and short instability

timescales, creating a need for fast action in off nominal conditions.[Wall12, Sche01] In these

cases, the features of multibody dynamics provide both opportunities for effcient transfers as well

as risks of impact and escape. Irregularly shaped bodies such as Golevka and Itokawa represent

another class of examples, combining irregular gravity felds, short timescales, and a strong

perturbing infuence of the sun which cannot be ignored.[Vill08, Mond10] The challenges these

systems pose to unmanned autonomous spacecraft are clear. However, even in the NASA

Technology Roadmap section Human Exploration Destination Systems: Mission Operations and

Safety, keys to success include “on-board autonomous systems” and “on-board intelligent

software for situational awareness” to face communication delays or disruptions.[NRC12]

In particular these systems show there is a need for a rapid trajectory design system which

directly takes the structure of the complex multibody gravity environment into account, yet does

not use the full machinery of ground based methods. Advancing the Roadmap area of Modeling,

Simulation, Information Technology and Processing, such a system must not only include both

initial guess generation and optimization in an integrated platform, it must do it in less time and

2

with fewer resources than on-the-ground trajectory design tool. Existing onboard computing

systems such as the RAD750 are very limited in both processing power and available memory,

which combined with additional requirements of onboard systems adds strong limitations to the

types of methods that may be considered. As a result, the integration of the trajectory redesign

software with the fight computing architecture is a necessary component for implementing an

actual system, posing a challenge for algorithm development.

1.2 Problem Statement

1.2.1 Problem De�nition

This research focuses on providing a solution to the following scenario in systems with

complex dynamical environments: an off-nominal situation such as those outlined above exists

such that existing closed-loop guidance techniques are unable to provide a feasible transfer to a

given goal.

The problem to be solved then is to rapidly provide a new transfer from the current state to

the desired goal. Furthermore, the transfer design system is constrained by the limitations of fight

hardware including low processing power and available memory, and the ability to tolerate system

interrupts during long computations. Also, as to be expected of onboard computations, methods

with guaranteed convergence results are needed.

1.2.2 Assumptions

Although true onboard implementation will require system integration effort with

command, navigation, attitude control, and propulsion systems, this dissertation assumes that the

necessary system information has been made available to the transfer design system as is shown in

Figure 1.1. Thus, that a specifc target has been identifed, thrust limitations are known, and that an

accurate model and orbit determination have been provided at execution. Due to the long

3

coasting arcs between maneuvers, it is also assumed that the attitude control system has the

control authority to create any necessary orientation needed for the (possibly directionally

constrained) maneuver. Lastly, as is made clear in the title, an impulsive model of chemical

propulsion is used.

Figure 1.1: Relation of the transfer redesign tool with a satellite system interface. Errors, changes of goals,

or changes in capabilities in other satellite systems signal the need for transfer redesign.

1.3 Overview of the Proposed Solution Method

The fnal continuous transfers generated by this method are created by linking

precomputed arcs together using differential correction and then performing a rapid local

optimization. The process of initial guess generation revolves around where these arcs come from,

and how to describe, store, select, order, and assemble them. The method can be divided into two

primary sections: the offine / mission planning phases, and the onboard phases. The mission

planning steps are relatively expensive computationally and involve creating, cataloging, and

effciently storing the transfer arcs and boundary conditions, as well as describing the relationship

between the discretized dynamics and fuel estimates.

4

On the other hand, the onboard process quickly leverages the work done on the ground

and stored in memory to quickly generate a transfer using search, differential correction, and

optimization methods. The onboard and offine portions are complementary images of each other

– the pre-mission stages translate and compress the continuous system dynamics into a discrete

representation, while the onboard portion searches and selects discrete information and

reconstructs a continuous trajectory. Due to the nature of the onboard application, the local

optimization process is quite specialized as well. This includes requirements that major iterations

be feasible due to system interrupts despite nonlinear and dynamic constraints, as well as

convergence properties of the approximate subproblems as well as the iterative process as a

whole.

Figure 1.2: Flow diagram of the steps both on the ground and onboard for the transfer design algorithm.

Before describing each component individually, laying out the overall sequence and

providing keywords for each step of the proposed method is helpful to place each element in

5

context. Figure 1.2 illustrates the connections of the phases listed here.

The Of$ine / Mission Planning Process

1. STRUCTURE: Combine database of periodic orbits (the key boundary conditions),

invariant manifolds, and other effcient transfers that brute force techniques would miss

without using a computationally prohibitive resolution.

2. LABEL: Decide on a physically meaningful partition of the domain.

3. INDEX: Create a symbolic/graph representation of dynamics, adding transitions if a

linking trajectory is found among or simulations. This approximates the continuous system

in a format that discrete search algorithms can use.

The Online Process

4. TRANSLATE the boundary conditions into start and end nodes in the search graph.

5. SEARCH for the optimal path within the graph, creating an itinerary of regions.

6. SELECT appropriate arcs for each region to region transition.

7. CORRECT the arcs into continuous path.

8. OPTIMIZE the corrected transfer to reduce fuel cost.

9. REPEAT steps 5-8 to create more options for evaluation.

1.3.1 Step 1 - Of*ine: Catalogue Relevant Dynamical Features

The process begins by considering what types of trajectories to explicitly include in a

multibody trajectory design program. Their main application is in providing a set of high priority

arcs for selection as transitions between regions and as boundary conditions. First and foremost,

periodic and quasi-periodic orbits serve as likely boundary conditions for the types of transfer

problems of interest. Thus periodic orbits must be available as options when specifying initial and

fnal conditions. Other important structural elements such as libration points, invariant manifolds,

and collision trajectories play a role shaping the system dynamics. By explicitly including these

6

trajectories into the system, the goal is to avoid the combinatorial problems that arise from trying

to capture these features solely through cell mapping or mass integrations. These elements are

then supplemented by a reasonably sized grid based integration to capture a variety of simpler

transitions.

Figure 1.3: Example Halo (green), Vertical Lyapunov (blue) and Distant Retrograde Orbits (red) in the

Mars/Phobos system perturbed under the in*uence of the highly irregular gravity of Phobos.

1.3.2 Step 2 - Of*ine: Partition the Domain

This system depends on building transfers using sequences of trajectories – some but not all

consisting of elements of periodic orbits, manifolds, and other structures just mentioned. The

boundary conditions and transfer arcs must now be represented in such a way as to utilize the

speed of discrete search algorithms. This is a necessary step to ensure the right orbits and arcs are

selected and ordered in the proper sequence to solve the transfer design problem. Given that our

approach is to differentially correct and optimize a set of arcs into a continuous transfer, we

7

implicitly require that one arc begins near where another ends. As some sort of discretization of

the dynamics is needed, this naturally leads to the concept of partitioning the domain into

relatively compact regions, and a condition to discretize time. Depending on the application, this

may be done using hypercubes defned using an appropriate coordinate system whether Cartesian,

orbital elements, or as is done here:, energy, spherical coordinates for position, and fight path

angle. See Figure 1.5 for an example of the projection on to position space of a portion of such

regions.

1.3.3 Step 3 – Of*ine: Create a Discrete System Representation

With a partition chosen for the domain, the next step is to classify trajectories in relation to

the discretization – namely within which regions of the surfaces of section do each trajectory arc

start and end. Using a directed graph is an ideal way to represent which transitions are possible,

and provides the structure on which discrete search algorithms are run. A graph that represents and

approximates a continuous dynamical system is referred to as the symbolic image of the system.

In brief, the construction process begins by creating a node/vertex for every region in the

partitioned domain. A set of ballistic arcs is assembled through integrating a large grid of initial

conditions and combining these with the arcs from the database of structural elements. If an arc or

an impulse exists which begins in Region Ri and ends in Region Rj, a directed edge from Node ni to

Node nj is added. The arcs or impulses associated with each transition are then labelled with their

starting and ending region or node. Such a graph indicates whether or not the underlying system

has a natural transition between two specifed regions. This is shown conceptually in Figure 1.4. In

reality these graphs have tens to hundreds of thousands of nodes, but are quite sparse resulting in

reasonable search times and memory usage

The relationship between graph transitions and the original problem can now be defned.

Suppose a path is found in the graph which leads from the node associated with an initial region to

8

the node associated with a target region. This corresponds to a sequence of regions, each

connected to its successor via ballistic arcs or an impulse, linking the regions containing the

boundary conditions. As a result, the directed graph and arcs/impulses associated with transitions

within that graph provide the foundation for the online processes and need to be stored onboard.

This includes: (1) The directed graph, which provides a meaningful representation of the system

that can be used by a discrete search process. (2) For ballistic transitions, one or more of the arcs

that led to the creation of a directed edge in the graph must be stored and labelled as transitioning

between the regions associated with the graph nodes. These elements allow the spacecraft to

create the skeleton of a transfer quickly.

Figure 1.4: The intersection of the image of the system *ow of one region with others leads to the creation

of directed links in the graph representation.

1.3.4 Step 4 – Onboard: State Boundary Conditions as Graph Nodes

The previous steps create a discrete/symbolic representation of the dynamics and impulses.

Boundary conditions, however, are unlikely to be provided as simply a region in a computer

discretization and thus simply a node on a graph. Thus in order to provide start and goal nodes for

the search process, it is necessary to translate a variety of types of boundary conditions into

symbols. As a result of this process, states are translated into single nodes and periodic orbits are

translated into a periodic sequence of nodes within the graph. One or more search problems are

then defned, one for each possible pair of initial and target nodes.

9

1.3.5 Step 5 – Onboard: Search for the Transfer Itinerary

 By this step, a weighted directed graph is available which approximates the problem

structure, and boundary conditions have been translated into nodes on this graph. Together, a

search problem is defned. While several different search algorithms have been considered, the

selected A* heuristic search algorithm is used to fnd the optimal path within the graph for each

run of the search. It possesses provable completeness and optimality properties, and has been

observed to be suffciently fast for the application tested using simple estimates (heuristic function)

of the remaining cost based on the graph structure. The sequence of transitions in the resulting path

tells us which types of arcs and impulses are needed in what order to build the desired transfer.

1.3.6. Step 6 – Onboard: Select Arcs to Create an Initial Transfer Guess

As stated previously, a transition in the graph exists only if there is a stored coasting arc or

impulsive maneuver between the regions represented by the vertices. Thus for every transition in

the path found by the search process, we have at least one arc or impulse which links the

corresponding regions. Joining this sequence of arcs together provides a good approximation of a

transfer linking the two boundary conditions, with infeasibilities such as discontinuities limited by

the partition resolution and cost estimated by the link costs. An example of such an initial guess in

Figure 1.5, where for visual clarity regions with radii beyond those needed for this visualization are

not shown.

1.3.7 Step 7 - Onboard: Differential Correction to Establish Feasibility

The optimization is required to maintain feasible major iterates in case of a system

interrupt, and as a result a process must take place where the initial guess is differentially corrected

into a continuous, feasible, but non-optimal transfer. Due to constraint based graph pruning, some

of these constraints are already satisfed. Others however must be dealt with and so a penalty

based approach using sequential Second Order Cone Problems is used. Such a process is used to

10

transform the discontinuous arcs from the initial guess in Figure 1.5 into the feasible but un-

optimized transfer in Figure 1.6.

1.3.8 Step 8 - Onboard: Locally Optimize Transfer ΔV

Once a feasible guess has been created, it remains to rapidly optimize the transfer until the

fuel usage is within acceptable levels. The optimization process developed here synthesizes

elements of Sequential Convex Programming [Boyd08, Caso13] and the Two Level Differential

Corrector [Marc07] in order to meet the requirements of the application. It is proven that the

additional structure provided by using solutions of convex sub-problems in addition to a

recorrection process is suffcient to guarantee that successive iterates both remain feasible and

have lower cost. This is essential for an onboard process where the possibility of a system interrupt

do not allow for methods where only the fnal converged solution is guaranteed to be feasible. In

addition to this beneft, the wider set of allowable costs and constraints mean that convex

approximations within the iterative process are able to more accurately represent the impulsive

transfer problem, while themselves still able to be solved rapidly and within a calculable fnite

number of iterations using interior point methods.

1.3.9 Step 9 – Onboard Create Additional Transfers with Graph Feedback

After the correction and optimization procedures are complete, the costs may be higher

than expected or a mission constraint may not be able to be satisfed with the search itinerary. If

this is the case – or if there is simply time permitting to evaluate other potential options – it may

be benefcial to create other transfer types. After the correction and optimization procedure is

complete, the directed edge for which the true cost is the highest may either have its edge weight

adjusted, or the edge temporarily removed. Once this adjustment for costly transitions is made,

the search process can be rerun. Unless the path is still graph-optimal with a weight adjustment,

this will result in a new itinerary and a qualitatively different transfer.

11

Figure 1.5: A sequence of regions is selected by the search process, and ballistic arcs (green) and impulses

are found linking these regions, approximating a transfer between the initial condition (red, divergence

from Halo) to a stable abort orbit (blue)

Figure 1.6: The discontinuous arcs (dashed green) are corrected into a continuous, if inef�cient, transfer

(teal) between the two boundary conditions.

12

Figure 1.7: The feasible initial transfer (dashed teal) is rapidly optimized, reducing fuel while satisfying

constraints for the �nal transfer (green).

1.4 Contributions

The research contributions vary by the stages of the transfer design process. The frst stage is

the use of directed graph representations of the impulsive transfer problem. Although using the

solution of a discrete approximation as an initial guess for a continuous domain is not a new

concept, it required several insights for implementation in this setting. For example, the domain

partitioning method used has many essential properties. The resulting graph structure of energy

layers is used to create a simple but very effective heuristic function to increase search speed by an

order of magnitude or more. The number of dimensions is reduced, leading to smaller graphs, and

the velocity range defnitions lead to simple calculations of impulse cost estimates. Another

contribution during the graph construction is the combination of precomputed periodic orbits and

other structural elements along with a mass integration to model the system fow capture both the

precise and mundane aspects of the dynamics without requiring a prohibitively fne division of the

domain.

During the onboard process, contributions include an analysis of the directed graph

structure that is used to generate an effective and admissible heuristic via the process of rule

13

relaxation. The results of the path fnding algorithm are then related back to elements saved during

the discretization process in order to assemble an initial guess. Major contributions in this research

involve the synthesis of elements of existing impulsive transfer optimization methods and a full

analysis of the feasibility and convergence properties of the resulting iterative method. There are

several signifcant proofs on this theme. The frst is that this iterative approach generates feasible

major iterates for both nonlinear equality and inequality constraints well as being a global descent

method, as required in case of system interrupts. While the persistence of Slater's condition for the

convex subproblems throughout an iterative process is assumed by many in the feld, due to its

importance in proving this result – as well as for the effcacy of interior point solvers – an entire

appendix is dedicated to showing this fact for this application. Also, while existing differential

correction procedures assume the invertibility of certain State Transition Matrix submatrices, this

assumption is not valid in general and modifcations are discussed in case this submatrix is ill-

conditioned or even truly singular. Next it is shown that the conditions of Zangwill's Convergence

Theorem are satisfed so that the optimization procedure is not just a descent method but will

converge to points satisfying the Karush-Kuhn-Tucker conditions of the original problem. Neither

the minimum fuel problem nor its convex approximation are strictly convex, and so it cannot be

assumed that each subproblem's solution set consists of a single point. As a result, rather than

eliding over this fact, this convergence result is shown using the apparatus of point-to-set

mappings.

There are also contributions within the application of this method to two very different

cases: onboard orbital operations around Phobos in the multibody and highly irregular dynamics

of that moon, and a Near Earth Asteroid interceptor concept initial investigation. The case of

Phobos demonstrates the ability to design transfers quickly in a complex environment. For the

NEA application, the importance is in showing how the system developed as an onboard replanner

14

with specifed target states can be signifcantly but quickly modifed to design a large set of fyby

transfers involving both “low energy” libration point orbit dynamics and high energy target bodies.

Lastly, aside from developing an integrated transfer design process around several of the

demands of onboard application in general, an additional contribution is made in describing the

algorithmic adaptations made to run this method on a current RAD750 based fight software

platform.

1.5 Outline of the Dissertation

The dissertation is divided into several sections based on major themes of the trajectory

design process. After this introduction follows Section II: Initial Guesses Generation for Impulsive

Transfers in Multibody Systems. Within it, Chapter 2 provides background on existing methods

both classical and more recent that have played a role in mission design, as well as describing

their limitations for use in an autonomous spacecraft trajectory design tool. Chapter 3 lays the

foundation for the discretized system approximation that is developed in this research for use by

rapid heuristic search algorithms. Thus it describes the on-the-ground work done to partition the

state space, construction of a weighted directed graph to represent the system dynamics, and a

database of ballistic arcs indexed by the graph transitions. Chapter 4 defnes the initial guess

generation process where spacecraft boundary conditions are translated into graph nodes, heuristic

search algorithms quickly fnd a path within the graph, and how this itinerary is used to assemble

the coasting arcs and impulses that constitute the initial approximation of the desired transfer.

Section III: Local Optimization of Impulsive Transfers describes the process by which these

initial guesses are made into feasible, fuel effcient transfers. Before describing the types of iterative

processes that are required for such complex systems, Chapter 5 described convex optimization

problems and important subcategories subcategories including Second Order Cone Problems.

15

Progress in solution algorithms for these problems has lead to methods with provable convergence,

a deterministic limit on iterations, and short calculation times. Additionally, the wider set of

allowable constraints than quadratic problems will be shown to more naturally capture the cost

and constraints of the minimum fuel problem, but play a key theoretical role. The impulsive

transfer NLP is stated and after a sequence of steps it is shown how convex approximations may be

derived for use in an iterative solution method. Chapter 6 describes how the existing approaches of

Sequential Convex Programming and the Two Level Differential Corrector used in the spacefight

community may be synthesized into a single iterative solution method. Chapter 7 justifes the

assumptions made in the iterative process design and proves that not only is the process a descent

method, but that when starting from a feasible guess that the major iterates of the optimization

process will themselves be feasible. This is a key requirement in case of a system interrupt during

optimization. Chapter 8 extends this result and shows that not only is the procedure a descent

method but that it satisfes Zangwill's Convergence Theorem. After the problem constraints have

been discussed throughout this section, Chapter 9 describes a related process by which the initial

transfer approximation provided by the heuristic search process is transformed into an initial guess

for the optimization process that is feasible for the given set of constraints.

Section IV: Applications discusses two quite different uses for the transfer design method

developed in the prior sections. Chapter 10 focuses on the role such a tool may play in Phobos

orbital operations. After describing the mission scenarios and needs relative to a Jet Propulsion

Laboratory operations plan, the chapter shows how the general method is applied to the

Mars/Phobos system and presents results that demonstrate the ability to quickly generate effcient

transfers in this sensitive gravitational environment. Chapter 11 describes the transition of the

Phobos application from standard development platforms to implementation on a RAD750 fight

hardware testbed so that the algorithm can be tested in a more onboard-like environment. The

16

chapter focuses less on the porting process and more on the ways in which the goal of onboard

implementation has shaped the algorithm design from the beginning, and those challenges which

necessitated major changes in order to run within the fight software environment. Chapter 12

turns to a different application, that of generating both fyby and rendezvous transfers in the

Sun/Earth/Moon system between libration point orbits to different Near-Earth Asteroids as part of

an initial feasibility investigation at Goddard Space Flight Center.

After the applications follows the conclusion along with appendices describing constraint

qualifcations needed for interior point solvers, additional constraints omitted from the main text,

and dynamical models used throughout the dissertation.

17

Chapter 2

Standard Methods for Initial Guess Generation

2.1 Introduction

Henri Poincaré proved a central fact of transfer design for satellites under the infuence of

more than a single massive body: that there is only a single integral of motion, and so no general

analytical solution method exists. When forces due to additional massive bodies, irregular gravity

felds, solar radiation pressure, atmospheric drag, fnite thrust, and others are included, hopes of

fnding an effcient transfer in such a model in a single step are abandoned. As a result, transfers

are designed in relatively simple models and then differentially corrected using shooting type

methods or otherwise locally optimized in the new dynamics using iterative numerical methods.

The choice of model and design strategy has evolved both with time and priorities. Earlier

methods such as patched conics switch between two body models and rely on high velocities for a

good approximation. Three-body and patched three-body “low energy” transfers came later and

use the dynamical structure of low relative velocity motion to fnd very effcient transfers.

18

However, unlike in the two-body problem, periodic orbits only sparsely populate the domain, as

do the invariant manifolds that are a key part of these effcient design strategies. This may be

acceptable for mission design, but it is not in off-nominal situations where a spacecraft may no

longer be able to directly utilize these dynamical structures.

Chapters 3 and 4 will discuss an approach to take advantage of these features when

possible, but be able to generate an initial guess without them if need be. This chapter will

summarize some of the existing methods, highlighting those elements that may still be used in an

onboard redesign scenario in a complex gravitational environment, and those shortcomings that

prevent their use in the application. It begins, however, by introducing the impulsive thrust model

for satellites using chemical propulsion.

2.2 The Impulsive Assumption

For chemical propulsion systems that produce large amounts of thrust over short periods, it

is commonly assumed for simplicity that during the duration of the maneuver, the change to the

state due to the maneuver is much greater than that due to other forces over the short time period.

In such cases, maneuvers may be modeled as instantaneous changes to the spacecraft velocity,

referred to as a ΔV. An impulsive transfer is then an alternating sequence of ΔVs and unpowered

fight, moving the spacecraft from one boundary condition to another while satisfying the system

constraints. This is shown conceptually in Figure 2.1. This is in contrast with “low thrust”

propulsion systems such as ionic propulsion or solar sails, which require very different, optimal

control based solution methods.

 The impulsive assumption not only simplifes modeling the dynamics, it also allows us to

convert the amount of fuel used into a function of the ΔVs themselves. Assume a spacecraft has an

initial mass at the time of the transfer m0. Minimizing the fuel used is equivalent to maximizing the

19

fnal mass mf. In order to get to the desired form of the Rocket Equation, this is frst transformed to

the equivalent form of minimizing m0/mf, and since the log function is monotonic, this then is

equivalent to minimizing log(m0/mf). Under this impulsive assumption, this is related to the sum of

the ΔV magnitudes by the Rocket Equation: [Curt13]

log
mo

mf

=
1

ce

∑
i
∥ΔVi∥

where ce is the effective exhaust velocity of the engine. Since ce is assumed to be constant, a

minimum fuel impulsive transfer problem is seen to be equivalent to minimizing the cost function

J=∑∥ΔV∥ for a feasible transfer. This problem is precisely stated as a NLP in Chapter 5.5, but

for now it is these general concepts that are needed to describe the structure and goals of the

transfer design methods that follow. Even in cases where there is a different objective, the total

∑∥ΔV∥ gives a spacecraft independent measure of the fuel used by an impulsive transfer.

Figure 2.1: Diagram of an Impulsive Transfer

2.3 Two-Body Model Based Methods

Classical orbital transfers and perturbation theory are based on the essentially Keplerian

trajectory structure that arises in regions where the gravity of a single body dominates other forces

present. When these spheres of infuence are large compared to the body radius and relative

velocities are high, patching two body model based trajectories together create good initial

20

guesses. As we will see these assumptions are not valid for many scenarios of interest.

2.3.1 Transfers in the Restricted Two-Body Problem

The restricted two-body problem assumes a massless spacecraft moves under the infuence

of a single massive body treated as a point mass. Since the time of Kepler it has been known that

the resulting motion is defned by the periodic motion of ellipses for non-escaping trajectories, and

later hyperbolae for most escaping trajectories, and parabolae at the transition between the two.

Under this assumption there are fve integrals of motion that defne each periodic orbit, known as

orbital elements. In classical maneuver design, transfers usually are expressed as transitions

between orbits rather than between states since if time is free then conditions on the orbits will

naturally coast to any boundary states of interest. Such transfers include the Hohmann transfer

between concentric circular orbits, escape maneuvers, in-plane rotations, single maneuvers and

bi-elliptic plane changes, among others. [Vall01, Curt13] Depending on the magnitude of the

quantity to be desired, it is also known which variant – such as single maneuver vs. bi-elliptic

plane changes – is the most effcient. On the other hand, should a fxed time transfer between two

states be needed, Lambert's Method provides transfer orbits linking the positions of the boundary

states, from which the most effcient may be chosen for the given velocities. [Curt13]

2.3.2 Multibody Transfers Using Patched Conics

Patched conics describe a transfer design approach where the domain is divided into

spheres of infuence around each massive body inside which only the gravity of that body is

considered. Within each portion of the domain, the well established two-body problem transfers

may be used and there are standard processes to patch the two. [Curt13] For example, consider a

transfer from a low Earth orbit to a similar orbit at the Moon. The resulting transfer switches from

an ellipse in the Earth centered two-body problem to a hyperbola in the Moon centered two-body

problem (since the spacecraft is below the escape velocity of the Earth but above that of the Moon)

21

at the boundary of the sphere of infuence, with the hyperbola intersecting the desired fnal orbit so

that an insertion maneuver may be made. This initial guess is then corrected to include the more

complete gravity model and additional perturbations such as Solar Radiation Pressure. [Wils98]

2.3.3 Limitations for this Application

The radius of the sphere of infuence of of a smaller body orbiting a larger body – the

region within which a two-body approximation is valid – is given by a (m/M)2/5
where here a is

the semi-major axis of the orbit, m is the small of the smaller body and M is the mass of the larger

body. [Curt13] Note that for many large bodies in the solar system this value is quite large and so

orbiters of these bodies can use two-body problem approximations as good initial guesses for more

robust models. For example, using the above formula shows that the radius of the sphere of

infuence of the Moon is 38 times larger than the average radius of the Moon, 45 times for

Mercury, and 170 times for Mars. For orbiters in such cases, the gravity of other bodies and

additional forces may be treated as perturbations using the Lagrange Planetary Equations of the

Gauss Variational Equations. [Vall01] On the other hand, for targets of future interest in the outer

solar system, we have spheres of infuence 6.23 times the average radius of Europa, 4.5 times for

Io, and 1.93 times for Enceladus. For the moons of Mars the situation is even worse with a sphere

of infuence radius 8.22km with a maximum radius of 7.8km for Deimos, and for Phobos the

sphere of infuence is inside of the moon with a radius of 7.24km for the sphere of infuence but an

average radius of 11.2667km for Phobos itself. For these moons with both small spheres of

infuence combined with the low relative velocities of orbiters, the patched two-body

approximation is not well suited even as a method to generate a coarse initial guess.

Another issue is that patched conic methods cannot capture libration point dynamics,

regardless of the system. So, even for bodies with relatively large spheres of infuence such as the

Earth and the Moon, for missions such as ISEE-3, Genesis, Artemis, and the James Webb Space

22

Telescope, this approach could not be used for either mission design or guidance purposes. [Lo01]

In particular, for the two rather different applications of a Phobos orbiter redesign system

and a Libration orbit based NEA interceptor discussed in Chapters 10 and 12, patched conics

cannot be used for either onboard or initial design purposes for these cases.

2.4 Three-Body Model Based Methods

For cases where the infuence of multiple bodies cannot be ignored or treated as small

perturbations, it may be necessary to move to three-body (or more) body problem models. This is

also the case when features like libration point orbits and their manifolds are needed to enable a

wider set of mission scenarios. While in many cases more effcient transfers may be found with

multi-body based techniques, it comes at the expense simplicity, speed, analytical methods, and

generality of the methods across the problem domain.

2.4.1 Transfers in the Restricted Three-Body Problem

The restricted three-body problem considers the motion of a massless spacecraft (or low

enough in mass that the motion of the massive bodies being orbited are not affected) under the

gravitational infuence of two other bodies. Since the spacecraft does not affect their orbits and

other celestial bodies are not considered, the two bodies move in elliptical orbits around their

barycenter. If these orbits are circular, this approximation is the Circular Restricted Three-body

Problem (CR3BP), otherwise the result is the Elliptical Restricted Three-body Problem (ER3BP). In

the rotating frame with angular frequency equal to that of the bodies, the equations of the CR3BP

become time invariant. Please see Appendix C for the equations of motion.

Additionally, even though the energy (or the equivalent Jacobi constant) is the only integral

of motion for the system, a rich structure emerges in the rotating frame dynamics. Lagrange

showed the existence of fve equilibrium points in the CR3BP, and later it was shown that various

23

periodic orbit families exist around these so called libration points. We focus now on the unstable

orbit families near the libration points closest to the smaller massive body – such as a moon

orbiting a planet or an asteroid orbiting the Sun. Recall that the patched conic methods were not

well suited to cases of low relative velocity compared to the smaller body. In these so called “low

energy” cases, it was shown that for coplanar motion that the stable and unstable invariant

manifolds of planar libration point orbits act as gateways between the energy barriers separating

the regions near the larger body, near the smaller body, and exterior to both. [Conl68, McGe69]

Partial generalizations of this result to the spatial case exist and have been suffcient in practice.

[Koon08, Lo01, Davi12]

As a result, even though numerical methods must be used in the CR3BP, the search space

may be signifcantly reduced by utilizing these structures. The invariant manifolds are propagated

(by applying a small perturbation to a state on a periodic orbit in the direction of the stable and

unstable eigenvectors of the monodromy matrix) and their intersections analyzed. For example, by

fnding an intersection in position between the unstable manifold of an initial orbit and a stable

manifold of a target orbit, an effcient transfer between the two may be found. In some cases these

manifolds intersection in full state so that a “free” transfer exists between them: a heteroclinic

connection. In other cases, by either targeting or avoiding the intersections of the interiors of these

manifolds, different regional transit or ballistic capture trajectories may be found. [Davi12,

Koon08] An example of this is shown in Figure 2.2 in the Jupiter/Sun system for a surface of

section defned by a specifed x coordinate in the planar problem. Figure 2.2a shows the

intersection of the unstable manifold of an L2 planar libration point orbit with the section for up to

a few revolutions. Figure 2.2b shows the intersections of the stable manifolds of a L1 planar

libration point orbit of the same energy with the same surface of section. Figure 2.2c shows the

interior of the intersections of these sets, which due to the manifold properties are exactly those

24

trajectories that transit from the region exterior to Jupiter's orbit (labeled X) to the region inside of

Jupiter’s orbit (labeled S for Sun), making fewer than three revolutions around Jupiter. This set is

parameterized by one divided by the transfer time and represents a signifcant reduction of the

search space. Points on the boundaries either asymptotically approach or diverge from one or both

of the orbits. However by selecting the representation function maximum, the minimum time free

transit at this energy is found and is shown in Figure 2.2d.

Figure 2.2: a) L2 libration orbit unstable manifold intersections. b) L1 libration orbit stable manifold

intersection. c) Intersection of these sets, parameterized by 1 / transit time. d) Fastest free transit.

25

Methods to generate heteroclinic connections between orbits or specify transit properties

via manifold intersection are well developed and the process somewhat automated. They do not

however specify more local characteristics such as altitude at closest approach, inclination, or

stability. Dynamical maps involve a mass integration of initial conditions in order to identify sets of

trajectories with desirable properties such as utilizing the third body infuence to create effcient

plane change maneuvers, [Trum11] switching between prograde and retrograde motion,

[Trum12a] or stable transfers in case of missed maneuvers, [Nakh13] among others. An example of

a dynamical map is shown in Figure 2.3 for changes to inclination for a polar orbit in the

Europa/Jupiter system. It shows the change in inclination towards either prograde or retrograde

motion at the next closest approach after an apoapsis raising maneuver, with black lines

representing trajectories with the closest approach distance unchanged. Points on these lines may

be used to construct two maneuver, third-body driven plane change maneuvers with the resulting

change specifed by the map values. Progress is being made in identifying target states with

desirable properties by speeding up the map generation process, [Suro15, Nakh13] but this is

oriented towards the related but different goal of identifying a target area for the case of a single

coasting arc rather than solving a two point boundary value problem with multiple maneuvers.

Other classes of methods that discretize the domain in one way or another and analyze

connections between these regions are discussed in Chapter 3. One notable search based method

involves using a Greedy Search algorithm to fnd a sequence of orbits that overlap in position

taking the spacecraft from orbit to orbit using impulsive maneuvers. [Tsir13]

2.4.2 Limitations for this Application

The various methods described above are very useful for mission design, but not

necessarily for onboard trajectory redesign to a designated target orbit or state. This is due to

several reasons. The frst of these is that the application is simply different in that no target has

26

been specifed but rather a trajectory is sought that meets some other set of goals. [Suro15,

Conw07] In the case of map based methods, aside from the time and memory limitations (see

Chapter 11) of onboard computing platforms relative to the time and memory that most map

generation and use requires, the author is not aware of a well defned automated method to use

the multiple maps that would be required for multiple impulse transfers.

Figure 2.3: Dynamical map showing third body driven changes to inclination after an apoapsis raising

maneuver for a polar orbit.

The largest issue with the methods involving linking orbits or manifolds is that while these

approaches are suitable for mission design, they are problematic for off-nominal conditions. In

short, if a spacecraft is no longer on a periodic orbit or invariant manifold that can be used to

reach the target – assuming a situation exists as described in the introduction where redesign is

needed rather than station-keeping for some reference – then these methods may be ill equipped.

Alternately, the target may not be on one of these structures as was the case for some of the

27

asteroids to be intercepted in Chapter 12. Even if it is desired to use these structures for most of the

transfer, a targeting problem from the off-nominal state to the structure would still need to be

solved.

Returning to the restrictions of fight systems, it is also the case that while adaptations to

these types of methods may prove suitable in the future or even currently on current desktop

platforms, there has been little progress on demonstrating these newer types of automated design

methods on fight hardware and software.

2.5 Summary

 Impulsive transfers in multibody systems include long coasting arcs and hence accurate

approximations of the dominant forces of the dynamics. In many systems of interest, two-body

problem based approximations are insuffcient to capture such forces and utilize the structures

present in three or more body systems. However, standard methods used to generate initial guesses

for transfer in multibody systems have several shortcomings. The popular invariant manifold based

methods do not provide suffcient coverage of the entire domain, particularly for off-nominal

conditions. Dynamical map based methods provide information for a wide set of conditions, but in

addition to being costly to compute there is no systematic method to process and join these maps

for transfers with maneuvers between the boundary conditions. Even more detailed methods for

four or more bodies – for example by patching three-body models or calculating large Poincaré

sections to utilize resonant kicks from a fourth body – inherit these issues as well aside from

introducing their own complications for an automated system.

28

Chapter 3

Directed Graph Approximation of the Impulsive

Transfer Problem

3.1 Introduction

Within astrodynamics, the two point boundary value problem has no analytic solution for

any system more complex than the Two Body Problem. Moreover, while some analytic

approximations of the coasting dynamics do exist for limited certain cases [Rich80, Hira06] – and

of course a variety of polynomial approximations can be derived for most dynamical systems over

short timesteps – these do not provide suffcient state space coverage or time span. On the other

hand, comprehensive exploration of the continuous domain using numerical integration is not

feasible onboard given the time and computation limitations of spacecraft.

In such situations it is common to turn to a discrete approximation of the system in order to

provide a high level description of a transfer. This is because graph and tree search algorithms are

29

quite fast and have well understood time and memory complexity. The search method and use of

search results to construct a transfer will be discussed in the next chapter. This chapter will focus

instead on the creation of the discrete approximation of the problem on which the search

algorithm is run. After discussing approaches used in similar application, Periapsis Poincaré

sections are introduced as ideal domains for dividing the domain into regions. Construction of a

directed graph representing the impulsive transfer problem is then described, combining the

coasting dynamics and timestep defned by the Poincaré map with impulsive maneuvers. Finally,

the resulting structure that infuences search times is discussed, leading into the search methods

themselves described in the next chapter.

3.2 Related Work

 Several different approaches have made steps towards the goal of automated trajectory

design using discrete representations and have created a foundation for our design. The structure

centered approach of Koon, Lo, Marsden, and Ross [Koon08] started the the use of symbolic

dynamics to fnd allowable itineraries within a class of low energy, resonance crossing trajectories.

This itinerary information was then used to fnd regions of phase space containing the desired

trajectories through a related sequence of intersections defned by invariant manifolds associated

with libration point orbits. In that case, larger scale features of the CR3BP were of interest and the

regions specifed consisted of either the entire region near the primary mass, the region near the

secondary mass, or the exterior region. What is more diffcult to specify without a large amount of

user intervention with this symbolic approach are local properties such as radius of closest

approach, inclination, direction of motion, etc. As these quantities are necessary elements of

mission requirements at the target body, a system is needed which is as adept at approaching a

Lyapunov orbit as it is at simply lowering the satellite altitude.

30

Another class of method are “cell based” decompositions of the domain. In addition to

earlier work introducing this concept to the spacefight community, [Dell06] Dellnitz, et al. used

an adaptive cell partition based discretization method to verify transport phenomena. [Dell05] This

showed the effect that dynamically important or sensitive areas have on the choice of

discretization. Though these methods can address more general constraints, there are limitations to

implementing them onboard a spacecraft. The focus on capturing sensitive, long term transport

dynamical features implicitly through smaller and smaller refnements led to a discretized system

too large for use on a spacecraft, with thousands to tens of thousands of cells for the planar

problem with two fewer dimensions. Other partition based method in different domains include

triangulation based motion planning for ground robots, [Lava06] and hexagonal decomposition of

the sphere of satellite pointing directions. [Kjel12] In these cases, the underlying connection

structure is relatively simple since regions only connect with other adjacent regions, and any errors

arising may be easily corrected for by the large control authority of a ground or air vehicle. These

two characteristics certainly do necessarily not hold for an orbiter coasting with any duration.

Concurrent with this research, a graph based mission design approach has been developed

involving transfers constructed by linking elements within a large set of periodic orbits. [Tsir12] In

that approach, the graph is not an approximation of the dynamics in general, but rather each node

consists of one of the available orbits and a connection exists if there is a low cost transition

between orbits. This allows for the ability to create desirable “orbit hopping” type transfers as long

as the boundary conditions both are periodic orbits in the database, along with the connections

between them. While quite useful for mission design in some cases, the orbit-to-orbit restriction,

the amount of orbits then required to cover general transfers, and the use of non-heuristic search

are likely not intended for the onboard redesign problem described in this paper and earlier work.

[Trum12b] Additionally, for cases such as Phobos and Deimos where the massive bodies extend

31

almost to the libration points, most orbit families will be impacting, restricting the use of such a

method.

3.3 Partitioning the Domain

The trajectory design method developed here depends on building transfers using

sequences of trajectories – some but not all consisting of elements of periodic orbits, manifolds,

and other structures just mentioned. The boundary conditions and transfer arcs must now be

represented in such a way as to utilize the speed of discrete search algorithms. This is a necessary

step to ensure the right orbits and arcs are selected and ordered in the proper sequence to solve

the transfer design problem. Given that our approach is to differentially correct a set of arcs into a

continuous transfer, we implicitly require that one arc begins near where another ends. As some

sort of discretization of the dynamics is needed, this naturally leads to the concept of partitioning

the domain into relatively compact regions, and a condition to discretize time so that the concept

of beginning and end have a meaning.

The frst step in discretizing the problem is indeed to discretize time. As closest approaches

are often used in expressing many mission requirements – and since there is previous analysis

done on the subject to verify results [Vill09, Davi12] – our time step for each trajectory in the

example model is the time from periapsis to periapsis. This creates a well defned surface of

section, reduces the dimension by one, and allows the use of periapsis Poincaré maps to represent

and visualize the dynamics. Additionally, this forces the operational beneft of forcing coasting

phases between impulses. In exchange for these benefts, true optimality is lost even though

several important maneuver types are optimal at apsis conditions. Different time steps will be

considered in future research to reduce this liability, but it should be understood that future

mentions of optimums will refer to optimality within the system constraints.

32

3.3.1 Periapsis Poincaré Maps

A Poincaré map is a method to associate a discrete time system to a continuous dynamical

system. This is done by choosing a two surfaces of section and noting the mapping of points from

one surface to to the other after evolving under the underlying continuous dynamics. It is often that

a single surface is chosen so that a return mapping is created. There are many options for selecting

such surfaces, such as the popular choice of x=1−μ , y>0 for analyzing homoclinic and

heteroclinic connections of libration point orbits. [Koon08] For this work, the Periapsis Poincaré

map will be used. This map is created by analyzing trajectories as they make their closest approach

to the moon or asteroid being orbited. In the Circular Restricted Three-Body Problem where the

body being orbited is centered at (1−μ ,0,0) , if r 2=∥(x , y , z)−(1−μ ,0,0)∥ then the periapsis

condition may be expressed as ṙ 2=0 , r̈2>0.

The work of [Vill09] introduced this concept and showed that the conditions for a proper

surface of section are indeed satisfed, and that various alternatives such as apoapsis (a relative

maximum of the distance) to apoapsis, or apoapsis to periapsis, etc. also create valid surfaces of

section. The Periapsis Poincaré map has benefts over these other options. Primarily, this is due to

the fact that mission requirements are generally not expressed relative to the state on a half

hyperplane such as x=1−μ , y>0. In comparison, many requirements do relate to states at

fybys or viewing requirements at closest approach. Therefore having arcs and impulses tied to

closest approach more closely aligns with the boundary conditions that will be provided.

Use of a Poincaré map in the context of this project provides a discrete time step that is tied

to the system dynamics rather than a constant step for every initial condition. Additionally, it serves

to reduce the dimension of a discretization by one dimension. In the case where each Poincaré

map is associated with a constant energy as it is here, the number of dimensions needed to specify

the state is reduced by a total of two. The remaining coordinates used in this application are

33

described further in the next section.

3.3.2 Coordinate Partition

Once a surface of section is defned, the next step of the approach is to partition the

Poincaré section into a fnite set of regions, and then to describe transitions between these regions.

A simple way of doing this involves dividing the domain into a grid of rectangles, cubes, or

hypercubes in phase space due to ease of defning each set, as was pursued in cell mapping

approaches. [Dell05] In robotic path planning, triangulation is a popular choice. [LaVa06]. In our

setting, squares and triangles are not 'natural' shapes either for refecting the dynamics or

describing boundary conditions. A division based on orbital elements might be a better choice;

approximate radius, argument of periapsis, longitude, and energy are much more natural for

defning orbits near the secondary body. Divisions along values of these natural properties will not

lead to cubical regions; including radius leads to shells around the body being part of the region

boundaries, for example. However, such an approach is more a generalization of a cellular

approach rather than standing in opposition. Suppose an alternative set of parameters such as

spherical coordinates or orbital elements is used to defne orbit properties we desire to use to

partition the domain. Assuming this set of “coordinates” is able to completely describe the state,

there exists what is essentially a change of coordinates:

ϕ : [a1 , b1]×[a2 , b2]×... [an ,bn]⊂ℝ
n
→Ω⊂ℝ

n

ϕ :(q1 , ... , qn)→(x ,y , z , ẋ , ẏ , ż)

By considering the image of a small hypercube in the space of parameters under this

function, it is seen that this function warps such a cube into a connected set bounded by some

parameter values. In the examples presented in this paper, spherical coordinates are used to defne

position, and the CR3BP energy E (such that J=-2E is the Jacobi constant) is used to defne the

velocity magnitude. The velocity direction is determined by the alternate form of the apsis

34

condition that 〈 r⃗ 2 ,v⃗ 〉=0 and by the angle α of the velocity in the plane normal to the position

vector, taken relative to the xy-plane. This is shown in Figure 3.1. Thus for each energy level J, cells

defned by ranges of r, θ, φ, and α values defne the partition used to divide the periapsis Poincaré

section within the domain near the orbited body, defned by the radius of the Hill's Sphere or

otherwise. Nonuniform interval values may be chosen to have smaller, more precisely defned

regions near areas of interest. This includes altitudes corresponding to mapping orbits, or apses of

orbit families such as libration point orbits.

Figure 3.1: De)ning a region within the Periapsis Poincaré section using spherical coordinates for position

and velocity angle.

The region size within the partition depends on external factors to a large extent. Smaller

regions lead to a larger graph, taking both more time and memory, both of which may be limited

by spacecraft computer constraints. On the other hand, as was shown by the Weak Shadowing

Theorem, smaller regions lead to a decrease in the discontinuities that the differential correction

process must fx. The development of a strong correction and optimization process has facilitated

the creation of larger and larger regions.

35

3.4 Directed Graph Construction

With a partition chosen for the domain, the next step is to classify trajectories in relation to

the discretization – namely within which regions of the surfaces of section do each trajectory arc

start and end. In the present case, this is the location of a trajectory at each periapsis. Using a

directed graph is an ideal way to represent which transitions are possible without focusing on

excessive point-to-point details. Not only does this record this information, it is also the structure

over which discrete search algorithms run. A graph that represents and approximates a continuous

dynamical system is referred to as the symbolic image of the system.[Osip06]

3.4.1 The Symbolic Image of Osipenko

After briefy giving an overview of the process to create a directed graph approximation of

the dynamics in this opening paragraph, the formalism of Osipenko [Osip06] will be used to

rigorously describe the process. The frst step is to partition of the Poincaré map as described in the

last section. A list of these regions is created so that a graph node is associated with each region of

the partition. A large set of initial conditions spread throughout the domain is then integrated to

sample the system fow, making sure multiple trajectories per region are integrated. If an arc from

this set of conditions, the database of key orbits, or an impulse exists which begins in a region Ri

and ends in a region Rj, a directed edge from Node ni to Node nj is added. This is shown

conceptually in Figure 3.2. The arcs or impulses associated with each transition are then labelled

with their starting and ending region or node. As will be discussed later, the link weight can

correspond to fuel cost for an impulse, or some estimate of control cost, uncertainty, or time of

fight for ballistic connections. Such a graph, called a symbolic image, then approximates the

system of interest for both coasting fight and impulsive maneuvers.

 In the formalism of Osipenko [Osip06], this requires that for a compact domain Ω⊂ℝ
m

we have a fnite covering of Ω by closed sets C={R1 ,R2 , .. . ,Rmax}. We have this in our choice of

36

closed domain bounded between libration points – excluding the secondary body interior – and

the partition chosen. For each region Ri consider its image f(Ri) where here f is the function taking a

point to the intersection of its trajectory with the surface of section. In this case, f is the Poincaré

map taking an initial state to its next periapsis. Let s(i)={ j :R j∩f (Ri)≠Ø} be the set of labels or

symbols associated with regions intersecting f(Ri). These images are approximated by integrating a

fne grid of initial conditions and by including orbits, manifolds, etc. in dynamically sensitive areas

that a grid of points may miss. By taking this combined approach, an unmanageable number of

integrations may be avoided.

Let G be a graph whose nodes correspond to the regions of the partition. Two vertices i and

j are connected by a directed edge if and only if j∈s(i) , though only one edge is added

regardless of the number or measure of points in the intersection. This is illustrated in Figure 3.2.

Osipenko calls a graph created in such a way the symbolic image of f with respect to the covering

C. Thus if a link exists in G, there exists at least one ballistic arc in our collection which joins the

two regions.

Figure 3.2: The intersection of the image of one region with others leads to the creation of directed arrows

in the graph representation.

In this context, a path is a sequence of nodes {zk} for which zk+1∈s(zk). An ε-orbit is a

sequence of points xk∈Ω⊂ℝ
M

,k∈ℕ that, for a given ε>0, satisfes ∣f (xk)−xk+1∣<ϵ for all k.

37

One of the results of the Weak Shadowing Theorem [Osip06] states that for a path {zk} on a

symbolic image G, then for all ε>d where d is the maximum diameter of the sets in the partition,

there exists a sequence of points {xk : xk∈M (zk)} such that {xk} is an ε-orbit in the original

domain. In other words, for any path there is an ε-orbit with the largest discontinuity bounded

from above by the maximum cell diameter.

This formalism supports the fact that by creating a graphical representation of the dynamics

using transition maps and the region-labeled database trajectories, a ballistic transition arc will

exist for each graph link. Furthermore, for any path on the graph generated by a search process,

there will exist a sequence of arcs starting at xk and ending at f(xk) with gaps between the endpoints

of each arc no more than the size of the region they are meeting in, and no more than the

maximum d. This confrms the physical intuition of the construction method, and implies the

ability to construct a complete transfer approximated by the arcs. The gap between endpoints is

precisely why differential correction is needed for any set of arcs selected via graph search.

The relationship between a path in such a graph and a transfer in the original problem can

now be defned. Suppose a path is found in the graph which leads from the node associated with

an initial region to the node associated with a target region. This corresponds to a sequence of

regions, each connected to its successor via ballistic arcs or an impulse, linking the regions

containing the boundary conditions. As a result, the directed graph and arcs/impulses associated

with transitions within that graph provide the foundation for the online processes and need to be

stored onboard. This includes: (1) The symbolic image, which provides a meaningful representation

of the system that can be used by a discrete search process. (2) For ballistic transitions, one or

more of the arcs that led to the creation of a directed edge in the graph must be stored and

labelled as transitioning between the regions associated with the graph nodes. These elements

allow the spacecraft to create the skeleton of a transfer quickly.

38

3.4.2 Additional Structural Elements

The process begins by considering what types of key trajectories are necessary to explicitly

include in a multibody trajectory design program aside from a general sampling of arcs in the

domain. The role of such trajectories is to provide a set of high priority arcs for selection as

transitions between regions and as boundary conditions. Of primary importance are periodic

orbits, which play multiple roles within the proposed method. First and foremost, periodic and

quasi-periodic orbits serve as the most likely boundary conditions for the types of transfer

problems of interest. Thus periodic orbits must be available as options when specifying initial and

fnal conditions. The specifc orbits of interest depend on the application, and with specifc

examples provides in Chapter 10.3.1. Aside from their use as boundary conditions, periodic orbits

and related features act as gateways for effcient transport across resonances [Koon08, Dell05] and

have been effectively used in other correction based transfer methods. [Sukh04]

Figure 3.3: Example periodic orbit families that should be explicitly included in the list of arcs used in

graph creation and available later to the arc selection process.

39

Other important structural elements such as libration points, invariant manifolds, and

collision trajectories play a role shaping the system dynamics. By explicitly including these

trajectories into the system, the goal is to avoid the combinatorial problems that arise from trying

to capture these features solely through cell mapping. Orbits may either be obtained by using

numerical continuation such as the tool AUTO, [Doed97] or differentially corrected from a library

in a closely related model. [Marc07] Various methods exist for calculating invariant manifolds

[Koon08, Vill04] and plane change maneuvers. [Vill09, Trum11]

3.4.3 Impulsive Connections

Thus far, the focus has been on arcs subject to motion in the spacecraft's dynamic

environment. Next, impulsive maneuvers need to be incorporated into this directed graph

framework. An impulse is an instantaneous change to the spacecraft velocity, which does not

change the spacecraft position. Therefore for any region, impulsive connections may exist with all

other regions with the same position. These may be divided into two cases: regions on the same

Poincaré section with the same energy and velocity magnitude but different velocity directions,

and regions on different Poincaré sections which will have different velocity magnitudes and

possibly different velocity direction as well.

The number of such connections is bounded by the product of the number of velocity

directions and the number of Poincaré sections. In practice this is lower for several reasons. First is

that there will be a maximum amount of impulse allowed for a single maneuver, Δvmax. If no

impulse exists between two regions with magnitude less than this number, then no impulsive link

should be created. The same may be applied in the case there is a limit to the thrust angle, which

in turn limits the set of velocity directions that can result from an allowable impulse. Finally, there

are cases where the positions within a region have potential energy greater than the energy of a

Poincaré section. As such regions of state space are inaccessible, no links to or from such regions

40

should be created. Such examples of graph pruning save both memory and time spent during the

search process.

Link costs are simply estimates of the ΔV magnitude required for an impulse between these

two regions of state space. As the ballistic arcs that are to be joined by such an impulse are not

known ahead of time, use the average ΔV magnitude joining states in these two regions. The

necessary integrations needed to perform this calculation are simplifed by the use of Periapsis

Poincaré sections. To begin, since the states satisfy the apsis condition, the angle between them is

determined by the difference αk−α j=α(v⃗k)−α(v⃗ j) where α is defned in 3.3.2 above and is

one of the parameters used to defne the partition. Next, since the energy is fxed for each section,

the velocity magnitude is a function of the potential. Also, since impulses are between states with

the same position, this integration is only needed across a single set of positions. For each position

and two velocities, the Law of Cosines gives the magnitude of the ΔV as:

∥v⃗k−v⃗ j∥=√∥v⃗ k∥
2
+∥v⃗ j∥

2
−2∥v⃗ k∥∥v⃗ j∥cos(αk−α j) where

∥v⃗k∥=√2Ek−2U(x⃗) ,∥v⃗ j∥=√2E j−2U (x⃗)

These last equalities hold because in the CR3BP or Hills Model with or without higher

order gravity, the energy in the restricted problem E=-J/2 where J is the Jacobi constant, is given by

E=
1

2
∥v⃗∥

2
+U (x⃗) where U is the augmented potential including rotating frame effects. [Koon08,

Vill03] Please see Appendix C for more detailed model description.

Potential for both spherical harmonic gravity and the CR3BP can be expressed in either

Cartesian or polar coordinates for position, thus for either type of cell defnition the potential

function and integration bounds are easily expressed. So, for regions with position defned by the

polar coordinate range [r j

min
, r j

max
]×[θ j

min
,θ j

max
]×[ϕ j

min
,ϕ j

max
] and velocity angles within ranges

41

[α j

min
,α j

max
] ,[αk

min
,αk

max
] , the ∥ΔV∥ between states in the two regions is given by the function

f (r ,θ ,ϕ ,α j ,αk)=[2(Ek+E j)−4U(r ,θ ,ϕ)−4√Ek−U (r ,θ ,ϕ)√E j−U (r ,θ ,ϕ)cos(αk−α j)]
1 /2

The average ΔV magnitude ∥ΔV∥=
1

μ(Rj×[αk

min
,αk

max
])
∫Rj×[ak

min , ak

max
]
f d μ is then given by

an iterated integral with simple integration bounds that can be calculated numerically in Matlab:

1

μ(Rj)(αk

max
−αk

min
)
∫r j

min

r j

max

∫
θ j

min

θ j

max

∫
ϕ j

min

ϕ j

max

∫
α j

min

α j

max

∫
αk

min

αk

max

f (r ,θ ,ϕ ,α j ,αk)d αk d α j r
2 sinϕd ϕd θdr

3.4.4 Ballistic Link Costs

As the graph search is to guide the overall process towards the lowest cost transfer within

the system restrictions, a cost must be associated with each transition. This differs from the constant

unit weights used in the theoretical treatments of Osipenko [Osip06] and the probability of

transition used by Dellnitz [Dell05] as the focus here is in transfer design. Note that until

differential correction is performed, we will not know the true cost for our problem, so we will

populate the graph with estimated costs for the search process.

Costs for impulsive connections were described above as an average are an estimate of the

ΔV required to transition from one region to another with a single impulse. Costs for ballistic arcs

are more subtle and depend on a few factors. One of these is whether the fnal cost function is

solely based on ΔV or is a weighted combination of fuel and transfer time. Another factor is that in

order to prevent the search process from wandering around and to establish the search time

complexity, there must be some nonzero minimum link cost ϵ .

In the case where the eventual cost is a combination of the fuel cost and transfer time,

assigning the cost of ballistic arcs is very straightforward. Assuming the fnal cost function is of the

form J=∑∥ΔV∥+w∑ t , then the cost of each ballistic transition is simply w⋅tarc where tarc is

the coasting time of the arc associated with the ballistic transition. Should multiple arcs be

42

associated with each transition, as with impulsive connections above either the minimum or

average may be used. In Chapter 5, among other constraints a minimum and maximum coasting

time constraint is included in the problem. This is due to operational constraints relating to engine

fring frequency as well as time for orbit determination after maneuvers. As a result of the existence

of this constraint, a minimum link cost w⋅tmin is established for ballistic arcs. This is the approach

that has been taken in the examples.

The case where the cost is entirely dependent is more complicated. Setting the cost for

ballistic links to 0 is not an option. Setting them to a constant nonzero value ϵ is possible, but

this is not very physical and so the question of what the “cost” of an arc is terms of units of ΔV will

result in an ad hoc design decision. Using a weighted total transfer time would be more physically

relevant, but still not connected to the fuel-only cost. Limited to only information about the

ballistic transition itself, instability provides a link to total fuel expenditures. This is due to the fact

that higher instability leads to greater magnitudes of trajectory correction maneuvers (TCMs) as

small errors in navigation or maneuver execution lead to larger errors from the designed trajectory.

Another appealing feature aside from smaller and less frequent TCMs is that the more stable option

is better from a mission safety viewpoint.

For the stored ballistic arc linking regions Ri ,R j , let Φ be the corresponding State

Transition Matrix (STM). Consider the operator norm ∥Φ∥=supv⃗

∥Φ v⃗∥

∥v⃗∥
of the STM, which

measures how large a small perturbation from the reference may become after bring propagated by

the dynamics for the reference coasting time. It is also equal to the largest singular value of the

STM, σ̄ (Φ). While other measures of stability exist, [Sche01, Vill08, Froe97] this choice has the

beneft of being easy to calculate and using only the information of the ballistic arc that will

actually be used in the transfer construction process. Additionally, as the design models used to

43

build the graph are Hamiltonian, [Koon08, Vill03] σ̄ (Φ)≥1. This is because σ̄ (Φ)≥∣λ∣ for all

eigenvalues of Φ. Since the system is Hamiltonian, if λ is an eigenvalue of Φ then μ=1/λ is as well,

[Koon08] therefore the existence of any λ with |λ|<1 implies the existence of another eigenvalue μ,

|μ|>1. The exact function which assigns a link cost to the measure of instability is application

specifc and will depend on the navigation and guidance capabilities of the spacecraft. However,

whatever form this function has – which may even be multiplying by a constant – its value will

increase with increasing instability. Thus its value when evaluated at σ̄ (Φ)=1 provides the

needed lower bound the directed graph link costs must possess.

3.5 Resulting Graph Structure

Figure 3.4: Conceptual model showing graph links

from ballistic arcs and impulses.

Figure 3.5: Sparse graph representation of the

actual Mars / Phobos model.

As will be discussed in Chapter 4, several aspects of the structure result in a fast search

process, so the structure should be made explicit here. To begin, recall that the initial conditions

and regions are defned on Poincaré sections of a specifed energy (the graph and arc model being

conservative). Thus the graph can be viewed as a set of layers with a layer per energy level.

Ballistic connections then only exist within individual layers. Impulsive maneuvers may exist

44

between any regions with the same position. This results in connections both within layers due to

changing direction without changing energy, and between layers due to changes in velocity

(magnitude and possibly direction) that change the energy. This is shown conceptually in Figure

3.4. The green curved, solid arrows represent ballistic connections, while the purple dashed arrows

represent impulsive maneuvers. Within each layer, the clusters of nodes represent states with the

same position but different velocities. As will be discussed in Chapter 4, this layered structure may

be used to generate a simple yet effective heuristic function.

In reality, this graph is quite large. For the Phobos application discussed in Chapter 10,

each Poincaré section is divided into 6,300 regions, and there are 11 energy levels/sections

considered for these scenarios. This leads to a total of 69,300 total graph nodes. (These values are

not random but are based on the needs of the scenarios expected to be faced. Please see Chapter

10.4.1) A dense graph of this size could potentially contain billions of connections, which would

be far to large to work with. Thankfully, the structure described above is quite sparse, since only

matching positions may be linked impulsively, and on average a given region only fows into

several other regions ballistically. To be precise, the graph is sparse with only .07% of all possible

connections being created. This is visualized in Figure 3.5, with a dot added where a connection

exists. Note that as the smallest dot size is 1 pixel, this looks more dense than it actually is. With

the connection cost stored as a real number, this results in 9MB of memory used in Matlab using

the sparse datatype.

3.6 Summary

This chapter describes the development of a discrete representation of the impulsive

transfer problem. Periapsis Poincaré maps were used to defne physically meaningful timesteps and

reduce the dimension of the discretization. Both the coasting dynamics that dominate these

45

systems and the possibility of impulsive maneuvers are modeled in this approach, with link costs

determined in such a way as to provide a good initial guess to a correction and local optimization

process for the minimum fuel or minimum fuel and transfer time problem.

46

Chapter 4

Initial Guess Generation via Heuristic Search

4.1 Introduction

The previous chapter discussed how to construct a directed graph approximation of the

dynamics from a set of ballistic arcs and impulsive changes in velocity. However, the importance

of these arcs does not end at that stage, nor is fnding a path in the directed graph a goal in and of

itself. By construction, each ballistic transition in the graph has at least one arc associated with it.

For a given pair of boundary states, consider a path in the graph between the region nodes that

contain these states. Such a path found may be used to select a set of arcs that link together the

regions associated with the path nodes. The discontinuity in position between these arcs is limited

by the region size, as is the difference in position between the frst and last arcs with the boundary

states. Furthermore, the difference in velocity at the arc endpoints is approximately equal to the

link cost of the impulsive transition. In this way, the graph search results are used to provide an

initial guess to a differential correction and local optimization process. This part of the transfer

design process may be summarized as follows:

47

Given:

• Directed graph as described in Chapter 3.

• Set of arcs containing one or more arc for each ballistic transition.

• Two boundary condition states or periodic orbits.

Process:

1. For each boundary condition, associate one or more graph nodes.

2. Perform path fnding search algorithm on the directed graph.

3. For ballistic transitions in path, select a ballistic arc.

4. Provide these arcs, in order, and boundary conditions to differential corrector.

The remainder of this chapter will elaborate on the steps of this process, with an emphasis

on the search process itself.

4.2 From Boundary Condition to Graph Nodes

Boundary conditions requirements are precise enough that they are unlikely to be provided

as simply a region within a partition. Thus in order to provide start and goal nodes for the search

process, it is necessary to translate a variety of types of boundary conditions into one or more

appropriate graph nodes.

4.2.1 Boundary Conditions as States

One possibility is when a specifc set of orbital elements or state is required. In this case, a

necessary step is to determine which region to associate with this state. Recall that each periapsis

Poincare section has a specifed energy and that the apsis condition holds. Different procedures

must then exist in cases when the boundary conditions are on the surface of section, and when

they are not.

48

 For states on the surface of section, the method is simple. Regions have been defned here

by a range of values in the coordinates r, θ, φ, and α. Once the state or orbital elements are

transformed into these coordinates, a sequence of inequalities may be evaluated programmatically.

Other types of partitions would lead to other methods such as oct-trees [Nakh13] or a set of

function evaluations. [Trum12a]

For conditions off the Poincaré section, a little more work is required. If a state is not at

apsis, two methods should be employed and compared. The frst is that the initial condition may

be propagated forward and its next apsis (should it exist without escape or impact) taken as the

initial condition used for the search. For the fnal target condition, the same process is applied but

integrating backwards in time. The trajectory to the surface of section is then appended to the set of

arcs found by the search process. The other approach is to use the projection of the states on to the

surface of section to determine set membership. A maneuver is then added to account for the

change in velocity between the boundary state and the projection on to the surface of section. If in

addition the energy level is not among those included in the mission planning calculations, an

impulse is added to put it on the section closest in energy. In any of these cases these changes are

done before the optimization procedure so that the effects of these accommodations may be

minimized.

4.2.2. Boundary Conditions as Periodic Orbits

Another likely option is that a periodic orbit will be supplied as a boundary condition,

particularly for the target. Ideally these orbits would be selected from the database of periodic

orbits and thus already be listed in terms of their regions at each time step. Otherwise the process

used to determine region membership for single points should be run at each apse or other time

step of the orbit to fnd the periodic sequence of regions that the orbit defnes. Regardless of which

type of timestep was used, a periodic orbit has a periodic path in a graph representation. [Osip06]

49

For each search run, one node must be specifed as the goal node and one as the start node.

Therefore if one or both of the boundary conditions are periodic orbits, one node must be picked

from each orbit per run, and so the search process is executed for each pair of nodes defning start

and goal nodes, time permitting. For example, Figure 4.1 shows two transfers consisting of a

different number of arcs and impulses resulting from different search paths which target the two

periapses of the target Distant Retrograde orbit (DRO).

Suppose then that the periodic symbolic boundary conditions P1 and P2 within the directed

graph consist of p1 and p2 nodes each, where for single state boundary conditions these 'orbits' are

simply one node. That is, P1={n1, n2,…, np1} and P2={m1, m2,…, mp2}. From these sets of nodes, p1p2

number of pairs of start and goal nodes may be created, and transfers constructed for each, time

allowing. Once a path in the graph is found, the remaining nodes in the periodic graph orbits are

appended to the beginning and end of the sequence. For example, suppose for start node n1 and

goal node m1 a path n1, q1, …, qk, m1 is found. In order to select both the arcs of the periodic orbits

and the transfer joining them, the fnal node sequence is:

n1, n2, …, np1, n1, q1, …, qk, m1, m2, …, mp2, m1.

This modifed path, which captures the periodic nature of the boundary conditions, is then what is

used in arc selection and differential correction.

Using this discretization scheme multiple itineraries may need to be evaluated in order to

fnd the optimal transfer, though the frst option considered may provide a feasible transfer in the

case of severe time constraints. On the other hand, a beneft of this procedure is that it can create

multiple transfer options between the two orbits in the case the point to point paths are different

for each search. As providing multiple transfer options has been identifed as a key requirement for

an onboard system in case there are operational constraints not captured in the discretization, this

is an important beneft. Additionally, as the resulting transfer problems are not dependent on one

50

another, they may be run in parallel if the computational architecture allows it.

Figure 4.1: An uncontrolled initial condition (red) will lead to escape from the system. Two transfers

(green) from this initial condition to different periapses of a Distant Retrograde Orbit (blue) are generated.

Different search paths resulted in a different number of impulses.

4.3 Search Method

A central motivation of this approach is that discrete search algorithms are quite fast

compared to a large scale optimization problem in a complex system. However, there is a wide

variety of search algorithms types suited to different types of problems. Given the requirements of

51

our problem, the primary challenge then is to select the best method that produces results that are

both relevant and fast. This section describes several of the distinctions between search families

and assesses each option for suitability in solving the transfer problem as well as for performance.

One division between different search techniques is graph vs. tree search. While this can

refer to the data structure the search is performed on, here we are distinguishing between allowing

a node to appear on a path more than once. Graph search requires maintaining a list of nodes

which have been visited and only considering those nodes which have not been visited yet. For a

tree search (even on a directed graph), this is not done and so a path may visit one node multiple

times. [Russ09]

Another division is between Uninformed and Heuristic Search methods. Uninformed

methods are those in which no a priori knowledge of the system under consideration is used to

steer the search towards the goal. This is in contrast to heuristic search methods which use

estimates of the remaining cost to a goal state for different nodes under consideration to pick the

best option to proceed. Heuristic search methods can be much faster than uninformed methods.

However, in the limiting case where the estimates provide no useful knowledge, heuristic methods

perform like uninformed methods. Because of this fact and because uninformed methods provide

the backbone for heuristic methods, a detailed description of uninformed search is provided as

well. These distinctions and their relevance to the transfer problem now follow.

4.3.1 Graph or Tree Search?

When both tree and graph searches are possible, graph searches are generally faster,

though at the cost of memory to maintain the list of visited nodes. [Russ09] The difference between

the two is that graph search methods maintain a list of visited nodes so that a single node is not

repeated along a path, reducing the number of nodes that need to be evaluated. Due to the

method of handling periodic boundary conditions in Chapter 4.2.2 above, both graph and tree

52

search are capable of being run in such a situation, despite the fact nodes are repeated in the

periodic graph orbit. This is due to the fact the search itself is between pairs of nodes with the

periodic orbit being appended to the resulting path found after the search process but before the

necessary arcs are selected.

The choice between the two methods is then a product of the computational environment.

If suffcient memory is available to maintain a list of visited nodes, then the potential increase in

speed (and a worst case complexity result as will be described in the next section on Dijkstra's

Algorithm) may make graph search preferable. If the memory is not available, then the tree search

should be used. In the applications tested thus far – even on a memory limited RAD750 fight

system at Jet Propulsion Laboratory – graph search has been used with no issues.

4.3.2 Uninformed Search Methods

 The algorithms chosen for comparison to heuristic algorithms are those standard in the

case where search optimality is a concern. Uniform Cost Search is the tree search method and

Dijkstra's Algorithm the graph search method of a fairly simple principle related to Dynamic

Programming. [Russ09] More complete algorithm descriptions can be found, [Russ09] but briefy:

1. Beginning from the start node, examine cost c(n,n') from the current node n to each

successor – a node connected by a directed link (see Chapter 3) from the current node – n'.

2. For each node considered, take the path cost g(n') to be the total cost from the start node to

n' by summing the link costs on the current path linking the two.

3. The list of nodes that are successors of all the nodes considered is called the frontier, F. Set

the current node as the node on the frontier with the lowest cost. i.e. nnew=arg min { g(n') :

n'∈F }

4. Add successors of the current node to the frontier, calculate their path cost. [Difference: As

Dijkstra's Algorithm is a graph search, any node previously expanded cannot be added to

53

the frontier again.]

5. If a goal state has been reached and its path cost is less than the path cost for the other

nodes on the frontier, the process terminates. i.e. terminate if n=ngoal and g(n) ≤ min {

g(n') : n'∈F }

These particular methods have some well known properties. With a minimum step cost

(which exists by construction as shown in Chapter 3) both methods are complete – a path to the

goal state will be found if one exists – as well as optimal within the context of the search on the

graph. Without taking the fnite size of the graph into account yet, analyzing each step of the

search process shows that the time and memory complexity is exponential, given by O(bC*/ε) where

b is the branching factor, C* the true optimum cost for the case under consideration and ε the

minimum step cost. Dijkstra's Algorithm will provide a path at least as fast, but for fnite graphs has

also been shown to be bounded by O(EG + VglogVG) in effcient implementations using Fibonacci

Heaps (though these can be diffcult to implement in practice), [Fred87] where EG is the number of

edges on the graph and VG the number of vertices. While this cap is useful, the exponential

formula more clearly illustrates the role the connection density in the graph for coasting and

impulses – combined here as the branching factor – and itinerary length have on search time.

4.3.3 Search Heuristics

Heuristic search methods can be seen as extensions of the previous methods as both

classes involve sorting the options under consideration using functions of cost in order to best

choose the next step. However, heuristic search methods use partial knowledge of the future cost

remaining to the goal for each option in order to improve its decision making. A heuristic is simply

an easy to calculate estimate of this remaining cost to the goal derived from system knowledge,

with the stipulation it is zero at a goal. If these estimates are good, by choosing nodes with lower

54

heuristic values in addition to the current cost, the search will be steered towards the solution. This

is what is needed to speed up the uninformed search algorithms above. A few concepts are needed

frst. The frst is admissibility. Let hE(n), hT(n) be the estimated and actual costs remaining to reach

the goal state, respectively. A heuristic function hE is admissible if hE (n)≤hT (n)∀n∈G , meaning

it never overestimates the remaining cost. A slightly stronger condition is consistency, which is

essentially the triangle inequality: For any node n and for all of its successors n',

hE (n)≤hE (n')+c(n ,n') where the last term is the true cost from n to n'.[Russ09]

Consider the structure of the graph resulting from the construction process described in

Chapter 3.5. First note that the graph is very sparse, which greatly reduces the branching factor and

thus the number of nodes that need to be considered at each step of the search algorithm. Next,

the graph consists of layers representing Poincare sections with a specifed energy for each layer.

While ballistic connections exist within each layer, only impulsive connections exist between

layers. For each node, the majority of connections are impulsive connections. So if the search

process can be steered towards the energy level of the goal, this would greatly reduce needless

exploration and speed up the search process. Between any two layers, there will be a minimum

connection cost. Consider the global minimum ΔV to switch between each pair of energy levels.

For an increase in energy we should sum the minimum ΔV to move up between each pair of

adjacent layers, as the velocity will be higher at each step, leading to a lower ΔV needed to

increase the energy at each step. [Trum14a] This results in multiple maneuvers being cheaper than

a single maneuver for the case of increasing energy. For a decrease it is calculated as one step. The

adjustment is needed for consistency. These values may be stored in a small square matrix with the

number of rows and columns equaling the number of layers in the graph. For any node, let hE(n) be

this minimum ΔV magnitude between the energy layer containing node n and the layer containing

the goal node. This heuristic steers the search process towards trajectories with the same energy as

55

the goal. In the case the start and goal are at different energies, this is necessary to avoid spending

too much time searching for a ballistic transfer that does not exist. By construction this heuristic is

admissible and consistent. Detailed results vary with application (see Chapter 10), however this

simple heuristic results in at least a 10x speed up.

4.3.4 Heuristic Search Methods

Now that the heuristic functions have been discussed, heuristic based informed search

methods can be placed in the same framework used to describe Uniform Cost Search and

Dijkstra's Algorithm. Each step is the same as in the uninformed case above, except the step where

the node with the lowest path cost on the frontier is selected. It is a feature of “Best First” methods

– of which both Dijkstra's Algorithm and informed search methods are examples – that they use an

evaluation function f to select the next, “best” node according to the function chosen. In the

uninformed search strategies, f(n)=g(n) where g(n)is the path cost to that node. Two such heuristic

search strategies are Greedy Best First and A* Search. Both follow the same framework above, but

with f(n)=hE(n) for Greedy Best and f(n)=g(n)+hE(n) for A* Search where hE(n) is the heuristic

estimate.

A* Search, or variations thereof, is generally the preferred strategy in the case where we

have access to the true cost. This is because it systematically moves towards the optimum solution

when the heuristic is consistent and is also complete. The short proof of optimality is standard,

[Russ09] but will be repeated here to illustrate the importance of admissibility and consistency. To

show this, it is suffcient to show that the evaluation function value at the goal node on a

suboptimal path is greater than a node n on the optimal path:

f (Gnotoptimal)=g (Gnotoptimal) since h(Gn.o.)=0

>g (Gopt) since suboptimal

=g (Gopt)+hE (Gopt) since h(Gopt)=0

=g (n)+c (n' ,Gopt)+hE(Gopt)

≥g (n)+hE (n)=f (n) by consistency

56

As performance is heuristic and problem dependent, there is no general formula for the

decrease in time complexity.

4.4 Initial Guess Generation using the Search Results

After the search algorithm has successfully been run, the result is a sequence of nodes

called either a path or itinerary. Each node in the graph corresponds to a small region of state

space in the domain of the spacecraft. Each transition corresponds either to an impulsive

connection between regions, or a ballistic connection. For each ballistic connection in the graph

an arc corresponding to this connection is stored in an arc database, and is indexed by the starting

and ending region. Therefore for every ballistic transition in the itinerary, an arc may be selected.

Depending on whether or not the boundary conditions are on the surface of section, an additional

arc may have been used to establish an initial condition on the section as described in 4.2.1.

 Consider a sequence of such arcs. The beginning of the frst arc would match in position to

the region containing the initial condition on the Poincare section. The next arc would also begin

in a region with position matching the region in which the frst arc ends. This continues until the

fnal arc ends in a region which matches in position to the terminal condition. Thus this sequence

of arcs has the following properties:

Discontinuity in position between endpoints of successive arcs or the endpoints and the

boundary states is limited by the diameter of the regions in position space. As the partition is user

defned, this may be set as 'small' as is necessary for the correction process, at the expense of more

regions.

The difference in velocities, i.e. the ΔV magnitude, between successive arc endpoints or

arc endpoints and boundary conditions has been approximated by the impulsive graph

connections, since the arcs begin and end in the state space regions the link cost calculation is

57

based on. The actual vector impulse is simply the difference between the beginning of the next arc

or terminal condition, and the end of the previous arc or initial condition. Therefore no data need

be stored for impulsive connections aside from the cost.

Figure 4.2: Transfer between boundary condition is approximated by a set of ballistic arcs. These arcs are

passed on for differential correction and local optimization.

In Figure 4.2, the initial condition is marked with the small triangle on the trajectory in red,

which left uncontrolled would lead to escape from a Halo orbit out of the Phobos system. The

target condition is the triangle on a Distant Retrograde Orbit used as an abort target. The result of

the search process performed on these conditions is used to select three ballistic arcs, shown in

green. These arcs approximate the desired transfer and provide an initial guess in order to fnd it.

It is the states of initial conditions of these arcs and the corresponding coasting times, in

58

sequence, constitute the initial guess for the differential correction and optimization process

described in the next several chapters.

4.5 Generating Additional Transfers with Graph Updates

After the correction and optimization procedures are complete, the costs may be higher

than expected or a mission constraint may not be able to be satisfed with the search itinerary. If

this is the case – or if there is simply time permitting to evaluate other potential options – it may be

benefcial to create other transfer types. After the correction and optimization procedure is

complete, the resulting ΔV at each impulse can be compared to the estimated ΔV held in the

corresponding impulsive connection. The directed edge for which the true cost is the highest, or

which is the greatest above the estimate, may either have its edge weight adjusted or the edge

temporarily removed. Once this adjustment for costly transitions is made, the search process can

be rerun. Unless the path is still graph-optimal with this adjustment, this will result in a new

itinerary and a qualitatively different transfer. This process may be repeated as time allows.

4.6. Summary

To summarize the results of the above discussion, the proposed onboard portion of the

transfer redesign algorithm consists of the following steps:

1. Translate boundary conditions into graph nodes. Periodic boundary conditions handled as

above with multiple point to point searches performed, time permitting. For each point to

point search:

2. Perform A* search on the directed graph which uses cost estimates as link weights.

3. Append periodic boundary condition elements if necessary to obtain complete itinerary.

59

4. Perform arc selection and differential correction process. Produces complete transfer.

(Chapters 5-9)

5. Time permitting, modify graph by removing link associated with highest cost transition

between regions in the transfer.

6. Return to Step 2 and iterate as desired.

60

Chapter 5

The Impulsive Transfer Optimization Problem

and its Approximations

5.1 Introduction

The minimum fuel and minimum energy impulsive transfer problems are stated as

nonlinear programs (NLP) whose variables are the initial conditions of ballistic arcs and the

coasting time of each arc. Constraints include continuity in position, min/max coasting time per

arc, min/max thrust per maneuver, and impact avoidance. Additional constraints whose derivations

would impede the readability of this text, such as maximum thrust angle relative to the velocity,

have been moved to Appendix B.

The goal of this chapter is to defne the convex approximations that will be used in an

iterative approximation process that is described in Chapter 6. This will be done in stages, linking

sets of related problems. First, for any feasible reference trajectory, a set of corresponding NLPs

more amenable to approximation and suitable for iterative processes is defned. It is then shown

that a point of the original NLP satisfes the Karush-Kuhn-Tucker (KKT) conditions of that problem if

61

and only if it satisfes the KKT conditions of the iterative NLP defned using that point.

Next, as both of these NLPs are intractable in their current forms, natural Convex Problem

(CP) approximations of the iterative NLPs are derived using submatrices of the State Transition

Matrix (STM) of each arc. It is shown that the reference value is a KKT point of the CP precisely

when it is a KKT point of the corresponding iterative NLP, and hence when a KKT point of the

original problem. These convex problems are also shown to satisfy the form of the more restrictive

class of Second Order Cone Problems (SOCP) for the minimum fuel problem, and a Quadratically

Constrained Quadratic Program (QCQP) for the minimum energy problem. Lastly, a modifcation

to these problems leading to better convergence properties but not affecting the KKT relationships

with the NLPs is given. The use of these subproblems within an iterative process, and a comparison

to other common iterative approaches is described in Chapter 6. Feasible major iterates and the

global cost descent properties of this process are described in Chapter 7.

Before jumping directly into this sequence of problems and their CP/SOCP approximations,

both Convex and Second Order Cone problems are described, including defnitions, properties,

and uses in related felds.

5.2 Convex Programming

5.2.1 De"nition

A nonlinear program:

Find x∈Ω⊆ℝ r

that minimizes the cost function J (x)

subject to equality constraints hj (x)=0

and inequality constraints gk (x)≤0

62

will be a convex program (CP) in the case that Ω⊆ℝr is a convex set, the cost function is

convex, the equality constraints are linear (affne) and the inequality constraints are convex

functions. These restrictions have the effect that the problem becomes one of minimizing a convex

function over a convex feasible set.

5.2.2 Convergence and Complexity of Solutions

While complex in the details of implementation, Interior Point methods for CPs are based

on a simple idea: the problem may be well approximated by a convex function combining the cost

and barrier functions, thus guaranteeing Newton steps are always feasible. Such methods are

guaranteed to converge to a solution,[Nest94, Boyd09] and due to convexity to attain the global

minimum.

Ignoring any exploitable structure in the problem such as sparsity (which since our

constraints act on pairs of patch points is not negligible), using Interior Point methods result in

each step requiring at worst O(max {n3
, n

2
m ,F }) operations in the limit, where n is the

dimension of the problem, m the number of constraints, and F the cost of evaluating the frst and

second derivatives of the cost and constraint functions.[Boyd09, Peng09] For certain subclasses of

CP to be discussed shortly, the number of such steps may also be bounded by the number of

constraints, resulting in overall polynomial time convergence. It should be noted that the

dimension of the impulsive transfer problem is not large. The approach taken here results in 7N

variables, where N is the number of ballistic arcs, which number in the single digits.

5.2.3 Applications in Space&ight

Within the spacefight community, convex programming has been used within iterative

methods, as will be the case for this application. One major difference is that these applications

are optimal control problems, leading to a larger set of variables, but where dynamic nonlinearities

and maintenance of continuity is less of a problem. A prominent example being tested on actual

63

test landers is the powered descent problem, where a sequence of SOCPs are solved.[Caso13,

Acik13] That application is particularly interesting because theoretical results allowed the

introduction of slack variables that create a convex domain containing all potential optimal

solutions in the original, non-convex domain. In the orbital domain, sequences of convex

problems have been used in the Model Predictive Control of satellite swarms. [Morg13] Another

example is the use of iterative CPs to refne initial guesses for constrained satellite attitude optimal

control problems.[Kjel12]

As embedded CP solvers become faster and more common,[Doma13,Chu13, Matt12] and

as it is demonstrated that CP based methods have both convergence and feasible iterate properties

desirable for onboard systems, they will likely expand within the spacefight community.

5.2.4 Suitability for the Impulsive Transfer Problem

Convex problems were used in this work for multiple reasons. First is that they enjoy

provable polynomial time convergence properties, particularly the SOCP/QCQP subclasses. Why

not then Quadratic Programs (QP) which are faster still? One reason is that the cost as well as the

inequality constraints of the iterative NLP of 5.5 naturally fall into the CP framework when using

State Transition Matrix based approximations. A minor issue is that linear inequalities of QPs

(descent of the Lagrangian is insuffcient for feasible iterations, the constraints must be included in

the subproblems) are less accurate than the quadratic and other conic constraints allowed in a

CP/SOCP. More importantly, as will be seen in Chapter 7, linear inequalities on propagated

variables in an approximate problem cannot be shown to hold in the NLP once necessary

corrections are made to restore continuity, even with a line search. This then limits the use of

Linear Programs as well.

64

5.3 Second Order Cone Problems

5.3.1 De"nition

This is the form the CP approximation of the minimum fuel problem will take. A Second

Order Cone Problem (SOCP) is defned as:

Find x∈Ω⊆ℝ r

that minimizes the linear cost function f
T

x

subject to af�ne equality constraints F j x=g j

and inequality constraints ∥Ak x+bk∥2≤ck

T
x+dk

SOCPs are convex. This is because the cost is linear which means it is both convex and

concave, the equality constraints are affne, and the inequality constraints require the affne

function x →(Ak x+bk , ck
T

x+dk) to lie within the standard convex second order cone in

ℝ
dim(bk)+1

, and the inverse image of a convex set under an affne function is convex.[Boyd09]

The constraints are more general than those of QPs or QCQPs, since ck=0 results in a constraint

equivalent to a quadratic constraint by simply squaring what is left, and if Ak ,bk=0 the result is

a linear inequality. The linear cost is not as prohibitive as it would seem at frst glance, as various

problems may be transformed into an SOCP with the introduction of extra variables, as seen for

the minimum fuel problem in Section 5.7.3.

5.3.2 Convergence and Complexity of Solutions

Barrier / path following applied to SOCPs satisfy a self-concordance condition that bounds

the number of Newton steps (themselves requiring O(max {n3,
n

2
m}) operations with no

additional structure) required per outer iteration by a fnite and computable number of steps.

[Boyd09] Additionally, the number of such iterations may also be bounded by a fnite and

65

computable number of steps. In particular, for a desired tolerance for the optimum value ϵ>0:

Newton steps ≤(√m log2(m

t(0) ϵ)+1)(1

2γ
+cnt)

Where the constants γ ,cnt are functions of fxed backtracking parameters and Newton's method

tolerances respectively, the constant t
(0) determining the initial “strength” of the barrier function,

and m the number of constraints.[Boyd09] Primal-Dual Interior-Point methods have been observed

to have better performance in practice, and also have a fnite number of steps on the order of

O (√m log (m
ϵ)) . [Peng09] It should be noted that these oft-quoted results assume there is a

strictly feasible point, i.e. Slater's condition holds. In Appendix A it is shown that this is the case

for the convex subproblems defned in this chapter.

5.4 Quadratically Constrained Quadratic Problems

5.4.1 De"nition

This is the form the minimum energy problem will take. A convex Quadratically Constraint

Quadratic Problem (QCQP) is given by:

Find x∈Ω⊆ℝ r

that minimizes the cost function J (x)=
1

2
xT P0 x+q0

T x+r0 , P0≥0

subject to af�ne equality constraints F j x=g j

and inequality constraints
1

2
xT Pk x+qk

T x+rk≤0 , Pk≥0

5.4.2 Convergence and Complexity of Solutions

The self-concordance condition that holds for SOCPs also holds for the more restrictive LP,

66

QP, and QCQP problems, thus the results for SOCPS holds for QCQPs using barrier methods.

[Nemi01].

5.5 Original NLP Formulation for the Impulsive Transfer Problem

5.5.1 Variables and Notation

The goal is to minimize the total fuel cost for a set of N ballistic arcs, two given boundary

states, N-1 intermediate patch points, and N+1 impulsive maneuvers. Let (x0, v0), … ,(xi, vi), … ,

(xN-1, vN-1), be the states at the beginning of each arc. Let (x1
-
,v1

-) , ... ,(xi+1
-

,v i+1
-) , ... ,(xN

-
,vN

-) be

the states at the end of each ballistic arc. Let t1 ,... , ti+1 ,… ,tN be the coasting times for each

ballistic arc. These terms are related by the system fow φt in that [xi+1
-

vi+1
-]T=φ ti+1

([xiv i]
T).

Finally, let (xinitial, vinitial), (x�nal, v�nal) be the given boundary conditions.

As the endpoints are determined by the system fow, take as variables the initial conditions

of each arc and the coasting times. Thus the vector valued variable is:

X=[x0
T v0

T t1 x1
T ⋯ xN−1

T vN−1
T tN]

T

.

For each arc there are seven variables: three for position, three for velocity, and one for

coasting time. Thus there are 7xN variables in total.

5.5.2 Cost Function

The fuel minimization problem is equivalent to minimizing the sum of the velocity change

magnitudes,[Hugh03] with the added beneft that this is now a spacecraft mass independent

problem. Similarly, the energy minimization problem is equivalent to minimizing the sum of the

squares of the velocity magnitudes. The cost function for the original problem may be stated as:

J fuel=∥ΔV 0∥+...+∥ΔVN∥

 =∥v0−v initial∥+∥v1−v1
-∥+...+∥vN−1−vN−1

- ∥+∥v �nal−vN

- ∥

67

or

Jenergy=∥Δ V 0∥
2+...+∥ΔV N∥

2

 =∥v0−v initial∥
2+∥v1−v1

-∥2+...+∥vN−1−vN−1
- ∥2+∥v�nal−vN

- ∥2

In order to create a preference for shorter transfer times for transfers with similar ΔV

expenditures, these cost functions may be easily modifed. The total transfer time

ttotal=t1+...+tN may be added to the above costs with a small weighting constant ϵ so that

Jcombined= J fuel+ϵ ttotal or Jcombined= Jenergy+ϵ ttotal .

5.5.3 Equality Constraint - Continuity

This is the central constraint of the whole problem. The endpoint of arc i, xi+1
-

, is defned

by the system fow [xi+1

-
vi+1

-]T=φ ti+1
([xiv i]

T). The continuity constraint is defned simply by

requiring that the endpoint position of arc i equal the starting position of arc i+1. That is,

xi+1
- =xi+1.

5.5.4 Inequality Constraints

Min/Max coasting times:

Here the coasting time is required to be between some minimum and maximum amounts.

This is simply stated as tmin≤ti+1≤t max .

Min/Max impulse per maneuver:

There is assumed to be a minimum and maximum impulse magnitude that the spacecraft's

propulsion system may apply. While the existence of a maximum is intuitive, for navigation

purposes as well as thruster operation restrictions there is a minimum amount of time and

minimum amount of thrust that may be produced by the engines in the fnite burn reality. This

translates to a minimum impulse magnitude in an impulsive model. Thus this creates a constraint

68

at each patch point that ΔVmin≤∥vi+1−v i+1
- ∥≤Δ Vmax .

Impact Avoidance:

This is a requirement that closest approaches are required to be a minimum distance from

the surface or center of a massive body. For this work we take the simple center of mass

formulation and so for the position of any of the closest approaches, x p j
, ∥x pj

−xCM∥≥RF .

Note that there is no implication that the x pj
are themselves variables, and this choice is

intentional. Adding extra patch points wherever a periapsis occurred mid-arc but requiring no

maneuver leads to an overly constrained problem during the recorrection process described in

Chapter 7, as well as causing potential complications in coasting time constraints and indeed

regularity. While having an arc end at an apsis condition may be a desired optional addition (see

Appendix B), this is not necessary to avoid impact. By considering a periapsis altitude following an

initial condition wherever it may be rather than forcing the inner product the position and velocity

of an arc endpoint to be 0, an inequality with a natural convex approximation may replace an

equality of a non-convex function approximated by a linear equality.

Maximum Thrust Angle Relative to the Velocity:

This is developed further in Appendix B, but handles the case where the impulse direction

is limited to be within a maximum angle γmax of the line of velocity, thus to lie within a cone

with half angle γmax with vertex and opening direction aligned with the incoming velocity

vector. This can be stated as ΔVi+1=vi+1−v i+1
- ∈K γ max(vi+1

-). It is listed here as optional since it is

dependent on the type of spacecraft, number and orientation of thrusters, and attitude control

capabilities.

69

5.5.5 NLP Statement

Find variables

X=[x0
T v0

T t1 x1
T ⋯ xN−1

T vN−1
T tN]

T

.

that minimize the cost function

Jfuel=∥ΔV 0∥+...+∥ΔVN∥

 =∥v0−v initial∥+∥v1−v1
-∥+...+∥vN−1−vN−1

- ∥+∥v �nal−vN

- ∥

or

Jenergy=∥Δ V 0∥
2+...+∥ΔV N∥

2

 =∥v0−v initial∥
2+∥v1−v1

-∥2+...+∥vN−1−vN−1
- ∥2+∥v�nal−vN

- ∥2

or

J fuel ,time= J fuel+ϵ(t1+...+tN) , Jenergy , time= Jenergy+ϵ(t1+...+tN)

subject to equality constraints

Continuity: [
x0

x1
-

⋮
xi+1

-

⋮
xN

-
]=[

xinitial

x1

⋮
xi+1

⋮
x�nal

]
and inequality constraints

Minimum coasting time per arc: −t i+1≤−t min , i=0,. .. ,N−1

Maximum coasting time per arc: ti+1≤tmax , i=0,... , N−1

Minimum impulse per maneuver: ΔVmin≤∥vi+1−v i+1
- ∥

Maximum Impulse per maneuver: ∥vi+1−vi+1
- ∥≤ΔV max

Impact Avoidance: ∥x pj
−xCM∥≥RF ,∀p j

Thrust Direction Limit (optional, Appendix B): vi+1−vi+1
- ∈K γmax (vi+1

-)

70

5.6 The Iterative NLP

Here an alternative NLP is stated different from the one above. While a solution of this new

NLP is not necessarily a solution of the original NLP, it has the property that if used in an iterative

process, the set of fxed points that satisfy the Karush-Kuhn-Tucker (KKT) conditions of the iterative

problem and the set of points that satisfy the Karush-Kuhn-Tucker conditions of the original NLP

are the same. This allows the goal to shift from fnding KKT points of the original to fnding KKT

fxed points of the iterative NLP.

5.6.1 Replacement Constraints

While many of the constraints are of a form that is naturally approximated by convex

functions, two of these constraints are clearly non-convex: the minimum impulse magnitude and

impact avoidance.

Figure 5.1: Comparison of the minimum impulse magnitude of the original NLP (red) and its replacement

in the iterative NLP formulation (blue). The same idea is used to replace the impact avoidance.

71

For the impulse at a reference trajectory, ΔVi+1
ref

, consider a ball centered at the point

ζΔVi+1
ref

,ζ>1 with radius (ζ∥ΔV i+1
ref ∥−ΔVmin). Any potential ΔVi+1 within this ball – thus

satisfying ∥ζΔV i+1

ref −Δ Vi+1∥≤ζ∥ΔV i+1

ref ∥−ΔVmin – will satisfy ∥ΔVi+1∥≥ΔV min . With ζ=1,

this is equivalent to using a ball centered at the reference maneuver with radius equal to the

difference between the current magnitude and the minimum. This however, would limit the search

space prohibitively as the magnitude approaching the minimum would reduce the ball radius to

zero. As ζ→∞ , this approaches the use of a supporting hyperplane. Any ζ≥2 ensures the

radius of the ball is never less than the minimum impulse magnitude. In terms of the velocities

themselves this may be written as ∥ζ(vi+1

ref −vi+1

−ref)−(v i+1−vi+1

-)∥≤ζ∥v i+1

ref −vi+1

−ref∥−ΔV min. Any vi

satisfying this will satisfy the original constraint, though the converse is not true.

In a similar manner for the impact avoidance, for η>1 and a feasible reference, consider

the constraints: ∥(η(x pj

ref −xC)+xC)−x pj
∥≤η∥xpj

ref−xC∥−RF ,∀p j . The center of this ball is in the

direction of x pj

ref −xC relative to the body center, but at a distance of η∥xpj

ref−xC∥. By specifying

the radius of this ball to be the distance from the center to the edge of the forbidden region, any

point in this ball will satisfy the original constraint, though again the converse is not true.

5.6.2 Iterative NLP Statement

For a speci�ed, feasible reference state X
ref

, �nd variables

X=[x0
T v0

T t1 x1
T ⋯ xN−1

T vN−1
T tN]

T

.

that minimize the cost function

Jfuel=∥ΔV 0∥+...+∥ΔVN∥

 =∥v0−v initial∥+∥v1−v1
-∥+...+∥vN−1−vN−1

- ∥+∥v �nal−vN

- ∥

or

72

Jenergy=∥Δ V 0∥
2+...+∥ΔV N∥

2

 =∥v0−v initial∥
2+∥v1−v1

-∥2+...+∥vN−1−vN−1
- ∥2+∥v�nal−vN

- ∥2

or

J fuel ,time= J fuel+ϵ(t1+...+tN) , Jenergy , time= Jenergy+ϵ(t1+...+tN)

subject to equality constraints

Continuity: [
x0

x1
-

⋮
xi+1

-

⋮
xN

-
]=[

xinitial

x1

⋮
xi+1

⋮
x�nal

]
and inequality constraints

Minimum coasting time: −t i+1≤−t min , i=0,. .. ,N−1

Maximum coasting time: t i+1≤tmax , i=0,... ,N−1

Maximum Impulse per maneuver: ∥vi+1−vi+1
- ∥≤ΔV max

Min impulse per maneuver: ∥ζ(vi+1
ref −vi+1

−ref)−(v i+1−vi+1
-)∥≤ζ∥v i+1

ref −vi+1
−ref∥−ΔV min , i=0,. .. ,N−1

Impact avoidance: ∥(η(x pj

ref −xC)+xC)−x pj
∥≤η∥xpj

ref−xC∥−RF ,∀p j .

Thrust Direction Limit (optional, Appendix B): vi+1−vi+1
- ∈K γmax (vi+1

-)

5.6.3 Comparison of KKT Points

Here the components of the KKT conditions are compared between the original NLP and

an iterative NLP defned in terms of a feasible point X
ref .

Active constraints match:

Consider the minimum impulse constraint function evaluated at X
ref :

73

∥ζ(vi+1

ref −vi+1

−ref)−(v i+1

ref −vi+1

−ref)∥=(ζ−1)∥v i+1

ref −vi+1

−ref∥=ζ∥vi+1

ref −vi+1

−ref∥−∥vi+1

ref −v i+1

−ref∥

Clearly this can satisfy the constraint with equality, i.e.

 ζ∥vi+1

ref −vi+1

−ref∥−∥v i+1

ref −vi+1

−ref∥=ζ∥vi+1

ref −vi+1

−ref∥−ΔV min

if and only if ∥vi+1

ref −vi+1

−ref∥=Δ Vmin and thus if and only if the original NLP is satisfed with

equality.

Consider the impact avoidance constraint function evaluated at X
ref

:

∥(η(x pj

ref −xC)+xC)−x pj

ref∥=∥(η−1)xpj

ref−(η−1)xC∥=(η−1)∥xpj

ref−xC∥=η∥x pj

ref −xC∥−∥x pj

ref−xC∥

This can satisfy the constraint with equality, i.e.

η∥xpj

ref−xC∥−∥x pj

ref −xC∥=η∥x pj

ref −xC∥−RF and so ∥x pj

ref −xC∥=RF

if and only if the original NLP constraint is satisfed with equality.

All of the other constraints are identical. Thus the set of active constraints match.

Constraint gradient directions match when active:

First, the minimum impulse constraint. Begin with the constraint for the iterative NLP.

∥ζ(vi+1

ref −vi+1

−ref)−(v i+1−vi+1

-)∥=∥−ζ(vi+1

ref −vi+1

−ref)+(vi+1−v i+1

-)∥ so the gradient of this constraint at

the reference is:

[−ζ(vi+1
ref −v i+1

−ref)+(vi+1−vi+1
-)

∥−ζ(vi+1
ref −v i+1

−ref)+(vi+1−vi+1
-)∥

⋅ ∂
∂X

(vi+1−v i+1

-)]
X=X ref

=
−ζ(v i+1

ref −vi+1
−ref)+(vi+1

ref −v i+1
-ref)

∥−ζ(v i+1

ref −vi+1

−ref)+(vi+1

ref −v i+1

-ref)∥
⋅ ∂
∂X

(vi+1−v i+1

-)|
X=X

ref

=
−ζ(v i+1

ref −vi+1
−ref)+(vi+1

ref −v i+1
-ref)

∥−ζ(v i+1

ref −vi+1

−ref)+(vi+1

ref −v i+1

-ref)∥
⋅ ∂
∂X

(vi+1−v i+1

-)|
X=X

ref

=
−(ζ−1)(vi+1

ref −vi+1
−ref)

∥−(ζ−1)(vi+1

ref −vi+1

−ref)∥
⋅ ∂
∂ X

(v i+1−vi+1

-)|
X=X

ref

74

=−
vi+1

ref −v i+1
−ref

∥vi+1

ref −v i+1

−ref∥
⋅ ∂
∂ X

(vi+1−vi+1

-)|
X=X

ref

Meanwhile, for the original NLP the gradient of −∥v i+1−vi+1
- ∥ at the reference is indeed the

same:

 −
vi+1

ref −vi+1
−ref

∥vi+1
ref −vi+1

−ref∥
⋅ ∂
∂X

(vi+1−v i+1

-)|X=X ref

Next, the impact avoidance constraint. Begin with the constraint for the iterative NLP.

∥η(xpj

ref−xC)+xC−xpj
∥=∥−η(x pj

ref −xC)−xC+x pj
∥ so the constraint gradient at the reference is:

[−η(xp j

ref −xC)−xC+x pj

∥−η(xp j

ref −xC)−xC+x pj
∥
⋅ ∂
∂X

(xpj
)]

X=X
ref

=
−η(x pj

ref −xC)−xC+xpj

ref

∥−η(x pj

ref −xC)−xC+xpj

ref∥
⋅ ∂
∂ X

(x pj
)|

X=X
ref

=
−(η−1)(xpj

ref−xC)

∥−(η−1)(xpj

ref−xC)∥
⋅ ∂
∂ X

(x pj
)|

X=X ref

=−
xpj

ref−xC

∥xpj

ref−xC∥
⋅ ∂
∂ X

(x pj
)|

X=X
ref

Meanwhile, for the original NLP the gradient of −∥xpj
−xCM∥ at the reference is indeed the same:

 −
x pj

ref −xC

∥x pj

ref −xC∥
⋅ ∂
∂X

(xpj
)|

X=X
ref

Comparison of KKT Conditions:

To summarize the above, the same set of constraints is active between the original NLP and

the iterative NLP defned in terms of X
ref . Among those that are active, the gradients are

identical. If the KKT conditions for the original NLP then there exist vectors of multipliers λ ,μ

such that

75

∇ J (X
ref)+λT ∇ h(X ref)+μT ∇ g (Xref)=0

h(X
ref)=0

g (Xref)≤0
μ≥0

μT
g (Xref)=0

X
ref is feasible in either formulation and thus h(Xref)=0, g (X ref)≤0 if and only if

hiter(X
ref)=0, giter(X

ref)≤0. At X
ref the same set of constraints are active and so gk (X

ref)=0 if

and only if giter , k(X
ref)=0 and thus μT

g (Xref)=0 if and only if μT
giter(X

ref)=0. Lastly:

∇ J (X
ref)+λT ∇ h(X ref)+μT ∇ g (Xref)=∇ Jiter (X

ref)+λT ∇ hiter(X
ref)+μT ∇ giter(X

ref)

since μk=0 for inactive constraints and the gradients match for the active constraints. Thus:

∇ J iter (X
ref)+λT ∇ hiter (X

ref)+μT ∇ g iter (X
ref)=0

hiter (X
ref)=0

g iter (X
ref)≤0

μ≥0

μT giter (Xref)=0

for the same multipliers as the original NLP. The implications are all if and only if statements, and

so X
ref satisfes the KKT conditions for the iterative NLP defned in terms of X

ref if and only if

satisfes the KKT conditions of the original NLP.

5.7 Convex Problem Approximation

5.7.1 Variables and Notation

 In order to state the approximation of the Iterative NLP as a convex program (CP), a

change of variables for the local CP approximation is needed. Let xi
ref

, vi
ref

, ti+1
ref defne the initial

state and coasting time of the arc beginning at patch point i of the previous (or initial) feasible

trajectory in the iteration process. Let x̃ i , ṽ i , t̃ i+1 be variations from these references variables so

76

that xi= x̃ i+xi
ref

, vi=ṽ i+vi
ref

,t i+1=t̃ i+1+ti+1
ref . The convex approximation will solve for the change

from previous iteration rather than the resulting variables themselves.

For each reference arc, let Φ i+1, i be the 6x6 state transition matrix (STM) corresponding

to the fow from starting to ending points defned by [xi+1
-

vi+1
-]T=φt i+1

([xi vi]
T). Partition the STM

into 3x3 submatrices so that:

Φ i+1, i=[Ai+1, i Bi+1, i

Ci+1, i Di+1, i
]

From the properties of STMs, [Marc07] to frst order, the result of propagating a small variation

near the reference is given by:

[x̃ i+1
-

ṽ i+1
-]≈[Ai+1, i Bi+1, i

C i+1, i Di+1, i
][x̃ i

ṽ i
]+[vi+1

−ref

ai+1
−ref] t̃ i+1

where ai+1

−ref is the acceleration calculated at (xi+1
−ref

, vi+1
−ref). The constraints below use this

approximation for the state change at the arc endpoint in terms of these small variation variables

X̃=[x̃0
T

ṽ0
T

t̃ 1 x̃1
T ⋯ x̃N−1

T
ṽN−1

T
t̃N]

T

.

5.7.2 Convex Cost Function

Recall the cost function for the NLP is given by

J fuel=∥ΔV 0∥+...+∥ΔVN∥

 =∥v0−v initial∥+∥v1−v1
-∥+...+∥vN−1−vN−1

- ∥+∥v �nal−vN

- ∥

or

Jenergy=∥Δ V 0∥
2+...+∥ΔV N∥

2

 =∥v0−v initial∥
2+∥v1−v1

-∥2+...+∥vN−1−vN−1
- ∥2+∥v�nal−vN

- ∥2

or

J fuel ,time= J fuel+ϵ(t1+...+tN) , Jenergy , time= Jenergy+ϵ(t1+...+tN)

Each term must now be expressed in terms of the new variables x̃ i , ṽ i , t̃ i . The frst term is a

77

special case as unlike the others this is a simple subtraction of vectors at the same position,

without an integration:

∥v0−vinitial∥=∥v0
ref+ṽ0−vinitial∥=∥ṽ0−(vinitial−v0

ref)∥

The other terms are of the form ∥vi+1−vi+1
- ∥. From the defnition of the new variables,

this means that vi+1=ṽ i+1+v i+1
ref . Let ṽ i+1

- be such that vi+1
- =ṽ i+1

- +v i+1
−ref . To approximate

ṽ i+1
- in terms of the new variables, we will use the STM based approximation:

[x̃ i+1
-

ṽ i+1
-]≈[Ai+1, i Bi+1, i

C i+1, i Di+1, i
][x̃ i

ṽ i
]+[vi+1

- ref

ai+1
- ref] t̃ i+1 .

This gives:

vi+1−vi+1
- ≈v i+1

ref +ṽi+1−v i+1
−ref −[Ci+1, i Di+1, i][x̃ i

ṽ i
]−ai+1

- ref
t̃ i+1

=[−Ci+1, i −Di+1, i −ai+1

- ref
I3x3][

x̃ i

ṽ i

t̃ i+1

ṽ i+1

]−(vi+1

−ref−v i+1

ref)

We then have the cost function:

J̃ fuel(X̃)=∥F0 X̃ −e0∥+∥F1 X̃ −e1∥+...+∥FN X̃ −eN∥

or

J̃ energy (X̃)=∥F0 X̃−e0∥
2+∥F1 X̃ −e1∥

2+...+∥FN X̃−eN∥
2

where for the fxed boundary condition velocities

F0=[03x3 I3x3 03x3 ⋯ 03x3] , e0=vinitial−v0
ref

FN=[03x3 ⋯ 03x3 −Ci+1, i −Di+1, i −ai+1

- ref] , eN=vN+1

−ref −v �nal

and for i+1=1, …, N

Fi+1=[03x3 ⋯ −Ci+1, i −Di+1, i −ai+1

- ref
03x3 I3x3 ⋯ 03x3] , ei+1=v i+1

−ref −vi+1

ref

78

Each Fi X−ei is an affne transformation. Note also that any norm in ℝn is convex.

[Boyd09] Thus ∥F i X−ei∥ is a composition of an affne function into a convex function; such a

composition is always convex.[Boyd09] The minimum fuel cost function is then a nonnegative

weighted sum (all weights being equal to +1) of convex functions, which preserves convexity. Note

that neither the original cost nor this approximation is quadratic, but a sum-of-norms fts into the

more general convex setting. For the minimum energy formulation, each

∥Fi X−ei∥
2=(F i X −ei)

T (Fi X−ei) has Hessian Fi
T
Fi≥0 , and so is convex by the second order

conditions on convexity. The total cost is then also a sum of convex functions, hence convex.

If total transfer time is a component of the cost, then:

ϵ ttotal=ϵ(t1+...+tN)

=ϵ(t̃ 1+...+ t̃N)+ϵ(t1

ref+...+tN

ref)

=Ft X̃−et

=∥Ft X̃−et∥

where

Ft=[01x6 ϵ ... 01x6 ϵ] , et=−ϵ(t1
ref+...+tN

ref)

resulting in cost functions:

J̃ fuel ,time (X̃)=∥F0 X̃−e0∥+∥F1 X̃−e1∥+...+∥FN X̃−eN∥+∥Ft X̃ −et∥
or

J̃ energy , time(X̃)=∥F0 X̃−e0∥
2+∥F1 X̃−e1∥

2+...+∥FN X̃−eN∥
2+Ft X̃−et

For the former, another composition of an affne function into a norm is added, so the result is still

convex. For the latter, an affne function is added, which also preserves convexity.

5.7.3 Epigraph Transformation of the Minimum Fuel Cost

An addition step is required if the desired form of the approximation is that of a SOCP.

These require a linear cost function, but allows inequalities defned by second order cones. By

79

introducing new variables σ0 ,... ,σN , we can convert the approximate CP to an SOCP by

replacing the cost function:

J̃ (X̃)=∥F0 X̃−e0∥+∥F1 X̃−e1∥+...+∥FN X̃−eN∥

with

J̃ SOCP(X̃ ,σ0 ,... ,σN)=σ0+...+σN

and adding additional constraints

∥F i X−ei∥<σ i , i=0,... ,N

which are all second order cones with c=0. This creates an equivalent problem and is known as an

epigraph transformation.[Boyd09]

If total transfer time is included, then this becomes

J̃ SOCP (X̃ ,σ0 , ... ,σN ,σ t)=σ0+...+σN+σ t

and adding additional constraints

∥Fi X−ei∥<σ i , i=0, ... ,N

∥Ft X−et∥<σt

5.7.4 Linear/Af"ne Equality Constraints

Continuity:

In terms of the small variation variables and STM approximations, both sides of this

equality constraint are approximated as follows for a feasible reference:

xi+1

−ref+[Ai+1, i Bi+1, i] [x̃ i

ṽ i
]+v i+1

−ref
t̃ i+1≈xi+1

−ref + x̃ i+1

- =xi+1

- =xi+1=xi+1

ref + x̃ i+1

By rearranging variables and recalling the continuity of the corrected reference trajectories for

patch points we have:

80

[Ai+1, i Bi+1, i v i+1

−ref −I3x3][
x̃ i

ṽ i

t̃ i+1

x̃ i+1

]=0.

Two special cases remain to keep the initial and fnal positions fxed. For the initial point,

this is done by simply adding the additional constraint x̃
0
=0. For the fnal patch point it is

necessary that changes result in no variation in the specifed fnal position. Since the fnal position

and velocity are not controls of the system, there is no need to include them as variables.

However, the equivalent of a x̃N=0 constraint may be expressed as

[AN , N−1 BN ,N−1 vN

- ref] [
x̃ i

ṽ i

t̃ i+1
]=0

Combining these cases results in the fnal, banded linear equality constraint:

[
I3x3 03x3 ⋯ 03x3

A1,0 B1,0 v1
- ref −I3x3 03x3 ⋯ 03x3

 ⋮ ⋱ ⋱ ⋱ ⋱ ⋮

03x3 ⋯ Ai+1, i Bi+1, i v i+1
- ref −I3x3 ⋯ 03x3

 ⋮ ⋱ ⋱ ⋱ ⋱ ⋮

03x3 ⋯ 03x3 AN ,N−1 BN ,N−1 vN

−ref
][

x̃0

ṽ0

t̃1

x̃1

⋮
x̃N−1

ṽN−1

t̃N

]=[
0

⋮

0
].

Each continuity constraint consists of three rows, and there is one such constraint per arc.

Combined with the constraint on the position of the initial condition, this results in 3x(N+1) rows.

Figure X gives a visual representation of how this constraint in the variation variables

related to continuity in the original problem: the predicted change to the endpoint (black) of arc i

from varying the initial conditions from the reference (teal) and coasting time must be equal to the

variation to the position (red) of the initial condition of arc i+1.

81

Figure 5.2: Requiring position variation of arc i+1 to equal predicted endpoint effect of varying arc i.

5.7.5 Convex Inequality Constraints

Min/Max coasting times:

First, begin with a form as a second order cone constraint. The maximum coasting time

constraint in the original problem t i+1≤tmax can be rewritten without approximation as

ti+1

ref +t̃ i+1≤tmax and so t̃ i+1≤tmax−t i+1

ref
. For the minimum, the original constraint is

−t i+1≤−t min and so in terms of the new variables is −t̃ i+1≤−t min+ti+1

ref
. These are affne

inequalities, and so are not only convex but are also instances of second order cone constraints.

Next, as a quadratic inequality, reframe tmin≤t i+1≤t max as ∣ti+1−
tmin+tmax

2 ∣≤ tmax−tmin

2
, or

rather (ti+1−
tmin+tmax

2)
2

≤(tmax−tmin

2)
2

. Then with ti+1=ti+1
ref + t̃ i+1 the result is a quadratic

inequality constraint (t̃ i+1+(ti+1
ref −

t min+tmax

2))
2

≤(tmax−tmin

2)
2

.

Maximum Thrust Magnitude:

Using the small variation variables and STM approximation of the dynamics, this is

approximated as:

∥vi−vi
-∥≈∥Fi X̃−ei∥≤ΔV max

82

where Fi , ei are defned in the description of the cost function. Formulated in this way we see

that this results in a set of Second Order Cone constraints. An equivalent quadratic constraint

comes from simply squaring this to get ∥Fi X̃−ei∥
2≤Δ Vmax

2 .

Minimum Thrust Magnitude:

In terms of the STM based approximations, this constraint may be derived as:

∥ζΔV i+1

ref −Δ Vi+1∥≤ζ∥ΔV i+1

ref ∥−ΔVmin

∥ζ(vi+1

ref −vi+1

−ref)−(v i+1−vi+1

-)∥≤ζ∥v i+1

ref −vi+1

−ref∥−ΔV min

∥ζ(−ei+1)−(Fi+1 X̃−ei+1)∥≤ζ∥−ei+1∥−ΔV min

∥(1−ζ)ei+1−Fi+1 X̃∥≤ζ∥ei+1∥−ΔV min

∥F i+1 X̃−(1−ζ)ei+1∥≤ζ∥ei+1∥−ΔV min

where Fi , ei are defned in the description of the cost function. Formulated in this way we see

that this results in a set of Second Order Cone constraints. An equivalent quadratic form is

∥F i+1 X̃−(1−ζ)ei+1∥
2
≤(ζ∥ei+1∥−ΔV min)

2
.

Impact Avoidance:

Let ti
p<t i+1 be the time at which the arc beginning at xi ,vi attains periapsis. Then using

the notation [xi (t p) vi (t p)]
T=φ

t i

p([xi vi]
T) for the state at periapsis, the iterative NLP constraint is

∥(η(xi

ref (t i

p ,ref)−xC)+xC)−xi (ti

p)∥≤η∥xi

ref (t i

p ,ref)−xC∥−RF .

To frst order, xi (t i

p)=xi

ref (t i

p, ref)+Ai

p
x̃i+Bi

p
ṽi+v i

ref (t i

p ,ref) t̃ i

p
, where here Ai

p
,Bi

p are the

submatrices of the STM of the trajectory with initial condition (xi

ref
,vi

ref) integrated forward only

to t i
p ,ref . t i

p is not itself a variable, so we will need a frst order expression for it in terms of the

83

actual variables. That is, fnd T i such that ti

p=t i

p ,ref +t̃ i

p≈ti

p , ref+T i X̃ so that t p≈T i X̃ and thus

xi (t p)=xi

ref (ti

p, ref)+Ai

p
x̃i+Bi

p
ṽi+v i

ref (t i

p ,ref)T i X̃

Consider the function F :ℝ6+1→ℝ ,F (x (0) , v (0) , t)=〈x (t)−xC , v (t)〉 . At the reference,

F (xi
ref

,v i
ref

,t p
ref)=0 since a closest approach satisfes the apsis condition. Checking the derivative

with respect to the time variable:

∂F

∂ t
= ∂

∂ t
〈x (t)−xC ,v (t)〉= ∂

∂ t
((x (t)−xC)T

v (t))

=(∂
∂ t

(x (t)−xC))v (t)+(x (t)−xC)(∂
∂t

v (t))

=v
T(t)v (t)+(x (t)−xC)a(t)

If Ξi

ref=v i

T (t i

p , ref)v i (ti

p, ref)+(xi (t i

p ,ref)−xC)T
ai (t i

p ,ref)=0 then the apsis condition has no frst order

change in t. If Ξi

ref=v i

T (t i

p , ref)v i (ti

p, ref)+(xi (t i

p ,ref)−xC)T
ai (t i

p ,ref)≠0 then by Implicit Function

Theorem there exists function ti

p(xi , vi) defned on an open set containing ti

p ,ref s.t.

F (xi ,vi ,t i

p(xi , vi))=0. Additionally, the derivative results of the theorem state that with:

∂ ti

p

∂ xi

=−(∂F

∂t
(xi

ref
,v i

ref
,t i

p ,ref))
−1 ∂F

∂xi

(xi

ref
,vi

ref
, ti

p , ref)=−
1

ξi

ref

∂F

∂ xi

(xi

ref
,v i

ref
,t i

p, ref)

∂ ti

p

∂vi

=−(∂F

∂ t
(xi

ref
, vi

ref
,t i

p ,ref))
−1 ∂F

∂v i

(xi

ref
,v i

ref
, ti

p ,ref)=−
1

ξi

ref

∂F

∂vi

(xi

ref
, vi

ref
, ti

p , ref)

Since

∂
∂ xi

((x (t)−xC)
T
v (t))= ∂

∂ xi

((x (t)−xC)
T)v (t)+(x (t)−xC)

T ∂
∂ xi

(v (t))

=(v i

ref (t i

p ,ref))T
Ai

p+(xi

ref (t i

p , ref)−xC)
T
Ci

p

∂
∂vi

((x (t)−xC)
T
v (t))= ∂

∂vi

((x (t)−xC)
T)v (t)+(x (t)−xC)T ∂

∂vi

(v (t))

=(v i

ref (t i

p ,ref))T
Bi

p+(xi

ref (ti

p, ref)−xC)
T
Di

p

84

we now have a frst order approximation of the time to periapsis:

t p≈t p

ref
, T i=0 if Ξi

ref =0,

t p≈t p

ref +T i X̃ otherwise, with

T i=
1

Ξi

ref [... 0 (vi
ref (t i

p, ref))T Ai
p+(xi

ref (t i
p ,ref)−xC)T C i

p (vi
ref (ti

p, ref))T Bi
p+(xi

ref (t i
p , ref)−xC)

T Di
p 0 ...]

where the nonzero terms multiply x̃ i , ṽ i .

Now all the terms are defned in the frst order approximation:

xi (t p)=xi

ref (ti

p, ref)+Ai

p
x̃i+Bi

p
ṽi+v i

ref (t i

p ,ref)T i X̃

The iterative NLP constraint ∥(η(xi

ref (ti

p ,ref)−xC)+xC)−xi (t i

p)∥≤η∥xi

ref (t i

p ,ref)−xC∥−RF is then

approximated by the Second Order Cone:

∥(η(xi

ref (ti

p ,ref)−xC)+xC)−(xi

ref (t i

p ,ref)+Ai

p
x̃ i+Bi

p
ṽ i+vi

ref (ti

p , ref)T i X̃)∥

=∥(η−1)(xi

ref (t i

p , ref)−xC)−(Ai

p
x̃i+Bi

p
ṽi+v i

ref (ti

p ,ref)T i X̃)∥≤η∥xi

ref (ti

p, ref)−xC∥−RF

With no variables on the right side of the equation, as with the other constraints we may square

both sides to get a quadratic constraint.

Trust Regions:

The accuracy of the state transition matrix based approximation depends on the variations

being contained within a “small enough” domain, referred to as a Trust Region. This may be

expressed as a set of inequality constraints on norms of the position, velocity, and time variations,

which are in fact very simple Second Order Cone constraints:

∥x̃ i∥≤ξi ,∥ṽ i∥≤υ i ,∣̃t i∣≤τ i

or quadratic constraints

∥x̃ i∥
2≤ξi

2
,∥ṽ i∥

2≤υi
2
, t̃ i

2≤τi
2

85

On one hand, the ξi ,υi ,τ i values should be tied to the estimate accuracy of previous

iterations and step size. However, for multibody systems with unstable dynamics, tying the trust

region size to the instability of the reference trajectory is helpful when continuity is desired. As a

result, take the values to be of the form of a tunable constant divided by the operator 2-norm of the

STM submatrices for ξi ,υi and the norm of the velocity for τ i . To frst order, this will keep the

arc starting point variation small enough that it will keep arc endpoints from varying more than the

tunable parameter. More formally:

ξi=ξ/∥Ai+1, i∥2,

υi=υ/∥Bi+1, i∥2,

τ i=τ/∥vi+1
−ref∥2

5.7.6 General Convex Program

Find variables:

X̃=[x̃0
T ṽ0

T t̃ 1 x̃1
T ⋯ x̃N−1

T ṽN−1
T t̃N]

T

That minimize the cost function:

J̃ fuel(X̃)=∥F0 X̃ −e0∥+∥F1 X̃ −e1∥+...+∥FN X̃ −eN∥

or

J̃ energy(X̃)=∥F0 X̃−e0∥
2+∥F1 X̃ −e1∥

2+...+∥FN X̃−eN∥
2

or

J̃ fuel ,time (X̃)=∥F0 X̃−e0∥+∥F1 X̃−e1∥+...+∥FN X̃−eN∥+∥Ft X̃−et∥
or

J̃ energy , time(X̃)=∥F0 X̃−e0∥
2+∥F1 X̃−e1∥

2+...+∥FN X̃−eN∥
2+Ft X̃−et

where

F0=[03x3 I3x3 03x3 ⋯ 03x3] ,e0=vinitial−v0

ref

FN=[03x3 ⋯ 03x3 −Ci+1, i −Di+1, i −ai+1

- ref] , eN=vN+1

−ref −v �nal

Fi+1=[03x3 ⋯ −Ci+1, i −Di+1, i −ai+1

- ref
03x3 I3x3 ⋯ 03x3] , ei+1=v i+1

−ref −vi+1

ref

Ft=[01x6 ϵ ... 01x6 ϵ] , et=−ϵ(t1
ref+...+tN

ref)

86

Subject to the linear/af�ne equality constraints:

Continuity: [
I3x3 03x3 ⋯ 03x3

A1,0 B1,0 v1
- ref −I3x3 03x3 ⋯ 03x3

 ⋮ ⋱ ⋱ ⋱ ⋱ ⋮

03x3 ⋯ Ai+1, i Bi+1, i v i+1
- ref −I3x3 ⋯ 03x3

 ⋮ ⋱ ⋱ ⋱ ⋱ ⋮

03x3 ⋯ 03x3 AN ,N−1 BN ,N−1 vN

−ref
][

x̃0

ṽ0

t̃1

x̃1

⋮
x̃N−1

ṽN−1

t̃N

]=[
0

⋮

0
].

and Convex / Second Order Cone Inequality Constraints:

Max coasting time: t̃ i+1≤tmax−t i+1
ref

, i=0,. .. ,N−1

Min coasting time: −t̃ i+1≤−tmin+ti+1
ref

, i=0,. .. ,N−1

Impact Avoidance:

∥(η−1)(xi

ref (t i

p ,ref)−xC)−(Ai

p
x̃i+Bi

p
ṽi+vi

ref (t i

p ,ref)T i X̃)∥≤η∥xi

ref (t i

p , ref)−xC∥−RF

Max thrust magnitude: ∥Fi X̃−ei∥≤Δ Vmax , i=0,. .. ,N−1

Minimum Thrust Magnitude: ∥F i+1 X̃−(1−ζ)ei+1∥≤ζ∥ei+1∥−ΔV min ,ζ>1, i=0,. .. ,N−1

Trust Regions:

∥x̃ i∥≤ξ/∥Ai+1, i∥2 , i=0,. .. ,N−1

∥ṽi∥≤υ/∥Bi+1, i∥2 , i=0,. .. ,N−1

 ∣̃t i∣≤τ /∥vi+1
−ref∥2 , i=0,. .. ,N−1

Thrust Direction Limit (optional): See Appendix B.

5.7.7 Minimum Fuel as a Second Order Cone Problem

Recall that due to the nature of the cost function and the fact the inequality constraints are

all Second Order Cones, the above problem is transformed into a Second Order Cone Problem via

the epigraph transformation:

Find variables:

X̃ SOCP=[x̃0
T ṽ 0

T t̃ 1 x̃1
T ⋯ x̃N−1

T ṽN−1
T t̃ N σ0 σ1 ... σN]

T

87

That minimize the linear cost function:

J̃SOCP (X̃ SOCP)=σ0+...+σN

J̃SOCP (X̃ ,σ0 , ... ,σN ,σ t)=σ0+...+σN+σ t

and adding additional constraints

∥Fi X−ei∥<σ i , i=0, ... ,N

∥Ft X−et∥<σt

Subject to the constraints of the convex problem above with the addition of:

∥F0 X̃−e0∥≤σ0

∥F1 X̃−e1∥≤σ1

...

∥FN X̃−eN∥≤σN

If this transfer time is included in a weighted combination, then this becomes

Find variables:

X̃ SOCP=[x̃0
T ṽ 0

T t̃ 1 x̃1
T ⋯ x̃N−1

T ṽN−1
T t̃ N σ0 σ1 ... σN σt]

T

That minimize the linear cost function:

J̃SOCP (X̃ SOCP)=σ0+...+σN+σt

Subject to the constraints of the convex problem above with the addition of:

∥Fi X−ei∥<σ i , i=0, ... ,N

∥Ft X−et∥<σt

5.7.8 Minimum Energy as a Quadratically Constrained Quadratic Problem

Find variables:

X̃=[x̃0
T ṽ0

T t̃ 1 x̃1
T ⋯ x̃N−1

T ṽN−1
T t̃N]

T

That minimize the cost function:

J̃ energy (X̃)=∥F0 X̃−e0∥
2+∥F1 X̃ −e1∥

2+...+∥FN X̃−eN∥
2

88

where F0=[03x3 I3x3 03x3 ⋯ 03x3] ,e0=vinitial−v0

ref

FN=[03x3 ⋯ 03x3 −Ci+1, i −Di+1, i −ai+1
- ref] , eN=vN+1

−ref −v �nal

Fi+1=[03x3 ⋯ −Ci+1, i −Di+1, i −ai+1

- ref
03x3 I3x3 ⋯ 03x3] , ei+1=v i+1

−ref −vi+1

ref

Subject to the linear/af�ne equality constraints:

Continuity: [
I3x3 03x3 ⋯ 03x3

A1,0 B1,0 v1
- ref −I3x3 03x3 ⋯ 03x3

 ⋮ ⋱ ⋱ ⋱ ⋱ ⋮

03x3 ⋯ Ai+1, i Bi+1, i v i+1
- ref −I3x3 ⋯ 03x3

 ⋮ ⋱ ⋱ ⋱ ⋱ ⋮

03x3 ⋯ 03x3 AN ,N−1 BN ,N−1 vN

−ref
][

x̃0

ṽ0

t̃1

x̃1

⋮
x̃N−1

ṽN−1

t̃N

]=[
0

⋮

0
].

Fixed total transfer time (optional): ∑
i=0

N−1

t̃ i+1=ttotal−∑
i=0

N−1

t i+1
ref

.

and Convex Quadratic Inequality Constraints:

Coasting time: (t̃ i+1+(t i+1
ref −

t min+tmax

2))
2

≤(tmax+tmin

2)
2

, i=0,. .. ,N−1

Impact Avoidance:

∥(η−1)(xi

ref (ti

p ,ref)−xC)−(Ai

p
x̃i+Bi

p
ṽi+vi

ref (t i

p ,ref)Ti X̃)∥
2

≤(η∥xi

ref (t i

p, ref)−xC∥−RF)
2

Max thrust magnitude: ∥Fi X̃−ei∥
2≤(ΔV max)

2
, i=0,. .. ,N−1

Min Thrust Magnitude: ∥F i+1 X̃−(1−ζ)ei+1∥
2
≤(ζ∥ei+1∥−ΔVmin)

2
,ζ>1, i=0,. .. ,N−1

Trust Regions:
∥x̃ i∥

2≤(ξ /∥Ai+1, i∥2)
2
, i=0,... ,N−1

∥ṽi∥
2≤(υ/∥Bi+1, i∥2)

2
, i=0,... ,N−1

t̃ i

2≤(τ/∥vi+1
−ref∥2)

2,
i=0,. .. ,N−1

If total transfer time is included in a weighted combination, then the cost function becomes

J̃ energy(X̃)=∥F0 X̃−e0∥
2+∥F1 X̃−e1∥

2+...+∥FN X̃−eN∥
2+Ft X̃−et

Ft=[01x6 ϵ ... 01x6 ϵ] , et=−ϵ(t1
ref+...+tN

ref)

89

5.7.9 Comparison of KKT Points

If Xref is a fxed KKT point of the iterative NLP, then it satisfes the following conditions:

∇ J iter (X
ref)+λT ∇ hiter(X

ref)+μT ∇ g iter (X
ref)=0

hiter(X
ref)=0

g iter(X
ref)≤0

μ≥0

μT giter(Xref)=0

Since the convex approximations are at least frst-order approximations at the reference trajectory,

the function values and gradients of the unapproximated J iter , g iter ,hiter are equal to those of their

convex approximations at this point, i.e. J iter(X
ref)= J̃ (0) ,∇ J iter(X

ref)=∇ J̃ (0) , etc. (Note that

using a quadratic form of the constraints will change the gradient magnitude but not the direction,

so the result will still hold) Substitution of these quantities into the above equations for this case

and noting that the reference trajectory is the origin of the convex approximation and so all of the

trust region constraints are inactive gives:

∇ J̃ (0)+λT ∇ h̃(0)+μ̂T ∇ g̃ (0)=0

h̃(0)=0

g̃ (0)≤0
μ̂≥0

μ̂T
g̃ (0)=0

Thus satisfaction of the KKT conditions at the reference for the iterative NLP is equivalent to

the satisfaction of the KKT condition at the reference for the approximate CP, with the same

multipliers for all constraints other than the trust regions, which are inactive. Thus the following are

equivalent:

X
ref is a KKT point of the original NLP

X
ref is a KKT point of the iterative NLP defned in terms of X

ref

X̃=0 is a KKT point of the CP defned in terms of X
ref

90

Figure 5.3: Despite approximation errors, since the cost and functions of the CP approximation match to

"rst order, the KKT conditions are identical.

5.7.10 KKT Points vs. Fixed Points

For regular points, it is a standard result that an optimum will satisfy the KKT conditions.

Convex problems have the unique property that a point that satisfes the KKT conditions is a global

optimum of that problem. Thus if X̃=0 is a KKT point of the CP defned in terms of X
ref

, which

means it is a KKT point of the original NLP, it is also a global optimum of that CP.

5.8 Avoiding Degenerate Solutions for Feasible Iterations

5.8.1 Motivation

The descent proof in Chapter 7 relies on the fact that within the CP approximation, a

nonzero change to the impulse vector direction or magnitude of an impulse constraint met with

equality at the reference will result in a descent direction of the constraint. In such a case, if an

optimal solution X̃ to the CP results in no change the the impulse yet changes the states of the

arcs involved, this may result in X̃ not being a feasible direction.

NLP <=

CP <=

NLP =

CP =

- grad J

91

5.8.2 De"ning the Projection Matrix

Examining the impulse constraints, the change to the impulse from the reference is given

by Fi X̃ , as can be seen in the inequality constraints:

Max thrust magnitude: ∥Fi+1 X̃ −ei+1∥≤ΔV max , i=0,. .. ,N−1

Minimum Thrust Magnitude: ∥F i+1 X̃−(1−ζ)ei+1∥≤ζ∥ei+1∥−ΔV min ,ζ>1, i=0,. .. ,N−1

We wish to identify the component of the change to the arcs states and coasting time which

preserves continuity but results in no change to the impulse. These components satisfy:

[Ci+1, i Di+1, i ai+1
- ref 03x3 −I3x3][

x̃ i

ṽ i

t̃ i+1

x̃ i+1

ṽ i+1

]=[00] ,[
x̃ i

ṽ i

t̃ i+1

x̃ i+1

ṽ i+1

]≠0.

Let F̂ i+1=[Ci+1, i Di+1, i ai+1
- ref 03x3 −I3x3] . Since the null space of F̂ i+1 is the

orthogonal complement to the range of F̂ i+1
T

, if Q̂i+1 is the orthogonal projection of these

variables onto the range of F̂ i+1
T

, then P̂i+1=I−Q̂i+1 will project onto its complement, hence

the null space of F̂ i+1. Since F̂ i+1
T is full rank, we may defne the desired projection operator as

P̂i+1=I−F̂ i+1

T (F̂ i+1 F̂ i+1

T)−1
F̂ i+1

T
. Let Pi+1=[... 0 P̂i+1 0 ...] be the projection matrix padded

with 0-matrices s.t.

Pi+1 X̃ =P̂ i+1 [
x̃ i

ṽ i

t̃ i+1

x̃ i+1

ṽ i+1

]
Thus this projection operator projects X̃ to the null space of F̂ i+1 and so Fi+1.

92

5.8.3 The Augmented Constraints

For both of the impulse constraints, the change to the current constraint function value is

Fi+1 X̃ . We want a new constraint function that includes changes to the underlying variables that

does not affect Fi+1 X̃ . Consider the following

Max thrust magnitude: ∥[Fi+1

P i+1] X̃−[ei+1

0]∥≤ΔV max

Minimum Thrust Magnitude: ∥[Fi+1

P i+1] X̃−(1−ζ)[ei+1

0]∥≤ζ∥ei+1∥−ΔV min

These are clearly second order cone constraints, or may be squared if quadratic constraints

are desired. The following analysis will use the maximum thrust magnitude as the example, though

the same steps apply to the minimum thrust magnitude.

 ∥[Fi+1

P i+1
] X̃−[ei+1

0]∥=∥[Fi+1 X̃ −ei+1

P i+1 X̃]∥=(∥Fi+1 X̃−ei+1∥
2+∥Pi+1 X̃∥2)

1 /2
<Δ Vmax

So, this new constraint is equivalent to the original with an additional term that penalizes

changes to the variables with the undesirable behavior. It is immediately clear that any point that

satisfes this constraint satisfes the original constraint, and that the reference is feasible in either

constraint.

5.8.4 Equivalence of Fixed KKT Points

We will refer to the SOCP/QCQPs with the original constraints as SOCP1, QCQP1 and

those with these new, augmented constraints as SOCP2, QCQP2. Consider the gradients of the

constraints in at the reference X̃=0.

93

∇ g̃SOCP2(0)=
[F i+1

Pi+1
]
T

[−ei+1

0]
∥[−ei+1

0]∥
=

−Fi+1
T

ei+1

∥−ei+1∥
=∇ g̃SOCP1(0)

∇ g̃QCQP2(0)=2 [Fi+1

Pi+1
]
T

[−ei+1

0]=−2F i+1

T (−ei+1)=∇ g̃QCQP1(0)

Thus constraints modifed in this way have the exact same gradients as the original

constraints at X̃=0. Thus X̃=0 is a KKT point of SOCP1/QCQP1 if and only if it is a KKT

point of SOCP2/QCQP2. This can be shown for any other constraints modifed in the same way,

such as the minimum impulse constraint, which is almost identical. It may also be applied to the

impact avoidance constraint, though of course the projection matrices will be different and the

terms reliant on Ai

p
,Bi

p
,T i terms. In Chapters 7 and 8, rather than include these bulkier terms

that are only applied in very limited cases, the CP1 formulation will be used, but it can now be

assumed without loss of generality that nonzero changes to [x̃ i
T ṽ i

T t̃ i+1
T x̃ i+1

T ṽ i+1
T]

T

will result

in a nonzero change in the vector magnitude or direction of the impulses or position involved in

these constraints.

5.9 Summary

The result of this chapter may be summarized into the following proposition:

Proposition 5.9:

For the given impulsive transfer optimization NLP, at each feasible reference value X
ref

there exist SOCP and QCQP approximations of the minimum fuel and minimum energy problems

respectively such that the following conditions hold:

94

i) X=X
ref (i.e. X̃=0) satisfes the KKT conditions of the SOCP/QCQP if and only if

X=X
ref satisfes the KKT conditions of the original NLP.

ii) If X=X
ref satisfes the KKT conditions of the original NLP, X̃=0 solves the

SOCP2/QCQP2.

iii) If X̃=0 solves the SOCP/QCQP and is a regular point, then X=X
ref satisfes the KKT

conditions of the original NLP.

95

Chapter 6

The Iterative Process

6.1 Introduction

For an onboard application in an emergency situation, there is the threat of an interrupt or

timeout during the calculation process. As a result, an algorithm should continue to produce a

sequence of feasible iterations once feasibility is established. This way, a feasible if non-optimal

transfer is available at each major iteration in case the process must be terminated. This means that

many standard methods, even those with provable convergence properties or global descent of a

Lagrangian based merit function, are not suffcient when applied to the impulsive trajectory design

problem. This includes popular SQP methods such as those used in SNOPT,[Gill02] as well as

what are referred to as Feasible SQP. [Lawr01] In the latter case this is due to the fact that feasible

refers only to nonlinear inequality constraints – nonlinear equality constraints such as continuity

are not guaranteed to be feasible. [Lawr96] The Two-Level Differential Corrector [Marc07] has the

structure of restoring feasibility at each major iteration, but the Level V reduction step lacks

enough structure to have produced a proof of cost descent after feasibility is restored. Additionally,

its use of the psuedoinverse to defne its minimization step means it is equality constraint focused

[Marc07] and as such is not strictly appropriate for the constraints listed in Chapter 5.

96

Sequential Convex Programming (SCP) is another iterative local optimization method.

[Boyd08] An early application came from optimal geometries in structural mechanics, but there

have also been recent applications in spacefight for optimal descent algorithms.[Caso13] It is

similar to SQP, with the exception that the more general set of CPs (including SOCPs or QCQPs)

are used as approximate subproblems during the iteration process. Unlike the SQP implementation

in SNOPT, for example, it is often implemented without a line search step,[Morg13, Caso13,

Augu12, Boyd08] though this is not always the case. [Zill04] Examples have shown very rapid

progress towards the optimum relative to other iterative methods, with fnal local convergence

rates more elusive.[Boyd08] For a scenario where quick progress to a reasonable trajectory is more

important than fnding the precise optimum, this is not necessarily an issue.

For the current application, in order to fulfll the requirement that each major iteration

provide a feasible solution, it will be shown in Chapter 7 that the ability to line search is necessary

in some cases. Conditions for which line search may be omitted for an iteration will also be

provided in Chapter 7. Thus both a line search and trust region only iteration sequence will be

provided in this chapter. More importantly though, a velocity adjustment step to restore continuity

similar to that of the Two-Level Corrector will be included. Indeed, it is perhaps just as accurate to

think of this process as a Two-Level Corrector with the ΔV minimization step replaced by a CP

and line search than as a SCP method with a correction step.

6.2 General Sequential Convex Programming

6.2.1 Basic Algorithm

This is a description of the basic trust region based approach described in [Boyd08].

Begin SCP Iteration

Step 1: From a reference state X
ref

, create an approximate CP:

97

Find change from the reference X̃

within the trust region, e.g. ∥X̃∥≤T

that minimizes convex cost f̃ = J̃

subject to convex inequality constraints g̃≤0

and af!ne equality constraints h̃=0

An example of this for this problem was provided in Chapter 5, but it not unique. Alternately, use

the convex approximations to create an unconstrained CP using a penalty function.

Find change from the reference X̃

within the trust region, e.g. ∥X̃∥≤T

that minimizes an augmented cost, e.g. f̃ = J̃+
1

2
γh∑ h̃ j

2(X̃)+
1

2
γg∑(g̃k

+)2(X̃)

where gk
+ (X̃)=max {0 , gk (X̃)}

The type of cost with penalty or merit function is not unique. This approach serves to reduce

constraint violations as well as cost without including constraints explicitly.

Step 2: Solve the approximate CP. Let X̃ be the change from the reference.

Step 3: IF f (X
ref+X̃)−f (X

ref)≥ϵ(f̃ (X̃)−f̃ (0)) ,0<ϵ<1

The actual cost (or cost with penalty, Lagrangian, etc.) decrease is less than a minimum

fraction of the expected decrease from the CP. Multiply trust region parameters by 0.5 or

similar fraction and return to Step 1.

ELSE

Take X
ref+X̃ as the new reference value, return to Step 1.

End SCP Iteration

This loop may also terminate if ∥X∥<step_tol , KKT conditions are evaluated, a maximum

number of iterations, etc., depending on the problem.

6.2.2 Suitability for this Application

While a CP approximation is less limited than a QP, the standard SCP method suffers from

98

the same issue as SQP in that it does not produce feasible iterations. This is true whether a full CP

approximation with constraints is used or some sort of merit function with penalty. There is synergy

between CP solutions and line search methods that can be exploited, since the frst-order

conditions on convexity imply the CP solution defnes a descent direction of the cost. Line search

alone cannot provide the feasible iterates needed, but as will be shown, the descent properties of

CP solutions may be combined with a continuity correction step similar to the Two-Level Corrector

below in order to make progress towards this goal.

6.3 Two-Level Differential Corrector

6.3.1 Method Description: Level I

This differential corrector consists of two distinct processes. The Level I process is used to

alter a discontinuous trajectory through iterative velocity adjustments in order to establish or re-

establish continuity. Using the notation of this work, when there is a discontinuity at a patch point,

the position of the incoming arc xi+1
- does not equal the position of the arc beginning at the

patch point, xi+1. The arc endpoint xi+1
- is defned in terms of the arc's initial conditions

xi ,v i , ti+1 , but since only the velocity is to be adjusted, a change to vi that results in a change

of (xi+1−xi+1
-) is sought. This cannot be solved directly, but recall that for small variations, we

can use the STM to defne

[δ xi+1
-

δvi+1
-]≈[Ai+1, i Bi+1, i

C i+1, i Di+1, i
][δ xi

δvi
]+[v i+1

−ref

ai+1
−ref]δ t i+1

or, since the position and coasting times are to remain fxed during this process,

δ xi+1
- ≈Bi+1, iδv i . Since a change in position equal to (xi+1−xi+1

-) is desired, a frst-order

approximation of the necessary velocity adjustment is δv i=Bi+1, i
−1 (xi+1−xi+1

-). As this result is

99

only approximate, the trajectory and the STMs are recalculated and the process repeated with the

hopefully smaller gap. This iterative process should be familiar as part of most correctors and

shooting method approaches to solving two point boundary value problems. [Sukh04] This does

not converge to a continuous trajectory in every case, and an issue with the Two-Level corrector (at

least for onboard use), is that the result of the Level II step below cannot be shown to only cause

correctable discontinuities.

6.3.2 Method Description: Level II

The Level II step adjust the positions and coasting time in order to reduce the total ΔV .

The derivations and their results are quite lengthy, but linear relationships between the ΔVi at

each patch point and changes to the relevant position and times are established.[Marc07] These

differ from the relationships given in the derivation of the SOCP approximations in Chapter 5

because the continuity constraint is not treated as an extra constraint but rather substituted directly

into the expressions used in the Level II step. To frst-order, and after these substitutions:

δΔV i=
∂ΔV i

∂xi−1

δ xi−1+
∂ΔV i

∂ t i

δ ti+
∂ΔV i

∂ xi

δ xi+
∂ΔV i

∂ti+1

δ t i+1+
∂ΔV i

∂ xi+1

δ xi+1+
∂Δ Vi

∂ ti+2

δ t i+2

δΔV i=[∂Δ Vi

∂ xi−1

∂Δ Vi

∂ ti

∂Δ Vi

∂ xi

∂ΔVi

∂ t i+1

∂ΔVi

∂xi+1

∂ΔV i

∂ t i+2
][
δ xi−1

δ ti

δ xi

δ ti+1

δ xi+1

δ ti+2

]=M b⃗

Other equality may be included as well after similar relationship are established, where (in the

case they are currently satisfed:

[δ ΔV i

0
⋮]=[

M

∂h j

∂ b⃗
⋮

] b⃗=M̂ b⃗

100

For some desired decrease δΔV i in the maneuver cost, the position and the coasting time

changes are specifed by the pseudo-inverse (i.e. min norm or least squares depending on of the

system is under or overconstrained):

b⃗=(M̂T
M̂)−1

M̂
T [δ ΔV i

0
⋮] or b⃗=M̂

T(M̂ M̂
T)−1[δΔ Vi

0
⋮]

Due to approximation errors, the result will be discontinuous, thus Level I correction is performed

to eliminate this.[Marc07] Then the process is repeated.

6.3.3 Suitability for this Application

In practice, when step sizes are modest, this method is successful and has been used in

mission design, including the Genesis mission [Lo01] and for moving trajectories from basic to

more complicated models [Koon08]. Compared to a standard SCP/SQP method, the step within

each major iteration of correcting for continuity is an improvement when feasible iterates are

required. This change plays a central role in the algorithm used here. On the other hand, the Level

II step defnition cannot be shown to lead to a correctable guess, indeed it has been observed not

to in some instances. Additionally, inequality constraints such as those listed in Chapter 5 pose a

problem. For more open ended mission design, the equality constraints such as beginning and

ending energy levels, periodicity, declination, etc. play the key role. Including these for each patch

point would indeed be diffcult in the method developed here, but the optimization method here is

to be applied when high level goals and target states satisfying them have been selected and the

need is to simply get there from the current spacecraft state.

6.4 Proposed Iterative Method

6.4.1 Algorithm with Line Search

101

Create an Solve
SOCP/QCQP

Unconstrained SQP:
Min Discontinuity

Velocity Correction

Feasible Reference

Cost decrease >
% of expectation?

Solution X̃
*

X
ref

X̃
*=0?

NO

YES

YES

NO

Decrease
Trust
Region

X̃
*

α0=1

X
ref

X
ref+α X̃

*+δv (α)

Result Feasible?
Cost decrease? NO

α=.5α

 New reference:

X
ref+α X̃

*+δv (α)

YES

LINE SEARCH

X
ref is a KKT point

of the original NLP.

102

This is a hybrid method where the step direction is defned by the solution to a convex

problem, but where a correction step has been added in order to restore continuity and the

feasibility of other constraints at the end of each major iteration. It is given in reference to the

particular problem at hand. Additionally, it uses the fact that if Xref is a KKT point of the original

problem will be a KKT point of the SOCP/QCQP, and since KKT satisfaction implies optimality in

convex problems,[Boyd09] the SOCP/QCQP will have a fxed point solution. The effectiveness of

this algorithm in providing feasible iterates with lower cost will be described in Chapter 7.

BEGIN SCP Major Iteration Loop

Step SCP1: From a feasible reference trajectory, calculate the trajectories resulting from the

specifed initial conditions xi

ref
, vi

ref
, t i+1

ref . Store the reference arc endpoint states xi+1

−ref
,vi+1

−ref as

well as the corresponding State Transition Matrix submatrices Ai+1, i , Bi+1, i ,C i+1, i ,Di+1, i .

Additionally, for any periapsis on the arc, store the corresponding state and coasting time to

periapsis xi

ref (t i

p, ref) ,vi

ref (t i

p, ref) ,t i

p ,ref
, and the corresponding STM submatrices Ai

p
,Bi

p
,C i

p
,Di

p .

Step SCP2: Use these quantities and the current trust region parameters to defne a SOCP (for the

min fuel problem) or QCQP (for min energy) approximation as defned in Chapter 5.

Step SCP3: Solve the SOCP/QCQP. Since the reference is feasible, there exists at least one feasible

point at X̃=0 and so a solution will exist.

Step SCP4:

IF X̃=0 or ∥X̃∥<step_tol

STOP. RETURN Xref as the fnal result of the optimization process.

103

ELSE IF J (X ref +X̃)− J (X ref)≥ϵ(J̃ (X̃)− J̃ (0)) ,0<ϵ<1

(i.e. the decrease in the NLP cost is less than some fraction of the estimated decrease)

Multiply trust region parameters by 0.5. Return to Step SCP2.

ELSE

Multiply trust region parameters by 1.1.

BEGIN Line Search Loop

Step LS1: Take X̃ as the search direction for backstepping (or other) line search. Initialize

search parameter α=1.

Step LS2: For current α value, consider point defned by X
ref+α X̃ . With only the vi

as variables, attempt correction to restore continuity. That is, fnd velocity adjustments

δv i such that the trajectory defned by xi (α)=xi

ref+α x̃ i , vi (α)=vi
ref +α ṽi+δvi (α) ,

ti (α)=ti
ref +α t̃ i is continuous, if possible. This may be done via Level I correction or

unconstrained SQP process with cost ∑
i=0

N

∥xi+1(α)−xi+1
- (α)∥2.

Step LS3:

IF continuity is restored, i.e. ∃δvi (α) s.t. ∑
i=0

N

∥xi+1(α)−xi+1
- (α)∥2=0

IF X
ref+α X̃+δv is within the feasible range and the Armijo conditions (or other)

are satisfed.

Take feasible, improved result as the new reference trajectory:

Set X
ref=X

ref+α X̃+δv . Go to Step SCP1.

ELSE

Set α=0.5α , return to step LS2.

ELSE

Set α=0.5α , return to step LS2.

104

Line search steps repeat until it ends with an improved, feasible result. Results of Chapter 7

proves this exists, but due to iteration limits or step size tolerance, if α<step_tol multiply

trust region parameters by 0.5. Return to Step SCP2.

END Line Search Loop

Repeat SCP iteration loop until next reference is found, step size is below tolerance and counted as

a fxed point, or in case of interrupt.

END SCP Major Iteration Loop

Repeat outer SCP iterations loop until step size is below tolerance and counted as a fxed point, or

in case of interrupt, or maximum iterations/calculation time is exceeded. Return current Xref.

6.4.2 Variant Algorithm Without Line Search

As is shown in Section 7.4.2, when the reference trajectory is strictly feasible, the line

search step may be eliminated and trust region size alone may be used to control the iteration

process. For iterations whose reference trajectory satisfes these conditions, the number of steps

could be reduced.

BEGIN SCP Major Iteration Loop

Step SCP1 (unchanged): From a feasible reference trajectory, calculate the trajectories resulting

from the specifed initial conditions xi

ref
, vi

ref
, t i+1

ref
. Store the reference arc endpoint states

xi+1

−ref
,vi+1

−ref as well as the corresponding State Transition Matrix submatrices

Ai+1, i , Bi+1, i ,Ci+1, i ,Di+1, i . Additionally, for any periapsis on the arc, store the corresponding

105

state and coasting time to periapsis xi

ref (t i

p, ref) ,vi

ref (ti

p, ref) ,t i

p ,ref
, and the corresponding STM

submatrices Ai

p
,Bi

p
,C i

p
,Di

p .

Step SCP2 (unchanged): Use these quantities and the current trust region parameters to defne

SOCP/QCQP approximation as defned in Chapter 5.

Step SCP3 (unchanged): Solve the SOCP/QCQP. Since the reference is feasible, there exists at least

one feasible point at X̃=0 and so a solution will exist.

Step SCP4:

IF X̃=0 or ∥X̃∥<step_tol

STOP. RETURN Xref as the fnal result of the optimization process.

ELSE IF J (Xref +X̃)≥ J (Xref)

Multiply trust region parameters by 0.5. Return to Step SCP2.

ELSE

Multiply trust region parameters by 1.1. Consider point defned by X
ref+X̃ . With only the

vi as variables, attempt correction to restore continuity. That is, fnd velocity adjustments δv i

such that the trajectory defned by xi=xi

ref + x̃ i , vi (α)=vi

ref +ṽ i+δvi , ti (α)=ti

ref+ t̃ i is

continuous, if possible. This may be done via Level I correction or unconstrained SQP process with

cost ∑
i=0

N

∥xi+1−xi+1
- ∥2 .

Step SCP5:

IF continuity is restored, i.e. ∃δvi s.t. ∑
i=0

N

∥xi+1−xi+1
- ∥2=0

106

IF X
ref+X̃ +δv is within the feasible range and Armijo conditions (or other) are satisfed.

Take feasible, improved result as the new reference trajectory:

Set X
ref=X

ref+X̃+δv . Go to Step SCP1.

ELSE

Multiply trust region parameters by 0.5. Return to Step SCP2.

ELSE

Multiply trust region parameters by 0.5. Return to Step SCP2.

Repeat SCP iteration loop until next reference is found, step size is below tolerance and counted as

a fxed point, or in case of interrupt.

END SCP Major Iteration Loop

Repeat outer SCP iterations loop until step size is below tolerance and counted as a fxed point, or

in case of interrupt, or maximum iterations/calculation time is exceeded; return current Xref.

6.5 Use of SQP in the Correction Phases

There are two places within the method where convergence to a true minimum is needed:

the initial correction from the arcs selected from the graph search itinerary to provide a feasible

guess for the optimizer, and the continuity correction step within the line search portion of the

above algorithm. Both of these problems may be described in terms of quadratic penalties on the

infeasible constraints in unconstrained subproblems. In both cases the “cost” is known ahead of

time and is 0. In such a case, the lack of feasible iterates of SQP that make it inappropriate for the

fuel cost minimization is no longer an issue, while the provable convergence rates are of beneft. It

might be the case that the initial guess is within the basin of convergence of a nonzero minimum,

107

a fact which another local method would not change. While it is guaranteed that the back stepping

line search will eventually yield test points for which the minimum discontinuity is 0, this is not

necessarily the case for every value of the line search parameter. If this is not the case, then the

parameter is simply reduced as described in the algorithm. Similarly, if the frst graph search based

result is not near a feasible solution, the link corresponding to an infeasible constraint can be

eliminated, resulting in another search and initial guess.

6.6 Summary

A trajectory optimization process has been proposed that blends the positive aspects of

Sequential Convex Programming and the Two-Level Differential Corrector. As will be shown in

Chapters 7 and 8, this approach combined with the structure of the SOCP/QCQP approximations

derived in Chapter 5 creates a globally convergent method (to local KKT points) that produces

feasible iterates. In providing feasible iterates with both nonlinear equality and inequality

constraints, it is able to satisfy the requirement to provide a feasible result in case of an onboard

system interrupt.

108

Chapter 7

Proof of Global Descent with Feasible Iterates

7.1 Introduction

In a fight environment, there is a possibility of a system interrupt triggered by various

system requirements including time limitations. The optimization process is the fnal stage of the

transfer design process, the most time consuming, and without a fnite iteration limit even with the

convergence results proved in this research. Therefore, it must be able to return a feasible transfer

whenever called for, not just at fnal convergence. This chapter proves that from a feasible initial

guess (Chapter 9), the major iterates of the process described in Chapter 6 will continue to be

feasible. In addition, the process is shown to be a global descent method on the space of feasible

transfers. These results are akin to those of [Miel70] and subsequent work, but in the context of

impulsive transfer optimization (hence without the additional structure of variational methods for

continuous controls) and with the high speed, wider constraint set, and fnite iterations of SOCP

defned step directions. Lastly, results on problem simplifcation using unconstrained recorrection

and the elimination of the line search step are provided.

109

7.2 Theorem Statement and Assumptions

Theorem:

Let the cost and constraints considered be those defned in Chapter 5. Then given the

assumptions A1, A2 below, if Xref satisfes the Karush-Kuhn-Tucker (KKT) conditions of the original

NLP, the algorithm defned in Chapter 6.4.1 will terminate as a fxed point of the SCP process.

Otherwise, the next major iteration is also feasible transfer with a strictly lower cost.

Figure 7.1: Conceptual diagram of the central question: Does a correction to the CP solution exist that

yields a lower cost than the reference after eliminating approximation errors.

Assumption 1: Without loss of generality, it is assumed that the matrix B
i+1, i , the upper

right quadrant of the State Transition Matrix, is invertible for each arc.1

Assumption 2: It is also assumed that the initial guess for the process satisfes one of the

following, in decreasing order of strength of assumption: the Linear Independence Constraint

Qualifcation (LICQ), the Mangasarian-Fromovitz Constraint Qualifcation (MFCQ), Slater's

Condition, or the Constant Rank / Extended Mangasarian-Fromovitz Constraint Qualifcation

CP Solution

Reference

Uncorrected

Expectation

Next Desired Iteration:

Does it exist?
Is it better than the reference?

110

(CRMFCQ).[Krug14]

However, should even this mild assumption not hold, we could still state the following: If

X
ref satisfes the Karush-Kuhn-Tucker (KKT) conditions of the original NLP, the algorithm defned in

Chapter 6.1.4 will terminate as a fxed point of the SCP process. Otherwise, the next major

iteration, if a nonzero step is taken, is also feasible transfer with a strictly lower cost.

7.3 Proof

7.3.1 Continuity Only

In order to more clearly illustrate the central principles of the proof, a simple case where

continuity is the only constraint is given frst. Assume we begin with a feasible initial guess, i.e. a

position continuous but not locally optimal transfer between two given states, consisting of a set of

N arcs and up to N+1 impulses.

Step 1: X ref
 is a KKT point of original NLP if and only if it is a fxed point of the CP.

As summarized in Section 5.9, Xref is a KKT point of the original NLP if and only if X̃=0 is

a KKT point of the CP defned in terms of Xref. If X̃=0 is KKT point of the CP, satisfying the KKT

conditions is suffcient for global optimality of the CP. [Boyd09 244] Additionally, if X̃=0 is a

regular point, then if X̃=0 solves the CP it satisfes the KKT conditions. By assumption, the initial

guess is a regular point, which as shown in Appendix A-Proposition A.4, implies X̃=0 is also a

regular point for every iteration. Thus if Xref is a KKT point of the original NLP, then the process will

terminate if and only if X̃=0 is an optimum solution. Even without regularity of X̃=0, we

could still state that if Xref is a KKT point of the original NLP, X̃=0 is an optimum solution of the

CP.

111

Step 2: Equivalence of Descent Directions

Since the CP cost function is a frst order approximation of the original cost function at the

reference trajectory, a descent direction of the CP cost function is a descent direction of the

original cost function.

Step 3: CP Solution Defnes a Descent Direction

Unless at a stationary point, any step taken by solving the CP decreases the CP cost

function. Combining this with frst order conditions on convex functions [Boyd09] results in:

∇ J̃ (X
ref) X̃≤ J̃ (X

ref+X̃)− J̃
C
(X

ref)<0.

Thus X̃ is a descent direction for the CP cost function, and so is a descent direction of the

original cost function by Step 2.

Figure 7.2: The (rst-order necessary conditions on convexity imply a decrease to the cost function in a

speci(ed direction makes that a descent direction of the function.

Step 4: Order of the Uncorrected Cost Decrease

Since X̃ is a descent direction of the original cost function, there exists a range of α s.t.

Not convex Convex

112

J (X ref+α X̃)< J (X
ref) and this decrease is O(α) due to being a frst order descent direction.

Note that this cost is before correction has restored continuity, thus does not yet correspond to a

feasible trajectory.

Figure 7.3: The CP solution de(nes a descent direction for the cost.

Step 5: Existence of Continuous Family Defned by CP Direction Plus Velocity Correction

For each patch point, between arcs i and i+1, let κ :ℝ4 →ℝ3 be given by:

κ
i
(α

i
,δv

i
)=x

i+1
- (α

i
,δv

i
)−x

i+1(αi
)=x (x

i

ref+α
i
x̃

i
,v

i

ref+α
i
ṽ

i
+δv

i
,t

i+1
ref +α

i
t̃

i+1)−(x
i+1
ref +α

i
x̃

i+1).

Figure 7.4: The discontinuity function, with inputs of the line search parameter in the CP solution direction

and a velocity adjustment, and outputs the vector discontinuity.

This function defnes the gap between arc endpoints, which means there is position continuity

when the function value is the 0 vector. When starting from a continuous reference trajectory

α

ΔJ

α=0, δv=(0,0,0)

α=0.5, δv=(0,0,0)

α=1.0, δv=(0,0,0)

Reference

CP Solution

Boundary
Condition

α=1.0, δv=(?,?,?)

Discontinuity
Vectors, κ

113

(α
i
,δv

i
)=(0, 0⃗) , and this function satisfes κ

i
(0,0⃗)=x (x

i

ref
, v

i

ref
,t

i+1
ref)−(x

i+1
ref)=x

i+1
- ref−(x

i+1
ref)=0⃗ .

Also, at (α
i
,δv

i
)=(0, 0⃗) we have

∂κ
i

∂(δv
i
)
(0,0⃗)=B

i+1,1 , which by assumption is invertible.

Finally, note that κ is continuously differentiable everywhere in the domain.

Therefore the conditions of the Implicit Function Theorem are satisfed.[Lee03] Thus, there

exist open sets U
i
⊂ℝ ,V

i
⊂ℝ3 such that α

i
=0∈U

i
,δv

i
=0⃗∈V

i
and a unique, continuously

differentiable function γ
i
:U

i
→V

i
such that:

{(α
i
,γ

i
(α

i
)):α

i
∈U

i
}={(α

i
,δv

i
)∈U

i
×V

i
:κ

i
(α

i
,δv

i
)=0}.

This means that in a neighborhood of the reference trajectory for each αi there exists a unique

velocity correction δv
i
(α

i
)=γ

i
(α

i
) such that taking a step defned by α x̃

i
,α t̃

i+1 for position

and coasting time and α ṽ
i
+δv

i
(α) for velocity results in a continuous trajectory.

Figure 7.5: The Implicit Function Theorem guarantees there is a range of step size values where a velocity

correction yields continuity.

CP Solution:

Reference: α=0, δv=(0,0,0)

 Range of α
 in IFT

α=1.0, δv=(0,0,0)

α=0.5, δv=δv(0.5)
is continuous

α=0.5, δv=0
Is discontinuous

114

Step 5: Determining the Order of the Correction

The Implicit Function Theorem also provides a formula for the derivative of γ
i
:

∂ γ
i

∂α
i

(0)=−(∂κ
i

∂(δv
i
)
(0,0⃗))

−1 ∂κ
i

∂α
i

(0,0⃗).

From the defnition of κ, the second term is
∂κ

i

∂α
i

(0, 0⃗)=[Ai+1,1 B
i+1,1 v

i+1
−ref][x̃

i

ṽ
i

t̃
i+1

]− x̃
i+1. However,

since this is precisely the CP equality constraint, this quantity is the 0-vector, and so
∂ γ

i

∂α
i

(0)=0.

Thus, the Implicit Function Theorem derivative result shows that the magnitude of the velocity

correction vector is ∥δv (α
i
)∥=∥γ(α

i
)∥=o(α

i
).

Figure 7.6: The derivative of the velocity adjustment w.r.t. the parameter is 0.

Step 7: Determining the Order of the Cost Function Increase due to Correction

It is probable that the correction terms δv
i

will increase the cost function value above

that of the uncorrected values at X
ref+ᾱ X̃ . Note that each δv

i
contributes to the cost at the

beginning and end of arc i.

α

||δv||

115

For the Minimum Fuel Problem:

At the beginning of an arc:

c
i

beg(δv
i
(a

i
))=∥v

i

ref+α
i
ṽ

i
+δv

i
(α)−v

i

- ref∥−∥v
i

ref+α
i
ṽ

i
−v

i

- ref∥

 ≤∥δv
i
(α

i
)∥+∥v

i

ref+α
i
ṽ

i
−v

i

- ref∥−∥v
i

ref+α
i
ṽ

i
−v

i

- ref∥ by the triangle inequality

 =∥δv
i
(α

i
)∥

At the end of an arc:

c
i

end(δv
i
(α

i
))=∥v (x

i

ref+α
i
x̃

i
,v

i

ref+α
i
ṽ

i
+δv

i
(α

i
) , t

i+1

ref +α
i
t̃

i+1)−v
i+1

ref ∥

 −∥v (x
i

ref+α
i
x̃

i
,v

i

ref+α
i
ṽ

i
,t

i+1
ref +α

i
t̃

i+1)−v
i+1
ref ∥

 =∥v (x
i

ref+α x̃
i
,v

i

ref+α ṽ
i
, t

i+1

ref +α t̃
i+1)+D

i+1, i δv
i
(α

i
)+o(∥δv (α

i
)∥)−v

i+1

ref ∥

 −∥v (x
i

ref+α x̃
i
,v

i

ref+α
i
ṽ

i
,t

i+1

ref +α t̃
i+1)−v

i+1

ref ∥

 ≤∥D
i+1, i δv

i
(α

i
)∥+o(∥δv (α

i
)∥) by the triangle inequality and canceling terms

 ≤∥D
i+1, i∥∥δv

i
(α

i
)∥+o(∥δv (α

i
)∥) by the defnition of the matrix operator norm.

As a result, the total increase to the uncorrected cost for each correction term is:

c
i
(δv

i
(α

i
))=c

i

beg(δv
i
(α

i
))+c

i

end(δv
i
(α

i
))

 ≤∥δv
i
(α

i
)∥+∥D

i+1, i∥∥δv
i
(α

i
)∥+o(∥δv (α

i
)∥)

 =(1+∥D
i+1, i

∥)∥δ v
i
(α

i
)∥+o (∥δ v (α

i
)∥)

Thus the total for N arcs is bounded from above by:

∑ c
i
(δv

i
(α

i
))≤N (1+max

i
(∥D

i+1, i∥))max
i
(∥δv

i
(α

i
)∥)+o (max

i
(∥δv (α

i
)∥))

But since ∥δv (α)∥=o(α) for any arc from Step 5, including the maximum, and since the

N (1+max
i
(∥D

i+1, i∥)) term is a constant, we have that the total increase to the cost from the

velocity corrections is ∑ c
i
(δv

i
(α

i
))=o(α).

116

Figure 7.7: Derivative of the increase to the cost function w.r.t. the parameter is 0 since it is the same order

as the velocity adjustment magnitude.

For the Minimum Energy Problem:

At the beginning of an arc:

c
i

beg(δv
i
(a

i
))=∥v

i

ref+α
i
ṽ

i
+δv

i
(α)−v

i

- ref∥2−∥v
i

ref+α
i
ṽ

i
−v

i

- ref∥2

=〈v
i

ref+α
i
ṽ

i
+δv

i
(α)−v

i

- ref
, v

i

ref+α
i
ṽ

i
+δv

i
(α)−v

i

- ref 〉−〈v
i

ref+α
i
ṽ

i
−v

i

- ref
,v

i

ref+α
i
ṽ

i
−v

i

- ref 〉

=〈δv
i
(α) ,δv

i
(α)〉+2 〈 δv

i
(α) , v

i

ref+α
i
ṽ

i
−v

i

- ref〉+〈v
i

ref+α
i
ṽ

i
−v

i

- ref
, v

i

ref+α
i
ṽ

i
−v

i

- ref 〉

−〈v
i

ref+α
i
ṽ

i
−v

i

- ref
, v

i

ref+α
i
ṽ

i
−v

i

- ref 〉

=〈δv
i
(α) ,δv

i
(α)〉+2 〈δv

i
(α) , v

i

ref+α
i
ṽ

i
−v

i

- ref〉

=〈δv
i
(α) ,δv

i
(α)〉+2 〈 δv

i
(α) ,α

i
ṽ

i
〉+2 〈δv

i
(α) ,v

i

ref−v
i

- ref〉

≤∥δv
i
(α)∥2+2∥δv

i
(α)∥∥α

i
ṽ

i
∥+2∥δv

i
(α)∥∥v

i

ref−v
i

- ref∥

which since the frst two terms are o (∥δv
i
(α)∥) , and the last term is the norm of the correction

multiplied by a constant, this whole term is O(∥δv
i
(α)∥)=o(α).

At the end of an arc:

c
i

end(δv
i
(α

i
))=∥v (x

i

ref+α
i
x̃

i
,v

i

ref+α
i
ṽ

i
+δv

i
(α

i
) ,t

i+1

ref +α
i
t̃

i+1)−v
i+1

ref ∥2

α

 ΔJ

117

 −∥v (x
i

ref +α
i
x̃

i
, v

i

ref+α
i
ṽ

i
, t

i+1

ref +α
i
t̃

i+1)−v
i+1

ref ∥2

 =∥v (x
i

ref +α x̃
i
, v

i

ref +α ṽ
i
,t

i+1

ref +α t̃
i+1)+D

i+1, i δv
i
(α

i
)+o (∥δv (α

i
)∥)−v

i+1

ref ∥2

 −∥v (x
i

ref +α x̃
i
, v

i

ref+α
i
ṽ

i
, t

i+1
ref +α t̃

i+1)−v
i

ref∥2

which after applying the bi-linearity of the inner product and canceling like above

=〈D
i+1, i δv

i
(α

i
)+o (∥δv (α

i
)∥) ,D

i+1, i δv
i
(α

i
)+o (∥δv (α

i
)∥)〉

+2 〈D
i+1, i

δv
i
(α

i
)+o (∥δv (α

i
)∥) ,v (x

i

ref+α x̃
i
,v

i

ref+α
i
ṽ

i
, t

i+1
ref +α t̃

i+1)−v
i

ref 〉

=〈D
i+1, i δv

i
(α

i
) ,D

i+1, i
δv

i
(α

i
)〉+2 〈D

i+1, i δv
i
(α

i
) , v (x

i

ref+α x̃
i
,v

i

ref +α
i
ṽ

i
,t

i+1
ref +α t̃

i+1)−v
i

ref 〉

+o (∥δv (α
i
)∥)

≤∥D
i+1, i∥

2∥δv
i
(α

i
)∥2+2 〈D

i+1, i δv
i
(α

i
) , v (x

i

ref+α x̃
i
,v

i

ref +α
i
ṽ

i
,t

i+1

ref +α t̃
i+1)−v

i

ref 〉+o(∥δv (α
i
)∥)

=2 〈D
i+1, i

δv
i
(α

i
) ,v (x

i

ref+α x̃
i
, v

i

ref+α
i
ṽ

i
,t

i+1

ref +α t̃
i+1)−v

i

ref 〉+o (∥δv (α
i
)∥)

=2 〈D
i+1, i

δv
i
(α

i
) ,v (x

i

ref+α x̃
i
, v

i

ref+α
i
ṽ

i
, t

i+1

ref +α t̃
i+1)−v

i

- ref+v
i

- ref−v
i

ref 〉+o (∥δv (α
i
)∥)

=2 〈D
i+1, i

δv
i
(α

i
) ,v (x

i

ref+α x̃
i
, v

i

ref+α
i
ṽ

i
,t

i+1
ref +α t̃

i+1)−v
i

- ref 〉

+2 〈D
i+1, i δv

i
(α

i
) ,v

i

-ref −v
i

ref 〉+o(∥δv (α
i
)∥)

≤2∥D
i+1, i

δv
i
(α

i
)∥∥v (x

i

ref +α x̃
i
, v

i

ref +α
i
ṽ

i
, t

i+1
ref +α t̃

i+1)−v
i

-ref∥

+2∥D
i+1, i δv

i
(α

i
)∥∥v

i

- ref−v
i

ref∥+o(∥δv (α
i
)∥)

≤2∥D
i+1, i

∥∥δv
i
(α

i
)∥∥v (x

i

ref +α x̃
i
, v

i

ref+α
i
ṽ

i
, t

i+1
ref +α t̃

i+1)−v
i

-ref∥

+2∥D
i+1, i∥∥δv

i
(α

i
)∥∥v

i

- ref−v
i

ref∥+o(∥δv (α
i
)∥)

≤O(∥δv
i
(α

i
)∥)O(α)+O(∥δv (α

i
)∥)+o(∥δv (α

i
)∥)

≤O(∥δv (α
i
)∥)

Thus the increases to the cost due to each correction term is O(∥δv
i
(α)∥)=o(α). As was the

case for the min fuel problem, the sum of o (α) terms is still o (α).

Step 8: Change to the Cost After Correction

From Step 4 the decrease in the cost function is O(α) and from Step 7 the increase to

118

this value to restore continuity is o (α). Thus there exists some ᾱ>0 such that if

α
i
<ᾱ ,i=1,... ,N , then J (X ref)− J (X ref+α X̃)>∑ c

i
(δv

i
(α

i
)) and so:

J (X ref)> J (X ref+α X̃)+∑ c
i
(δv

i
(α

i
))=J (X

ref+α X̃+δ⃗v)

This means that the corrected transfer has strictly lower cost than the previous iteration after

continuity has been restored. Since a range of solutions exists, a backstepping or other inexact line

search method may be performed [Luen08], terminating when the continuity correction succeeds

and the resulting cost is decreased suffciently.

Therefore, at every outer iteration, this process leads to a feasible transfer with a decrease

in the cost for any non-optimal but feasible initial guess. Since the result of each step is itself is

feasible, this result shows the iterative process leads to global descent with feasible iterates.

Figure 7.8: The zero derivative to the correction cost and the negative derivative of the cost decrease

before correction w.r.t. the search parameter imply the total cost after correction has strictly negative

derivative w.r.t. the search parameter. Thus an open solution set exists.

α

 ΔJ

Uncorrected Cost Decrease

Correction Cost

Cost After Correction

119

Note that if the cost is a weighted sum of fuel/energy terms and total transfer time, then

since the correction is only to velocity and not the coasting times, the transfer time terms will be

unaffected by the correction process.

7.3.2 Additional Constraints

The above proof considered the case where the only constraint is continuity. The additional

constraints must be shown to satisfy the above method.

Projection and Trust Region Constraints:

These are helper constraints for the CP only which have no corresponding constraints in the

NLP that need to hold.

Time Constraints:

Min/max coasting time, and fxed total transfer time constraints are satisfed automatically.

This is because these constraints are on the variables themselves, so no approximation is involved.

Thus if they are feasible in the CP they are feasible in the NLP. They are also unchanged in the

velocity correction process. Due to their convex nature, the inequalities are satisfed for any value

of alpha from 0 to 1, due to the defnition of a convex set. For the fxed total transfer time, as the

constraint is linear, then clearly any value of alpha from 0 to 1 as well.

Maximum Delta V Per Maneuver:

Recall this constraint is approximated by

∥[... −C
i+1, i −D

i+1, i −a
i+1
ref 03x3 I3x3 ...] X̃+(vi+1

ref −v
i+1
- ref)∥≤ΔV

max
.

Note that though this constraint can made quadratic by squaring both sides, here it is in the format

of a Second Order Cone constraint. Regardless, it must be determined that there is a range of

feasible solutions in the original problem when moving in the direction of the CP solution.

If the reference solution satisfed the inequality constraint strictly, then there is some open

120

ball with radius r around the reference where the constraint is still strictly satisfed. Then for line

search parameter in the range 0<α
i
<min(ᾱ , r) there will be a decrease to the cost after

restoring continuity and while strictly satisfying this constraint. This is true for any inequality

constraint that is strictly satisfed at the reference.

Turn now to the case where the constraint is met with equality at the reference. In this case,

the CP constraint function value must satisfy g̃ (X
ref+X̃)≤ g̃ (X

ref)=0. The augmented constraints

of Section 5.8 guarantee that a nonzero change in the variables involved in the constraint will lead

to a nonzero change in the impulse. In its quadratic form, the constraint is strictly convex w.r.t.

changes in the impulse, thus the direction defned by the CP solution is a descent direction since

∇ g̃ (X ref) X̃<g̃ (X
ref+X̃)− g̃ (X ref)≤0 by the FONC for strict convexity. In the Second Order Cone

form above, any decrease in the constraint function implies the direction of the CP solution is a

descent direction since ∇ g̃ (X ref) X̃≤ g̃ (X
ref+X̃)− g̃ (X ref)<0. The last case is when the CP

solution satisfes g̃ (X
ref+X̃)= g̃ (X

ref)=0. For convex but not strictly convex functions, it cannot

be deduced that the CP solution defnes a descent direction as only ∇ g̃ (X ref) X̃≤ g̃ (X
ref+X̃)=0 is

guaranteed. However, a further analysis of this particular constraint shows that the CP solution

defnes descent direction even in this case. Consider that if both the reference and the CP solution

meet the CP maximum norm constraint, both points distinct points residing on the boundary of a

closed ball. The segment connecting these two points is a chord which is interior to the ball

everywhere but the endpoints. Thus while g̃ (X
ref+X̃)= g̃ (X

ref) , it must be the case that

g̃ (X
ref+

1

2
X̃)≤ g̃ (X

ref). From this, ∇ g̃ (X ref)
1

2
X̃< g̃ (X

ref+
1

2
X̃)− g̃ (X

ref)<0 and so indeed the CP

solution does still defne a descent direction.

When the constraint was met with equality at the reference, unless the variables involved

121

are unchanged, the CP solution defnes a descent direction of the original constraint function.

Thus, like with the cost, the decrease to the original constraint function g when moving in the CP

solution direction is O(α
i
). As was shown in the cost function analysis, the increase in single

maneuver magnitude due to the velocity correction is o (α
i
). Thus there is some β

i
>0 for each

maneuver such that moving in the CP direction results in a decrease to the constraint function of

the original problem. Take β̄=min{β
i
}. Then there exists a range of α values such that if

0<α
i
<min{ᾱ ,β̄}, i=1,. .. ,N , then both:

J (X ref)> J (X ref+α X̃+δ⃗v)

gΔV
max

(X ref)>gΔV
max

(X
ref+α X̃+δ⃗ v)

Thus there is a range of step sizes where both the cost and constraint function are reduced when

continuity is reestablished, i.e. there is descent of the cost function while preserving feasibility.

Minimum Delta V per Maneuver

The analysis is identical to the above, both being ball constraints on the velocities.

Impact Avoidance

As with the maximum impulse magnitude constraint, if the reference satisfes the constraint

strictly, then there is some open ball with radius r around the reference where the constraint is still

strictly satisfed in the NLP. Then for line search parameter in the range 0<α
i
<min(ᾱ , r) there

will be a decrease to the cost after restoring continuity and while strictly satisfying this constraint.

Also, just like the maximum impulse constraint, it can be shown that any nonzero step from the

reference value is a descent direction for the constraint function. The same conclusion will hold if

the change to the distance to the center of mass due to correction is o (α
i
).

Since ∥δv (α
i
)∥=∥γ(α

i
)∥=o(α

i
) it suffces to show that the change to the distance to the

center of mass due to the velocity correction, let's call it q
i
(δv

i
(α

i
)) , is of the same order as

122

∥δv (α
i
)∥.

q
i
(δv

i
(α

i
))=∥x (x

i

ref+α
i
x̃

i
, v

i

ref+α
i
ṽ

i
+δ v

i
(α

i
) ,t

i

p)−x
i

ref (t
i

p, ref)∥

 −∥x (x
i

ref+α
i
x̃

i
,v

i

ref+α
i
ṽ

i
, t

i

p)−x
i

ref (t
i

p ,ref)∥

 =∥x (x
i

ref+α x̃
i
,v

i

ref+α ṽ
i
, t

i

p)+B
i

pδv
i
(α

i
)+o(∥δv (α

i
)∥)−x

i

ref (t
i

p, ref)∥

 −∥x (x
i

ref+α x̃
i
,v

i

ref+α
i
ṽ

i
, t

i

p)−x
i

ref (t
i

p ,ref)∥

 ≤∥x (x
i

ref+α x̃
i
,v

i

ref+α ṽ
i
, t

i

p)−x
i

ref (t
i

p , ref)∥+∥B
i

pδ v
i
(α

i
)+o (∥δv (α

i
)∥)∥

 −∥x (x
i

ref+α x̃
i
,v

i

ref+α
i
ṽ

i
, t

i

p)−x
i

ref (t
i

p ,ref)∥

 =∥B
i

pδv
i
(α

i
)∥+o (∥δv (α

i
)∥)

 ≤∥B
i

p∥∥δv
i
(α

i
)∥+o(∥δv (α

i
)∥) by the defnition of the matrix operator norm.

Thus we have that q
i
(δv

i
(α

i
)) is bounded by a constant multiplied by ∥δv (α

i
)∥, and so they

are the same order, which has been shown to be o (α
i
). Since the convex subproblem solution is

a descent direction of the constraint function in this case, the function value decreases O(α
i
) ,

but can increase due the correction term at o (α
i
). Thus there is a range of search values where

the constraint function decreases in the NLP. Intersecting this open set of values with those needed

for the other constraints and cost descent gives an open set where all are satisfed.

Maximum Thrust Angle:

See Appendix B.

Summary

Additional constraints have been shown to either be unaffected by the velocity correction,

or for each g whose terms change from the reference, there exists an αg such that α<αg guarantees

the constraint holds after correction. Since there are a fnite number of constraints and one such

value for the cost function, for 0<α<α
desc

=min{α
g1

,α
g2

,... , ᾱ} the post-correction transfer is

123

feasible and has lower cost.

7.4 Additional Algorithmic Implications

7.4.1 Simpli(cation of Subproblems Solved for Better Performance

Without the knowledge gained from the investigations involved in this project, the initial

structure for each major iteration was solving a CP with total ΔV as the cost to determine the

search direction, and then a sequence of constrained CPs with discontinuity as the cost at each

candidate of the line search to reestablish feasibility. An important detail in the above proof from

the Implicit Function Theorem states that within the domain the theorem applies there is a unique

velocity correction (or velocity and time if adding an apsis constraint) that reestablishes continuity,

which by the proof will additionally satisfy the other constraints if α≤ᾱ. This means that any

correction that yields continuity within this range will automatically satisfy the other constraints

regardless if they are included in that problem or not. Thus, rather than needing a sequence of

constrained CP problems to reestablish continuity, these may be unconstrained, aside from the

benefcial addition of some sort of trust region.

In order to solve faster subproblems, by replacing the sum of discontinuities with the sum

of squares, and using box constraints to defne trust regions, the problem of reducing

J
cont

=∥x1−x1

-∥2+...+∥x
N
−x

N

- ∥2 to zero may be solved by a sequence of problems with quadratic

cost

J̃
cont

=∑
i=0

N−1∥(xi+1

ref + x̃
i+1)−(x

i+1

−ref +[Ai+1,1 B
i+1,1 v

i+1

−ref] [x̃
i

ṽ
i

t̃
i+1

])∥
2

124

=∑
i=0

N−1∥(xi+1
ref −x

i+1
−ref)−[Ai+1,1 B

i+1,1 v
i+1
−ref

I][
x̃

i

ṽ
i

t̃
i+1

x̃
i+1

]∥
2

and no constraints other than trust region linear inequality constraints:

−x
max

≤ x̃
i (j)≤x

max

−v
max

≤ṽ
i(j)≤v

max

−t
max

≤t̃
i (j)≤t

max

As a result, for each major iteration a single SOCP/QCQP is used to establish a search

direction followed by unconstrained SQP to reestablish continuity during the line search process

may be used.

7.4.2 Conditions for Elimination of the Line Search

It may be desirable to eliminate the line search portion of the algorithm and rely solely on

reducing the trust region if restoring continuity fails or the true cost is nor improved. To motivate

why this may be possible, consider that in the above line search algorithm, for approximation

solution X̃
* an α* is found such that X=X

ref +α*
X̃

+δv (α) yields a feasible trajectory with

decreased cost. Suppose instead of solving CP
X̃

– the problem that yields X̃
* as a solution – a

new problem CP
Ỹ

is solved that is identical to CP
X̃

but with the additional constraint that

∥X̃∥2≤α*
. If this were the case, α*

X̃
* provides a feasible point, but not necessarily the optimal

solution, Ỹ
* . If Ỹ

=α
X̃

*
, then it is known by the results of the theorem that there is a feasible

solution with decreased cost X=X
ref +Ỹ

+δv (α). Otherwise Ỹ
* is a solution to CP

Ỹ
that

also satisfes all of the approximate constraints as does α*
X̃

*
, but with a lower approximate cost.

One would hope that conditions may exist where X=X
ref +Ỹ

*+δv
Y
(1) provides a feasible

125

solution with decreased cost without a need for line search to be performed.

Let X̃ (β) be the solution(s) to the problem CPβ , where CPβ is the same as the

standard CP defned in Chapter 5, with the change that the trust region constraints are all

multiplied by β . Thus CPβ=1 means no change to the problem defnition, and CPβ=0 means

that X̃=0 is the only allowable solution. Assume there is some neighborhood of 0 such that

X̃ (β) is a well-defned, C
1 function. [It would not be continuously differentiable in general

even if well defned, as the reduced trust region causes certain constraints to become inactive

there may be kinks in the path. But here it is assumed that there is some small neighborhood

where fnite number of activation changes no longer occurs.]

For each patch point, between arcs i and i+1, let κ̂
i
(β ,δv

i
):ℝ4→ℝ3 be defned by:

κ̂
i
(β ,δv

i
)=x (x

i

ref+ x̃
i
(β) ,v

i

ref+ṽ
i
(β)+δv

i
,t

i+1
ref + t̃

i+1(β))−(x
i+1
ref + x̃

i+1(β))

where x̃
i
(β) , etc. are the components of X̃ (β). As before, these functions output the

discontinuities in the original dynamics. The velocity correction term is also the same. The

difference is that each term includes as inputs solutions to a scaled CP rather than a scaled solution

to a single CP.

These functions also have the property that from the continuous reference trajectory

defned by (β ,δv
i
)=(0,0⃗) , we have κ̂

i
(0, 0⃗)=x (x

i

ref
, v

i

ref
,t

i+1
ref)−(x

i+1
ref)=x

i+1
- ref−(x

i+1
ref)=0⃗ . Next,

note that they also still satisfy
∂ κ̂

i

∂(δv
i
)
(0,0⃗)=B

i+1,1 , which is assumed to be invertible. Since it is

assumed here that we are within a neighborhood where X̃ (β) is a well-defned C
1 function,

the κ̂
i

are C
1 as well. Thus the Implicit Function Theorem may be invoked again and so there

is a range of β and function δv
i
(β) such that κ̂

i
(β ,δv

i
(β))=0⃗. Additionally, we have the

126

derivative expression
∂δv

i

∂β (0)=−(∂ κ̂
i

∂(δv
i
)
(0,0⃗))

−1 ∂ κ̂
i

∂β (0, 0⃗).

∂ κ̂
i

∂β
(β , 0⃗)=[∂ x̃

i+1

∂ x̃
i

∂ x̃
i+1

∂ ṽ
i

∂ x̃
i+1

∂ t̃
i+1

][
∂ x̃

i

∂β
(β)

∂ ṽ
i

∂β
(β)

∂ t̃
i+1

∂β (β)
]−∂ x̃

i+1

∂β
(β)

and so

∂ κ̂
i

∂β
(0,0⃗)=[Ai+1,1 B

i+1,1 v
i+1
−ref] [

∂ x̃
i

∂β
(0)

∂ ṽ
i

∂β
(0)

∂ t̃
i+1

∂β (0)
]−∂ x̃

i+1

∂β
(0).

In order to evaluate this, consider the function

ρ
i
(β)=[Ai+1,1 B

i+1,1 v
i+1
−ref][x̃

i
(β)

ṽ
i
(β)

t̃
i+1(β)]− x̃

i+1(β).

Which has derivative:

∂ρ
i

∂β
(β)=[Ai+1,1 B

i+1,1 v
i+1
−ref][

∂ x̃
i

∂β
(β)

∂ ṽ
i

∂β
(β)

∂ t̃
i+1

∂β (β)
]−∂ x̃

i+1

∂β
(β).

Note that while in general
∂ κ̂

i

∂β (β , 0⃗)≠
∂ρ

i

∂β (β) , it is the case that
∂ κ̂

i

∂β (0,0⃗)=
∂ρ

i

∂β (0). Returning

to ρ
i
(β) , since each X̃ (β) is a solution to a convex subproblem with equality constraints

127

[Ai+1,1 B
i+1,1 v

i+1
−ref][x̃

i

ṽ
i

t̃
i+1

]− x̃
i+1=0 , we see that ρ

i
(β)=0⃗ ∀β . Since the derivative of a

constant function is 0,
∂ κ̂

i

∂β (0,0⃗)=
∂ρ

i

∂β (0)=0⃗.

As a result,
∂δv

i

∂β (0)=−(∂ κ̂
i

∂(δv
i
)
(0,0⃗))

−1 ∂ κ̂
i

∂β (0, 0⃗)=0⃗, from which ∥δv (β)∥=o(β). As

with the original theorem, this implies the increase to the cost due to the velocity correction is

itself o (β). If it is the case that J (X ref)−J (X
ref+X̃ (β))=O(β) , then following the original proof

it will be the case that there is a range of β such that J (Xref)−J (X
ref+X̃ (β)+δv (β))>0 . To see

this, note that J̃ (β X̃ (1))≥ J̃ (X̃ (β)) ∀β , so
J̃ (β X̃ (1))− J (0⋅X̃ (1))

β
≥

J̃ (X̃ (β))− J̃ (X̃ (0))
β

 ∀β since

0⋅X̃ (1)=0=X̃ (0) Then since X̃ is a descent direction:

0>∇ J̃ (0) X̃=lim
β →0

+

J̃ (β X̃ (1))− J (0⋅X̃ (1))
β

≥lim
β→0

+

J̃ (X̃ (β))− J̃ (X̃ (0))
β

=
d X̃

dβ
|β=0

Thus J (X ref)−J (X
ref+X̃ (β))=O(β) , as desired. This along with ∥δv (β)∥=o(β) gives the result

that there is a range of β where a velocity correction exists to restore continuity and the cost of

the corrected, continuous transfer is less than that of the previous iteration. In this case this is done

through reducing the size of the trust region, with no line search added.

Regarding constraints other than continuity, the trust region and coasting time constraints

are satisfed automatically. This is because these constraints are on the variables themselves, so no

approximation is involved. Thus if they are feasible in the CP they are feasible in the NLP.

Constraints that involve propagation such as the velocity or nonimpact constraints are more

problematic. If they are satisfed with inequality at the reference, then β may simply be reduced

(if needed) so that both J (Xref)−J (X
ref+X̃ (β)+δv (β))>0 and these constraints are still satisfed,

128

intersecting the two open sets where the cost drops after restoring continuity and the constraint

functions are negative. If either of these constraints are met with equality only at the reference,

then due to differences between the true constraint functions and the approximations, then the

convex solution vector (or fxed fraction thereof) cannot be guaranteed to satisfy the true

constraints. In this case, line search must be added to fnd a valid step length.

Thus the conditions necessary to eliminate line search for a particular iteration are as

follows: a C1 curve of solutions parameterized by β exists within some neighborhood of the

reference (assumed), and that the propagated constraints are met with inequality at the reference. It

is unlikely the constraint condition will hold throughout the optimization process, but it is still may

be useful in some specifc iterations.

7.5 Summary

The algorithm that optimizes feasible initial guesses defned in Chapter 6 has been shown

to be a global descent method that produces feasible iterates with very minimal assumptions. The

proof relies heavily on the frst-order conditions of convex functions, the nature of the inequality

constraints satisfed with equality forcing variable changes to be in descent directions, and the use

of the Implicit Function Theorem to bound the magnitude of the velocity correction terms.

Implications of the proof show that the correction term may be found with an

unconstrained optimization problem for faster computation, and that the convexity and

nonlinearity of the approximate problem inequality constraints on propagated variables is

necessary for a correction based method to guarantee feasible iterates.

1 The invertibility has been assumed throughout the literature on differential correction, such as [Wils98, Sukh04,
Marc07]. While no invertibility issues were encountered in testing and no conditioning issues arose in the Phobos tests

129

(Ch.10), a couple of poorly conditioned matrices were encountered during the NEA interceptor testing (Ch.12).
Conditioning issues due to high sensitivity can be resolved using a multiple shooting approach, as is common practice. It
is important to note that use of a multiple shooting approach fts well within this theoretical framework, and it is shown
in Appendix C in the section on Maneuverless Patch Points that there is no theoretical impact to the descent proof of this
chapter by making this practical change in implementation. Also, it was observed in the NEA application that the poorly
conditioned matrices involved arcs passing very near the Earth, which in the standard CR3BP coordinates places the
trajectory quite near the gravitational singularity. Therefore sside from the use of multiple shooting, it is expected that the
use of regularization to remove such a singularity such as in [Nakh13] for Hill's model would also help.

Returning to the issue of invertibility itself, it was suggested in [Wils13] that at least for the relevant models, a
change of frame could resolve the issue. However, even if this is not the case or is undesirable, the issue may be resolved
by adjusting the block matrix used. Due to the invertibility of the state transition matrix, we know that even if B

i+1, i

were not invertible with rank (B
i+1, i)=2 , that the top three rows must have rank=3. Therefore we may select one of the

columns of A
i+1, i and adjoin it to two of the indepdendent columns of B

i+1, i in order to form a full rank B̂
i+1, i .

(This approach is similar to [Sche06] where alternative submatrices may be selected for their generating function
defnitions in case of singularity issues) Suppose the columns index of these three vectors are m1 ,m2 ,m3 so that the

columns of B̂
i+1, i are c⃗

m1
, c⃗

m2
, c⃗

m3
. Let ê

m1
, ê

m2
, ê

m3
be the corresponding unit length basis vectors in ℝ6

where the frst two are taken to be associated with velocity columns and the last with the position column. Let

w⃗=(w1 ,w2 ,w3)∈ℝ3 . Defne a modifed discontinuity function κ:ℝ4→ℝ3 given by:

κ
i
(α

i
,w⃗)=x

i+1
- (α

i
,w⃗)−x

i+1(αi
)=x (x

i

ref+α
i
x̃

i
+w1 ê

m1
,v

i

ref+α
i
ṽ

i
+w2 ê

m2
+w3 ê

m2
,t

i +1
ref +α

i
t̃

i+1)−(x
i+1
ref +α

i
x̃

i+1) .

Then at (α
i
,w⃗)=(0,0⃗) we have that κ

i
(0,0⃗)=x (x

i

ref
,v

i

ref
, t

i+1
ref)−(x

i+1
ref)=x

i+1
- ref−(x

i+1
ref)=0⃗ and that by the chain rule

∂κ
i

∂w1

(0, 0⃗)=B
i+1, i êm1

=c⃗
m1

,
∂κ

i

∂w2

(0, 0⃗)=B
i+1, i êm2

=c⃗
m2

,
∂κ

i

∂w3

(0,0⃗)=A
i+1, i êm3

=c⃗
m3

so that fnally
∂κ

i

∂w⃗
(0,0⃗)=B̂

i+1, i

which is the augmented and invertible matrix defned above. As in the original case the Implicit Function Theorem can

be applied so that there are open sets within which w⃗=w⃗ (α) and for which κ
i
(α

i
, w⃗ (α))=0⃗ and so continuity

holds. The above change does not affect the calculation that

∂κ
i

∂α
i

(0,0⃗)=[Ai+1,1 B
i+1,1 v

i +1
−ref][x̃

i

ṽ
i

t̃
i+1

]− x̃
i+1=0⃗

for CP solutions, and so the result w⃗ (α)=o(α) holds. From here the proof continues as before, with the addition that
the magnitude bounds include constant ∥C

i +1, i
∥ terms added to the ∥D

i +1, i
∥ terms, which does not change the

order. One exception can arise in the case the position at the beginning of the arc is already at the boundary of the
forbidden/minimum radius region. In this case a unit vector tangential to the minimum velocity sphere should be chosen
rather than ê

m3
so that the needed adjustments cannot lead to infeasibility. In terms of calculation sequence, such a

change requires that the recorrection be done from the last arc to the frst so that the prior arc's recorrection process is
aware of the initial position change needed for arcs in this special case.

130

Chapter 8

Zangwill's Global Convergence Theorem

8.1 Introduction

In the last chapter it was shown that the proposed algorithm is a global descent method on

the set of feasible trajectories. That is, if the current iterate is a KKT point the process will stop,

otherwise the next iterate will be feasible with strictly lower cost. It remains to be shown that these

steps progress suffciently that their limit converges to a KKT point. Note that the focus here is not

on a local convergence rate once close to a solution, but showing that the method will indeed

drive any (regular) feasible initial guess towards some KKT point. We will show this by proving that

the requirements of Zangwill's Global Convergence Theorem are satisfed. The theorem is stated in

the case of our application where KKT points of the NLP are desired and the iterates are feasible.

Zangwill's Global Convergence Theorem: [Zang69, Luen08]

Let Ωf be the set of points defning trajectories feasible in the NLP. Let Ξ be the set of

points satisfying the KKT conditions for the NLP. Let {X(l)
ref }l=0

∞ be the sequence of points generated

131

by the iterative algorithm X(l+1)
ref ∈A (X (l)

ref). in chapter 6. Suppose that:

C1) {X(l)
ref }l=0

∞ is contained within a compact subset of Ωf .

C2) There is a continuous function J (here the cost function) such that:

a. if X(l)
ref ∉Ξ , then J (Y)< J (X (l)

ref)∀Y ∈A(X (l)
ref).

b. if X(l)
ref ∈Ξ , then J (Y)≤ J(X (l)

ref)∀Y ∈A(X (l)
ref).

C3) The mapping A is closed on Ωf \ Ξ , where closed is defned below in Section 8.4.3.

Then the limit of any convergent subsequence is a member of Ξ , i.e. a KKT point of the original

NLP.

8.2 Iterates Are Within A Compact Domain

The position terms of any iterate are bounded in position space. The distance from the body

center is bounded from below by the minimum radius ∥xi

ref −xcm∥≥Rmin , and from above either

by adding an explicit convex constraint ∥xi

ref −xcm∥≤Rmax , or by relying on the closed boundary

associated with any maximum feasible energy level. Call this closed and bounded subset

Pi⊂ℝ3. The set of all variables X∈ℝ7N is closed due to the standard product topology on

ℝn since the set defned by each constraint is Pi×ℝ7N−3 is the product of two closed sets.

Similarly for maximum velocity, where within the bounded positions there is a limit on the

velocities due to a maximum feasible energy level, or some explicit convex constraint may be

added. Again, the resulting sets are closed, and bound the velocities. The coasting time variables

are limited by the min/max coasting time constraints, thus are bounded in a closed set. The

intersection of these closed sets is closed, and taken all together bound every variable. Thus the

intersection Σ is a closed and bounded set. Σ∩Ωf is then a closed (on the subset topology on

132

Ωf⊂ℝ7N) and bounded subset of Ωf⊂ℝ7N
, thus a compact subset of Ωf .

8.3 The Cost is a Global Descent Function of the Algorithm

This is the primary result of Chapter 7, as stated in 7.2. Thus here it is assumed that the

initial condition satisfes one of the several allowable constraint qualifcations.

8.4 The Algorithm is Closed

8.4.1 General Point to Set Maps

As the Second Order Suffcient Conditions are not necessarily satisfed for the minimum

fuel problem, the solution set may not be unique. Additionally, depending on starting parameters,

inexact line search methods may not return the same single point. Thus point to set maps and

generalizations of the concept of continuity are needed.

Point to set mappings are generally stated within the framework of metric spaces. In our

case Λ ,D are subsets of ℝq
,ℝr . A point to set map takes point in Λ and associates a subset

of D, hence an element of the power set of D. Thus Γ :Λ→2
D

. For such maps, there are the

following defnitions:[Bank83]

Close d: Γ is closed at ū if for each pair of sequences {um}m=1
∞ ⊂Λ ,{xm}m=1

∞ ⊂D such that

um→ ū , xm∈Γ(um)∀m ,xm → x∞ , it follows that x∞∈Γ(ū).

Lower Semicontinuous in the sense of Hausdorff (LSC-H): Γ is LSC-H at ū if for any ϵ>0

there exists δ>0 s.t. d (x ,Γ(u))<ϵ for all x∈Γ(ū) and u where d (u , ū)<δ .

Upper Semicontinuous in the sense of Hausdorff (USC-H): Γ is USC-H at ū if for any ϵ>0

133

there exists δ>0 s.t. d (x ,Γ(ū))<ϵ for all x∈Γ(u) and u where d (u , ū)<δ .

Lower Semicontinuous in the sense of Berge (LSC -B): Γ is LSC-B at ū if for each open set U

satisfying U∩Γ(ū)≠0, there exists a δ>0 such that U∩Γ(u)≠0, for all u s.t. d (u , ū)<δ .

Upper Semicontinuous in the sense of Berge (USC-B): Γ is USC-B at ū if for each open set U

satisfying Γ(ū)⊂U , there exists a δ>0 such that Γ(u)⊂U for all u s.t. d (u , ū)<δ .

Continuous: Γ is continuous at ū if it is USC-H and LSC-B at ū .

These defnitions have the following useful properties:

P1) USC-B implies USC-H

P2) LSC-H implies LSC-B

P3) If Γ is USC-H at ū and if the set Γ(ū) is closed, then Γ is closed at ū .

8.4.2 The Feasible Set Map

Recall that the cost and constraint functions, and hence the feasible and optimal set, are

themselves by the feasible reference trajectory/state at the beginning of each major iteration,

X
ref . The feasible set is determined by the following point to set map:

M (Xref)={X̃∈Ω:
h̃ j (X

ref , X̃)=0

g̃k (X
ref

, X̃)≤0} ,X
ref

feasible

and results in the parameterized programming problem

 min{ J̃ (X ref
, X̃): X̃ ∈M (X ref)}

We are interested in the case where a particular X 0
ref is not isolated, thus there are

feasible trajectories (perhaps forming a continuous set) arbitrarily close to X 0
ref . Otherwise being

closed follows trivially. For compactness we will use the parameter u=X
ref−X 0

ref for any feasible

points near X 0
ref . Let Λ={u :u+X 0

ref feasible in NLP }⊂B(0,ϵ1) for some small ϵ1. Thus we

134

have the point to set feasible set map: M (u)={X̃ ∈Ω:
h̃ j (u , X̃)=0

g̃k (u , X̃)≤0} ,u∈Λ , and parameterized

problem min{J̃ (u , X̃): X̃ ∈M (u)}. Note that u=0 corresponds to the original CP defned at

X 0
ref .

Lemma 8.4.2.1 [Zlob09]: If M (u)={X̃ ∈Ω:
h̃ j (u , X̃)=0

g̃k (u , X̃)≤0} ,u∈Λ , defnes a convex programming

problem ∀u∈Λ and Slater's Condition holds at ū , then M is continuous at ū .

Corollary 8.4.2.2: M is LSC-B and USC-H at ū=0 .

Proof: ū=0 corresponds to the problem defned in terms of X 0
ref

, an iterate of the optimization

process defned in Chapter 6. By Appendix A - Proposition A.4, X 0
ref satisfes the CRMFCQ,

which was shown in the SOCP/QCQP subproblems to be equivalent to Slater's condition.

Lemma 8.4.2.3: M(0) is closed and convex.

Proof: The argument showing the set satisfying each constraint is closed is identical to that of

Chapter 8.2. The feasible set is then the intersection of closed sets and hence closed. It is obviously

convex by the defnition of a CP, where convex inequalities and affne equality constraints defne a

convex set.

8.4.3 The SOCP/QCQP Solution Map is Closed

Defne the solution map as S (u)=arg minX̃∈M (u) J̃ (u , X̃) , the set of points attaining the

optimum value. Note that the minimum fuel problem does not necessarily (though likely) satisfy

the Second Order Suffciency Conditions for an isolated minimum, so the output may not be a

single point.

135

Corollary 4.3.3.3 from [Bank83]: Since Conditions 1-7 below are satisfed, then S is USC-B at

ū=0.

C1) X̃ ∈ℝ7N . This is part of the CP defnition in Chapter 5.

C2) M is LSC-B at ū=0∈Λ . This is implied by Lemma 8.4.2.2.

C3) S (0) is nonempty and bounded. We know a feasible point exists at X̃=0 , so a

solution must exist. It must lie within the feasible set, including trust regions, which is bounded.

Thus the solution set is bounded.

C4) J (ū=0,⋅) is continuous. [This is stronger than the needed assumptions on semi-

continuity]

C5) J (ū=0,⋅) is quasi-convex. J (ū=0,⋅) is convex, a stronger condition.

C6) M (0) is closed and convex. Shown in Lemma 8.4.2.3.

C7) M is USC-H at ū=0∈Λ . This is implied by Lemma 8.4.2.2.

Corollary 8.4.3.1: If the solution map S (u) is USC-H at ū then it is closed at ū .

Proof: Let p
*(ū) be the optimal value of the problem defned at ū . We know it is a fnite real

number since each problem has X̃=0 as a feasible point. As a single value, p
*(ū) is a closed

set. J̃ (u ,⋅) is continuous, thus the inverse image of the optimum, S (ū)=(J̃ (ū ,⋅))−1(p*(ū)) is

closed. USC-B implies USC-H by Property P1, and this combined with S (ū) being a closed set

makes S closed at ū by property P3.

Corollary 8.4.3.2: S is closed at X 0
ref w.r.t Λ .

Proof: S is closed at ū=0 , which by defnition is equivalent to the map being closed at X 0
ref . T

In conclusion, the solution map associating a feasible reference value X
ref with the

136

solution set of the SOCP/QCQP is closed.

8.4.4 Line Search is Closed

It is a standard result that exact and common inexact line search algorithms (Armijo, etc.)

are themselves closed maps. The line search method used in this algorithm is modifed in that

addition of a continuous function δv (X̃ *
,α) ,α≤αdesc is being composed into the line search

algorithm. The composition of a continuous point-to-point map into a closed map is itself closed.

[Luen08] However, the fact this composite map is closed will be directly verifed for the case of an

exact line search. It follows, essentially line by line, the proof that a standard exact line search is

closed.[Luen08] Let

LS (Xref
, X̃

*)={Y ∈ℝ7N :Y=X
ref+α X̃

*+δv (α , X̃
*) ,0≤α≤ᾱ ,f (Y)=minα J (Xref +α X̃

*+δv (α , X̃
*))}

Suppose {X k
ref }k=1

∞
, {X̃ k

* }k=1

∞
are sequences such that Xk

ref →X∞
ref

, X̃ k

* → X̃∞
* ≠0. Suppose that

{Y k}k=1
∞

is a sequence s.t. Yk∈LS(Xk

ref
, X̃ k

*)∀k and Yk →Y∞ . We need to show that

Y∞∈LS(X∞
ref

, X̃∞
*).

For each integer k, Yk=Xk

ref +αk X̃ k

* +δv (αk , X̃ k

*) for some αk>0. Since lim Y k=Y ∞ is

assumed to exist, then since δv (α , X̃
*) is continuously differentiable (see below), and passing to

a convergence subsequence of alpha converging to α∞ if necessary,

Y∞=lim Y k=lim (Xk

ref+αk X̃ k

*+δv (αk , X̃ k

*))

=lim Xk

ref+lim αk lim X̃ k

*+lim δv (αk , X̃ k

*)

=X∞
ref+lim αk lim X̃∞

* +δv (lim αk , X̃∞
*)

Implying that Y∞=X∞
ref +α∞ X̃∞

* +δv (α∞ , X̃∞
*).

It must be shown that Y∞ minimizes J along the curve X∞
ref+α X̃∞

* +δv (α , X̃∞
*). For each

k and α∈[0,ᾱ] , by the defnition of LS (X k

ref
, X̃ k

*)

137

J (Y k)≤ J (X k

ref+α X̃ k

*+δv (α , X̃ k

*))∀k ,α∈[0,ᾱ].

By the continuity of J in our feasible domain, taking k →∞ leads to

J (Y∞)≤J (X∞
ref+α X̃∞

* +δv (α , X̃∞
*)) ,α∈[0, ᾱ]. Thus by defnition, Y∞∈LS(X∞

ref
, X̃∞

*). Therefore the

line search algorithm is closed.

Regarding the continuity of δv (α , X̃
*) in both variables, this seems clear, but can be

shown by using the discontinuity function from Chapter 7 with a larger set of inputs. Namely, for

each patch point, between arcs i and i+1, let κ :ℝ11 →ℝ3 be given by:

κi ((αi , x̃ i , ṽi , t̃ i+1 , x̃ i+1) ,δv i)=xi+1
- ((αi , x̃ i , ṽ i , t̃ i+1 , x̃ i+1) ,δvi)−xi+1((αi , x̃ i , ṽ i , t̃ i+1 , x̃ i+1))

=x (xi

ref+αi x̃ i ,vi

ref+αi ṽ i+δvi ,ti+1
ref +αi t̃ i+1)−(xi+1

ref +αi x̃ i+1).

This function defnes the gap between arc endpoints, which means there is position continuity

when the function value is the 0 vector. This function satisfes

κi ((0, x̃ i , ṽ i , t̃ i+1 , x̃ i+1) , 0⃗)=x (xi
ref

,vi
ref

,t i+1
ref)−(xi+1

ref)=xi+1
- ref−(xi+1

ref)=0⃗ .

Also, at ((0, x̃ i , ṽ i , t̃ i+1 , x̃ i+1) ,0⃗) we have
∂κi

∂(δvi)
(0,0⃗)=Bi+1,1 , which by assumption is

invertible (or correctable with a change of frame). Finally, as in Chapter 7, κ is continuously

differentiable everywhere in the domain.

Therefore the conditions of the Implicit Function Theorem are satisfed and so δv i is a

continuously differentiable function of both αi and (x̃ i , ṽ i , t̃ i+1 , x̃ i+1) . Thus the adjustment to

the whole state δv (α , X̃
*)∈ℝ7N is a continuously differentiable.

8.4.5 Closure Under Composition

Our search direction selection map, which is just the SOCP/QCQP solution map, is closed

by Corollary 8.4.3.2. The modifed line search is closed whenever a search direction is defned, i.e.

138

not at a KKT point. Thus, under the same condition as the standard combination of defne direction

and search [Zang69], namely that both maps are closed and the set of possible X
* is limited to a

compact set, the composition is closed when not at a KKT point. Thus the algorithm is closed on

the set of feasible points that are not KKT points.

8.5 Conclusion

The results of sections 8.2, 8.3, 8.4 show that the conditions of Zangwill's Global

Convergence Theorem are satisfed. Therefore the limit of any convergent subsequence generated

by the algorithm is a KKT point of the original NLP.

139

Chapter 9

Initial Correction of Graph Search Based Initial

Guesses

9.1 Introduction

The previous chapters of this section have described a Sequential Convex Programming

based optimization method, including the important property that the method creates feasible

iterates when starting from a feasible initial guess. Indeed, the assumption of a feasible reference

was used throughout the results of Chapter 7. This chapter describes how to bridge the gap

between the set of arcs generate by the graph search and arc selection process, and the feasible

guess needed by the optimization process. It should be noted that while this chapter comes after

those describing the fuel optimization problem, the initial correction takes place before the

optimization process in the transfer design problem. This presentation order is primarily due to the

fact that an optimization problem and its constraints must be described before one can state what

quali#es as a feasible initial guess for that problem.

140

9.2 Feasibility and Infeasibility of the Arc Selection Process Results

Proper construction and pruning of the directed graph (Chapter 3.4.1, 3.4.3) results in an

initial guess generated by the search process (Chapter 4) that is nearly feasible. For each of the

constraints given in Chapter 5, the extent to which they are feasible after the arc selection process

is summarized in this section.

Continuity: As described in Chapter 4.4, the arcs selected will begin and end within the same

region. Therefore they are not strictly continuous in position, but the discontinuity is bounded from

above by the maximum distance between points within the region.

Minimum and Maximum Coasting Time: During the graph construction process, ballistic arcs

whose coasting times are outside of the allowable limits are excluded (Chapter 10.4.2). Therefore

these constraints are already satis#ed by the initial guess.

Maximum Thrust per Maneuver: During the graph construction process, impulsive links with cost

greater than the thrust limit may be eliminated. Since this cost is an approximation of the impulse

needed, this does not strictly imply feasibility. It does however, mean that the constraint will be

nearly satis#ed. The same holds for thrust direction constraints.

Impact Avoidance: Only arcs that do not violate the minimum altitude limit are included in the

graph construction process, therefore this constraint is satis#ed unless there is a large model

mismatch. This may be avoided by either including forces large enough to cause impact when

transitioning between models, and verifying that arcs that pass near the body do not impact when

additional forces are added.

141

In cases where the minimum altitude is associated regions of convergence of complex

gravity models, it may be the advisable that this constraint be added directly to an infeasibility

minimization problem rather than merely penalized.

9.3 Infeasibility Minimization

In this section, a variation on the convex subproblems given in Chapter 5 is given which

may be used to create a different sequential convex programming method to penalize infeasibility

in an initial guess. This process is shown to have convergence properties like those shown in

Chapter 7 and 8, though with fewer restrictions. If the infeasibility cost is minimized with cost

equal to zero, a feasible transfer will have been found. If the minimum is not zero, then the search

and select process would need to be rerun to provide a higher quality initial guess.

9.3.1 A Standard Second Order Cone Form for Infeasibility Minimization

As a SOCP, the inequality constraints of the optimization problem approximations –

whether linear, quadratic, or a full second order cone - are of the form:

∥A X̃−b∥≤c
T
X̃ +d

Continuity in position is naturally expressed as an equality constraint. However, note that

continuity will hold if xinit=x1 , xi+1=xi+1
-

, x�nal=xN+1
-

, which is alternately expressed as

∥xi−xi
-∥=0 or even ∥xi−xi

-∥≤0 due to the nonnegativity of norms. In order to approximate

this function as part of an iterative solution process, for some reference trajectory (here either the

guess provided by the search and arc selection or the result of a previous iteration), the same small

variation variables and STM based approximations in Chapter 5 will be used. This results in a set of

second order cone constraints (with c=0⃗, d=0) of the form:

∥Mi+1 X̃−ni+1∥≤0

where

142

M1=[−I3x3 0 ...]
M1+1=[... Ai+1, i Bi+1, i vi+1

-ref −I3x3 ...]
MN+1=[... AN+1,N BN+1,N vN+1

-ref]
,

n1=x1
ref −xinit

ni+1=xi+1
ref −xi+1

- ref

nN+1=x�nal−xN+1
- ref

where the state transition submatrices and endpoint values are those de#ned in Chapter 5. This

form is not used at all in the minimum fuel or energy problem of previous chapters and indeed will

not be used as is here, but will along with the inequalities will serve as the basis for a set of

modi#ed constraints in the next section. In any case, for all constraints, the standard second order

cone form ∥A X̃−b∥≤c
T
X̃ +d may be used to de#ne an optimization problem to minimize the

degree to which the desired constraints are violated.

9.3.2 The Infeasibility Minimization Problem SOCP and NLP

With the introduction of an additional variable ς the constraints of the optimization

problem de#ned in Chapter 5 may be used to construct a new problem to drive an infeasible initial

guess towards a feasible but non-optimal transfer. Consider now the following SOCP:

For variables X̃ ,ς , minimize the cost function

J̃ feas(X̃ , ς)=ς

with constraints

{∥[A 0⃗] [X̃ς]−b∥≤[cT 1][X̃ς]+d : for all constraints ∥A X̃−b∥≤c
T
X̃ +d of the min fuel problem}

and

ς≥0

and trust region constraints as de�ned in Chapter 5.

Here the second order cone inequalities are just the standard form of the more intuitively

clear ∥A X̃−b∥≤c
T
X̃ +d+ς . That is, every constraint of the optimization problem is “loosened”

by ς . Or alternately, the minimum value of ς gives the maximum amount any of the

143

constraints are violated.

This SOCP could have alternately have been derived by applying the same process as in

Chapter 5 to an infeasibility minimization NLP:

For variables X ,ς minimize the cost function

J feas(X , ς)=ς

with constraints

{gk(X)≤ς ,∥hi (X)∥≤ς : for all constraints g k(X)≤0, hi (X)=0 of the min fuel problem}

and

ς≥0

Therefore all of the constraints will be satis#ed if J feas(X , ς)=0. An iterative process like that

described in Chapter 6 may be used (omitting the recorrection step) to minimize the infeasibility.

9.3.3 Problem Analysis

As was done in Chapters 7, 8, and Appendix A for the fuel minimization problem, it will be

shown that sequential convex programming using the above SOCP results in a convergent

sequence of points for which each subproblem satisfying Slater's Condition.

Proposition 9.3.3.1: A point (X ,ς) satis#es the KKT conditions of the infeasibility minimization

NLP if and only if (X̃=0,ς) satis#es the KKT conditions of the infeasibility minimization SOCP

de#ned in terms of X as the reference. Also, if at a point X Jfeas(X ,ς)=0 , then J̃ feas(0, ς)=0.

Proof: As shown in Chapter 5, the second order cone constraints are valid to at least #rst order.

Also, the ς cost and constraint functions are identical. Therefore since the function values and

gradients at the reference are equal, the terms in their respective KKT conditions are identical.

Since the function values are equal at the reference, in particular J feas(X ,ς)=0 iff J̃ feas(0, ς)=0.

144

Proposition 9.3.3.2: Slater's Condition holds for the infeasibility minimization SOCP.

Proof: Let ς0=maxk {∥bk∥−dk+1,1} where k indexes all of the second order constraints of the

form ∥Ak X̃ −bk∥≤ck

T
X̃+dk+ς . Consider the point (X̃ ,ς)=(0,ς0). With X̃=0 ,ς0≥1 clearly

the trust region and ς≥0 constraints are satis#ed strictly. At (X̃ ,ς)=(0,ς0) , the constraints

∥Ak X̃ −bk∥≤ck

T
X̃+dk+ς become ∥bk∥≤dk+ς0 or ∥bk∥−dk≤ς0=maxk{∥bk∥−d k+1,1}. This

holds strictly for any of the constraints. As there are no equality constraints, (X̃ ,ς)=(0,ς0) is then

an interior point. Since the problem is convex, this implies Slater's Condition holds.

Lemma 9.3.3.3: The infeasibility minimization SOCP solution map is closed.

Proof: Since Slater's condition holds for any of the SOCPs without condition and any point X in the

domain may be used as a reference, Lemma 8.4.2.1 and Corollary 8.4.2.2 hold and so the feasible

set map is LSC-B and USC-H. Since the constraints are second order cones, a closed half plane,

and the trust region norm balls – which are topologically closed – the feasible set consisting of

their intersection is also closed and convex.

Together these show that conditions C2, C6, and C7 of Bank's Corollary 4.3.3.3 (see

Chapter 8.4.3) hold, and C1 holds trivially. In showing an interior point exists, we know the SOCP

has a feasible point and hence a solution. Trust regions guarantee the solution set is bounded, this

C3 holds. The cost function J̃ feas(X̃ ,ς)=ς is trivially continuous and convex, thus C4, C5 hold,

and thus the corollary holds. This in turn satis#es the conditions in the proofs of Corollaries 8.4.3.1

and 8.4.3.2, and so the solution set map is closed at the reference.

Lemma 9.3.3.4: The infeasibility cost ς is a global descent function of the iterative algorithm.

Proof: Suppose (Xref
,ςref) is a KKT point of the infeasibility minimization NLP. Then it is a KKT

145

point of the infeasibility minimization SOCP. For a convex problem, KKT conditions imply a

minimum and so (X̃=0,ςref) is a solution to the SOCP, ending the algorithm with no increase to

the cost.

If (Xref
,ςref) is not a KKT point of the infeasibility NLP, then it is not a KKT point of the

infeasibility minimization SOCP. Therefore (X̃=0,ςref) cannot be a solution to the SOCP since if

Slater's Condition holds (X̃=0,ςref) being a solution implies the KKT conditions would hold. As

Slater's Condition does hold by Proposition 9.3.3.2, this cannot be the case. Therefore there exists

a solution (X̃ *=0,ς*) ,ς*<ςref . Since there is a strict decrease to the cost, there is a strict decrease

in the constraint functions for which gk (X
ref)=ςref

, (X̃ *
,ς*−ςref) de#nes a descent direction

for these functions since they are convex. For other functions, gk (X
ref)<ςref strictly. Therefore

there is a nonempty range of step sizes such that the constraints gk satisfying gk (X
ref)=ςref

decrease in value, and such that for others we still have gk (X
ref)<ςref . Therefore by backstepping

line search a step size α exists such that (Xref +α X̃ ,ςref +α(ς*−ςref)) satis#es the constraints of

the infeasibility minimization NLP with cost ςref +α(ς*−ςref)<ςref
. Therefore at points that are not

KKT points of the infeasibility minimization NLP, the algorithm produces a point with strictly lower

cost. Therefore the cost is a global descent function of the algorithm.

Proposition 9.3.3.5: Zangwill's Convergence Theorem applies for the infeasibility minimization

algorithm.

Proof: The domain can be selected to be compact, as limited either by energy or an arbitrary

distance from the target body. As shown in the above Lemma 9.3.3.4, the cost is a global descent

method. Also, Lemma 9.3.3.3 showed the SOCP solution map is closed, which by the standard

result on composition with line searches (see Chapter 8), means that the algorithm is closed. Taken

146

together, these imply the result of Zangwill's Convergence Theorem as stated in Chapter 8.1.

This shows that for any initial guess provided by the search and arc selection process, the

algorithm will converge to a KKT point of the infeasibility minimization NLP. Given that the arcs

selected already satisfy many of the constraints such as nonimpact and coasting times, and nearly

satisfy the remainder such as continuity and thrust constraints, process should converge to a value

of 0 – a feasible point. If not then the initial guess is not in the basin of convergence of a feasible

transfer, but rather an infeasible local minimum. In such a case the search process is to be rerun

with the graph link corresponding to the infeasible transition removed. This will generate a

different itinerary, and the process repeated.

9.4 Summary

A sequential convex programming approach to penalize infeasibility has been stated and

shown to satisfy the conditions of Zangwill's Convergence Theorem as well as satisfy Slater's

Condition so that an interior point exists for every subproblem. For a high quality result from the

search and select process, the local minimum achieved should result in a feasible initial guess for

the fuel minimization process. Otherwise the search and select process can be rerun with the

problem link removed in order to #nd a better initial guess.

147

Chapter 10

Application to an Orbiter at Phobos

10.1 Introduction

This chapter describes the application of the onboard focused redesign tool described

throughout the thesis to the problem of onboard replanning for a Phobos orbiter. Questions that

must be addressed for any application include what domain is appropriate, how fnely to partition

that domain given the strength of the differential corrector used, and which forces to include in the

program models. Beyond these general adaptations, there are design challenges specifc to

Phobos. These are caused by factors such as the moon's highly irregular shape and gravity feld,

large size relative to its libration points, and the rapid speed of impact or ejection. These facets of

the Phobos system cause a large reduction in the available periodic orbits, invariant manifolds, and

stable arcs that can be used for the transfer construction process. Moreover, at the same time

Phobos limits available options, it demands more rapid computation than other targets. Several

trade-offs exist when deciding how to balance these priorities, and this chapter will discuss the

decisions made in tailoring the method to this challenging system.

148

10.1.1 Relevance

The moons of Mars – Phobos and Deimos – are being investigated as possible targets for

future human exploration and as a stepping stone to Mars itself.[Wall12, Hoff11, Bosa14] In

addition to a future manned mission, robotic exploration, such the attempted sample return of

Phobos-Grunt,[Maro04] will likely proceed frst to gather scouting information and other important

science data.

In a paper on orbital operations for Phobos and Deimos,[Wall12] the necessity of using

several types of periodic orbits to fulfll various science and safety needs was described.

Furthermore, due to the frequency of station keeping maneuvers on unstable orbits, switching

between orbits, and recovering from imperfect navigation data, spacecraft autonomy is seen to be

an essential component of a Phobos orbiter mission,[Wall12] as it will be in other future missions

[Cang12]. Beyond autonomous control to stay along pre-planned reference trajectories, a truly

robust autonomous system will need to handle situations where the original plan is no longer

applicable because of missed or poorly executed maneuvers, aborting to a safe orbit from a large

perturbation, target changes, or other unexpected circumstances. In such cases the ability to

quickly re-plan the reference trajectory onboard is needed in addition to small corrections.

However, most initial guesses are the product of designers on the ground while automated

approaches such as evolutionary methods can be very time consuming. There is thus a need for a

method that combines a systematic yet automated initial guess generation process when needed,

and a complementary local correction process to create a 5yable transfer.

10.1.2 Contribution

This chapter addresses several of the design challenges posed by the application to Phobos,

relating to available orbits, discretization structure, model selection, and interactions between

different design decisions. There are multiple features of Phobos that make the setup phases of

149

partitioning and discretization distinct. These include the large size of Phobos relative to the

libration point region, a domain extending well beyond the libration points, and the high number

of impacting trajectories. For onboard phases, increased complexity is added due to more

challenging dynamics in the correction process and from the ability to close the loop and use both

local only and graph planning methods.

The redesign tool will be demonstrated on several examples related to the operation

concepts outlined by JPL engineers. [Wall12] This includes including transfers between periodic

orbit families used for different mission stages such as arrival and descent staging. Beyond

switching between these orbits exactly – the realm of trajectory design on the ground – for a

redesign tool it is more relevant to demonstrate such a transfer with a very perturbed initial

condition. This fts more closely the situation where such a system would be called on as well as

providing a case where a reference trajectory does not exist. Additionally, in order to “close the

loop”, random errors will be added within a transfer, providing an opportunity for comparison

between the results of a local correction only, and correction after a graph based redesign.

Computation times and ΔV's will be provided for each case.

10.2 Models Used

Please note that the models and forces discussed in the following sections are provided in

detail in Appendix C. The following focuses on why the model choices were made in this

application.

10.2.1 Discretization and Arc Database Model

In order to avoid increasing the size of the discretization by an order of magnitude or more,

it is desirable that a time invariant approximation is used, assuming this captures the forces with

the highest relative magnitude. Forces like the higher harmonics of Mars, gravity of the Sun, and

150

solar radiation pressure are time varying (and indeed can have different frequencies), and so not

included in the discretization model. The point mass gravities of Phobos and Mars are time

invariant in the CR3BP, but particularly for irregularly shaped bodies like Phobos, the higher

harmonics of the moon must be analyzed.

An important property of many systems of interest is that the moon is tidally locked with

the planet, meaning that its rotation about its axis has the same period as its orbit about the planet.

This includes both of the moons of Mars, the Galilean moons with Jupiter, Enceladus and Titan

with Saturn, and of course the Earth's Moon. [McFa06] This means that in the CR3BP rotating

frame the moons are fxed and do not rotate, and thus the system with higher order harmonics is

still time invariant. Therefore the complex gravity feld of Phobos may be included without adding

an extra dimension to a partition for orbit phase.

Note that in the standard CR3BP equations of motion the rightmost terms describe the

forces due to the gravity of Phobos. To include a more complex gravity feld, this term is replaced

while those due to Mars or frame effects are unchanged. This results in:

ẍ=x+2 ẏ−
1−μ

r1
3

(x+μ)−F x(r⃗2)

ẏ=y−2 ẋ−
1−μ

r1
3

y−Fy (r⃗2)

z̈=−
1−μ

r1
3

−Fz (r⃗2)

where the new terms are the components of the spherical harmonic gravity model as described in

the previous section, converted to the normalized units of the CR3BP.

The question of which order and degree to use in the gravity feld remains. While no harm

would arise from using all of the available information, there is little beneft to use terms that are

dominated by time-varying forces excluded from the discretization model. It will be seen below

151

that adopting this standard results in the model of the CR3BP with 4th order and degree harmonic

gravity for Phobos.

Figure 10.1: Relative magnitudes of forces due to point mass gravity, gravitational harmonics, and SRP in

an ideal plate model using the average distance of Mars from the Sun.

10.2.2 Onboard Model

Ultimately, the limit on onboard model accuracy is time. The faster the processor and more

time allowed, the more accurate the onboard model may be. It is likely that a full ephemeris

model is impractical. As the fnal model is based on spacecraft dependent factors such as

computational ability and navigation accuracy, it is not appropriate to make such a decision here.

Rather, the goal is to point out that additional forces – especially time varying forces – may be

incorporated into the onboard model that may have been omitted in the discretization model.

Examples that have been tested in Matlab for the Phobos application include up to 12x12

gravity for Phobos and an ideal 5at plate model for Solar Radiation Pressure (Appendix C). While

152

the gravity of Deimos was not tested in any simulations at this moment, the addition of the Moon

to a Sun/Earth system in a different application showed that additional massive bodies may be

included without problem (Chapter 12). In order to have identical models for comparing

calculation times for the test cases between Chapters 10 here and the the RAD750 implementation

in Chapter 11, the time invariant model for the discretization is used for the examples given below.

Chapter 12 includes a case where the correction/optimization model are time-varying.

10.3 Periodic Orbits and Invariant Manifolds

Despite the lack of standard Keplerian orbits due to Phobos containing its sphere of

in5uence, periodic orbits can still play an important role for a mission to this moon. In particular,

both stable and unstable orbit families derived from the Three-Body Problem play an essential part

in existing orbital operation plans. [Wall12] Despite the importance of libration points in this plan,

their stable and unstable manifolds play less of a role than they do for missions such as Artemis

due to the size of Phobos itself blocking these structures.

10.3.1 Orbits in JPL Mission Scenarios

Vertical Lyapunov orbits are libration point orbits which, like the more well known planar

Lyapunov orbits, bifurcate directly out of the L1 and L2 libration points. These orbits have the

highest out of plane amplitude of the libration point orbits, and as such provide the best polar

viewing capabilities. As the energy of the orbit increases, the minimum altitude decreases from

that of the associated libration point, creating a limit on the energy and hence z-amplitude due to

impact. These orbits are very unstable, and JPL's stationkeeping methods are unable to converge to

the orbit when navigation errors as small as 10m were left uncorrected for two hours.

Halo orbits are a family of non-planar orbits that bifurcate out of the planar Lyapunov

family of orbits, and are well studied in theory [Farq66, Howe84] and in practice [Lo01, Farq01].

153

Halo orbits provide a wide viewing area, but also present opportunities for descent staging. This is

because the interior branch of their unstable manifolds can provide a relatively low velocity

descent to the surface of Phobos including Stickney Crater, and the stable manifold provides a

low-energy return path. These orbits, like the Vertical Lyapunov orbits, are very unstable and

require frequent station keeping and capability to switch to more stable parking orbits to ensure

mission safety [Wall12].

Figure 10.2: Examples of Vertical Lyapunov (blue), Halo (green), and DROs (red) in the Phobos system

after the introduction of the time invariant perturbation of 4x4 gravity.

Distant Retrograde Orbits (DROs) are an important class orbits for Phobos operations. In

contrast to libration point orbits, DROs and their quasi-periodic equivalents at Phobos are stable

when nearly planar.[Wall12] Due to the low cost to transfer between DROs and various libration

154

point orbit families – on the order of 10-20 meters per second [Wall12] – DROs provide a safe

option between higher risk mission segments as well as a target for an abort scenario from an

unstable periodic orbit.

All of the above orbits play important roles and should be available as boundary

conditions. In reality, only quasi-periodic orbits remain if other forces such as the time-varying

in5uence of the Sun, solar radiation pressure, the gravity of Deimos, etc. are included. Regardless

of whether such a complex model is used by the correction process, the underlying periodic orbits

in the design model should be accurately calculated. Should the correction model be the same as

the design model, then the orbits can be used directly. Should the model be more complex than

the design model, then the periodic orbit will provide a good initial guess for the quasi-periodic

orbit (or other approximate orbit should the results not ft the formal defnition of quasi-periodic

yet still remain useful) that the corrector is targeting. Examples are shown in Figure 10.2.

10.3.2 Other Orbit Families

Due to the large size of Phobos relative to its sphere of in5uence and libration points,

many entire orbit families impact the surface. This includes the axial family of libration point

orbits, prograde-retrograde switching orbits, symmetric prograde and Prograde-to-Lyapunov

families,[Lo04] and indeed prograde orbits in general. This is intuitively clear since anything

moving in a prograde motion with a minimum distance greater than or equal to the libration points

will escape – and this is very close to the surface of Phobos itself. Also, due to the fact that Phobos

contains its sphere of in5uence (7.3km vs. the 13.4 km radius in its largest dimension), Keplerian-

like orbits do not persist in this application. [Wall12]

10.3.3 Invariant Manifolds

It should be noted that while the inner branches of the invariant manifolds of Halo orbits

may be useful for descent staging to the surface of Phobos, such manifolds cannot be used as in

155

other cases [Koon08, Vill04] for low-energy orbital transfers in this system. This is because for

those libration point orbits that do not themselves impact Phobos, simulations done as part of this

research have shown that the interior branches of their stable and unstable manifolds all impact

the surface. Outer branches may be useful for planning an orbital insertion directly into libration

point orbits from outside the system, but these manifolds cannot be used to transfer between L1

and L2.

10.4 Algorithm Setup

This section provides details on the partition and resulting graph created for this application

by following the procedure described in Chapter 3.

10.4.1 Domain Partition

Poincare sections were created for the following CR3BP energy levels: -1.5000130,

-1.5000125, -1.5000120, -1.5000115, -1.5000110, -1.5000100, -1.5000050, -1.5000000,

-1.4999990, -1.4999970, -1.4999940. The lower energy levels with the fne gradations correspond

to those energies at which the relevant libration point orbits exist and correspondingly those

energy levels for which transit into the Phobos region from the exterior region may occur due to

the opening of the zero-velocity surface. [Koon08] The fne gradations are due to the large

variation in orbit characteristics relative to changes in energy. At energy levels beyond which the

libration point orbits are impacting, the gradations increase due to the lower sensitivity of DROs to

changes in energy levels. The highest energy level is that at which the periapses of DROs are just

within the maximum radius of the domain.

Within each Poincare section, the regions are next defned by the following ranges of radii,

given in distance from the center of mass of Phobos: 14-15km, 15-16km, 16-17km, 17-18km, 18-

20km, 20-25km, 25-30km. Recall that as a periapsis Poincare section (Chapter 3), and so

156

trajectories for which these values are closest approaches cover a larger general domain. In

particular DROs attaining periapsis within this range of values actually extend out to a maximum

distance closer to 50km, a limit suggested by JPL staff advising on this project. The minimum radius

is determined by the fact that the radius of convergence of the spherical harmonic gravity model is

13.93km, thus it is necessary that all arcs considered have closest approaches slightly greater than

this value. Note that the gradations are more fne closer to the surface due to more sensitive

dynamics near the surface and in particular in the libration point regions. The remaining

coordinates in the representation described in Chapter 3 – θ ,ϕ ,α – are divided into intervals of

equal size. Since the regions of operational interest are within a limited band of z amplitude and

polar orbits seem to be impacting at the energies considered, ϕ has been limited to [−π
4

, π
4] in

order to save memory on unused space.

This approach results in 6,300 regions per Poincare section for a total of 69,300 total

regions, and thus the same number of graph nodes.

10.4.2 Graph Creation

For each energy level, there were 324,764 points in the grid of initial conditions, for a total

of 3,572,404 possible initial conditions. For lower energies considered, some of these points

correspond to positions with potential energy greater than the energy of the Poincare section, and

thus such positions would be omitted for that particular energy level. The ballistic arcs generated in

this way were combined with the periodic orbits described above in 10.3.1. These orbits could

have been calculated directly via continuation using AUTO [Doed97], however in this case they

were differentially corrected into the higher order gravity model directly using a modifed version

of the software described in Chapter 9. Invariant manifolds were not included for the Phobos

application for the reasons described in 10.3.3.

157

Using these ballistic arcs, the graph was then constructed following the approach described

in Chapter 3.4, with the same resulting layered structure as in Chapter 3.5 where ballistic

connections exist within each energy level, and impulsive connections exist between regions with

matching positions. As is shown in Figure 10.3, of the (69300)2 possible connections that may exist

in an arbitrary graph, the actual graph has 3.3 million connections in a banded structure, resulting

in a connection density of only 0.07% nonzero entries, or about 48 connections per node. Most of

these are impulsive and the search heuristic used effciently ignores unhelpful maneuvers. Methods

to further reduce this memory footprint for onboard use are discussed in Chapter 11.

Figure 10.3: Sparsity diagram with a blue pixel representing a nonzero graph entry. Scaling effects make

this image appear more dense than in fact.

158

Furthermore, constraint based pruning has been applied to ensure that initial guesses satisfy

those constraints that may be enforced before the corrections process. Thus, only ballistic arcs

whose coasting times are within the minimum and maximum are included. Additionally, impulsive

connections with cost greater than the maximum fuel cost per maneuver are removed. Lastly, any

ballistic arcs that violate the minimum radius / nonimpact constraints would not attain periapsis

within the partition, and thus do not contribute to any graph links. Therefore any arc selected for a

given ballistic graph link automatically satisfes this constraint, in addition to those governing

coasting time. The values of these constraints are discussed in the next section.

10.4.3 Constraint Values

The constraints and associated values included in the test cases that follow are listed in

Table 10.1.

Table 10.1: Constraint Values for Phobos Test Cases

Minimum radius from center of mass: 14 km

Minimum coasting time: 0.5 hours

Maximum coasting time: 7.66 hours

Maximum ΔV per maneuver: 12 m/s

Minimum ΔV per maneuver: 0.1 m/s

Position continuity tolerance: 0.94 m

Trust region (see Chapter 5): Dynamic

The minimum radius / nonimpact constraint value was chosen due to the combination of

being 1km above the furthest extent of Phobos and due to the radius of convergence of the

spherical harmonic gravity being 13.93km. Minimum and maximum coasting times were set to 30

minutes and 7.66 hours (one orbital period of Phobos) respectively. Minimum coasting time

159

constraints are in place to allow suffcient time to obtain a navigation fx after a maneuver, as well

as the existence of delays between thruster frings. In [Wall12], station-keeping strategies with

corrective maneuvers every 30 minutes was considered (with more frequent navigation), therefore

it was felt this was a reasonable value for this constraint. The continuity tolerance was selected to

be as close to 1 meter as possible when expressed in normalized CR3BP coordinates, in this case

10-7 normalized units. This choice follows from JPL estimates of meter to sub-meter optical

navigation accuracy. [Wall12] Other constraints in practice are heavily spacecraft dependent, thus

at this early stage values were included in order to test functionality, and set conservatively.

10.5 Test Case Descriptions

In order to evaluate whether the design choices made to handle the challenges described

in the introduction have proved effective, several scenarios have been considered. These examples

were selected in consultation with JPL Mission Design and Navigation (Section 392) staff to be

representative both of the types of transfers important to Phobos orbital operations [Wall12] and

the abilities of the redesign tool. The objectives for the examples include an abort scenario to a

DRO from a trajectory diverging from a Halo orbit, and returning to a Vertical Lyapunov orbit after

diverging from the same orbit. The frst example plans multiple transfers from scratch using the full

graph search and correction method without using any sort of reference trajectory. In the second

example, it is assumed an additional signifcant error to the state has been added part way through

the planned transfer. Two transfers are again planned, one using the full replanning process and

another correcting and partially optimizing the remainder of the initial transfer from the frst

example. The third example of returning to a Vertical Lyapunov orbit shows the ability to target an

orbit in a very unstable region of the domain.

160

Several assumptions have been made in these examples. First, the state is exactly known at

the time the transfer is needed. Thus, any navigation calculations and uncertainty are not

addressed here. Next, the maneuvers are assumed to be impulsive. Additionally, the models

described above are assumed to be accurate, so that errors do not arise from things like parameter

errors or excluded forces. The large perturbations added to the states to set up the examples are

done as needed.

The resulting trajectories are shown in Chapter 10.6 on the transfer results, and the images

may be helpful to understand the scenario description.

10.5.1 Test Scenario 1 – Abort to Distant Retrograde Orbit

Halo orbits have been seen to be useful for descent staging purposes, and DROs useful as

stable “safe” orbits around Phobos. One transfer of interest then is transitioning between these two

orbit families. However, as our interest here lies in onboard replanning rather then initial trajectory

design between orbit families, this test case will focus on the case of a large perturbation off of a

Halo orbit that uncontrolled would lead to escape from Phobos. It is then from this perturbed

initial condition that a transfer to a DRO will be made, simulating an abort scenario. For this case,

no initial guesses or reference is provided, thus the process is run using the heuristic search on the

directed graph in order to fnd an itinerary.

Table 10.2: Example 1 Boundary Conditions

Initial State (normalized CR3BP coordinates):

x=0.998157523553723, y=-0.000634429787531433, z=-0.000625648186687050

x'=-0.000520987652511872, y'=0.00138001542149045, z'=-0.000791745441681660

Target Orbit:

DRO at energy -1.49999865 in CR3BP with Phobos 4th order and degree potential.

161

10.5.2 Test Scenario 2: Closed Loop Redesign in Response to Large Perturbation

This case builds on Transfer 1 of the previous scenario. Here, an additional large

perturbation to the state is given part way through the transfer, in order to introduce a substantial

error. The redesign system is then called upon to “close the loop” and fnd new transfers to the

original target from the unexpected state.

Table 10.3: Example 2 Boundary Conditions

Initial State (normalized CR3BP coordinates):

x=1.002308393781638, y=-0.000090141995480, z=-0.000448589113068

x'=-0.0010664899953512, y'=-0.005542158428128, z'=0.000156408411279

Target Orbit:

DRO at energy -1.49999865 in CR3BP with Phobos 4th order and degree potential.

10.5.3 Test Scenario 3: Return to Libration Point Orbit

So far, the above examples have dealt with transitions from one orbit family to another, in

an abort scenario with and without further error introduced. For this last example, the spacecraft is

asked to return to the Vertical Lyapunov orbit at L1 from which it has diverged. Vertical Lyapunov

orbits are potentially important due to their good polar viewing properties, given the lack of

Keplerian polar viewing orbits. Since the spacecraft is still in the vicinity (it has drifted

approximately 3 km, primarily in the -x direction) of the orbit, the periodic orbit itself provides a

useful reference trajectory. More precisely, pick a state on the orbit close to the initial condition,

and choose the orbit period as the initial duration. This arc and time of 5ight is then used by the

differential corrector and optimization process.

162

Table 10.4: Example 3 Boundary Conditions

Initial State (normalized CR3BP coordinates):

x=0.999230277519748, y=0.000167097229294, z=-0.002765975993450

x'=-0.000534593411918, y'=-0.000564462210736, z'=0.000174481897515

Target State on Orbit:

x=0.9991464837, y=-0.00041269013, z=-0.00196410

x'=-0.00130428661266256, y'=-0.000101645542566986, z'=0.00258735

10.6 Test Case Results

Total fuel cost, computation times, and a description of the resulting transfers are given for

each of the test cases. The model used is the Circular Restricted Three Body Problem with 12th

order and degree gravity for Phobos. Calculations were performed on an Apple MacBook Air

laptop with a 1.3 GHz Intel Core i5 processor and 4 GB of RAM. The executable was built from C

and run in Eclipse Juno. Most of the code was converted from Matlab using Matlab Coder, with the

remainder being either the C build of the ECOS Second Order Cone Solver or coding directly in C.

Figure 10.4: Transfers 1 (left) and 2 (right) for Example 1, aborting to a DRO (blue) after diverging from a

Halo orbit (red). The transfers are shown in green.

163

10.6.1 Test Scenario 1

This process generates two transfers in parallel, one to each of the DRO's periapses. These

examples are shown in Figure 10.4, with the uncontrolled escaping trajectory in red, the DRO in

blue, and the transfers in green.

Table 10.5: Example 1, Transfer 1 Results

Total ΔV:

After initial correction: 14.1259 m/s

Final: 10.5994 m/s

Computation Time:

Translation to graph nodes: 0.0025 seconds

Load and search graph: 0.2218 seconds

Selecting arcs: 0.0377 seconds

Correction to feasibility: 0.0298 seconds

Optimization for fuel reduction: 0.4283 seconds

Total: 0.7201 seconds

Table 10.6: Example 1, Transfer 2 Results

Total ΔV:

After initial correction: 11.3977 m/s

Final: 10.2878 m/s

Computation Time:

Translation to graph nodes: 0.0004 seconds

Load and search graph: 0.1877 seconds

Selecting arcs: 0.0161 seconds

164

Correction to feasibility: 0.0242 seconds

Optimization for fuel reduction: 0.2366 seconds

Total: 0.4650 seconds

Example 1 demonstrates the ability to switch between orbit families with the addition that

the initial condition is an off-nominal situation in a highly unstable region. In [Wall12], JPL

engineers noted that the ΔV to transfer between DROs and either Halo or Vertical Lyapunov

orbits is in the range of 10-20m/s, without providing the specifc orbit pair leading to the minimum

10m/s value. Therefore the fact that for this example a 10.2878 m/s transfer was found with no

prior initial guess in less than half of a second demonstrates the method potential.

Comparing the cost before and after optimization, it is worth noting that the fuel costs of

initial guesses provided to the optimizer by the search and correction process were not more than

a few meters per second above the fnal value. This shows that even with a somewhat coarse

discretization – particularly for velocity directions – the initial guesses are quite reasonable.

Keeping in mind the feasible iterate requirement in case of a system interrupt, it is important that

these intermediate iterates have reasonable cost themselves, which is the case in this example. This

example also shows the ability to generate multiple transfers to approach periodic orbits, even

before the graph feedback step of the algorithm. In fact, in the multithreaded architecture

developed for the C implementation of this project, the two transfer problems are handled by

different calculation threads and so can be run in parallel.

10.6.2 Test Scenario 2

Since the original transfer is available as a reference, two types of transfers may easily be

generated. First, the original remainder of the transfer may be differentially corrected to take the

new initial condition into account, which is essentially a partial local optimization. In addition, the

165

whole process including the graph search, arc selection, and correction process may be run with

the new boundary conditions. The result has a lower fnal ΔV than the local approach, and indeed

is a very different transfer with an extra revolution. This shows the potential benefts the search

process may give even when a reference trajectory is available, gaining a bit more global insight in

exchange for a relatively small amount of extra time. The resulting trajectories are shown in Figure

10.5, with the original transfer in green (dash-dot for the frst arc it expected to be executed, dot

only for the remainder used as a reference trajectory), the local correction in dashed yellow, and

the transfer from the full algorithm in solid teal.

Figure 10.5: Replanning after an additional large perturbation part way through the transfer of Example 1.

Graph search approach is shown in solid teal, local correction only in yellow dashes.

166

Table 10.7: Example 2, Local Correction and Optimization with Reference Results

Total ΔV:

After initial correction 5.2837 m/s

Final: 3.1278 m/s

Computation Time:

Correction to feasibility: 0.0197 seconds

Optimization for fuel reduction: 0.2655 seconds

Total: 0.2852 seconds

Table 10.8: Example 2, Full Replanning Results

Total ΔV:

After initial correction: 4.5629 m/s

Final: 2.6957 m/s

Computation Time:

Translation to graph nodes: 0.0005 seconds

Searching for itinerary: 0.1705 seconds

Selecting arcs: 0.0228 seconds

Correction to feasibility: 0.0333 seconds

Optimization for fuel reduction: 0.4430 seconds

Total: 0.6701 seconds

10.6.3 Test Scenario 3

Figure 10.6 shows the results of this scenario. The Vertical Lyapunov orbit is shown in blue

dashes. The diverging trajectory is shown in red dots. The transfer from the initial condition on the

167

diverging trajectory to the orbit is shown in solid green. Note that this is ballistic with the

exception of the endpoints, since the initial guess was a single revolution of the orbit. Breaking up

the orbit into multiple smaller arcs would likely lead to a lower fuel cost and is possible within this

method, but was not done in this example to demonstrate a single arc transfer in a dynamic region

where single shooting is considered diffcult. This sensitivity is also the reason the computation

time is relatively long for this example despite only using a single arc. Since the step sizes are tied

to the state transition matrix eigenvalues, the step sizes are very small in this regime, and are

reduced even more if the prior step led to an increase in the cost function.

Figure 10.6: Before escaping (red dots) from a Vertical Lyapunov orbit (blue dash-dot), a transfer (solid

green) is planned returning the spacecraft to the desired periodic orbit.

168

Table 10.9: Example 3 Results

Total ΔV:

After initial correction: 4.4177 m/s

Final: 3.7269 m/s

Computation Time (local only):

Correction to feasibility: 0.0304 seconds

Optimization for fuel reduction: 0.4462 seconds

Total: 0.4766 seconds

10.6.4 Further Computation Time Analysis

Additional information may be drawn by closer inspection of the computation times of

different stages of the algorithm. The values that follow are averaged across the examples above.

The frst observation is that during the search phase, the vast majority of the time is taken

up by reading in the graph fle. Indeed, on average only 5.95% of search phase – here defned as

the reception of the start and goal nodes up until the graph itinerary is returned to the calling

function – is taken up by the A* search itself. This suggests two things. One is that the basic

A*algorithm is suffciently fast without necessarily needing to use more complex but perhaps faster

algorithm. It also suggests that better compression techniques would not only reduce the memory

footprint but also the search phase run time in total. Compressed Column Storage [Duff89] is a

common method that was not implemented in this build. A variation on this approach is used by

Matlab, with the result that while the 70MB row/column/value format used in a .txt fle is stored by

Matlab as a 9MB .mat fle.

Next are the breakdowns of the Correction (Chapter 9) and Local Optimization (Chapter 5)

stages. For the Correction stage: Setup 89.82%, SOCP Solver 2.86%, Evaluation 7.32%. For the

Optimization stage: Setup 44.48%, SOCP Solver 4.98%, Recorrection 44.18%, Evaluation 6.36%.

169

In both cases the Setup stage consists primarily of the arc endpoint and State Transition Matrix

calculations that are determined via integration. Evaluation involves verifcation of cost reduction

and constraints, also involving integration. Recorrection is the unconstrained minimization of

position discontinuity (Chapter 6), also requiring STM information. Combining these, it can be

seen that the vast majority of the time for both correction and optimization consists in integration

needed to get the STM information. Note that such information would be necessary even if simpler

QP subproblems were to replace the SOCP subproblems. The fact that the SOCP solver constitutes

such a minor portion of the process suggests that trying to trim from this 3-5% of the process by

using QP subproblems may be counter productive. The subproblem time savings as a percentage

of the whole is minimal, even if the 3-5% were eliminated completely. Furthermore, as the linear

constraints would reduce the accuracy of the approximations, more iterations and hence more

time consuming integrations would need to be performed. The results do suggest however that

different integration methods other than the standard Runge-Kutta should be investigated to

determine the best ft for the application.

10.7 Summary

This chapter began by describing the basics of the motivation, dynamic environment, and

challenges of an orbital operations plan at Phobos. Next, it provided details on how the trajectory

redesign method described in Chapters 3-9 may be applied to a Phobos orbiter. Test cases that

cover key off-nominal situations were discussed, with results showing effcient transfers generated

in less than a second even with no reference trajectory provided. In addition to the individual test

case results, analysis of the computation times by task provided insight into the strengths and

improvable aspects of this approach.

170

Chapter 11

Implementation of Phobos Test Scenarios

on Jet Propulsion Laboratory Flight Hardware

11.1 Introduction

Many algorithms in spacefight research are developed with the claims of potential use

onboard a spacecraft. However, it cannot always be assumed that any method developed on a

desktop will be suitable to run on fight hardware without prior consideration of the restrictions of

the environment. In this case, implementation is not simply a last step after the development of an

algorithm, it must inform the theory and design of the algorithm itself.

Flight approved, radiation hardened platforms such as the RAD750 used on the Mars

Science Laboratory, and other recent missions were developed over ten years ago. As a result, the

computational abilities are quite limited by modern standards. In addition to hardware limitations,

171

challenges are also posed by additional rules due to fault protection, allowable libraries, etc.

Lastly, real time systems face system interrupts, which must be accounted for within complex or

long running processes. Therefore when considering all of these factors, it can be see that there is a

sharp and growing mismatch between a fight system and the everyday platforms used to develop

and benchmark algorithms.

The method developed and tested here is not mature enough yet for mission use, indeed it

is important to note that it is not designed to replace the well tested guidance and control

algorithms in place on the spacecraft. However, it is designed to supplement such systems where

an off-nominal situation renders such methods insuffcient and yet rapid action is needed onboard.

Therefore, it has always been a goal of this project to successfully run a current incarnation of the

method on Jet Propulsion Laboratory's RAD750 based, fight-like test platform. This was done in

August 2014. This chapter summarizes the process to achieve this, highlighting those aspects

where limitations of an onboard system informed the algorithm design.

11.2 The Test Platform

The RAD750 is a radiation hardened processor made by BAE Systems Inc. Developed in

2001, it was frst deployed on the 2005 Deep Impact and Mars Reconnaissance Orbiter [Berg07]

missions and continues to be used for current NASA/JPL missions including MSL [Gost13] and

Juno.[Dodg07] The CPU clock speed is 200MHz, and test platform has 128MB of local DRAM,

with additional (but slower) fash memory. Therefore both processing speed and memory are

severely limited by the standards of even today's inexpensive laptop. The test platform and existing

missions are run by the VxWorks real-time operating system developed by Wind River Systems Inc.

Flight Software Core (FSW Core) is a new fight software architecture and infrastructure

developed by NASA/JPL in order facilitate consistency, reusability, and ease of development of

172

code. One feature of this system is the ability to compile and run code for the VxWorks operating

system on desktop platforms (VxWorks Sim) so that testing and debugging are completed before

needing to use the limited resource that is the actual fight-like hardware. FSW Core then allows an

easy transition to run the executable on the RAD750/ VxWorks Flight test bed.

11.3 Review of Design Decisions Informed by Onboard Application

Here a short review will be given of the algorithmic choices from Chapters 3 through 9 that

were infuenced by the intent to develop an onboard oriented approach.

11.3.1 Feasible Major Iterates of the Optimization Process

The most important example of this in this project is the development of the modifed SCP

optimization method tailored to the application with a feasible major iterate requirement (Chapter

7) in case of a system interrupt. The optimization process is the lengthiest portion of the transfer

design and so it is necessary to not use a method where only the fnal result is guaranteed to be

feasible. Therefore once feasibility of both nonlinear (and indeed numeric) equality and inequality

constraints is established by the faster initial correction process, the best feasible result is always

stored after each major iteration and available to the larger system. This led away from standard

implementations of SQP or SCP (or even “Feasible SQP” due to nonlinear equality constraints

[Lawr96, Lawr01]) to an inclusion of the recorrection steps described in chapters 6 and 7.

11.3.2 Second Order Cone Problems and Interior Point Solvers

As described in Chapter 5.7, the cost and most of the constraints of the impulsive transfer

NLP satisfy the structure of a convex problem once State Transition Matrix based approximations of

the dynamics are used. As a result, convex subproblems suggest themselves as a natural choice.

However, the use of Second Order Cone Problems (5.3) via the epigraph transformation (5.7.3,

5.7.7) is due to implementation requirements. In Chapter 5.3.2, results from SOCP researchers in

173

[Nest94, Peng09] were provided that certain classes of interior point methods are guaranteed to

converge and indeed within a calculate, fnite number of iterations for a given tolerance provided

interior points exist. Although in some spacefight applications the existence of interior points is

often assumed without note due to physical arguments, Appendix A demonstrates that the iterative

process will not eliminate this property.

Aside from the desirable convergence properties, there exist open source SOCP solvers

using such interior point methods. ECOS [Chu13, Doma13] is such a package that was developed

specifcally for embedded applications. As a result, its build in C uses very few nonstandard

libraries. In particular, all of the ECOS code was able to be used on the VxWorks platform without

modifcation. It also has builds in Python and Matlab for ease of prototyping. Within Matlab it is

also able to be called by CVX. [Gran08, Gran13] Without the CVX interface, the input formats

match those in the C build. Therefore code may be written to arrange the inputs in the ECOS

format and easily verifed that the outputs match the results when using CVX as an intermediary.

This formatting code may then be converted into C with minimal changes and again the output

may be matched to earlier results in Matlab.

11.3.3 A* Search Algorithm

Concerns regarding guaranteed convergence also played a role in the selection of the

heuristic search method. So called Greedy Search methods that use a heuristic function only to

determine which node to evaluate may be faster than A* in some applications due to steering

directly towards the solution rather than incorporating the running cost. However, Greedy frst

methods may be incomplete, meaning they might not even fnd the goal node, let alone on the

optimal path. [Russ09] A* search is provably complete and with additional conditions (4.3.3,

4.3.4) can be proven to fnd the optimal path within the graph.

For the examples tested thus far, the memory usage of the A* algorithm itself did not cause

174

any problems with the limitations of the RAD750 system, however this is not guaranteed.

Thankfully, memory bounded variations of the algorithm exist that would be suitable to guarantee

no such issues occur. Given a specifed cap on available memory for the search process, the SMA*

(Simplifed Memory-bounded A*) algorithm has been shown to be complete if any solution exists

within the memory cap.[Russ09] Additionally, if the optimal path is reachable within the memory

constraint, it will fnd it, otherwise it fnds the best reachable path. [Russ09]

13.3.4 Integration: A Remaining Challenge

At present, standard Runge-Kutta integration methods are being used in this project. 8
th

order Runge-Kutta integration has been implemented on the AutoNav autonomous navigation

software [RiedAN] fown on multiple missions including Deep Space 1.

Although such methods have been used onboard, there is perhaps room for improvement.

For a fxed accuracy, an indeterminate number steps needed per integration due to the variable

step sizes, which poses a problem in onboard use. Otherwise to mitigate this, as in the case of

AutoNav, [RiedAN] step size limits must be implemented which can affect accuracy. Future work

would be benefcial to determine whether suitable analytic approximations exist for the trajectories

and State Transition Matrices (for short timesteps), or whether new integrators under development

can be shown to avoid this problem at least for the relevant application. One approach that looks

promising is that of Modifed Picard Integrators using the Parker-Sochacki method which uses

coordinate transformations and a simple set of operations on resulting polynomial representations

of the transformed variable. [Nakh14] While not allowable for arbitrary systems, it has been shown

to be applicable to multibody gravity as well as spherical harmonic gravity models. These forces

dominate the dynamics of most planetary moon environments, although further work will be

needed to see if Solar Radiation Pressure may be incorporated. Another possible beneft that needs

to be investigated is whether the simplicity of the method that allows it to run with the calculation

175

restrictions of Graphical Processing Units (GPUs) [Nakh14] will also allow it to be run using Field

Programmable Gate Arrays (FPGAs). While GPUs may eventually be cleared for space qualifed

platforms, FPGAs are currently approved and are used to quickly perform certain types of parallel

computations. [Mour09]

11.4 Graph Memory Reduction via Run Time Impulsive Connections

One situation did arise where a major change was needed due to platform limitations that

was not discovered until the porting process. Due to memory limitations, a change was made in

which impulsive links in the directed graph (see 3.4.3) were no longer stored in a data fle along

with the ballistic links. Instead, they can be calculated in real time as part of the search process.

11.4.1 Background

The fight like computing platform has 128MB of DRAM local memory available to the

processor without needing to access slower, fash memory. Running the VxWorks fight operating

system alone reduces this to approximately 96MB. [Mang14] Additional programs will reduce this

amount further, creating a limit on available memory.

Relative to the above limitations, the fle containing the graph used in Chapter 10 is 70MB

in size. Now, as was stated in 10.6.4, the same data was stored in Matlab as a 9MB fle using their

version of the Compressed Column Storage (CCS) [Duff89] fle format. Further possible steps could

include dividing the fle into multiple fles with one per energy level, accessing on those needed at

any given time. These alternatives were considered insuffcient for various reasons. Opening and

closing sections of the graph is hampered by the fact that at each node, adding adjacent nodes to

the frontier (Chapter 4.3.2) involves impulsive connections with multiple energy levels at every

step as well as ballistic connections with positions in very different positions. Therefore dividing

the graph into multiple fles – and accessing each as needed – by either energy or position would

176

result in signifcant fle I/O. In the examples tested, time spent during the search phase due to fle

I/O took an order of magnitude more time than running the A* algorithm itself. As a result, such an

approach would greatly increase the search time.

A better storage format such as CCS should defnitely be considered over the simplistic row,

column, value format currently in use. In the case of the 70MB graph, then a reduction to 9MB

would likely be suffcient. However, the large size of Phobos relative to its libration point region

(creating a large forbidden region) and other features of the system lead to a partition that is limited

in extent and resolution but still suitable to the application. A larger graph was created that may be

more representative of graphs in other applications, and is 330MB in the row, column, value

format and approximately 50MB in the Matlab CCS format. In such a case the format change is an

improvement but not suffcient by itself, therefore additional measures are needed.

Comparing the relative memory usage due to impulsive and ballistic connections, it was

seen that impulsive connections constituted over 90% of the 70MB graph and 95% of the 330MB

graph. Therefore impulsive connections became the target for memory reduction. The approach

taken is to calculate the impulsive connections when needed during the search process.

11.4.2 Identifying Connection Candidates

Looping through the entire list of nodes to determine which nodes to add impulsive

connections to is ineffcient, and storing a list of approximately one hundred such nodes per every

node would require a signifcant amount of memory. Therefore, the list of nodes with matching

positions is calculated with a few operations on lists of indices, as is now described.

Determining which nodes to add impulsive connections to begins with the property that

impulsive connections only exist between nodes representing the same positions, but with different

velocities. The regions are grouped by J , r ,θ ,ϕ ,α in that order. Let R be the number of regions

per energy layer, and A be the number of velocity directions. Then for node n (which is simply an

177

integer starting from 0), L
1
=(n−mod (n , A) , n−mod (n , A)+1,... , n−mod (n , A)+(A−1)) gives

the list of nodes which match in all aspected except possibly velocity direction. Let

L
2
=mod (L

1
,R) , where the modulus is done element-wise on L

1
. This list of values then

signifes that the A nodes that match in position within each energy layer occupy the L2

(0)
th

through L2

(A−1)
th nodes of that layer. Assume there are E number of energy layers. Therefore, with

the addition here signifying each element of L
2

is added to by the constant,

L
3
=(L

2
,R+L

2
,2R+L

2
, ... ,(E−1)R+L

2
) provides the list of E×A nodes that match in position

with node n. The fnal list of nodes L is created by removing node n itself, and any nodes that have

been marked as having a greater potential energy than the energy of their layer and are thus

inaccessible. It is this short list of nodes that is then evaluated to determine the impulsive link cost.

Assembling such a list directly using index arithmetic instead of iterating through every node

greatly reduces the number of iterations that need to be performed.

As a simplifed example, suppose the graph in question has 3 layers of 100 nodes, with

each layer defned by 20 positions and 5 possible velocity directions. Consider the list of possible

impulsive connections for node 213. From the above, we see that L
1
=(210, 211,212, 213,214)

is the list of nodes with the same energy level (the fourth) and position region (the third).

L
2
=(10,11,12,13,14) signifes that the 10

th
 through 14

th
 node (counting from 0) on each layer

will have the same position. Therefore

L
3
=(10,11,12,13,14,110,111,112,113,114,210,211,212,213,214)

is the list of all nodes with the same position as node 213. Removing node 213 itself results in the

fnal list of candidates for impulsive connections:

L=(10,11,12,13,14,110,111,112,113,114,210,211,212,214)

178

11.4.3 Link Costs

In reality, the ∥ΔV∥ in the constructed transfer corresponding to an impulsive

connection between nodes nj and nk is a function of the ballistic arc which ends in the region

associated with nj and with the ballistic arc beginning in the region associated with node nk.

Regardless of the approach taken to assign a cost to the nj to nk transition, it is simply an estimate

of a value that is unknowable at the time of the search process. In Chapter 3.4.3, the average

∥ΔV∥ between the states of two regions with matching position was calculated via an iterated

integral, taken as the impulsive link cost, and stored in the graph fle. For less memory limited

applications this approach can still used. However, in order to maintain a fast search process, it is

desirable to avoid integration if possible during the search process. One method is to determine

what the average velocity vector is for each region. The link cost is then taken to be the ∥ΔV∥

between these two vectors. For disjoint sets such as the regions in question, these two values can

be quite similar and can be shown to be identical for disjoint sets in one dimension. Indeed, the

same paths were selected for the examples from Chapter 10, resulting in the same arcs being

selected and hence the same initial guesses.

In order to facilitate quick calculations at the time of the search process, the average

velocities vectors are stored for each node in the Cartesian CR3BP coordinates. Such a table has as

many rows as nodes and four columns, storing (n ,(v̄ n)x ,(v̄n)y ,(v̄n)z) per row where v̄n is the

average velocity associated with node n. During the search process, when constructing the frontier

for some node nj, the list of nodes L(nj) that will have impulsive connections is quickly determined

using the index calculations above. For each node nk∈L(n j) , an impulsive connection is added

between nodes nj and nk with link cost ∥v̄ nj−v̄nk∥.

179

11.4.4 Memory Reduction and Search Time Impact

Recall that the original graph sizes storing both ballistic and impulsive connections are

70MB for the Chapter 10 example and 330 MB for an alternative larger graph relying on fewer

application specifc reductions. Using the above approach, these graph fles are replaced with a

graph fle only containing ballistic connections, and a fle containing the average velocity for each

node which is then used to calculate the impulsive connections during the search process. The

70MB graph was reduced to a 2.4MB ballistic connection graph fle and a 2.8MB fle containing

the average velocities per node, 5.2 MB in total. As impulsive connections were even a higher

percentage of the 330MB, the reduction was even more drastic, with a combined 13MB total.

Note that this reduction did not involve a difference in how the graph fles were compressed.

Therefore in terms of memory this process succeeded in its goal.

However, it is also important to examine the impact in search times since more – if simple

– calculations are performed during the search process. Indeed, across the test scenarios involving

a search phase, the A* search algorithm run times increased 21-27% with the changes just

described when tested on the MacBook Air (from 0.011-0.014 seconds to .014-.017 seconds).

However, the search algorithm itself is less than 10% of the total run time of the search phase,

most of it involving the fle I/O of the graph using fscanf. As a result, in all cases the total search

phases time was reduced due to the much smaller fle size even though the A* algorithm itself took

slightly longer. The reduction in the search times as a percentage of the total is provided in 11.6.2.

Although a more detailed study on the effect of this change to the graph costs overall would need

to be performed, with the reduced memory, faster total run time, and matching paths for the few

examples considered, this approach was considered to be successful and implemented on FSW

Core given the limited access time to the platform.

180

11.5 Porting Process

11.5.1 Conversion to C

As discussed in 11.3.2, the ECOS SOCP solver has builds in both Matlab and C and so the

subproblem solver code was able to be used directly in C. Most of the remaining calculations

including converting boundary conditions to nodes (4.2), equations of motion (Appendix C),

integration, arc selection (4.4), and cost and constraint matrix construction using arc states and

STM submatrices (5.7.6-5.7.7, 9.3.1) were converted from Matlab using Matlab Coder. As a result

the code has not been optimized for C, which may lead to further improvements in calculation

time. Due to limitations the types of conversions Matlab Coder can handle, iteration control and

wrappers around converted code were coded directly in C.

These calculations were distributed within the multiple threads defned by a real time

software architecture plan developed with JPL fight software engineer Kim Gostelow. A description

of the proposed design with a full calculation breakdown, state machines, and messages is too

lengthy for this document. Indeed, with the limited platform access time, only the calculation

process was able to be implemented and tested using FSW Core.

11.5.2 Platform Porting Phases

The frst step was to move the code from the MacBook Air used for development to a Linux

system as a bridge before VxWorks operating systems used in the FSW Core environments. At this

stage JPL fight software engineer Lloyd Manglapus was able to identify and correct issues such as

missing execution dependencies, code standard issues, and improperly initialized variables.

The next step was to port the code to the FSW Core simulation environment (VxWorks

Sim), which uses the same VxWorks operating system and libraries at the target platform. At this

stage the graph memory issue discussed in 11.4 above was identifed and then resolved. Additional

code modifcations by Lloyd Manglapus were needed to eliminate the need for libraries that are

181

required by the converted Matlab code but are not allowed on the VxWorks system. This includes

the handling of 'inf' (infnity) and 'NaN' (not a number) values, which were able to be removed in

the existing C code. The Matlab Coder produced C code to handle variable matrix sizing also

required unallowable libraries and needed to be removed. Changes were made in Matlab to

precompute the needed size, and this updated code was then moved through the porting process.

The work product was packaged as a FSW Core component and used the FSW Core infrastructure

to build the fnal executable.

After successful testing in the simulation environment – meaning the output matched the

results of the C run with the same setup – the executable was then moved to the RAD750 based

fight-like platform (VxWorks Flight). The test cases were run on a quiescent system and again

verifed that the output matched the expected values. These results are presented in the next

section.

11.6 Simulation Results

11.6.1 Test Case Performance Data

The test cases and parameters for which calculation time results are given are precisely

those of 10.5.1-10.5.3 and 10.6.1-10.6.3. Therefore the scenario descriptions, transfer images, and

characteristics will not be repeated here. The data is presented in Tables 11.1-11.5.

Table 11.1: Example 1, Transfer 1 Results

Total ΔV:

After initial correction 14.1259 m/s

Final 10.5994 m/s

Computation Time:

182

Translation to graph nodes: 0.01 seconds

Load and search graph: 4.78 seconds

Selecting arcs: 1.17 seconds

Correction to feasibility: 1.45 seconds

Optimization for fuel reduction: 23.97 seconds

Total: 31.38 seconds

Table 11.2: Example 1, Transfer 2 Results

Total ΔV:

After initial correction 11.3977 m/s

Final 10.2878 m/s

Computation Time:

Translation to graph nodes: 0.01 seconds

Load and search graph: 4.56 seconds

Selecting arcs: .84 seconds

Correction to feasibility: 1.02 seconds

Optimization for fuel reduction: 12.98 seconds

Total: 19.41 seconds

Table 11.3: Example 2, Local Correction and Optimization with Reference Results

Total ΔV:

After initial correction 5.2837 m/s

Final: 3.1278 m/s

Computation Time:

Correction to feasibility: 0.89 seconds

183

Optimization for fuel reduction: 13.48 seconds

Total: 14.38 seconds

Table 11.4: Example 2, Full Replanning Results

Total ΔV:

After initial correction: 4.5629 m/s

Final: 2.6957 m/s

Computation Time:

Translation to graph nodes: 0.01 seconds

Searching for itinerary: 4.48 seconds

Selecting arcs: 1.55 seconds

Correction to feasibility: 1.88 seconds

Optimization for fuel reduction: 25.30 seconds

Total: 33.22 seconds

Table 11.5: Example 3 Results

Total ΔV:

After initial correction: 4.4177 m/s

Final: 3.7269 m/s

Computation Time (local only):

Correction to feasibility: 1.45 seconds

Optimization for fuel reduction: 24.20 seconds

Total: 25.66 seconds

184

11.6.2 Result Comparison

As expected due to hardware limitations and operating system differences, the run times

are longer than those on a new laptop, ranging from approximately 20-35 seconds in these cases.

Should the algorithm be considered for a mission, it will need to be determined what computation

times will be when run on a non-quiescent system with a potentially more complex model.

However, the code would also be optimized rather than using a conversion from Matlab. It is

hoped the result will still be less than the round trip communication time from Earth to Mars,

which ranges from 6 to 42 minutes, with the MSL landing famously having a 7x2=14 minutes

round trip communication delay.

One item to note relates to the calculation at search time of the impulsive graph

connections. It was claimed above that although the A* run times themselves increased slightly,

that this was more than offset by a decrease in fle I/O time. Comparing the percentage of the

search phase time relative to the whole, there is a decrease between the results of Chapter 10.6 vs.

the RAD750 results of this chapter. There was a decrease from 30.8% of the total to 14.3% of the

total for transfer 1 of test scenario 1, 40.3% to 23.5% for transfer 2 of test scenario 1, and 25.5% to

13.5% for the full replanning transfer of test scenario 2.

The breakdown of computation time for the correction and optimization stages 10.6.4 is

essentially unchanged, with the only notable decrease being the percentage of the optimization

process taken up by the SOCP solver showing a decrease from approximately 5% of the whole to

3-4% of the process.

11.7 Future Opportunities: Parallelization

There are efforts underway by NASA, the AFRL, and Boeing to create the next generation of

space-qualifed hardware. [Doyl14, Some13, Alex12, Doyl12] Such systems will be signifcantly

185

more powerful than the RAD750 and will feature multicore processors; in the case of the Tilera64

based Maestro unit under development by Boeing, there are 64 cores. [ViRe11] In a joint

NASA/AFRL evaluation for increasing parallelization in fight processors, a preference was

established for multiple general purpose multi-core processors in the future rather than

parallelization via FPGAs or GPUs. [Doyl14] These advances should drive investigations on how

to speed up the existing capabilities of the transfer redesign tool as well as the possibility of

additional functionality.

11.7.1 Naive Transfer Problem Parallelization

Multiple, independent transfer problems may be created when there are multiple goal

states to be evaluated. Recall that in Chapter 4.2, (or indeed Chapter 12) that periodic boundary

conditions can allow multiple transfer problems to be created, each designed using different

departure/insertion points on the orbits. Each of the resulting problems are completely

independent of one another and so may be run in parallel. Another example is discussed for

designing fyby transfers in 12.3.5. In this case full states are provided as input to the design

process with the fnal relative velocity removed from the cost function to enable fybys. As the

optimization process is a local one, the resulting transfer is dependent upon this initial guess. Flyby

transfer design would be greatly enhanced by the ability to use multiple approach directions as

initial guesses in order to fnd transfers that are both lower cost and improved viewing properties.

In a more general context, as spacecraft become more autonomous, even higher level

decision making will be handled by the spacecraft. Thus not only will a transfer need to be

designed for a given goal, but the goals themselves will need to be determined autonomously. In

such a case, transfer information will need to be provided for multiple options during the

evaluation process, not just once a fnal boundary condition has been provided. In such a case the

transfer problems are independent of one another and so may be run in parallel if the resources

186

allow.

11.7.2 Search Process Parallelization

There has been recent research on parallel implementations of the A* search algorithm.

One promising example is Hash-Distributed A* (HDA*). In [Kish09], speed-ups of 3.6-6.3 times

were seen on a single 8-core processor as well as on a computing cluster, with speed-ups an order

of magnitude above these in clusters with 64 and 128 cores total. It was observed as well that

there was almost no CPU idling due to synchronization overhead, in contrast to other attempts at

A* parallelization. [Kish09] Depending on how many cores are available to the search process,

such an approach can lead to a faster solution. In the case of the 64 core Maestro being

developed, this is a likely scenario. The additional cores also increase the amount of fast memory

available, reducing the impact of memory-bounded modifcations such as SMA* (11.3.3). [Russ09]

Note that if GPUs become used on fight systems, similar research is underway for GPU based A*

algorithms with impressive results. [Blei08] In addition to improved performance on existing

graphs, such changes could also enable the use of larger graphs by the transfer design tool.

11.7.3 Run Time Ballistic Connections and Uncertainty Constraints

Recall that in Chapter 11.4 that a change was made to calculate impulsive connections at

run time rather than store these in a graph fle due to memory limitations. Suppose such an

approach were to be made for ballistic connections. One beneft of doing so would be the use of a

higher-fdelity, time varying dynamical model in the search process, eliminating mismatches

between the search and optimization models. Another is reducing the memory used for the graph

fle and arc database, particularly memory used to for portions of the domain unused for some

particular transfer. Doing so, however, would require multiple integrations to be performed in

order to approximate the system fow of the region corresponding to the current node in order to

add ballistic connections to the frontier. It should be evaluated if performing these integration in

187

parallel make this approach feasible.

Another use of integration during the search process is incorporating some uncertainty

analysis during the design process by estimating the state covariance for the transfer being

constructed. As this depends on the orbit determination characteristics at the beginning of the

transfer, such information cannot be stored ahead of time. Note that the trajectory and STM

information needed for propagation using the Extended Kalman Filter requires a single (n2
+n

dimension where here n=6) integration [Cras04] and so is not easily parallelized. Propagation

using the integration of multiple sigma points to calculate uncertainty statistics used by the

Unscented Kalman Filter involves the integration of 2n+1 trajectories which may be done in

parallel. [Nakh13] For a 6 dimensional state space, these compare a single integration of 42 states

and 13 parallel integrations of 6 states for 78 total. It should be evaluated if the parallelization of

the integrations results in faster UKF vs. EKF performance. Note that GPU based integration

techniques [Nakh14] mean that should GPUs be used on fight systems this could be parallelized

in this way as well on such systems. Additional UKF benefts such as higher accuracy, the ability to

use higher order statistics, and possible synergy with run-time ballistic connections described

above (by using the same trajectories for both phases) suggest that if the run time due to

paralellization is reduced or equivalent, then the increased use of the UKF onboard should be

seriously considered with the introduction of multicore processing.

11.7.4 Naive Parallelization during the Optimization Stages

Integration of both ballistic arcs and their State Transition matrices are required throughout

the Correction and Optimization phases of the transfer design process described in Chapters 5-9,

and in fact constitute the majority of the calculation time. However, these integrations are done on

an arc-by-arc basis and thus are independent. Therefore this may be very simply calculated in

parallel with the integration of each arc handled by a different core.

188

11.8 Summary

This chapter began by describing the current fight hardware based test platform used at Jet

Propulsion Laboratory, and the resulting limitations this causes for an onboard system. This

information, along with requirements for an onboard trajectory design system in general, creates

the background from which various algorithm design decisions and necessary changes were made.

After the porting process to the VxWorks Flight platform was described, the computation results of

the successful implementation on the fight-like system are given. As an algorithm designed with

many challenges of onboard implementation in mind, this was a major milestone and rare

opportunity.

189

Chapter 12

Libration Point Orbit Based

Near Earth Asteroid Interceptor

12.1 Introduction

A mission concept is in the early stages of investigation by mission design staff at Goddard

Space Flight Center (GSFC) that would keep a constellation of small satellites in a libration point

orbit, and from there deploy them to encounter near earth asteroids. As a frst step, example

transfers from such orbits to several representative asteroids were needed to determine if the ΔV

required is excessive for such satellites. Additionally, there was a desire for comparisons in

performance between fyby and rendezvous encounters, orbit types, orbit energies, asteroid

energy, and asteroid inclination. Due to a gap in existing tools to quickly generate such transfers,

GSFC extended an invitation for the transfer redesign tool described in this dissertation to be

demonstrated for this application.

190

This chapter begins by describing the candidate orbits and target asteroids for which

transfers were generated. Next, the necessary setup is described with a focus on those changes to

the partition format, models, and optimization algorithm needed for this application. Example

transfers are provided, along with an analysis of the resulting data as a whole.

12.2 Boundary Conditions

12.2.1 Candidate Periodic Orbits

Four different periodic libration point orbits at at the Sun/Earth L1 point were selected as

initial conditions for these transfers. These consist of Halo and Vertical Lyapunov orbits at two

different energies in order to have examples of both high and low z-amplitude initial orbits. Using

the mass parameter μ=3.035910E−06 [Gome05] these energies are J=3.000771793,

J=3.000487636 using defnition of the augmented potential as given in [Koon08]. The low z-

amplitude Halo orbit is in fact the orbit used in the design of the Genesis mission, with coordinates

as provided in [Gome05]. The high z-amplitude Halo was taken at an energy level so that the z-

amplitude would be approximately double the Genesis orbit. The Vertical Lyapunov orbits have the

same energy at the corresponding Halo orbits. These orbits are defned in the Sun/Earth CR3BP by

the following states and period, provided in normalized CR3BP units.

L1 Halo (northern family) – Low z-amplitude

x=0.9922709412937017, y=0, z=-.002456251256325228;

xdot=0 , ydot=-.01191138815471799, zdot=0

Period=3.0520117049

L1 Halo (northern family) – High z-amplitude

x=0.995474296562891, y=4.43824956048690e-06, z=-0.00491066844907487

xdot=2.73104523229373e-06, ydot=-0.0212098498347536, zdot=-1.15620247379016e-5

Period=2.96888665668952

191

L1 Vertical Lyapunov– Low z-amplitude

x=0.990405225236362, y=-3.57127182306636e-05, z=-0.000214573873165003

xdot—9.75826821985566e-05, ydot=0.00100244182138559, zdot=0.0113437719064818

Period=3.21162744779924

L1 Vertical Lyapunov– High z-amplitude

x=0.991328040634016, y=-5.77249799238712e-06, z=-2.26524536307027e-05

xdot=-2.39220898303787e-05, ydot=0.00361046734991688, zdot=0.0204302109956262

Period=3.50025021542029

12.2.2 Initial Conditions Used

For each periodic orbit, 12 initial conditions were considered, evenly spaced around each

orbit. These conditions are found by propagating the above initial conditions in the CR3BP by

increments of the provided orbital periods divided by 12. This approach is used for multiple

reasons. First is that the trajectory design system is set up to depart from and insert into specifc

states along periodic orbits, rather than searching along the orbit for a global minimum. For this

particular application this is not a liability because the approach of an asteroid determines when a

satellite will need to depart an orbit, and hence its position on that orbit. Sensitivity to initial orbit

phase would also indicate that a small constellations of satellites is truly needed in order to quickly

intercept an asteroid within fuel limits.

12.2.3 Candidate Asteroids

The following asteroids were selected due to a range of energies, inclination, and infuence

on the trajectories by the Earth/Moon system. Initial conditions are provided in normalized CR3BP

coordinates. In order to determine these coordinates, frst the ephemeris coordinates at the

specifed date in a Heliocentric inertial frame for both the asteroid and the Earth were retrieved

from the JPL Horizons website. The coordinates were transformed so that the Sun-Earth line

became the x-axis and Earth's velocity lay in the xy-plane. The relative position vector of the

asteroid relative to the Earth in this frame was then scaled into CR3BP normalized distance, and

192

then added to the position of the Earth in the CR3BP. Similar calculations were done to establish

the angle of the Moon relative to the Sun-Earth line, and so to determine its position at encounter

time when the Sun/Earth/Moon Bicircular Four Body Problem (BR4BP, Appendix C) is used as

described below.

2006 RH120, January 13, 2007 0:00:00. An example of a low energy “mini-moon”, an

asteroid temporarily captured by the Earth with multiple, high inclination passes. This is similar to

the temporary capture of the comet Oterma by Jupiter during its resonance crossing. [Koon08]

Similarly to the situation of temporarily captured bodies such as Oterma, the energy of 2006

RH120 is close to that of various libration point orbits, in particular those of the higher z-amplitude

periodic orbits taken as initial conditions (J=3.000443957 vs. 3.000487636 for the orbits). Due to

its relatively low energy, it was evaluated for both rendezvous and fybys. Its state at encounter is

given by:

x=995501880026699, y=0.000682447690650, z=-0.000433111895835

xdot=-0.006647867581849, ydot=0.009173412041385, zdot=-0.028436596556750

Figure 12.1: Trajectory of 2006 RH120 plotted in an Earth centered, psuedo-inertial frame. Note the

temporary capture and high inclination.

193

2011 UD21, October 13, 0:00:00. Higher energy (J=2.998618437) than 2006 RH120,

although this asteroid is not temporarily captured, its trajectory is nonetheless highly perturbed by

its Earth fyby. Therefore it serves as a transition case between 2006 RH120 and the remaining high

energy asteroids. As a result, it was evaluated for both rendezvous and fyby. Its state at encounter

is:

x=1.000645292897312, y=0.004444513369061, z=-0.001965555338808

xdot=0.047698817844520;, ydot=-0.003756089804374, zdot=0.017862047954360

2005 YU55, November 9, 2011 0:00:00. A very high energy asteroid (J=2.7906811309)

with a moderate inclination. It was evaluated for a fyby only due to its extremely high velocity

relative to the Earth. Its state at encounter is:

x=1.000014862362460, y=-0.001912019823162;, z=0.001044249239317

xdot=0.459336314799381, ydot=-0.032365393111594, zdot=0.007631780503715

2004 BL86, January 26, 2015 16:20:00. Another asteroid with a very high velocity relative

to the Earth (J=2.7239701943), but with a very high inclination. Evaluated for fyby only. Its state at

encounter is:

x=1.006936121626134, y=0.000101706979815, z=-0.004017107759411

xdot=0.263067614613010, ydot=0.019974127647932, zdot=0.455304685964308

12.3 Method Setup and Modi6cations

12.3.1 Model Selection

As recommended in Chapters 3 and 10, in order to reduce the size of the directed graph

used by the search process, a time invariant system is ideal for the discretization model. As such

the CR3BP is used (Appendix C), with mass parameter μ=3.035910E−06. However, as the

Moon has a noticeable effect on the dynamics of 2006 RH120 and could potentially be used for a

fyby by the optimization process, it could not be omitted from the fnal model. Therefore the

Bicircular Restricted Four Body Problem (BR4BP) is used for the correction and optimization

194

model, introducing the time varying effect of the Moon's gravity. This model is described in

Appendix C with the parameters used for this application.

12.3.2 Domain Partition

Since the initial conditions are known ahead of time to be states along the Halo and

Vertical Lyapunov orbits, on-orbit initial conditions and off-orbit intermediate states have been

assigned different regions, even if those regions should overlap in position. (The partition defnition

below clarifes this concept.) This leads to more accurate orbit departure arcs, and is a major

change from the coordinate-only discretization of the Phobos application in Chapter 10.4.1. As

described in Chapters 3 and 10, the simulations used to generate the ballistic connections and

graph layers themselves are associated with a set of specifed energies. For each energy level, the

partition structure is further split into the following types:

Partition Section 1 – States on Orbits:

1 region per the twelve states – hereafter the “orbit phase” – along the orbits taken as

possible initial conditions as described in 12.2.2 above. This results in 12 regions per orbit.

Partition Section 2 – Positions on Orbits, post-Impulse Velocities:

For each orbit phase, the position is fxed to that of the states on the orbit, but velocities are

allowed to vary to create departure maneuvers. For each specifed energy, the direction sphere is

divided into 24x24=576 velocity directions. The velocity magnitude is scaled to match the

specifed energy of the partition layer. This results in a total of 12x24x24=6912 regions per orbit

per energy level.

Partition Section 3 – Standard partition of periapsis Poincaré section:

Position is specifed in spherical coordinates as in Chapters 3 and 10. Velocity is then

specifed by the angle of the velocity relative to the xy-plane.

• r : 14 regions from 10,000-16,000,000 km, with region boundaries given in normalized

195

units by: 1/1.496e8*[10000:50000:400000,400000:200000:1600000]

• ϕ : From −
π

2
to

π

2
, divided into 9 regions.

• θ : From −
π

12
to 2π−

π

12
divided into 12 regions.

• α : From −
π

12
to 2π−

π

12
divided into 24 regions.

This results in 14x9x12x24=36288 such regions per energy layer.

12.3.3 Resulting Directed Graph

A directed graph combining ballistic and impulsive connections is created as described in

Chapter 3, with a couple of exceptions. Note without a maneuver, states on the orbit remain there.

Therefore these form no ballistic connections with the other partition sections, only impulsive

connections with partition section 2 – which are states whose positions are on the orbits but with

different velocities. Partition section 2 initial conditions are integrated and thus form ballistic

connections into partition section 3, which is the standard division of the state space. This

approach forces initial conditions – states with a given orbit phase – to deorbit via an impulsive

maneuver and then coast for a time before the next maneuver. As regions 1 and 2 are only used to

link these non-standard initial conditions on the initial periodic orbits to the standard domain, no

links are made to them from nodes corresponding to regions of the standard state space domain.

The resulting graph has 358,128 nodes (due to technical reasons needed for fast index

manipulation, nodes corresponding to copies of all four orbits and their departure velocities for all

three energy levels are repeated per layer, hence a greater number of nodes than the number of

regions given in the partition. However, these dummy nodes are unused). An average of 8.7

connections exist per node, resulting in a sparsity of 0.0024%. Of these, over 80% of the

connections are impulsive. The resulting .mat fle is 11.3 MB.

196

Figure 12.2: Sparsity diagram of the resulting graph described in 12.3.3. Each pixel is a link between two

nodes. The 'from' nodes are arranged vertically, the 'to' nodes horizontally.

12.3.4 Optimization Modi6cation for Flybys

For rendezvous trajectories, the correction and optimization process is exactly as described

in Chapters 5-9, with the model being the BR4BP. As this method was designed with specifc target

states in mind as is the case for standard transfer design, an adjustment needs to be made to enable

fybys at encounter rather than rendezvous. This is in fact quite simple to do: the fnal maneuver to

match the asteroid velocity is simply dropped from the cost function. The existing constraints

guarantee that like a rendezvous the spacecraft must match the asteroid position at the given

encounter time, but the relative velocity must no longer be made to match with a fnal maneuver.

197

12.3.5 Specifying Boundary Conditions

The transfer initial condition is specifed simply as an integer (1-12) corresponding to the

orbital phase as described in 12.2.1 and 12.2.2. For rendezvous, the target conditions are precisely

the states of the asteroids at encounter given in 12.2.3. As mentioned above, for fybys the fnal

relative velocity is dropped from the cost function. Therefore the state at encounter may still be

provided, with only the position and time being true boundary conditions and the velocity of the

state providing an initial guess for the process translating states to graph nodes before the search,

arc selection, and optimization process. For the high energy 2005 YU55 and 2004 BL86, it was

seen to be benefcial to scale these velocities in the fyby case to more closely match the energy of

the periodic orbits.

12.4 Results

A total of 255 transfers were generated, varying by initial orbit, target body, fyby vs.

rendezvous, and velocity scaling of initial guesses in a few cases (12.3.5). In addition to comparing

which orbits had the most effcient transfer to each asteroid, characteristics of the lowest fuel cost

transfers found for each pair of initial orbit and target body are provided below. These include the

ΔV in km/s, the transfer time given in months, the relative velocity at encounter in km/s, the angle

between the satellite velocity at encounter and the direction of the light of the Sun (and hence

illumination) given in degrees, and the number of impulses required.

12.4.1 Flybys

Table 12.1 provides a comparison of the ΔV for the lowest cost transfer for each pairing of

orbit and asteroid (ranking them in parentheses). Note that for each asteroid, a different orbit

provided the most effcient transfer. As a result, there is no clear best single orbit for this set of

asteroids in terms of fuel cost.

198

Table 12.1: Comparison of Lowest ΔV Flyby Transfer Costs for Initial Orbit/Asteroid Pairs

2006 RH120 2011 UD21 2005 YU55 2004 BL86

L1 Halo (N), J=3.00077179 0.0798 (1) 0.1464 (3) 0.5740 (4) 0.3062 (2)

L1 Vertical, J=3.00077179 0.5035 (4) 0.1690 (4) 0.2645 (1) 0.3807 (4)

L1 Halo (N), J=3.00048764 0.1552 (3) 0.1247 (1) 0.3781 (2) 0.3133 (3)

L1 Vertical, J=3.00048764 0.0931 (2) 0.1275 (2) 0.4959 (3) 0.2944 (1)

Tables 12.2-12.5 provide further details about the lowest ΔV transfer per initial orbit, with

the felds described in the frst paragraph of 12.4. Note that the light angles are in general quite

high for the higher energy asteroids, which have the unfortunate property of having a high velocity

moving away from the Sun. No constraints have been placed on this angle in these simulations,

and in some cases such a constraint would result in very high fuel use. It should be noted however,

that any constraints to limit this angle to improve illumination would be convex for angles less

than or equal to 90 degrees.

Table 12.2: 2006 RH120 – Characteristics of Lowest ΔV Flyby Transfer per Initial Orbit

ΔV

(km/s)

Transfer Time

(months)

Relative Velocity at

Encounter (km/s)

Light Angle

(degrees)

of

Impulses

L1 Halo (N), J=3.00077179 0.0798 4.8036 1.4714 84.7074 2

L1 Vertical, J=3.00077179 0.5035 5.5921 0.2651 30.7039 2

L1 Halo (N), J=3.00048764 0.1552 2.5742 1.3884 113.1157 2

L1 Vertical, J=3.00048764 0.0931 7.0772 0.2960 45.1799 3

Table 12.3: 2011 UD21 – Characteristics of Lowest ΔV Flyby Transfer per Initial Orbit

ΔV

(km/s)

Transfer Time

(months)

Relative Velocity at

Encounter (km/s)

Light Angle

(degrees)

of

Impulses

L1 Halo (N), J=3.00077179 0.1464 2.3972 2.1075 157.0324 2

L1 Vertical, J=3.00077179 0.1690 3.8716 1.6767 172.6983 3

L1 Halo (N), J=3.00048764 0.1247 5.0231 1.6489 171.5346 2

L1 Vertical, J=3.00048764 0.1275 5.0297 1.6166 168.5095 2

199

Table 12.4: 2005 YU55 – Characteristics of Lowest ΔV Flyby Transfer per Initial Orbit

ΔV

(km/s)

Transfer Time

(months)

Relative Velocity at

Encounter (km/s)

Light Angle

(degrees)

of

Impulses

L1 Halo (N), J=3.00077179 0.5740 7.4231 12.6185 176.7292 3

L1 Vertical, J=3.00077179 0.2645 3.3126 12.5632 176.0484 2

L1 Halo (N), J=3.00048764 0.3781 1.1948 12.7517 173.2236 1

L1 Vertical, J=3.00048764 0.4959 3.6528 12.5410 174.9136 2

Table 12.5: 2004 BL86 – Characteristics of Lowest ΔV Flyby Transfer per Initial Orbit

ΔV

(km/s)

Transfer Time

(months)

Relative Velocity at

Encounter (km/s)

Light Angle

(degrees)

of

Impulses

L1 Halo (N), J=3.00077179 0.3062 8.3650 15.8090 119.2044 4

L1 Vertical, J=3.00077179 0.3807 14.4091 15.1045 120.1608 6

L1 Halo (N), J=3.00048764 0.3133 8.5328 15.0962 119.6936 3

L1 Vertical, J=3.00048764 0.2944 14.3365 15.0969 120.2754 6

12.4.2 Rendezvous

As with Table 12.1 did in the case of fybys, Table 12.6 provides a comparison of the ΔV for

the lowest cost rendezvous for each pairing of orbit and asteroid (ranking them in parentheses). As

a rendezvous must match in both position and velocity and since the targets were of moderate to

very high inclination, it is not surprising that the Vertical Lyapunov orbits did well for these two

cases.

Table 12.6: Comparison of Lowest ΔV Rendezvous Transfer Costs for Initial Orbit/Asteroid Pairs

2006 RH120 2011 UD21

L1 Halo (N), J=3.00077179 0.8058 (4) 1.2281 (3)

L1 Vertical, J=3.00077179 0.7452 (3) 1.0184 (1)

L1 Halo (N), J=3.00048764 0.7072 (2) 1.6277 (4)

L1 Vertical, J=3.00048764 0.3488 (1) 1.0485 (2)

200

Tables 12.7-12.8 provide further details about the lowest ΔV transfer per initial orbit. Note

that the light angles that determine illumination are lower than the fyby case. As the transfer in

Figure 12.5 shows an example of, with the low relative velocity at encounter, the spacecraft will be

roughly between the asteroid and the Sun leading up to encounter.

Table 12.7: 2006 RH120 – Characteristics of Lowest ΔV Rendezvous Transfer per Initial Orbit

ΔV

(km/s)

Transfer Time

(months)

Relative Velocity at

Encounter (km/s)

Light Angle

(degrees)

of

Impulses

L1 Halo (N), J=3.00077179 0.8058 4.2227 0.0197 74.2898 3

L1 Vertical, J=3.00077179 0.7452 5.0287 0.2052 30.4316 3

L1 Halo (N), J=3.00048764 0.7072 12.7771 0.3882 28.7541 7

L1 Vertical, J=3.00048764 0.3488 6.8615 0.1973 27.9372 4

Table 12.8: 2011 UD21 – Characteristics of Lowest ΔV Rendezvous Transfer per Initial Orbit

ΔV

(km/s)

Transfer Time

(months)

Relative Velocity at

Encounter (km/s)

Light Angle

(degrees)

of

Impulses

L1 Halo (N), J=3.00077179 1.2281 6.8595 0.4539 135.8722 4

L1 Vertical, J=3.00077179 1.0184 7.1193 0.6981 132.7321 4

L1 Halo (N), J=3.00048764 1.6277 3.1386 0.7707 142.3417 3

L1 Vertical, J=3.00048764 1.0485 7.3451 0.4533 164.7548 4

12.4.3 Sample Transfer Visualizations

All examples are shown with the computed transfer in green, the asteroid path pre-

encounter shown in dashed red, and the asteroid path post encounter in solid red. These are

calculated and plotted in BR4BP dynamics. The periodic orbits are plotted using CR3BP dynamics

for clarity and are shown in blue for reference, but of course would be perturbed and require

active station keeping in the BR4BP. All images below are in the Sun/Earth rotating frame.

The frst two examples are fybys to 2006 RH120. As stated above, a rendezvous state is

201

provided as an initial guess, but with the fnal velocity difference removed from the cost function

to set up a fyby. In these examples note how the transfer from a Halo orbit no longer resembles a

rendezvous trajectory at all, with the fnal velocity coming in from a completely different and more

fattened path typical of divergence from and unstable manifolds structure of a Halo orbit. On the

other hand, due to the more vertically oriented motion off of a a Vertical Lyapunov orbit, the

velocities at encounter are quite similar.

Figure 12.3: Lowest ΔV Flyby of 2006 RH120 from L1 Halo (N), J=3.00077179. Views clockwise from top

left are 1) Matlab default, and projections in the 2) xy, 3) yz, 4) xz planes. Transfer (green), asteroid before

encounter (dashed red) and after (solid red), Halo(blue).

202

Figure 12.4: Lowest ΔV Flyby of 2006 RH120 from L1 Vertical, J=3.00048764. Transfer (green), asteroid

before encounter (dashed red) and after (solid red), and Halo(blue) projected on to the xy (left) and xz

(right) plane.

The rendezvous trajectory used to provide the initial guess for the case shown in Figure

12.4 is provided below for comparison in Figure 12.5. It is also the most effcient rendezvous with

2006 RH120. The asteroid and spacecraft velocities at encounter are noticeably similar than in the

fyby case, especially in the projection on to the xy plane.

Figure 12.5: Rendezvous used as initial guess for Figure 12.4, and the most ef6cient rendezvous. Transfer

(green), asteroid before encounter (dashed red) and after (solid red), and Halo(blue) projected on to the xy

(left) and xz (right) plane.

203

Next a fyby of 2011 UD21 is shown in Figure 12.6. In the xy plane it is clear that the

transfer has a prograde (counterclockwise) direction of motion typical of the manifold structure of

libration point orbit. This is in contrast to the asteroid, moving in a clockwise fashion, and is due to

the fact that the relative velocity at encounter has been dropped from the cost function.

Figure 12.6: Lowest ΔV Flyby of 2011 UD21 from L1 Vertical, J=3.00077179. Views clockwise from top left

are 1) Matlab default, and projections in the 2) xy, 3) yz, 4) xz planes. Transfer (green), asteroid before

encounter (dashed red) and after (solid red), Halo(blue).

In many cases the best transfers were simple with a low number of impulses, though this

was not always the case. Contrast the above fyby with the best fyby transfer to 2004 BL86 found.

204

It is clear from the near symmetry in the xy projection that some dynamical structure is being

utilized to effciently drift towards the rendezvous point over a 14 month period.

Figure 12.7: Lowest ΔV Flyby of 2004 BL86 from L1 Halo (N), J=3.00048764. Transfer (green), asteroid

before encounter (dashed red) and after (solid red), and Halo(blue) projected on to the xy (left) and xz

(right) plane.

12.5 Summary

The transfer redesign tool was adapted to generate hundred of both fyby and rendezvous

transfers from libration point orbits to near Earth asteroids as part of an investigation at GSFC.

While the mission analysis itself is out of the scope of the transfer construction method itself,

sample results and transfers were provided to give a sense of the application. The fact that the

method was able to be modifed in both the setup and run time phases, have the lengthy

partitioning, simulation, and graph construction steps completed, and have hundreds of transfers in

the BR4BP generated in a few weeks culminating in a GSFC visit shows the fexibility of the

method beyond onboard replanning.

205

Chapter 13

Conclusion

“All generalizations are false, including this one.” - Mark Twain

13.1 Overview

This dissertation has described an impulsive transfer design algorithm for orbiters in multibody

gravitational environments. Although useful for on the ground trajectory design, it has been developed

with a focus on onboard transfer redesigns to guide the spacecraft to a specifed target from off-nominal

conditions.

The frst section of the dissertation focused on the task of initial guess generation. The use of the

apsis condition to defne time steps, the coordinates chosen to partition the domain, the tidally locked

nature of most moons of interest, the strength of the differential correction method, and precomputing a

database of important periodic orbits and other structures combine to allow a reduction in dimension

that creates a reasonably sized directed graph representation of the system. Furthermore, the resulting

directed graph – although much more complex than simply linking neighboring sets due to long coasting

206

arcs – possesses enough structure that effective search heuristics may be used to greatly speed up a

search process. The A* Search algorithm and related methods are known to converge to the best path

within the system discretization, and the graph construction process guarantees that this itinerary may be

used to select a set of ballistic arcs. These arcs provide an initial guess for a transfer, an approximation

with some constraints feasible by design and others with limited infeasibilities that need to be eliminated

in the next phase of the transfer design process.

A rapid differential correction and local optimization process was described in depth, with a

focus on proving the properties needed for an onboard implementation. For the fuel minimization

process, synthesis of a two level correction structure with steps defned by the solutions of convex

programs was shown to possess properties that either approach lacks when taken individually: feasible

major iterates with guaranteed lower cost after recorrection. This result, combined with insights on the

neglected subjects of Slater's Condition holding throughout the iterative process and the assumed

invertibility of certain state transition matrix submatrices, is then used to show that the process will

indeed converge to a local minimum should the time be available. Otherwise, even with a system

interrupt part way through the process, it will still provide a feasible transfer with a rapid reduction in

cost compared to the initial corrected guess.

Applications of the transfer design algorithm were provided in two different cases: onboard

redesign for an orbiter at Phobos, and initial design of fyby and rendezvous trajectories from libration

point orbits to Near Earth Asteroids. Perhaps the most important demonstration of the method is that the

algorithm was successfully modifed and run with the stringent requirements and limitations of a

RAD750 based fight-like hardware and software system.

In summary, the method developed here is not only quite fast, but is suffciently lightweight to be

run on fight systems and possesses a large number of provable convergence and feasibility properties to

provide a major step in the direction of onboard transfer design in complex systems.

207

13.2 Future Research

Research into integration algorithms is perhaps surprisingly the most important progress that

could be made to advance the transfer design method described here. This is for several reasons. As

described in the computation time breakdowns in Chapters 10 and 11, those stages requiring integration

take up the vast majority of the computation time. Therefore faster integrators than the standard Runge-

Kutta methods employed here and by the like of NASA's AutoNav would be of great beneft. Another

issue discussed in Chapter 11 is that variable step integrators do not have a deterministic number of steps

without minimum step lengths, which can negatively affect the accuracy in sensitive systems.

Fast integration and updated computing platforms would also enable research into building not

only the impulsive graph connections at run time, but also the ballistic connections. The primary beneft

of this is not in fact the reduced memory footprint. Rather, this would allow uncertainty modeling to be

incorporated directly into the initial design process, with a very nice interplay between the trajectories

needed for graph construction and the sigma points of the Unscented Kalman Filter. In addition, this

eliminates the issue with graph based methods for bodies about which little gravitational information is

known before encounter. Rather than relying on pre-encounter parameters, the most recent values would

be used. Related to this area of graph construction, as mentioned in Chapter 3 it would be benefcial for

the domain partitioning itself to be done automatically rather than through trial and error in ground

simulations.

Beyond such integration based extensions, there remain several clear areas for investigation. A*

Search was seen to be suffcient for the applications in this dissertation, but as discussed in Chapters 4

and 11 there are variants such as SMA* that explicitly handle the strict memory limitations of a

spacecraft. Additional memory gains may be made in the use of Compressed Column Storage over the

basic three column storage for sparse matrices used here, however the effect on retrieval times would

need to be analyzed. Within the correction and optimization processes, there is always room for the

adaptation of additional constraints. Also, the current method is for a fxed number of impulses. Analysis

208

of the primer vector would indicate whether an additional impulse would be of beneft, though again a

good-enough transfer in a short time is generally preferred over the precise optimum in onboard

applications.

Lastly, although fight computing platforms will always possess their own distinct requirements

and limitations, advancements will occur in the future. In particular, multicore processors will enable

parallel processing. Many steps of this algorithm may be done in parallel, either naively or through other

more advanced methods under development. A few pages were dedicated to this subject at the end of

Chapter 11. Regardless of whether for use on a RAD750 or the processors of the future, it is sometimes

said that it is more important how well a component fts into the system as a whole rather than what it

can do on its own. Any serious effort to truly make an onboard transfer design program will require

serious system integration research.

209

References

[Acik13]
Açıkmese, Behçet, MiMi Aung, Jordi Casoliva, et al. "Flight Testing of Trajectories Computed by G-
FOLD: Fuel Optimal Large Divert Guidance Algorithm for Planetary Landing." AAS/AIAA
Space2ight Mechanics Meeting, Lihue, HI, February 2013.

[Alex12]
Alexander, James, Bradley J. Clement, Kim P. Gostelow, John Y. Lai, “Fault Mitigation Schemes for
Future Space2ight Multicore Processors.” AIAA Infotech Conference, Garden Grove, CA, June
2012.

[Augu12]
Augugliaro, Federico, Angela P. Schoellig, and Raffaello D'Andrea. "Generation of Collision-free
Trajectories for a Quadrocopter Fleet: A Sequential Convex Programming Approach." IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), October 2012. doi:
10.1109/IROS.2012.6385823.

[Bank83]
Bank, B., et al. Non-Linear parametric optimization. Basel: Birkhäuser, 1983. 59-76.

[Berg07]
Berger, R.W. et. al., “RAD750 SpaceWire Enabled Flight Computer for Lunar Reconnaissance
Orbiter,” 2007 International SpaceWire Conference, Dundee, Scotland, September 2007.

[Blei08]
Bleiweiss, Avi. "GPU Accelerated PathKnding." 23rd ACM SIGGRAPH / EUROGRAPHICS
Symposium on Graphics Hardware, Aire-la-Ville, Switzerland, 2008.

[Bosa14]
Bosanac, Natasha, et al. "Manned sample return mission to phobos: A technology demonstration
for human exploration of Mars." IEEE Aerospace Conference, Big Sky, MT, March 2014. doi:
10.1109/AERO.2014.6836251

210

[Boyd94]
Boyd, Stephen, et al. Linear Matrix Inequalities in System and Control Theory. Philadelphia: Society
for Industrial and Applied Mathematics, 1994. 7-8.

[Boyd08]
Boyd, Stephen. “Sequential Convex Programming,” Notes, Stanford University, 2008. [Online].
http://www.stanford.edu/class/ee364b/lectures/seqslides.pdf

[Boyd09]
Boyd, Stephen, and Lieven Vandenberghe. Convex Optimization. New York: Cambridge University
Press, 2009. 21-145, 241-252, 609-620.

[Cang12]
Cangahuala, Al, Shyam Bhaskaran, and Bill Owen. “Science BeneKts of Onboard Spacecraft
Navigation,” EOS, Transactions American Geophysical Union, Vol. 93, No. 177, 2012. doi:
10.1029/2012EO180001

[Caso13]
Casoliva, Jordi. Spacecraft Trajectory Generation by Successive Approximation for Powered

Descent and Cyclers. Ph.D. Dissertation, University of California, Irvine. 2013. 45-76.

[Chu13]
Chu, Eric, et al. "Code Generation for Embedded Second-order Cone Programming." IEEE European
Control Conference (ECC), Zurich, 2013.

[Conl68]
Conley, C. C. "Low energy transit orbits in the restricted three-body problems." SIAM Journal on

Applied Mathematics 16.4 (1968): 732-746.

[Conw07]
Conway, Bruce A., Christian M. Chilan, and Bradley J. Wall. "Evolutionary Principles Applied to
Mission Planning Problems." Celestial Mechanics and Dynamical Astronomy 97.2 (2007): 73-86.

[Cras04]
Crassidis, John L., John L. Junkins. Optimal Estimation of Dynamic Systems. Chapman & Hall /
CRC Press, 2004. 285-291.

[Curt13]
Curtis, Howard. Orbital Mechanics for Engineering Students. Butterworth-Heinemann, 2013.

[Davi12]
Davis, Diane Craig, and Kathleen C. Howell. "Characterization of Trajectories Near the Smaller
Primary in the Restricted Problem for Applications." Journal of Guidance, Control, and Dynamics
35.1 (2012): 116-128.

[Dell05]
Dellnitz, Michael, et al. "Transport in Dynamical Astronomy and Multibody Problems."
International Journal of Bifurcation and Chaos 15.03 (2005): 699-727.

211

[Dell06]
Dellnitz M., and Junge O., “Set Oriented Numerical Methods in Space Mission Design,” Modern

Astrodynamics (P. GurKl, ed.), Oxford: Academic Press, 2006.

[Dodg07]
Dodge, Randy, Mark A. Boyles, and Chuck E. Rasbach. "Key and Driving Requirements for the Juno
Payload Suite of Instruments." AIAA 2007 SPACE Conference, Long Beach, CA, September 2007.

[Doed97]
Doedel E.J., et al. “Auto97: Continuation and Bifurcation Software for Ordinary Differential
Equations”, Technical Report, Concordia University, Montreal, Canada, 1997.

[Doma13]
Domahidi, Alexander, Eric Chu, and Stephen Boyd. "ECOS: An SOCP Solver for Embedded
Systems." IEEE European Control Conference (ECC), Zurich, 2013.

[Doyl12]
Doyle, Richard, et al “High Performance Space2ight Com- puting, An Avionics Formulation Task.”
Study Report Executive Summary, NASA Game Changing Development Program, October 2012.

[Doyl14]
Doyle, Richard, et al. “High Performance Space2ight Computing; Next-Generation Space
Processor: A Joint Investment of NASA and AFRL,” International Symposium on ArtiKcial
Intelligence, Robotics, and Automation in Space (iSAIRAS 2014), Montreal, Canada, June 2014.

[Duff89]
Duff, Iain S., Roger G. Grimes, and John G. Lewis. "Sparse Matrix Test Problems." ACM

Transactions on Mathematical Software (TOMS) 15.1 (1989): 1-14.

[Farq66]
Farquhar, R. W. “Station-Keeping in the Vicinity of Collinear Libration Points with an Application to
a Lunar Communications Problem.” AAS Space2ight Mechanics Specialist Conference, Denver,
CO, July 1966.

[Farq01]
Farquhar, Robert W. "The Flight of ISEE-3/ICE: Origins, Mission History, and a Legacy." Journal of

the Astronautical Sciences 49.1 (2001): 23-74.

[Fred97]
Fredman, Michael L., and Robert Endre Tarjan. "Fibonacci Heaps and Their Uses in Improved
Network Optimization Algorithms." Journal of the ACM (JACM) 34.3 (1987): 596-615.

[Froe97]
Froeschlé, Claude, Elena Lega, and Robert Gonczi. "Fast Lyapunov Indicators. Application to
Asteroidal Motion." Celestial Mechanics and Dynamical Astronomy 67.1 (1997): 41-62.

[Gask11]
Gaskell, R.W., “Gaskell Phobos Shape Model V1.0. VO1-SA-VISA/VISB-5-PHOBOSSHAPE-V1.0.”

212

NASA Planetary Data System, 2011.

[Gill02]
Gill, Philip E., Walter Murray, and Michael A. Saunders. "SNOPT: An SQP Algorithm for Large-
Scale Constrained Optimization." SIAM Journal on Optimization 12.4 (2002): 979-1006.

[Gome05]
Gómez, Gerard, Manuel Marcote, and Josep J. Masdemont. "Trajectory Correction Manoeuvres in
the Transfer to Libration Point Orbits." Acta Astronautica 56.7 (2005): 652-669.

[Gost13]
Gostelow, Kim. "Mars Science Laboratory Entry, Descent, and Landing Flight Software." AAS/AIAA
Space Flight Mechanics Meeting, Lihue, HI, February 2013.

[Gran08]
Grant, Michael C., and Stephen P. Boyd. "Graph implementations for nonsmooth convex
programs." Recent Advances in Learning and Control. Springer London, 2008. 95-110.

[Gran13]
Grant, Michael C. and Stephen P. Boyd. “CVX: Matlab Software for Disciplined Convex
Programming, Version 2.0 Beta.” http://cvxr.com/cvx, September 2013.

[Hira 06]
Hirani, Anil N., and Ryan P. Russell. "Approximations of distant retrograde orbits for mission
design." AAS/AIAA Space2ight Mechanics Meeting, Tampa, FL, January 2006.

[Hoff11]
Hoffman, Stephen J. "A Phobos-Deimos Mission as an Element of the NASA Mars Design
Reference Architecture 5.0." (2011). 2nd International Conference on the Exploration of Phobos
and Deimos, Moffett Field, CA, March 2011.

[Howe84]
Howell, Kathleen Connor. "Three-Dimensional, Periodic,‘Halo’ Orbits." Celestial Mechanics 32.1
(1984): 53-71.

[Hugh03]
Hughes, Steven P., Laurie M. Mailhe, and Jose J. Guzman. "A Comparison of Trajectory
Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem." 26th AAS Rocky
Mountain Guidance and Control Conference, Breckinridge, CO, February 2003.

[Kish09]
Kishimoto, Akihiro, Alex S. Fukunaga, and Adi Botea. "Scalable, Parallel Best-First Search for
Optimal Sequential Planning." Proceedings of the International Conference on Automated

Scheduling and Planning: ICAPS-09, 2009. 201–208.

[Kjel12]
Kjellberg, Henri, and E. Glenn Lightsey. "A Constrained Attitude Control Module for Small
Satellites." 26th Annual AIAA Conference on Small Satellites, Logan, UT, 2012.

213

[Koon08]
Koon W. S., Lo M. W., Marsden J. E., and Ross S.D. Dynamical Systems, the Three-Body Problem

and Space Mission Design, Marsden Books, 2008. 95-188.

[Krug14]
Kruger, Alexander Y., Leonid Minchenko, and Jiří V. Outrata. "On Relaxing the Mangasarian–
Fromovitz Constraint QualiKcation." Positivity 18.1 (2014): 171-189.
[LaVa06]
LaValle, Steven M. Planning algorithms. Cambridge university press, 2006. 265-273.

[Lawr96]
Lawrence, Craig T., and André L. Tits. "Nonlinear Equality Constraints in Feasible Sequential
Quadratic Programming." Optimization Methods and Software 6.4 (1996): 265-282.

[Lawr01]
Lawrence, Craig T., and André L. Tits. "A computationally efKcient feasible sequential quadratic
programming algorithm." SIAM Journal on Optimization 11.4 (2001): 1092-1118.

[Lee12]
Lee, John. Introduction to Smooth Manifolds. GTM Vol. 218. Springer, 2003. 155-170.

[Lo01]
Lo, Martin W., et al. "Genesis Mission Design." Journal of the Astronautical Sciences 49.1 (2001):
169-184.

[Lo04]
Lo, M.W, and Parker, J.S., “Unstable Resonant Orbits Near Earth and their Applications in
Planetary Missions.” AIAA/AAS Astrodynamics Specialist Conference, Providence, RI, August,
2004.

[Luen08]
Luenberger, David G., and Yinyu Ye. Linear and Nonlinear Programming. Vol. 116. Springer
Science & Business Media, 2008.

[Mang14]
Private communication at NASA/CalTech Jet Propulsion Laboratory. August 2014.

[Marc07]
Marchand, Belinda G., Kathleen C. Howell, and Roby S. Wilson. "Improved Corrections Process
for Constrained Trajectory Design in the N-Body Problem." Journal of Spacecraft and Rockets 44.4
(2007): 884-897.

[Maro04]
Marov, M. Ya, et al. "Phobos-Grunt: Russian Sample Return Mission." Advances in Space Research
33.12 (2004): 2276-2280.

[Matt12]
Mattingley, Jacob, and Stephen Boyd. "CVXGEN: a Code Generator for Embedded Convex

214

Optimization." Optimization and Engineering 13.1 (2012): 1-27.

[McFa06]
McFadden, Lucy-Ann, Torrence Johnson, and Paul Weissman, eds. Encyclopedia of the Solar

System. Academic press, 2006. 365-448.

[McGe69]
McGehee, R. Some Homoclinic Orbits for the Restricted Three-body Problem. PhD Thesis,
University of Wisconsin, Madison.

[Miel70]
Miele, A., R. Eo Pritchard, and J. N. Damoulakis. "Sequential Gradient-Restoration Algorithm for
Optimal Control Problems." Journal of Optimization Theory and Applications 5.4 (1970): 235-282.

[Mond10]
Mondelo, Josep-Maria, Stephen B. Broschart, and Benjamin F. Villac. "Dynamical Analysis of 1:1
Resonances near Asteroids: Application to Vesta." 2010 AAS/AIAA Astrodynamics Specialists
Conference, August 2-5, Toronto, Ontario, Canada, 2010.

[Mont11]
Montenbruck, Oliver, and Eberhard Gill. Satellite Orbits: Models, Methods, and Applications.

Springer, 2011. 53-116.

[Morg13]
Morgan, Daniel, Soon-Jo Chung, and Fred Y. Hadaegh. "Decentralized model predictive control of
swarms of spacecraft using sequential convex programming." AAS/AIAA Space Flight Mechanics
Meeting, Lihue, HI, 2013.

[Mour09]
Mourikis, Anastasios I., et al. "Vision-Aided Inertial Navigation for Spacecraft Entry, Descent, and
Landing." Robotics, IEEE Transactions on 25.2 (2009): 264-280.

[Nakh13]
Nakhjiri, Navid. Ef4cient Methods for Phase Space Analysis in Space5ight Mechanics: Application

to the Optimization of Stable Transfers. Ph.D. Dissertation, University of California, Irvine. 2013.
89-91, 125-127.

[Nakh14]
Nakhjiri, Navid, and Benjamin Villac. "ModiKed Picard Integrator for Space2ight Mechanics."
Journal of Guidance, Control, and Dynamics 37.5 (2014): 1625-1637.

[Nemi01]
Nemirovski, Arkadi, and Ahron Ben-Tal. Lectures on Modern Convex Optimization: Analysis,

Algorithms, and Engineering Applications. Vol. 2. Society for Industrial and Applied Mathematics,
2001. 166-169.

[Nest94]
Nesterov, Yurii, Arkadii Nemirovskii, and Yinyu Ye. Interior-Point Polynomial Algorithms in Convex

215

Programming. Vol. 13. Philadelphia: Society for Industrial and Applied Mathematics, 1994.

[NRC12]
Steering Committee for NASA Technology Roadmaps, National Research Council. NASA Space

Technology Roadmaps and Priorities, National Academies Press, 2012. Sections TA05-5.4.3, TA04-
4.2.4.

[Osip06]
Osipenko, George. Dynamical Systems, Graphs, and Algorithms, Springer, 2006. 15-30.

[Peng09]
Peng, Jiming, Cornelis Roos, and Tamás Terlaky. Self-Regularity: A New Paradigm for Primal-Dual

Interior-Point Algorithms. Princeton University Press, 2009. 125-152.

[Rich80]
Richardson, David L. "Halo Orbit formulation for the ISEE-3 mission." Journal of Guidance,
Control, and Dynamics 3.6 (1980): 543-548.

[Ried09]
Riedel, J. Edmund, Mimi Aung, Christopher A. Grasso, and William M. Owen Jr. "A Survey of
Technologies Necessary for the Next Decade of Small Body and Planetary Exploration." Jet
Propulsion Laboratory, Pasadena, CA, 2009.

[RiedAN]
Riedel, J. Edmund, et al. “Autonomous Optical Navigation (AutoNav) DS1 Technology Validation
Report.” Jet Propulsion Laboratory, Pasadena, CA.

[Russ09]
Russell, Stuart, Peter Norvig. Arti4cial Intelligence: A Modern Approach, Prentice Hall, 3rd Ed.,
2009. 81-109.

[Sche01]
Scheeres, Daniel. J., M. D. Guman, and Benjamin. F. Villac. "Stability Analysis of Planetary Satellite
Orbiters: Application to the Europa Orbiter." Journal of Guidance, Control, and Dynamics 24.4
(2001): 778-787.

[Sche06]
Guibout, V. M., and D. J. Scheeres. "Solving Two Point Boundary Value Problems Using Generating
Functions: Theory and Applications to Astrodynamics" Modern Astrodynamics (GurKl, Editor).
Butterworth-Heinemann, 2006.

[Some13]
Some, Raphael, et al. “Human and Robotic Mission Use Cases for High-Performance Space2ight
Computing.” AIAA Infotech, Boston, MA, August 2013.

[Sukh04]
Sukhanov, Alexander, and Antonio F. Bertachini A. Prado. "Lambert problem solution in the hill
model of motion." Celestial Mechanics and Dynamical Astronomy 90.3-4 (2004): 331-354.

216

[Suro15]
Surovik, David A., and Daniel J. Scheeres. "Adaptive Reachability Analysis to Achieve Mission
Objectives in Strongly Non-Keplerian Systems." Journal of Guidance, Control, and Dynamics
(2015): 1-10.

[Thom12]
Thomas, Valerie C., et al. "The Dawn Spacecraft." The Dawn Mission to Minor Planets 4 Vesta and

1 Ceres. Springer New York, 2012. 175-249.

[Tsir13]
Tsirogiannis, G. A., and V.V. Markellos. "A Greedy Global Search Algorithm for Connecting
Unstable Periodic Orbits with Low Energy Cost." Celestial Mechanics and Dynamical Astronomy
(2013): 1-13.

[Trum11]
Trumbauer, Eric, and Benjamin F. Villac. “An Analysis of Multiple Revolution Third Body Driven
Plane Change Maneuvers.” AAS/AIAA Astrodynamics Specialist Conference, Girdwood, AK, August
2011.

[Trum12a]
Trumbauer, Eric, and Benjamin F. Villac. "Expanding Transfer Representations in Symbolic
Dynamics for Automated Trajectory Design." AAS/AIAA Space2ight Mechanics Meeting,
Charleston,SC, January 2012.

[Trum12b]
Trumbauer, Eric, and Benjamin F. Villac. “Search and Representation Strategies for Automated
Trajectory Design.” AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, MN, August
2012.

[Trum13]
Trumbauer, Eric, and Benjamin F. Villac. “Sequential Convex Programming for Impulsive Transfer
Optimization in Multibody Systems.” AAS/AIAA Space2ight Mechanics Meeting, Kauai, HI,
February 2013.

[Trum14a]
Trumbauer, Eric, and Benjamin F. Villac. "Heuristic Search-Based Framework for Onboard
Trajectory Redesign." Journal of Guidance, Control, and Dynamics 37.1 (2013): 164-175.

[Trum14b]
Trumbauer, Eric, and Benjamin F. Villac. “Autonomous Trajectory Redesign for Phobos Orbital
Operations.” AAS/AIAA Space2ight Mechanics Conference, Santa Fe, NM, January 2014.

[Vall01]
Vallado, David A. Fundamentals of Astrodynamics and Applications. Vol. 12. Springer, 2001. 546-
549.

[Vill03]

217

Villac, Benjamin F. Dynamics in the Hill Problem with Applications to Spacecraft Maneuvers. PhD
Thesis, University of Michigan, 2003. 36-46, 71-80.

[Vill04]
Villac, Benjamin F., and Daniel. J. Scheeres. “A Simple Algorithm to Compute Hyperbolic Invariant
Manifolds Near L1 and L2.” AAS/AIAA Space2ight Mechanics Meeting, Maui, Hawaii, February 8-
12, 2004.

[Vill08]
Villac, Benjamin F. "Using FLI Maps for Preliminary Spacecraft Trajectory Design in Multi-Body
Environments." Celestial Mechanics and Dynamical Astronomy 102.1-3 (2008): 29-48.

[Vill09]
Villac, Benjamin F., and Daniel J. Scheeres. "One Impulse vs. Third Body Driven Plane Changes",
Journal of the Astronautical Sciences 57.3 (2009): 545-559.

[ViRe11]
Villalpando, Carlos, et al. "Reliable Multicore Processors for NASA Space Missions." IEEE
Aerospace Conference, Big Sky, MT, 2011.

[Wall12]
Wallace, Mark, Jeffrey Parker, Nathan Strange, and Daniel Grebow. “Orbital Operations for Phobos
and Deimos Exploration.” AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, MN,
August 13, 2012.

[Wils98]
Wilson, Roby. Trajectory Design in the Sun-Earth-Moon Four Body Problem. PhD Thesis, Purdue
University, 1998.

[Wils13]
Wilson, Roby. Private communication at NASA/CalTech Jet Propulsion Laboratory. July 2013.

[Zang69]
Zangwill, Willard I. "Convergence Conditions for Nonlinear Programming Algorithms."
Management Science 16.1 (1969): 1-13.

[Zill04]
Zillober, Christian, K. Schittkowski, and K. Moritzen. "Very large scale optimization by sequential
convex programming." Optimization Methods and Software 19.1 (2004): 103-120.

[Zlob09]
Zlobec, Sanjo. "Nondifferentiable optimization: parametric programming Nondifferentiable
Optimization: Parametric Programming." Encyclopedia of Optimization. Springer US, 2009. 2607-
2615.

218

Appendix A

Constraint Quali�cations for Subproblems

A.1 Introduction

It was shown in Chapter 5 that if the Karush-Kuhn-Tucker (KKT) conditions hold for the

SOCP/QCQP subproblems at a stationary point, then they will hold for the original NLP. It is

therefore important that should one of the subproblems have X̃
*=0 as a solution, that the KKT

conditions are guaranteed to hold. This will be the case if X̃=0 is a regular point, meaning it

satisfes a constraint qualifcation. These are suffcient conditions that a local optimum at the point

in question will satisfy the KKT conditions.

Although regularity is often not addressed in application focused papers, it should not be

taken for granted. A constraint qualifcation must be found such that if it holds for the initial guess,

it will be guaranteed to hold true at X̃=0 for any iteration. The weaker the constraint

qualifcation the better, so that a wider variety of initial guesses can provide the needed

219

characteristics. Aside from this beneft, it seems that while the familiar Linear Independence

Constraint Qualifcation [Luen08] may hold throughout, it does not seem possible to guarantee

that.

Lastly, the Interior Point algorithms most suited to onboard application assume that a

strictly feasible point exist, i.e. that Slater's Condition holds.[Boyd09] Therefore we seek also to

show that Slater's Condition holds for each CP subproblem. We shall see that in fact this is not a

separate problem, but for these particular problems is equivalent to a fairly weak constraint

qualifcation.

A.2 Types of Constraint Quali�cations

A.2.1 De�nitions

Let J be set of all indices for the CP equality constraints h̃j , and Ka(X̃)⊂K set of

indices of the active inequality constraints g̃k at some feasible point X̄∈ℝ7N . Consider the

following constraint qualifcations: [Luen08, Krug14]

Linear Independence Constraint Qualifcation (LICQ) holds at X̄ if the set of gradients

{∇ h̃ j(X̄) , g̃k (X̄) , j∈ J ,k∈Ka(X̄)}

is linearly independent.

Mangasarian-Fromovitz Constraint Qualifcation (MFCQ) holds at X̄ if:

i) the set of gradients {∇ h̃ j(X̄) , j∈ J } is linearly independent.

ii) there exists Z̃∈ℝ7N such that 〈∇ h̃ j (X̄) , Z̃ 〉=0∀ j∈ J , 〈∇ g̃ j (X̄) , Z̃ 〉<0∀k∈Ka(X̄).

Constant Rank Mangasarian-Fromovitz Constraint Qualifcation (CRMFCQ) holds at X̄ if:

i) the set of gradients {∇ h̃ j(X̃) , j∈ J } has constant rank in some neighborhood of X̄ .

ii) there exists Z̃∈ℝ7N such that 〈∇ h̃ j (X̄) , Z̃ 〉=0∀ j∈ J , 〈∇ g̃ k(X̄) , Z̃ 〉<0∀k∈Ka(X̄).

220

Slater's Condition holds for the SOCP/QCQP if there exists a point X̃ S s.t.

∇ h̃ j (X̃ S)=0 j∈ J , g̃k (X̃ S)<0∀k∈K

A.2.2 Implications and Equivalences

Property 1:

LICQ implies MFCQ, which implies CRMFCQ. [Krug14]

Property 2:

LICQ, MFCQ, CRMFCQ all imply the Abadie Constraint Qualifcation, which is suffcient

to show that a solution satisfes the KKT conditions. [Krug14]

Property 3:

For a convex programming problem, Slater's Condition is suffcient to guarantee that a

solution satisfes the KKT conditions and that strong duality holds. [Boyd09]

Proposition A.2.2.1: For a CP with inequality constraints that are differentiable within the feasible

set and equality constraints that are linear rather than affne (as would be the case whenever the

reference is feasible) Slater's Condition is equivalent to CRMFCQ holding for any feasible point.

Proof: First, note that for a CP the equality constraints are linear, thus the gradients are constant

across the whole domain. As a result, the set of gradients of equality constraints has constant rank

trivially.

Assume Slater's Condition holds. For any particular feasible point X̄ , consider the vector

Z̃=X̃ S−X̄ . For 〈∇ h̃ j (X̄) , Z̃ 〉=a j

T
Z̃=aj

T
X̃ S−a j

T
X̄=0−0=0 where the constraints are of the form

aj

T
X̃=0 and since both X̄ , X̃ S are feasible. Since g̃k (X̃ f)< g̃k (X̄)∀k∈Ka(0) and by the

FONC of convex functions, Z̃=X̃ f−X̄ defnes a descent direction for all of the active inequality

221

constraints. Thus 〈∇ g̃k (X̄) , Z̃ 〉<0∀ k∈Ka(X̄). Therefore CRMFCQ holds for X̄ , and so for any

feasible point.

Assume CRMFCQ holds for some feasible X̄ . Then Z̃ is a descent direction for every

active constraint. Therefore for each k∈Ka(X̄) there exists some constant β̄k s.t.

g̃k (X̄+β Z̃)<0∀β<β̄k . Additionally, for every inactive constraint there is some neighborhood

defned by a ball of radius η̄k where it remains inactive. Therefore for ϵ<min {̄βk , η̄k∀k∈K},

g̃k (X̄+ϵ Z̃)<0∀k∈K . Also, h̃j (X̄+ϵ Z̃)=h̃ j (X̄)+ϵ 〈h̃ j (X̄) , Z̃〉=0+0=0 from the feasibility of

X̄ and the CRMFCQ condition on Z̃ . Therefore X̄+ϵ Z̃ satisfes Slater's Condition.

Proposition A.2.2.2: The above equivalence holds for both the SOCP and QCQP formulations in

Chapter 5.

Proof: The QCQP formulation satisfes the conditions above since the constraints are differentiable

everywhere.

Both the norm ball or quadratic form of the inequality constraints used in the SOCP or

QCQP respectively defne the same sets. Therefore Slater's Condition holds for one formulation if

and only if it holds in the other. Also, the gradient directions are identical in the two formulations

for all of the shared problem constraints (all SOCP constraints are differentiable within a

neighborhood of an active point). A special note is needed for the constraints generated in the

epigraph transformation for the SOCP, but if these are active than choosing any higher σ i value

leads to a strictly feasible point or defnes a descent direction for the constraint without affecting

any of the other variables. Thus CRMFCQ holds for one formulation if and only if it holds for the

other. Thus we have:

CRMFCQ in SOCP iff CRMFCQ in QCQP iff Slater's in QCQP iff Slater's in SOCP

222

Corollary A.2.2.3: If X̃=0 satisfes the CRMFCQ of a SOCP/QCQP subproblem, the minimum

X̃
* does as well.

A.3 Regularity at Each Iteration

Proposition: If X̃=0 satisfes the CRMFCQ for the CP defned at X(l)
ref , X̃=0 satisfes

CRMFCQ for the the next CP defned at X(l+1)
ref

, where this new reference is the result of the

iterative process in Chapter 6.

Proof: First, condition i) will be satisfed since the gradients for the new CP will be constant, albeit

with different values than the previous iteration.

Now, by the results of Chapter 7.3.2, the open set of step sizes guaranteed to exist -

0<α<αdesc=min{αg1 ,αg2 , ... , ᾱ} - results in any constraint whose underlying variables

underwent a change from the reference to be satisfed with strict inequality at the next iterate. This

may in fact be desirable as it will reduce the SOCP/QCQP computation time, since interior point

methods need to fnd a strictly feasible point frst. Having X̃=0 be such a point would eliminate

these steps. If X(l)
ref is strictly feasible then X(l+1)

ref can be chosen such that it is strictly feasible

and so Slater's Condition will hold at the CP defned in terms of X(l+1)
ref with X̃ S=0 , and so we

are done. If there remain constraints for which all variables involved have undergone no change

since the initial guess and are satisfed with equality, a few more steps are needed.

For X(l)
ref
, let Z̃f

(l)=[... χ i−1 υi−1 τi χ i υi τi+1 χ i+1 υi+1 τi+2 χ i+2 υi+2 ...]
T

be the vector satisfying condition ii of the CRMFCQ at X̃=0 , which we have assumed to hold.

Assume there is an active constraint whose underlying variables are fxed. The impulse magnitude

constraints would be the most restrictive, so we'll proceed with that, but the logic applies to any.

223

Then X̃
*=[... x̃ i−1

*
ṽ i−1

*
t̃ i

*
x̃ i

*=0 ṽ i

*=0 t̃ i+1
* =0 x̃ i+1

* =0 ṽ i+1
* =0 t̃ i+2

*
x̃ i+2

*
ṽi+2

* ...] ,

where the constraint is at the i+1th patch point. This form, and the fact that that no velocity term to

reestablish feasibility at this patch point is added since this portion matches the feasible reference,

implies that these variables are identical in both X(l)
ref
, X (l+1)

ref
. As a result,

∇ h̃i+1

(l+1)(0)=∇ h̃i+1

(l) (0) , ∇ g̃ i+1
(l+1)(0)=∇ g̃ i+1

(l) (0) where the change of indices from j,k to i+1

signals that these are the constraints that act solely on the variables of the fxed patch point. Now,

since the gradients have 0 entries in indices that do not correspond to the underlying variables, we

have that:

(∇ h̃i+1
(l) (0))T [... χ i−1 υi−1 τ i χ i υi τi+1 χ i+1 υi+1 τi+2 χi+2 υi+2 ...]

T

=(∇ h̃i+1

(l) (0))T [... xi−1 vi−1 t i χi υi τ i+1 χ i+1 υi+1 t i+2 xi+2 v i+2 ...]
T

and also for the inequalities on that patch point:

(∇ g̃ i+1
(l) (0))T [... χi−1 υi−1 τ i χi υi τ i+1 χ i+1 υi+1 τ i+2 χ i+2 υi+2 ...]

T

=(∇ g̃ i+1

(l) (0))T [... xi−1 vi−1 t i χ i υi τ i+1 χ i+1 υi+1 ti+2 xi+2 vi+2 ...]
T

since only the [χ i υi τi+1 χi+1 υi+1] terms get multiplied by a nonzero entry.

 So, we seek a vector of the form

Ẑ=[... xi−1 vi−1 ti χ i υi τi+1 χ i+1 υi+1 t i+2 xi+2 v i+2 ...]
T

(thus is equal to Z̃f at the indices of those unchanged patch points) that also satisfes the

continuity constraints for the problem at X(l+1)
ref

. The set of variables at a fxed patch point has

elements involved in continuity constraints at three patch points. One is for the fxed patch point,

for which

(∇ h̃i+1
(l+1)(0))T Ẑ=(∇ h̃i+1

(l) (0))T Ẑ=(∇ h̃i+1
(l) (0))T Z̃f=0.

224

For the preceding patch point, we have the continuity constraint

[Ai , i−1

(l+1)
Bi , i−1

(l+1)
vi

−ref (l+1) −I3x3 03x3][
xi−1

vi−1

ti
χ i

υi

]=0

which since χi is fxed reduces to

[Ai , i−1
(l+1)

Bi , i−1
(l+1)

vi

−ref (l+1)] [xi−1

vi−1

ti
]=χi

which since [Ai , i−1
(l+1)

Bi , i−1
(l+1)

vi

−ref (l+1)] is full rank and “fat”, there are multiple solutions even with

χi fxed. For any such initial state and time change, there are multiple solutions for continuity at

the previous solution, etc. as the system of linear equations will still be underdetermined.

Similarly, for the next patch point [Ai+2, i+1

(l+1)
Bi+2, i+1

(l+1)
vi+2

−ref (l+1) −I3x3 03x3][
χ i+1

υi+1

ti+2

xi+2

vi+2

]=0

[vi+2

−ref (l+1) −I3x3][t i+2

xi+2
]=−Ai+2, i+1

(l+1) χ i+1−Bi+2, i+1

(l+1) υi+1 so again there are multiple solutions. [If the

next point were the terminal condition or some other fxed patch point then this would not be the

case, but then the arc from the patch point to the fxed patch point would have the same initial

conditions, so letting the coasting time match the reference value would yield continuity.] Let Ẑ

be any member of this set of solutions with the necessary fxed values.

Thus, even though Ẑ may not satisfy (∇ g̃k

(l+1)(0))T Ẑ≤0 for any constraints with

variable changes, it does satisfy (∇ g̃ i+1
(l+1)(0))T Ẑ=(∇ g̃ i+1

(l) (0))T Ẑ=(∇ g̃ i+1
(l) (0))T Z̃ f=−ck<0 for any

of the constraints on that patch point (i.e. if those variables are fxed then the impact avoidance

225

constraint would remain fxed as well, and if active Z̃f would still defne a descent direction

since the variables that multiply nonzero entries in the gradient have not changed) and since it

satisfes the linear equality constraints, (∇ h̃ j

(l+1)(0))T Ẑ=0.

If we do allow α=αdesc as an option so that some inequality constraints may be satisfed

with equality after a change from the reference, an extra step is needed. Otherwise, or in the case

α*<αdesc anyways, let d=0 and skip to the nest paragraph. If α*=αdesc consider the function

X (α)=X(l)
ref+α X̃

*+δv (α) , so that X(l+1)
ref =X (α*)=X (l)

ref+α*
X̃

+δv (α). Recall that δv (α) is

continuously differentiable within the set α<ᾱ , which includes α* . Thus

X (α)=X (l)
ref+α X̃

*+δv (α) defnes a C1 curve from X(l)
ref to X(l+1)

ref
. Consider the tangent vector

to the curve at α* in the negative α direction, I.e. d=limh→0

X (α*−h)−X (α*)
h

. Since it is

tangent to a curve of continuous/feasible trajectories at X(l+1)
ref

, d will satisfy the linearized

equality constraints of the CP, which since they are linear is equivalent to

〈∇ h̃ j

(l+1)(0) , d̃ 〉=0∀ j∈ J . Furthermore, α<αdesc will make any active constraints whose

underlying variables are nonzero in X̃
* strictly satisfed. This makes d a descent direction for all

such constraints.

Consider now the vector d+ϵ Ẑ. Combining the properties of d , Ẑ :

Equality constraints,

〈∇ h̃ j

(l+1)(0) , d+ϵ Ẑ 〉=〈∇ h̃ j

(l+1)(0) , d 〉+ϵ 〈∇ h̃j

(l+1)(0) , Ẑ 〉=0+0=0

For inequalities with fxed underlying variables,

〈∇ g̃k

(l+1)(0) ,d+ϵ Ẑ 〉=〈∇ g̃ k

(l+1)(0) ,d 〉+ϵ〈∇ g̃k

(l+1)(0) , Ẑ 〉=0+ϵ〈∇ g̃ k

(l)(0) , Ẑ 〉=−ϵck<0

For inequalities with a nonzero change to their underlying variables yet are active (if allowed, d=0

226

only if they are inactive)

〈∇ g̃k

(l+1)(0) ,d+ϵ Ẑ 〉=〈∇ g̃ k

(l+1)(0) ,d 〉+ϵ〈∇ g̃k

(l+1)(0) , Ẑ 〉=−bk+ϵ〈∇ g̃ k

(l+1)(0) , Ẑ 〉

≤−bk+ϵ∥∇ g̃k
(l+1)(0)∥∥Ẑ∥

Then for 0<ϵ<
mink∈Kc

bk

maxk∈Ku
∥∇ g̃k

(l+1)(0)∥∥Ẑ∥
 we will have 〈∇ g̃k

(l+1)(0) ,d+ϵ Ẑ 〉<0. Thus

for such a value of ϵ ,d+ϵ Ẑ satisfes condition ii of the CRMFCQ conditions. Since conditions i)

holds automatically due to the linear constraints, then for the CP approximation defned at

X(l+1)
ref

, X̃=0 satisfes the CRMFCQ.

A.4 Summary

The following result combines the result from the previous section into the result on

constraint qualifcations needed elsewhere.

Proposition A.4: If the initial guess (or any other iteration) satisfes the LICQ, MFCQ, Slater's

Condition, or CRMFCQ, then X̃=0, X̃=X̃
* are regular points and Slater's Condition holds for

every SOCP/QCQP subproblem for every iteration thereafter.

227

Appendix B

Additional Constraints

B.1 Introduction

This appendix discusses additional constraints not included in Chapter 5. These constraints

were omitted from the main text because they require lengthy analysis and are not applicable to

every scenario. Some are of computational bene�t, others are mission or spacecraft dependent.

B.2 Intermediate, Maneuver Free Patch Points

There are multiple reasons why it may make sense to add additional patch points within a

coasting arc but not to add maneuvers at those points. Primary of these is the practical bene�t that

may be achieved from a multiple shooting approach rather than single shooting for long or

unstable arcs to improve the convergence properties of the re-correction during the optimization

process.[Marc07, Hugh03] Another is to allow constraints along a coasting arc without

interference from a maneuver, for example to position a fyover of a region of interest for

228

photography or other measurements. Even constraints such as the minimum periapsis altitude

constraint for impact avoidance may be recast as a constraint on a new, maneuver-free patch point

set at the point of minimum altitude rather than a constraint on propagated variables.

B.2.1 The NLP Constraint

Suppose k̄ such intermediate, maneuver-free patch points were to be added between two

impulses. Let (xi , vi) ,(xi+k̄+1 ,vi+k̄+1) de�ne these two standard, impulsive patch points. Then:

xi+1=xi+1
-

, k=1,. .. , k̄−1

vi+1=vi+1
-

, k=1,. .. , k̄−1

xi+k̄+1=xi+k̄+1
-

These correspond to continuity in both position and velocity for the intermediate patch points, and

position continuity at the end of the ballistic arc, where a maneuver may be present at the standard

patch point.

Additionally, if there are coasting time constraints, then for an arc with intermediate,

maneuver-free patch points, the constraint would become: tmin≤ti+1+...+ti+k+1≤t max .

B.2.2 The CP Approximation

In terms of the CP variables and reference values from a feasible prior iteration, these

constraints are approximated at a feasible reference by the following linear equality constraints:

[Ai+k ,i+k−1 Bi+k ,i+k−1 vi+k

−ref −I3x3 03x3

Ci+k ,i+k−1 Di+k ,i+k−1 ai+k

−ref 03x3 −I3x3
][

x̃ i+k−1

ṽ i+k−1

t̃ i+k

x̃ i+k

ṽ i+k

]=06x1 , k=1,. .. , k̄−1

[Ai+k̄+1, i+k Bi+k̄+1, i+k vi+k̄+1
−ref −I3x3 03x3][

x̃ i+k̄

ṽ i+k̄

t̃ i+k̄+1

x̃ i+k̄+1

ṽ i+k̄+1

]=03x1

229

B.2.3 De#ning the Modi#ed Recorrection Problem

The addition of such maneuver-free patch points introduces a larger set of equality

constraints and requires a different type of intermediate correction problem to reestablish position

continuity for all patch points and velocity continuity for the intermediate patch points. The �rst

change to note is that for such patch points, the position as well as velocity need to be adjusted.

For the ballistic arc beginning at patch point i with k̄ intermediate patch points, the

variables of the correction process are δ⃗i=(δv i ,δ xi+1 ,δ xi+1 ,... ,δ xi+k̄ ,δvi+k̄): a velocity

adjustment to patch point i and position and velocity adjustments to the intermediate, maneuver-

free patch points. The goal is to minimize the state discontinuities of the intermediate points and

the position discontinuity at the next impulsive patch point to 0. To state this formally, de�ne a

generalization of the discontinuity function κ̂i from Chapter 7.3.1 using line search parameter α

and the correction adjustments:

κ̂i :ℝ
6 k̄+3+1→ℝ6 k̄+3

κ̂i (α , δ⃗i)=[
xi+1

- (α ,δvi)−xi+1(α ,δ xi+1 ,δvi+1)

v i+1
- (α ,δvi)−vi+1(α ,δ xi+1 ,δvi+1)

⋮
xi+k̄

- (δ xi+k̄−1 ,δvi+k̄−1 ,α)−xi+k̄ (δ xi+k̄ ,δvi+k̄ ,α)

vi+k̄
- (δ xi+k̄−1 ,δvi+k̄−1 ,α)−vi+k̄(δ xi+k̄ ,δv i+k̄ ,α)

xi+k̄+1
- (δ xi+k̄ ,δv i+k̄ ,α)−xi+k̄+1(α)

]
where

xi+k
- (δ xi+k−1 ,δvi+k−1 ,α)=x(xi+k−1

ref +α x̃ i+k−1+δ xi+k−1 ,v i+k−1
ref +α ṽ i+k−1+δv i+k−1 , ti+k

ref +α t̃ i+k)

vi+k

- (δ xi+k−1 ,δvi+k−1 ,α)=v (xi+k−1
ref +α x̃ i+k−1+δ xi+k−1 ,v i+k−1

ref +α ṽ i+k−1+δvi+k−1 , ti+k

ref +α t̃ i+k)

de�ne the endpoints of the arcs whose initial conditions are the reference values plus a scaled step

in the direction of the CP solution, plus a correction adjustment, as in Chapter 7.3.1. The initial

conditions are de�ned by:

230

xi+k (δ xi+k−1 ,δvi+k−1 ,α)=xi+k

ref +α x̃ i+k−1+δ xi+k

vi+k (δ xi+k−1 ,δvi+k−1 ,α)=vi+k

ref +α ṽ i+k−1+δv i+k

The goal then, is to determine if there is a range of step sizes α for which there exist δ⃗i (α) s.t.

κ̂i (α , δ⃗i)=0⃗ .

B.2.4 Existence of Solutions to the Modi#ed Recorrection Problem

The approach taken follows that of reestablishing continuity in the original case of Chapter

7.3.1., which is to use the Implicit Function Theorem. κ̂i is continuously differentiable, and for a

feasible reference κ̂i (0, 0⃗)=0⃗ . Thus to verify if the Implicit Function Theorem holds it must be

shown that

∂ κ̂ i

∂ δ⃗
=[

Bi+1, i −I3x3 03x3 03x3 ... 03x3

Di+1, i 03x3 −I3x3 03x3 ... 03x3

03x3 Ai+2, i+1 Bi+2, i+1 −I3x3 03x3 ... 03x3

03x3 Ci+2, i+1 Di+2, i+1 03x3 −I3x3 ... 03x3

⋮ ⋱ ⋱ ⋱ ⋱ ⋮
03x3 ... 03x3 Ai+k , i+k−1 Bi+k , i+k−1 −I3x3 03x3

03x3 ... 03x3 Ci+k , i+k−1 Di+k , i+k−1 03x3 −I3x3

03x3 03x3 Ai+k+1, i+k Bi+k+1, i+k

]
is invertible. In order to show this, it is bene�cial to move the leftmost column to the right column,

which has no effect on invertibility. This creates the matrix

M=[
−I3x3 03x3 03x3 ... 03x3 Bi+1, i

03x3 −I3x3 03x3 ... 03x3 Di+1, i

Ai+2, i+1 Bi+2, i+1 −I3x3 03x3 ... 03x3

Ci+2, i+1 Di+2, i+1 03x3 −I3x3 ... 03x3

⋮ ⋱ ⋱ ⋱ ⋱ ⋮
03x3 ... 03x3 Ai+k ,i+k−1 Bi+k , i+k−1 −I3x3 03x3 03x3

03x3 ... 03x3 Ci+k ,i+k−1 Di+k ,i+k−1 03x3 −I3x3 03x3

03x3 ... 03x3 03x3 03x3 Ai+k+1, i+k Bi+k+1, i+k 03x3

]
231

This may be partitioned as M=[M11 M12

M21 M22
] where:

M11=[
−I3x3 03x3 03x3 ... 03x3

03x3 −I3x3 03x3 ... 03x3

Ai+2, i+1 Bi+2, i+1 −I3x3 03x3 ... 03x3

Ci+2, i+1 Di+2, i+1 03x3 −I3x3 ... 03x3

⋮ ⋱ ⋱ ⋱ ⋱ ⋮
03x3 ... 03x3 Ai+k , i+k−1 Bi+k ,i+k−1 −I3x3 03x3

03x3 ... 03x3 Ci+k , i+k−1 Di+k , i+k−1 03x3 −I3x3

]
M12=[

Bi+1, i

Di+1, i

03x3

⋮
03x3

] ,M21=[03x3 ... 03x3 Ai+k+1, i+k Bi+k+1, i+k] ,M22=03x3

To reduce clutter, in terms of the full STMs

M11=[
−I6x6

Φi+2, i+1 −I6x6

Φi+3, i+2

⋮ ⋱
−I6x6

Φi+k , i+k−1 −I6x6

]
Note that M11 is invertible with inverse

M11
−1=[

−I6x6

−Φi+2, i+1 −I6x6

−Φi+3, i+2Φi+2, i+1 −Φi+3, i+2

⋮ ⋱
−I6x6

−Φ i+k ,i+k−1...Φ i+2, i+1 ... −Φ i+k , i+k−1Φ i+k−1, i+k−2 −Φ i+k ,i+k−1 −I6x6

] .
Using the property of state transition matrices that Φ(t2 ,t1)Φ(t1 ,t0)=Φ(t2 ,t0) , this may be more

compactly written as

232

M11
−1=[

−I6x6

−Φi+2, i+1 −I6x6

−Φ i+3, i+1 −Φi+3, i+2

⋮ ⋱
−I6x6

−Φ i+k ,i+1 ... −Φi+k ,i+k−2 −Φ i+k , i+k−1 −I6x6

]
Now, since M11 is invertible, M will be invertible iff its Schur complement w.r.t. M11 Is

invertible as well.[Boyd94]. This is de�ned as:

S=M22−M21M11
−1

M12=[Ai+k+1, i+k Bi+k+1, i+k][Ai+k , i+1 Bi+k ,i+1

Ci+k , i+1 Di+k ,i+1][Bi+1, i

Di+1, i]
Note that

[Ai+k+1, i Bi+k+1, i

C i+k+1, i Di+k+1, i
]=Φi+k+1, i=Φi+k+1, i+k Φ i+k ,i+1Φ i+1, i

=[Ai+k+1, i+k Bi+k+1, i+k

C i+k+1, i+k Di+k+1, i+k
][Ai+k , i+1 Bi+k , i+1

Ci+k ,i+1 Di+k , i+1
][Ai+1, i Bi+1, i

C i+1, i Di+1, i
]

Comparing the bottom expression to the expression for S, we see that S is equal to the top right

entry of Φ i+k+1, i , and so S=Bi+k+1, i . This matrix is identical to the B matrix of Chapter 7.3.1,

relating velocity variations in (standard) patch point velocity to the resulting variation in the

following patch point position, just as if there were no intermediate patch points added. Thus the

condition for the existence of a range of corrections is the same with or without such intermediate

maneuver-free points added. As in that case, since this matrix is assumed to be invertible, a set of

corrections exist for some range of step size α values in a neighborhood of 0.

This result is not surprising. If there exist adjustments that lead to a ballistic arc between

two standard patch points that happen to have some intermediate patch points with no maneuvers,

then the resulting arc satis�es position continuity at its endpoint with or without the arc being

divided into pieces. Likewise, should an initial velocity correction in a single shooting approach

exist creating a continuous transfer, then the difference between points on the arc with the

233

appropriate coasting times and the corresponding intermediate patch points give a set of

adjustments satisfying the above constraints.

B.2.5 Magnitude of Correction

The Implicit Function Theorem also provides an expression for the derivative

∂ δ⃗ i

∂α (0)=−(∂ κ̂i

∂ δ⃗i

(0, 0⃗))
−1 ∂ κ̂ i

∂α (0, 0⃗).

For each term of κ̂i the terms of this derivative are 0, due to the constraints the CP

solution must satisfy that were derived above.

Position terms -

∂
∂α |(0,0⃗)[x (xi+k−1

ref +α x̃ i+k−1+δ xi+k−1 , vi+k−1

ref +α ṽ i+k−1+δvi+k−1 ,ti+k

ref +α t̃ i+k)−(xi+k

ref +α x̃ i+k−1+δ xi+k)]

=Ai+k , i+k−1 x̃ i+k−1+Bi+k , i+k−1 ṽ i+k−1+vi+k
−ref

t̃ i+k− x̃ i+k−1

=[Ai+k ,i+k−1 Bi+k , i+k−1 vi+k
−ref −I3x3 03x3] [

x̃ i+k−1

ṽ i+k−1

t̃ i+k

x̃ i+k

ṽ i+k

]=0

Velocity terms -

∂
∂α |(0, 0⃗)[v (xi+k−1

ref +α x̃ i+k−1+δ xi+k−1 ,vi+k−1

ref +α ṽ i+k−1+δvi+k−1 ,t i+k

ref +α t̃ i+k)−(vi+k

ref +α ṽ i+k−1+δv i+k)]

=Ci+k , i+k−1 x̃ i+k−1+Di+k , i+k−1 ṽ i+k−1+ai+k

−ref
t̃ i+k−ṽi+k−1

=[Ci+k , i+k−1 Di+k ,i+k−1 ai+k
−ref 03x3 −I3x3] [

x̃ i+k−1

ṽ i+k−1

t̃ i+k

x̃ i+k

ṽ i+k

]=0

Thus
∂ δ⃗ i

∂α (0)=0 as expected and so ∥δ⃗i (α)∥=o (α). By de�nition of δ⃗i this implies

that for the components as well, ∥δv i (α)∥=o (α) ,∥δ xi+1(α)∥=o (α) , etc. With this order and

234

existence established, the proof of Chapter 7.3.1 and 7.3.2 may be applied to this case without

further alteration. Thus adding intermediate, maneuver-free patch points does not affect the

decrease of the cost function or feasibility of the other constraints at each major iteration.

B.3 Thrust Angle Limitations

This constraint handles the case where there is a limitation on the angle between impulse

applied and the velocity in order to limit attitude changes. The existence of such a constraint is

spacecraft speci�c, and is not being asserted as necessary for all cases, but is potentially useful. It

is assumed the impulse is limited to an angle of θmax from the velocity direction. This forces the

new velocity to reside within a cone with vertex centered at, and axis aligned with, the tip of the

incoming velocity.

Figure B.1: Thrust direction cone constraint and expression in terms of small variation variables.

B.3.1 The Standard Geometric Cone

For a cone with vertex at the origin, opening in the positive z direction, with half angle

θmax the interior is de�ned by
√x

2+y
2

tanθ
≤z which we can reformat as:

235

∥[1/ tanθ 0 0

0 1/ tanθ 0
0 0 0][x

y
z]∥≤[0 0 1][x

y
z].

Not surprisingly, this geometric cone is a special case of a second order cone.

B.3.2 De#ning the Angle Constraint as a Second Order Cone

As opposed to a simply expressed cone in position space such as that described in B.4, this

constraint is much more complex because it involves a cone that is positioned and oriented

relative to propagated variables.

In order to verify if a candidate velocity after impulse is within θmax of the velocity before

impulse, a change of coordinates is needed so that the cone de�ned above may be used. For any

nonzero arc endpoint velocity, let Ri+1(v i+1
-) ,ρi+1(vi+1

-) de�ne a rotation and translation that

maps the ending velocity vector to the positive z-axis. Such a transformation then maps the cone

aligned with the velocity to the cone de�ned above. Then Ri+1(v i+1
-)vi+1+ρi+1(vi+1

-) maps

potential post-impulse velocities to this frame as well. Thus Ri+1(v i+1
-)vi+1+ρi+1(vi+1

-) resides

within the z-axis aligned cone above if and only if differed from the incoming velocity by less than

θmax.

To save space, let Θxy=[1/ tanθ 0 0

0 1/ tanθ 0

0 0 0]. The constraint for the original problem is then of

the form :

∥Θxy Ri+1(v i+1
-)v i+1+Θxy ρi+1(v i+1

-)∥<[0 0 1]Ri+1(v i+1
-)vi+1+[0 0 1]ρi+1(vi+1

-).

Note this itself is not a second order cone due to the nonlinearities/integration involved in

expressing the endpoint velocity in terms of the optimization variables. It is however clear that if

236

the STM based approximations elsewhere are used then the form will be correct.

To �nd the resulting constraint approximation using the STM approximations, each term

will need to be broken down separately. Note that the particular parameterization of the rotation

and translation has not been given for generality. Taking derivatives of any such parameterization

such as multiplication of two fundamental rotation matrices (�rst about the z-axis to rotate the

velocity into the xz-plane, then about the y-axis to align the vector with the z-axis by angles

−tan
−1 vy

v x

, −(π2−sin
−1 vz

∥v∥) respectively), would not simplify the notation.

Rotation Term:

Ri+1(v i+1
-)v i+1=Ri+1(v i+1

- ref+Δ vi+1
-)(v i+1

ref +ṽ i+1)

 ≈(Ri+1(v i+1
- ref)+Δ vx ,i+1

- ∂R

∂v x

(vi+1
- ref)+Δvy , i+1

- ∂R

∂vy

(vi+1
- ref)+Δ vz , i+1

- ∂R

∂vz

(vi+1
- ref))(vi+1

ref +ṽi+1)

 ≈Ri+1(vi+1
- ref)vi+1

ref +Ri+1(v i+1
- ref)ṽ i+1

 +(Δvx , i+1
- ∂R

∂v x

(v i+1
- ref)+Δvy , i+1

- ∂R

∂vy

(vi+1
- ref)+Δvz ,i+1

- ∂R

∂vz

(v i+1
- ref))vi+1

ref

 ≈Ri+1(vi+1
- ref)v i+1

ref +Ri+1(v i+1
- ref) ṽi+1

 +(Δ vx , i+1
- (∂R

∂v x

(v i+1
- ref))vi+1

ref +Δv y , i+1
- (∂R

∂v y

(v i+1
- ref))vi+1

ref +Δv z , i+1
- (∂R

∂v z

(vi+1
- ref))vi+1

ref)
 =Ri+1(vi+1

- ref)v i+1
ref +Ri+1(v i+1

- ref) ṽi+1

 +[(∂R

∂v x

(vi+1

- ref))v i+1

ref (∂R

∂v y

(vi+1

- ref))vi+1

ref (∂R

∂vz

(vi+1

- ref))v i+1

ref]Δv i+1

-

 =Ri+1(vi+1
- ref)v i+1

ref +Ri+1(v i+1
- ref)ṽ i+1

237

 +([(∂R

∂vx

(vi+1
- ref))vi+1

ref (∂R

∂vy

(vi+1
- ref))v i+1

ref (∂R

∂v z

(vi+1
- ref))vi+1

ref][Ci+1, i Di+1, i ai+1
ref])[x̃ i

ṽ i

t̃ i+1
]

Let Γi+1=([(∂R

∂vx

(v i+1
- ref))vi+1

ref (∂R

∂vy

(vi+1
- ref))vi+1

ref (∂R

∂vz

(vi+1
- ref))vi+1

ref] [Ci+1, i Di+1, i ai+1
ref])∈ℝ3x7 .

Then the �rst-order approximation is �nally:

Ri+1(vi+1

-)vi+1≈Ri+1(vi+1

- ref)v i+1

ref +[Γi+1 03x3 Ri+1(v i+1

- ref) 03x1] [
x̃ i

ṽ i

t̃ i+1

x̃ i+1

ṽ i+1

t̃ i+2

]
Translation term:

ρi+1(vi+1
-)=ρi+1(vi+1

- ref+Δv i+1
-)

 ≈ρi+1(vi+1
- ref)+∇ρi+1(vi+1

- ref)Δv i+1
-

 ≈ρi+1(vi+1
- ref)+∇ρi+1(vi+1

- ref)[Ci+1, i Di+1, i ai+1
ref] [x̃ i

ṽ i

t̃ i+1
]

Let Ρ i+1=∇ρi+1(vi+1

- ref)[Ci+1, i Di+1, i ai+1

ref] . Combining the work above we have the following

constraint on the outgoing velocities ṽ i+1:

∥Θxy [... (Γi+1−Ρ i+1) 03x3 Ri+1(vi+1
- ref) 03x1 ...] X̃ +Θxy (Ri+1(vi+1

- ref)vi+1
ref +ρi+1(vi+1

- ref))∥
<[0 0 1] [(Γ i+1−Ρi+1) 03x3 Ri+1(vi+1

- ref) 03x1] X̃+[0 0 1] (Ri+1(v i+1
- ref)vi+1

ref +ρi+1(vi+1
- ref)) .

This second order cone constraint is the restriction of the variation plus the reference

outgoing velocity to lie within the cone with vertex and opening direction based on the �rst order

prediction of the previous arc endpoint position and orientation.

238

B.3.3 Inclusion into the Proof of Descent with Feasible Iterates

As just shown, the Second Order Cone constraint is given by

∥Θxy [... (Γi+1−Ρi+1) 03x3 Ri+1(v i+1
- ref) 03x1 ...] X̃+Θxy (Ri+1(vi+1

- ref)v i+1
ref +ρi+1(vi+1

- ref))∥
<[0 0 1] [(Γi+1−Ρi+1) 03x3 Ri+1(vi+1

- ref) 03x1] X̃+[0 0 1] (Ri+1(v i+1
- ref)vi+1

ref +ρi+1(vi+1
- ref))

The analysis for the Maximum ΔV per Maneuver constraint in Chapter 7.3.2 holds for this

constraint in the case where the reference trajectory satis�es this constraint with strict inequality.

Additionally, the same arguments hold when the reference satis�es the constraint with equality but

the CP solution moves in a descent direction of the constraint function. This is because yet again

the increase to the constraint function due to recorrection is o (α)=O (∥δv∥). This is because the

change to the angle is less than or equal to the worst case scenario where ∣δθ∣=sin
−1(∥δv∥

∥vref∥).
Taking the Taylor series of this worst case angle change for the outgoing velocity (i.e. the velocity is

changing relative to a cone from an unchanged endpoint velocity) in terms of ∥δv∥ :

δθ=sin
−1(∥δ v∥

∥vref∥)
∥δ v∥=0

+∥δv∥⋅(1

√∥vref∥2−∥δv∥2)
∥δv∥=0

+O(∥δv∥2)

 =sin
−1 (0)+∥δv∥⋅(1

√∥vref∥2)+O(∥δv∥2)

 =∥δv∥⋅(1

∥vref∥)+O(∥δv∥2)

 =O(∥δv∥)=o(α)

This result is not surprising, given the standard small angle approximation
∥δv∥

∥v
ref∥

=sinδθ≈δθ . So

to �rst order δθ equals ∥δv∥ multiplied by a constant, thus δθ=O(∥δv∥)=o (α). The change

to the constraint function due to changing endpoint velocities after reestablishing continuity is the

same, other than being in terms of the magnitude of the endpoint velocity. This however, has also

239

been shown to be O(∥δv∥)=o (αi) , albeit with a constant magni�ed by up to ∥Di+1, i∥.

Unlike the maximum thrust constraint however, it is possible to move from a reference that

satis�es the constraint with equality to a CP solution that satis�es the constraint with equality

without moving in a descent direction: the case where the CP solution lies on ray from the vertex

through the reference value. Suppose this is the case. Consider any closed ball entirely contained

within the velocity direction cone containing the reference value on its boundary (chose the center

to be along the inward normal from the reference, a suf�ciently small radius may then be

calculated). For this iteration only, the cone constraint is replaced with being in the interior of this

ball. Note that the reference velocity satis�es this constraint, but no rays along the cone do,

preventing the CP result from satisfying the cone constraint without moving in a descent direction

of the constraint function. Thus by forcing movement in a descent direction of the constraint

function and using the fact that reestablishing continuity increases the constraint function with

order o(α), there exists a range of α values such that both:

J (X ref)> J (X ref+α X̃+δ⃗v)

gangle(X
ref)>gangle(X

ref+α X̃+δ⃗v)

Lastly, the reference trajectory is a �xed point minimum of the CP with the replacement

constraint if and only if it is of the CP without the cone constraint. This is because if moving along

the ray is a descent direction of the cost then ∇ J̃ (0) X̃ ray<0 strictly. Thus there is an open set

around X̃ ray of descent directions. Since it is open and the cone and the ball of the replacement

constraint meet tangentially, some of these descent directions must be feasible directions for the

helper constraint. Thus the replacement constraint would not cause the process to terminate at a

�xed point unless it would have for the original cone constraint.

240

B.4 Conical Observation Regions

Consider the case where speci�c points on the surface are to be observed by a spacecraft.

In order to prevent photographs from being taken at too oblique of an angle, there may be a

maximum viewing incidence angle ϑ relative to the surface normal n̂. [Suro15] Such a

constraint clearly reduces to requiring the spacecraft to pass within a cone opening in the direction

of n̂ with vertex at the point of interest and half angle ϑ. In this case as opposed to the maximum

thrust angle constraint, the rotation and translation matrices needed are independent of the state of

the spacecraft. Indeed in the case of a tidally locked moon, the constraint in the rotating frame is

time invariant. This case is also simply because the variables involved – the position at the patch

point – are the optimization variables themselves with no propagation. Presumably no maneuver is

desired at this point, so for a maneuver-free patch point i, the constraint in terms of the rotation

and translation matrices, and the Θxy matrix of B.3.1,B.3.2 is:

∥Θxy R(t)xi+Θxy ρ(t)∥<[0 0 1]R (t)xi+[0 0 1]ρ(t).

241

Appendix C

Dynamical Models

C.1 Introduction

This appendix discusses the features of the dynamical model used in the applications

discussed in this dissertation. Note that the Restricted Two Body Problem, although historically the

basis for most mission analysis, is not used. Not using this model is immediately justifed by the

fact that for the primary application at Phobos the sphere of infuence (SOI) for which this model is

valid is in fact contained within Phobos itself. As a result, only three or more body approximations

are considered.

C.2 The Circular Restricted Three-Body Problem

For orbiters of bodies such as planetary moons and asteroids, it may be either desirable or

necessary to include not only the gravitational effects of the body being orbited by the satellite, but

also of the relevant planet or the Sun that the target body is itself orbiting. For example, for an

242

orbiter at Phobos the gravity of Mars must be included. For bodies with low eccentricity orbits, the

Circular Restricted Three Body Problem (CR3BP) is a standard model for this situation. The normal

point mass formulation of the CR3BP describes the motion of a spacecraft (assumed to be

massless) under the gravitational infuence of two massive bodies in circular orbits around their

barycenter. The equations of motion are given in the rotating frame with the same frequency as that

of the orbits. It is generally given in normalized units so that the distance between the bodies is 1,

and that the angular frequency of the orbits is 1. In these units the equations of motion are:

ẍ=x+2 ẏ−
1−μ

r1
3

(x+μ)−
μ

r2
3
(x+μ−1)

ẏ=y−2 ẋ−
1−μ

r1
3

y−
μ

r2
3

y

z̈=−
1−μ

r1
3

−
μ

r2
3
z

where the parameter μ is defned as the ratio of the mass of the smaller body over the combined

mass of the two bodies. Thus for Phobos, it is given by μ=
Mphobos

Mphobos+Mmars

=1.6559e-08. r1 and r2

are the distances from the spacecraft to the primary (Mars) and the secondary (Phobos) bodies. In

the Phobos/Mars system, one normalized unit of distance corresponds to 9,378.414449 km, and

one normalized unit of time is 4,388.556729 seconds. In this frame Mars is located at (-μ,0,0) and

Phobos at (1-μ,0,0).

The CR3BP has become the most popular model for analyzing three body systems and the

role of libration point orbits, dynamical resonances, and invariant manifolds. [Koon08, Howe84,

Lo04] However, for a very irregularly shaped body such as Phobos, even for a simplifed

discretization model this is an insuffcient approximation. Therefore more detail must be included

in the model.

243

C.3 Spherical Harmonic Gravity

Compared to most planetary moons, Phobos is very irregularly shaped, resembling an

asteroid perhaps more than it does other major moons. Indeed, within 6 kilometers of the surface

of Phobos (a region containing the important libration point orbits used in the orbital operation

plan) these perturbations from the irregularity of Phobos are greater than the effects of any non-

gravitational forces (see Chapter 10). The parameters up to fourth degree and order are:

C0,0 = 1

C1,0 = -0.000160082

C1,1 = -0.000053128

C2,0 = -0.029683000

C2,1 = 0.000797914

C2,2 = 0.015402100

C3,0 = 0.001488130

C3,1 = -0.002231580

C3,2 = -0.004444380

C3,3 = 0.000788783

C4,0 = 0.002655290

C4,1 = 0.001244880

C4,2 = -0.000990392

C4,3 = -0.001257780

C4,4 = 0.000347189

S0,0 = 0

S1,0 = 0

S1,1 = -0.000205951

S2,0 = 0

S2,1 = 0.000083071

S2,2 = 0.000186869

S3,0 = 0

S3,1 = 0.001066390

S3,2 = 0.000364627

S3,3 = -0.006710720

S4,0 = 0

S4,1 = -0.000432743

S4,2 = -0.000621825

S4,3 = 0.001084600

S4,4 = 0.000024846

These parameters are normalized using the Kaula convention. [Mont11] They were derived at Jet

Propulsion Laboratory from an earlier polytopic shape model. [Gask11]

Basic spherical harmonic methods are commonly used to express potential, acceleration,

and derivatives of acceleration using spherical coordinates and Legendre polynomials. This form is

not ideal for the current application due to the use of Cartesian coordinates in the rotating frame,

and because for higher degree and order polynomials either a large number of formulas must be

stored with one applied to each term in the expansion, or involve a large number of derivative

calculations. The recursive method of Cunningham as provided in [Mont11] gives the needed

244

accelerations and derivatives in Cartesian coordinates and uses recursion formulas to avoid the

higher order derivatives. It also allows for increases or decreases in degree and order as the

situation requires.

This method begins by defning terms

V l , m=(R

r)
l+1

Pl ,m(sinϕ)cosmθ , W l ,m=(R+

r)
l+1

Pl ,m(sinϕ) sinmθ

where Pl , m are the Legendre Polynomials of degree l and order m and r ,ϕ ,θ are the spherical

coordinates and R is the radius of the sphere of convergence of the harmonic expansion. For the

Phobos spherical harmonic model used, R=13.93km. In order to calculate these terms directly and

in Cartesian coordinates (here and in the rest of this section in the Body Centered, Body Fixed

frame), the following recurrence relationships have been derived [Mont11]:

V m, m=(2 m−1)[xR

r
2 V m−1,m−1−

yR

r
2 W m−1,m−1] , W m, m=(2 m−1)[xR

r
2 W m−1,m−1−

yR

r
2 Vm−1,m−1]

V l , m=
2 l−1

l−m

zR

r2
V l−1,m−

l+m−1

l−m

R
2

r2
V l−2,m , W l , m=

2 l−1

l−m

zR

r2
W l−1,m−

l+m−1

l−m

R
2

r2
W l−2,m

where m≤l and V 0,0=
R

r
, W 0,0=0.

Once these terms have been calculated to the necessary degree and order, the potential,

acceleration, and partial derivates may then be calculated. The gravitational potential using these

terms is then:

U=
GM

R
∑l=0

D

∑m=0

l

(Cl , mV l , m+Sl ,mW l , m)

and acceleration is given by

ẍ=∑l , m
ẍ l ,m , ÿ=∑l ,m

ÿl ,m , z̈=∑l , m
z̈l , m

where

245

ẍ l ,0=
G M

R
2

(−Cl , 0V l+1,1) ,m=0

ẍ l ,m=
GM

R
2

1

2 {(−Cl , mV l+1, m+1+Sl , mW l+1,m+1)+
(l−m+2)!
(l−m)!

(−Cl , m V l+1,m−1+Sl , mW l+1,m−1)},m>0

ÿ l ,0=
G M

R
2

(−Cl , 0W l+1,1) ,m=0

ÿ l ,m=
G M

R
2

1

2 {(−Cl , mW l+1,m+1+Sl , m V l+1,m+1)+
(l−m+2)!
(l−m)!

(−Cl , mW l+1,m−1+Sl , mV l+1,m−1)},m>0

and

z̈ l , m=
G M

R
2

(l−m+1)(−Cl , m V l+1,m−Sl , m W l+1, m)

Similar formulas exist for partial derivatives, but are omitted here for brevity as they are quite

lengthy. Please see [Mont11]. Note that for a model of degree and order D, these terms are

calculated up to l=D when only potential is needed, l=D+1 when accelerations are needed,

and up to l=D+2 for partial derivatives.

As mentioned above, these formulas are given in the Body Centered, Body fxed (BCBF)

frame. Therefore coordinate transformations are needed between the CR3BP frame and BCBF

frame. Note that in the case of tidally locked moons such as Earth's Moon, Phobos, Deimos,

Europa, Enceladus, etc., the body is fxed in position and orientation, thus there is only a simple

time invariant Euclidean transformation for position, velocity, and acceleration.

C.3 Solar Radiation Pressure

Using the “fat plate model”, the force on a spacecraft due to solar radiation pressure is

given by:

F⃗ srp=P 0(R0

rS
)

2

A[(1−ρ) e⃗0+ρ(n̂⋅e⃗0) n̂]

246

where P0=4.56×10
−6

N /m2 is the provided reference pressure given at a distance R0=1AU ,

A the assumed surface area of the spacecraft, n̂ the outward normal of the plate surface pointing

away from the Sun, e⃗0 the unit vector from the Sun to the spacecraft, r S the distance from the

center of the Sun, and ρ the refectivity percentage. [Vall01] Note that changes to the distance

from the Sun due to the changes in the spacecraft orbit around Phobos, and indeed the orbit of

Phobos around Mars are very small relative to the distance from the Sun to Mars. Thus we take rS to

be the distance from the Sun to Mars. The surface area A is taken to be A=40 m
2
, approximately

the combined surface area of the very large panels of the Dawn Spacecraft.[Thom12] Similarly, the

mass is taken to be 1,250kg, approximately that of the 1,218 kg Dawn Spacecraft. [Thom12]

An estimate of the resulting acceleration magnitude of the SRP may now be determined.

The semi-major axis of the orbit of Mars around the Sun is 1.5237 AU. Thus on average

∥F s.r.p.∥≈P0(R0

rmin
)

2

Amax=1.824×10−4(1AU

1.5237 AU)
2

N=7.856×10−5
N

Dividing by the assumed mass results in an average acceleration due to SRP of

6.285×10−8
m / s2.

In practice, even though Mars is in an elliptic rather than circular orbit around the Sun, on

the timescale of these transfers position of the Mars/Phobos system to the Sun may be considered

constant. Therefore in the rotating frame, the Sun's motion may be modeled by circular motion

around the origin of the CR3BP with angular frequency equal to that of the frame itself, as is done

in one of the forms of the Bicircular Restricted Four Body Problem. [Koon08] Determining the

orientation of the fat plate normal vector is outside of the scope of this work, therefore it is

assumed to be provided. For any simulations run as part of this research, it has been assumed to be

collinear with the light direction.

247

C.4 Bicircular Restricted Four Body Problem

This dynamical model is an approximation for systems where a spacecraft (assumed

massless) is in a Sun/Planet/Moon system. Thus, when one small body orbits another, and these

two bodies orbit an even larger body. As with the CR3BP, these orbits are assumed to be circular.

There are two forms of the BR4BP, one case where the rotating frame is the CR3BP frame of the

Planet/Moon system, and the Sun is a time varying perturbing force in a circular orbit. The second

form is that where the frame is the CR3BP frame for the Sun/Planet system, and the moon is a time

varying infuence in a circular orbit around the planet. For the Sun/Earth/Moon application, the

latter is used since the application is focused on libration point orbits in the Sun/Earth system. In

normalized coordinates, the equations of motion are [Koon08]:

ẋ=u , ẏ=v , ż=w
u̇=x+2v−cS (x+μ)−cE (x−μS)−cM(x−xM)

v̇=y−2u−cS y−cE y−cM(y−yM)

ẇ=−cS z−cE z−cM z

where

cS=
μS

rS
3

,cE=
μE

rE
3

,cS=
μM

rM
3

and

rS=√(x+μ)2+y
2+z

2

rE=√(x−μS)
2+y

2+z
2

rM=√(x−xM)2+(y−yM)2+z
2

and

μ=3.035910E−06
μS=1−μ

μM=3.7339987346E−08
μE=μ−μM

xM=aM cos(θM)

yM=aM sin(θM)

θM=θM0+ωM t

ωM=12.36889493

aM=2.573565074

248

Note that the BR4BP provides a very simple way to include Solar Radiation Pressure due to the

explicit expression of the location of the Sun.

249

