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ABSTRACT
Cell-based therapies, defined here as the delivery of cells in vivo to treat disease, have recently gained increasing public attention as a
potentially promising approach to restore structure and function to musculoskeletal tissues. Although cell-based therapy has the
potential to improve the treatment of disorders of the musculoskeletal system, there is also the possibility of misuse and misrepre-
sentation of the efficacy of such treatments. The medical literature contains anecdotal reports and research studies, along with web-
based marketing and patient testimonials supporting cell-based therapy. Both the American Society for Bone and Mineral Research
(ASBMR) and the Orthopaedic Research Society (ORS) are committed to ensuring that the potential of cell-based therapies is realized
through rigorous, reproducible, and clinically meaningful scientific discovery. The two organizations convened a multidisciplinary
and international Task Force composed of physicians, surgeons, and scientists who are recognized experts in the development
and use of cell-based therapies. The Task Force was charged with defining the state-of-the art in cell-based therapies and identifying
the gaps in knowledge andmethodologies that should guide the research agenda. The efforts of this Task Force are designed to pro-
vide researchers and clinicians with a better understanding of the current state of the science and research needed to advance the
study and use of cell-based therapies for skeletal tissues. The design and implementation of rigorous, thorough protocols will be crit-
ical to leveraging these innovative treatments and optimizing clinical and functional patient outcomes. In addition to providing spe-
cific recommendations and ethical considerations for preclinical and clinical investigations, this report concludes with an outline to
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address knowledge gaps in how to determine the cell autonomous and nonautonomous effects of a donor population used for bone
regeneration. © 2019 American Society for Bone and Mineral Research.
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Executive Summary

Despite great advances in restorative surgeries involving
prosthetic devices, there has been limited progress in the

development of biological technologies for musculoskeletal
repair. Cell-based therapies, defined here as the delivery of cells
in vivo to treat disease, have recently gained increasing public
attention as a potentially promising approach to restore struc-
ture and function to musculoskeletal tissues. Although cell-
based therapy has the potential to improve the treatment of
genetic, degenerative, inflammatory, and traumatic disorders
of the musculoskeletal system, there is also the possibility of mis-
use and misrepresentation of the efficacy of such treatments.
The medical literature contains anecdotal reports and research
studies, along with web-based marketing and patient testimo-
nials supporting cell-based therapy.

Both the American Society for Bone and Mineral Research
(ASBMR) and the Orthopaedic Research Society (ORS) are commit-
ted to ensuring that the potential of cell-based therapies is real-
ized through rigorous, reproducible, and clinically meaningful
scientific discovery. In response, the two organizations convened
amultidisciplinary and international Task Force composed of phy-
sicians, surgeons, and scientists who are recognized experts in the
development and use of cell-based therapies. The Task Force
charge was to define the state-of-the art in cell-based therapies
and to identify the gaps in knowledge and methodologies that
should guide the research agenda.

Task Force charges

The objective of this Task Force report is to provide guidance to
investigators, clinicians, and the general public about the poten-
tial and challenges of cell-based therapies for both soft and min-
eralized skeletal structures. See Table 1 for the complete Task
Force charges that informed development of this report and
the recommendations included herein. Candidate sources of
stem/progenitor cells are reviewed, and optimized experimental
protocols for assessing their progenitor and healing properties in
animal models are presented. The Task Force examined the
diverse range of affected tissues to assess the current state of cell
therapy and developed recommendations for investigators and
observers regarding evidence of potential clinical efficacy of cell
based therapy

Task Force review process

The ASBMR-ORS Task Force reviewed nearly 400 manuscripts in
which cell-based therapies were used in animal models to pro-
mote tissue repair in musculoskeletal tissues. Outcomes were
classified into five categories: (i) radiographic; (ii) histologic,
including tissue organization and biochemical or molecular com-
position of resulting tissue; (iii) donor cell tracking; (iv) function of
resulting tissue; and (v) non-target or systemic effects (Table 2).
The overall judgment of how these outcomes were evaluated
included:

1. Radiographic and histologic assessment: The methods of X-
ray, micro–computed tomography (μCT), and magnetic reso-
nance imagingwere among themostwidely used for outcome
measures. Also widely used were histological methods that
assessed the efficacy of cell-based therapy. However, histolog-
ical methods primarily relied on non-quantifiable approaches
(eg, hematoxylin and eosin staining) and often did not employ
more rigorous analytical histomorphometric approaches. The
use of more detailed analysis of the repair tissue using special-
ized staining, immunohistochemistry, or RNA expression
assays, such as in situ hybridization, was less frequent and
the utilization varied between tissues. When specific matrix
components were assessed, only a limited number of protein
markers were used, most commonly collagen types and
aggrecan.

2. Functional criteria: Surprisingly, relatively few studies carefully
considered functional criteria, such as the measurement of
mechanical properties and pain. This may be partly due to
the generally short duration of the studies and the challenge
of defining function in different animal models. In addition,
few manuscripts addressed non-target or systemic effects of
treatment. Because transplanted cells, eg, mesenchymal
stem/progenitor cells (MSCs) may have biological effects, such
as influencing host immune-inflammatory responses,(1,2) it is
essential that perturbations of immune function, and other
non-target functions, be considered in future studies.

Table 1. ASBMR-ORS Task Force Charges

Task Force charge
1. Make recommendations for provisional case definitions of

cell-based therapies, including cell sources and target tissues,
so that subsequent studies will report using common
language and avoid ambiguity due to the complexity of the
cell preparatory steps.

2. Address the specific requirements of tissue type, anatomical
site and location, underlying disease state, host (gender
and/or age), and local environmental status.

3. Carefully review the current available information to assess
what is known and what is not known regarding different
cell-based therapies, cellular sources, and protocols for
addressing specific target tissues. Specifically, the literature
will be reviewed and characterized according to whether the
evidence is based on in vitro, in vivo (ie, animal models), or
clinical reports.

4. Review the available noninvasive diagnostic (eg, biomarkers)
and imaging techniques for characterizing the outcome of
cell-based therapies.

5. Identify the key questions that the scientific community
should address, and recommend a research agenda to
elucidate the best approaches for cell-based therapy.

6. Establish criteria for assessing potential biological and clinical
efficacy, and develop guidelines appropriate for the claimed
use of each cell-based therapy.
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3. Cell fate: Evaluation of cell fate is critical for assessing the effi-
cacy of cell-based therapies. Despite its importance, few stud-
ies performed cell tracing or described the localization or
persistence of donor cells in the host tissue. In studies where
donor cell fate was followed, cells were tracked using a variety
of techniques, including those using detectable transgene
reporters encoding fluorescent proteins (ie, green fluorescent
protein [GFP], red fluorescent protein [RFP]) or enzyme (LacZ)
for direct detection of donor cells or species-specific marker-
s/antigens in cases of xenogeneic transplantation.

Overview of Task Force findings and recommendations

Task Force recommendations are summarized in Table 3. Guid-
ance for conducting preclinical and clinical studies of cell-based
therapies is offered as a part of these recommendations (see Key
Question 5, below). The Appendices A through F provide more
details regarding publications related to cell based therapies in
various musculoskeletal tissues and also detail supplementary
information on how to determine the cell autonomous and
non-autonomous effects of a donor population being used for
bone regeneration.

Conclusions

The efforts of this Task Force are designed to provide researchers
and clinicians with a better understanding of the current state of
the science and research needed to advance the study and use of
cell-based therapies for skeletal tissues. The design and implemen-
tation of rigorous, thorough protocols will be critical to leveraging
these innovative treatments and optimizing clinical and functional
patient outcomes. In addition to providing specific recommenda-
tions and ethical considerations for preclinical and clinical investiga-
tions, this report concludes with an outline to address knowledge
gaps in how to determine the cell autonomous and non-
autonomous effects of a donor population used for bone regenera-
tion. Currently, there is noproof of efficacyof these treatments given
the lack of rigorous clinical studies and randomized clinical trials,
and that these therapies should thus be considered experimental.

Introduction

Bone, articular/hyaline cartilage, intervertebral disc, meniscus,
tendon, and ligaments are all musculoskeletal tissues that func-
tion to provide mechanical support and permit locomotion.
The support comes from highly organized extracellular matrices,
including collagens, proteoglycans, and glycoproteins, inter-
mixed with carbonate-rich apatite (in the case of bone and
hypertrophic cartilage), thatmodulate themechanical properties
of the tissues. Among the musculoskeletal tissues, there is wide

variability in terms of mechanical properties and function, the
level of tissue oxygenation, cell turnover, and regenerative
capacity. Loss of structure and function of musculoskeletal tis-
sues is the principal cause of physical disability. Furthermore, this
loss poses severe challenges to quality of life and presents heavy
disease burden, particularly for the aged population.

Despite the great advances in restorative surgeries involving
prosthetic devices, there has been limitedprogress in the develop-
ment of biological technologies for musculoskeletal repair. Cell-
based therapies have recently gained increasing public attention
as a potentially promising approach to restore structure and func-
tion tomusculoskeletal tissues. In fact, the techniqueofautologous
chondrocyte implantation (ACI), developed two decades ago,
which involves surgical implantation of a patient’s own cartilage
cells and chondrocytes to repair focal articular cartilage defects in
the joint, is the earliest effective clinical cell therapy procedure that
remains continuously practiced.(3) A recent entry is stem/progeni-
tor cell–based therapy, which has captured the public’s attention
because of the possibility of supplying sufficient numbers of cells
that can differentiate into skeletal cells and provide tissue-
appropriate signals necessary for tissue regeneration.

Although cell-based therapy has potential to improve the treat-
ment of genetic, degenerative, inflammatory, and traumatic disor-
ders of the musculoskeletal system, there is also the possibility of
misuse and misrepresentation of the efficacy of such treatments.
The medical literature contains research studies and anecdotal
reports and research studies, along with web-based marketing
and patient testimonials supporting cell-based therapy.

• Both the ASBMR and ORS are committed to ensuring that the
potential of cell-based therapies is realized through thorough,
rigorous, reproducible, and clinically meaningful scientific dis-
covery. In response, the two organizations convened amultidis-
ciplinary and international Task Force composed of physicians,
surgeons, and scientists who are recognized experts in the
development and use of cell-based therapies. The task force
leaders and members were selected by each society for their
expertise. Individual subgroup members searched the PubMed
database for studies published in English between years 1995
and 2019 related to the subject area, the studies were reviewed
by the subgroup, and studies were included in the report if they
provided information relevant to the study topic, and utilized
good experimental design and technique. In completion of
Appendices B through F (Bone, Cartilage, Disc, Meniscus, and
Tendon and Ligament cell-based therapy articles), the Task
Force performed a detailed search with inclusion of articles
published through 2015.

Each task force was asked to review all published studies in
English published between years 1995 and 2019. This report
reflects the findings and recommendations of the Task Force in

Table 2. Percentage of Studies That Measured Various Outcome Criteria

Outcome criteria Bone Cartilage Disc Meniscus Tendon/ligament
Radiographic 64 40 70 20 26
Histological 81 78 92 76 82
Origin of cellular components 45 20 68 56 36
Tissue organization 41 58 74 84 85
Biochemical/molecular 21 56 50 32 62
Functional 26 42 18 36 13
Off-target tissue effects 11 0 2 44 15

All values are percentages.
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Table 3. Summary of Findings and Recommendations From the ASBMR-ORS Task Force

Key question Primary findings and recommendations
1. What is the current knowledge of limitations of
cell-based therapies according to cellular source?

• Pluripotent stem/progenitor cells present unique challenges in terms
of differentiation efficacy (compared to multipotent stem/progenitor
cells) and in terms of safety. Further standardization and research into
safety methods are needed before these models can be better
leveraged for clinical use.

• Connective tissue–specific stem/progenitor cells require better
justification and nomenclature in order to differentiate the source of
the progenitor population used for a particular cell therapy.

• Markers for human and murine BMSCs are currently too nonspecific
and nonexclusive.

• The extent to which non-skeletal–derived MSCs contribute to the
production of functional skeletal tissues remains to be determined.

2. What is the current knowledge of the therapeutic utility
of cell-derived products based on cellular source?

• The efficacy of platelet-rich plasma is not yet established, but evidence
exists supporting its use in bone regeneration, cartilage repair,
osteoarthritis treatment, and tendon/ligament and meniscal repair.

• Animal models using cell-derived conditioned medium preparations
have demonstrated a benefit in healing skeletal tissues, but human
studies are lacking and the efficacy of conditioned medium
preparations remains unclear.

• EVs derived from cells may mediate intracellular communication and
thereby affect repair and disease processes.

3. What is the current knowledge of tissue-specific animal
models of cell-based therapies?

• Mice are commonly used to study cell-based therapies for
osteoporosis, osteogenesis imperfecta, fracture healing, and ectopic
bone formation. Findings usually require replication in larger animals
before being studied in clinical protocols.

• For cartilage models, larger animals—including horses, dogs, goats,
and sheep—are preferable to rodents and rabbits, although rabbit
models are frequently used.

• Rabbits and rats are commonly used in intervertebral disc disease and
injurymodels, but larger animals such as sheep and dogs are preferable
due to better generalizability to humans.

• Sheep, pigs, and primates are useful in models of meniscus healing
because they possess knee joint anatomy similar to humans, but these
models still have certain limitations (eg, differences in biped versus
quadruped meniscus and cartilage contact mechanics).

• Rabbit and rodentmodels are convenient to study stem/progenitor cell
therapies for acute tendon injury and repair. However, larger animal
models (ie, horse, pig, dog, and sheep) may better meet FDA guidelines
for demonstrating the efficacy of cell-based therapies and delivery
devices in humans. The suitability of an animal mode for
tendon/ligament repair will depend on the tissue being examined and
the objectives of the study.

4. What are the Task Force–recommended criteria for
interpreting a cell-based regenerative experiment?

• Success should be measured by the ability of cell-based therapies to
regenerate or repair degenerated or injured tissue, decrease pain, and
restore structure, mechanical properties, and function.

• Interventions must be compared to vehicle control using validated
outcome measures that include both functional and pain assessments.

• Studies should consider cell autonomous and non–cell autonomous
mechanisms of influence of cell-based therapies.

5. What are the Task Force recommendations for preclinical
and clinical studies of cell-based therapies?

Recommendations for preclinical studies
• The Task Force found no preferred, standardized animal model for
preclinical studies of cell-based therapies. Both large-animal and
small-animalmodelshavedeficienciesandeithersinglyand incombination
fail to reproduce the biomechanics or biology seen in humans.

• The Task Force recommends animal models be chosen based on size
and anatomical considerations as well as protocol design and
objectives, including cost, technical challenges, use of both autologous
and allogeneic cells, potential complications related to immune

(Continues)
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response to its charge of defining the state of the art in cell-
based therapies and identifying the gaps in knowledge and
methodologies that should guide the research agenda.

Key Question 1: What Is the Current Knowledge
of Limitations of Cell-Based Therapies According
to Cellular Source?

• Pluripotent stem/progenitor cells present unique challenges
in terms of differentiation efficacy (compared to multipotent

stem/progenitor cells) and in terms of safety. Therapeutic use
of these cells in clinical practice is not recommended until fur-
ther standardization and safety validation.

• Connective tissue-specific stem/progenitor cells require addi-
tional justification and nomenclature in order to differentiate
the source of the progenitor population used for a particular
cell therapy.

• Markers for human and murine bone marrow stromal cells
(BMSCs) are currently too nonspecific and nonexclusive.

• It is unclear the extent to which non–skeletal-tissue–derived
MSCs are useful in producing functional skeletal tissues.

Table 3. Continued

rejection, and the degree to which the model mimics human anatomy
and disease.

• The optimal preclinical approach would be to initiate studies in small
animals that focus on cellular, molecular, functional outcomes,
mechanical properties, and genetic characterization, and, if these
models provide proof of principle, perform follow-up trials in larger,
more clinically relevant animals if indicated.

• Immune reactions in animals should be considered when assessing
reparative potential in humans.

• A combination of evidence from in vitro and large and small animal in
vivo studies may be needed to obtain FDA clearance.

• Interpretation of the role of donor stem/progenitor cells in tissue repair
is critical.

• More research is needed investigating cell-based therapies in various
mesenchymal tissues as well as noninvasive assessments of tissue
composition, structure, and function.

• Centralized data resources, such as the NIH-supported National Swine
Resource and Research Center, can play a valuable role in advancing
this line of research. Recommendations for clinical studies

• The study methodology must be of the highest quality, including the
use of appropriate design, blinding, techniques to prevent bias,
validated quantitative outcome measures, and appropriate statistical
techniques.

• Development and use of noninvasive measures of human tissue
composition, structure, and mechanical function is essential.

• Patient-reported outcome measures are sensitive and valuable tools to
assess functional improvement, tissue structure, pain, and quality of
life. Research and clinical ethical considerations

• All animal studies should be conducted with strict adherence to ethical
guidelines and with approval from an Institutional Animal Care and Use
Committee Review Board.

• Although cell-based therapies may seem appealing due to their
novelty and innovativeness, patients should be clearly informed that
little data exists in either larger-animal preclinical studies or
randomized clinical trials to support the use of cell-based therapies.
However, cell-based therapies thus far appear to be generally safe and
well-tolerated.

• Patients also should be made aware that use of these therapies is often
“off label” and unlikely to be reimbursed by medical insurance.

• For patients to truly give informed consent, a neutral or second-opinion
physician should be consulted to explain the benefits and potential
risks for patients regarding receiving or not receiving the treatment.

• Given the lack of rigorous evidence, the Task Force cannot currently
recommend local or systemic stem/progenitor cell therapy for skeletal
tissue repair and regeneration and encourage clinical trials for
treatment protocols to receive FDA approval.

BMSC = bonemarrow stromal cell; MSC =mesenchymal stem/progenitor cell; EV = extracellular vesicle; FDA = U.S. Food and Drug Administration; NIH =
National Institutes of Health.
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Stem/progenitor cells

Basedon the fact that virtually all tissues undergo renewal, albeit at
highly variable rates, enduring tissue regeneration depends on the
presence of a subset of tissue-specific stem/progenitor cells within
a given population that can fuel tissue renewal. Hence, consider-
able effort has been focused on identifying cell sources that have
the ability tomaintain tissuehomeostasis, includingmusculoskele-
tal tissues.(4) Stem/progenitor cells inmammals canbedivided into
two broad categories: pluripotent stem/progenitor cells and post-
natal stem/progenitor cells from various sources (see https://
stemcells.nih.gov/info/basics/1.htm formore information).

Pluripotent stem cells (embryonic stem cells) and induced
pluripotent stem cells

Embryonic stem cells (ESCs) are pluripotent stem cells derived
experimentally by extraction from the inner cell mass of an
early-stage embryo, the blastocyst, whereas postnatal stem/pro-
genitor cells are found in different organs and tissues. Pluripo-
tency refers to the potential of a stem cell to differentiate into
cells of all three germ layers—endoderm, mesoderm, and ecto-
derm. In addition to ESCs, induced pluripotent stem cells (iPSCs)
can be generated from adult somatic cells by reprogramming
with essential pluripotency transcription factors by a variety of
methods and are nearly identical to ESCs.

Because of their highly uncommitted state, pluripotent ESCs
and iPSCs present more challenges in terms of being induced
to differentiate into a specific musculoskeletal cell type com-
pared to multipotent stem/progenitor cells, such as postnatal
stem/progenitor cells. Osteogenic differentiation provides an
example. There have been a number of reports on the differenti-
ation of human ESCs (hESCs) and iPSCs into osteogenic cells
through the formation of embryoid bodies, spontaneous differ-
entiation, indirect co-culture with osteogenic cells, treatment
with conditioned medium generated by osteogenic cells, or
use of various schemes for direct osteogenic differentiation.(5)

However, for the most part, the results have relied on in vitro dif-
ferentiation assays that may not reflect capabilities in vivo, and
results from limited studies involving in vivo transplantation
are not conclusive.(6–9) Furthermore, most studies use ectopic
transplantation sites rather than sites within an injured skeletal
tissue that would better mimic a clinical scenario. The lack of dif-
ferentiation into a functional tissue is likely because these cells
have not undergone a developmental process that commits
them to a particular lineage.(10) Thus, there is the issue of differ-
entiation efficacy. Another concern is safety, such as (i) the
potential for tumor formation, and (ii) the potential for immuno-
logical rejection when allogeneic ESCs or iPSCs are introduced
in vivo.(11) More standardization and safer methods are clearly
needed to bring pluripotent stem cells into clinical use.

Connective tissue–specific stem/progenitor cells

BMSCs are non-hematopoietic adherent cells first identified and
characterized by Friedenstein(12) A subset of BMSCs are skeletal
progenitor cells that differentiate into cartilage, bone,
hematopoiesis-supportive stroma, and marrow adipocytes
based on rigorous clonal and differentiation assays performed
in vivo (bone, fat) and in vitro (cartilage). However, the original
concept of a tissue-specific stem/progenitor cell for bone, was
later altered to include other mesodermal derivatives such as
muscle, tendon, and ligament, and BMSC terminology was
altered so that these cells are considered synonymous with

MSCs. A better justification and nomenclature of stem/progeni-
tor cells from other connective tissue sources need to be devel-
oped to clearly differentiate the source of a progenitor
population used for a particular cell therapy.

A number of markers of BMSCs have been identified (such as
CD73, CD90, CD105, and CD146, along with lack of expression of
CD11b, CD14, CD19, CD34, CD45, and HLA-DR).(13) However, the
markers used are neither specific nor exclusive, because they are
also expressed in many adherent fibroblastic cell populations.
Although such “markers” have been utilized to identify cells
derived from periosteum, synovium, dental pulp, and periodon-
tal ligament cells (tissues associated with the skeleton) that are
very similar to BMSCs and are capable of differentiating into car-
tilage, bone, and fat in vitro,(14) it should be noted that these var-
ious cell types are not identical in their in vivo differentiation
capacity.(15–18) Furthermore, the standard in vitro assays used
to claim “tri-lineage” differentiation are often not predictive of
in vivo differentiation capacity.(19) Whether and how these differ-
ences may have arisen from their different native tissuemicroen-
vironment needs to be examined.

In the last several years, lineage tracing studies have identified
a self-renewing multipotent cell population called the skeletal
stem cell (SCC) present in bone tissue of humans (PDPN+,
CD146–, CD73+, and CD164+) andmice (Tie2–, integrin AlphaV+,
Thy–, 6C3–, CD105–, and CD200+) that has differentiation
restricted to the osteoblast, chondrocyte, and stromal cell line-
age, and not adipocytes. In both mice and humans, these cells,
when implanted into the renal capsule form ectopic bone and
cartilage, and the cells support marrow formation. The SCC pop-
ulation is expanded in culture by BMP-2 and in vivo by bone
fracture.(20–22) Another study identified a rare population of
Gremlin 1+ (Grem1+) cells in the metaphysis and tissues adja-
cent to the growth plate in mice. Similar to the SCC population,
Grem1+ cells are BMP-2 responsive, self-renewing, and formed
bone, cartilage, and stromal tissues, with limited adipocyte dif-
ferentiation. During development and aging, the Grem1+ popu-
lation generates articular and growth plate cartilage, and is
found in periosteum, osteoblasts, and osteocytes. Like SCC, the
Grem1+ cells expand in fractures. Moreover, Grem1+ cells trans-
planted into fractures engraft, self-renew, and form osteoblasts,
and Grem1+ cells can be harvested and re-expanded. The elimi-
nation of Grem1+ cells in developing mice results in reduced
bone mass.(23)

Thus, there is a rare self-renewing SCC population in bone that
is separate from the bone sinusoids that does not strictly meet
the definition of an MSC, because it lacks capacity for adipocyte
differentiation The SCC is necessary for development of bone
and cartilage, maintenance of the adult skeleton, and bone
repair. These approaches show the utility of cell lineage tracing
in defining progenitor cell populations in vivo. However, the
manner in which these rare cell populations are applicable for
a cell-based therapy approach remains to be determined. Simi-
larly, it is unclear whether an analogous tissue lineage–restricted
stem cell is present in other musculoskeletal tissues, such as ten-
don, ligament, or disc.

Nonskeletal tissue–derived MSCs

MSC-like cells obtained fromnonskeletal sources (eg, muscle, cord
blood, Wharton’s jelly, dermal, adipose, and amniotic fluid MSCs)
have also been promoted as another source of progenitors for cell
therapy of skeletal tissues.(24,25) However, many of the cells used
in these studies were pretreated with chondrogenic/osteogenic
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factors, and whether these nonskeletal cells produce functional
bone and associated tissues, or whether they induce local cells to
undergo a repair process in vivo,(26,27) is not known.

Perivascular stromal cells from various tissues have stem cell
characteristics and differentiate into osteoblasts, chondrocytes,
and adipocytes. In bone marrow, cell lineage studies show that
LepR+ perivascular cells located around both arterioles and sinu-
soids account for nearly all of the fibroblastic colony-forming
unit (CFU-F) in bone marrow. Lineage tracing shows that LepR+
perivascular cells are the major source of bone and adipocytes
in bone marrow in adult mice. Moreover, they are involved in
the regeneration of bone marrow following radiation and partic-
ipate in fracture healing.(28) Perivascular cells isolated from fat,
muscle, pancreas, skin, lung, brain, eye, gut, bone marrow, and
umbilical cord are NG2+, CD146+, PDGF-R beta+, and alpha
SMA+.(29) These cells are multipotent and differentiate into oste-
oblasts, chondrocytes, and adipocytes. In addition, a Gli1+ stro-
mal cell population present in the adventitial layer of arteries
has stem cell characteristics. Gli1+ cells differentiate into osteo-
blasts and are responsible for the vascular calcifications that
occur in atherosclerosis and in chronic kidney disease.(30) Thus,
perivascular stromal cells, as well as adventitial cells, are a key
source of MSCs in nonskeletal tissue–derived tissues. These cells
have been used in animal models in cell-based therapy
approaches.(31–35)

Differentiated skeletal cells

Fully committed cells associated with the skeleton, such as oste-
oblasts, chondrocytes, and tenocytes, have limited ability to self-
renew. However, they may be considered therapeutically useful
in situations where there is low tissue turnover. ACI, which uses
culture-expanded autologous chondrocytes harvested from the
less weight-bearing articular cartilage of the joint, has shown effi-
cacy in the repair of focal cartilage defects.(3) It is, however, gen-
erally acknowledged that the cultured chondrocytes undergo
dedifferentiation and/or hypertrophy in vitro, thus compromis-
ing the quality of the regenerate cartilage, which is often more
fibrous in nature or sometimes undergoes overgrowth and/or
calcification. Also, currently ACI procedures are recommended
only in young patients and exclude older adults (≥45 years
old),(36–38) because this age group has a higher susceptibility to
degenerative joint diseases.

Key Question 2: What Is the Current Knowledge
About the Therapeutic Utility of Cell-Derived
Products Based on Cellular Sources?

• The efficacy of platelet-rich plasma is not yet established, but
evidence exists supporting its use in bone regeneration, carti-
lage repair, osteoarthritis treatment, and tendon/ligament and
meniscal repair.

• Animal models using cell-derived conditioned medium prepa-
rations have shown a benefit in healing skeletal tissues, but
human studies are lacking and the efficacy of conditioned
medium preparations remains unclear.

• Extracellular vesicles derived from cells may mediate intracel-
lular communication and thereby affect repair and disease
processes.

There are many examples of cell therapy in which positive
outcomes were observed without evidence of the donor cells
within the repair field. This is particularly true in experiments in

which the treating cells were administered systemically. It is
now well established that when administered systemically, skel-
etal progenitor cells do not efficiently or stably home to a target
tissue.(39,40) Consequently, some successful outcomes are attrib-
uted to factors transiently produced by the donor cells that influ-
ence a successful host reparative response.(39,41) This cellular
process is classified as a donor cell–nonautonomous effect in
that the long-term presence of the donor cells is not required
because they did not participate directly in the repair process.
If these factors could be identified, they could be used directly
without the need for supplying the producing cells. Some of
the candidate factors that have been investigated include
platelet-rich plasma, conditioned medium, and extracellular ves-
icles (EVs).(42)

Platelet-rich plasma

Derived from megakaryocytes, platelets contain a long list of
(approximately 300) growth factors, such as platelet-derived
growth factor, transforming growth factor beta, and vascular
endothelial growth factor, and others such as cytokines, coagula-
tion factors, fibrinolytic factors and proteins, proteases, antipro-
teinases, and lipids. Upon platelet activation, eg, as a result of
tissue injury, these factors are released for acute repair but are
unlikely to have sustained activity or localization. Consequently,
there are efforts to develop preparations, such as platelet-rich
plasma (PRP) gels or PRP combined with other biological mate-
rials such as demineralized bone matrix or cells, to extend the
biological activity of PRP.(43) PRP has been used in a number of
clinical settings for bone regeneration(44) cartilage repair,(45)

treatment of osteoarthritis,(46) and tendon/ligament and menis-
cal repair.(47) However, the biological action of PRP, eg, in regulat-
ing differentiation of multipotent MSCs,(48) remains unclear. In
addition, the efficacy of PRP in the repair of hard tissues has
yet to be established, in view of the wide variability in methods
and measures of the studies that have been conducted.

Conditioned medium

Cells from connective tissues (including skeletal tissues) secrete a
broad array of growth factors, cytokines, and other biologically
active factors. It has been suggested that conditioned medium
can exert a beneficial effect on healing of skeletal tissues based
on paracrine, immunomodulatory, and immunosuppressive
effects that encourage local cells to begin the repair process. A
large number of animal studies(49) and one human study(50) have
used this approach to treat injured skeletal tissues; however, effi-
cacy of this type of therapy remains unestablished.

EVs

Perhaps the first description of EVs (eg, exosomes, ectosomes,
microvesicles, microparticles) in the literature comes from the
finding of matrix vesicles in cartilage.(51) EVs, first termed micro-
particles, have since been detected in many bodily fluids. It is
now thought that in culture, virtually all cell types release some
sort of EV, formed by different processes and of varying size.
Results derived from the use of conditioned medium may be
due to the presence of EVs in addition to other factors. EVs are
proposed to mediate intercellular communications and have
been implicated in repair and disease processes by virtue of
the cargo that they carry, whichmay include proteins, biofactors,
and RNAs, including specific miRNAs, among others.(52,53)
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Key Question 3: What Is the Current Knowledge
About Tissue-Specific Animal Models of Cell-
Based Therapies?

• Mice are commonly used to study cell-based therapies for
osteoporosis, osteogenesis imperfecta, fracture healing, and
ectopic bone formation. Findings usually require replication
in larger, more clinically relevant animals before being studied
in clinical protocols.

• For cartilage models, larger animals—including dogs, goats,
and sheep—are preferable to rodents and rabbits, although
rabbit models are frequently used. Horse models have unique
benefits but are costly and have large housing-space
demands.

• Rabbits and rats are commonly used in intervertebral disc dis-
ease and injury models, but larger animals such as sheep and
dogs are preferable because of better generalizability to
humans.

• Sheep, goats, pigs, and primates are useful inmodels of menis-
cus healing because they possess knee joint anatomy similar
to humans, but these models still have certain limitations
(eg, differences in biped versus quadruped meniscus and car-
tilage contact mechanics).

• Rabbit and rodent models are convenient to study stem/pro-
genitor cell therapies for acute tendon injury and repair. How-
ever, larger animal models (ie, horse, pig, dog, and sheep) may
better meet US Food and Drug Administration (FDA) guide-
lines for demonstrating the efficacy of cell-based therapies
and delivery devices in humans. The suitability of an animal
model for tendon/ligament repair will depend on the tissue
being examined and the objectives of the study.

Bone

Mice are commonly used to study cell-based therapies (eg,
BMSCs, adipose-derived stromal cells) in models of osteoporosis,
osteogenesis imperfecta, fracture healing, and ectopic bone for-
mation (subcutaneous or intramuscular). Mice allow genetic
approaches and have a high tolerance to xenograft engraftment.
Humanized mice permit modeling of human cell activity and
function. The reviewers recommend that the animal model yield
convincing evidence with regard to bone architecture and
mechanical properties. Impactful studies should clearly define
the changes associated with cell therapy and the mechanism
of cell involvement in the regenerative process.

A disadvantage of mice is that confirmation of findings typi-
cally requires subsequent experimentation in a larger animal
model which more closely mimics the structure and mechanical
features of human tissues prior to consideration for use in clinical
trials. The rat is also an inexpensive small-animal model, and
because it is relatively larger, it may have some advantages for
mechanical testing. Gene-editing technologies are now being
applied to the rat to provide genetic models that previously were
only available in the mouse. Successful outcome should then be
tested in larger animal models.

The models of bone disease/injury identified in the review
included calvarial defects (46 studies), fracture (seven studies),
heterotopic ossification (intramuscular, three studies), hetero-
topic ossification (subcutaneous, 38 studies), long-bone cortical
defect (drill, 13 studies), long-bone segment (acute repair,
28 studies), long-bone segment (chronic repair, three studies),

osteoporosis (nine studies), or other (heterotopic, two studies)
(Appendix B).

Cartilage

Rabbits and rats were the most commonly used animals among
the 49 preclinical studies that examined cell-based therapies for
the regeneration of articular cartilage (Table 4). Rabbit models
were the most frequently used. Rabbits are widely available,
are relatively low-cost, have simple handling requirements, and
have a robust base of literature for comparison.(56) However,
there are several disadvantages inherent in rabbit studies. Pure
chondral lesions are difficult to create in the thin cartilage of this
species. Also, researchers need to consider the potential for a
natural healing response given the smaller size of cartilage
defects (<3 mm)(3) and the difference in mechanical loading in
the rabbit knee relative to humans. Although rodents are widely
used to screen new biomaterials and cell-laden constructs, the
use of rodents for articular implants is less practical because of
their very thin articular cartilage.(57,58) Furthermore, unlike larger
animals, rodent growth plates remain open during adulthood.
The epiphysis is therefore more highly vascularized, a feature
that may contribute to more robust intrinsic cartilage repair.

Considering clinical relevance, a larger animal model is pre-
ferred to approximate the area and thickness of articular carti-
lage in the human.(59) Full-thickness cartilage defects can be
created without damage to the subchondral plate in dogs.(60)

However, the dog is rarely used for cartilage repair(61) because
its status as a companion animal makes it a less attractive option.
Goats and sheep are frequently used in cartilage repair models
because the knee joints are large enough to create lesions as
large as those treated in patients. The larger defect size and
thicker cartilage layer permit biochemical assays of cartilage
repair tissue as well as biomechanical testing.(62)

Domestic pigs, minipigs, goats, and sheep, although more
expensive, are attractive because of the thicker articular cartilage
that more closely mimics the human joint.(63) The main advan-
tages of the horse model are the large joint size and thick articu-
lar cartilage layer with easy arthroscopic joint access, as well as
the actual clinical need in equine veterinary care.(64,65) Horses
can be monitored with respect to the clinical pain response to
cartilage repair. A second-look arthroscopy with biopsy is usually
the cornerstone of equine studies, allowing assessment of repair
progression. However, specialized facilities and care are usually
required, and thus this model is often used for late-stage devel-
opment and pivotal studies.

In our review of 49 preclinical studies of cell-based therapy to
promote cartilage repair, two used horses, six used sheep,
15 used rabbits, 10 used rats, six used goats, eight used pigs,
one used dogs, and two used mice (Appendix C). Most of the
models used an osteochondral defect model (42 studies). Five
other studies used a partial-thickness cartilage-defect model,
whereas two others used a model of global osteoarthritis from
either injury (anterior cruciate ligament [ACL] and medial menis-
cectomy) or from chemically-induced osteoarthritis.

A total of 14 human studies were identified that examined
cell-based therapy for articular cartilage repair. Because ACI ther-
apy is already an FDA-approved procedure, studies using articu-
lar chondrocytes as a cell source were not included. All of the
studies included full-thickness osteochondral defects. Bone mar-
row aspirate was the most common source of cells (10 studies)
followed by peripheral blood–derived progenitors. One study
each used either nasal chondrocytes or synovial progenitor cells.
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In 6 studies, mesenchymal progenitor cells from bone marrow
(four studies), synovium (one study), and nasal cartilage (one
study) were expanded in cell cultures prior to delivery into the
joint.

Each of the papers was scored according to whether the study
assessed the following features in the context of cartilage repair:
radiographic criteria, histology, origin of the cell-tissue organiza-
tion, biochemical criteria, functional outcomes, fate of the trans-
planted cells, and non-target tissue effects. Each criterion was
scored as 0 (not examined); 1 (superficial analysis); or 2 (detailed
analysis). A range of scores was identified, but consistently show
higher scores in the preclinical models. All of the human studies
had level of evidence 3 or 4, and analysis was limited because of
the morbidity associated with tissue procurement in humans.

Intervertebral disc

Although there are murine genetic models of intervertebral disc
disease, they often lack normal disc formation or develop severe
structural alterations during development and thus have not
been extensively used to study the role of cell-based therapies
for disc regeneration.(66) The small size of mouse and rat discs

compared to human discs limits their use in the assessment of
disc repair methodologies, because nutrient diffusion is not fully
evaluated. In addition, the morphology of the rodent disc differs
somewhat from humans. Although rabbits and guinea pigs are
larger, their discs are still several-fold smaller than human discs,
and the tissues do not experience the same degree of loading.
In comparison, larger, quadruped animals such as sheep have
intravertebral discs that are closer in size and loading to those
of humans.

Cell-based therapy for disc repair has been reported in at least
50 studies. Animals utilized include sheep (one study), dogs (five
studies), rabbits (19 studies), minipigs (four studies), rats (10 stud-
ies), and mice (seven studies) (Appendix D). Models of disease
occurring through either natural means (ie, aging as in human
disc degeneration) or induced by removing various amounts of
nucleus pulposus (NP) tissue (nucleotomy; themajority of animal
studies), removal of herniated tissue (at the time of discectomy,
two human studies), stab injuries to the annulus fibrosis with or
without removal of NP tissue (two studies), or removal of a whole
disc (three studies). Most studies tested treatment in the acute
injury setting, but in three studies, cell therapy was used at 4, 6,
or 12 weeks postinjury in dogs.(67–69) Chondrodystrophic canines

Table 4. Individual Characteristics for Tissue Repair

Tissue Indications for treatment Structural repair goals
Bone • Augmentation of standard therapies including:

� Non-union fractures.
� Delayed-union fractures.
� Joint or spine fusions or to augment bone formation

in osteonecrosis or osteoporosis.
• May be used in combination with matrix products to
augment the healing of bone defects.

• Mechanical stability across the fracture/defect site.
• Union of the fracture/defect at the anatomical site
via presence of a cortical bridge or outer cortical
shell.

• Properly aligned bone after healing.
• Bone mineral density is appropriate for the area.

Cartilage • Individuals who are experiencing chronic joint pain.
• Augmentation of standard therapies, including repair of
damaged or degenerated cartilage tissue.

• May be used to augment osteoarthritis therapy.

• Mechanical stability of the joint.
• Normal and painless range of motion.

Disc • Individuals who are experiencing chronic low back pain
(greater than 6 months) not responding to conservative
therapy, excluding those with spondylolisthesis.

• Sufficient strength to support painless weight
bearing.

• Provide structural stability between vertebral
bodies and protect spinal canal and nerve roots.

Meniscus Augmentation of standard therapies including:
• Enhancing or enabling repair of tears with poor
potential healing capacity, including those with
marginal vascularity, meniscus revision surgeries,
meniscal tissue with intrinsic degenerative changes, or
meniscal tears in older patients.

• Replacement of seriously damaged menisci with
engineered meniscal constructs populated with
endogenous and/or transplanted stem/progenitor cells.

• Repair/regeneration of horizontal cleavage tears found
in degenerative meniscus tissue.

• Restoration of full knee range of motion.
• Absence of joint line tenderness.
• Absence of pain reproduction with provocative
maneuvers such as rotation.

• Absence of joint effusion.
• Restoration of the mechanical function of the
meniscus in sharing load transmission across the
tibiofemoral joint.

• Enhanced joint stability.

Tendon/ligament • Improving the repair and reconstruction of injured
tendons and ligaments.

• Modulating inflammation associated with chronic
tendinopathies.(54)

• Facilitating tendon-graft or ligament-graft integration in
reconstructive surgeries.

• Promoting graftless ligament repair by inducing the
native ligament tissue to regenerate.(55)

• Development of artificial tendon and ligament for
grafting.

• Full restoration of passive and active range of
motion.

• Stability of the joint.
• Absence of inflammation.
• Return to daily activities and sports.
• Restoration of force transmission from muscle to
bone or tendon, or the stabilization of a
diarthrodial joint or ligament.

• Improved range of motion and joint stability.
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have been used, but whether these animals had developed pre-
mature degenerative disc disease at the time of implant evalua-
tion was not specified.

Meniscus

Rabbits (43%) and rodents (16%) have been frequently used in
studies that evaluate the underlying biological and molecular
mechanisms of meniscus healing. Rabbits have also been used for
preliminary analyses of new stem-cell or progenitor-cell therapy
and tissue engineering approaches for the treatment of meniscal
injury. Rabbits are less expensive than larger animal models and
allow for theuseof the larger group sample sizes that arenecessary
for more comprehensive outcome measures including histology,
biochemicalandmolecularanalysesoftherepair tissue,andbiome-
chanical testing.

Sheep (8%), pigs (8%), and primates (4%) have been used as
large animal models to study meniscus healing. These animals
possess knee joints similar in size to the human knee, enabling
testing of implants that could be used in humans. However,
unlike humans, these animals are quadrupeds with obvious dif-
ferences in meniscus and cartilage contact mechanics when
compared to humans. There is also an inability to control postop-
erative weight-bearing in most large animal models.

For meniscus, the majority of models used were local acute
injury (19 studies). Chronic injury studies (four studies) were also
examined. Most meniscus models evaluate tissue formation in a
punch defect, although linear tear models have also been used
(Appendix E).

Tendon/ligament

Smaller animal models, including rabbits(70–81) and rodents (rats
and mice),(12,82–97) have been used to evaluate the effectiveness
of stem-cell/progenitor-cell therapies in acute tendon injury and
repair. Early-stage studies and anatomical considerations might
necessitate the use of smaller animals, such as in the case of rota-
tor cuff repair, where the rat is a commonly used model because
it resembles the human shoulder anatomy.(98) Furthermore, if
the objective is to track the fate of implanted cells and to mech-
anistically evaluate their contributions to the repair tissue, rodent
models (rats and especially mice) have the distinct advantage of
the availability of reporter gene models (eg, GFP, RFP, mTmG,
nTnG) and genetic models of conditional gene deletion.

Large animal models, including equine,(99–102) ovine,(100,103)

swine,(104,105) andcanine,(106,107)mightbettermeet theFDA’sprefer-
ence for demonstrating efficacy of cellular therapies and delivery
devices prior to human approval. The suitability of an animal model
for tendon/ligament repair depends on the tissue being examined
and the objectives of the study. For example, the canine model is
commonly used to study flexor tendon repair because of the ability
tosimulatezoneII injuries, reproduceclinicalprotocolsofmultistrand
suture repair, and implement physical therapy.(106,107) Similar argu-
ments canbemade in favor of using large animals (eg, pigs) for eval-
uating cellular therapies in ACL repair and reconstruction.(104)

Fortendon/ligament,variousacute injuryandrepairmodelshave
been examined, including flexor tendon,(72,73,99–101,105–107) rotator
cuff tendon,(83–86) Achilles tendon,(12,75,81,89,91,95,103) patellar
tendon,(70,71,74,76–80,87,88,94,96,97) and ACL.(92,93,104) Furthermore, a
number of equine studies have focused on veterinary clinical appli-
cationsofautologousstem/progenitor cells to treat chronicoveruse
injury of the superficial digital flexor tendon in racehorses using
ultrasound-guided intratendinous injections(99–102) (Appendix F).

Key Question 4: What Are the Task Force–
Recommended Criteria for Interpreting a Cell-
Based Regenerative Experiment?

• Success should be measured by the ability of cell-based thera-
pies to regenerate or repair degenerated or injured tissue and
to restore functioning.

• Interventions must be compared to vehicle control using vali-
dated outcome measures that include functional and pain
assessments.

• Studies should consider cell autonomous and non–cell auton-
omous mechanisms of influence of cell-based therapies.

Understanding the role of donor cells in the repair process will
provide specific information on the mechanism of action and the
basis for therapeutic product development. The measure of suc-
cess of cell-based therapies is the ability of the intervention to
result in regeneration or repair of degenerated or injured tissue
with restoration of structure, mechanical properties, and function.
A key aspect is comparison to a vehicle control using validated
outcome measurements that include functional assessment and
evaluation of pain.

There are two major mechanisms through which cell-based
therapies may influence the regenerative or reparative process,
and both are equally relevant. These mechanisms are (i) cell
autonomous and (ii) non–cell autonomous. In cell-autonomous
therapies, the delivered cells have a therapeutic effect in part
through being incorporated in the regenerating tissue and par-
ticipating directly in the repair process. In non–cell autonomous
therapies, the cells secrete factors, such as growth factors, cyto-
kines, extracellular vesicles, or other regulatory signals, that influ-
ence the behavior of the host cell population in a manner that
leads to tissue repair or regeneration. This can occur by their act-
ing directly on host tissue–specific progenitor cells or can be
indirect by influencing other processes such as vascularization
or regulation of the immune response. It should be recognized
that cell-based therapies which demonstrate a cell autonomous
mechanism may additionally also act in a non–cell autonomous
manner at the same time.

Key Question 5: What Are the Task Force
Recommendations for Preclinical and Clinical
Studies of Cell-Based Therapies?

Recommendations for preclinical studies

• The Task Force found no preferred, standardized animal
model for preclinical studies of cell-based therapies.

• The Task Force recommends animal models be chosen based
on size and anatomical considerations as well as protocol
design and objectives, including cost, technical challenges,
use of both autologous and allogeneic cells, potential compli-
cations related to immune rejection, and the degree to which
the model mimics human anatomy and disease.

• The optimal preclinical approach would be to initiate studies
in small animals that focus on cellular, molecular, functional
outcomes, mechanical properties, and genetic characteriza-
tion, and, if these models provide proof of principle, perform
follow-up trials in larger, more clinically relevant animals if
indicated.

• Immune reactions in animals should be considered when
assessing the potential for use in humans.
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• A combination of evidence from in vitro and large and small
animal in vivo studies may be needed to obtain FDA clearance.

• Interpretation of the role of donor stem/progenitor cells in tis-
sue repair is critical.

• More research is needed investigating cell-based therapies in
various mesenchymal tissues as well as noninvasive assess-
ments of tissue composition, structure, and function.

• Large-animal models are essential but are limited by expenses
and technical demand. Centralized data resources, such as the
NIH-supported National Swine Resource and Research Center
(http://www.nsrrc.missouri.edu/index.asp), can play a valuable
role in advancing this line of research.

Recommendations for clinical studies

• Study methodology must be of the highest quality, including
the use of appropriate design, blinding, techniques to prevent
bias, validated outcome measures, and appropriate statistical
techniques.

• Development and use of noninvasivemeasures of human tissue
composition, structure, and mechanical function is essential.

• Patient-reported outcome measures (PROMs) are sensitive
and valuable tools to assess functional improvement, pain,
and quality of life.

Research and clinical ethical considerations

• All animal studies should be conducted with strict adherence
to ethical guidelines and with approval from the appropriate
institutional animal care and use committee.

• Although these treatments may seem appealing because of
their novelty and innovation, patients should be clearly
informed that little data exists in either larger-animal preclini-
cal studies or randomized clinical trials to support the use of
cell-based therapies. However, cell-based therapies thus far
appear to be safe and well-tolerated.

• Patients also should be made aware that use of these thera-
pies is often “off label” and unlikely to be reimbursed by med-
ical insurance.

• For patients to truly give informed consent, a neutral or
second-opinion physician should be consulted to explain the
benefits and potential risks of the patient receiving or not
receiving the treatment.

• Given the lack of rigorous evidence, the Task Force cannot cur-
rently recommend local or systemic stem-cell/progenitor-cell
therapy for skeletal tissue repair and regeneration.

Preclinical animal models

Overall, the reviewers found no preferred, standard animal
model for a preclinical study. Thus, the Task Force recommends
that, in addition to size and anatomical considerations, the
choice of the animal model should thoughtfully consider other
aspects of the study objectives and design, including the cost,
technical challenges, the potential to use both autologous and
allogeneic cells, and the degree to which the model mimics
human disease.

Anoptimal experimental approach to evaluating stem/progeni-
tor cells for enhancing musculoskeletal tissue repair/regeneration
would be to initiate studies in small animals that focus on cellular,
molecular, functional, and mechanical outcome measures, and
allow the examination of genetic factors influencing regeneration.
Once thesemodelsprovideproofofprinciple for theutilityofa spe-
cific cell population in augmentation of repair, additional

investigation would be completed in larger animals that more
closelymodel the anatomical size andweight-bearing characteris-
tics of human skeletal tissues. Subsequent successful outcomes in
large-animal models, with inclusion of appropriate safety and effi-
cacy profiles, would identify prime candidates for human clinical
trials.

In studies where the reparative potential of human cells is
assessed, immune reaction in the animal model is a challenge.
Human cells are sometimes assessed in less-optimal models,
including immunodeficient nude ratmodels or larger animalswith
drug-mediated immunosuppression, conditions that may influ-
ence the repair process. Still, with regard to immunological consid-
erationsof theefficacyofallogeneicprogenitor cell therapy,mouse
modelsofselectivedepletionofasubpopulationofTcells(108)orpig
models of genetically manipulated major histocompatibility com-
plex (ie, swine leukocyte antigen)(109) can be particularly useful.

The FDAwill require clear and unequivocal evidence for the cel-
lular basis of stem/progenitor–based therapies formusculoskeletal
tissue repair. A combinationofmodelswill provide support for cell-
based therapeutics, including in vitro three-dimensionalmodels of
tissue regeneration/tissue chip models,(110) small-animal models;
and large-animalmodels. Fundamental requirements foradequate
interpretation of cell-based therapies include the ability to: (i) track
thedonor cell population; (ii) determine cellular fate anddifferenti-
ation; and(iii)definetheroleof thecellpopulation inrestoringasta-
ble and mechanically functional tissue. (Additional information
about determining cell fate can be found in Appendix A).

Interpretation of the role of donor stem/progenitor cells in the
repair process is critical. Persistence of donor-derived cells dur-
ing the repair should preferably be observed, although non–cell
autonomous mediation of therapeutic effects must also be con-
sidered. Donor cells may undergo terminal differentiation and
remain in the tissue as mature cells or may have a critical early
and more transient role in driving the repair process. Cell-based
therapy should be investigated in relevant models across the
various mesenchymal tissues. Because mesenchymal tissues
(ie, bone, cartilage, tendon, ligament, and disc) each require
unique mechanical properties, the model should permit assess-
ment of whether an appropriately functioning tissue forms.
There is a need for the development of additional in vitro and
in vivo models, as well as computational approaches. In particu-
lar, noninvasive assessments of tissue composition, structure,
and function need further development as specific cell-based
therapies are extended to human trials.

Large-animal models, although essential, are expensive and
technically demanding. Large-animal studies are currently lim-
ited to autologous-based experiments, in which markers distin-
guishing host from donor are limited. The NIH-supported
National Swine Resource and Research Center, a large-animal
resource, has been developed. The center can provide pig lines
with GFP reporters and also has pigs with genetic backgrounds
similar to the mouse NSG.NOG strain. Successful results from
studies using human progenitor cells in the mouse could transi-
tion to the immunocompromised pig as a route to FDA-
approved clinical trials of a cell-based therapy.

Human clinical trials

Appropriate assessment of cell-based therapies in human
studies will require appropriate study design, including the use of
appropriate controls, blinding and elimination of investigator bias,
appropriate validated outcome measures, and rigorous statistical
analysis. Because of the difficulty and/ormorbidity associatedwith
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harvesting tissues fromhuman subjects, the development anduse
of sensitive, noninvasivemeasuresof tissuecomposition, structure,
andmechanical function is essential.

In humans, sensitive, validated PROMs will provide a powerful
tool to assess functional improvement. PROMs utilize patient-
based assessments of their own functional status and perception
of pain. Many validated outcome measures are now commonly
used to assess the efficacy of various medical and surgical thera-
pies. For upper extremities, functional outcome measures
include grip strength and assessment of arm, shoulder, and hand
function (ie, Disabilities of the Arm, Shoulder, and Hand [DASH]
score) based on questionnaires. Lower-extremity fracture func-
tional assessments could include the Timed Up and Go Test or
the Lower Extremity Functional Scale. The Harris Hip Score and
the 36-item Short Form Survey (SF-36) can measure hip and
lower-extremity PROMs of function. Finally, functional criteria
to assess the success of a spinal fusion could include the Oswes-
try Disability Index or the SF-12 or SF-36. Through a Common
Fund initiative, the NIH developed a comprehensive PROM sys-
tem called PROMIS that uses computer-adapted testing and thus
has increased efficiency and sensitivity. This is being increasingly
adopted as a PROM for patients with musculoskeletal disease.

The primary clinical goals of cell therapies are to treat symp-
toms, especially pain and instability, and to allow for return of nor-
mal function of the targeted tissue. Success can be defined as:
(i) improvements in pain and/or physical function; (ii) a durable
response (years); and (iii) a return of structural support or joint
mobility that permits movement. Structural repair is a secondary
outcome, implying that the tissue repair or implanted tissue has
value to the degreewhich it permits painless function. The individ-
ual characteristics and properties necessary for regeneration are
specific to the various musculoskeletal tissues (Table 4).

For therapeutic product development, strong preclinical evi-
dence in model organisms on healing and function is an abso-
lute requirement for the initiation of randomized clinical trials,
which involve objective clinical outcome and follow-up mea-
surements. Rigorous, scientifically based understanding of the
mechanism of action is ultimately required to justify the thera-
peutic application of cell-based therapy. It is noteworthy that
adult stem/progenitor cell therapy, which is often being prac-
ticed in an unregulated, non-standardized manner, has recently
resulted in several highly publicized studies. To ensure safety
and enhance efficacy, adult stem-cell therapy should be prac-
ticed only in a regulated and standardized manner. In addition,
clinical trials submitted for publication should adhere to the
Strengthening the Reporting of Observational Studies in Epide-
miology (STROBE) or Consolidated Standards of Reporting Trials
(CONSORT) guidelines1.

Ethical considerations

Animal studies

Animal studies should be conducted with strict adherence to
ethical principles. The NIH provides guidelines (http://grants.

nih.gov/grants/olaw/links.htm) and experiments should be
approved by institutional animal use committees.

Cell-based therapy in humans

Currently, there is widespread use of cell-based therapeutics,
often “off-label,” in the clinical setting. The use of “stem/progeni-
tor cells” to improve tissue healing has a distinct appeal to
patients, because it suggests cutting-edge science with the
potential to regenerate lost or damaged tissues. When combined
with the reality that existing treatment options are often subop-
timal for many soft-tissue injuries and that many patients seek-
ing treatment are frequently relatively young and desirous of
returning to an active lifestyle, an environment has been created
in which patients are vulnerable and will seek such stem/pro-
genitor cell treatments. However, although great potential exists
for the use of cell-based approaches to improve tissue healing
and regeneration, the reality is that current data for the use of
cell-based therapies for augmentation of tissue healing is highly
variable.(111,112)

Given this significant limitation, it is imperative that patients
are informed that there exists little high-level animal model or
randomized clinical trial data to support the use of stem/pro-
genitor cell-based approaches for tissue healing. It should also
be communicated to patients that use of these treatment
approaches are most often off-label, and that the treating facility
often has a financial incentive to perform a stem/progenitor cell
procedure which is unlikely to be covered by standard medical
insurance. At the same time, however, autologous therapies
appear to be generally safe and well-tolerated, although their
effectiveness is often largely based on testimonial evidence.
Given this confluence of issues, it is critical that a neutral or
second-opinion physician is consulted, such that truly informed
consent may be provided. In the absence of these ethical consid-
erations, the Task Force cannot support the current application
of stem/progenitor cell therapy, whether administered locally
or systemically, until the treatment protocols have obtained
FDA approval.
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