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ABSTRACT OF THE DISSERTATION

On the importance of context: How auxiliary information from within- and across-modalities
guides, facilitates, and perturbs visual processing

by

Jamal R. Williams

Doctor of Philosophy in Experimental Psychology

University of California San Diego, 2024

Professor Timothy Brady, Chair
Professor Viola Stormer, Co-Chair

Despite the sense of a rich and complete visual world, we are only capable of processing
a small fraction of the sensory information available to us. It is no wonder then, that achieving
this level of perception involves a series of complex operations from the moment visual
information first hits the retina to its eventual interpretation in higher regions of the brain. In this
dissertation I explore how visual and auditory information might be leveraged by the visual

system to predict impending stimulation and alleviate this burden. In chapter 1, I investigate how

xii



the contents of visual working memory captures attention. In a series of studies, I demonstrate
that this automatic co-opting of attention is driven by the fidelity of the internal representation,
that this capture occurs even when working memory is taxed, and that the quality of any given
internal representation is driven by a natural and stochastic accumulation of noise in the
representation itself. In the following chapters I explore how real-world auditory objects and
scenes facilitate (chapter 2) and alter visual perception (chapter 3). Within these chapters I
employ a visual discrimination task where I control the unraveling of visual information to
effectively “slow down” visual processing. In chapter 2, I demonstrate that people are able to
discern meaningful information more rapidly when the auditory objects and scenes are
semantically related to their visual target compared to when they are not. In chapter 3, I
demonstrate that this seemingly facilitatory process is not cost free. When the visual targets are
less discrete, and more ambiguous, auditory information not only accelerates visual processing
but, in so doing, alters the perceptual representation of visual objects, shifting them towards
expected features associated with the accompanying sounds. Importantly, this perturbation is not
driven by decisional processes, nor is it driven by volitional attentional selection. In summary,
this dissertation advances our understanding of visual perception by elucidating the interplay
between contextual information across modalities and visual perception. By revealing how
auxiliary information influences visual attention and perception, it provides insights into the

mechanisms underlying the complex process by which we make sense of the visual world.
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INTRODUCTION

The apparent ease with which we see belies the intricate processes necessary for visual
perception to unfold. Given the nature of the (comparatively impoverished and two-dimensional)
information that hits our retina, it is truly remarkable that we are capable of perceiving a rich and
three-dimensional world. Achieving this, however, is metabolically and computationally
intensive. From the moment visual input hits the retina until its final interpretation in the brain,
visual information is heavily processed by numerous brain structures and millions of neurons
(Bruce et al., 2014; Hubel & Weisel, 1979; Palmer, 1999; Stryer, 1996). Even still, once the raw
input is processed, visual perception demands further processing of this input (Kersten et al.,
2004; Worgdétter et al., 2004). It is no wonder then, that for visual perception to occur, the brain
dedicates a substantial amount of real-estate and computational power for processing this already
preprocessed information (Hubel & Weisel, 1979; Bullier, 2001; Marr, 2010). In this dissertation
I will argue that visual perception inherently incorporates prior experiences and concurrently
available context to predict impending visual input in an effort to alleviate the immense burden
of visual processing.

The field of vision science has made substantial progress in the last several decades but
attempts to understand vision and visual perception have been attempted for millennia. Since at
least the 8" century B.C., philosophers have wondered why we cannot see color at night or why
the moon appears large on the horizon and small at its apex (Crone, 2012; Sedley, 2018).
Complex and thorough theories of visual perception have been posited since at least the Sth
century. Empedocles put forth the theory that light is emitted from the eyes like a lantern and
produces visual perception as it illuminates anything it touches (O’Brien, 1970). And while this

theory would not be completely dismissed for over a thousand years (see Al-Khalili, 2015 and
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Burton, 1945), during the 4" century BC, Epicurus and others rejected this “emission” theory
and proposed one of “intromission” whereby objects emit “atoms” in the form of “essential
waves” that make physical contact with the eye (Crone, 2012; Hahm, 1978; Lokke, 2008). As
our understanding of the physical world improved, and we moved beyond “emission” theories
(al-Haytham, 1021; Newton, 1704), scientists questioned how our rich perception could be
derived from impoverished and indeterminate visual input (Craik, 1967; Koffka, 1935;
Helmbholtz, 1867).

Recognizing the clear disparity between input and perception, many theories how we
perceive the visual world arose. One influential example, Gestalt theory, posited several
unassailable principles of perception, such as continuity, common fate, emergent properties, and
more (see, Koffka, 1922). As seen in Figure 1A, even though each dot is independent, an
emergent property of their configuration gives the sense of curvature, orientation, and of
belonging to a larger whole which is not shared by the components (Palmer, 1999). While this
school of thought made important and lasting contributions to the field, it has generally been
surpassed by newer theories and models of visual perception (for comprehensive reviews of this
school and its contributions, see Wagemans et al., 2012a; Wagemans et al., 2012b). Others, like
the theory of unconscious inference, have survived in one form or another and continue to inform
theories of visual perception. According to this theory, the inherent ambiguity in visual
information is overcome through implicit predictions on the source of visual stimulation and
these unconscious inferences must be integrated somewhere in the visual processing system to
generate perception (Helmholtz, 1867; Kersten et al., 2004; Knill & Pouget, 2004; Stokes et al.,

2012).
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Figure 0.1 Unconscious inference at work

Several examples of classic and recent findings which elucidate the unconscious inferences that
are applied to ambiguous visual information. (A) An example of the Gestalt principle of
emergent properties. (B) The classic Miiller-Lyer illusion, both lines are identical, yet it is
common to perceive the top line as longer than the bottom. (C) A simple example of amodal
completion, the top arrangement implies full shapes that are simply occluded, while the actual
visual stimulation intuitively feels much less likely. (D-E) Examples of how a scene or an
object’s position and orientation can give rise to different inferences on object identity, for
example (from top left, clockwise) a car, a person, a drill, a hairdryer.

While the theory of unconscious inference was not entirely embraced at the time, today, it

is well accepted! that visual perception is not strictly stimulus driven (Craik, 1967; Kersten et al.,

! The phrase “unconscious inference” has fallen out of favor, but the principles are commonplace and are often
reframed simply as inference (Bruner & Potter, 1964), perceptual inference (e.g., Parise, 2016; Rohe & Noppeney,
2015) or Bayesian inference (e.g., Kersten et al. 2004; Knill & Pouget, 2004; Pouget et al., 2013).
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2004; Kinchla & Wolfe, 1979; Koffka, 1922; Koffka, 1935; Palmer, 1999; Torralba, 2003). As a
demonstration, in Figure 1B, the top line often appears longer than the bottom line, even though
the target visual information (i.e., line length) is identical across samples (Lewis, 1908). One
compelling reason for why this classic Miiller-Lyer illusion works is that it is driven by context
and priors: when edges interact like this in the world (context), the lines that we perceive as
longer, are often genuinely longer than when we encounter similar interactions to the sample
below (prior; see Howe and Purves, 2005). Similarly, in Figure 1C (top) it is not hard to intuit
that the image is likely made up of whole objects that are simply layered on top of one another
(Gerbino & Salmaso, 1987; Sekuler & Palmer, 1992). However, if we decompose the actual
visual information we are shown (presented below, Figure 1C, bottom), the configuration feels
odd perhaps because it is far less likely to be the true source of the visual information in the real
world (Michotte et al., 1991). This act of “filling in the gaps” and completing the shapes (i.e.,
amodal completion) typically presumes that we assume the simplest organization possible (but
see, Singh, 2004; Moravec & Beck, 1986).

These sorts of inferences over visual ambiguity occur at all levels of the visual hierarchy.
As in the Muller-Lyer illusion, the visual system takes advantage of the statistical regularities in
the world for higher level stimuli like objects, where people often interpret an object differently
based on context: people often see an object as a car or a hair dryer (Figure 1D & 1E, left) and
will interpret the exact same object as a person or a drill when its position in the scene, or the
scene itself is changed (Figure 1D & 1E, right; Oliva & Torralba, 2007; Bar, 2004). Even when
information is no longer available for continued sensory sampling, the contents of visual working

memory act as a sort of context, providing information on relevant features or objects in the



environment?, When a single visual feature or simple object is actively maintained in visual
working memory, attention is rapidly and automatically deployed to any location in the
environment that matches those features (Olivers et al., 2006; Soto et al., 2005). In chapter 1, I
explore how this task-irrelevant, yet actively maintained, visual information can influence visual
processing and attentional selection. In particular we explore whether the contents of working
memory need to have an elevated status to interact with attention and whether this sort of
attention capture occurs when multiple items are actively maintained.

In the subsequent chapters I explore how, similarly, task-irrelevant, but concurrently
available, information might facilitate or bias active visual processing. Critically, in these
chapters, I move beyond strictly visual-to-visual interactions and investigate how sounds might
affect visual processing, cross-modally. It stands to reason that if the visual system incorporates
secondary information to resolve ambiguity that information from distinct modalities might be
incorporated as well (Parise, 2016; Rohe & Noppeney, 2015). However, the strength and
directionality of these interactions is unclear. Typically, vision is thought to dominate other
senses, for example, we often believe that a ventriloquist’s dummy is speaking even though the
spatio-auditory information suggests otherwise: visually the extravagant movements of the
dummy imply that it is the source. Similarly, when visual and auditory information are
equivalently ambiguous, vision is seen to dominate the auditory experience as in the classic
McGurk effect (McGurk & MacDonald, 1976). In contrast, this intuition of visual dominance,
and the findings that support it, might have unduly put audition in the more ambiguous situation.

If so, a rational system might be expected to favor sensory information that is more precise or

2 While working memory and long-term memory likely operate over the same representations (see Brady et al.,
2024), working memory deserves special mention here since it is implicitly presumed that priors—the generalized
sum of our experiences—exist within long-term memory (e.g., Hemmer & Steyvers, 2009).
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more reliable (e.g., Kording et al., 2007; Burr et al., 2009). If visual information were more
ambiguous, auditory information dominates vision (Shams et al., 2000; Alais & Burr, 2004).
Therefore, to explore how audition might affect vision, we provide clear and unambiguous
auditory information while presenting either (1) noisy and unambiguous information (chapter 2)
or (2) noisy and ambiguous information (chapter 3).

Attentional guidance by remembered visual information

Chapter 1 investigates whether visual attention is captured by colors in the environment
that match those being actively maintained in visual working memory. For example, when
looking for a friend in a crowd, we may carefully hold their distinctive visual features in mind—
like the red shirt they are wearing—as we try to find them. And, while our attention will often be
guided toward matching features in the environment, what if our memory is inaccurate and your
friend’s shirt is actually more orange than red? Surprisingly, while attentional guidance has been
studied extensively, the relationship between the fidelity of a memory representation and how
effectively that item can guide attention is not well understood. Instead, most work has focused
on the number of items that can guide attention and whether such items require a special status
within working memory (e.g., by being attended within the “focus of attention”).

Importantly, when only a single feature is maintained in working memory, attention is
reliably and automatically guided toward matching features in the environment (Olivers et al.,
2006; Soto et al., 2005, 2008; Soto & Humphreys, 2007, 2008). However, it is less clear whether
multiple working memory items can guide attention in a similarly incidental way. This inability
to guide when working memory is loaded beyond a single item is typically explained as the
inability of multiple items to maintain a special status within working memory (e.g., Olivers et

al., 2006; van Moorselaar et al., 2014). While some work has shown that multiple items can



guide attention, a significant literature suggests that guidance by multiple memory
representations is at best more fragile and less reliable than guidance by a single item, as
guidance effects are often not found when participants remember more than a single item
(Fratescu et al., 2019; van Moorselaar et al., 2014; see Ort & Olivers, 2020, for a review). In this
chapter, we propose that differing results in the literature are accounted for primarily by variation
in memory strength (i.e., how well information in working memory represents the initially
encoded item on average).

Overall, across several experiments, we find evidence to support an account where items
vary naturally in their representational fidelity, and that any and all memory items can guide
attention insofar as they are well represented—even when they do not possess a special template
status. Our results thereby unify the seemingly irreconcilable findings that one or many working
memory items can guide attention: When working memory resources are stretched among
multiple active representations, often only a single item is represented well enough to guide;
however, in other cases, the fidelity of multiple items may be precise enough to produce
guidance from both items.

Disambiguation by auditory objects and scenes

In chapter 2, we pivot from unimodal work and explore whether concurrently available,
and task-irrelevant sounds affect active visual processing. In the real world, sounds are
inexorably linked to the objects that generate them. Cats cannot bark and toads do not roar. In a
world where an object’s visual features such as colors and orientations are inconsistent across
viewpoints, lighting conditions, and time—where visual objects are often occluded and where
many objects share similar visual features despite being fundamentally distinct—our perceptual

system is required to constantly make inferences about the world (Alais & Burr, 2004; Bar,



2004; Kording et al., 2007; Oliva & Torralba, 2007). Context can help us to disambiguate
indeterminate information: for example, the same shape projected on our retina might be
interpreted as a hair dryer when viewed in a bathroom scene or as a drill when viewed on a
workbench (Bar, 2004; Biederman et al., 1982). Similarly, visual scenes can facilitate the
recognition of these objects quite dramatically (Davenport & Potter, 2004; Draschkow & V0,
2017; Palmer, 1975). In the real world, however, sensory processing of visual scenes and visual
objects is highly correlated, and if information from this modality is unclear, a scene is unable to
provide additional, independent information (e.g., at dusk, all visual inputs are equally obscured).
In this case, nonvisual information, such as sounds, might provide unambiguous and independent
information about visual inputs, and potentially influence object recognition (Plass et al., 2017).
How, then, might naturalistic sounds influence the recognition of visual objects? And can both
auditory objects and auditory scenes affect visual object processing?

In our study, participants viewed noisy visual objects while listening to naturalistic
sounds. When sounds were related to the visual target, they facilitated the ability to extract
relevant visual information, thereby accelerating object recognition. This was true for specific
object sounds (a dog’s bark) but also occurred for ambient auditory scene sounds (an airport
terminal), indicating wide-ranging effects of audition on vision. Crucially, sounds aided
categorical visual recognition (a dog from a bird) but also aided fine-grained visual
discrimination (e.g., a malamute from a husky). Overall, our results demonstrate that sounds
enhance vision across various levels of processing and stress the importance of cross-modal
influences on perception.

Perceptual alteration by auditory objects



Chapter 3 explores the mechanisms that drive the cross-modal, facilitatory effect
observed in chapter 2. While chapter 2 showed that cross-modal integration can facilitate visual
processing, in chapter 3, we explore the mechanisms that drive the facilitatory effect and explore
whether this effect alters our phenomenology of visual objects or simply increases the speed by
which visual objects are processed (without any change to the resultant perception). As a thought
experiment, imagine you catch a glimpse of something rapidly flying by your window. Because
the visual information was ambiguous and fleeting, it could be any number of things. In this
scenario, auditory information could be incredibly useful for resolving this uncertainty: A
buzzing would suggest it was a drone, whereas a caw suggests it was a crow. Does the sound of a
drone change our visual experience and make this dubious object appear more drone-like than if
we hadn’t heard the sound? Or do sounds simply improve perceptual processing of related visual
objects by speeding responses or improving accuracy.

In chapter 3, we show that object representations are shifted away from what was
presented and towards the visual features that align with the sound. These findings demonstrate
that what we hear has profound impacts on how we perceive the visual world, and that the
facilitation of related visual information might be driven by a form of expectation related
assumptions made by the visual system. Because the influence of sound on vision seems
particularly effective when visual information is noisy or dubious—where sounds provide
independent and unequivocal clues about the visual environment (Alais & Burr, 2004; Heron et
al., 2004; Rohe & Noppeney, 2015; Watanabe & Shimojo, 2001)—we used ambiguous visual
stimuli paired with clear and distinct sounds. Specifically, we created a set of ambiguous visual
stimuli by morphing together the features of two visual objects (objects A and B, e.g., a hammer

and a seal) and presented these stimuli with naturalistic sounds that were congruent with one of



these progenitor objects. Visual objects and sounds were presented simultaneously, and
participants looked for a target object in visual noise, after which they precisely reported that
object using a continuous report method.

Our results suggest that naturalistic auditory information alters the representations of
objects we see. Specifically, we found that visual features of object representations are shifted
toward features that are congruent with a concurrent auditory stimulus: The same ambiguous
object (e.g., a 50% seal and 50% hammer morph) was perceived as more hammer-like when
paired with a hammer sound and more seal-like when paired with the sound of seal barking'. In a
series of control experiments, we also tested at what processing stage these audiovisual effects
arose and found evidence consistent with the hypothesis that the effects of sounds on visual
object recognition have an early, perceptual locus.

In sum, these chapters represent a significant advancement in our understanding of
how auxiliary information affects visual attention and perception. I show that actively
maintained visual representations can incidentally capture and guide our visual attention towards
matching contents are present in the environment—even when multiple representations are
concurrently active. I also show that specific and ambiguous auditory information in the form of
object and scene sounds influence visual perception by accelerating how quickly relevant visual
features are extracted from noisy visual input. Lastly, I demonstrate that this facilitation is not
cost free; instead, the complete perceptual representation may be slightly shifted away from
veridical and towards the expected visual features of a noisy and ambiguous visual object.
Across three chapters I demonstrate that visual processing can leverage the context from multiple

senses to guide, facilitate, and even perturb perception and attention; likely in an effort to lessen
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the intense burden required to process the massive amount of visual information at any given

moment.
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Items that are held in visual working memory can guide attention toward matching features in the envi-
ronment. Predominant theories propose that to guide attention, a memory item must be internally priori-
tized and given a special template status, which builds on the assumption that there are qualitatively
distinct states in working memory. Here, we propose that no distinct states in working memory are nec-
essary to explain why some items guide attention and others do not. Instead, we propose variations in
attentional guidance arise because individual memories naturally vary in their representational fidelity,
and only highly accurate memories automatically guide attention. Across a series of experiments and a
simulation we show that (a) items in working memory vary naturally in representational fidelity; (b)
attention is guided by all well-represented items, though frequently only one item is represented well
enough to guide; and (c) no special working memory state for prioritized items is necessary to explain
guidance. These findings challenge current models of attentional guidance and working memory and
instead support a simpler account for how working memory and attention interact: Only the representa-
tional fidelity of memories, which varies naturally between items, determines whether and how strongly
a memory representation guides attention.

Public Significance Statement

When you are holding an item in mind (say, your red mug), your visual attention is automatically
guided toward red information in the environment. However, this does not always occur and seems
to happen less often when you are holding in mind multiple pieces of information (say, your red
mug and your blue coaster). This study demonstrates that the fidelity of a working memory repre-
sentation alone may determine how strongly that item will interact with attention. Because memo-
ries vary randomly in fidelity and tend to be lower fidelity when holding more items in mind, this
can explain why attention is sometimes, but not always, guided by items we hold in mind.

Keywords: attentional guidance, internal attention, variable precision, visual working memory

As we look around the world, we have the sense of a rich and
complete perception. This is in spite of the fact that we are only
able to process a small fraction of the available sensory informa-
tion. To effectively and efficiently operate within this sensory
maelstrom, some of that information must be prioritized: either
because it is physically more salient or because it matches our
current task goals and intentions. For example, when looking for
a friend in a crowd, we may carefully hold their distinctive visual
features in mind—Iike the red shirt they are wearing—as we try
to find a match, and our attention will be guided toward matching
features in the environment. But what if that memory representation
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is inaccurate or noisy, and your friend’s shirt is in fact more orange
than red? Would guidance occur in this situation? Surprisingly,
although attentional guidance has been studied extensively, the
relationship between the fidelity of a memory representation and
how effectively that item can guide attention is not well under-
stood. Instead, most work has focused on the number of items that
can guide attention and whether such items must have a special
status within working memory, like being in the “focus of atten-
tion.” Here we propose that representational fidelity of memories
alone—defined as how accurately an item is represented in work-
ing memory—is sufficient to explain why some items do and
some items do not guide attention, independently of any special
status of an item in memory.

Guidance by One Versus Two Items

It has been repeatedly found that when only a single feature is
maintained in working memory, attention is automatically guided
toward matching features in the environment (Olivers et al.,
2006; Soto et al., 2005, 2008; Soto & Humphreys, 2007, 2008).



2

However, it is less clear whether multiple working memory items
can guide attention in a similarly incidental way. It is this, more
incidental guidance, as opposed to a goal-directed guidance (e.g.,
Beck et al., 2012; Hollingworth & Hwang, 2013), that we focus
on here and, at minimum, a significant literature suggests that
guidance by multiple memory representations is more fragile than
guidance by a single item, as often no incidental guidance effects
have been observed at all when participants remembered more
than a single item (Fratescu et al., 2019; van Moorselaar et al.,
2014; see Ort & Olivers, 2020, for a review). Conversely, several
studies report guidance when multiple items are held in mind,
with some suggesting that attention is guided equally well by each
memory item; Chen & Du, 2017; Hollingworth & Beck, 2016;
Fan et al., 2019; Soto & Humphreys, 2008; (Zhang et al., 2011,
2018). Importantly, for guidance to occur, an item must be main-
tained in an active state within working memory (Olivers et al.,
2006) and not simply primed (Kumar et al., 2009) or maintained
for less-relevant, secondary tasks (Downing & Dodds, 2004).

To date, these differing results have mostly been discussed in
terms of limits in visual working memory; typically, by focusing
on the number of remembered items that can be prioritized by
attention and thus given a special template status (Chen & Du,
2017; Fan et al., 2019; Fratescu et al., 2019; Hollingworth &
Beck, 2016; Olivers et al., 2011; van Moorselaar et al., 2014;
Zhang et al., 2018). To effectively search for an item in the envi-
ronment, it has been proposed that we maintain a template: a rep-
resentation in memory that resembles the item being searched
(Olivers et al., 2011). Attentional template accounts presume that
working memory is organized into qualitatively distinct states and
propose that attention must be internally directed toward a mem-
ory representation—which elevates the item to the special, tem-
plate status—for that item to interact with and bias attention (Chen
& Du, 2017; Fan et al., 2019; Fratescu et al., 2019; Hollingworth
& Beck, 2016; Olivers et al., 2011, 2011; van Moorselaar et al.,
2014, 2014; Zhang et al., 2018). This emphasis on the template
status as being the most important component of guidance leads to
the commonly debated question of how many items can achieve
this privileged status since, under this framework, any other (non-
attended) items cannot guide attention (Hollingworth & Hwang,
2013; Olivers et al., 2011; van Moorselaar et al., 2014). This liter-
ature’s focus on “how many items” is irrespective of whether
guidance occurs automatically (e.g., van Moorselaar et al., 2014)
or through top-down processes (e.g., Beck et al., 2012) and is con-
sistent with the historically strong emphasis on quantifying visual
working memory capacity by the number of representations that
can be maintained (e.g., Cowan, 2001; Luck & Vogel, 1997).

Variation in Memory

A critical factor of attentional guidance, however, is that, for a
remembered item to guide attention it must also be the case that it
is an accurate and precise representation of the encoded item.
Because attention is unlikely to be guided toward an item if the
corresponding memory representation is weak, imprecise, or even
focused on the wrong object, it is critical that we consider the
quality of the memory representations themselves. All models of
visual working memory capacity now acknowledge that items
vary in precision, such that representational fidelity tends to be
higher when only one item must be held in mind than for two
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items (e.g., Bays et al., 2009; Zhang & Luck, 2008). Additionally,
many modern models see independent accumulation of noise
across different items, and the resulting variation in fidelity across
these items, as the core of visual working memory limits (Bays,
2015; Fougnie et al., 2012; Schurgin et al., 2020). Thus, even for
very small set sizes, well within typical claims of three to four
item “capacity limits” (Cowan, 2005), variation in how well an
item accurately represents the originally encoded item (i.e., its rep-
resentational fidelity) appears to be an inevitable byproduct of
working memory storage that must be accounted for when consid-
ering how working memory is used to guide attention.

Variation in representational fidelity is also not solely about the
overall decrease in average fidelity (memory strength) as more
items must be held in mind. Individual items also vary within a
single trial. For example, Fougnie et al. (2012) found that when
participants remember three colors, they are far more accurate at
reporting a color of their choosing compared with when they
report the color of a randomly probed item (similar results are
found by Adam et al., 2017). This finding could only occur if the
fidelity of remembered items varied considerably within a trial.
Why might items vary in representational fidelity within a trial?
This variability has been proposed to arise from many sources,
including differential encoding precision (van den Berg et al.,
2012), how memory items relate to other items on the encoding
display (Brady & Alvarez, 2015), differential prioritization
through memory-related resource allocation (Bays & Husain,
2008; Bays & Taylor, 2018; Klyszejko et al., 2014), and differen-
ces in the representation of specific individual colors (e.g., Bae et
al., 2015; Morey, 2011). Variation in fidelity has also been pro-
posed to be a basic fact about the architecture of the working
memory system, with noise corrupting items independently (Bays,
2015; Fougnie et al., 2012; Panichello et al., 2018; Schurgin et al.,
2020; Wilken & Ma, 2004). These convergent results strongly
suggest that variation between multiple working memory items is
an inevitable and natural byproduct of working memory mainte-
nance and is thus an important factor to consider for memory
driven attentional guidance.

Can Attentional Guidance Be Explained by Memory
Strength?

In the current work, we propose that differing results in the liter-
ature may be accounted for primarily by variation in representa-
tional fidelity. While some previous work has investigated how
fidelity relates to guidance, such studies have often concluded that
guidance occurs for template items (Dube & Al-Aidroos, 2019)
and cannot occur for nontemplate items (Hollingworth & Hwang,
2013), irrespective of how well they might be represented in mem-
ory. However, in our view, these studies do not allow strong con-
clusions about the relationship between guidance and memory
strength—an aggregate measure of representational fidelity—
largely because of the way memory strength was measured. In par-
ticular, since nearly all current models of visual working memory
acknowledge that single trial errors are stochastically related to the
underlying representational fidelity of memory (e.g., Schneegans
et al., 2020; Schurgin et al., 2020), such errors do not provide a
strong basis for asking whether guidance is driven by variation in
fidelity (see General Discussion for more). In contrast, in the cur-
rent work, we directly test the relationship between memory
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strength and attentional guidance in a series of experiments that
assess attentional guidance effects while precisely measuring
memory strength of the remembered items. We ask participants to
memorize two colors and use a simple search task that allows the
detection of potentially small guidance effects. The implementa-
tion of a simple search task is in contrast to previous studies that
have often used more complex search displays that may have
taxed the already limited attentional and working memory sys-
tems, perhaps, inadvertently obscuring a multiple item effect'
(Hollingworth & Hwang, 2013; Houtkamp & Roelfsema, 2006;
Olivers et al., 2006; van Moorselaar et al., 2014; Woodman &
Luck, 2007).

We hypothesize that, on average, representational fidelity—how
well a memory item accurately represents the initially encoded
item—is sufficient on its own to determine whether and how
strongly that item will guide attention. That is, guidance does not
depend on the number of items that can be prioritized within work-
ing memory but is determined by the representational fidelity of an
item as well as the variation in representational fidelity between
items that occurs naturally both across set sizes and within a single
trial. We propose that the reason that guidance from multiple items
is often found to be more fragile than single-item guidance is
because it is less likely that multiple items are maintained in work-
ing memory with the strength and precision necessary to guide
attention effectively.

The Current Work

Overall, across three main experiments and additional supple-
mental experiments (see Appendix), we find evidence to support
an account where items vary naturally in their representational fi-
delity, and any and all memory items can guide attention insofar
as they are well represented—even without a special template sta-
tus. The critical and novel contribution of our study is based on a
careful assessment of memory quality and its relationship with
attentional guidance. Specifically, we precisely measure memory
strength (d’) which gives us a robust index of the overall memory
quality across trials and allows us to infer the representational fi-
delity of memories on individual trials (i.e., how faithfully a par-
ticular item is represented on a single trial, which effectively
represents a single draw from the memory strength distribution
across trials). By probing participants’ self-selected memories and
comparing them to randomly selected memory representations, in
Experiment 1, we show that memories vary in their representa-
tional fidelity naturally, and that typical multiple-item guidance
effects are primarily driven by the most well-represented memory.
In a series of simulations, we show that the observed variation
between remembered items is expected and well characterized by
a working memory model that directly predicts how much varia-
tion should be present (via signal detection theory; Schurgin et al.,
2020). In Experiment 2, by experimentally manipulating the sup-
posed “template status” of an item (with a retro-cue; van Moorse-
laar et al., 2014) and the representational fidelity of items (adding
low or high perceptual-noise at encoding), we show that differen-
ces in representational fidelity can explain variation in attentional
guidance, with internal attention simply being one of many ways
to boost the fidelity of the attended memory. Finally, in Experi-
ment 3 we show that attention is guided by well represented mem-
ories even when those memories do not achieve a special
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“template status” within working memory, finding guidance even
for items placed outside “the focus of attention.”

Our results can thus unify the seemingly irreconcilable findings
that one or many working memory items can guide attention:
When working memory resources are stretched among multiple
active representations, often only a single item is represented well
enough to guide (e.g., Exp. 1); however, in other cases, the repre-
sentational fidelity of multiple items may be high enough to
produce guidance from both items (Simulation, Exp 3, and Discus-
sion). After presenting data from each experiment, we integrate
across all of the experiments, and find compelling evidence that
continuous variation in representational fidelity is sufficient to
determine whether—and how strongly—an item guides attention,
with no need to postulate distinct states in working memory, and
that this accounts for guidance strength. Thus, these data support a
model of memory-driven attentional guidance where representa-
tional fidelity fully explains how memories interact with attention
and influence behavior. Overall, we conclude that (a) attention is
guided by memories that accurately represent the encoded item,
(b) that internal noise, accumulated independently for each item,
determines whether an item is represented well enough to guide
attention and (c) that no strict limits exist on the number of items
capable of guiding attention; rather, any and all well-represented
items can guide attention and that the magnitude of this guidance
is directly related to an item’s representational fidelity at that
moment in time. We believe that this account explains and unifies
many of the mixed results in the memory-driven attentional guid-
ance literature and provides a new framework of how working
memory and attention interact.

Experiment 1: Dissociating Guidance for Well-
Represented and Poorly Represented Working
Memory Items

Previous work has shown that memory driven attentional guid-
ance is less strong when two items are maintained in working
memory compared with one (e.g., van Moorselaar et al., 2014) and
that representational fidelity varies considerably between actively
maintained items in working memory tasks (e.g., Fougnie et al.,
2012). We replicate these findings using our own paradigm in the
Appendix, finding in Experiment Al that guidance is less strong
when two items are maintained than one; and finding in Experi-
ment A2 that representational fidelity differs across memory items,
such that 1 item tends to be maintained more accurately than the
other when two items must be held in mind in an attentional guid-
ance task (see Appendix).

In Experiment 1, we investigated whether this variance between
multiple items in representational fidelity can explain the differen-
ces in guidance strength on any particular trial. In short, we asked
whether the best represented item is generally responsible for the
guidance effect by having participants perform both a search task
and memory task on each trial. Participants maintain two unique
colors in visual working memory for a memory task that occurred
at the end of each trial. Prior to reporting one of the remembered
colors on a continuous color wheel, participants performed a

"'we have, however, expanded search displays to contain four items and
observed guidance when multiple items are held in mind and the search
display contains four items (see Appendix).
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visual search task in which color was irrelevant. At the end of
each trial, either one of the remembered items was randomly
probed (forced report) or participants would freely report one item
of their choosing (free report). Evidence suggests that people are
nearly optimal at choosing the more precise item for report (Foug-
nie et al., 2012) and we hypothesized that, even without any
explicit experimental manipulation—participants were simply
instructed to report any memory item that they wished—individu-
als would have knowledge about the representational fidelity of
each item and, if some asymmetry between the items exists, would
select the more precise item to report. Thus, free report trials allow
us to estimate the representational fidelity of selected items, com-
pare it to randomly probed items, and examine whether items dif-
fer in their representational fidelity without explicit manipulation.

The primary goal of Experiment 1 is to relate the representa-
tional fidelity of individual items to the guidance effects during
search. Specifically, by focusing on free report trials, we can sort
trials based on whether a chosen memory item happened to be
present in the search display that occurs before the memory report
(chosen-item: present) or not (chosen-item: absent). Our critical
condition here is chosen-item: absent, where we expect to find a
diminished guidance effect (that could even be zero) because we
expect items with less-than-optimal representational fidelity to
exert limited guidance over attention. Chosen-item: absent trials
should on average represent the amount of guidance that occurs
from poorly represented items since it is unlikely that participants
would choose a poorly represented item to report when they have
multiple items to choose from (Fougnie et al., 2012). By contrast,
chosen-item: present trials likely represent a mixture of items that
were well represented from the initial encoding (those that should
guide) and trials where items are less well represented during the
search task, but that are nonetheless chosen during the memory
report, perhaps of the brief reexposure to that color during visual
search.” Nonetheless, any difference in guidance between these
two trial types suggests that representational fidelity differences
between the items are related to differences in attentional
guidance.

Method

The design, sample size, exclusion criteria, and analysis plan for
this experiment were preregistered using AsPredicted (http:/
aspredicted.org/blind.php?x=7b5y74).

Participants

Consistent with our preregistration, the final sample included
thirty participants (24 women) from UC San Diego, who took part
in this study in exchange for course credit. Our primary question
of interest was whether guidance would be different on free report
trials where the item from the search display was chosen than trials
where the item was not chosen. Pilot data suggested an effect with
Cohen’s d, > 0.5. Thus, per our preregistration, we determined
that 30 participants would provide adequate power (power = .8) to
detect effects of Cohen’s d. = 0.5 at an alpha level of .05 using the
pwr.t.test in R (all subsequent power calculations used this same
package and were for the same power and alpha levels). Data from
four additional participants were removed and replaced for failing
to meet the preregistered exclusion criterion and, as in the appen-
dix experiments, data from another participant was removed and
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replaced for failing to follow forced-report instructions and thus
failing to report the probed memory item on more than 40% of
trials.

Stimuli

Stimuli were generated and presented using MATLAB and the
Psychophysics Toolbox (Brainard & Vision, 1997; Pelli & Vision,
1997). Memory items were colored rings that were 3° visual angle
in diameter, .3° thick, and were centrally placed 4° to the left or
right of fixation. On every trial, the color of one memory item was
randomly drawn from a uniformly spaced circle (radius 49°)
extracted from the CIE L*a*b space, centered at (L = 54, a =21.5,
b = 11.5) and the second color was selected to be 90° away in
color space from the first color (with =5° of jitter). The search dis-
play consisted of a target line which was .3° thick, .4° long, tilted
.06° to the left or right of vertical, and placed 4° above or below
fixation and a single vertical distractor line that was placed at the
opposite location (see Figure 1). The target and distractor lines
were encircled in colored rings that matched one of the memory
item properties. One of the colors matched a memory color and
the other color was chosen to be 180° away from it in color space
(this was 90° away from the other memory item). On the random
probe memory display, one of the memory items initially appeared
in gray (identical features to memory items) surrounded by a con-
tinuous color wheel which was 15° in diameter, .3° thick, and was
centrally placed about fixation. On free report displays, two gray
placeholders were presented and after one of these placeholders
was selected, the continuous color wheel appeared.

Procedure

Each trial started with the presentation of two memory items
(500 ms) that were to be remembered for a memory task at the end
of the trial. Following a 900 ms delay, a search display appeared
for 150 ms. The search display contained two lines, a distractor
and a target line, above and below fixation. Participants needed to
rapidly determine the orientation of the tilted, target line after the
search display disappeared. Feedback to respond more quickly
was provided when responses exceeded 1,200 ms. After partici-
pants provided a search response, and after a delay of 1,100 ms
participants were probed on one of the memory items. On forced
report trials a randomly selected memory item was presented in
gray and would change color as participants moved the mouse
around the continuous color wheel. On free report trials, partici-
pants were presented with two gray rings to the left and right of
fixation. Here, they clicked on which item they would like to
report prior to using the continuous color wheel (see Figure 1).

The memory task was evenly divided between the free report
and forced report conditions and on half of all forced report trials
the probed item was present in the visual search display and was

2 Note that because participants were required to select at least one item
to report, it is feasible to imagine that on some trials both items would have
less than optimal fidelity and would produce a weakened guidance effect.
Furthermore, although the search display is presented briefly so as to
discourage intentional re-encoding, we have also replicated the same
pattern of data in another experiment in which we used two set sizes (1 vs.
2) along with the free-report method, but had participants perform either
search or the memory task on separate trials to avoid the possibility of re-
encoding items during the search (see Appendix).
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Figure 1
Experiment 1 Task Design

Memory Display
500 ms
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Participants remember two colors on every trial then perform a visual search task after a short delay,

followed by a memory report at the end of each trial. On half of the trials participants are forced to report a
particular item (left memory example), and on the remaining half of trials they can choose which color they
want to report (free-report trials; right). This allows us to separately analyze the search benefit for free-report
and random-probe memory conditions. See the online article for the color version of this figure.

absent on the remaining half. At test, participants were asked to use
the mouse to find the color closest to the remembered color on the
color wheel. The location of the test-item indicated which memory
item should be reported (e.g., a test-item on the left probed the color
of the memory item that was on the left at encoding), and which
item was tested was counterbalanced across the experiment. Once
the mouse was moved from the central fixation point the gray test-
item changed color to match the color at the position of the mouse
cursor. Once participants identified the color that matched the
remembered color as precisely as possible on the color wheel, they
locked their response by clicking the mouse button. Response error,
defined as the difference in degrees between the provided response
and the correct answer, was shown after every memory trial and par-
ticipants were instructed to keep this error below 10°. Participants
were instructed to prioritize speed without compromising accuracy
for the search task and, for the memory task, were instructed to pri-
oritize precision without compromising temporal efficiency.

Analysis

In the search task, we calculated each participant’s median
response time (RT) where the target was in the memory-matched
color and in the distractor color separately. Our main measure of
interest is in the magnitude of the difference between these match
conditions and will refer to this RT difference as the amount of
guidance. Note that this measure indexes both benefits of being
faster to the target-match trials as well as costs of being slower to
the distractor-match trials. Here, we are agnostic to these differen-
tial effects and thus simply summarize them in the RT difference
(Raw RTs per condition are shown in the tables in the Appendix).
RTs that were faster than 200 ms or slower than 1,500 ms were
removed prior to any further analysis. All subsequent analyses use
these criteria, unless otherwise noted.
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Memory performance was evaluated in two ways. First, we
used a simple descriptive statistic, angular deviation (a circular
analog of standard deviation) to provide a nonparametric estimate
of an item’s representational fidelity. Second, we implemented the
Target Confusability Competition (TCC) model to better quantify
memory strength (Schurgin et al., 2020). The TCC model is based
on recent evidence showing that continuous report memory distri-
butions can be quantified by a single parameter — memory
strength (i.e., d’)—once the nonlinear nature of perceptual similar-
ity is accounted for (Schurgin et al., 2020). All statistical analyses
on memory are performed using memory strength (d’). Specifi-
cally, for any given color wheel, there is a completely fixed per-
ceptual similarity function that quantifies how confusable colors
are, but this function is not linearly related to distance along the
color wheel—rather, it is roughly exponential (as in Fechner’s
law).

Understanding this confusability function allows a simple sig-
nal detection model to explain working memory performance
across a huge variety of conditions, with only a single parameter
(d"). In particular, on any given trial, the to-be-remembered color
is boosted by a strong familiarity signal (strength: d’), and com-
pletely dissimilar colors do not have their familiarity signal
boosted at all. Intermediate colors have their familiarity signals
boosted proportional to how similar they are to the target. So, a
color 1° away from the to-be-remembered color gets a large
boost in familiarity, and a color 10° away from the to-be-remem-
bered color gets a moderate boost in familiarity. Noise is then
added to these familiarity signals, and when participants are
asked what color they saw, they report the color that has the
highest familiarity.

Formally, this means the continuous report task is conceptual-
ized as a 360-alternative forced choice task: Let f{x) be how simi-
lar a given color is to the to-be-remembered color. Let (X 7o, . . .,
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Xg0) be a vector of normal random values with means d, = d’ f(x)
and unit variance. Then the reported color value, 7, on this trial is
simply:

r o~ argmax(X,ng., ceey X]g(])

In the current data, which uses the same color wheel used by
Schurgin et al. (2020), we rely on their similarity data and their
technique for fitting the model, including the necessary correlation
between colors based on perceptual matching data to adjust d’
(Schurgin et al., 2020).

Since the current study introduced a larger possibility of loca-
tion confusions than the data fit by Schurgin et al. (2020), we
introduce a “swap” parameter into the model (as in Bays et al.,
2009). We report memory strength (d’), the proportion of trials
where the nonprobed item was incorrectly reported (swap rate),
and an adjusted d" which conservatively assumes participants had
no information about the probed item. In particular, rather than
assuming participants always report based on the similarity, f{x),
to the target color, we assume that on some trials, participants
instead respond based on similarity to the nontarget (i.e., the item
at the nontested location). Let f(x) be the similarity to the target
color and g(x) be the similarity to the nontarget. Let (X ;7, ...,
Xg0) be a normal random vector with means d, = d’ f(x) and unit
variance, and (Y_j79, ..., Yig0) be a normal random vector with
means d, = d’ g(x), and unit variance. Let 8 be the “swap rate”.
Responses are generated as follows:

w ~ Bernoulli(f)

r o~ wXargmax(Y_j79, ..., Yig0)

+ (1 = w)argmax(X_179, ..., Xiso)

In other words, for each trial, participants report the maximum
familiarity signal from either the target or nontarget with some
probability B of reporting from the nontarget distribution. We
again make use of the Schurgin et al. (2020) similarity data and
perceptual matching data.

Whereas for conditions with no swaps (e.g., single-item condi-
tion), d’ alone provides a measure of how strong the memory was,
in the presence of swaps it is unclear what to consider as the
strength of the underlying memory. The d’ parameter in the swap
model is best thought of as “how strong memory would be if peo-
ple always reported based on the correct target” (e.g., ignoring any
contribution of swaps). This value thus only represents the actual
memory strength across all trials if “swaps” occur totally based on
response error, and even when participants misreport items, they
always have a very strong representation of the correct target as
well. By contrast, if participants tend to report an incorrect item as
a form of “strategic guessing,” for example, selectively do so
when they have very little information about the correct item
(Pratte, 2019)—then the best way to understand memory strength
across all trials is to reduce the estimated d’ by the proportion of
swaps (e.g., assume on “swap” trials, people had d’ = ~0 for the
correct item). Telling apart these accounts—or where on this con-
tinuum people tend to be—is difficult and not our main purpose,
and ¢’ is an approximately interval measure, unlike percent correct
or “guess rate” (Macmillan & Creelman, 2005). Thus, for our
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results, we report three measures of memory strength: angular
deviation (just a descriptive statistic of how tightly clustered par-
ticipants error are); d’ (memory strength on trials where the correct
item was reported); and adjusted d’ (memory strength after adjust-
ing downward to account for the possibility of no memories when
participants made location swaps, e.g., d’ [1 — B]). In general, all
of our conclusions hold similarly for angular deviation and both d’
measures and thus hold regardless of what assumption is made
about memory for the target on swap trials.

Results and Discussion

Our main analysis focused on the magnitude of attentional guid-
ance, operationalized as the difference in RT between target- and
distractor-match trials, separately for each condition. We first sub-
mitted the average guidance effect, separated by memory condi-
tion (forced or free report) and search type (memory-item: present
or absent), to a repeated measures ANOVA. This analysis revealed
a significant main effect of memory condition, F(1,29)=4.19p =
.04, no main effect of search type, F(1, 29) = 2.09, p = .16, and a
significant interaction, F(1, 29) = 7.73, p = .009. Next, we exam-
ined the amount of guidance on forced report trials alone and
found that participants were faster on target match compared with
distractor match trials regardless of whether the search display
contained an item that was subsequently tested, #(29) = 3.96, p <
.001, d, = 0.81, or not (#(29) = 4.46, p < .001, d, = 0.73, and that
the amount of guidance was consistent across these conditions as
expected, 7(29) = .21, p = .83, d, = 0.08. To determine whether we
have evidence to accept the null effect, we used Bayes Factors
with a standard scale of the effect size (.707) and the Jeffrey-Zell-
ner-Siow Prior (JZS; Rouder et al., 2009). Here, we found that
there is strong evidence to support no difference between these
conditions (BFy; = 5.04).

Next, we examined the free-report condition alone. For chosen-
item: present trials, we found that participants were significantly
faster on trials where the chosen working memory item happened
to match the color that surrounded the search target compared with
distractor-match trials, #(29) = 3.6, p < .001, d. = 0.66; see Figure
2. On the critical condition, chosen-item: absent, we tested
whether unselected memory items would guide attention. Here, we
found no significant difference between target- and distractor-
match trials, #(29) = .37, p = .72, d, = 0.06, found evidence to sup-
port the null finding (BFy;, = 4.84), and found a significantly larger
amount of guidance on chosen-item: present trials compared with
absent trials, #(29) = 2.48, p = .01, d. = 0.59. Thus, the item that
was not chosen in the memory task had little observable influence
on visual search performance.

We next focused on memory performance to understand the
relationship between guidance and memory strength. We submit-
ted memory performance (swap d’) to a repeated measures
ANOVA. The main effects of report condition (forced or free
report; F(1, 29) = 73.99, p < .0001), and search type (whether a
tested memory item appeared in the search display; F(1, 29) =
18.15, p < .001) were significant; with no significant interactions
(Fs < 1.61). We next compared memory strength (d’) across con-
ditions and report all memory measures comprehensively. Mem-
ory performance was overall quite good and was better on free-
report trials (TCC d' = 3.05, swap rate = .02, adjusted d' = 3.00,
SD = 28.36°) compared with random-probe trials (TCC d’ = 2.62,
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Figure 2
Experiment 1 Results
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Note. (A) Amount of guidance (RT for distractor minus target match trials) for forced report (blue bars; left
pair) and free report (orange bars; right pair) trials separately for when the reported memory item was present
or absent in the search display (dark vs light colors). For forced report trials, there is a clear guidance effect
when the subsequently probed memory item was or was not present in the search display. For free report trials,
by contrast, where participants are able to selectively report their strongest memory, there is a larger guidance
effect when the subsequently chosen free report item was present in the search display than when the chosen
item was absent. Thus, a memory item that is not subsequently chosen for report in free report exerts little to
no influence over attention; resulting in a much smaller difference in RT for target and distractor match trials
than a chosen item. (B) Memory performance for forced report (top row) and free report (bottom row) sepa-
rated by whether the reported item appeared in the search display or not. Memory strength was better on free
report compared with forced report trials, suggesting participants report their strongest memories. In both
cases, memory was slightly stronger when the relevant memory item was seen again on the search portion
before the memory probe. Overall, then, memory was best when the freely chosen item was present on the pre-

viously encountered visual search display. See the online article for the color version of this figure.

swap rate = .08, adjusted d' = 2.38, SD = 38.7°; TCC d’ =3.05 vs
2.62, respectively; #(29) = 7.37, p < .001), as expected. Memory
performance was superior when the freely reported item was pres-
ent in the previously seen visual search task (TCC d' = 3.21, swap
rate = .01, adjusted &’ = 3.19, SD = 26.25°) compared with when
it was not (TCC d' = 2.90, swap rate = .03, adjusted d’ = 2.80,
SD = 30.47°; #(29) = 3.36 p = .01), suggesting a benefit arose from
reexposure. To check whether participants were biased to choose
the memory item that was briefly presented during visual search
more often than the absent item, we compared the proportion of
chosen-items: present to chosen-item: absent trials. We found that
participants reported the item that was absent from the search dis-
play about as often (47% of trials) as items that were present;
which suggests that participants were not more likely to report an
item that was present in the search display. Furthermore, when
participants reported an absent item, they tended to have a very
strong representation of it (¢’ = 2.90) and rarely reported the
wrong item (swap rate = .03). Thus, participants were not biased
to select an item that they had previously seen in the search display
despite being briefly reexposed (for 150 ms) to that color.

Overall, in Experiment 1, we find that one item tends to be bet-
ter represented than another, as free-report memory probes result
in higher fidelity memories, and that less well-represented items
are unlikely to guide attention. In particular, we find little to no
evidence of attentional guidance by a memory representation that
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is not chosen by participants as their strongest memory. Addition-
ally, when two items are maintained in working memory, we find
that guidance can largely be explained by a single working mem-
ory item (similar to Beck & Vickery, 2019; van Moorselaar et al.,
2014). These results demonstrate that multiple items are repre-
sented with varying levels of representational fidelity and appear
to exert correspondingly differential influences over attentional
guidance.

Simulation: Representational Fidelity Naturally Varies
Between Items Even When All Items Are Encoded
Equally Well

Experiment 1 revealed that working memory items naturally
vary in how accurately participants can report them: Allowing par-
ticipants to freely choose a memory item to report results in
improved memory performance for the chosen item relative to a
randomly probed item. Furthermore, the chosen item—the one
with better memory performance—primarily guides attention,
whereas the other, less precise item (that is not chosen) has little
influence on visual search. Although this shows a link between
guidance and memory strength, it does not provide any evidence
against a special template or focus of attention account. In particu-
lar, while the majority of models suppose stochasticity is sufficient
to explain why memory strength varies (e.g., Fougnie et al., 2012;



Schurgin et al., 2020; Schneegans et al., 2020), another possible
explanation for this variation in memory strength is that it too is
caused by directing attention to one of the items—either exter-
nally, during encoding or internally, during the delay period,
thereby giving some items a special status within the structure of
working memory (e.g., Oberauver & Lin, 2017). Such a model is
based on the idea that working memory is divided into qualita-
tively distinct states, and that item(s) can achieve a special status,
which results in a strong memory for that item and strong guidance
during visual search (Olivers et al., 2011). Such an account is pos-
sible and consistent with the data so far but this model makes
strong assumptions, namely that working memory consists of fun-
damentally different memory states.

In many ways, a more simple possibility is that items intrinsi-
cally vary in how accurately they reflect the encoded item, and
that items that are poorly represented simply cannot effectively
guide attention. Such between-item variation appears to arise natu-
rally due to noise in memory that is independent for each item
(e.g., Fougnie et al., 2012; Panichello et al., 2018; Schurgin et al.,
2020). For example, Fougnie et al. (2012) found that while items
vary in precision, this variation is not at all correlated across items
—contrary to what you’d expect if there is some overarching
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attentional resource that is being unevenly distributed across items
(as suggested by attentional template accounts).

In a series of simulations, we answer two related questions: Is
the amount of variation we find between the two items in memory
reports consistent with this natural variation account? Or does it
require additional assumptions about special attentional states
within working memory?

Importantly, variation between items doesn’t need to be explic-
itly accounted for in the TCC model of Schurgin et al. (2020) that
we use to fit memory distributions throughout the current article,
and despite this, this model makes precise predictions about how
memory reports should vary between items, but it predicts this
without explicitly modeling variation between items. Interitem
variability in this model is simply as a natural consequence of a
signal detection process (i.e., independent accumulation of noise
for each item; see Figure 3). The expectation of noise or variability
in the absence of an overarching attentional resource is common in
models of memory and several models of working memory make
precise and explicit quantitative predictions about how much vari-
ation we should expect between items at a given set size. For
example, van den Berg et al. (2012) propose a particular mathe-
matical relationship between variability and set size, with
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Imagine a scenario where people encode two items, one in one location and the other in a separate

location, and have independent memories for the two items. In this case, both items have the same underlying
memory strength, in the sense that the signal to noise ratio for both is d’ = 2.0 on average. That is, the encoded
color is “boosted” in familiarity by two standard deviations (d’ = 2.0) relative to how familiar an unseen, com-
pletely distinct color is (which is centered at familiarity = 0). Thus, on average, participants find the color they
actually saw at each location the most familiar. However, on any individual trial, the representation of one
item may end up more or less accurately reflecting the original color due to independent noise. That is, signal
detection conceives of each color for each item as varying in familiarity trial-to-trial (e.g., any given trial is a
sample from the across trial distribution). Thus, the representational fidelity of an item varies from trial to trial
from this noise process, even with the same underlying memory strength (d) for both items. In signal detec-
tion, confidence arises from the same familiarity signal as the decision. Thus, whichever item ends up the
strongest “winning” signal (e.g., the strength of the most familiar color) is the one we’d expect people to report
in a free report task. See the online article for the color version of this figure.
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variability following a gamma distribution within set size and the
mean of this distribution varying according to a power law across
set sizes.

TCC, on the other hand, like all signal detection-based accounts
of memory, proposes that the familiarity signals we use to decide
which item we saw are inherently noisy. That is, even if you never
saw a green item on a given trial, green might feel more familiar
or less familiar (the top left of Figure 3 shows the probability dis-
tribution across trials of how likely green is to feel each level of fa-
miliarity). Although actually seen items are on average more
familiar than items you haven’t seen (as reflected in a higher fa-
miliarity, on average shifted by d’ = 2.0, of the purple item in Fig-
ure 3), they also vary in familiarity, such that they might feel more
familiar (purple item on trial 1) or less familiar (purple item on
trial 2) across trials.

Similarly, within a given trial, the TCC model proposes that
item representations accumulate independent noise (Schurgin et
al., 2020; see also, Fougnie et al., 2012). So, if you encode both a
purple item and a green item, then on a particular trial, the purple
item may happen to feel familiar, and the green item might feel
less familiar. Importantly, simply knowing the underlying memory
strength (d') of the items on average allows us to predict exactly
how much they should vary trial to trial —because d’ is a signal-
to-noise ratio, we can use it to infer exactly how much variation in
ultimate memory performance there should be between items that
accumulate independent noise. The TCC model makes a slightly

Figure 4
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more complex prediction than the simple signal detection theory
account, because this model predicts not just how likely people are
to endorse having previously seen purple, but also exactly how
likely they are to endorse any other color as the previously seen
color. However, this same signal detection-based logic applies
equally to this model, with the added idea that when you encode
purple, not only does purple feel more familiar, but all similar col-
ors also get enhanced familiarity.

In sum, this model says that while the noise is independent
across different items, within the representation of an item, the fa-
miliarity signal is not independent for each of the colors but
depends on the underlying perceptual similarity structure: if purple
is encoded, not only does purple get a boost in familiarity (d”), but
similar colors (e.g., pink) get a boost, more so than distinct colors
(e.g., yellow; see Figure 4 and Method from Exp. 1). When we
add noise, this makes participants more or less likely to endorse
particular colors as the most familiar, and this differentially
impacts different items.

How does this a priori prediction of how much items should
vary in memory performance relate to the actual variability
observed in the free report condition of Experiment 1? To test this,
we take the d’ estimated from the overall average performance
across items on forced report trials and use this to simulate (a)
how much variability we expect between items in terms of per-
formance and (b) how this relates to actual free report perform-
ance. In particular, we assume that during initial encoding, all

In the Target Confusability Competition Model (TCC), the Familiarity Signal for Particular
Colors Depends on the Fixed Underlying Similarity Structure of the Color Representations
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When one color is encoded, not only that particular color gets a boost in familiarity (of d’), but colors

that are perceptually similar to that color are also enhanced and thus more likely to feel familiar relative to dis-
tinct colors. Added noise on individual trials results in differential representational fidelity across items within
a trial, even when each item has the same initial memory strength (d’). For example, on Trial 1, this individual
has a lot of confidence that the purple item is some kind of purple, whereas the most activated color channel
for the green item is yellow, so on this trial, the representational fidelity of Item 1 is greater than that of Item
2, even though both have the same underlying signal-to-noise ratio (d'). See the online article for the color ver-

sion of this figure.
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memory items are encoded equally well (with the same d’), result-
ing in the same familiarity boost of the to-be-remembered color
and similar colors (see Figure 4). Then, during the delay period,
noise is added to all color representations, separately for each
item, which changes the familiarity signals for each of these color
representations.

In a standard forced probe situation, participants report the color
they find to be most familiar for the probed item. In the free report
condition, they consider the most familiar color from both items,
and choose to report the color for the item that has a higher famili-
arity. We can then ask whether the amount of variation we observe
in our data—for example, the improvement of memory reports in
free report trials relative to forced choice trials—is consistent with
the variation predicted by this framework, or whether it exceeds it
and thus calls for another explanation (like a special attentional
focus that biases item representations systematically).

Figure SA shows that across both Experiment 1 and Experiment
A2 from the Appendix, free report results in reliably higher mem-
ory performance than forced report. As shown in Figure 5B, we
find that this difference between free report and forced report
matches the prediction that both items were encoded with the
same signal and had a similar amount of noise added to them (r =
.73, p < .0001). Thus, the variability between items that necessar-
ily arises from the signal detection process is sufficient to explain
the variability in memory performance that we observe. This dem-
onstrates that assuming intrinsic variation in the representational
fidelity of memories—attributable to independent item noise—is
sufficient to explain the difference in memory performance we
observed in our previous experiment. This assumption is also con-
sistent with data indicating items vary in precision independently

Figure 5
Simulation Results
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of each other (Fougnie et al., 2012). Overall, our simulations argue
that attentional guidance is driven by an item that happens to have
a stronger representational fidelity—and most accurately repre-
sents the initially encoded color—on that trial simply as a result of
natural variation, and without needing to confer any special status
on an item.

Experiment 2: Effects of Attentional Cues and
Representational Fidelity on Search

Our data, together with the simulations, are consistent with a
representational fidelity account. In particular, memory representa-
tions vary naturally due to noise, producing asymmetries in repre-
sentational fidelity between items, and that guidance effects are
present when the item that happens to have a strong memory rep-
resentation on a given trial is present in the search display. This
explanation differs from attentional template frameworks which
embrace distinct states among working memory items and propose
that attention is exclusively guided by any item that achieves a
special and prioritized template status. Critically, such theories
maintain that the template status is the single most important fac-
tor to predicting guidance and report that the precision of template
item(s) in memory has little (Fratescu et al., 2019; van Moorselaar
et al., 2014) to no impact on attentional guidance (Zhang et al.,
2018; but see Dube & Al-Aidroos, 2019; Fan et al., 2019; Holling-
worth & Beck, 2016; Hollingworth & Hwang, 2013; Hout &
Goldinger, 2015; Rajsic et al., 2017).

For example, Dube and Al-Aidroos (2019) found that a 100%
valid attentional retro-cue resulted in attentional guidance, but that
a 70% valid cue did not; despite producing indistinguishable
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(A) Individual lines are subjects: This shows that free report reliably exceeds forced report across all

experiments. (B) Signal-detection based prediction about free report with the strong assumption that all of the
variability comes simply from the independent noise added to each item: e.g., with the assumption that d’ for
both items is exactly what is estimated from forced report (and thus the same initially), and the only difference
in free report is that people report their most confident memory (e.g., the signal that has the strongest familiar-
ity on that trial). This provides an excellent explanation of free report performance, with no actual difference
between the items other than the noise process predicted by signal detection. See the online article for the color

version of this figure.
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memory performance between the two conditions. They concluded
that memory strength alone is not sufficient to grant a memory
item with the template status and thus guide attention. Similarly,
Hollingworth and Hwang (2013) report that an uncued item does
not guide attention irrespective of being very well-represented and
suggested that this is because the item lacked a template status (a
finding which is contradicted by Zhang et al., 2018). Yet, here, we
have shown that memory strength is highly predictive of search by
demonstrating that well-represented memories guide attention and
that less well-represented items do not (Exp. 1), and that the focus
of attention is not necessary to explain the observed variation in fi-
delity between free and forced report (Simulation). Our results
thus far are consistent with the proposition that representational fi-
delity primarily determines whether and the extent to which an
item will guide attention: as a representation becomes less and less
identical to the initially encoded item, it will exert guidance over
attention that is equally less and less efficacious.

In Experiment 2, we asked whether memory performance (d’, an
aggregate measure of representational fidelity), or a special focus of
attention better predicts guidance effects. In most studies, including
our Experiment 1, it has been difficult to estimate representational fi-
delity and attention separately since attended items are usually main-
tained more precisely than other working memory items (see
Oberauer & Lin, 2017; Rajsic et al., 2017). Thus, we next separated
the influence of representational fidelity and attentional focus on
guidance by independently varying attentional focus and representa-
tional fidelity across trials. Participants performed a similar task to
before, except now, to manipulate representational fidelity, we added
different amounts of perceptual noise during encoding. This has
been shown to increase confusability between colors, thus decreas-
ing the signal to noise ratio of the memory representations without
manipulating attention (see Zhang & Luck, 2008). We also varied
attentional focus using a directional retro-cue which has been shown
to change the attentional state and improve the representational fidel-
ity of an item by protecting it from interference (e.g., Oberauer,
2002; Oberauer & Lin, 2017).°

The goal of Experiment 2 is thus to change the representational
fidelity of memory items without changing the focus of attention,
and vice versa, and to test whether differences in fidelity can affect
visual search performance, independently of an item’s attentional
status. If fidelity plays an important role, guidance should vary
according to how well an item is represented. And, if attention is
simply one way of many to modulate memory strength, we’d
expect guidance to be greater for attended items but still vary
depending on the representational fidelity at the time of search. If,
however, the fidelity of the remembered item plays little to no
role, as previously stated by attentional template accounts (Dube
& Al-Aidroos, 2019; Fan et al., 2019; Hollingworth & Beck,
2016; Hollingworth & Hwang, 2013; Rajsic et al., 2017; Zhang et
al., 2018), once an item has achieved template status by being
focally attended, then we should find a similar sized guidance
effect across all items with a template status, regardless of how
well they are represented.

Method

The design, sample size, exclusion criteria, and analysis plan for
this experiment were preregistered using AsPredicted (https:/
aspredicted.org/blind.php?x=xx5wr8).
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Participants

The final sample included 50 undergraduates (34 women, mean
age = 22.47 y) from UC San Diego who took part in this study in
exchange for course credit. Because we assumed the external noise
manipulation would result in a smaller effect than the effect of in-
ternal noise (which was ~.65), the preregistered sample size of 50
was powered to allow us to detect effects considerably smaller
than those observed in Experiment 1 (d, = 0.4). Data from an addi-
tional eight participants were removed for failing to meet the pre-
defined inclusion criteria and, as in the previous experiments, data
from three others were removed for incorrectly reporting the
probed memory item on at least 40% of trials (greater than 3 stand-
ard deviations from the group average).

Stimuli

Memory items were presented as squares with a side length
of 3° in visual angle. On high-perceptual-noise (high-noise) tri-
als, 360 uniquely colored dots (each .23° in diameter) were ran-
domly positioned within an invisible circle (6° in diameter)
over each memory item. On low-perceptual-noise (low-noise)
trials, 60 uniquely colored dots were randomly positioned over
both memory items. To achieve an even distribution of colors
within the perceptual noise, the colors of the dots were chosen
to be 1° and 6° apart in color space for high- and low-noise tri-
als respectively. Postcue displays consisted of either a neutral-
cue (two arrows, each facing away from fixation and toward the
memory items) or a directional-cue (one arrow facing one of
the memory items; each arrow was .64° long and .1° thick). The
memory report display was identical to previous experiments
except that the test-item(s) were squares with equal proportions
as the memory items.

Procedure

High-noise displays were presented for 48 ms while low-
noise displays were presented for 300 ms. Following the pre-
sentation of the memory items, there was a 700-ms delay. After
this delay, on 256 trials for both high- and low-noise trials, par-
ticipants were shown a neutral postcue; on the other 256 trials,
they were shown a directional postcue which cued them to the
item that was to be probed in the final memory task with 100%
validity. After a further delay of 500 ms, participants per-
formed the visual search task. After the search task—briefly
flashed for 150 ms and followed by an untimed response win-
dow—and a further delay of 350 ms, the memory report display
was presented. On neutral cue trials, there was a 50% chance of
each item being probed and on a directional cue trial the cued
item was always tested. On both kinds of trials, 50% of the
time the subsequently tested item was the memory-matched
color from the visual search display and on 50% of these trials,
the memory-match color was the visual search target, and on
50% of these trials the memory-match item was the distractor
(see Figure 6).

3 Note that although some purport that the retro-cue facilitates memory
performance by giving it a special status (i.e., placing it within the focus of
attention), it is equally likely that retro-cue effects arise from the flexible
allocation of a continuous memory resource (see Bays & Taylor, 2018).
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Figure 6
Experiment 2 Task Design
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Note. Participants remembered two items on every trial. Memory performance was manipulated in two ways:
First, by presenting the items with many colored dots for a short time (high-noise trials; left) or a few colored
dots for a long time (low-noise trials; right); more perceptual noise at encoding increases an item’s confusabil-
ity with other colors. Second, we presented a postcue (i.e., retro-cue) during the delay period that was either
neutral (distributed-attention condition; right) or directed to one of the items with 100% validity (directed-
attention condition; left). This attention manipulation determines which item is in the “focus of attention”.
These manipulations allowed us to modify representational fidelity and attentional focus relatively independ-
ently. Finally, each trial continued with a search task, followed by the memory report task. See the online arti-

cle for the color version of this figure.

Model Fitting

Note that in theory, adding noise will change the similarity
function used by the TCC model to estimate memory performance
(d'), because we are changing the stimuli themselves, and thus
changing the similarity structure of the stimulus space (Schurgin
et al., 2020). In particular, if the noise makes colors more percep-
tually confusable, the central part of the error distribution might be
wider with noise than no noise (as observed by Zhang & Luck,
2008). However, insofar as we are adding small amounts of color
noise relative to the size of the stimulus, we assume these effects
are small and continue to use the same color similarity function in
the current data. This results in a good fit to the data (see Figure
7), suggesting the difference in similarity function is likely small
with this level of noise. It may be that adding uniform color noise
can be conceived of as simply increasing the familiarity of all of
the colors present in the noise, and so with uniformly distributed
noise, this is approximately equivalent to decreasing d'.

Results and Discussion

As predicted, manipulating attentional focus and perceptual
noise at encoding significantly influenced memory performance.
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Memory performance (d’') was submitted to a repeated measures
ANOVA. The main effects of cue condition, F(1, 49) = 182.81,
p < .001, noise condition, F(1,49) =131.98, p < .001, and search
type (whether a tested memory item appeared in the search dis-
play; F(1, 49) = 56.59, p < .001) were significant. The interaction
between the attention cue and noise conditions was also signifi-
cant, F(1, 197) = 17.16, p < .001. Further analysis showed that av-
erage memory performance on trials with a directional cue (TCC
d' =291, swap rate = .01, adjusted d' = 2.89, circular SD =
25.97°) was superior to those with a neutral cue (TCC d' = 2.39,
swap rate = .058, adjusted d’ = 2.26, circular SD = 34.05°; #(49) =
11.46, p < .001; Figure 7B), indicating that a retro-cue is effective
in increasing average precision of remembered items. Addition-
ally, when an item was cued, memory performance was modulated
by perceptual noise at encoding such that memory performance
was higher when a low-noise item was encoded (TCC &’ = 3.16,
swap rate = .013, adjusted d’' = 3.11, circular SD = 23.8°) com-
pared with a high-noise item (TCC d =2.67, swap rate = .006,
adjusted d' = 2.65, circular SD = 28.05°) and the difference
between them was significant, #(49) = 9.89, p < .001. Memory
performance was also affected by perceptual noise on neutral cue
trials such that low noise trials resulted in better performance
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Figure 7
Experiment 2 Results
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(A) Top: Amount of Guidance (difference in RT between target and distractor match trials) for each of the four tested-item-present condi-

tions (trials of which we have both memory and search performance). When an item was placed within the focus of attention by a directional retro-
cue, it biased attention in a graded fashion; more precise memory representations (low noise) resulted in a larger search effect compared with less
precise representations (high noise). When no direct, attentional cue was present (neutral cue), the guidance effect was small overall. Bottom:
Memory performance was highest for directional-cue trials with low-noise, followed by directional-cue trials with high-noise, neutral cue trials with
low-noise, and finally neutral cues with high-noise. These data show that both the attentional cue and the perceptual noise at encoding modulated
memory performance, and that this was directly related to the amount of guidance observed; consistent with a representational fidelity account
rather than a special focus of attention. (B) Corresponding error histograms and TCC model fits for all conditions. See the online article for the

color version of this figure.

(TCC d' = 2.57, swap rate = .059, adjusted d’ = 2.42, circular
Sd = 35.41°) compared with high noise trials (TCC d’ = 2.22,
swap rate = .055, adjusted d’ = 2.10, circular sd = 38.7°; #(49) =
8.24, p < .001).

Next, we looked at search performance and found that atten-
tion was most strongly guided by items with the highest memory
quality. We submitted the search effect from tested-item-present
trials to a repeated-measures ANOVA with retro-cue (neutral,
directional) and perceptual noise (high-noise, low-noise) condi-
tions. This analysis showed significant main effects of postcue, F(1,
49) = 13.13, p < .001, perceptual noise, F(1, 49) = 4.8, p = .03,
and no interaction, F(1, 49) = .61, p = .44. We performed planned
follow-up t-tests to better characterize the search effect for items
within the focus of attention, that were both searched and probed
at the end of the trial, and found that participants were faster on
target-match trials compared with distractor-match trials regard-
less of whether high-noise items, #(49) = 2.46, p = .017, d_ = 0.35,
or low-noise items, #(49) = 5.50, p < .001, d, = 0.78, were main-
tained. When attention was distributed between memory items
we found a small search effect that failed to reach significance
when a high noise item, 7#(49) = 1.51, p = .14, d, = 0.02, BF,; =
2.25, and a marginally significant effect when a low-noise item
was maintained in working memory, #(49) = 1.89, p = .06, d, =
0.26, BFy; = 1.25.
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Next, we looked at the difference in search effect across the
directed attention conditions and found a reliable difference
between high- and low-noise trials, #(49) = 2.30, p = .02, d, =
0.43. Given that these two trial types resulted in differential
memory performance, with low-noise trials having better mem-
ory performance (TCC d’ = 3.16) relative to high-noise trials
(TCC d’ = 2.67), this indicates that the quality of the memory
representation—above and beyond attention alone—is impor-
tant in determining the amount of guidance. This finding demon-
strates that a template item guides attention in accordance with
its representational fidelity. This is in contrast to what would be
expected if “template status” per se was all that was critical to
guidance.

Although the results from this experiment contradict the strong-
est versions of the attentional template account wherein an item’s
status alone determines which item guides attention (Fan et al.,
2019; Hollingworth & Hwang, 2013; Zhang et al., 2011, 2018) it
could be that the template status is a binary determinant of whether
an item will guide at all, and how well an item is represented sub-
sequently determines the strength of guidance. To more explicitly
determine whether the attentional template is a necessary function
of attentional guidance, we next investigate whether an item with-
out a template status guides attention if it is represented with high
fidelity in memory.
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Experiment 3: Effects of Representational Fidelity on
Items Outside the Focus of Attention

In a final experiment we tested whether an item that is not
directly attended can guide attention, as long as its representational
fidelity is sufficiently high; a prediction that is directly contradic-
tory to attentional template accounts. To more directly compare
the effects of representational fidelity (by adding noise at encod-
ing) and attentional status (through a retro-cue) we manipulated
both factors within the same trial. Attentional template accounts
would predict no guidance for nontemplate items, whereas a repre-
sentational fidelity account would predict that any well represented
item exerts influence over attention.

Participants maintained one high-noise and one low-noise item
in memory on the same trial and were subsequently retro-cued as
to which item would most likely be tested on memory probe trials.
Since it could be argued that memory performance is contaminated
by the reappearance of one memory item in the search display, and
this in turn may change participants’ strategy during visual search
and possibly interfere with the guidance effect, we now tested
memory and search on separate trials (similar to our preliminary
Experiments Al and A2; see Appendix). This change eliminates
any strategic attempt to improve memory by attending to the col-
ors in the search display since participants will only perform one
task per trial. We are particularly interested in whether a noncued
and thus nontemplate item can guide attention when it is well rep-
resented, and whether, in general, d’ tracks guidance, as we have
seen in our previous experiments, and as predicted by our repre-
sentational fidelity hypothesis.

Method
Participants

Owing to the global pandemic, in-lab data collection for this
experiment stopped prematurely. We transitioned to an online
study and, to make it more amenable to online testing, changed the
length of the experiment, the sample size, and multiple aspects of
the task itself (preliminary in-lab results mirror those found here).
All participants were between 18 and 36 years old, reported nor-
mal or corrected-to-normal vision, and gave informed consent in
accordance with the procedures approved by the Institutional
Review Board at UC San Diego. 135 participants (72 women,
mean age = 20.62 y) from UC San Diego took part in this online
study in exchange for course credit. Exclusion criteria were identi-
cal to Experiment 1, except that we relaxed the search accuracy
requirement to remove participants with worse than chance per-
formance, and this resulted in the removal of 35 participants, giv-
ing a final sample size of 100 participants. With this sample size
we can detect effects as small as d, = 0.28, allowing for the possi-
bility of the effect size being smaller owing to less reliable data
than in the in-lab studies.

Stimuli

Participants performed the experiment on their home computers
on a monitor that was at least 800x800 pixels to ensure the entire
display was visible for the duration of the experiment. Similar to
Experiment 2, two colored squares (90 X 90 pixels) were placed
either side of fixation (300 pixels apart; centrally positioned 150
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pixels to the left or right of fixation). Memory items were drawn
from the same color space used in previous experiments and the
color value for memory items were roughly 90° apart. Similar to
Experiment 2, a circular cloud (50-pixel radius) of perceptual
noise was superimposed over the memory colors. One memory
item was occluded by 360 uniquely colored dots (4-pixel radius
each; designated High-Noise item) and the other memory item
was occluded by 60 uniquely colored dots (evenly spaced by 16°
across the color wheel) and 300 dots that matched the color of the
memory item (designated Low-Noise item; see Discussion). The
search display was identical to previous experiments except where
noted: search items were 150 pixels above or below fixation and
contained either a straight line (distractor; 4 pixels wide and 55
pixels tall) or the target line which was identical to the distractor
line except that it was titled by 30° either clockwise or counter-
clockwise. The search display briefly appeared for 200 ms before
disappearing and showing only the fixation cross.

Procedure

Participants performed a total of 320 trials that were evenly split
between search trials and memory probe trials. On each trial two
memory items were presented for 300 ms; one memory item was
designated high-noise and the other item was designated low-
noise. The location of each item varied randomly across trials. Par-
ticipants maintained these items over a 600 ms delay prior to the
presentation of a retro-cue (700 ms) which signified which item
would be tested for memory with 80% validity (nonpredictive of
search; 50% like to be present on search trials). The retro-cue was
aimed at the high- or low-noise item evenly (160 trials each). After
a final 500-ms delay the search or memory probe display was
presented.

The search display was the same as in previous experiments
(note: the search task was only displayed for 200 ms). Participants
used the left or right arrow key on the keyboard to report the target
orientation (counterclockwise and clockwise respectively). Imme-
diately after a keypress, participants received feedback on their
performance. On memory probe trials participants saw the mem-
ory probe display (see Figure 8) which informed them to report
the cued or uncued memory item. Participants interacted with this
task exactly as before; using the mouse to move around the contin-
uous color wheel until the reported color matched their memory as
closely as possible. Feedback was provided after a response was
made.

Results and Discussion

In Experiment 3 we manipulated the representational fidelity of
both items in working memory on the same trial and found (a) that
the amount of attentional guidance follows the same pattern as the
estimate of memory strength (d’) of these items and (b) that
uncued items—unattended items with no template status—guide
attention as long as they are well represented (see Figure 9). For
memory performance, we found significant main effects of percep-
tual noise, F(1, 99) = 52.92, p < .0001, and cue condition, F(I,
99) =43.7, p < .0001, and no interaction, F(1, 99) = .03, p = .86.
For search, we found significant main effects of cue validity, F(1,
99) = 8.56, p < .001, and noise manipulation, F(1,99) =4.17,p =
.04, and no interaction, F(1,99) = 45, p = 5.
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Figure 8
Experiment 3 Task Design
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Participants remembered two items: one high-noise (left) and one low-noise (right) item across a short delay. A retro-cue signifies which

item will be tested on (forced report) memory trials (80% valid on memory trials; not predictive on search trials). On half of trials participants per-
formed a search task and on the other half of trials had their memory randomly tested (see Method for more details). See the online article for the

color version of this figure.

In planned ¢ tests we found a significant search effect for cued
items (i.e., a template item); irrespective of whether the memory
item was subjected to high-noise, #(99) = 3.92, p < .001, d. = 0.39,
or low-noise, #(99) = 5.28, p < .001, d. = 0.53. Of particular inter-
est, for uncued items (those without any template status) we found
a significant search effect for low-noise items, #99) = 3.16, p =
.002, d. = 0.32, but not for high noise items, #99) = .57, p = .56;
d, = 0.06; BFy; = 7.71. These search results demonstrate that well
represented items guide attention, that poorly represented items do
not, and, critically, that an uncued item without a template status
guides attention when it is well represented.

Although these results strongly argue against an attentional tem-
plate account, it is plausible that when a poorly represented item is
cued (high-noise-cued trials), participants do not focally attend to
it and instead focus on the less noisy, uncued item. If true, we
would expect a higher swap rate when the high-noise item was
cued compared with when the low-noise item was cued since, if
participants were internally attending to the wrong item, they
would be more likely to report that item at test. However, we find
no evidence to support this proposition as swap rate was low and
very similar between high-noise and low-noise conditions (.041 vs
.036, respectively, #(99) = .43, p = .68) and we found compelling
evidence to support this null finding (BFy; = 7.21). These results
lead us to conclude that participants maintained cued items as an
attentional template (i.e., did not swap to better represented items)
and that the search effect on the low-noise-uncued condition is
from an item without a template status.

These results fit well with the results from Experiments 1 and 2
in suggesting that, on average, representational fidelity underlies
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the amount of observable guidance. They are also consistent with
the idea that retro-cues are simply one way—a particularly effec-
tive way—among many others, to boost the representational fidel-
ity of an item, which has downstream effects on guidance.
Furthermore, these results are consistent with our representational
fidelity account where any and all memory items guide attention
insofar as they are well-represented. They are also, however,
inconsistent with an attentional template account where only cen-
trally focused item(s) can guide attention.

Explaining Guidance Effects Across All Experiments

Our proposed account makes a strong prediction, not just
within experiments but also across experiments: memory
strength is sufficient to explain attentional guidance, with no
other factors needed (e.g., with all other factors exerting influ-
ence purely through their effect on representational fidelity).
Our data are qualitatively consistent with this prediction:
Experiment 1 suggests that within a trial, items that are best rep-
resented are most responsible for search effects, and Experi-
ments 2 and 3 show that average memory performance predicts
the average magnitude of the visual search effects, such that
stronger memory representations were related to stronger guid-
ance effects across trials. These conclusions include across-trial
comparisons of memory performance where there was no possi-
bility of reencoding the item during search and thus having the
search display influence memory or vice versa (preliminary
Experiments 1A and 2A and Experiment 3).
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Figure 9
Experiment 3 Results
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(A) Top-Left: Search effect for each of the four noise and cue conditions. Even for items putatively “within the focus of attention” by a

directional cue, more precise memory representations (low noise) resulted in a larger search effect compared with less precise representations (high

noise). When an item was uncued (i.e., “outside of the focus of attention”; a

“template status” had been given to the other item), guidance was simi-

larly dependent on the representational fidelity of the item. That is, low-noise uncued items exerted robust guidance over attention, whereas high-
noise (poorly represented) items did not. In short, the search effect followed memory performance regardless of whether an item was cued or not.
Bottom-Left: Memory performance (adjusted d’) was highest for cued items that were encoded with less perceptual noise (low-noise) and worst for
uncued items that were encoded with more perceptual noise (high-noise). (B) Corresponding error histograms and TCC model fits for all conditions.

See the online article for the color version of this figure.

To quantitatively test the prediction that representational fidelity
can explain the amount of attentional guidance, we correlated av-
erage memory performance with the average guidance effect
across conditions from all of our experiments—including two sup-
plementary experiments in which we varied set size (1 vs. 2, see
Appendix). We included only forced report trials as they reflect
the true underlying memory strength whereas free report trials
overestimate the underlying fidelity of items as they are biased to-
ward items that happen to have the highest representational fidelity
on a particular trial. We submitted memory performance (TCC
adjusted d’) and the amount of guidance (distractor-match minus
target-match RT) to a simple linear regression model and found
that memory performance was highly predictive of the guidance
effect across experiments (Pearson’s r = .9, R* = .82, p < .0001).
For this analysis, we used adjusted d’ which assumes that individ-
uals have no familiarity for the probed color when they report a
color from the incorrect location; an assumption that results in
conservative estimates of memory. Instead, it is likely that even
when location information is lost, resulting in a swap, this deterio-
ration does not lead to a total loss of information about the color
(i.e., zero familiarity). Thus, we also plot the d’ values that pre-
sume memory strength is just as strong on swap trials to show the
total possible range (the horizontal line connected to each point),
and, as can be seen in Figure 10, this does not alter the nature of
the relationship. This correlational analysis, with a clear increase
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to an item’s ability to guide attention as that item is better repre-
sented, thus provides support for the hypothesis that the strength
of memories is a critical factor in determining guidance effects.

In addition, as seen in Experiments 2 and 3, this analysis sug-
gests that very strong memories are needed to guide search: The
intercept of zero memory guidance is predicted to appear at
approximately a d’ of 2, which is still a strong and extremely
accurate memory. This may explain why natural variation
between items in representational fidelity is sufficient to cause
guidance to be largely driven by a single item, even at set size 2:
even slightly deleterious noise is likely to remove the ability of
an item to guide attention.

In summary, then, the model we propose can be instantiated as
shown in Figure 11 This model has two parts: First, memories, even
at the same set size, vary independently in representational fidelity
(Fougnie et al., 2012; Panichello et al., 2018; Schurgin et al., 2020;
Wilken & Ma, 2004). In the TCC model we use throughout, this is
implemented via signal detection theory. Thus, even when both
items at set size 2 are encoded with d’ = 2.0, there is variation in the
ultimate representational fidelity of these items, in part, because they
accumulate independent noise (Figure 11, left). Second, our data
strongly suggest that only items with high representational fidelity
guide attention in a robust and reliable way. Figure 11 (middle)
instantiates one particular version of this, where strong representa-
tional fidelity is required to guide attention.
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Figure 10
Each Experiment Is Plotted as a Unique Color
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memory performance: represented as the adjusted d' (d' for the probed
memory item; a conservative measure which assumes participants have
no familiarity for the probed item and decided to report the other one),
because performance for the probed item is most relevant when asking
about how memory relates to the search effect. Each dot has a corre-
sponding colored line which represents the total possible range of mem-
ory strength: if participants maintained perfect memory representation for
both items and simply reported the wrong location, d’ would be at the far
right of each line. In general, the amount of guidance increases with
memory performance within and across experiments. See the online arti-
cle for the color version of this figure.

Together, these two premises are consistent with the patterns of
data we observe and that are observed in the literature. The partic-
ular numbers from Figure 11’s instantiation are not necessarily
fixed—they depend on various assumptions about what it means
for only strong memories to guide, and how guidance might affect
RT. However, the patterns remain the same regardless of these pa-
rameters. Such a model matches Figure 10 in terms of guidance as
a function of average memory strength (d’). This model also pre-
dicts other effects we observe, like the heterogeneity between
items even on the same trial. For example, at set size 2, with d' =
2.5, the model predicts that any given item has a 30% chance of
causing guidance. However, since the noise for each item is inde-
pendent, this implies that the chance both would guide attention is
only 9% (30% X 30%), suggesting most trials will have only one
item guide attention in a meaningful way.

General Discussion

Recent work has shown that attention can be biased toward
items that match the contents of working memory. Using hybrid
visual working memory and visual search paradigms, several
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studies have shown robust guidance when a single working mem-
ory item is maintained (Olivers et al., 2006; Soto et al., 2005,
2008; Soto & Humphreys, 2007, 2008) though the results are
somewhat mixed when multiple working memory items are held
in mind (Beck & Vickery, 2019; Chen & Du, 2017; Fan et al.,
2019; Fratescu et al., 2019; Hollingworth & Beck, 2016; Holling-
worth & Hwang, 2013; Houtkamp & Roelfsema, 2006; van Moor-
selaar et al., 2014; Zhang et al., 2018). The discussion of whether
multiple items can guide attention is often focused on the number
of items that can achieve a privileged template status with little
focus on the representational fidelity of the remembered items.
Here, in contrast, we carefully assessed the memory strength of
items, demonstrating a straightforward relationship between the
average representational fidelity of memories and attentional guid-
ance that exists independently of an item’s template status. In par-
ticular, we found that both within-trial and across-trial variation in
representational fidelity predicted attentional guidance and did so
without needing any other predictors (like a special privileged
state). These findings suggest that the degree to which an item
accurately represents the originally encoded item (i.e., its represen-
tational fidelity) determines whether—and how effectively—an
item guides attention.

In particular, we show that when two items are maintained in
visual working memory, one of the items tends to have greater rep-
resentational fidelity than the other item, suggesting natural and in-
herent variation between memories; that the more accurate
representation primarily drives the observed guidance effect while
a poorly represented item exerts little to no influence over atten-
tion (Experiment 1); that the observed variation in memory reports
between items is predicted by basic signal detection theories of
memory (Simulation, Figure 5B); that, across-trial variation in the
quality of memory representations predicts the size of search
effects (Experiment 2); and, finally, that attention is guided by
well represented items irrespective of achieving any purported
template status (Experiment 3). Importantly, Experiment 3, along
with the correlation across experiments (see Figure 10), suggests
that multiple working memory items are each capable of guiding
attention, as long as that item is maintained with sufficiently high
representational fidelity (although this may be a rare occurrence in
typical paradigms; see Figure 11). Although these latter results
support a representational fidelity account, they are also in stark
contrast with fundamental assumptions of the attentional template
account.

The proposed representational fidelity framework speaks to two
important issues in the literature of memory driven attentional
guidance as well as to working memory and attention literature
more broadly. First, to the question of whether one, or many work-
ing memory representations guide attention. Our data indicate that
only an extremely strong and high-fidelity memory representation
can guide visual search effectively, something that rarely occurs
for more than one item at a time (e.g., Figure 10). To be clear, we
do not suggest that multiple items could never guide attention
simultaneously (as evidenced by Experiment 3), instead, the data
simply suggests that all of the simultaneously maintained memo-
ries are unlikely to be sufficiently well-represented to each exert
strong guidance over attention.

Second, the present results elucidate the mechanisms underlying
attentional guidance and explain why attentional guidance is often
driven by a single item. Importantly, and different from previous
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Figure 11
Our Final Proposed Model Has Two Premises: Items Vary in Representational Fidelity, Even
From the Same Display, Because of Independent Noise; and Only Strong Items Guide Attention
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varies between items. In the TCC model we use to measure memory, this variation between items is a normal
distribution with SD = 1, consistent with signal detection theory. Middle: Combined with the variation in preci-
sion between items is the fact that only strong items guide attention. The plot shows one possible instantiation
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erage, to be strong, matching Figure 10’s real data.

accounts, our data suggest that natural variation in the representa-
tional fidelity between items is sufficient to explain the extent to
which an item will guide attention on a particular trial, with no
special focus of attention or similar state-based accounts of work-
ing memory being necessary (Experiments 2 and 3 and the Simu-
lation). Under this account, retro-cues are simply one way to
improve fidelity, but a similar boost in memory—and a corre-
sponding boost in attentional guidance—can also be accomplished
differently, as we show in Experiments 2 and 3.

The Importance of Representational Fidelity

The importance of strong memories and their inherent connec-
tion to an item’s ability to guide attention has been acknowledged
in the literature for many years. Unfortunately, however, this rec-
ognition has rarely translated into precise measurements of repre-
sentational fidelity of individual items. For example, in an elegant
set of experiments, Olivers et al. (2006) found no search effect
when participants knew that the final memory test would be rela-
tively easy (i.e., red vs green) but found a substantial search effect
when participants knew that the memory test would be difficult
(e.g., two subtle variations of red). While the goal of this manipu-
lation was to assess the differences between verbally and visually
maintained representations, the more difficult memory condition
had the likely effect of producing higher representational fidelity
for remembered items.

More importantly, much of the literature on attentional guidance
does not use tasks that allow for direct measurement of memory
strength for the relevant features at all. So, despite designing tasks
that would encourage participants to maintain a highly precise rep-
resentation, the memory probe itself cannot lead to an accurate
estimate of representational fidelity. This is because tasks were
used in which performance depends on memory for features that
are not relevant for guidance (Chen & Du, 2017; King & Macna-
mara, 2020), or 2-AFC probes where the foil items are extremely
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similar to the target color (Hollingworth & Beck, 2016; van Moor-
selaar et al., 2014, Experiments 1-2 and 4). These manipulations
make accurate assessments of memory strength impossible
because they decrease estimated performance without changing
the underlying memory signal, as shown by Schurgin et al. (2020).
Furthermore, these manipulations are often combined with meas-
ures of memory that are not independent of response criterion, for
example by averaging percent correct in a change detection task
(e.g., Dube et al., 2019; Fratescu et al., 2019; Zhang et al., 2011)
—a method which embraces a high-threshold model of responses,
even though memory appears graded in nearly all studies, includ-
ing in working memory studies (see Robinson et al., 2020).

In the case where studies use foils that are extremely similar to
the target (e.g., Fratescu et al., 2019; Hollingworth & Beck, 2016;
Olivers et al., 2006; van Moorselaar et al., 2014) their performance
estimates effectively compress the performance scale—very strong
memories are needed to get a ¢’ above 0, and a d’ of .5 in such a
task might correspond to a d’ of 3 or more in a task like ours or in
a 2-AFC task with more distinct foils (Schurgin et al., 2020). This
is to say that memory estimates from previous studies are not
directly comparable for many reasons. Although Schurgin et al.
(2020) demonstrate that 2-AFC tasks with maximally distinct foils
effectively measure the same underlying memory strength as com-
parisons between more confusable colors or as continuous report,
the nature of the seemingly low performance in some attentional
guidance studies (e.g., 65% accuracy) leads many of these
researchers to interpret memory as all-or-none (i.e., precise or not
precise), potentially obscuring the relationship between memory
strength and guidance.

Some attempts have been made to look at memory performance
and guidance using more fine-grained measures. However, even
findings which more accurately estimate memory have claimed
that there is no relationship between representational fidelity and
guidance when looking at individual trial errors (Hollingworth &
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Hwang, 2013). However, correlational analyses that are performed
on individual trials could never result in a meaningful or signifi-
cant correlation since no models of memory support a direct linear
relationship between error on a single trial and the underlying rep-
resentational fidelity of that memory, especially not models where
responses are inherently stochastic (e.g., Bays, 2015; Bays &
Husain, 2008; Schurgin et al., 2020; van den Berg et al., 2012).
For example, when sampling from the TCC model and assuming
that d’ was 100% perfectly predictive of guidance, the maximum
correlation observed in such an analysis is » = .09 (because a given
d’ can result in any error, with only a slight change in their propor-
tions). The null result observed by Hollingworth and Hwang
(2013) and studies like it are thus not informative for the central
issue of whether fidelity might underlie variations in guidance.

By contrast, in the current work we put a strong emphasis on
accurately measuring memory quality for items and directly relate
these measures to the guidance effects both within trials, across tri-
als, and across experiments. This allows us to make clear predic-
tions about which items guide attention and even allows us to
quantify the representational fidelity that is needed for an item to
guide while also determining how likely it is that more than one
item exerts an effect during visual search (see Figure 11). Concur-
rent recent findings have also demonstrated how accurately
estimating memory strength elucidates its importance to the mag-
nitude of the guidance effect (Kerzel, 2019; Kerzel & Witzel,
2019). For example, Kerzel and Witzel (2019) find that a second-
ary working memory item does not guide attention and that this is
not attributable to the lack of a template status but is simply attrib-
utable to that item being maintained with less representational fi-
delity than the guiding item. Similarly, Kerzel (2019) suggests that
the number of guiding items is fewer than the overall capacity of
working memory because the precision of guiding items must be
extremely precise, not necessarily because a narrow (single item)
attention template drives the effect. In the future, to further under-
stand the role of representational fidelity in attentional guidance, it
would be useful for those studying attentional guidance to use
memory measures that precisely and accurately assess memory
strength, and ideally measures that would allow for a comparison
between studies. This could be achieved by using 2-AFC with
maximally different foils at test, which would provide a measure
of the upper bound of memory in these tasks (Brady & Stormer,
2021), or by reporting either TCC d’ (Schurgin et al., 2020), or the
circular standard deviation when using continuous report.

On the Number of Items That Guide Attention

Many studies have found guidance effects for one and two item
working memory loads, including our supplementary experiments
(see Appendix; Beck & Hollingworth, 2017; Beck et al., 2012; Hol-
lingworth & Beck, 2016; Kerzel & Witzel, 2019; Olivers et al.,
2006; Soto et al., 2005, 2008; Soto & Humphreys, 2007, 2008;
Zhang et al., 2011). Such multiple-item guidance effects can always
be explained in two ways: (a) both items equally guided attention, or
(b) one working memory item is primarily responsible for driving
the multiple item effect (Beck & Vickery, 2019; Downing & Dodds,
2004; Olivers et al., 2006, 2011; van Moorselaar et al., 2014; Zhou
et al., 2020). Historically, dissociating between these two interpreta-
tions has been extremely difficult, as they mimic each other when
averaging across trials. The representational fidelity account,
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described here, offers a new view on this question and has the poten-
tial to explain which cases would result in the guidance of attention
by only a single item or multiple working memory items.

In many cases, the variation in fidelity across remembered items
that we observe—and find to be extremely important for guidance
—seems to undermine the strongest claims of two item guidance.
For example, Hollingworth and Beck (2016) had participants
maintain one or two working memory items while they searched
for a single target among eight distractors. Using search displays
with two distractors that could match one (match-1), both (match-
2), or none (match-0) of the memory items, they showed that
attention was guided on both match-1 and match-2 trials and found
a greater effect when both items appeared in the search display.
Although these results appear generally consistent with multiple
items influencing attention, an alternative explanation is that
because the best represented item was more likely to be present on
the search display in the match-2 condition, a more consistent, and
thus more robust, guidance effect was found. Specifically, on
match-1 trials the best represented item would be expected to be
present on 50% of trials, and on match-2 trials, the best repre-
sented item would be present on 100% of trials, which would gen-
erate a greater, and more reliable search effect in the match-2
condition on average, even if only a single item was guiding atten-
tion (a similar logic applies to a replication of this original study
by Fratescu et al., 2019, and other studies with a similar design,
for example, Fan et al., 2019; Zhou et al., 2020). Thus, in these
types of tasks, the presence of random variation in fidelity between
items, combined with only strong items guiding attention, poten-
tially makes it difficult to know with confidence how much guid-
ance is genuinely arising from the second item.

Of course, our account does not suggest that only one item is
necessarily responsible for guiding attention; on some trials, when
both items are represented extremely well, we predict that both
items could exert at least some observable guidance. And,
although this situation is unlikely to occur when participants are
asked to remember colors that are randomly drawn from 360
unique colors, there are manipulations that could modulate mem-
ory strength to produce such an effect. A possible example of this
principle is provided by a recent study by Chen and Du (2017)
where they investigated whether two memory items could guide
attention by combining two critical features from previous studies:
a match-2 condition (Hollingworth & Beck, 2016) and a shape sin-
gleton search task (van Moorselaar et al., 2014). Across a convinc-
ing set of experiments, they provided data which suggested that
multiple items can exert roughly equal guidance over attention.
When participants remembered two items and were randomly pre-
sented with one of those items as a distractor (match-1), they
found that attentional guidance was roughly equal when either
memory item appeared. On trials where both items appeared as
distractors (match-2), the attentional guidance effect (measured by
their memory-driven capture index) was roughly double that of the
match-1 condition and the guidance effect on match-2 trials was
greater than when a single, cued memory item appeared in the
search display. Thus, these findings appear to demonstrate that
two items are capable of exerting roughly equal, additive guidance
over attention. This finding is well explained by our representa-
tional fidelity account as it likely originates from the extremely
well represented nature of the memory items: both items appeared
to be represented with roughly equal precision (as measured by
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their 8-AFC task; see their Table 1), and memories were likely
extremely strong because participants were shown two—of only
four possible—unique colors* for long encoding time (1,000 ms)
on every trial; likely supporting the creation of strong and less
noisy memories.

Across our experiments, participants were shown a much larger
stimulus set than is common in this literature (e.g., randomly
selected colors from a continuous color wheel; 360 unique items).
When two items were maintained, we found that memory strength
for one of these items is substantially greater than the other and stud-
ies which have been taken to support a multiple-item template
account have also shown this pattern for remembered items. For
example, Zhang et al. (2018) used a paradigm similar to ours while
also tracking eye movements: Participants remembered two colors
(sampled from 180 unique values) while they performed a simple,
two-item search task. Participants were cued as to which item would
be tested first, and on half of the trials, participants reported their
memory strength on a continuous color wheel instead of searching
for a target among a single distractor. Although response time data
from search trials was roughly equal for both memory items (cued
and uncued), the authors measured first fixations as a more sensitive
measure of a memory item’s control over attention. While they con-
clude that multiple items guide attention, their data show that the
proportion of first fixations tracked the reported memory strength of
each item. That is, the cued item was fixated more often than the
uncued item and the cued item was also maintained with greater fi-
delity. Their findings suggest that less well-represented items can
interact with attention, but that they do so less efficiently and in
direct relation to how well they are represented in memory. These
results are similar to our data from Experiment 3 and, therefore, are
in line with a representational fidelity account, which postulates that
in principle any and all items can guide attention, but that the
amount of guidance is determined by the underlying representational
fidelity which can be modulated by attentional cues.

Representational Fidelity and the Focus of Attention

We show that differential memory performance between items
(as indexed by different performance in forced vs. free report)
arises in almost every situation (Exp. 1, and Supplemental Exp.),
consistent with several other studies (Adam et al., 2017; Bays et
al., 2009; Brady & Alvarez, 2015; Fougnie et al., 2012; Zhang &
Luck, 2008). Why do memories vary in their representational fi-
delity, and how does this variation relate to attentional guidance?
According to an attentional template account, one item is selected
among other items, thereby getting a boost in memory perform-
ance while also gaining the ability to interact with attention. Why
—and how—items are selected by attention and granted priority is
often not specified, and it is an open question as to how this inter-
nal spotlight of attention acts upon memory representations espe-
cially with respect to when a representation is selected without
top-down control or explicit instruction. The majority of previous
work has used pre- and postcues to manipulate this focus of atten-
tion and has found that attended items guide attention more effec-
tively, consistent with the focus-of-attention account (Olivers et
al., 2011; van Moorselaar et al., 2014). However, in all of these
studies the putative focus of attention and the quality of the mem-
ory representations were varied at the same time, because attended
working memory items also resulted in better fidelity memories.
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Attentional cues changing fidelity could arise from a variety of
sources, however, for example by devoting a greater proportion of
resources to this item, or because it accumulates less noise as a
result of being protected from interference (Bays & Taylor, 2018;
Gazzaley & Nobre, 2012; Griffin & Nobre, 2003; Souza & Obera-
uer, 2016). Thus, it is possible that the focus of attention effects
are simply effects of changes in memory quality.

Given that attentional priority typically covaries with improve-
ments in memory performance, it is difficult to disambiguate
between these two accounts. In Experiments 2 and 3, we designed
a task that, for the first time, teased apart effects of attention and
memory quality on attentional guidance. By adding perceptual
noise at encoding, we manipulated the representational fidelity of
each item. This memory manipulation was independent of any
attentional cues, and by using a postcue after a short delay we
manipulated priority, independently of the encoded precision. Our
results showed that the postcue enhanced memory performance—
as expected—and at the same time produced robust attentional
guidance. Critically, however, we found that perceptual noise at
encoding—which modulated memory quality but not attention—
also influenced the guidance effect of attended items such that
noisier items showed a smaller guidance effect, even when cued
(“placed within the focus of attention,” by such accounts; see Fig-
ure 10). Experiment 3, in particular, revealed that items that are
not cued (i.e., outside the focus of attention and with no template
status, by such accounts) also showed guidance effects as long as
their memory was strong enough, as predicted by the representa-
tional fidelity account but wholly incompatible with an attentional
template account.

Thus, we argue a straightforward and parsimonious explanation
for differences in working memory guidance is that they arise
from variations in the representational fidelity of items both within
and across trials, and not because any item achieves a special sta-
tus by being placed within a focus of attention. Rather, a frame-
work in which representations vary in fidelity due mostly to
independent noise but also modulated by display characteristics
(e.g., Brady & Alvarez, 2015), cues, uneven resource allocation
(Bays & Taylor, 2018), and more—but that does not require addi-
tional assumptions about differential states or templates to support
item representations—can fully account for the present data, and a
large set of data in the attentional guidance literature in general.
This interpretation is also in line with signal detection models like
the TCC memory model we use to fit our data, which predict natu-
ral variation in memory due to independent noise in the item repre-
sentations (Schurgin et al., 2020). In fact, our simulations showed
that the amount of variation in memory performance we find in
our data is predicted by the natural stochasticity of signal detection
theory, as implemented by TCC, with no need of any other explan-
ations (like a focus of attention).

Because previous studies did not precisely measure differences
in the representational fidelity between items and how that relates

#Note that the authors did not intend to use a small stimulus set and
attempted to increase the reliance on working memory by including three
textures that were superimposed over the colored disks. This resulted in a
total of 12 items to-be-remembered. However, in such circumstances, color
memory—the feature responsible for the guidance in this task—is
generally almost always independent of other features (e.g., Fougnie et al.,
2012), and so color memory was only tasked with remembering a total of
four unique items.
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to guidance effects, evidence for one item guiding attention was
taken as evidence of a fundamentally distinct state of certain items
in memory (and indeed this concept has been invoked to explain
differential precision as well; see Oberauer & Lin, 2017). How-
ever, if items differ in how well they reflect the initially encoded
item—owing to independently accumulated noise during the delay
period—as they appear to do in nearly all working memory studies
(Adam et al., 2017; Brady & Alvarez, 2015; Fougnie et al., 2012)
and as we have shown here (Exp. A2 and Exp. 1), then it may be
that poorly represented items do not bias attention simply because
they are poorly represented. That is, as we show in Exp. A2, at set
size 2, one item tends to be extremely well represented—ijust as
well as the one item at set size 1—whereas the other item is much
less precisely represented. If an item is poorly represented, it can-
not, by nature, guide attention to the color that was previously
encoded. Even when an item is cued, and putatively granted a
privileged status, memory strength is a critical factor (Experiments
2 and 3) and the putative focus of attention cannot override the
influence of representational fidelity (Experiments 2 and 3, see
correlation Figure 10); with representational fidelity—and the
effects of cues on such fidelity—instead seeming to be sufficient
to explain guidance. Thus, our results do not provide evidence in
favor of any attentional template account, even though they do
show that in most cases one item primarily guides attention. Our
data are largely consistent with a simpler view where attention is
guided only to the extent that an item is well represented; with no
added assumption of discreteness in memory states.

Conclusions

Selectively attending to relevant information in the environment
is critical as we are subjected to more incoming sensory informa-
tion than we could possibly process at once. Working memory
allows us to maintain information no longer available to the senses
for further processing, and it is imperative that these two systems
interact successfully to navigate our environment. Here, we dem-
onstrate that attention is biased toward objects that match the con-
tents of working memory—even if task-irrelevant. Importantly,
we show that working memory representations tend to guide atten-
tion only insofar as they are well represented, and that differences
in representational fidelity between items is a natural process pre-
dicted by signal-detection theory. These findings have important
implications for our understanding of the fundamental structure
and processes involved in working memory and attention. Our
interpretation of these results is that memory representations bias
attention to the extent that they are well represented; this interpre-
tation succinctly captures much of the data in the memory driven
attentional guidance literature and does so without needing to
invoke distinct states or special classes for working memory items.
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Appendix

Supplementary Experiments: Replications and Extensions

Before running the majority of the core experiments that
support our fidelity account of attentional guidance, we ran
several studies that sought to replicate basic findings that
were necessary prerequisites of our account but that were not
necessarily novel. Because these experiments do not provide
new information but simply serve as the building blocks of
our core experiments, we have put them in this appendix to
reduce the burden on readers of the article. In particular, in
Experiment Al, we verify that our paradigm finds guidance
with both one item and two items in working memory, and
greater guidance from one item than two. In Experiment A2,
we verify that memories vary in representational fidelity in
this paradigm, by including a free report memory condition
where participants can report their strongest memory item,
which we find results in better performance than forced
report. In Experiment A3, we demonstrate that memory is a
prerequisite of the guidance effect, and that priming per se
does not drive the guidance effect in our experiments. Last, in
Experiment A4, we demonstrate that the effect of attentional
guidance is not exclusive to the two item search displays that
we use throughout the main experiments.

Experiment Al: Visual Search Task With a One- or
Two-Item Working Memory Load

Participants maintained either one or two colors in visual
working memory and were asked to report a remembered color
on 20% of trials using a continuous report color wheel. On the
majority of trials (80%), instead of reporting the memory color,
participants performed a visual search task in which the work-
ing memory color was irrelevant. Participants were instructed
to report the direction of a tilted line (clockwise vs. counter-
clockwise from vertical). Based on previous research (e.g.,
Soto et al., 2005), we expected response times in the visual
search task to be faster when the target was encircled by a color
that matched the working memory color relative to when the
distractor was encircled in the working memory color, reflect-
ing the guidance of attention by a single visual working mem-
ory item. The main question was whether we would also find a
guidance effect when participants maintained two colors in
working memory.

Method

Participants

All participants were between 18 and 29 years old, reported
normal or corrected-to-normal vision, and gave informed con-
sent in accordance with the procedures approved by the
Institutional Review Board at UC San Diego. Eighteen under-
graduates (13 women, mean age = 21.22 y) from UC San Diego
took part in this study in exchange for course credit. Data from
two participants were excluded for poor visual search perform-
ance (< 50% accuracy). This sample size was determined to
detect effects at least as small as d, = 0.7 (with a power of .8 at o
=.05). Additionally, one participant reported the incorrect mem-
ory item (i.e., the color of the item at the opposite location, i.e.,
“location swap”) on more than 40% of all trials (more than 3
standard deviations from the group average). As such a high
swap rate suggests that the participant failed to perform the task
as instructed—reporting colors independently of the probed
location—we excluded data from this participant as well, leav-
ing 15 participants in the final sample. The results and interpreta-
tion hold with or without the removed subjects.

Stimuli

The experiment consisted of color stimuli presented on a
black background. Stimuli were generated and presented using
MATLAB and the Psychophysics Toolbox (Brainard &
Vision, 1997; Pelli & Vision, 1997). Memory items were col-
ored rings that were 3° visual angle in diameter, .3° thick, and
were centrally placed 4° to the left or right of fixation. On every
trial, the color of one memory item was randomly drawn from
a uniformly spaced circle (radius 49°) cut out of the CIE L*a*b
space, centered at (L = 54, a = 21.5, b = 11.5) and when two
memory items were present, the second color was selected to
be 90° away in color space from the first color. The search dis-
play consisted of a target line which was .3° thick, .4° long,
tilted .06° to the left or right of vertical, and placed 4° above or
below fixation and a single vertical distractor line that was
placed at the opposite location (see Figure Al). The target and
distractor lines were encircled in colored rings that matched the

(Appendix continues)
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Figure Al
Experiment Al Task Design
150 ms until response
50 180y
50 20!
500 ms until response

Note. Participants were asked to remember either one or two colors (50%/50%) on each trial
over a short delay and then either performed a visual search task that required them to indicate
the tilt direction of a target line (80% of trials, top; target tilt is exaggerated compared with the
experiment), or to report the color of one of the remembered items using continuous report
(20% of trials; bottom). In the visual search task, the memory color was not predictive of the

target location or orientation. See the online article for the color version of this figure.

memory item properties except for their color. One of the col-
ors matched one of the memory colors and the other color was
chosen to be 180° away from it in color space (at set size 2, this
was 90° away from the other memory item). On the memory
test display, one of the memory items was shown in gray (iden-
tical features to memory items) surrounded by a continuous
color wheel which was 15° in diameter, .3° thick, and was cen-
trally placed about fixation.

Procedure

Participants performed a total of 800 trials which were
evenly divided between set size one and two. On each trial,
one or two memory items were presented for 500 ms and par-
ticipants were instructed to remember their color(s) as pre-
cisely as possible for a potential memory report task. After a
900-ms delay, participants performed either the visual search
or the memory task. On 640 trials (80%) the search display
was presented for 150 ms and participants reported whether
the target line was tilted clockwise or counterclockwise from
vertical by clicking the right or left mouse buttons, respec-
tively. On 320 search trials (50%), a memory-matched color
encircled the target line (target-match) while a distractor
color, 180° away from the memory-matched color in color
space, encircled the distractor line. On the remaining 320
search trials, a memory-matched color encircled the distrac-
tor line (distractor-match) while the distractor color encircled
the target line. Thus, the memory color(s) never predicted
which color the target line would be encircled by and was
thus not useful for the search task. The location of the target
and distractor line (top vs. bottom on the search display) was
counterbalanced across the experiment. Feedback to respond
more quickly was provided when responses exceeded 1,200
ms. On the remaining 160 trials (20%) participants were

presented with a memory test display that consisted of a con-
tinuous color wheel and a single gray test-item placed to the
left or right of fixation. Here, participants were asked to use
the mouse to find the color closest to the remembered color
on the color wheel. The location of the test-item indicated
which memory item should be reported (e.g., a test-item on
the left probed the color of the memory item that was on the
left at encoding), and which item was tested was counterbal-
anced across the experiment. Once the mouse was moved
from the central fixation point the gray test-item changed
color to match the color at the position of the mouse cursor.
Once participants identified the color that matched the
remembered color as precisely as possible on the color
wheel, they locked their response by clicking the mouse but-
ton. Response error, defined as the difference in degrees
between the provided response and the correct answer, was
shown after every memory trial and participants were
instructed to keep this error below 10°. Participants were
instructed to prioritize speed without compromising accuracy
for the search task and, for the memory task, were instructed
to prioritize precision without compromising temporal effi-
ciency. On set size two trials (i.e., two memory items were
presented at encoding), one of the memory items was ran-
domly selected to be either the memory-matched color on
search trials or the tested item on memory trials. All trial
types were randomly intermixed within each block (see
Figure Al). At the end of each block (40 trials) participants
were shown an average of their memory response error and
visual search performance (RT and accuracy) for that block.

Analysis

The analysis for preliminary Experiments 1 and 2 are iden-
tical to those described in the main text.

(Appendix continues)
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Results and Discussion

The results of Experiment Al suggest that attention is
guided toward items that match those being actively main-
tained in working memory, even when working memory is
loaded beyond a single item (see Figure A2 and Tables Al-
A2). We submitted search-color condition (target-match,
distractor-match) and set size (set size one, set size two) to a
2 X 2 repeated measures analysis of variance (ANOVA).
This analysis revealed two main effects and an interaction,
F(1, 14) =40.18, p < .001, for the main effect of color con-
dition; F(1, 14) = 20.5, p < .001, for the main effect of set
size; F(1, 14) =12.15, p = .003, for the interaction). Follow-
up pairwise comparisons revealed that RTs were signifi-
cantly faster on trials where the visual search target was
encircled in a color that matched the working memory item
(target-match) compared with when the memory-matched
item encircled a distractor (distractor-match) for set size 1
trials, #(14) = 6.94, p < .0001; d, = 1.51. A similar pattern

Figure A2
Experiment Al Results
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of results, albeit with a smaller effect size, was identified
when two working memory items were maintained, #(14) =
2.61, p = .02, d, = 0.71. A speed-accuracy trade-off is
unlikely since participants exhibited roughly equal accuracy
on target-match compared with distractor-match search tri-
als (set size 1: 94% and 92%, 1(14) = 2.07, p = .06; set size
2:94% and 93%, t(14) = 1.63, p = .13).

Despite probing memory on only 20% of trials, perform-
ance estimates were robust and overall quite good (set size 1:
TCC d’' = 3.42; circular SD = 20.94°; set size 2: d' = 2.56; swap
rate = .06, adjusted d’ = 2.41, SD = 35.05°). Performance was
reliably lower at set size 2 relative to set size 1, #(14) = 5.78,
p < .001 (see Figure A2). Participants appeared to “swap” and
report the nontarget memory item nearly 6% of the time at set
size 2, most likely because the intermediate task induced a loss
of location information (mean swap rate for set size 2: .06;
1(14) = 3.65, p = .002). As noted in the Method, we do not
know the strength of memory for the target item on trials where
participants misreported the nontarget item. Thus, we report d’

0.4 set size one
5 d: 3.42
E
§ 0.2
Q

0.0

0 90 180
0.4
t size t

2 it
S te: 0.06
E 0.2 aZ}':Jas?el;da(:: 241
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Error: Degree Distance
From Target Color

Left: At both set size 1 and set size 2, search performance was faster when the tar-

get was encircled in a memory matched color (target match) compared with when it was
encircled by a distractor color (distractor match; 180° away from a memory item), showing
attentional guidance by working memory items. Right: Memory performance on the contin-
uous report task. Memory strength was superior (higher d’) when a single working memory
item was maintained (top) compared with two working memory items (bottom). The gray
bars reflect histograms of participant’s errors, and the blue lines are the model fits. On about
6% of set size two trials, participants mistakenly reported the other (nonprobed) memory
item, signified by the slightly elevated responses at 90° (location swaps). d’ is the estimated
memory strength for correct target reports only (ignoring swap trials), whereas adjusted d’
reflects the memory strength when accounting for the likelihood that memory for the correct
target was extremely weak when participants made location swaps. See the online article

for the color version of this figure.
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Table Al
Average RT per Condition and Experiment
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Forced Report: Item Present

Forced Report: Item Absent

Free Report: Item Present Free Report: Item Absent

Experiment 1

(n=30) Target Distractor Target

Distractor

Target Distractor Target Distractor

578.21 (70.35)  600.58 (77.55) 580.13 (74.46)

603.77 (81.15) 582.05 (81.50) 602.11 (79.69) 589.01 (75.55) 591.47 (71.60)

Direct Cue: High Noise

Direct Cue: Low Noise

Neutral Cue: High Noise Neutral Cue: Low Noise

Experiment 2

(n=50) Target Distractor Target

Distractor

Target Distractor Target Distractor

585.72 (65.49)  604.06 (65.94) 583.1 (66.65)

617.63 (65.01)

587.95 (63.02) 588.9 (61.58) 580.51(56.79) 589.01 (64.18)

Cued: High Noise

Cued: Low Noise

Uncued: High Noise Uncued: Low Noise

Experiment 3

(n = 100) Target Distractor Target Distractor Target Distractor Target Distractor
561.12 (78.05) 579.19 (79.78) 566.59 (74.99) 589.28 (80.43) 578.42 (86.14) 582.55(84.02) 573.3 (74.67) 586.43 (86.85)
Note. For each main experiment, and each condition, average RT is shown depending on whether a remembered item surrounded a target or a distractor

(standard deviation in parentheses).

(memory performance on trials where the correct item was
reported; i.e., assuming memory was exactly the same strength
on swap trials) and adjusted d’ (memory performance after
adjusting downward to account for swaps, i.e., assuming target
memories were nonexistent when participants made location
swaps). These two estimates provide upper and lower bounds
on the true memory strength of target items.

The visual search results of Experiment A1 replicate previ-
ous findings showing that working memory items can guide
attention toward matching items in a visual search task.
Furthermore, as expected, memory performance paralleled the
observed search effects, with lower memory performance
when two items were held in mind relative to a single item.
Because we are averaging performance across trials, both the
differences in search effects and the differences in memory per-
formance for one versus two items could in principle be driven
by overall less efficient processes when two items are held in
mind relative to one, or alternatively, could be explained by
one strong memory representation which also produced strong
guidance on some trials, and one weaker memory representa-
tion, which presumably caused less guidance.

Experiment A2: Asymmetric Memory Strength for
Multiple Working Memory Items

In this experiment we examined whether both memory
items are represented equally well, or whether memory
strength varies between items, such that one item tends to be

represented better than the other item. In Experiment A1 we
saw that both memory performance and attentional guidance
are significantly decreased by holding in mind two items rather
than one. This could occur because of averaging across trials
and thus averaging over heterogeneity between items at set size
2, or because all items tend to be represented weaker in mem-
ory and thus result in smaller guidance effects.

We adapted the free report technique of Fougnie et al.
(2012). Thus, on half of the set size two memory report trials
participants were forced to report a randomly probed memory
item (50% chance that either item would be tested, as in Exp.
1) and on the remaining trials, participants were free to
choose one of the memory items to report (free report trials).
These free report trials allow us to estimate the representa-
tional fidelity of a preferred item (preferred simply by nature
of being selected) that is presumably the most precise item
(Fougnie et al., 2012) and compare it with a randomly probed
item.

Similar to Experiment Al, participants were shown either
one or two memory items and performed either a visual search
or a memory task on every trial, but on half of the set size two
memory trials, participants were free to pick one of the mem-
ory items to report. On these trials placeholders for both mem-
ory items reappeared and participants clicked the location of
the item they wished to report. If memory performance on free
report trials resembles that of set size one, then we can con-
clude that variation between items in representational fidelity is
large, and consistent with accounts where a single item drives

Table A2
Average RT per Condition and Experiment
Set Size 1 Set Size 2
Experiment
Target Distractor Target Distractor
Experiment Al (n = 15) 575.56 (66.05) 611.98 (62.19) 564.91 (66.07) 579.46 (71.40)
Experiment A2 (n = 18) 564.86 (99.62) 594.59 (94.34) 564.97 (90.42) 587.65 (91.39)

Experiment A3 (n = 65)
Experiment A4 (n = 65)

526.71 (168.88)
2,456.95 (806.33)

528.82 (161.42)
2,501.19 (813.57)

Note.

These data are formatted as is in Table Al above.

(Appendix continues)
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the observed multiple item attentional guidance effect.
However, if performance is more similar to set size 2: forced
report, then it is less likely that a single item drives the effect
and suggests that the reduced effect size for guidance at set size
2 is correlated with the reduced memory precision of the
actively maintained working memory items—effectively sup-
porting a multiple-item guidance account.

Method

The design, sample size, exclusion criteria, and analysis
plan for this experiment were preregistered using AsPredicted
(http://aspredicted.org/blind.php?x=nt3st3).

Participants

All participants were between the ages of 18 and 26, and
the final sample included 18 undergraduates (10 women, mean
age = 20.74y) from UC San Diego. Which, like Experiment
Al, allowed us to detect effects as small as d, = 0.70. Our pre-
registered exclusion criterion required high visual search per-
formance, and in this case, this caused a large number of (13)
additional participants to be removed and replaced for failing
to achieve 80% accuracy in the visual search task. In addition,
we removed and replaced 3 additional participants for having
“swap rates” greater than 40% of trials, as in Experiment Al.
We did not preregister this swap-based exclusion criterion.
However, after analyzing the data, it became clear that these
participants failed to follow instructions: such high swap rates
indicate that these participants effectively performed “free
report” on every trial, regardless of what location was cued,
and thus do not provide useful data for distinguishing free ver-
sus forced report memory strength. Although overall this
means a high number of participants were excluded (including
13 for the preregistered criterion and three for the swap-based
criterion), including all of these participants in the final data set
did not alter the results nor their interpretation.

Stimuli

All aspects of Experiment A2 were identical to Experiment
A1 except for free report memory probe trials. On these trials,
instead of one test item being cued, two gray circles indicating
the possible test items appeared to the left and right of fixation
(8° apart) prior to the presentation of the color wheel to allow
participants the choice of which item to respond to (which they
did by clicking the relevant location).

Procedure

The following aspects differed in Experiment A2 from
Experiment Al. Memory probe trials were evenly split
between three conditions: (a) set size one, (b) set size two:
forced report, and (c) set size two: free report. All trial types
were randomly intermixed throughout the experiment. On free
report trials, at test, both items were presented, and participants
were instructed to choose one memory item to report, either the
left or the right. No further free report instructions were pro-
vided (i.e., participants were not incentivized or encouraged to
select one item over another). Once a free report selection was
made, the color that was encoded at that position was set as the
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correct response and response error was calculated in degrees
as the difference between the correct and user selected
response.

Model Fitting

We use the TCC model to fit both free report and forced
report data. However, the actual response strategy in free report
involves not just reporting the color with the strongest familiar-
ity signal (as expected by TCC), but also comparing the two
memory items and deciding which item has the stronger mem-
ory; something that is not instantiated in the TCC model that is
fit to this data. Thus, the ¢’ parameter for the free report fits
will not reflect the intrinsic d’ that each of the items are repre-
sented with but will instead be simply a description of the
memory strength that would have been needed for a single item
to match the results from the process of choosing the best rep-
resented item. The Simulation section following Experiment 3
in the main article addresses this in more detail.

Results and Discussion

Replicating Experiment Al, we again found an atten-
tional guidance effect both when one and two items were
maintained in working memory. As in Experiment A1, color
condition and set size were submitted to a 2 X 2 repeated-
measures ANOVA. This analysis revealed a main effect of
color condition, F(1, 17) = 28.33, p < .0001, but no main
effect of set size, F(1, 17) = .53, p = .48, nor a reliable inter-
action, F(1, 17) =2.15, p = .17. Participants were on average
faster on target-match trials compared with distractor-match
trials for both set size 1, #(17) = 4.34, p < .001, and set size 2,
1(17) = 4.85, p < .001. Accuracy in this experiment was again
quite good for target-match and distractor-match conditions
and there was no evidence of a speed—accuracy trade-off (93%
and 91%, 1(17) = 1.46, p = .16; 93% and 92% 1(17) = 1.34,p =
.20; for set size 1 and 2, respectively).

With regard to memory performance, we found strong evi-
dence in support of differential representational fidelity
between the two items. In particular, when two items were held
in working memory, one item was maintained as precisely as if
only a single working memory item was remembered (see
Figure A3). Thus, memory performance on free-report trials
(TCC d' = 3.10, swap rate = .02, adjusted ¢’ = 3.03, circular
SD = 27.42°) is statistically indistinguishable from perform-
ance on set size 1 trials (TCC d' = 3.04, sd = 27.93°; #(17) =
.62, p = .55; BF; = 3.40; Rouder et al., 2009). Memory per-
formance on random-probe trials (TCC d’ = 2.23, SD = 43.78°)
was comparable to performance from Exp. 1 and while we
observed a slightly higher rate of location swap errors here
(swap rate = .11) compared with Exp. 1 (swap rate = .6) this
difference was not significant, #(31) = 1.92, p = .06; BFy; =
1.33, suggesting that the inclusion of the Free Report manipula-
tion did not result in a bias to preferentially attend to one com-
pared with both memory items (consistent with validation of
this report method from Fougnie et al., 2012).

These results show that, when two working memory items
are actively maintained, one item has a stronger memory rep-
resentation, resulting in considerably more precise color
reports at test. This is consistent with accounts where

(Appendix continues)

44



28

Figure A3
Experiment A2 Results
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Note. Left: Response times for target and distractor match trials in Experiment A2, sepa-

rated by working memory set sizes. Replicating Experiment Al, we show robust search
benefits for set size 1 and 2. Right: Errors and memory strength from the memory task,
visualized with error histograms in gray and model fits in blue. As in Experiment Al, d’
values reflect memory strength on correct-location report trials, and adjusted d’ values
reflect the assumption that participants had no memory for the target on swap trials, giving
the range of possible memory strengths depending on assumptions about swaps.
Performance on memory trials suggests that at set size 2, one item ends up with substan-
tially greater representational fidelity compared with the other actively maintained item, as
free report performance at set size 2 is as good as set size 1 performance and much better

than forced report performance. See the online article for the color version of this figure.

memory items are heterogeneous, either varying in precision
intrinsically due to noise that accumulates independently
over each item throughout the retention interval (e.g.,
Fougnie et al., 2012; Schurgin et al., 2020; Wilken & Ma,
2004), or as a result of a special focus of attention status
(Oberauer, 2002; Oberauer & Lin, 2017). Furthermore,
because one of the two items was maintained with set-size-
one-like precision, these results are consistent even with strong ver-
sions of these accounts, where the multiple-item guidance effect is
a mixture of two kinds of trials: a guidance effect, observed when
the search trial contains the high-precision memory item; and a
minimal, or nonexistent effect, observed when the search trial con-
tains the secondary, low-precision memory item. Notably, however,

unlike in Experiment Al, the guidance effect in this experiment
was nearly the same size at set size 2 (d, = 1.04) as at set size 1
(d, = 1.21), which is inconsistent with this “mixture” account.

Experiment A3: Visual Search for Primed Colors

Previous work has shown that when the presented colors are
no longer maintained in working memory that the attentional guid-
ance effect disappears (Olivers et al., 2006). The guidance effect
has also been absent when participants are simply primed, instead
of needing to hold an item active in working memory (Kumar et
al., 2009). However, it is feasible that memory is not a prerequisite
for guidance and instead, the effects are driven by priming a sort
of pop-out effect. To test this possibility, in Experiment A3,

(Appendix continues)
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Figure A4
Task Design for Experiments A3 and A4
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Note. In Experiment A4, participants were randomly probed on one of the remembered items. In Experiment
A3 the task was identical except that memory was never probed. Instead, participants were simply instructed to
attend to the colors in the encoding display. On every trial, four colored rings appeared and one of them con-
tained a tilted line. Participants were asked to report the orientation of the line using the left and right arrow
key on the keyboard. When memory was probed (Exp A4) a gray square appeared at the same location as the
encoded item that was to-be-reported. Participants clicked the mouse when ready, and as they moved around
the color ring, the probe changed colors. Participants locked in their response by clicking the mouse. See the
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online article for the color version of this figure.

participants were shown two colors and were told that they should
simply attend to them before they disappeared. The effect observed
in Experiment Al was d, = 0.71 when two items were maintained,
and two items were searched. If the observed effect is genuine, we
can reasonably expect it to shrink (see Wilson et al., 2020) espe-
cially in a task that is conducted online (compared with in-lab) and
since searching a four-item search display is less efficient than a
two-item display. Thus, if the within-subject effect is at least half
of the original effect (d, = 0.35) we would need at least 64 subjects
to detect an effect at o = .05 with a power of .8.

Method

Participants

All participants were between the ages of 18 and 35, and
the final sample included 65 undergraduate volunteers (39
women, mean age = 21.37y) from UC San Diego who partici-
pated in this online experiment in exchange for course credit.
Four subjects were removed for below chance accuracy.

Stimuli

The stimuli were identical to those used in Experiment 3 in
all but the following ways. The four items in the search array
were placed 150 pixels above and below fixation (and 150 pix-
els to either side like before). The three distractor colors were
chosen to be at least =70° (with *15° additional jitter) away
from the remembered color that appeared in the search display.

Procedure

Except where otherwise noted, this task was identical to
Experiment 3 which was also conducted online. Participants per-
formed a total of 384 trials that were split between target-match
(25% of trials) and distractor-match trials (75%). On each trial
two prime items were presented for 300 ms and one of these
items was randomly selected to appear in the search display.

After the encoding display disappeared, participants waited
1,000 ms before performing the four-item search task (which
remained on the screen until a response was made; Figure A4).

Results and Discussion

In Experiment A3, we explored whether memory was a
requirement of attentional guidance. Here, participants did not
need to remember the presented items for a later memory test,
instead they were instructed to simply attend to these items
before they disappeared. Participants were not faster on target
match trials compared with distractor match trials, #(64) = .69,
p=.49,d,=0.11, BFy; = 5.85 (Figure A5) suggesting that pri-
ming is not sufficient per se to drive the guidance effect that we
have observed in these experiments.

Experiment A4: Visual Search Task With More
Search Items

In our other experiments, participants were required to
search two items for a single target similar to previous work
(Kiyonaga & Egner, 2015; Soto et al., 2012; Zhang et al.,
2018). However, it could be that such simple displays are esti-
mating some mechanism other than attentional guidance. In
this experiment we had participants maintain two items in
memory and search for a single target among three distractors.
Similar to Experiment A3 we collected 65 subjects to observe
an effect of d, = 0.35 with a power of .8 (and an o = .05).

Method

Participants

All participants were between the ages of 18 and 28, and
the final sample included 65 undergraduate volunteers (44
women, mean age = 20.55y) from UC San Diego who partici-
pated in this online experiment in exchange for course credit.

(Appendix continues)
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Figure A5
Results for Experiments A3 and A4
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Note. Left: Search performance, operationalized as amount of guidance (target—distractor match RT) for
Experiment A3 (priming) and Experiment A4 (four item search). Replicating our previous experiments, we
find a robust search effect when participants are required to search four items for a target and find no effect
when participants are simply required to attend to the colors. Right: Memory performance for Experiment A4,
errors and memory strength from the memory task at the end of each trial, visualized with error histograms in
gray and model fits in blue. As before, model fits and d’ represent average memory strength, and adjusted d’
values reflect he assumption that participants had no memory for the target when they incorrectly reported the
nonprobed item, giving a range of possible memory strengths depending on assumptions about swaps. Memory
performance is separated depending on whether the probed item appeared in the search display (50% of trials;
Rightmost plot) or did not (Central plot). See the online article for the color version of this figure.

Eighteen subjects were removed from the final sample for fail-
ing to meet our previously used exclusion criteria. Seven sub-
jects were removed for accuracy below chance while 11
subjects were removed for memory performance that was 2.5
standard deviations from the mean or who reported the other,
nonprobed memory item more than 40% of the time (i.e., those
with a swap rate exceeding 40%).

Stimuli

The stimuli were identical to those used in Experiments A3.

Procedure

Except where otherwise noted, this task was identical to
Experiment A3 which was also conducted online. After
responding to the search task, and after another 500-ms delay,
participants were randomly probed on one of the remembered
items. This probe was evenly split between the item that had
just been searched and the passive item which was maintained
for the memory task alone.
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Results and Discussion

In Experiment A4 we increased the set size of the search
display from two to four items and found an attentional guid-
ance effect when participants maintained two items in memory
(Figure A5). Participants were significantly faster when the tar-
get was surround by a memory item compared with when it
surrounded a distractor, #(64) = 2.50, p = .015, d, = 0.31.
Memory performance improved marginally when the probed
item appeared in the previously seen search display (TCC d’ =
2.42, swap rate = .01, adjusted d’' = 2.40, sd = 28.1°) compared
with when it had not (TCC d’ = 2.34, swap rate = .03, adjusted
d' =229, SD = 28.5°) and this difference in TCC d’ was mar-
ginally nonsignificant (¢(64) = 1.98, p = .05, d, = 0.25, BFy, =
1.18). These results suggest that the guidance effect found in
our other experiments are not the product of some undefined
mechanism and are instead due to memory’s guidance over
attention.
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Abstract

Despite the intuitive feeling that our visual experience is coherent and comprehensive, the world is full of ambiguous
and indeterminate information. Here we explore how the visual system might take advantage of ambient sounds to
resolve this ambiguity. Young adults (s = 20-30) were tasked with identifying an object slowly fading in through
visual noise while a task-irrelevant sound played. We found that participants demanded more visual information when
the auditory object was incongruent with the visual object compared to when it was not. Auditory scenes, which
are only probabilistically related to specific objects, produced similar facilitation even for unheard objects (e.g., a
bench). Notably, these effects traverse categorical and specific auditory and visual-processing domains as participants
performed across-category and within-category visual tasks, underscoring cross-modal integration across multiple
levels of perceptual processing. To summarize, our study reveals the importance of audiovisual interactions to support
meaningful perceptual experiences in naturalistic settings.
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In the real world, sounds are inexorably linked to the  correlated, and a scene will often not provide indepen-
objects that generate them. Cats cannot bark and toads ~ dent or additional information (e.g., at dusk, all visual
do not roar. In a world where visual features such as  inputs are equally obscured). In this case, nonvisual
colors and orientations are inconsistent across view-  information, such as sounds, can provide unambiguous
points, lighting conditions, and time—where visual  and independent information about visual inputs, and
objects are often occluded and where many objects  potentially influence object recognition (Plass et al.,
share similar visual features despite being fundamen- ~ 2017). But it is unclear whether naturalistic sounds
tally distinct—our perceptual system is required to con-  facilitate object recognition or not, and if sounds do
stantly make inferences about the world (Alais & Burr, have this effect, what the mechanism might be. Further,
2004; Bar, 2004; Kording et al., 2007; Oliva & Torralba, it remains untested what kinds of auditory inputs—such
2007). Context can help us to disambiguate indetermi-  as the sound of a specific object or the broader, ambi-
nate information: for example, the same shape pro-  ent sounds of a scene—may influence visual object
jected on our retina might be interpreted as a hair dryer  recognition. Therefore, in the present study, we inves-
when viewed in a bathroom scene or as a drill when  tigate whether sounds of real-world objects and
viewed on a workbench (Bar, 2004; Biederman et al., naturalistic scenes can facilitate how quickly relevant
1982). Similarly, visual scenes can facilitate

the recognition of these objects quite drarrjatlcally Corresponding Author:

(Davenport & Potter, 2004; Draschkow & V6, 2017; Jamal R. Williams, University of California, San Diego, Department of
Palmer, 1975). In the real world, however, sensory pro- Psychology

cessing of visual scenes and visual objects is highly  Email: jrwilliams@ucsd.edu
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visual information is extracted from noisy and ambigu-
ous input.

Previous work has shown that when contextually
relevant semantic information is provided in the form
of written or spoken words, visual object processing is
improved. For example, when written labels precede
the faint image of a target object, they can increase the
detectability of that object (Stein & Peelen, 2015), and
when these labels are read aloud, they too facilitate
visual processing and object identification (Lupyan &
Thompson-Schill, 2012). In these cases, semantic infor-
mation is thought to set up clear, top-down expecta-
tions about an upcoming object and then facilitate the
processing of information that matches these expecta-
tions. However, the natural world rarely provides us
with informative labels, so it is critical to understand
how visual processing is influenced by nonvisual inputs
that occur naturally in the environment—sounds that
carry relevant and rich perceptual and semantic infor-
mation and that thus represent reliable information that
could support visual object recognition. To date, some
studies investigating whether naturalistic sounds affect
visual processing have found evidence consistent with
this (Chen & Spence, 2010, 2011; Liu et al., 2012),
though in some cases participants were first trained on
sound-object pairs, which could possibly induce prac-
tice effects, as novel audiovisual relationships are
learned and leveraged rapidly (e.g., Spence & Driver,
1994). Other work diverged from this, reporting that
real-world sounds were ineffective or less effective than
verbal labels in aiding visual object processing (Edmiston
& Lupyan, 2015; Lupyan & Thompson-Schill, 2012).
Recent functional magnetic resonance imaging (fMRID)
results, however, point to a particularly interesting effect
of sounds on visual processing: listening to naturalistic
sound stimuli can activate the visual cortex in a content-
specific way so that the activation pattern produced by
sounds resembles the pattern produced by simply imag-
ining the visual stimuli alone (Vetter et al., 2014). This
suggests that abstract auditory information is fed to
visual areas and modulates visual-cortical activity, per-
haps in preparation of probable visual input. Addition-
ally, the decoding of visual object identity is improved
when visual objects are paired with task-irrelevant, con-
gruent sounds (Brandman et al., 2020; de Haas et al.,
2013), further suggesting that content-specific activity
in visual cortex is modulated by sound. Although these
findings suggest that auditory information modulates
neural activity in visual regions, it is unclear how these
findings might translate to behavior. This leaves two
unanswered questions: How might naturalistic sounds
influence the recognition of visual objects? And, in par-
ticular, can both auditory objects and auditory scenes
affect visual object processing?
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Statement of Relevance

Our perceptual system excels at navigating the
complexities of the world by integrating informa-
tion from different senses. Perhaps because the
sound of an airport terminal often coincides with
objects like luggage, the system can rely on this
regularity to predict and facilitate the processing
of such objects. In our study, participants viewed
noisy visual objects while listening to naturalistic
sounds. When sounds were related to the visual
target, they facilitated the ability to extract rele-
vant visual information, thereby accelerating
object recognition. This was true for specific
object sounds (a dog’s bark) but also occurred for
ambient auditory scene sounds (an airport termi-
nal), indicating wide-ranging effects of audition
on vision. Crucially, sounds aided categorical
visual recognition (a dog from a bird) but also
aided fine-grained visual discrimination (e.g., a
malamute from a husky). Overall, our results dem-
onstrate that sounds enhance vision across vari-
ous levels of processing and stress the importance
of cross-modal influences on perception.

We investigated these questions in a series of experi-
ments in which we asked participants to perform an
object-discrimination task while hearing naturalistic
sounds (Williams et al., 2022). If sounds induce activity
patterns in the visual cortex in a meaningful way, so
that these activity patterns match, to some degree, the
patterns that would have been induced by a visual
stimulus, then relevant visual features might be given
a processing head start, facilitating the extraction of
those visual features that match the auditorily induced
expectations. We are particularly interested in testing
how broad the effects of naturalistic sounds on vision
are. For example, do only sounds that are directly
linked to a specific object support object recognition
(e.g., the barking of a dog facilitates recognizing a dog)?
Or can broader auditory information, such as the ambi-
ent sound of an environment (i.e., an auditory scene)
influence how visual objects are processed? (E.g., does
hearing the ambient sound of a park facilitate recogni-
tion of a park bench or a play structure?) Our task
design allowed us to ask whether any influence of
sounds on vision occurs at a rather broad, categorical
level—such as helping to distinguish a bird from a
train—or at the more detailed fine-grained level that is
necessary for within-category distinctions, such as dis-
tinguishing a robin from a towhee. To anticipate our
results, we found strong evidence that naturalistic
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Across-Category Experiments 1a and 1b

Within-Category Experiments 2a and 2b
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Fig. 1. Task design for all experiments. Participants first heard a real-world sound for 2 or 5 s (object and scene sounds, respectively). As
the sound played, a target object slowly faded in through noise to become more and more visible. Participants were tasked with pressing the
space bar to stop the visual-discrimination phase when they had sufficient visual information to perform the two-alternative forced-choice
(2AFC) test at the end of each trial. In the 2AFC test, they chose which object they saw fading in through visual noise. In Experiments 1a
and 1b the 2AFC test used across-category lures; in Experiments 2a and 2b the test used within-category lures. Response-time data during
the visual-discrimination phase was the main dependent variable of interest.

sounds facilitate object recognition across all condi-
tions, highlighting the important role of auditory con-
text for visual perception.

Open Practices Statement

These studies have been preregistered, and the data,
scripts, and stimuli needed to replicate or expand on
these experiments and analyses are available online
(https://osf.io/msqnv/).

Experiment 1: The Effects of Real-World
Sounds on Visual Object Discrimination

Experiment 1 tested whether auditory objects or scenes
influence how quickly a noisy visual object is recognized.
Each trial began with a sound, and as the sound played,
a visual noise patch continuously became less noisy to
slowly reveal a target image. In Experiment la object
sounds lasted for a total of 2 s, whereas scene sounds in
Experiment 1b lasted 5 s. Participants pressed a button
once they had acquired enough visual information to
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perform a two-alternative forced- choice (2AFC) test
(Fig. 1. These features of the task ensured that any effect
we might observe would not simply be due to a congru-
ency bias, nor the reflection of speeded response prepa-
ration due to uncertainty (Heron et al., 2004).

Method

Participants. All participants in Experiment la gave
informed consent in accordance with the procedures
approved by the institutional review board at University
of California, San Diego (IRB00000355), were between
the ages of 18 and 26 years and reported having normal
hearing and normal or corrected-to-normal vision. Initial
piloting suggested an effect size of roughly .7, which
would demand at least 18 participants with a power of .8
and an alpha of .05. We therefore collected 20 unique
undergraduates (10 females; mean age = 20.8 years) who
took part in this experiment in exchange for course credit.

This design, sample size, exclusion criteria, and anal-
ysis plan for Experiment 1b were preregistered on
AsPredicted (https://aspredicted.org/VP2_1VN).
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Presuming that the effect size may shift or shrink upon
replication by roughly 75%, we estimated the need for
roughly 30 participants for all future experiments.
Thirty-nine unique undergraduates (18-38 years old,
29 females, mean age = 20.77 years) from our university
took part in this experiment in exchange for course
credit. Nine participants were removed on the basis of
the preregistered exclusion criteria, leaving a final sam-
ple of 30 participants.

Stimuli. For Experiment la, real-world sounds were
collected from online repositories and edited to be 2 s in
length and have roughly equivalent amplitudes (within
and across stimuli when played at roughly 70 db).
Twenty-eight sounds were used in the main experiment
with six additional sounds used exclusively for familiar-
izing participants with the task. This ensured that partici-
pants had no experience or practice with the stimuli used
in the main experiment. Sounds in Experiment la
included a wide range of objects, such as an ambulance
siren, an acoustic guitar, an elephant’s trumpet, and a
teakettle (all stimuli available on the Open Science
Framework). In Experiment 1b, we collected 49 auditory
scenes that were edited to be 5 s in length. These sounds
were then used in an online survey in which participants
identified the scene (free-response format) while also
providing information on what sorts of objects they
expected to find in the scene. Nine sounds that were dif-
ficult to identify across participants were removed, and
40 sounds were used in the main experiment. The
remaining nine sounds were used to familiarize partici-
pants with the task and were not used in the main
experiment. We chose auditory scenes that were charac-
teristic of ambient sounds present in common environ-
ments, such as a public park, a school graduation, a
restaurant, and a football stadium. Scenes that were
selected did not contain any discernible English and did
not contain an object sound that would be used as a
visual target object for the visual discrimination task.
Next, we collected two images of real-world objects per
sound, to create audiovisual categories (56 and 80
images for Experiments 1a and 1b, respectively; 500 x
500 pixels). For Experiment 1la, each image was chosen
to match each sound’s category (e.g., the sound of a car
would be matched with an image of a car); for Experi-
ment 1b, each image was chosen so that it would match
an object that would likely be seen, but not heard, in the
scene (e.g., the sound of a park was matched with a
park bench). Visual objects were sampled from various
online repositories.

Procedure. Visual stimuli were presented on a com-
puter screen located approximately 60 cm in front of the
observer, and auditory stimuli were presented in stereo
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through headphones. Participants performed a total of 56
or 80 trials (Experiment 1a and Experiment 1b respec-
tively), and each sound was heard only twice—once as
congruent and once as incongruent with the target image.
Each trial began with the sound of a real object (Experi-
ment 1a) or scene (Experiment 1b); Object sounds lasted
for 2 s whereas scene sounds lasted for 5 s. For Experi-
ment 1a, the target object began fading in immediately as
the sound played. Sounds played for 2 s as the target
object slowly faded into view. For Experiment 1b, sounds
played for 500 ms before the image began to slowly fade
into view, and the sounds continued for their entire dura-
tion or until a response was made (whichever came first).
This would keep response times (RTs) and image clarity
consistent across Experiments 1a and 1b and allow audi-
tory information from the longer scenes to unfold. Par-
ticipants were instructed to press the space bar on the
keyboard as quickly as they could identify the object for
the 2AFC task.

The initial visual-discrimination phase of each trial,
in which an image faded in through noise, was designed
the following way: Target images were stripped of their
color and subjected to two types of noise: First, all
images were layered (combined into a single image)
and completely phase randomized, to create noise
masks that would effectively obscure the target object.
This full-noise mask contains image information from
all images and thus obscures any apparent differences
between the different images, serving as a particularly
effective mask (cf. Stormer et al., 2019). Second,
each image was phase scrambled individually, and on
each trial this image was initially presented behind the
full-noise mask. On each trial, the full-noise mask
slowly became more transparent to reveal more of the
underlying noisy target image. As this noise mask
became more transparent, the phase randomization of
the target object also slowly decreased in steps of 1%
every 100 ms. In effect, the full-noise mask slowly faded
away while the phase scrambling of the target image
was reduced every 100 ms. Pilot experiments showed
that participants could clearly identify each target object
when the target image reached 70% clarity (7 s); there-
fore, the maximum length of a trial could be 7 s. Partici-
pants were encouraged to respond prior to this point,
and trials in which participants waited the entire 7 s
were removed from analysis. For this visual-discrimination
phase, participants were told to “identify the object and
press ‘space’ as quickly as possible.” Before the experi-
ment began, participants performed several practice
trials in which they had to identify an object in noise,
and each sound was completely irrelevant to the target
object. They were given feedback on their accuracy on
the 2AFC task and were given feedback on their
response times in the visual-discrimination phase to
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encourage responses that were rapid without sacrificing
accuracy.

In the main task, on half of all trials the sound was
congruent with the target image, and on the remaining
trials the sound and target image were incongruent.
Thus, the sounds did not predict the images participants
would see. Immediately after the visual discrimination
phase, participants were presented with two images
(200 x 200 pixels): the target and an across-category
lure—for example, a car (the target) and a cash register
(the nontarget lure). Lures, the nontarget images pre-
sented alongside the target, were selected at random
across participants from the remaining (across-category)
stimuli. Objects were presented on either side of a fixa-
tion point, and participants needed to press the “n” or
“m” key to select whether the target from the visual-
discrimination task was on the left or the right, respec-
tively. After choosing, participants were presented with
accuracy feedback on the 2AFC test before the next trial
began. Last, in Experiment 1b, we included six sound-
identification trials (randomly intermixed) in which par-
ticipants had to identify the auditory scene that they had
heard (open-response format). We used these probe
trials to ensure that participants could (a) identify the
auditory scenes and (b) were listening to the sounds.

Analysis. Our main analysis focused on comparing the
mean RT during the visual-discrimination phase across
congruency conditions for correct trials only (see prereg-
istered analysis plan). We reasoned that these RTs reflect
the process of accumulating visual evidence and expected
that if sounds have an influence over this sensory-
evidence-accumulation process, RTs should be faster for
congruent relative to incongruent trials. Because partici-
pants were in control over how much of the visual object
they saw, we did not expect any accuracy effects in the
subsequent 2AFC task. We excluded trials with RTs that
were 3 SDs away from an individual participant’s mean.
A participant’s entire data set was removed if he or she
(a) failed to achieve 65% correct on the 2AFC task, (b) if
the average RT was faster or slower than 3 standard devi-
ations from the group mean, or (¢) if the participant was
unable to correctly identify all six sound-recognition tri-
als (for Experiment 1b only). Additionally, we performed
two analyses for each experiment that were not preregis-
tered: To verify that our observed effects were not driven
by just a small subset of our stimuli, we performed a
linear mixed-effects analysis that added stimuli as ran-
dom effects to the fixed effect of congruency. We then
compared this full model to a null model that excluded
sound-target congruency as a factor. Individual stimuli
were included in both models, so this allowed us to esti-
mate whether congruency was the primary driver of our
observed effects and not the variation present in the
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stimuli themselves. Second, we examined response times
on the 2AFC test to validate our preregistered decision to
analyze only correct trials. Because a small selection of
participants demonstrated perfect accuracy, for these ¢
tests we performed unequal variance with two sample
tests (Welch, 1947). As a further analysis, we examined
whether correctly identifying the sound of a scene had
any correlation with the effect of congruency on response
times. To do this between-subjects analysis, we took the
correct identification rate of scenes from the initial survey
and compared this with the congruency effect observed
in Experiment 1b. To ascertain a correct identification, we
took the free responses to the scene sounds and had
three independent raters determine whether the response
(a) exactly identified the scene (e.g., a carnival), (b) was
thematically related (e.g., theme park, Disneyland), or (c)
was unrelated and thus incorrectly identified (e.g., a sta-
dium). We then compared the correct identification rate
to the effect size that congruent sounds had over response
times. Here, we found that the exact identification rate
had no reliable correlation with the effect of congruency
on response times, 7 = —.15, 95% confidence interval
(@) = [-0.50, 0.24], p = .44. It could be the case,
however, that simply understanding the thematic rela-
tionship between the scene sounds and related objects is
enough to produce a reliable correlation. To examine
this, we considered both thematically related responses
and exact responses as correct and again found no reli-
able correlation, » = —.26, 95% CI = [-0.58, 0.12], p = .18
(see Discussion).

Results of Experiment 1a

In Experiment la, we found that congruent object
sounds sped RTs during the visual-discrimination phase
compared to incongruent object sounds: Participants
terminated the visual presentation earlier for matching
sound-object pairs than for nonmatching sound-object
pairs (4,029 vs. 4,245 ms, respectively), #(19) = 3.24, p =
.004, Cohen’s d = 0.72, 95% CI = [0.22, 1.21] (see Fig.
2). After we controlled for the variance introduced by
the individual sound and target images in a linear
mixed-effect model, the effect of congruency persisted,
x2(1) = 7.25, p = .007. This indicates that the congruency
effect is not spuriously driven by just a few stimuli. To
further ensure that the effect is not driven by a speed-
accuracy trade-off, we compared accuracy across condi-
tions and found no evidence that participants sacrificed
accuracy for speed (d' = 2.44 vs. 2.26 for congruent vs.
incongruent, respectively), #(19) = 1.18, p = .25, d =
0.26, 95% CI = [0.19, 0.71], BF,, = 2.34 (Fig. 3a).

One of our primary goals was to determine whether
sounds facilitate robust and highly confident visual rep-
resentations instead of testing whether sounds simply



Williams, Stérmer

o b om
o o o

Response Time (s)

n
o

Incongruent Congruent
Sound and Target

Incongruent Congruent
Sound and Target

Fig. 2. Results for Experiment 1a (objects; left) and Experiment 1b
(scenes; right). The average response time is shown in red. Individual
participant response times for the visual-discrimination phase and
the corresponding density plots demonstrate that participants were
significantly faster when the sound was congruent with the visual
target (orange and green distributions) compared to when the sound
and target were incongruent (red and blue distributions).|

modulate noisy or low-confidence visual inputs, which
could induce decision or response biases. To that end,
we preregistered the decision to analyze only correct

a b

trials, and when analyzing the differences between cor-
rect trials (547 ms) and incorrect trials (1,725 ms), we
found that incorrect responses generally took longer in
the 2AFC test, #(14.337) = 4.12, p < .001, d = 1.04, 95%
CI = [0.4, 1.67] (see the Method section), irrespective
of RT in the visual-discrimination phase (Fig. 3b). This
supports our focus on correct trials, because response
times are linked with confidence, accuracy, and the
quality of a representation (Hellmann et al., 2023; Norman
& Wickelgren, 1969; Ratcliff & Starns, 2013). This pat-
tern was present across all experiments.

Results of Experiment 1b

Experiment 1b tested whether ambient sounds of
scenes—the sound of a street or an airport terminal—
can influence visual object recognition. Here, compared
to the object-object pairing in Experiment la, where
the relationship between auditory and visual stimuli is
straightforward, the relationship between an auditory
scene and any particular visual object is broader and
indirect. In any given scene, there are typically dozens
of sound generators, and there are many more objects
that one might associate with that scene but which are
not generally associated with a particular characteristic
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Fig. 3. Results for Experiment 1a (objects; top) and Experiment 1b (scenes; bottom). In (a), distributions of & on the two-alternative
forced-choice (2AFC) test were overlapping for congruent trials (orange and green; top and bottom) and incongruent trials (pink
and blue; top and bottom). We found no significant difference in d between the congruency conditions. Across both experiments,
correct responses in the 2AFC test (b) were accompanied by faster 2AFC response times (RTs; orange and blue); incorrect responses
were accompanied by slower and more variable 2AFC RTs (pink and green).

55



Psychological Science XX(X)

sound (e.g., for the sound of a park: a tree, a pond, a
bench, etc.). Therefore, if scenes were to activate rel-
evant visual features, this might result in the relatively
broad activation of associated visual features. However,
irrespective of this potential challenge to visual percep-
tion, in Experiment 1b we found that auditory scenes
produced shorter RTs on congruent compared to incon-
gruent trials (4,036 vs. 4,125 ms, respectively), #(29) =
4.03, p = .0004, d = 0.74, 95% CI = [0.33, 1.14] (Fig. 2),
indicating that participants required less visual informa-
tion to perform the 2AFC test on congruent compared
to incongruent trials. Just as in Experiment 1la, this dif-
ference in speed did not result in significant differences
in performance on the subsequent 2AFC test, d = 2.55
vs. 2.48, 1(29) = 0.49, p = .63, d = 0.09, 95% CI = [0.27,
0.45), BF,, = 4.61 (Fig. 3a), indicating that there was no
speed-accuracy trade-off. We also conducted an item
analysis to ensure that our observed effect was not spuri-
ously driven by the variability of our stimulus set. As in
Experiment 1a, we found that the effect of congruency
persists even after accounting for this variability, x*(1) =
9.48, p = .002. When examining RTs for correct trials (657
ms) and incorrect trials (2,079 ms) we found a similar
pattern as in Experiment 1a, #(27.72) = 6.25, p < .001,
d=1.19, 95% CI = [0.70, 1.67] (see Fig. 3¢, bottom).

Experiment 2: The Effects of Sound on
Detailed Visual Object Discriminations

Thus far participants required only relatively coarse
categorical information to perform the 2AFC test. There-
fore, in Experiment 2, to test whether sounds support
the extraction of fine and specific visual details about
these objects, we implemented a within-category 2AFC
test that required detailed visual information about the
objects (Fig. 1).

Method

The design, sample size, exclusion criteria, and analysis
plan for both Experiments 2a (https://aspredicted.org/
VFV_44W) and 2b (https://aspredicted.org/H1P_PL7)
were preregistered using AsPredicted.

Participants. As before, our final sample was preregis-
tered to include 30 undergraduates who performed these
tasks in exchange for course credit. For Experiment 2a,
32 unique participants were recruited (18-32 years, 12
females, mean age = 20.06 years), and data from 2 partici-
pants were removed; for Experiment 2b, a separate group
of 34 participants was recruited (18-30 years old, 19
females, mean age = 21 years), and data from 4 partici-
pants were removed for failing to meet our inclusion cri-
teria. Our preregistered analysis plan included running
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Fig. 4. Results for Experiment 2a (objects; left) and Experiment 2b
(scenes; right). The average response time is shown in red. Individual
participant response times for the visual-discrimination phase and
the corresponding density plots demonstrate that participants were
significantly faster when the sound was congruent with the visual tar-
get (blue and yellow distributions) compared to when the sound and
target were incongruent (purple and green distributions).

primarily ¢ tests to compare mean RT for correct congru-
ent and incongruent trials. However, to ensure that our
results were not unduly influenced by the variance inher-
ent to our stimulus set, after preregistering, we added a
linear mixed-effects analysis to each experiment, as in
Experiment 1. For our replication of Experiment 2a, we
recruited a new sample of 20 participants from the under-
graduate pool (no participants were removed for failing
to meet our inclusion criteria).

Stimuli and procedures. All stimuli and procedures
were identical to the previous experiments except that
we added two extra audiovisual sets for Experiment 2b,
and both images from an audiovisual set were used as
target and lure on the 2AFC task, thus creating a harder,
within-category discrimination than in Experiments la
and 1b. That is, when participants saw a helicopter as a
target object, the 2AFC would present the helicopter they
saw during the visual-discrimination phase and a lure
that was also a helicopter (see Fig. 1, top right).

Results of Experiment 2a

When participants heard object sounds and had to per-
form a more difficult, within-category 2AFC test, we
found faster RTs for congruent compared to incongru-
ent audiovisual trials for the visual-discrimination phase
(4,454 vs. 4,524 ms, respectively), #29) = 2.78, p = .009,
d = 0.51, 95% CI = [0.12, 0.88] (see Fig. 4), which is
similar to our findings in Experiment la. This speed
difference did not have a significant effect on 2AFC
performance, d' = 1.89 vs. 1.85, #29) = 0.32, p= .75, d =
0.06, 95% CI = [0.30, 0.42], BF,, = 4.90 (Fig. 5a). After
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response times (RTs; purple and yellow), whereas incorrect responses were accompanied by slower and more variable 2AFC
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further analysis of RT during the 2AFC, we found that
participants were slower when they were incorrect
(1,412 ms) compared to correct (981 ms), #38.64) =
3.95,p <.001, d = 1.08, 95% CI = [0.61, 1.54]. Although
we found faster RTs for congruent compared to incon-
gruent trials on average (our preregistered analysis),
we found that the variance in our stimulus set may have
contributed to the significance of this effect. That is,
once we accounted for stimulus variance in our model,
the congruency condition explained a marginally non-
significant portion of the variance, *(1) = 3.53, p = .06.

Although our results supported our preregistered
analysis plan, we found in Experiment 2a that stimulus
variability contributed to the observed effect of congru-
ency. Because our paradigm was specifically designed
to capture the potential effects on vision of sounds that
occur naturally in the world—with only 60 trials and
no training with the experimental stimuli—this may
have been a power issue. Thus, to test this and validate
our results from Experiment 2, we performed a replica-
tion in which we roughly doubled the number of trials.
Here, the stimuli and procedure were identical except
that we added more object sounds to the original set
and heard each sound four times (twice as congruent

and twice as incongruent), thus performing 128 trials
overall, more than twice the amount compared to all
other experiments. With these changes, we replicated
the RT effect (i.e., with congruent trials being faster
than incongruent trials; 3,721 vs. 3,805 ms), #19) = 2.38,
p =.03,d=0.53, 95% CI = [0.06, 0.99]. We found no
difference in d' (d' = 2.23 vs. 2.41), 1(19) = 1.07, p = .3,
d =0.24, 95% CI = [-0.21, 0.68], BF,, = 2.59, and found
that congruency was a significant factor once the vari-
ance in our stimulus set was accounted for, x*(1) = 9.48,
p =.002, thus replicating Experiment 2a.

Results of Experiment 2b

In Experiment 2b, we used auditory scenes and a
within-category object-discrimination task, and we
found that congruent sounds facilitated the extraction
of visual details of objects: Participants were faster with
congruent sounds than with incongruent sounds (4,674
vs. 4,762 ms, respectively), #29) = 3.59, p = .001, d =
0.66, 95% CI = [0.26, 1.05] (Fig. 4). This difference in
speed did not have a significant effect on accuracy, d’ =
1.69 vs. 1.69, ©(29) = 0.04, p = .97, d = 0.01, 95% CI =
[-0.36, 0.35], BF,, = 5.14 (Fig. 5). As in Experiment 2a,
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responses were slower on the 2AFC task when partici-
pants were incorrect (1,762 ms) compared to when they
were correct (1,196 ms), #(41.11) = 4.72, p < .001, d =
1.29, 95% CI = [0.79, 1.77]. Last, once we accounted for
the variance in our stimulus set, congruency between
the audiovisual pairs still accounted for a significant
amount of the remaining variance, x*(1) = 12.33, p =
.0004. These results suggest that the broad and abstract
information provided by auditory scenes can facilitate
the accumulation of detailed visual information neces-
sary to perform a within-category discrimination task.

General Discussion

The current study tested whether naturalistic sounds
affected visual object processing by accelerating how
quickly relevant visual features are extracted from noisy
visual input. We used a visual-discrimination task and
a perceptual test of object recognition to demonstrate
that auditory information can hasten visual-feature
extraction without negatively impacting accuracy. With
this paradigm, we show that participants responded
more quickly in the visual-discrimination phase when
a nonpredictive sound was congruent with the target
image compared to when it was incongruent, suggest-
ing that participants demanded a greater amount of
visual information to perform the 2AFC test for incon-
gruent compared to congruent trials.

Whereas previous research examined the influence
of auditory objects on visual object processing, report-
ing mixed results (Chen & Spence, 2010; Edmiston &
Lupyan, 2015; Schneider et al., 2008), it was entirely
untested whether auditory scene information would
influence visual object recognition. Our results reveal
that congruent auditory object and scene information
facilitate visual object processing when compared to
incongruent sounds, and they further demonstrate that
these cross-modal effects occur for both categorical and
detailed object recognition. This suggests that natural-
istic sounds are not simply supporting broad visual
categorization (i.e., is it a bird or not?) but are also
helping to extract detailed visual-feature information
as well (i.e., is it this bird or that one? Experiment
1b-2b). Taken together, these experiments reveal that
visual perception is not only affected by the direct
relationship between visual objects and the sounds that
they make but that more abstract auditory information
is leveraged as well to enhance the extraction of mean-
ingful and detailed visual features.

However, this work cannot unambiguously deter-
mine whether congruent sounds facilitate, or incongru-
ent sounds hinder, visual processing. Future work
should fully explore whether the effect is driven by
facilitation, hindrance, or a combination of both.
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Despite this, faster response times together with no cost
in accuracy could be interpreted as a reflection of con-
gruent sounds accelerating the extraction of meaningful
visual information when compared to incongruent
sounds. Because equivalent performance on the 2AFC
task was observed when less visual information was
available, this perhaps represents an improvement of
visual sensitivity, as seen in previous work (Chen &
Spence, 2011; Lupyan & Ward, 2013; Meyerhoff & Huff,
2016). Because the auditory objects and scenes con-
tained reliable and unambiguous information, this may
have generated relatively automatic predictions about
plausible incoming visual information (Stein & Peelen,
2015; Winkler et al., 2009) which were then leveraged
by the visual system (Oliva & Torralba, 2007). Although
automaticity was not directly examined here, the sounds
in our task were not predictive of what visual object a
participant would see, and participants heard each
sound only twice, making it unlikely that participants
would set up a task-specific, top-down volitional expec-
tation about what object they would see. This, in our
view, suggests that these audiovisual interactions may
occur relatively effortlessly. Although this interpretation
is broadly consistent with recent neuroimaging studies
showing that both auditory objects and scenes automati-
cally drive the activation of congruent visual information
neurally (Mulatti et al., 2014; Vetter et al., 2014, 2020),
we cannot fully dismiss the potential of top-down, voli-
tional contributions on the basis of the current results.
A top-down account should predict that identifying
sounds is critical to set up expectations that are then
explicitly used to search for expected input (e.g., Stein
& Peelen, 2015). Although the direct relationship
between auditory objects and their visual counterparts
makes this mechanism feasible, auditory scenes have
no direct relationship with any particular visual object,
as objects are often probabilistically, not deterministi-
cally, related to their scenes (Greene, 2013).
This makes this mechanism less likely for scenes because
they are harder to identify, and one would need to set
this expectation for many objects and features. However,
one way to explore this hypothesis is to correlate how
well scene sounds were identified (see the Analysis
section in the Supplemental Material), and the
congruency effect (r = —.15, p = .44; Fig. 6). Although
this is a rather indirect test of the influence of top-down
knowledge, the lack of a correlation implies that explicit
recognition of scene sounds was not necessary to pro-
duce the effect and is thus less likely to drive the general
effect of sounds over vision. Consequently, we suggest
that these audiovisual interactions between naturalistic
sounds and visual objects may be driven by a lifetime
of experience (Bey & McAdams, 2002; Kording et al.,
2007), and the computational architecture that
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Fig. 6. Results from a preliminary survey. The survey revealed no
reliable relationship between the identifiability of an auditory scene
of the stimuli used in Experiment 1b (correct identification rate;
x-axis) and the effect of congruent auditory scenes on response
time in the visual-discrimination task (effect size of congruency from
Experiment 1b; y-axis). Object images on the right side depict the
stimuli used for the visual-discrimination phase of the two example
sounds (“office” and “farm”).

gives rise to them is an automatic feature of a probabi-
listic mind (de Lange et al., 2018; Kok et al., 2012; Versace
etal., 2009). However, future
studies should more directly test to what extent the pres-
ent cross-modal effects occur effortlessly through rela-
tively automatic integration of audiovisual signals, or to
what extent volition and top-down control play a role.

Together, across four experiments and a replication,
we demonstrated that processing of auditory objects
and scenes facilitates visual perception of related visual
objects, even when sounds are not predictive of the
visual stimulus in a given task and even when partici-
pants have no prior experience with the particular set
of audiovisual stimuli. Whether these effects systemati-
cally vary between different stimulus categories (ani-
mate vs. inanimate, natural vs. manmade, etc.) and
generalize to novel categories should be explored in
future studies. Collectively, our results suggest that per-
ception integrates contextual information at various
levels of processing and can leverage general, gist-like
information across sensory modalities to facilitate visual
object perception.
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Abstract

Visual object recognition is not performed in isolation but depends on prior knowledge and context. Here, we found
that auditory context plays a critical role in visual object perception. Using a psychophysical task in which naturalistic
sounds were paired with noisy visual inputs, we demonstrated across two experiments (young adults; 7s = 18-40 in
Experiments 1 and 2, respectively) that the representations of ambiguous visual objects were shifted toward the visual
features of an object that were related to the incidental sound. In a series of control experiments, we found that these
effects were not driven by decision or response biases (12s = 40-85) nor were they due to top-down expectations
(n = 40). Instead, these effects were driven by the continuous integration of audiovisual inputs during perception itself.
Together, our results demonstrate that the perceptual experience of visual objects is directly shaped by naturalistic
auditory context, which provides independent and diagnostic information about the visual world.
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When we look around the world, pertinent visual infor-  than it actually is? Or do sounds simply improve per-
mation can be ambiguous or indeterminate. To over-  ceptual processing of related visual objects by speeding
come this problem and to form meaningful responses or improving accuracy.

representations, the visual system not only relies on the It is well established that simple auditory information,

visual features of an object itself but also incorporates such as a noise burst or a beep, can influence visual
prior knowledge and concurrently available contextual processing of low-level visual stimuli quite dramatically,
information (Bar, 2004; Biederman et al., 1973; Daven- for example by enhancing their early visual processing
port & Potter, 2004). This integration of available infor- (Giard & Peronnet, 1999; McDonald et al., 2000; Stormer
mation is not exclusively visual either, as available et al., 2009; Vroomen & De Gelder, 2000) or by disam-

information from every sensory system is evaluated,  biguating visual motion stimuli (Sekuler et al., 1997;
weighed, and integrated to form a complete perceptual ~ Watanabe & Shimojo, 2001). Naturalistic sounds have
experience (Alais & Burr, 2004; Chen & Spence, 2010, also been found to affect higher-level visual processing,
2011a; Ernst & Banks, 2002; Kording et al., 2007; Schnei- such that response times (RTs) are faster and accuracy
der et al., 2008). However, most of the work on multi-  is higher in object recognition tasks when sight and

sensory integration has focused on characterizing how  sound are congruent relative to incongruent (Chen &
hearing a sound can facilitate visual processing; here,
we investigated whether naturalistic sounds alter our .

h 1 f visual obiects. 1 th ds. does Corresponding Author:
phenomenology o Vlbl.la. objects. in o CI"WOI‘ S, 08'8 Jamal R. Williams, Department of Psychology, University of California
the sound of a seal barking change our visual experi- San Diego
ence and make visual information appear more seal-like Email: jrwilliams@ucsd.edu
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Spence, 2011a; Williams & Stormer, 2019). However, it
is unclear whether real-world sounds simply enhance
perceptual processing—Ileading to a more rapidly
achieved or more accurate representation for congruent
audiovisual conditions—or whether sounds can change
how we see visual objects. Here, we focused on testing
this hypothesis by investigating whether incidental natu-
ralistic sounds can alter the visual representations of
pertinent visual objects.

We addressed these questions by investigating how
naturalistic sounds modulate the visual processing of
ambiguous objects. We used a visual discrimination task
with a perceptual locus (Sadr & Sinha, 2004; Williams
& Stormer, 2019) and designed a novel set of object
stimuli that were paired at random with related or unre-
lated sounds. Because the influence of sound on vision
seems particularly effective when visual information is
noisy or dubious—where sounds provide independent
and unequivocal clues about the visual environment
(Alais & Burr, 2004; Heron et al., 2004; Rohe & Noppeney,
2015; Watanabe & Shimojo, 2001)—we used ambiguous
visual stimuli paired with clear and distinct sounds.
Specifically, we created a set of ambiguous visual stim-
uli by morphing together the features of two visual
objects (objects A and B, e.g., a hammer and a seal;
Fig. 1a) and presented these stimuli with naturalistic
sounds that were congruent with one of these progeni-
tor objects. Visual objects and sounds were presented
simultaneously, and participants looked for a target
object in visual noise, after which they precisely reported
that object using a continuous report method. We exam-
ined whether participant’s reports of the visual objects
were altered by the sounds they heard—in particular,
whether sounds would shift the perceptual representa-
tion toward the features related to the sound. In a series
of control experiments, we also tested at what process-
ing stage these audiovisual effects arose and found
evidence consistent with the hypothesis that the effects
of sounds on visual object recognition have an early,
perceptual locus.

All data, scripts, and stimuli needed to replicate these
experiments and analyses are available on OSF (https://
osf.io/85kwv).

Experiment 1

On each trial, an ambiguous visual stimulus that was a
morph of two objects (i.e., the target morph; see Fig.
1) slowly faded into view from visual noise, while the
sound of a real-world object played. Participants were
instructed to press a button as soon as they could accu-
rately recreate the target morph using continuous report
(Fig. 1b), in which they had to adjust a test object to
the one they had seen during the visual discrimination
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Statement of Relevance

Perception is inherently multisensory, and even
senses that might appear to be irrelevant play a
role in how we perceive the world. To what extent
do our senses influence and change our percep-
tual experience? For example, imagine you catch
a glimpse of something rapidly flying by a win-
dow. Because it could be any number of things,
auditory information could be incredibly useful
for resolving this uncertainty: A buzzing would
suggest it was a drone, whereas a caw suggests it
was a crow. Does the sound of a drone make this
dubious object appear more drone-like than it
otherwise would have? Here, we tested how natu-
ralistic sounds affect the perception of visual
objects and found that object representations are
shifted toward the visual features that are congru-
ent with the sound. These findings demonstrate
that what we hear has profound impacts on how
we perceive the visual world.

phase as accurately as possible. Critically, the sounds
could be either related or unrelated to the target morph:
Unrelated sounds were highly dissimilar from the target
morph (e.g., a whistling train for the hammer—seal
morphs), whereas related sounds matched the identity
of one of the target morph’s anchor objects.

Method

Participants. All participants gave informed consent in
accordance with the procedures approved by the institu-
tional review board at the University of California (UC)
San Diego. Participants were between 18 and 25 years
old and reported having normal hearing and normal or
corrected-to-normal vision. Twenty-five undergraduates
(14 women; mean age = 20.6 years) from UC San Diego
took part in our online Experiment 1a in exchange for
course credit. Data from six participants were removed
because of poor task performance, leaving 19 partici-
pants in the final sample (see the Analysis section for
more details on exclusion criteria). In Experiment 1b, 49
undergraduates (35 women; mean age = 20.52 years)
from UC San Diego took part in this online study in
exchange for course credit. Data from nine participants
were removed because of poor task performance, leav-
ing 40 participants in the final sample. Experiment 1b
included more participants to ensure that we could detect
potentially smaller effects after shortening the experi-
ment to make it more suitable for online testing. To
determine an appropriate number of participants, we



Psychological Science XX(X)

d

Object A Object B
(Sound A) (Sound B)
Cat Kettle
(meow) (whistle)
Airplane Raven
(flyover) (caw)
Hammer Seal
(nail into wood) (bark)
Goat Vespa
(bleat) (engine rev)
Experiment 1a
Response Interface
P——e— !
Jemesncasseanasas H
That response was 14
steps from correct.
+ ‘ ))) Keep this below 10.
1 1 1 1 1 >
Fixation Sound Visual Discrimination Report Morph Feedback
500ms 2sec 3sec or until response until response 3sec

Fig. 1. Stimuli and task. (a) The four object pairs used in the experiments. The leftmost column shows anchor objects A, and the
rightmost column shows anchor objects B (anchor-object sounds are shown in parentheses). Between each anchor object were 98
unique morphs that maintained features of both anchor objects. (b) General task design. Sounds played while a noisy object slowly
faded into view (an example of the denoising process is shown above the visual discrimination panel). Experiment 1a used a linear
response slider, whereas Experiment 1b used a circular response wheel.
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performed a power analysis on the data obtained from
Experiment 1a and found that we could adequately detect
effects of sound on report error as low as Cohen’s d_
0.45 with a sample size of 40 (power of .8 and an a of .0
using the base R package pwr; Champley et al., 2018).

5;

Stimuli. A total of 12 real-world sounds were selected
from online repositories (e.g., BBC Sound Effects, bbcsfx.
acropolis.org.uk; freesound, freesound.org) and were
edited to be 2 s in length and have roughly equivalent
amplitudes (within and across stimuli when played at
roughly 70 dB sound pressure level). Eight of the sounds
were paired such that each sound in that pair could be
distinct on the basis of auditory and semantic qualities
(e.g., hammer—seal; see Fig. 1a). For each object pair, we
collected and edited an additional unique sound that was
unrelated to the audiovisual object pair. Unrelated sounds
were selected to be as distinct as possible from the object
pair (e.g., a train whistle for the hammer—seal object pair),
whereas related sounds were selected to closely match
sounds made by either anchor object A or anchor object
B (see Fig. 1a for object sounds). For each sound pair, we
collected or created a silhouette of a visual object that
matched the object identity of the sound. For ambiguous
objects, each silhouette also needed to share visual simi-
larities such as shape, contours, and orientation with the
silhouette from the other side of the object continuum.
Using each silhouette as end points, we generated a set of
100 novel silhouettes by morphing the features of the two
objects (object A and object B) for each object pair (Fig.
1a). We used a morphing program to fuse objects together
and create these ambiguous morph pairs (Liao et al.,
2014). The morphing procedure optimizes the retention
of the original image features while avoiding ghosting
artifacts and is based on three principal parameters: sim-
ilarity (to match regions of images with similar edge
structure), smoothness of the mapping (resulting vector
fields favor the affine function in the absence of other
constraints), and deviation from user-specified corre-
spondence. We manually added specified correspon-
dence points to resolve ambiguities and increase morphing
performance.

Because the morphing process creates relatively arbi-
trary, psychologically nonuniform steps between 1 and
100, individual morph steps were rated in a separate
online study to assess the psychometric functions for
each of the morph pairs and to measure how the physi-
cal morph steps related to perceptual similarity. Here,
participants were shown object A and object B (the
unique images that anchored the end points of the con-
tinuum) and reported whether a test morph (randomly
selected from the continuum) was visually more similar
to object A or B. From these data, we generated psycho-
physical curves and selected three morphs from each
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object-pair continuum that corresponded to the points
where 20%, 50%, and 80% of responses indicated that
the morph appeared more as object A relative to object
B. Note that although we aimed to introduce variability
and greater ambiguity in the target stimulus set by select-
ing three different steps for each object pair, we planned
to collapse data across these different morph levels for
our main analysis to obtain adequate power. In sum, the
image set contained four unique object pairs, each with
three unique morphs (12 images total).

For the visual discrimination phase, stimuli were
edited to form a continuous and difficult perceptual
task that would allow the simultaneous presentation of
a sound and a noisy visual object. First, to create noise
masks that would effectively obscure the target silhou-
ettes, we combined all 12 silhouette images and com-
pletely randomized the phase of this composite image.
Thus, the power spectrum of the resulting noise image
was correlated with that of all silhouettes and was com-
pletely unrecognizable. Then, we created a simple ran-
dom noise mask using the function imnoise() in
MATLAB (The MathWorks, Natick, MA) and overlaid
this random noise mask on top of the phase-scrambled
noise mask. Together, this resulted in a mask that effec-
tively obscured the target morph silhouettes with both
phased and random noise (see Fig. 1b).

Throughout each trial, the mask slowly became more
transparent to reveal more of the underlying target
image until only 40% of the noise mask remained. Also,
on each trial, the phase of the target image was initially
randomized 100% and then faded into a recognizable
morph by slowly reducing the phase randomization
until it was fully intact. The exact parameters of how
quickly the noise faded and the target morph became
more visible were based on pilot data from an in-lab
version, which showed that participants could recog-
nize the image when 60% image clarity was reached,
which took roughly 3 s. All phase randomizations and
noise masks were created prior to the online experi-
ment; this ensured that the exact same stimuli were
viewed by each participant.

Procedure. Participants performed 240 or 120 trials
(Experiment la and 1b, respectively) that were split
among three sound conditions: 40% of the sounds were
related to visual anchor object A (e.g., the sound of ham-
mering a nail into wood), and another 40% were related
to visual anchor object B (e.g., the sound of a seal bark-
ing), and the remaining 20% served as a baseline condi-
tion, were unrelated to the visual object pair, and did not
match either of the anchor objects. The nonmatching,
unrelated sounds were selected to be unrelated to either
of the sounds or visual objects. Related sounds were not
predictive of which target morph appeared as the target
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in the visual discrimination phase (e.g., the sound of a
seal barking could be presented when any of the three
target morphs were presented). Each trial began with the
playback of a 2-s sound of a real-world object, and par-
ticipants were instructed to attend to this sound. Five
hundred milliseconds after the sound onset, the visual
discrimination phase appeared centrally (400 x 400 pixels)
on the participant’s browser of choice. The visual object
always started completely obscured by visual noise and
would slowly fade in to become more visible as time
elapsed. More specifically, visual noise levels decreased
by roughly 1% every 50 ms until the participant clicked
the mouse to indicate that they had enough visual infor-
mation to accurately perform the subsequent continuous
report of the target object.

The mouse click stopped the visual discrimination
phase, and if participants did not press the button
within 3 s—when the phase randomization reached
40% noise and the object was identifiable though still
obscured by noise—they received feedback encourag-
ing them to accumulate visual information more quickly
(these trials were discarded and not analyzed). Target
images were randomly chosen on each trial and paired
with one of the three sound conditions. Once the visual
discrimination phase was completed, participants were
presented with the response interface: A response sil-
houette (300 x 300 pixels) was shown as a probe above
a continuous response slider (400 pixels wide). The
probe was chosen randomly from the possible morph
steps (1-100), and participants clicked and dragged a
response dot along the continuous response line until
they matched the probe to the target morph from the
visual discrimination phase. Participants locked their
response by clicking the mouse and then received feed-
back on their error (number of steps from the correct
answer for 3 s). Participants then clicked to initiate the
next trial.

Experiment 1a used a linear response slider in which
the leftmost edge corresponded to anchor object A
(Morph Step 1) and the rightmost edge corresponded
to anchor object B (Morph Step 100). Further, we used
three distinct morphs per object pair, and these morphs
corresponded to three similar positions on the response
slider across trials. Thus, it is possible that participants
used these reliable positions along the response slider
as a cue when responding—instead of focusing on the
visual features of the response morph itself. To mitigate
these concerns, and to replicate the effects of Experi-
ment la using a different response format, in Experi-
ment 1b, we presented participants with a response
wheel that was rotated randomly on every trial so that
there was no correspondence between positions on the
response wheel and the visual response morph pre-
sented centrally, across trials (see Fig. 1b). Thus, the
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task in Experiment 1b was identical to that in Experi-
ment la except that participants performed only half
of the trials (and thus had less exposure and practice
with these stimuli and task) and when the response
screen appeared, a black ring (400 x 400 x 3 pixels)
with a small position dot (50 x 50 pixels) surrounded
the response morph (300 x 300 pixels). On every trial,
the response ring was rotated by a random amount so
that the angle of the position dot corresponded with a
distinct morph step across trials. Thus, participants were
not able to use the response interface itself as an anchor
to find a particular morph but had to solely rely on the
response morph, which was changing continuously as
participants moved along the response wheel.

Analysis. For each sound condition (unrelated or related:
A and B), we calculated a participant’s median RT on the
visual discrimination phase and their mean report error on
the continuous report phase by sound condition. When
comparing RT, we first checked to see whether RT differed
between related sound A and sound B conditions. Across
all experiments, we found no difference and thus col-
lapsed RT estimates across sound A and B when compar-
ing related and unrelated conditions. Error on continuous
report was determined as the number of morph steps
between the correct response (target morph) and the
provided response. Morphs were numbered 1 to 100, and
negative responses represent a response that is closer to
1 (object A) than the correct response and vice versa for
positive responses. We calculated a participant’s mean
error per sound condition (sound A, B, and unrelated)
and submitted these data to an analysis of variance
(ANOVA). Report error in each figure is represented as
the difference in average error between the related and
unrelated conditions.

Exclusion criteria were decided in advance on the
basis of preliminary pilot data. Data from participants
were excluded if their average report error or average
RT exceeded 3 standard deviations from the group
mean. Furthermore, for each individual participant, all
trials on which report error or RT exceeded 4 standard
deviations from their mean were excluded. Last, any
trials on which participants did not respond in the
visual discrimination phase—instead opting to wait the
entire duration of the trial—were excluded from further
analysis. Data from participants were excluded from
further analysis if more than 10% of trials were missing
from their data set because of this removal process.

Results

We first submitted report error and RT on the visual
discrimination and the continuous report phases,
respectively, to a multivariate ANOVA (MANOVA). Here,
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we found a significant effect of sound on both RT and
error, F(4, 72) = 6.67, p < .001, n* = .27. We next sub-
mitted continuous report responses to an ANOVA,
which revealed a significant main effect of sound
(sound A, sound B, or an unrelated sound), F(2, 36) =
10.05, p < .001, n? = .36. Our primary interest was
whether related sounds A and B affected the same
visual stimulus differently; thus, we next compared the
mean error for each related sound with the error on
unrelated sound trials—which matched the complexity
and naturalistic properties of the related sounds, thus
effectively serving as a neutral condition. These subse-
quent pairwise comparisons revealed that the sounds
corresponding to anchor object A shifted responses
toward that side of the object-morph continuum and
away from responses on unrelated trials, 1(18) = —2.16,
p = .044, Cohen’s d_. = 0.50, 95% confidence interval
(CD =1[0.031, 0.959], whereas sounds corresponding to
object B shifted responses in the opposite direction
with roughly equal magnitude, #(18) = 2.57, p = .019,
Cohen’s d_=0.59, 95% CI =[0.199, 0.979] (see Fig. 2b).
We next focused on RT during visual discrimination,
which reflected the rate at which visual information
was meaningfully integrated into a complete object.
Participants were faster, on average, when they heard
a related sound (1,638 ms) compared with an unrelated
sound (1,682 ms), #(18) = 2.47, p = .023, Cohen’s d, =
0.57, 95% CI = [0.198, 0.9306]. This difference suggests
that, on unrelated trials, participants required roughly
10% more visual evidence than on related trials to per-
form the task with roughly equal levels of accuracy
(mean absolute error = 6.00 vs. 6.07), #(18) = 0.39, p = .7,
Cohen’s d, = 0.089, 95% CI = [0.0806, 0.093], Bayes factor
favoring the null over the alternative hypothesis (BF,,) =
3.94. Thus, auditory information accelerated visual fea-
ture extraction from the noisy images and possibly
increased participants’ confidence in their visual judg-
ments as well (Williams & Stormer, 2019). Additionally,
we conducted a linear mixed-effects analysis to account
for variability in the stimulus set and, after accounting
for this variance, found a main effect of sound for
RT, x*(2) = 6.27, p = .043, and report error, 3*(2) = 6.05,
p =.048.

Experiment la used a linear response interface
where the leftmost edge corresponded to anchor object
A (Morph Step 1) and the rightmost edge corresponded
to anchor object B (Morph Step 100). It is therefore
possible that participants used these reliable positions
along the response slider as a cue when responding—
instead of focusing on the visual features of the response
morph itself. To mitigate these concerns in Experiment
1b, we implemented a response wheel that rotated
randomly on every trial (Fig. 1b). We submitted RT and
report error to a MANOVA and found a main effect of
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sound, F(4, 156) = 8.508, p < .001, n* = .18. Next, we
found that sounds had a reliable effect on report error,
F(2, 78) = 11.23, p < .001, n? = .22, and that related
sounds shifted responses away from the average error
on unrelated trials and toward the visual features of
anchor object A, #(39) = -2.58, p = .014, Cohen’s d, =
0.41, 95% CI = [-0.20, 1.02], and object B, #(29) = 2.77,
p=.01, Cohen’s d, = 0.42, 95% CI = [-0.31, 1.16] (Fig. 2).
RT from the visual discrimination phase was again
faster when sounds were related to the target morph
M = 1,798 ms) than when they were unrelated (M =
1,860 ms), £39) = 3.22, p = 0.003, Cohen’s d_ = 0.51,
95% CI =[0.12, 0.89], and like before, this difference in
RT did not result in a reliable difference in accuracy
(Ms = 6.83 vs. 6.84), 1(39) = 0.03, p = .98, Cohen’s d_ =
0.004, 95% CI = [-0.001, 0.009], BF,, = 5.80. We also
found that the variability in our stimulus set did not
extinguish the main effect of sound on RT, y*(2) = 29.44,
p < .001, or report error, x*(2) = 29.44, p < .001. Taken
together, the results from these experiments demon-
strate that related auditory information speeds visual
object processing while also shifting feature representa-
tions of visual objects toward those features that match
the incidental auditory context.

Experiment 2

The results of Experiments 1a and 1b led us to hypoth-
esize that sounds influence concurrent visual process-
ing by shifting ambiguous visual inputs toward visual
features that are congruent with the sound. However,
it could be that sounds influence later, nonperceptual
processing stages, such as decisional and response pro-
cesses. Although such a postperceptual account seems
incompatible with faster RT for related relative to unre-
lated sounds, we directly tested this alternative in
Experiments 2a and 2b by presenting sounds when they
should have the greatest impact over decisional pro-
cesses: during the continuous report phase.

Method

Participants. In Experiment 2a, all participants were
18 to 23 years old (mean age = 20.36 years), reported
normal hearing and normal or corrected-to-normal vision,
and gave informed consent in accordance with the pro-
cedures approved by the institutional review board at UC
San Diego. Forty-nine participants (32 women) from UC
San Diego took part in this online experiment in exchange
for course credit. Data from seven participants were
removed using the same criteria as described above,
leaving 40 participants in the final sample. In Experiment
2b, all participants were 18 to 34 years old (mean age =
20.69 years), and 96 participants (76 women) from UC
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(b) and Experiment 1b (d), sounds influenced response time such that participants were faster when they heard a related

sound compared with an unrelated one.
Error bars are +/-1 SEM, *» < .05. *p < .01. **p < .001.

San Diego took part in this online experiment in exchange
for course credit. Data from 11 participants were removed
using the same criteria as described above, leaving 85
participants in the final sample. Exclusion criteria were
identical to those in Experiment 1.
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Procedure. The task was identical to that in Experiment
1b, except that sounds now started to play immediately
following the visual discrimination phase and during
continuous report. Each trial began with the same visual
discrimination phase, except with no sound and, after a
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button press, the visual input stopped, a real-world sound
began to play, and the continuous report interface was
presented (after 500 ms; Fig. 3). If the effect is largely
driven by a decisional process (such as response bias or
low-confidence responses), we would expect a similar,
or perhaps even larger, effect of sound on visual percep-
tion relative to that found in Experiments 1a and 1b. If,
however, real-world sounds primarily affect perceptual
and not decisional processes, then this manipulation
should eliminate or reduce the effect because perceptual
processing is likely complete by the time participants
begin reporting the target item. In Experiment 2b, on half
of all trials, a sound started playing shortly before the
visual discrimination task (as in Experiments 1a and 1b),
and on the remaining half of the trials, the sound was
played after the visual discrimination task and during the
continuous response task (as in Experiment 2a). These

d

sound-onset conditions were presented in blocks (30 trials
per block) and interleaved.

Results

In Experiment 2a, we submitted RT and report error to
a MANOVA and found no main effect of sound, F(4,
156) = 0.44, p = .78, n? = .01. Following up, we found
that sounds had no significant impact on report error,
F(2, 78) = 0.38, p = .69, n* = .009 (Fig. 3b), and as
expected, RT on related (M = 1,911 ms) and unrelated
trials (M = 1,906 ms) was not significantly different,
1(39) = 0.29, p = .77, Cohen’s d, = 0.04, 95% CI = [-0.379,
0.280], BF,, = 5.63 (Fig. 3d). A closer analysis of report
error found no significant impact of sound. Report error
on neither sound A trials, #(39) = 0.82, p = .42, Cohen’s
d,=0.12, 95% CI = [-0.362, 0.621], nor sound B trials,
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#(39) = 0.24, p = .81, Cohen’s d_ = 0.03, 95% CI = [-0.831,
0.755], was significant, and we found compelling evi-
dence to support these null findings (BF,, = 4.28 and
5.70, respectively).

In Experiment 2b, we combined manipulations from
Experiments 1b and 2a in a within-subject design and
varied whether sounds were played during the continu-
ous report phase (as in Experiment 2a) or were played
during the visual discrimination phase (as in Experi-
ments la and 1b). We submitted RT and report error to
a MANOVA with both sound and sound-onset condi-
tions and found main effects of sound, F(4, 336) = 9.19,
p < .001, n,” = .10, and sound onset, F(2, 83) = 6.10,
p =.003, npz = .13, as well as a significant interaction,
F(4, 336) = 4.76, p < .001, npz = .05. We next focused
on report error and found a main effect of sound,
F(2,84) =11.31, p <.001, npz =.12; there was no main
effect of sound onset (during or after visual discrimina-
tion), A(1, 84) = 0.16, p = .69, n,* = .001, and there was
a significant interaction, A2, 168) = 3.39, p = .036, n,* =
.04. To explore the interaction, we compared the effect
of sound on report error and found that sounds pro-
duced a significantly larger effect when they were
played during the visual discrimination phase compared
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with when they were played during the continuous
report phase, #(84) = 2.34, p = .021, Cohen’s d, = 0.25,
95% CI = [-1.425, 1.934] (see Fig. 3¢).

We next analyzed report error independently for
each sound-onset condition. When participants heard
sounds during the visual discrimination phase, we
found that related sounds shift responses toward anchor
object A, #(84) = 2.30, p = .024, Cohen’s d_ = 0.25, 95%
CI =[-1.696, 1.198], and object B, #(84) = 2.96, p = .004,
Cohen’s d, = 0.32, 95% CI = [-0.668, 1.309]. These
results were significant after analyses accounted for
stimulus variability as well, y*(2) = 58.59, p < .001.
However, and in contrast to these findings, when par-
ticipants heard sounds during the continuous report
phase (Fig. 3d), we found that error on unrelated trials
was not significantly different from error on sound
A trials, #(84) = 1.56, p = 0.12, Cohen’s d, = 0.16, 95%
CI = [-1.043, 0.705], BF,, = 2.61, and sound B trials,
1(84) = 1.42, p = .16, Cohen’s d, = 0.15, 95% CI = [-0.51,
0.818], BF,, = 3.18.

We then examined RT and found significant main
effects of sound, A2, 168) = 7.34, p <.001, n,* = .8, and
sound onset, F(1, 84) = 12.25, p = .001, npz =.13, as well
as a significant interaction, F(2, 168) = 6.12, p = .003,



10

Williams et al.

npz =.07. Participants were significantly faster on related
trials (M = 1,779 ms) compared with unrelated trials
(M = 1,852 ms), #(84) = 4.05, p < .001, Cohen’s d, = 0.44,
95% CI = [0.079, 0.7996] (Fig. 3e, blue bars), when
sounds played during the visual discrimination phase,
and this difference in RT did not lead to significant dif-
ferences in accuracy (Ms = 7.76 vs. 7.31), #(84) = 1.21,
p = .23, Cohen’s d, = 0.13, 95% CI = [-0.875, 0.612],
BF,, = 4.13 (see Fig. 3e). As expected, we observed no
significant difference in RT between the related (M =
1,899 ms) and unrelated (M = 1,903 ms) conditions
when sounds were played during the continuous report
phase, 1(84) = 0.25, p = .80, Cohen’s d, = 0.03, 95% CI =
[-0.287, 0.343], BF,, = 7.99 (Fig. 3e, purple bars).
Overall, RT was on average slower when sounds
were played during the continuous report phase com-
pared with the visual discrimination phase, but this
difference in RT (i.e., having target images with lower
levels of noise) was not statistically significant, #(84) =
1.58, p = .12, Cohen’s d, = 0.17, 95% CI = [-0.817, 0.475],
BF,, = 2.55, and the numerical difference in RT did not
lead to a significant difference in report error across
sound-onset conditions (Ms = 7.38 vs. 7.54), #(84) =
0.62, p = .54, Cohen’s d_ = 0.06, 95% CI = [-0.85, 0.725],
BF,, = 6.94. These results replicate those of the previous
experiments and demonstrate that sounds have their
greatest influence when they are presented concur-
rently with visual information and can thus be inte-
grated directly with incoming visual information.

Experiment 3

Experiments 2a and 2b suggest that this perceptual
shifting is not largely driven by postperceptual mecha-
nisms. However, another possibility is that the semantic
content of these naturalistic sounds drives prepercep-
tual, top-down influences on visual perception
(although, top-down mechanisms may diminish multi-
sensory effects). To test whether sounds might activate
high-level semantic representations—that subsequently
influence sensory processing—in Experiment 3, we pre-
sented the full length of a sound prior to the onset of
the visual discrimination phase (cf. Cox & Hong, 2015;
Lupyan & Ward, 2013), which provides the same audio-
semantic content as before but should primarily drive
preperceptual mechanisms that have been shown to
require a longer delay between sound and target onset
(Boutonnet & Lupyan, 2015; Chen & Spence, 2018a,
2018b; Lupyan & Ward, 2013).

Method

Participants. All participants were between 18 and 25
years old (mean age = 20.1 years), reported normal or
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corrected-to-normal vision, and gave informed consent
in accordance with the procedures approved by the insti-
tutional review board at UC San Diego. Forty-eight
undergraduates (25 women) from UC San Diego took
part in this online study in exchange for course credit.
Data from eight participants were removed using the
same criteria as described above, leaving 40 participants
in the final sample.

Procedure. The task was identical to that in Experiment
1b, except that sounds now preceded the visual discrimi-
nation task by 3 s (Fig. 4a). Each trial started with a real-
world sound (2 s) and after it finished, the presentation
of the visual discrimination task automatically began after
the 3-s delay.

Results

We submitted RT and report error to a MANOVA and
found no main effect of sound, F(4, 156) = 2.18, p =
.07, 1% = .05. We found that sounds did not have a
significant impact on report error, F(2, 78) = 2.08, p =
.13, n% = .05 (Fig. 4b), and we did not find a significant
RT benefit for related sounds (Ms = 2,008 vs. 2,037 ms),
#39) = 1.73, p = .09, Cohen’s d_ = 0.27, 95% CI = [-0.073,
0.619], BF,; = 1.50 (Fig. 4¢). Preplanned ¢ tests of report
error further demonstrated that error on unrelated trials
was not significantly different from error on sound A
trials, #(39) = 1.19, p = 0.24, Cohen’s d_ = 0.18, 95% CI =
[-0.593, 0.968], BF,, = 3.04, or sound B trials, #(39) =
0.64, p = .53, Cohen’s d, = 0.10, 95% CI = [-0.725, 0.927],
BF,, = 4.84. We also compared the small effect of sound
that we found in Experiment 3 with that found in Exper-
iment 1b and submitted error to an ANOVA. Here, we
found no main effect of experiment, /(1, 78) = 0.18, p =
0.67,m,” < .01), a main effect of sound, F(1, 78) = 24.04,
p < .0001, n[,z .24, and a significant interaction,
F(1,78) = 421, p = .0435, ,? = .05.

Thus, the effects observed in Experiment 1b were
above and beyond the small (and unreliable) effect
observed in Experiment 3. Furthermore, the observed
effect sizes across experiments, further support this:
The average effect size (d.) of report error for Experi-
ment 3 was 0.13, and for Experiments 1a, 1b, and 2b,
effect sizes (d.s) ranged from 0.3 to 0.59. Overall, these
results suggest that the effects we observed in Experi-
ments 1a and 1b and Experiment 2b were largely driven
by the continuous presentation of sight and sound and
less so by attentional mechanisms or other top-down
goals and expectations. This reinforces previous find-
ings stressing the importance of the temporal overlap
of incoming audiovisual stimuli, as predicted by multi-
sensory integration accounts (Chen & Spence, 2011b,
2018a; Colonius & Diederich, 2004; Meredith et al.,
1987; van Atteveldt et al., 2007).
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The error bars for all data figures are +1 SEM.

Discussion

Our results suggest that naturalistic auditory informa-
tion alters the representations of objects we see. Spe-
cifically, we found that visual features of object
representations are shifted toward features that are
congruent with a concurrent auditory stimulus: The
same ambiguous object (e.g., a 50% seal and 50% ham-
mer morph) was perceived as more hammer-like when
paired with a hammer sound and more seal-like when
paired with the sound of seal barking. In a series of
control experiments, we demonstrated that these cross-
modal effects are not due to biases at decision nor
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response stages (Experiments 2a and 2b), nor is explicit
semantic knowledge about the sounds sufficient to
elicit these effects (e.g., volitional search for specific
features; Experiment 3). Instead, sounds exert a reliable
effect on visual perception only when both stimuli
overlap temporally. Additionally, and broadly consistent
with other research on this topic, our findings revealed
that the sounds hasten the accumulation of related
visual information, resulting in faster RTs for related,
relative to unrelated, audiovisual inputs.

How might sounds exert influences over visual per-
ception? In the natural world, sounds are causally pre-
dictive of the object that generated them—cats cannot
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bark, for example—and thus, sounds provide indepen-
dent and informative cues about the visual world. This
reliable and highly predictive relationship between
audiovisual events can drive changes in early visual
processing regions of the brain (van Atteveldt et al.,
2014), leading to selective processing of relevant visual
features. Previous work has shown that auditory infor-
mation can rapidly affect the earliest stages of visual
processing (Giard & Peronnet, 1999), that auditory and
visual signals are integrated in a near-optimal way
(Alais & Burr, 2004; Aller & Noppeney, 2019; Burr et al.,
2009), that predictive relationships between stimuli lead
to a selective reweighting of probabilistically relevant
features (Bell et al., 2016; de Lange et al., 2018; Kok
et al., 2012), and that these effects are largely driven
by previous experience (Gau & Noppeney, 2016; Series
& Seitz, 2013; Stocker & Simoncelli, 2000). For example,
Kok and colleagues (2012) showed that when sensory
information predicts an event, processing of probabilisti-
cally irrelevant features is suppressed relative to relevant
features—those that are more likely to be observed—
ultimately sharpening the processing of relevant sensory
information. Taken together, these results led us to
hypothesize that the clear sounds presented in our study
exerted a strong influence over early visual processing,
which led to a selective modulation of visual features
that were inferred to come from the same generative
object (i.e., ambiguous features are presumed to be
dog-like when co-occurring with the sound of a barking
dog). This suggests that naturalistic sounds do not sim-
ply hasten visual perception but that this speed decrease
may be the result of shifting perceptual representations
toward expected visual features. Additionally, within this
framework, such sharpening of sensory processing can
also lead to a facilitation of visual feature extraction for
expected features, as evidenced by faster RTs for related
relative to unrelated sounds.

Another possible source of this effect may be that
high-level semantic knowledge influences visual percep-
tion (Chen & Spence, 2011a). For example, presenting
linguistic labels prior to a visual object has been shown
to boost perceptual processing (Lupyan & Ward, 2013).
However, the present results are inconsistent with the
hypothesis that activating semantic knowledge underlies
the perceptual changes we observed here, because the
semantic content of real-world sounds alone did not reli-
ably shift perceptual representations (Experiment 3). Our
results support the more implicit and low-level process
of probabilistic inference (Series & Seitz, 2013), where
the purported effects of semantics and top-down goals
on visual perception operate through separate mecha-
nisms (Cox & Hong, 2015; Gordon et al., 2019; Helbig &
Ernst, 2008). Furthermore, finding that audiovisual events
need to overlap temporally to exert an effect is also in
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line with the notion that the learned structure from the
world—here, that sounds are exclusively produced by
appropriate objects and that audiovisual events co-occur
in time—influences how we perceive novel sensory infor-
mation (Summerfield & Egner, 2009).

Our results broadly relate to work that has shown
influences of auditory context on visual-perceptual pro-
cessing for realistic objects. However, in previous work,
the crossmodal facilitation of visual perception (a) was
often observed after explicit familiarization or training
with the audiovisual stimuli; (b) was often observed with
a task that required participants to report whether the
sound and image were congruent, thus examining RT and
accuracy rather than perceptual biases; and (¢) typically
involved rapid presentation of the visual stimulus—where
some trials might represent uncertain or low-confidence
perception, possibly resulting in biases or specific
response strategies (Chen & Spence, 2011a, 2018b;
Schneider et al., 2008). Here, we avoided these potential
limitations and designed a task with a unique stimulus
set that allowed us to measure more naturally occurring
crossmodal effects and assess the perceptual representa-
tions themselves. In particular, (a) participants received
no training and had no direct experience with the experi-
mental stimuli prior to participating; (b) the task entailed
and encouraged participants to accurately report the
visual target irrespective of the audiovisual relationship,
thus avoiding potential congruency biases; and (¢) par-
ticipants were in control of the amount of visual informa-
tion they accumulated, thus allowing us to more
confidently assume that participants had sufficient visual
information to complete each trial accurately. Importantly,
this last point demonstrates that this crossmodal effect is
not limited to especially noisy perceptual representations,
nor are they the product of uncertainty at response (espe-
cially because participants were encouraged on every
trial to keep their error as low as possible), suggesting
that well-formed perceptual representations are nonethe-
less influenced by auditory context.

Overall, our findings demonstrate that the ongoing
perceptual processing of novel and ambiguous stimuli
is altered by related auditory context such that the
ultimate perceptual representation is shifted toward
sound-congruent features. Our results favor a multisen-
sory rather than a decisional or strategic account, in
which visual and auditory information are continuously
integrated such that inputs from one modality—in our
case audition—trigger inferences about the world that
the visual system uses to interpret concurrent ambigu-
ous information. Most broadly, our study demonstrates
the importance of investigating visual processing as an
integrative rather than an isolated process (Kording
et al., 2007) and that multisensory integration plays a
critical role in forming visual object representations.
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integration (Chen & Spence, 2018a; Edmiston & Lupyan, 2015).
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CONCLUSION

Given the complexity of achieving visual perception, Zeno’s dichotomy seems
applicable®: since the process of converting photons to perceptions requires a seemingly infinite
number of intermediate steps perception must be an illusion. Paradoxes notwithstanding, visual
perception feels as though it occurs instantaneously and with little effort in spite of the many
steps required to produce it. To facilitate processing and thereby alleviate the immense burden of
these computations, visual processing incorporates prior knowledge and available context.
Across three chapters, I demonstrate that priors and context, influence our ability to process the
visual world. In the real world, context likely facilitates our ability to infer object identity (Oliva
& Torralba, 2007), the configuration of occluded objects (Sekuler & Palmer, 1992), and, among
many other things, whether a dress is white and gold or blue and black (Lafer-Sousa et al., 2015).
Yet, these attempts to resolve visual ambiguity can lead to an unavoidable capture of attention, a
beneficial facilitation of object recognition, and a perturbation of object recognition.

Broadly, chapter 1 demonstrates that information active in working memory can capture
and guide attention towards matching features in the environment. Suggesting a critical role of
internally activated context in attentional selection. Beyond the effects of visual content affecting
visual processing, in chapter 2, direct and indirect auditory information increased the rate by
which meaningful visual information was acquired. However, chapter 3 suggests that this
facilitation is not cost free. Instead, we show that—even when people self-report as having a
complete, and precise perceptual representation—this facilitatory process is likely driven by

predictions about impending visual information that are capable of biasing perception.

* I swear this is the last time I’1l bring up the ancient Greeks.
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The integration of these findings at large undoubtedly informs our understanding of how
context, whether within or across modalities, affects how we process and perceive visual
information. For example, in chapter 1, we set out to answer several outstanding questions in the
visual search literature. Historically, the discussion of whether multiple working memory items
can guide attention has often focused on the number of items that can achieve a privileged
template status with little focus on how well these items are remembered. In this chapter, in
contrast, a careful assessment of the memory strength of remembered items, demonstrated a
rather straightforward relationship between memory strength (the average representational
fidelity of memories) and attentional guidance. This direct relationship exists independently of
whether an item’s status is elevated to a “template”. In particular, this work showed that both
within- and across-trial variation in how well items are represented predicted the strength of
attentional guidance and did so without needing to posit any other predictors (like a special
privileged state). These findings suggest that the degree to which an item accurately represents
the originally encoded item (i.e., its representational fidelity) determines whether—and how
effectively—an item guides attention.

The “representational fidelity” framework discussed in chapter 1 speaks to two important
issues in the literature of memory driven attentional guidance as well as to working memory and
attention literature more broadly. First, to the question of whether one, or many working memory
representations guide attention. Our data indicate that only an extremely strong and high-fidelity
memory representation can guide visual search effectively, something that might rarely occur for
more than one item at a time. To be clear, it could be the case that multiple items simultaneously
guide attention, however, the data on offer simply suggests that all of the simultaneously

maintained memories are unlikely to be sufficiently well-represented to each exert strong and
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reliably measured guidance over attention in these sorts of tasks (see future directions). Second,
the present results elucidate the mechanisms underlying attentional guidance and explain why
attentional guidance is often driven by a single item. Importantly, and different from previous
accounts, this data suggests that natural variation in the representational fidelity between items is
sufficient to explain the extent to which an item will guide attention at any given time, with no
special focus of attention or similar state-based accounts of working memory being necessary. In
sum, these findings have important implications for our understanding of the fundamental
structure and processes involved in working memory and attention.

Chapter 2 explored whether naturalistic sounds affected visual object processing by
accelerating how quickly relevant visual features are extracted from noisy visual input. We used
a visual-discrimination task and a perceptual test of object recognition to demonstrate that
auditory information can hasten visual-feature extraction without negatively impacting accuracy.
With this paradigm, we show that participants responded more quickly in the visual-
discrimination phase when a non-predictive sound was congruent with the target image
compared to when it was incongruent, suggesting that participants demanded a greater amount of
visual information to perform the 2AFC test for incongruent compared to congruent trials. These
results reveal that congruent auditory object and scene information facilitate visual object
processing when compared to incongruent sounds, and they further demonstrate that these cross-
modal effects occur for both categorical and detailed object recognition. This latter finding
suggests that naturalistic sounds are not simply supporting broad visual categorization (i.e., is it a
bird or not?) but can also help to extract detailed visual-feature information as well (i.e., is it this
bird or that one?). Taken together, these experiments reveal that visual perception is not only

affected by the direct relationship between visual objects and the sounds that they make but that
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more abstract auditory information can be leveraged to enhance the extraction of meaningful and
detailed visual features.

Overall, chapter 2 demonstrates that incidental (ie, task-irrelevant) auditory objects and
scenes facilitates visual perception of related visual objects, even when sounds are not predictive
of the visual stimulus in a given task and even when participants have no prior experience with
the particular set of audiovisual stimuli. Collectively, our results suggest that perception
integrates contextual information at various levels of processing and can leverage general, gist-
like information across sensory modalities to facilitate visual object perception.

The results from chapter 2 suggest that when sights and sounds align, visual perception is
enhanced. Given the nature of the task, I concluded that feature extraction was performed more
quickly on congruent compared to incongruent trials. But the hypothesis here is that this
facilitation might be driven by an implicit prediction about the congruency between object
sounds and the object that is capable of producing them (eg, it is natural to expect ducks, not
lions, when we hear a series of quacks). Indeed, chapter 3 suggests that naturalistic auditory
information alters the representations of objects we see. Specifically, visual features of object
representations are shifted toward features that are congruent with a concurrent auditory
stimulus: The same ambiguous object (e.g., a 50% seal and 50% hammer morph) was perceived
as more hammer-like when paired with a hammer sound and more seal-like when paired with the
sound of seal barking. In a series of control experiments, this perturbation of a complete and
confident perceptual representation was unlikely to be driven by biases at decisional/response
stages nor were they likely driven by top-down, volitional attentional selection. That is, it is
unlikely to be driven in any large part by pre- or post-perceptual processes and is instead a

mechanism that happens during the processing of novel visual information as sounds only exert a
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reliable effect on visual perception when both stimuli overlap temporally, as a unified
audiovisual object.

Overall, chapter 3 demonstrates that the ongoing perceptual processing of novel and
ambiguous stimuli is altered by related auditory context such that the ultimate perceptual
representation is shifted toward sound-congruent features. Our results favor a multisensory rather
than a decisional or strategic account, in which visual and auditory information are continuously
integrated such that inputs from one modality—in our case audition—trigger inferences about
the world that the visual system uses to interpret concurrent ambiguous information. Most
broadly, this chapter demonstrates the importance of investigating visual processing as an
integrative rather than an isolated process (Kording et al., 2007) and that multisensory

integration plays a critical role in forming visual object representations.

Context and the quality of internal and external information

Thus far I have asserted that, despite our intuition, the world is full of ambiguous and
indeterminate sensory information that must be resolved to effectively perceive our environment.
To resolve this ambiguity, the quality of the internal and external information is weighed and
integrated according to its relevance (Friston, 2005; Kersten et al., 2004; De Lange et al., 2018).
Across these chapters I have suggested that the quality of the internal (ch 1) and external (ch2-3)
context defines the strength and reliability of this integration process. Specifically, in chapter 1,
the quality of the internal representation is shown to directly relate to how well it interacts with
and captures attention. In the following chapters, a clear and unambiguous source of external
context is provided to ensure that this information is integrated as the noisy visual input is

resolved internally. However, while many questions remain unanswered, a critical component to
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pursue in this body of work is to better characterize how the independent quality of internal and
external information interact with one another and influence visual processing.

As a general framework (this and other work alludes to the premise that) the quality or
reliability of primary, target information plays a central role in determining the extent to which
secondary information is capable of affecting visual processing (Alais & Burr, 2004; Noppeney,
2021; Shams & Kim, 2010). In chapter 1, the secondary, internal information was modulated
while the external, primary information remained reliable and precise. Yet, within the visual
search literature, it is unclear how a strong, well-represented memory will interact with items in
the environment if we modulate how well they match to the internal representation or modulate
their quality and reliability. Some theories suggest that as the internal representation becomes
more precise, its ability to interact with weak, secondary information in the environment
decreases (see Yu et al., 2023) while others posit the exact opposite effect (Williams et al., 2023;
more in future directions). In chapters 2-3, the opposite pattern was explored: primary
information was degraded while secondary information remained clear and unambiguous. When
primary information is degraded (as in ch. 2-3), reliable auditory information was thoroughly
integrated to resolve the lack of clarity. Yet it remains unclear how information might be
integrated when both internal and external sources share roughly equal quality and reliability? Or
when they are independently modulated?

In chapter 2, people were given control over the amount of visual information they
received. This provides a unique insight into how secondary information is integrated as the
primary information becomes clearer and more identifiable. Since, it is presumed that a relatively
strong, and reliable perception was achieved, I conclude that the auditory information helped to

speed the resolution process but can say little about the perceptual representation other than they
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were sufficiently strong to complete the final test. However, while chapter 1 showed that high
fidelity is critical to allow for interactions with attention, interactions with perception might not
have this requirement: Even when participants were given control over how well the target item
was presented, in chapter 3, we nevertheless saw reliable biases in their representations. Thus,
the interactions between contextual influence and visual perception, attention, and fidelity of the

internal representation deserve far more investigations.

Future directions

As of yet, it remains unclear how multiple working memory items might guide attention
at the same time. This question has been given limited priority in the literature and has not been
examined with careful measurement of representational fidelity and memory strength
(Hollingworth & Beck, 2016). In preliminary studies, I have found that both memories interact
with attention in a seemingly additive way: guidance when two items are present is twice as
strong compared to when only a single memory item is present. Similar to Experiment 3 in
Chapter 1, my next goal is to modulate the fidelity of both items equally and map the effects of
strength onto guidance for the full contents of visual working memory. This, as more thoroughly
described in Chapter 1, is in stark contrast to the common theory in the field that guidance is
determined by a special status within working memory.

Since, even the inclusion of, two items can complicate the outcome of the, currently,
simple modeling process (described in chapter 1), when a single item is maintained in working
memory, we can more assuredly modulate the strength of this item. Since we can test a single
item at the same time as when a search trial would have appeared, we do not need to make

presumptions about the average quality of the item at the time of search—as we often need to do
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with secondary items—and instead can modulate and measure the strength of the item in
question. As we modulate this items memory strength, we can map the population level activity
that represents a given feature and can map how the shape of this activity changes with strength.

While fidelity seems critical for the strength and reliability of a memory’s interactions
with attention, fidelity appears to primarily affect the strength of the cross modal contextual
effect over perception. In explorations of reliability, when control was taken from participants
and modulated experimentally, we found that the strength of the perceptual perturbation effect
would increase with strength as visual information decreased and decrease as information
increased, but never diminished to zero. Suggesting that concurrently available information can
bias perception even when fidelity is high (or at least sufficient to do the continuous report task).
Additionally, we are exploring how visual perceptions develop neurally using
electroencephalogram (EEQG). In this work, we modulate how rapidly visual information is
uncovered from noise while participants perform the same discrimination task as before. Our
initial results suggest that meaningful information is accumulated more quickly when congruent
object information accompanies a visual target, in line with our behavioral intuitions. However,
as in our other cross modal work, visual information starts in a degraded state and is stopped per
individual when the visual information is sufficient. In the future, we plan to manually control
the level of visual information that has accumulated per trial and map the psychometric functions
along with corresponding ERP components. This will help us to demonstrate how context affects
visual processing when the fidelity of one sensory stream is held constant and the other is

experimentally modulated.

Concluding remarks
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Across three chapters I demonstrate that visual processing can leverage the context from
multiple senses to guide, facilitate, and perturb perception and attention; likely in an effort to
lessen the intense burden required to process the massive amount of visual information at any
given moment. These findings are indeed limited in scope and further work should explore
several facets. In particular: list things here. That being well-said it is important to consider how

visual perception is modulated and augmented by our experiences in the real world.
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