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ABSTRACT
Ordinary di!erential equation (ODE) is widely used in modeling biological and physical processes in
science. In this article, we propose a new reproducing kernel-based approach for estimation and infer-
ence of ODE given noisy observations. We do not assume the functional forms in ODE to be known, or
restrict them to be linear or additive, and we allow pairwise interactions. We perform sparse estimation
to select individual functionals, and construct con"dence intervals for the estimated signal trajectories.
We establish the estimation optimality and selection consistency of kernel ODE under both the low-
dimensional and high-dimensional settings, where the number of unknown functionals can be smaller or
larger than the sample size. Our proposal builds upon the smoothing spline analysis of variance (SS-ANOVA)
framework, but tackles several important problems that are not yet fully addressed, and thus extends the
scope of existing SS-ANOVA as well. We demonstrate the e#cacy of our method through numerous ODE
examples.
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1. Introduction

Ordinary di!erential equation (ODE) has been widely used to
model dynamic systems and biological and physical processes in
a variety of scienti"c applications. Examples include infectious
disease (Liang and Wu 2008), genomics (Cao and Zhao 2008;
Chou and Voit 2009; Ma et al. 2009; Lu et al. 2011; Henderson
and Michailidis 2014; Wu et al. 2014), neuroscience (Izhikevich
2007; Zhang et al. 2015, 2017; Cao, Sandstede, and Luo 2019),
among many others. A system of ODEs take the form,

dx(t)
dt =





dx1(t)
dt
...

dxp(t)
dt




=




F1(x(t))

...
Fp(x(t))



 = F(x(t)), (1)

where x(t) = (x1(t), . . . , xp(t))! ∈ Rp denotes the system
of p variables of interest, F = {F1, . . . , Fp} denotes the set of
unknown functionals that characterize the regulatory relations
among x(t), and t indexes time in an interval standardized to
T = [0, 1]. Typically, the system (1) is observed on discrete time
points {t1, . . . , tn} with measurement errors,

yi = x(ti) + εi, i = 1, . . . , n, (2)

where yi = (yi1, . . . , yip)! ∈ Rp denotes the observed data,
εi = (εi1, . . . , εip)! ∈ Rp denotes the vector of measurement
errors that are usually assumed to follow independent normal
distribution with mean 0 and variance σ 2

j , j = 1, . . . , p, and n
denotes the number of time points. Besides, an initial condition
x(0) ∈ Rp is usually given for the system (1).
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In a biological or physical system, a central question of
interest is to uncover the structure of the system of ODEs in
terms of which variables regulate which other variables, given
the observed noisy time-course data {yi}n

i=1. Speci"cally, we say
that xk regulates xj, if Fj is a functional of xk. In other words, xk
controls the change of xj through the functional Fj on the deriva-
tive dxj/dt. Therefore, the functionals F = {F1, . . . , Fp} encode
the regulatory relations of interest, and are o#en assumed to take
the form,

Fj(x(t)) = θj0 +
p∑

k=1
Fjk(xk(t)) +

p∑

k#=l,k=1

p∑

l=1
Fjkl(xk(t), xl(t)),

j = 1, . . . , p, (3)

where θj0 ∈ R denotes the intercept, and Fjk and Fjkl represent
the main e!ect and two-way interaction, respectively. Higher
order interactions are possible, but two-way interactions are the
most common structure studied in ODE (Ma et al. 2009; Zhang
et al. 2015).

There have been numerous pioneering works studying statis-
tical modeling of ODEs. However, nearly all existing solutions
constrain the forms of F. Broadly speaking, there are three cate-
gories of functional forms imposed. The "rst category considers
linear functionals for F. For instance, Lu et al. (2011) studied
a system of linear ODEs to model dynamic gene regulatory
networks. Zhang et al. (2015) extended the linear ODE to in-
clude the interactions to model brain connectivity networks.
The model of Zhang et al. (2015), other than di!erentiating
between the variables that encode the neuronal activities and
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the ones that represent the stimulus signals, is in e!ect of the
form,

Fj(x(t)) = θj0 +
p∑

k=1
θjkxk(t) +

p∑

k#=l,k=1

p∑

l=1
θjklxk(t)xl(t),

j = 1, . . . , p, (4)

whereas the model of Lu et al. (2011) is similar to (4) but
focuses on the main-e!ect terms only. In both cases, Fj takes a
linear form. Dattner and Klaassen (2015) further extended the
functional Fj in (4) to a generalized linear form, but without the
interactions, that is,

Fj(x(t)) = θj0 + ψj(x(t))!θj, j = 1, . . . , p, (5)

where θj0 ∈ R, θj ∈ Rd, and ψj(x) = (ψj1(x), . . . , ψjd(x))! ∈
Rd is a "nite set of known basis functions. The second category
considers additive functionals for F. Particularly, Henderson
and Michailidis (2014), Wu et al. (2014), and Chen, Shojaie, and
Witten (2017) considered the generalized additive model for Fj,

Fj(x(t)) = θj0 +
p∑

k=1
Fjk(xk(t)) (6)

= θj0 +
p∑

k=1

{
ψ(xk(t))!θjk + δjk(xk(t))

}
,

j = 1, . . . , p,

where θj0 ∈ R, θjk ∈ Rd, ψ(x) = (ψ1(x), . . . , ψd(x))! ∈
Rd is a "nite set of common basis functions, and δjk ∈ R
is the residual function. Di!erent from Dattner and Klaassen
(2015), the residual δjk is unknown. The functional Fj in (6)
takes an additive form. Finally, there is a category of ODE
solutions focusing on the scenario where the functional forms
for F are known (González, Vujačić, and Wit 2014; Zhang, Cao,
and Carroll 2015; Mikkelsen and Hansen 2017).

These works have laid a solid foundation for statistical mod-
eling of ODE. However, in plenty of scienti"c applications,
the forms of the functionals F are unknown, and the linear
or additive forms on F can be restrictive. Besides, it is highly
nontrivial to couple the basis function-based solutions with
the interactions. We give an example in Section 2.1, where a
commonly used enzyme network ODE system involves both
nonlinear functionals and two-way interactions. Such examples
are o#en the rules rather than the exceptions, motivating us
to consider a more $exible form of ODE. Moreover, the ex-
isting ODE methods have primarily focused on sparse estima-
tion, but few tackled the problem of statistical inference, which
is challenging due to the complicated correlation structure
of ODE.

In this article, we propose a novel approach of kernel ordi-
nary di!erential equation (KODE) for estimation and inference
of the ODE system in (1) given noisy observations from (2). We
adopt the general formulation of (3), but we do not assume the
functional forms of F are known, or restrict them to be linear
or additive, and we allow pairwise interactions. As such, we
consider a more general ODE system that encompasses (4)–(6)

as special cases. We further introduce sparsity regularization to
achieve selection of individual functionals in (3), which yields
a sparse recovery of the regulatory relations among F, and im-
proves the model interpretability. Moreover, we derive the con"-
dence interval for the estimated signal trajectory xj(t). We estab-
lish the estimation optimality and selection consistency of ker-
nel ODE, under both low-dimensional and high-dimensional
settings, where the number of unknown functionals p can be
smaller or larger than the number of time points n, and we study
the regime-switching phenomenon. These di!erences clearly
separate our proposal from the existing ODE solutions in the
literature.

Our proposal is built upon the smoothing spline analysis
of variance (SS-ANOVA) framework that was "rst introduced
by Wahba et al. (1995), then further developed in regression
and functional data analysis settings by Huang (1998), Lin and
Zhang (2006), and Zhu, Yao, and Zhang (2014). We adopt a
similar component selection and smoothing operator (COSSO)
type penalty of Lin and Zhang (2006) for regularization, and
conceptually, our work extends COSSO to the ODE setting.
However, our proposal considerably di!ers from COSSO and
the existing SS-ANOVA methods, in multiple ways. First, unlike
the standard SS-ANOVA models, the regressors of kernel ODE
are not directly observed and need to be estimated from the
data with error. This extra layer of randomness and estimation
error introduces additional di%culty to SS-ANOVA. Second,
we employ the integral of the estimated trajectories in the loss
function to improve the estimation properties (Dattner and
Klaassen 2015). The use of the integral and the inclusion of
the interaction terms pose some identi"ability question that
we tackle explicitly. Third, we establish the estimation op-
timality and selection consistency in the RKHS framework,
which is utterly di!erent from Zhu, Yao, and Zhang (2014),
and requires new technical tools. Moreover, our theoretical
analysis extends that of Chen, Shojaie, and Witten (2017) from
the "nite bases setting of cubic splines to the in"nite bases
setting of RKHS. Finally, for statistical inference, we derive
the con"dence bands to provide uncertainty quanti"cation for
the penalized estimators of the signal trajectories in the ODE
model. Our solution builds on the con"dence intervals idea
of Wahba (1983). But unlike the classical methods focusing
on the "xed dimensionality p (Wahba 1983; Opsomer and
Ruppert 1997), we allow a diverging p that can far exceed the
sample size n. In summary, our proposal tackles several cru-
cial problems that are not yet fully addressed in the existing
SS-ANOVA framework, and it is far from a straightforward
extension. We believe the proposed kernel ODE method not
only makes a useful addition to the toolbox of ODE model-
ing, but also extends the scope of SS-ANOVA-based kernel
learning.

The rest of the article is organized as follows. We propose
kernel ODE in Section 2, and develop the estimation algorithm
and inference procedure in Section 3. We derive the consis-
tency and optimality of the proposed method in Section 4.
We investigate the numerical performance in Section 5, and
illustrate with a real data example in Section 6. We conclude
the paper with a discussion in Section 7, and relegate all proofs
and some additional numerical results to the Supplementary
Appendix.
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Figure 1. (a) Diagram of the NFBLB regulatory network following (7). (b) Phase dynamics for the three nodes x1, x2, x3 over time [0, 1], with a random input x0 uniformly
drawn from [0.5, 1.5]. (c) Illustration of the NFBLB network in terms of the interactions in KODE.

2. Kernel Ordinary Di!erential Equations

2.1. Motivating example

We consider an enzymatic regulatory network as an example to
demonstrate that nonlinear functionals as well as interactions
are common in the system of ODEs. Ma et al. (2009) found that
all circuits of three-node enzyme network topologies that per-
form biochemical adaptation can be well approximated by two
architectural classes: a negative feedback loop with a bu!ering
node, and an incoherent feedforward loop with a proportioner
node. The mechanism of the "rst class follows the Michaelis–
Menten kinetic equations (Tzafriri 2003),

dx1(t)
dt = c1

x0{1 − x1(t)}
{1 − x1(t)} + C1

− c̃1c2
x1(t)

x1(t) + C2
,

dx2(t)
dt = c3

{1 − x2(t)}x3(t)
{1 − x2(t)} + C3

− c̃2c4
x2(t)

x2(t) + C4
, (7)

dx3(t)
dt = c5

x1(t){1 − x3(t)}
{1 − x3(t)} + C5

− c6
x2(t)x3(t)
x3(t) + C6

,

where x1(t), x2(t), x3(t) are three interacting nodes, such that
x1(t) receives the input, x2(t) plays the diverse regulatory role,
and x3(t) transmits the output, x0 is the initial input stimulus,
and c1, . . . , c6, C1, . . . , C6, c̃1, c̃2 denote the catalytic rate param-
eters, the Michaelis–Menten constants, and the concentration
parameters, respectively. See Figure 1(a) for a graphical illustra-
tion of this ODE system. In this model, the functionals F1, F2, F3
are all nonlinear, and both F2 and F3 involve two-way interac-
tions. It is of great interest to estimate Fj’s given the observed
data, to verify model (7), and to carry out statistical inference of
the unknown parameters. This example, along with many other
ODE systems with nonlinear functionals and interaction terms
motivate us to consider a general ODE system as in (3).

2.2. Two-Step Collocation Estimation

Before presenting our method, we "rst brie$y review the two-
step collocation estimation method, which is commonly used
for parameter estimation in ODE, and is also useful in our
setting. The method was "rst proposed by Varah (1982), then
extended to various ODE models. In the "rst step, it "ts a

smoothing estimate,

x̂j(t) = arg min
zj∈F

{
1
n

n∑

i=1

{
yij − zj(ti)

}2 + λnjJ1(zj)

}

,

j = 1, . . . , p,

where J1(·) is a smoothness penalty in the function space F ,
and zj is a function in F that we minimize over. In the second
step, it solves an optimization problem to estimate the model
parameters θj0 ∈ R and θj = (θj1, . . . , θjp)! ∈ Rp, for j =
1, . . . , p. Particularly, Varah (1982) considered the derivative
d̂xj(t)/dt and the following minimization,

min
θj0,θj

∫ 1

0

(
d̂xj(t)

dt − θj0 −
p∑

k=1
θjk̂xk(t)

)2

dt, j = 1, . . . , p.

Wu et al. (2014) developed a similar two-step collocation
method for their additive ODE model (6), and estimated the
model parameters θj0 ∈ R and θjk = (θjk1, . . . , θjkd)! ∈ Rd,
for j, k = 1, . . . , p, with a standardized group '1-penalty,

min
θj0,θjk

∫ 1

0

∥∥∥∥∥
d̂xj(t)

dt − θj0 −
p∑

k=1
θ!

jk ψ (̂xk(t))
∥∥∥∥∥

2

2

dt

+ τnj

p∑

k=1

[∫ 1

0

{
θ!

jk ψ (̂xk(t))
}2

dt
]1/2

.

They further discussed adaptive group '1 and regular '1-
penalties. Meanwhile, Henderson and Michailidis (2014) con-
sidered an extra '2-penalty.

Alternatively, in the second step, Dattner and Klaassen (2015)
proposed to focus on the integral

∫ t
0 gj(̂x(u))du, rather than the

derivative d̂xj(t)/dt, and they estimated the model parameters
θj0 ∈ R and θj = (θj1, . . . , θjd)! ∈ Rd, for j = 1, . . . , p, in
(5) by,

min
θj0,θj

p∑

j=1

∫ 1

0

{
x̂j(t) − θj0 − θ!

j

∫ t

0
ψj(̂x(u))du

}2
dt.

They found that this modi"cation from the derivative to integral
leads to a more robust estimate and also an easier deriva-
tion of the asymptotic properties. Chen, Shojaie, and Witten
(2017) adopted this idea for their additive ODE model (6),
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and estimated the parameters θj0 ∈ R, θ̃j ∈ R, and θjk =
(θjk1, . . . , θjkd)! ∈ Rd, for j, k = 1, . . . , p, by

min
θj0,θ̃j,θjk

1
2n

n∑

i=1

{

yij − θj0 − bjti −
p∑

k=1
θ!

jk

∫ ti

0
ψ (̂xk(u))du

}2

+τnj

p∑

k=1

[
1
n

n∑

i=1

{
θ!

jk

∫ ti

0
ψ (̂xk(u))dt

}2]1/2

.

2.3. Kernel ODE

We build the proposed kernel ODE within the smoothing spline
ANOVA framework; see Wahba et al. (1995) and Gu (2013) for
more background on SS-ANOVA. Speci"cally, let Hk denote a
space of functions of xk(t) ∈ X with zero marginal integral,
where X ⊂ R is a compact set. Let {1} denote the space of
constant functions. We construct the tensor product space as

H = {1} ⊕
p∑

k=1
Hk ⊕

p∑

k=1,k#=l

p∑

l=1
(Hk ⊗ Hl) . (8)

We assume the functionals Fj, j = 1, . . . , p, in the ODE model
(3) are located in the space of H. The identi"ability of the terms
in (3) is assured by the conditions speci"ed through the averag-
ing operators:

∫
T Fjk(xk(t))dt = 0 for k = 1, . . . , p. Let ‖·‖H de-

note the norm of H, and PkFj and PklFj denote the orthogonal
projection of Fj onto Hk and Hk ⊗Hl, respectively. We consider
a two-step collocation estimation method, by "rst obtaining a
smoothing spline estimate x̂(t) = (̂x1(t), . . . , x̂p(t))!, where

x̂j(t) = arg min
zj∈F

{
1
n

n∑

i=1

{
yij − zj(ti)

}2 + λnj‖zj(t)‖2
F

}

,

j = 1, . . . , p, (9)

then estimating Fj ∈ H and θj0 ∈ R by the following penalized
optimization,

min
θj0,Fj

1
n

n∑

i=1

{
yij − θj0 −

∫ ti

0
Fj(̂x(t))dt

}2
(10)

+ τnj




p∑

k=1
‖PkFj‖H +

p∑

k#=l,k=1

p∑

l=1
‖PklFj‖H



 .

Our proposal deals with the integral
∫ ti

0 Fj(̂x(u))du, rather than
the derivative d̂xj(t)/dt, which is in a similar spirit as Dattner
and Klaassen (2015). Besides, it involves two penalty func-
tions, J1 ≡ ‖ · ‖2

F in (9), and J2(Fj) ≡ ∑p
k=1 ‖PkFj‖H +∑p

k=1
∑p

l=1 ‖PklFj‖H in (10), with λnj and τnj as two tuning
parameters. We next make some remarks about this proposal.

For the functionals, the formulation in (10) is highly $exible,
nonlinear, and incorporates two-way interactions. Meanwhile, it
naturally covers the linear ODE in (4) and (5), and the additive
ODE in (6) as special cases. In particular, if H is the linear
functional space, H = {1} ⊕ ∑p

k=1{xk − 1/2} ⊕ ∑
k#=l[{xk −

1/2} ⊗ {xl − 1/2}] with the input space X = [0, 1]p, then any F
of the form in (4) belongs to H. If H is spanned by some known
generalized functions, H = ψj1(x)⊕ · · ·⊕ψjp(x), then any F in

(5) belongs to H. If H is the additive functional space, H = {1}⊕∑p
k=1 Hk with the '2-norm, then for Fjk(xk(t)) = ψ(xk(t))!θjk,

the penalty on the main e!ects becomes
∑p

k=1 ‖PkFj‖H =
∑p

k=1[
∫ 1

0 {ψ(xk(t))!θjk}2dt]1/2, which is exactly the same as the
ODE model of Chen, Shojaie, and Witten (2017).

For the penalties, the "rst penalty function J1 is the squared
RKHS norm corresponding to the RKHS {F , ‖ · ‖F }. It is for
estimating x̂j, and F does not have to be the same as H. The
second penalty function J2 is a sum of RKHS norms on the main
e!ects and pairwise interactions. This penalty is similar as the
COSSO penalty of Lin and Zhang (2006). But as we outline in
Section 1, our extension is far from trivial. We also note that,
we do not impose a hierarchical structure for the main e!ects
and interactions, in that if an interaction term is selected, the
corresponding main e!ect term does not have to be selected
(Wang et al. 2009). This is motivated by the observation that,
for example, in the enzymatic regulatory network example in
Section 2.1, the interaction terms x1(t)x3(t) and x2(t)x3(t) both
appear in the ODE regulating x3(t), but the main e!ect terms
x1(t) and x2(t) are not present.

Theorem 1. Assume that the RKHS H can be decomposed as in
(8). Then there exists a minimizer of (10) in H for any tuning
parameter τnj ≥ 0. Moreover, the minimizer is in a "nite-
dimensional space.

Theorem 1 is a generalization of the well-known represen-
ter theorem (Wahba 1990). The di!erence is that, unlike the
smoothing splines model as studied in Wahba (1990), the mini-
mization of (10) involves an integral in the loss function, and the
penalty is not a norm in H but a convex pseudo-norm. A direct
implication of Theorem 1 is that, although the minimization
with respect to Fj is taken over an in"nite-dimensional space
in (10), the solution to (10) can actually be found in a "nite-
dimensional space. We next develop an estimation algorithm to
solve (10).

3. Estimation and Inference

3.1. Estimation Procedure

The estimation of the proposed kernel ODE system consists of
two major steps. The "rst step is the smoothing spline estimation
in (9), which is standard and the tuning of the smoothness pa-
rameter λnj is o#en done through generalized cross-validation
(see, e.g., Gu 2013). The second step is to solve (10). Toward that
end, we "rst propose an optimization problem that is equivalent
to (10), but is computationally easier to tackle. We then develop
an estimation algorithm to solve this new equivalent problem.

Speci"cally, we consider the following optimization problem,
for j = 1, . . . , p,

min
θj0,θj,Fj

1
n

n∑

i=1

{
yij − θj0 −

∫ ti

0
Fj(̂x(t))dt

}2

+ ηnj




p∑

k=1
θ−1

jk ‖PkFj‖2
H + θ−1

jkl

p∑

k=1,k#=l

p∑

l=1
‖PklFj‖2

H




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+ κnj




p∑

k=1
θjk +

p∑

k=1,k#=l

p∑

l=1
θjkl



 , (11)

subject to θk ≥ 0, θkl ≥ 0, k, l = 1, . . . , p, k #= l, where
θj = (θj1, . . . , θjp, θj12, . . . , θj1p, . . . , θjp1, . . . , θjp(p−1))

! ∈ Rp2

collects the parameters to estimate, and ηnj, κnj≥0 are the tuning
parameters, j = 1, . . . , p. Comparing (11) to (10), we introduce
the parameters θjk and θjkl to control the sparsity of the main
e!ect and interaction terms in Fj. This is similar to Lin and
Zhang (2006). The two optimization problems (10) and (11) are
equivalent, in the following sense. Let κnj = τ 2

nj/(4ηnj). Then we
have,
ηnjθ

−1
jk ‖PkFj‖2

H + κnjθjk ≥ 2η
1/2
nj κ

1/2
nj ‖PkFj‖H = τnj‖PkFj‖H,

where the equality holds if θjk = η
1/2
nj κ

−1/2
nj ‖PkFj‖H. A similar

result holds for θjkl = η
1/2
nj κ

−1/2
nj ‖PklFj‖H. In other words, if

(θ̂j0, F̂j) minimizes (10), then (θ̂j0, θ̂j, F̂j) minimizes (11), with
θ̂jk = η

1/2
nj κ

−1/2
nj ‖PkF̂j‖H, and θjkl = η

1/2
nj κ

−1/2
nj ‖PklFj‖H, for

any k, l = 1, . . . , p, k #= l. Meanwhile, if (θ̂j0, θ̂j, F̂j) minimizes
(11), then (θ̂j0, F̂j) minimizes (10).

Next, we devise an iterative alternating optimization ap-
proach to solve (11). That is, we "rst estimate θj0 given "xed Fj
and θj, then estimate the functional Fj given "xed θj0 and θj, and
"nally estimate θj given "xed θj0 and Fj.

For given F̂j and θ̂j, we have that,

θ̂j0 = ȳj −
∫

T
T̄(t)̂Fj(̂x(t))dt,

where Ti(t) = 1{0 ≤ t ≤ ti}, T̄(t) = 1
n

∑n
i=1 Ti(t), and ȳj =

n−1 ∑n
i=1 yij.

For given θ̂j0 and θ̂j, the optimization problem (11) becomes,

min
Fj

{
1
n

n∑

i=1

[
(yij − ȳj) −

∫

T

{
Ti(t) − T̄(t)

}
Fj (̂x(t))dt

]2

+ηnj




p∑

k=1
θ̂−1

jk ‖PkFj‖2
H + θ̂−1

jkl

p∑

k=1,k#=l

p∑

l=1
‖PklFj‖2

H








 .

(12)
Let Kj(·, ·) : X × X -→ R denote the Mercer kernel generating
the RKHS Hj, j = 1, . . . , p. Then Kkl ≡ KkKl is the reproducing
kernel of the RKHS Hk ⊗ Hl. Let Kθj = ∑p

k=1 θ̂jkKk +∑
k#=l θ̂jklKkl. By the representer theorem (Wahba 1990), the

solution F̂j to (12) is of the form,

F̂j(̂x(t)) = bj +
n∑

i=1
cij

∫

T
Kθj (̂x(t), x̂(s))

{
Ti(s) − T̄(s)

}
ds

(13)
for some bj ∈ R and cj = (c1j, . . . , cnj) ∈ Rn. Write yj =
(y1j, . . . , ynj)! ∈ Rn and ȳj = (ȳj, . . . , ȳj)! ∈ Rn. Let B be
an n × 1 vector whose ith entry is Bi =

∫
T {Ti(t) − T̄(t)}dt,

i = 1, . . . , n. Let + be an n × n matrix whose (i, i′)th entry is
+ii′ =

∫
T

∫
T {Ti(s) − T̄(s)}Kθj (̂x(t), x̂(s)){Ti′(t) − T̄(t)}dsdt,

i, i′ = 1, . . . , n. Plugging (13) into (12), we obtain the following
quadratic minimization problem in terms of {bj, cj},

min
bj,cj

1
n‖(yj − ȳj) − (Bbj + +cj)‖2

2 + ηnjc!
j +cj,

which has a closed-form solution. Consider the QR decompo-
sition B = [Q1 Q2][R 0]!, where Q1 ∈ Rn×1, Q2 ∈ Rn×(n−1),
and [Q1 Q2] is orthogonal such that B!Q2 = 01×(n−1). Write
Wj = + + nηnjIn, where In is the n × n identity matrix. Then
the minimizers are,

cj = Q2(Q!
2 WjQ2)

−1Q!
2 (yj − ȳj),

bj = R−1Q!
1 (yj − ȳj − Wjcj).

Following the usual smoothing splines literature, we tune the
parameter ηnj in (12) by minimizing the generalized cross-
validation criterion (GCV, Wahba et al. 1995),

GCV = ‖Aj(ηnj)(yj − ȳj) − (yj − ȳj)‖2

[n−1tr{In − Aj(ηnj)}]2 ,

where the smoothing matrix Aj(ηnj) ∈ Rn×n is of the form,

Aj(ηnj) = In − nηnjQ2(Q!
2 WjQ2)

−1Q!
2 . (14)

For given θ̂j0 and F̂j, θj is the solution to a usual '1-penalized
regression problem,

min
θj




(zj−Gθj)
!(zj−Gθj)+nκnj




p∑

k=1
θjk+

p∑

k#=l,k=1

p∑

l=1
θjkl








,

(15)
subject to θk ≥ 0, θkl ≥ 0, k, l = 1, . . . , p, k #= l, where
the “response” is zj = (yj − ȳj) − (1/2)nηnjcj − Bbj, the
“predictor” is G ∈ Rn×p2 , whose "rst p columns are +kcj with
k = 1, . . . , p, and the last p(p − 1) columns are +klcj with
k, l = 1, . . . , p, k #= l, and +k = (+k

ii′), +kl = (+kl
ii′) are both

n × n matrices whose (i, i′)th entries are +k
ii′ =

∫
T

∫
T {Ti(s) −

T̄(s)}Kk(̂x(t), x̂(s)){Ti′(t)−T̄(t)}dsdt, and +kl
ii′ =

∫
T

∫
T {Ti(s)−

T̄(s)}Kkl (̂x(t), x̂(s)){Ti′(t)−T̄(t)}dsdt, respectively, where i, i′ =
1, . . . , n, j = 1, . . . , p. We employ Lasso for (15) in our im-
plementation, and tune the parameter κnj using 10-fold cross-
validation, following the usual Lasso literature.

We repeat the above optimization steps iteratively until some
stopping criterion is met; that is, when the estimates in two
consecutive iterations are close enough, or when the number of
iterations reaches some maximum number. In our simulations,
we have found that the algorithm converges quickly, usually
within 10 iterations. Another issue is the identi"ability of PkFj’s
and PklFj’s in (11) in the sense of unique solutions. We introduce
the collinearity indices Cjk and Cjkl to re$ect the identi"abil-
ity. Speci"cally, let W denote a p2 × p2 matrix, whose en-
tries are cos(PkFj, Pk′Fj), cos(PkFj, Pk′l′Fj), cos(PklFj, Pk′Fj),
cos(PklFj, Pk′l′Fj), j, k, l = 1, . . . , p. Then C2

jk and C2
jkl are

de"ned by the diagonals of W−1. When some Cjk and Cjkl are
much larger than one, then the identi"ability issue occurs (Gu
2013). This is o#en due to insu%cient amount of data relative
to the complexity of the model we "t. In this case, we "nd that
increasing ηnj and κnj in (11) o#en helps with the identi"ability
issue, as it helps reduce the model complexity.

We summarize the above estimation procedure in Algo-
rithm 1.
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Algorithm 1 Iterative optimization algorithm for kernel ODE.
1: Initialization: the initial values for θjk = θjkl = 1, j, k, l =

1, . . . , p, k #= l, and the tuning parameters: (ηnj, κnj).
2: Fit smoothing spline model (9), and obtain x̂j(t), j =

1, . . . , p.
3: repeat
4: Solve θ̂j0 given F̂j and θ̂j, j = 1, . . . , p.
5: Solve F̂j in (12) given θ̂j0 and θ̂j, j = 1, . . . , p.
6: Solve θ̂j in (15) given θ̂j0 and F̂j, j = 1, . . . , p.
7: until the stopping criterion is met.

3.2. Con!dence Intervals

Next, we derive the con"dence intervals for the estimated tra-
jectory x̂j(ti). This is related to post-selection inference, as the
actual coverage probability of the con"dence interval ignoring
the preceding sparse estimation uncertainty can be dramatically
smaller than the nominal level. Our result extends the recent
work of Berk et al. (2013) and Bachoc, Leeb, and Pötscher (2019)
from linear regression models to nonparametric ODE models,
while our setting is more challenging, as it involves in"nite-
dimensional functional objects.

Let θ̂j denote the estimator of θj obtained from Algorithm 1.
Denote M ≡ {1, . . . , p, (1, 2), . . . , (1, p), . . . , (p, 1), . . . , (p, p −
1)}, and denote Mj ⊆ M as the index set of the nonzero entries
of the sparse estimator θ̂j. Note that Mj is allowed to be an empty
set. Let θ̂Mj be the least squares estimate with Mj as the support
that minimizes the unpenalized objective function in (15), that
is, (zj −Gθj)!(zj −Gθj). Plugging this estimate θ̂Mj into (13) gets
the corresponding estimate of the functional Fj as,

F̂j,̂θMj
(̂x(t)) = bj +

n∑

i=1
cij

∫

T
Kθ̂Mj

(̂x, x̂(s))
{

Ti(s) − T̄(s)
}

ds.

For a nominal level α ∈ (0, 1) and i = 1, . . . , n, de"ne c0(̂xj(ti))
as the smallest constant satisfying that,

Pn,Fj,σj

[

max
Mj⊆M

σ−1
j

∣∣∣{ÃMj}i·(yj − ȳj)
∣∣∣ ≤ c0(̂xj(ti))

]

≥ 1 − α,

(16)
where {ÃMj}i· = {AMj}i·/‖{AMj}i·‖l2 , {AMj}i· is the ith row of
AMj , AMj is the smoothing matrix as de"ned in (14) with the
corresponding θ̂Mj , and σ 2

j is the variance of the error term εij in
(2). We then construct the con"dence interval CI(̂xj(t)) for the
prediction of true trajectory xj(t) following model selection as,

CI(̂xj(ti)) =
∫

T

{
Ti(t) − T̄(t)

}
F̂j,̂θMj

(̂x(t))dt (17)

± c0(̂xj(ti))σj‖{AMj}i·‖,

for any i = 1, . . . , n and j = 1, . . . , p.
Next, we show that the con"dence interval in (17) has the

desired coverage probability. Later we develop a procedure to
estimate the cuto! value c0(̂xj) in (16) given the data.

Theorem 2. Let Mj ⊆ M be the index set of the nonzero
entries of the sparse estimator θ̂j. Then the choice of c0(̂xj(ti))

in (16) does not depend on Fj, and CI(̂xj(ti)) in (17) satis"es the
coverage property, for any i = 1, . . . , n and j = 1, . . . , p, in that,

inf
Fj∈H,σj>0

P
{∫

T

{
Ti(t) − T̄(t)

}
E

[
F̂j,̂θMj

(̂x(t))
]

dt ∈ CI(̂xj(ti))

}

≥ 1 − α.

A few remarks are in order. First, the coverage in Theorem 2
is guaranteed for all sparse estimation and selection procedures.
As such, CI(̂xj) in (17), following the terminology of Berk et al.
(2013), is a universally valid post-selection con"dence interval.
Second, if we replace c0(̂xj(ti)) in (17) by zα/2, that is, the α/2
cuto! value of a standard normal distribution, then CI(̂xj(ti)) re-
duces to the “naive” con"dence interval. It is constructed as if Mj
were "xed a priori, and it ignores any uncertainty or error of the
sparse estimation step. This naive con"dence interval, however,
does not have the coverage property as in Theorem 2, and thus
is not a truly valid con"dence interval. Finally, data splitting is a
commonly used alternative strategy for post-selection inference.
But it is not directly applicable in our ODE setting, because it is
di%cult to split the time series data into independent parts.

Next, we devise a procedure to compute the cuto! value
c0(̂xj(ti)).

Proposition 1. The value c0(̂xj(ti)) in (16) is the same as the
solution of t ≥ 0 satisfying,

EUP
(

max
Mj⊆M

∣∣∣{ÃMj}i·V
∣∣∣ ≤ t/U

∣∣∣∣∣ U
)

= 1 − α,

where V is uniformly distributed on the unit sphere in Rn, and
U is a nonnegative random variable such that U2 follows a chi-
squared distribution χ2(n).

Following Proposition 1, we compute c0(̂xj(ti)) as follows. We
"rst generate N iid copies of random vectors V1, . . . , VN uni-
formly distributed on the unit sphere in Rn. We then calculate
the quantity, cν = maxMj⊆M |{ÃMj}i·Vν | for ν = 1, . . . , N.
Let DU denote the cumulative distribution function of U, and
Dχ2 denote the cumulative distribution function of a χ2(n)

distribution. Then DU(t) = Dχ2(t2). We next obtain c0(̂xj(ti))

by searching for c that solves N−1 ∑N
i=1 DU(c/ci) = 1−α, using,

for example, a bisection searching method.
Finally, we estimate the error variance σ 2

j in (17) using the
usual noise estimator in the context of RKHS (Wahba 1990); that
is, σ̂ 2

j = ‖AMj(yj − ȳj) − (yj − ȳj)‖2/tr(I − AMj).
We also remark that, the inference on the prediction of

the trajectory xj(t) following model selection as described in
Theorem 2 amounts to the inference on the estimation of the
integration

∫ t
0 Fj(x(s))ds. This type of inference is of great im-

portance in dynamic systems (Izhikevich 2007; Chou and Voit
2009; Ma et al. 2009). Our solution takes the selected model
as an approximation to the truth, but does not require that the
true data generation model has to be among the candidates of
model selection. We note that, it is also possible to do inference
on the individual components of Fj directly; for example, one
could construct the con"dence interval for Fjk in (3). But this
is achieved at the cost of imposing additional assumptions,
including the requirement that the true data generation model
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is among the class of pairwise interaction model as in (3),
and the orthogonality property as in Chernozhukov, Hansen,
and Spindler (2015), or its equivalent characterization as in
Zhang and Zhang (2014); Javanmard and Montanari (2014). For
nonparametric kernel estimators, the orthogonality property is
shown to hold if the covariates xj’s are assumed to be weakly
dependent (Lu, Kolar, and Liu 2020). It is interesting to further
investigate if such a property holds in the context of kernel
ODE model under a similar condition of weakly dependent
covariates. We leave this as our future research.

4. Theoretical Properties

We next establish the estimation optimality and selection con-
sistency of kernel ODE. These theoretical results hold for both
the low-dimensional and high-dimensional settings, where the
number of functionals p can be smaller or larger than the sample
size n. We "rst introduce two assumptions.

Assumption 1. The number of nonzero functional components
is bounded, that is, card

(
{k : Fjk #= 0} ∪ {1 ≤ l #= k ≤ p : Fjkl #=

0}
)

is bounded for any j = 1, . . . , p.

Assumption 2. For any Fj ∈ H, there exists a random variable
B, with E(B) < ∞, and

∣∣∣∣
∂Fj(x)

∂xk

∣∣∣∣ ≤ B‖Fj‖L2 , almost surely.

Assumption 1 concerns the complexity of the functionals.
Similar assumptions have been adopted in the sparse additive
model over RKHS when Fjkl = 0 (see, e.g., Koltchinskii and
Yuan 2010; Raskutti, Wainwright, and Yu 2011). Assumption 2
is an inverse Poincaré inequality type condition, which places
regularization on the $uctuation in Fj relative to the '2-norm.
The same assumption was also used in additive models in RKHS
(Zhu, Yao, and Zhang 2014).

We begin with the error bound for the estimated trajectory
x̂(t) uniformly for j = 1, . . . , p. This is a relatively standard
result, which is needed for both analyzing the error of the func-
tional estimators in kernel ODE, and establishing the selection
consistency later.

Theorem 3 (Optimal estimation of the trajectory). Suppose that
xj(t) ∈ F , j = 1, . . . , p, and the RKHS F is embedded to a
β1th order Sobolev space, β1 > 1/2. Then the smoothing spline
estimate from (9) satis"es that, for any j = 1, . . . , p,

min
λnj≥0

∫

T

{
x̂j(t) − xj(t)

}2 dt = Op

(
n− 2β1

2β1+1

)
,

which achieves the minimax optimal rate.

Next, we derive the convergence rate for the estimated func-
tional Fj. Because the trajectory x̂ is estimated, to establish
the optimal rate of convergence, it requires extra theoretical
attention, which is related to recent work on errors in vari-
ables for lasso-type regressions (Loh and Wainwright 2012; Zhu,
Yao, and Zhang 2014). The proof involves several tools for the
Rademacher processes (van der Vaart and Wellner 1996), and

the concentration inequalities for empirical processes (Tala-
grand 1996; Yuan and Zhou 2016).

Theorem 4 (Optimal estimation of the functional). Suppose that
Fj ∈ H, j = 1, . . . , p, where H satis"es (8), and the RKHS Hj
is embedded to a β2th order Sobolev space, β2 > 1. Suppose
Assumptions 1 and 2 hold. Then, as long as Fj is not a constant
function, the KODE estimate F̂j from (10) satis"es that, for any
j = 1, . . . , p,

min
τnj≥0

∫

T

{̂
Fj(x(t)) − Fj(x(t))

}2 dt

= Op




( n

log n

)− 2β2
2β2+1

+ log p
n + n− 2β1

2β1+1



 ,

which achieves the minimax optimal rate.

This theorem is one of our key results, and we make a few
remarks. First, there are three error terms in Theorem 4, which
are attributed to the estimation of the interactions, the Lasso es-
timation, and the measurement errors in variables, respectively.
Particularly, the error term Op

(
n−2β1/(2β1+1)

)
arises due to the

unobserved x(t), which is instead measured at discrete time
points and is subject to measurement errors. Since this error
term achieves the optimal rate, it fully characterizes the in$u-
ence of the estimated x̂(t) on the resulting estimator F̂j. More-
over, β1 and β2 measure the orders of smoothness for estimating
xj and Fj, respectively. They can be di!erent, which makes it
$exible when choosing kernels for the estimation procedure. For
instance, if there is prior knowledge that x(t) is smooth, we may
then choose β1 > β2, and the resulting estimator F̂j achieves a
convergence rate of Op

(
(n/ log n)−2β2/(2β2+1) + log p/n

)
. It is

interesting to note that this rate is the same as the rate as if x(t)
were directly observed and there were no integral involved in
the loss function, for example, in the setting of Lin and Zhang
(2006).

Second, there exists a regime-switching phenomenon, de-
pending on the dimensionality p with respect to the sample size
n. On one hand, if it is an ultrahigh-dimensional setting, that is,

p > exp
[{

n(log n)2β2
} 1

2β2+1

]
, then the minimax optimal rate

in Theorem 4 becomes Op
(
log p/n + n−2β1/(2β1+1)

)
. Here, the

"rst rate Op(log p/n) matches with the minimax optimal rate for
estimating a p-dimensional linear regression when the vector
of regression coe%cients has a bounded number of nonzero
entries (Raskutti, Wainwright, and Yu 2011). Hence, we pay no
extra price in terms of the rate of convergence for adopting a
nonparametric modeling of Fj in (3), when compared with the
more restrictive linear ODE model in (4) (Zhang et al. 2015).
On the other hand, if it is a low-dimensional setting, that is,

p ≤ exp
[{

n(log n)2β2
} 1

2β2+1

]
, then the optimal rate becomes

Op
(
(n/ log n)−2β2/(2β2+1)+ n−2β1/(2β1+1)

)
. Here, the "rst rate

Op
(
(n/ log n)−2β2/(2β2+1)

)
is the same as the optimal rate of

estimating Fj as if we knew a priori that Fj comes from a two-
dimensional tensor product functional space, rather than the p-
variate functional space H in (8); see also Lin (2000) for a similar
observation.



1718 X. DAI AND L. LI

Third, the optimal rate in Theorem 4 is immune to the “curse
of dimensionality”, in the following sense. We introduce p(p−1)

pairwise interaction components to H in (8), and henceforth,
for each xj(t), j = 1, . . . , p, it requires to estimate a total of p2

functions. A direct application of an existing basis expansion
approach, for instance, Brunton, Proctor, and Kutz (2016), leads
to a rate of Op

(
n−O(1/p2)

)
. This rate degrades fast when p

increases. By contrast, we proceed in a di!erent way, where we
simultaneously aim for the $exibility of a nonparametric ODE
model by letting H obey a tensor product structure as in (8),
while exploiting the interaction structure of the system. As a
result, our optimal error bound Op

(
(n/ log n)−2β2/(2β2+1)

)
does

not depend on the dimensionality p.
Finally, the incorporation of the integral,

∫ ti
0 Fj(̂x(t))dt, in the

loss function in (10) makes the estimation error of F̂j depend on
the convergence of E

∫
T {̂xj(t) − xj(t)}2dt. As a comparison, if

we use the derivative instead of the integration, then the estima-
tion error would depend on the convergence of the derivative,
E

∫
T {d̂xj(t)/dt − dxj(t)/dt}2dt (Wu et al. 2014). However, it is

known that the derivative estimation in the reproducing kernel
Hilbert space has a slower convergence rate than the function
estimation (Cox 1983). That is, E

∫
T {d̂xj(t)/dt − dxj(t)/dt}2dt

converges at a slower rate than E
∫
T {̂xj(t) − xj(t)}2dt. This

demonstrates the advantage of working with the integral in
our KODE formulation, and our result echoes the observa-
tion for the additive ODE model (Chen, Shojaie, and Witten
2017).

Next, we establish the selection consistency of KODE.
Putting all the functionals {F1, . . . , Fp} together forms a network
of regulatory relations among the p variables {x1(t), . . . , xp(t)}.
Recall that, we say xk is a regulator of xj, if in (3) Fjk is nonzero,
or if Fjkl is nonzero for some l #= k. Denote the set of the true
regulators and the estimated regulators of xj(t) by

S0
j =

{
1 ≤ k ≤ p : Fjk #= 0, or Fjkl #= 0
for some 1 ≤ l #= k ≤ p

}
,

Ŝj =
{

1 ≤ k ≤ p : ‖̂Fjk‖H #= 0, or ‖̂Fjkl‖H #= 0
for some 1 ≤ l #= k ≤ p

}
,

respectively, j = 1, . . . , p. We need some extra regularity
conditions on the minimum regulatory e!ect and the design
matrix, which are commonly adopted in the literature of Lasso
regression (Zhao and Yu 2006; Ravikumar, Wainwright, and
La!erty 2010). In the interest of space, we defer those conditions
to Section S.1.6.2 of the Appendix. The next theorem establishes
that KODE is able to recover the true regulatory network asymp-
totically.

Theorem 5 (Recovery of the regulatory network). Suppose that
Fj ∈ H, j = 1, . . . , p, where H satis"es (8), and the RKHS Hj is
embedded to a β2th order Sobolev space, with β2 > 1. Suppose
Assumption 1, and Assumptions 3, 4, 5 in the Appendix hold.
Then, the KODE correctly recovers the true regulatory network,
in that, for all j = 1, . . . , p,

P
(

Ŝj = S0
j

)
→ 1, as n → ∞.

5. Simulation Studies

5.1. Setup

We study the empirical performance of the proposed KODE
using two ODE examples, the enzyme regulatory network in
Section 5.2, and the Lotka–Volterra equations in Section 5.3. For
a given system of ODEs and the initial condition, we obtain the
numerical solutions of the ODEs using the Euler method with
step size 0.01. The data observations are drawn from the solu-
tions at an evenly spaced time grid, with measurement errors.
To implement KODE, we "t the smoothing spline to estimate
xj(t) in (9) using a Matérn kernel, KF (x, x′) = (1 +

√
3‖x −

x′‖/ν) exp(−
√

3‖x − x′‖/ν), where the smoothing parameter
λnj is chosen by GCV, and the bandwidth ν is chosen by 10-fold
cross-validation. We compute the integral

∫ ti
0 Fj(̂x(t))dt in (10)

numerically with independent sets of 1000 Monte Carlo points.
We compare KODE with linear ODE with interactions in (4)
(Zhang et al. 2015), and additive ODE in (6) (Chen, Shojaie,
and Witten 2017). Due to the lack of available code online, we
implement the two competing methods in the framework of
Algorithm 1, using a linear kernel for (6), and using an additive
Matérn kernel for (6). We evaluate the performance using the
prediction error, plus the false discovery proportion and power
for edge selection of the corresponding regulatory network.
Furthermore, we compare with the family of ODE solutions
assuming a known F (Zhang, Cao, and Carroll 2015; Mikkelsen
and Hansen 2017) in Section S2.1 of the Appendix. We also
carry out a sensitivity analysis in Section S2.2 of the Appendix to
study the robustness of the choice of kernel function and initial
parameters.

5.2. Enzymatic Regulatory Network

The "rst example is a three-node enzyme regulatory network
of a negative feedback loop with a bu!ering node (Ma et al.
2009, NFBLB). The ODE system is given in (7) in Section 2.1.
Figure 1(a) shows the NFBLB network diagram consisting of the
three interacting nodes: x1 receives the input, x3 transmits the
output, and x2 plays a regulatory role, leading a negative regu-
latory link to x3. We note that, although biological circuits can
have more than three nodes, many of those circuits can be re-
duced to a three-node framework, given that multiple molecules
o#en function as a single virtual node. Moreover, despite the
diversity of possible network topologies, NFBLB is one of the
two core three-node topologies that could perform adaption
in the sense that the system resets itself a#er responding to a
stimulus; see Ma et al. (2009) for more discussion of NFBLB.
For the ODE system in (7), we set the catalytic rate parameters
of the enzymes as c1 = c2 = c3 = c5 = c6 = 10, c4 = 1, the
Michaelis–Menten constants as C1 = · · · = C6 = 0.1, and the
concentration parameters of enzymes as c̃1 = 1, c̃2 = 0.2. These
parameters achieve the adaption as shown in Figure 1(b). The
output node x3 shows a strong initial response to the stimulus,
and also exhibits strong adaption, since its post-stimulus steady
state x3 = 0.052 is close to the prestimulus state x3 = 0. The
input x0 ∈ R3 is drawn uniformly from [0.5, 1.5], with the initial
value x(0) = 0, and the measurement errors are iid normal
with mean zero and variance σ 2

j . The time points are evenly
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Figure 2. The true (black solid line) and the estimated (blue dashed line) trajectory of x3(t), with the 95% upper and lower con"dence bounds (red dotted lines). The
results are averaged over 500 data replications. (a) KODE; (b) additive ODE; (c) linear ODE.

Figure 3. The prediction and selection performance of three ODE methods with varying noise level. The results are averaged over 500 data replications. (a) Prediction error;
(b) false discovery proportion; (c) empirical power.

distributed, ti = (i−1)/20, i = 1, . . . , n. In this example, p = 3,
and for each function xj(t), j = 1, 2, 3, there are p2 = 9 functions
to estimate, and in total there are 27 functions to estimate under
the sample size n = 40.

Figure 2 reports the true and estimated trajectory of x3(t),
with 95% upper and lower con"dence bounds, of the three ODE
methods, where we use the tensor product Matérn kernel for
KODE in (10). The noise level is set as σj = 0.1, j = 1, 2, 3,
and the results are averaged over 500 data replications. It is
seen that the KODE estimate has a smaller variance than the
additive and linear ODE estimates. Moreover, the con"dence
interval of KODE achieves the desired coverage for the true
trajectory. In contrast, the con"dence intervals of additive and
linear ODE models mostly fail to include the truth. This is
because there is a discrepancy between the additive and linear
ODE model speci"cations and the true ODE model in (7), and
this discrepancy accumulates as the course of the ODE evolves.

Figure 3 reports the prediction and selection performance
of the three ODE methods, with varying noise level σj ∈
{0.01, 0.02, . . . , 0.1}, j = 1, 2, 3. The results are averaged over
500 data replications. The prediction error is de"ned as the
squared root of the sum of predictive mean squared errors for
x1(t), x2(t), x3(t) at the unseen “future” time point t = 2. The
false discovery proportion is de"ned as the proportion of falsely
selected edges in the regulatory network out of the total number
of edges. The empirical power is de"ned as the proportion of

selected true edges in the network. It is seen that KODE clearly
outperforms the two alternative solutions in both prediction
and selection accuracy. Moreover, we report graphically the
sparse recovery of this regulatory network in Section S2.3 of the
Appendix.

5.3. Lotka–Volterra Equations

The second example is the high-dimensional Lotka–Volterra
equations, which are pairs of "rst-order nonlinear di!erential
equations describing the dynamics of biological systems in
which predators and prey interact (Volterra 1928). We consider
a 10-node system,

dx2j−1(t)
dt = α1,jx2j−1(t) − α2,jx2j−1(t)x2j(t),

dx2j(t)
dt = α3,jx2j−1(t)x2j(t) − α4,jx2j(t),

(18)

where α1,j = 1.1 + 0.2(j − 1), α2,j = 0.4 + 0.2(j − 1), α3,j =
0.1 + 0.2(j − 1), and α4,j = 0.4 + 0.2(j − 1), j = 1, . . . , 5.
The parameters α2,j and α3,j de"ne the interaction between
the two populations such that dx2j−1(t)/dt and dx2j(t)/dt are
nonadditive functions of x2j−1 and x2j, where x2j−1 is the prey
and x2j is the predator. Figure 4(a) shows an illustration of the
interaction between x1(t) and x2(t). The input x0 ∈ R10 is
drawn uniformly from [5, 15]10, with the initial value x2j−1(0) =
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Figure 4. (a) The true trajectories of the prey x1(t) and the predator x2(t). (b) The estimated trajectory x̂1(t) (blue dashed line), with the 95% upper and lower con"dence
bounds (red dotted lines), by KODE. (c) By additive ODE. The results are averaged over 500 data replications.

Figure 5. The prediction and selection performance of two ODE methods with varying noise level. The results are averaged over 500 data replications. (a) Prediction error;
(b) false discovery proportion; (c) empirical power.

x2j(0), and the measurement errors are iid normal N(0, σ 2
j ),

where σj again re$ects the noise level. The time points are evenly
distributed in [0, 100] with n = 200. In this example, p = 10,
and for each function xj(t), j = 1, . . . , 10, there are p2 = 100
functions to estimate, and in total there are 1000 functions to
estimate under the sample size n = 200.

Figure 4(b) and (c) report the estimated trajectory of x1(t),
with 95% upper and lower con"dence bounds, of KODE and
additive ODE, where the noise level is set as σj = 1, j =
1, . . . , 10. The con"dence interval of KODE achieves a better
empirical coverage for the true trajectory compared to that of
additive ODE. For this example, we use the linear kernel for
KODE in (10), since the functional forms in (18) are known
to be linear. For this reason, we only compare KODE with the
additive ODE method. Moreover, in the implementation, the
estimates F̂j(̂x(t)) are thresholded to be nonnegative to ensure
the physical constraint that the number of population cannot be
negative. Figure 5 reports the prediction and selection perfor-
mance of the two ODE methods, with varying noise level σj ∈
{1, 2, . . . , 10}, j = 1, . . . , 10. All the results are averaged over 500
data replications. It is seen that the KODE estimate achieves a
smaller prediction error, and a higher selection accuracy, since
KODE allows $exible nonadditive structures, which results in
signi"cantly smaller bias and variance in functional estimation
as compared to the additive modeling.

6. Application to Gene Regulatory Network

We illustrate KODE with a gene regulatory network application.
Scha!ter, Marbach, and Floreano (2011) developed an open-
source platform called GeneNetWeaver (GNW) that generates
in silico benchmark gene expression data using dynamical mod-
els of gene regulations and nonlinear ODEs. The generated
data have been used for evaluating the performance of network
inference methods in the DREAM3 competition (Marbach et al.
2009), and were also analyzed by Henderson and Michailidis
(2014); Chen, Shojaie, and Witten (2017) in additive ODE mod-
eling. GNW extracts two regulatory networks of E.coli (E.coli1,
E.coli2), and three regulatory networks of yeast (yeast1, yeast2,
yeast 3), each of which has two dimensions, p = 10 nodes
and p = 100 nodes. This yields totally 10 combinations of
network structures. Figures 6(a) and (b) show an example of
the 10-node and the 100-node E.coli1 networks, respectively.
The systems of ODEs for each extracted network are based
on a thermodynamic approach, which leads to a nonadditive
and nonlinear ODE structure (Marbach et al. 2010). Besides,
the network structures are sparse; for example, for the 10-
node E.coli1 network, there are 11 edges out of 90 possible
pairwise edges, and for the 100-node E.coli1 network, there
are 125 edges out of 9900 possible pairwise edges. Moreover,
for the 10-node network, GNW provides R = 4 perturbation
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Figure 6. (a) The 10-node E.coli1 network. (b) The 100-node E.coli1 network. (c–f) Four perturbation experiments for the 10-node E.coli1 network, where each experiment
corresponds to a di!erent initial condition of the ODE system.

experiments, and for the 100-node network, GNW provides
R = 46 experiments. In each experiment, GNW gener-
ates the time-course data with di!erent initial conditions of
the ODE system to emulate the diversity of gene expression
trajectories (Marbach et al. 2009). Figures 6(c)–(f) show the
time-course data under R = 4 experiments for the 10-node
E.coli1 network. All the trajectories are measured at n =
21 evenly spaced time points in [0, 1]. We add independent
measurement errors from a normal distribution with mean
zero and standard deviation 0.025, which is the same as the
DREAM3 competition and the data analysis done in Hen-
derson and Michailidis (2014) and Chen, Shojaie, and Witten
(2017).

The kernel ODE model we have developed focuses on a single
experiment data, but it can be easily generalized to incorporate
multiple experiments. Speci"cally, let

{
y(r)

ij ; i = 1, . . . , n, j =
1, . . . , p, r = 1, . . . , R

}
denote the observed data from n subjects

for p variables under R experiments, with unknown initial con-
ditions x(r)(0) ∈ Rp, r = 1, . . . , R. Then we modify the KODE
method in (9) and (10), by seeking Fj ∈ H and θj0 ∈ R that
minimize

1
Rn

R∑

r=1

n∑

i=1

{
y(r)

ij − θj0 −
∫ ti

0
Fj(̂x(r)(t))dt

}2

+ τnj




p∑

k=1
‖PkFj‖H +

p∑

k#=l,k=1

p∑

l=1
‖PklFj‖H



 , (19)

where x̂(r)(t) = (̂x(r)
1 (t), . . . , x̂(r)

p (t))! is the smoothing spline
estimate obtained by,

x̂(r)
j (t) = arg min

zj∈F

{
1
n

n∑

i=1
(y(r)

ij − zj(ti))
2 + λnj‖zj(t)‖2

F

}

,

j = 1, . . . , p, r = 1, . . . , R.
Algorithm 1 can be modi"ed accordingly to work with multiple
experiments.

We again compare KODE with the additive ODE (Chen,
Shojaie, and Witten 2017) and the linear ODE (Zhang et al.
2015), adopting the same implementation as in the simulations.
Since we know the true edges of the generated gene regulatory
networks, we use the area under the ROC curve (AUC) as the
evaluation criterion. Table 1 reports the results averaged over
100 data realizations for all ten combinations of network struc-
tures. It is clearly seen that KODE outperforms both alternative
methods in all cases. We further report graphically the sparse
recovery of the 10-node E.coli1 network in Section S2.4 of the
Appendix. This example shows that our proposed KODE is a
competitive and useful tool for ODE modeling. In addition, it
also shows that the proposed method can scale up and work with
reasonably large networks. For instance, for the network with
p = 100 nodes, there are p2 = 10,000 functions to estimate,
and the sample size is n = 21 with R = 46 perturbations.

7. Conclusion and Discussion

In this article, we have developed a new reproducing kernel-
based approach for a general family of ODE models that learn a
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Table 1. The area under the ROC curve, and the 95% con"dence interval, for 10 combinations of network structures from GNW.

p = 10 p = 100

KODE Additive ODE Linear ODE KODE Additive ODE Linear ODE

E.coli1 0.582 0.541 0.460 0.711 0.677 0.640
(0.577, 0.587) (0.535, 0.547) (0.453, 0.467) (0.708, 0.714) (0.672, 0.682) (0.637, 0.643)

E.coli2 0.662 0.632 0.562 0.685 0.659 0.533
(0.658, 0.666) (0.625, 0.639) (0.555, 0.569) (0.681, 0.689) (0.652, 0.666) (0.527, 0.539)

Yeast1 0.603 0.541 0.436 0.619 0.589 0.569
(0.599, 0.607) (0.536, 0.546) (0.430, 0.442) (0.616, 0.622) (0.581, 0.597) (0.562, 0.576)

Yeast2 0.599 0.562 0.536 0.606 0.588 0.541
(0.595, 0.603) (0.555, 0.570) (0.530, 0.542) (0.603, 0.609) (0.582, 0.594) (0.536, 0.546)

Yeast3 0.612 0.569 0.487 0.621 0.613 0.609
(0.608, 0.616) (0.564, 0.573) (0.481, 0.493) (0.617, 0.625) (0.607, 0.619) (0.605, 0.613)

NOTE: The results are averaged over 100 data replications. Boldface indicates the method with larger AUC.

dynamic system from noisy time-course data. We employ spar-
sity regularization to select individual functionals and uncover
the underlying regulatory network, and we derive the post-
selection con"dence interval for the estimated signal trajectory.
Our proposal is built upon but also extends the smoothing spline
analysis of variance framework. We establish the theoretical
properties of the method, while allowing the number of func-
tionals to be either smaller or larger than the number of time
points.

In numerous scienti"c applications, ODE is o#en employed
to understand the regulatory e!ects and causal mechanisms
within a dynamic system under interventions. Our proposed
KODE method can be applied for this very purpose. There are
di!erent formulations of causal modeling for dynamic systems
in the literature. We next consider and illustrate with two rela-
tively common scenarios, one regarding dynamic causal mod-
eling (DCM) under experimental stimuli (Friston, Harrison,
and Penny 2003), and the other about kinetic modeling that is
invariant across heterogeneous experiments (P"ster, Bauer, and
Peters 2019).

The "rst scenario concerns DCM that infers the regu-
latory e!ects within a dynamic system under experimental
stimuli (Friston, Harrison, and Penny 2003). Speci"cally, the
DCM characterizes the variations of the state variables x(t) =
(x1(t), . . . , xp(t))! ∈ Rp under the stimulus inputs u(t) =
(u1(t), . . . , uq(t))! ∈ Rq via a set of ODEs, dx(t)/dt =
F(x(t), u(t)), where the functional F is modeled by a bilinear
form,

Fj(x(t), u(t)) = θj0 +
p∑

k=1
θ

(1)
jk xk(t) +

q∑

l=1
θ

(2)
jl ul(t)

+
p∑

k=1

q∑

l=1
θ

(1,2)
jkl xk(t)ul(t), j = 1, . . . , p. (20)

In this model, θ
(1)
jk ∈ R re$ects the strength of intrinsic con-

nection from xk(t) to xj(t), θ
(2)
jl ∈ R re$ects the e!ect of the

lth input stimulus ul(t) on xj(t), and θ
(1,2)
jkl ∈ R re$ects the

in$uence of ul(t) on the directional connection between xk(t)
and xj(t), j, k = 1, . . . , p, l = 1, . . . , q. Note that θ

(1)
jk and θ

(1)
kj

can be di!erent, and thus the e!ect from xk(t) to xj(t) and
that from xj(t) to xk(t) can be di!erent. Similarly, θ

(1,2)
jkl and

θ
(1,2)
kjl can be di!erent. As such, model (20) encodes a directional

network, and under certain conditions, a causal network. DCM
has been widely used in biology and neuroscience (see, e.g.,
Friston, Harrison, and Penny 2003; Zhang et al. 2015, 2017; Cao,
Sandstede, and Luo 2019).

We can combine the proposed KODE with the DCM model
(20) straightforwardly. Such a combination allows us to esti-
mate and infer the causal regulatory e!ects under experimental
stimuli without specifying the forms of the functionals F. This
is appealing, as there have been evidences suggesting that the
regulatory e!ects can be nonlinear (Buxton et al. 2004; Friston
et al. 2019). More speci"cally, we model F such that,

Fj(x(t), u(t)) = θj0 +
p∑

k=1
F(1)

jk (xk(t)) +
q∑

l=1
F(2)

jl (ul(t)) (21)

+
p∑

k=1

q∑

l=1
F(1,2)

jkl (xk(t), ul(t)), j = 1, . . . , p.

Similar as the tensor product space de"ned in (8), let H(1)
k and

H(2)
l denote the space of functions of xk(t) and ul(t) with zero

marginal integral, respectively. We impose that the functionals
Fj, j = 1, . . . , p in (21) are located in the following space,

H = {1} ⊕
p∑

k=1
H(1)

k ⊕
q∑

l=1
H(2)

l ⊕
p∑

k=1

q∑

l=1

(
H(1)

k ⊗ H(2)
l

)
.

Parallel to (20), the functions F(1)
jk , F(2)

jl , and F(1,2)
jkl in (21) capture

the regulatory e!ects, and together, they encode a directional
network. Moreover, Algorithm 1 of KODE is directly appli-
cable to estimate F(1)

jk , F(2)
jl , and F(1,2)

jkl . As we have shown in
our simulations, the DCM model (21) based on KODE should
outperform (20) that is based on linear ODE.

The second scenario concerns learning the causal structure
of kinetic systems by identifying a stable model from noisy ob-
servations generated from heterogeneous experiments. P"ster,
Bauer, and Peters (2019) proposed the CausalKinetiX method,
where the main idea is to optimize a noninvariance score to
identify a causal ODE model that is invariant across heteroge-
neous experiments. Again, we can combine the proposed KODE
with CausalKinetiX to learn the causal structure, while balanc-
ing between predictability and causality of the ODE model, and
extending from a linear ODE model to a more $exible ODE
model. We refer to this integrated method as KODE-CKX.
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Figure 7. The selection performance of KODE-CKX and CausalKinetiX. The results are averaged over 100 data replications. (a) Number of false discoveries in the estimated
model based on KODE-CKX; (b) number of false discoveries in the estimated model based on CausalKinetiX; (c) area under ROC under di!erent noise levels.

More speci"cally, consider R heterogeneous experiments,
which stem from interventions such as manipulations of initial
or environmental conditions. Following Algorithm 1 of KODE,
we obtain θ̂

(r)
j for each experiment r ∈ {1, . . . , R}, and j =

1, . . . , p. Let M(r)
j ⊆ M denote the index set of the nonzero

entries of the sparse estimator θ̂
(r)
j . We propose the following

four-step procedure to score each model M(r)
j . In the "rst step,

we obtain the smoothing spline estimate x̂(r)
j (t) by (9) using

the data from the rth experiment. In the second step, we apply
Algorithm 1 to compute F̂(r)

j , by setting κnj = 0, restricting
θj ∈ M(r)

j , and using the data from all other experiments except
for the rth experiment. Here leaving out the rth experiment is
to ensure a good generalization capability. In the third step, we
estimate the signal trajectory under the derivative constraint,

x̃(r)
j (t) = arg min

zj∈F

{
1
n

n∑

i=1

{
yij − zj(ti)

}2 + λnj‖zj(t)‖2
F

}

,

such that x̃(r)
j (ti) = F̂(r)

j (̂x(r)
j (ti)), (22)

for i = 1, . . . , n, j = 1, . . . , p. In the last step, similar as
CausalKinetiX, we obtain for each model M(r)

j ⊆ M the
noninvariance score,

NS
(

M(r)
j

)
≡ 1

R

R∑

r=1

RSS(r)
B − RSS(r)

A
RSS(r)

A
,

where RSS(r)
A = n−1 ∑n

i=1

{
y(r)

ij − x̂(r)
j (tij)

}2
, and RSS(r)

B =

n−1 ∑n
i=1

{
y(r)

ij − x̃(r)
j (tij)

}2
are the residual sums of squares

based on x̂(r)
j (t) and x̃(r)

j (t), respectively. Due to the additional
constraint in (22), RSS(r)

B is always larger than RSS(r)
A . Following

P"ster, Bauer, and Peters (2019), the model M(r)
j ⊆ M with

a small score NS(M(r)
j ) is predictive and invariant. Such an

invariant ODE model allows researchers to predict the behavior
of the dynamic system under interventions, and it is closely
related to the causal mechanism of the underlying dynamic
system from the structural casual model and modularity per-
spective (Rubenstein et al. 2018; P"ster, Bauer, and Peters 2019).

Compared to CausalKinetiX, our proposed KODE-CKX further
extends the linear ODE to a general class of nonlinear and
nonadditive ODE.

To verify the empirical performance of KODE-CKX and to
compare with CausalKinetiX, we consider the 100-node E.coli1
gene regulatory network example in Section 6. Figure 7 com-
pares the models with the smallest noninvariance score from
KODE-CKX and CausalKinetiX, respectively, based on 100 data
replications. Comparing Figures 7(a) and (b), it is seen that
in the majority of cases, KODE-CKX is able to recover the
causal parents, and it outperforms CausalKinetiX by achieving
a smaller number of false discoveries. Here, the measurement
errors were drawn from a normal distribution with mean zero
and standard deviation 0.025, the same setup as in Section 6.
We next further evaluate the performance of the two methods
when we vary the standard deviation of the measurement errors.
Figure 7(c) reports the AUC averaged over 100 data replications.
It is seen again that, for all noise levels, KODE-CKX performs
better than CausalKinetiX.

In summary, our proposed KODE is readily applicable to
numerous scenarios to facilitate the understanding of the regu-
latory causal mechanisms within a dynamic system from noisy
data under interventions.

Supplementary Materials

The supplementary material contains proofs and additional numerical
results for the main article.
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