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ABSTRACT OF THE THESIS 

Third Order Exceptional Point of Degeneracy in Coupled Resonators at Radio Frequencies  

By 

Muhannad Romaih S Alshetaiwi 

Master of Science in Electrical Engineering and Computer Science 

University of California, Irvine, 2018 

Professor Filippo Capolino, Chair 

 

Operation mechanism of many novel sensors is based on the detection of splitting of 

resonant frequencies. Recently emerged topic known as exceptional points of degeneracy 

(EPD) paves the way to engineer structures where they exhibit highly sensitive frequency 

splitting phenomenon. An EPD is a special point in the system parameter space at which at 

least two eigenmodes coalesce in both their eigenvalues and eigenvectors. The unique 

properties of higher order EPD can provide means of enhancing the frequency shift as they 

would increase the effect of perturbation which should lead to higher sensitivity. In this 

dissertation, we propose a circuit comprised of three RLC coupled resonators with balanced 

loss and gain that exhibits a third order EPD and investigate the conditions for a third order 

EPD to occur in such circuit. We validate the existence of the EPD by examining the behavior 

of the system at that special point. We finally illustrate the time domain response of such 

system operating at regular frequency (not an EPD frequency) and also at a third order EPD 

frequency where we show the quadratic growth of the system eigenstates in time.     
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CHAPTER 1 

INTRODUCTION 

 

Sec. 1.1 Exceptional Points of Degeneracy (EPD): 

Many sensing applications use the phenomenon of frequency splitting where this 

technique can be extremely enhanced exploiting systems with exceptional points of 

degeneracy (EPDs) [1]-[2]. The occurrence of the phenomenon is at the frequencies of 

degenerate resonance that is highly sensitive to small perturbations. Such is common where 

multiple system eigenmodes coalesce and there is variability in the shift that is detectable 

for the involved variables. Although in certain physics literature [3]–[7] such a condition is 

referred to as “EP” which may be indistinct to some other research communities, it is at this 

point that we add a “D” as “degeneracy” in the acronym to specify the kind of points we are 

referring to. The concept has a wide application in the current devices for sensing that 

include optical microcavities [2], [8], [9], sensors in the bending curvature [10] and the 

optical gyroscopes. 

The point of splitting of the resonance degenerate frequencies varies with the 

parameters of the system and emerges when there is coalescence of two or more eigenmode 

in both eigenvectors and eigenvalues to generate the single eigenmode. In the past years, 

EPDs concept has attracted a great interest among the researchers [11]–[18]. EPDs occur 

only if the system matrix has a special degeneracy and are known to possess a condition of 
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eigenvectors of the system which is non-Hermitian. These have been evidenced in the non-

Hermitian parity-time (PT-) symmetric systems that are coupled i.e. systems which have 

balanced loss and gain [12], [14], [17], [19]. 

PT-symmetry as it is related to the EPDs concept has received research that focuses on 

the eigenmodes evolution description in terms of space [1], [11], [20]. There is also the 

illustrated of the coupled resonators that use time to describe the evolution of the 

eigenmodes [13], [15], [16]. PT-symmetry theories have been employed in optics; resulting 

in remarkable properties been observed in coupled waveguides and resonators with PT-

symmetry especially when the system’s refractive index obeys ( ) ( )n x n x=  where x  is a 

coordinate in the system [11], [21]–[23]. One way of transforming the eigenvalues of a PT-

symmetric system, which is being valued to be complex, is by tuning one of the system 

variables, e.g., frequency, gain and loss parameters, coupling, etc., and the resultant 

transition point is an EPD [22], [24], [25]. Notably, systems displaying only loss (either 

through dissipative mechanisms or via radiation leakage) may also exhibit EPDs [20], [26]. 

The attainment of EPDs occurs when the matrix of the system has the Jordan block or is 

composed of it [27]–[29]. The representation of the eigenstate at the EPD occurs through the 

eigenvectors that are generalized instead of having the regular eigenvectors [27], [30].  

These contribute to the algebraic system eigenstates growth [27], [29]. Due to EPDs being 

rare, they can only be found or engineered in numerous structures because of their useful 

nature to conceive a variety of devices. Examples of applications include active systems gain 

[18], [31]–[35], enhanced sensors [1], [2], [36], and antennas directivity among others [37]. 

This dissertation will examine a third order EPD conditions in coupled RLC resonators which 
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can be used as an extremely sensitive sensor due to the sensitivity to the perturbations of 

the system at the third order EPD. 

Sec. 1.2 The Source Free Parallel RLC Oscillator: 

As our proposed third order EPD coupled resonators will basically rely on the well 

known parallel RLC oscillator, we ought to briefly point out its features. To obtain these 

features we will use the state variable method as it will become very useful when we analyze 

the third order EPD coupled RLC resonators. 

 

Figure 1: The source free parallel RLC oscillator 

 

1.2.1: State Variable Analysis: 

There are several methods by which circuits might be analyzed. Here, we analyze 

circuits in their time domain and by using the state-variable analysis or often referred to as 

"state space analysis." Generally, the state-variable method can show the dynamics as setoff 

coupled first-order differential equations expressed as a linear combination of all state 

variables [38]. In state variable analysis, it is appropriate to select capacitor voltages and 

inductor currents as a hybrid set. The energy stored in inductors and capacitors can be 
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expressed using the set of variables. Accordingly, the system’s energy state can be described 

by capacitor voltages and inductor currents. Therefore, the quantities are referred to as 

“state variables.”  

In order to construct a set of normal-from equations (the derivative of the state variable 

is expressed as a linear combination of all the state variables) of the RLC oscillator in Figure 

1, (Ch. 19 in [39]) suggests the following:  

- The first step is to establish a normal tree. In this step, voltage sources and capacitors 

are placed in the tree. The cotree, on the other hand, should contain current sources 

and inductors. The resistor current will be represented by the capacitor voltage 

divided by the resistance. So, it should be placed in the cotree. Figure 1 will then be 

transformed to the normal tree shown in Figure 2. The solid line is to represent the 

voltage across the capacitor and the dashed lines are representing the flow of the 

currents chosen here to be downward. 

-  

 

- Figure 2: Normal tree of the source free RLC oscillator. Solid line is the voltage across 
the capacitor and dashed lines are the current through the inductor and the resistor. 
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-  The next step involves writing the C  equation. Generally, we use KCL to write a 

single equation for every capacitor in the circuit. Afterward, set Cdv
C

dt
 to be equal to 

the total link currents. So, the first order equation representing the capacitor is 

obtained by applying KCL to the top central node: 

 
1 1C

C L

dv
v i

dt CR C
= − −   (1.1) 

- The third step is about writing the L equation. Similarly, KVL can be used to derive 

the expressions for all inductors in the circuit. set Ldi
L

dt
 to be equal to the sum of 

tree-branch voltages derived when the single closed path is taken into account. The 

path to be considered consists of the branches and links where the inductors are 

located. So, the first order equation representing the inductor is obtained by applying 

KVL to the right loop: 

 
1L

C

di
v

dt L
=   (1.2) 

- The last step is to write the non-formal equations which are equations (1.1) and (1.2) 

as. 

 

1 1

1

C
C L

L
C

dv
v i

dt CR C

di
v

dt L

= − −

=

  (1.3) 



6 
 

To obtain the characteristic equation of the parallel RLC oscillator, we express (1.3) and  

using the matrix notation which will also be used in analyzing the third order EPD system. 

In general, this approach is useful as the number of variables rises with an increase in the 

number of capacitors and inductors in a circuit. So, we represent the normal-form equations 

in (1.3) by a matrix equation in which the state vector that contains all the state variables is 

defined as ( )  Ψ
T

C Lt v i= , where T  denotes the transpose operator. The matrix equation 

will be  

 ( )
Ψ

MΨ
d

t
dt

=   (1.4) 

The solutions of the equation (1.4) is assumed to be of the form te . We can construct 

the eigenvalue problem as 

 ( )M Ψ 0I− =   (1.5) 

where k  with 1,2k =  are the eigenvalues of the 2 × 2 system matrix M  that is constructed 

as  

 

1 1

1
0

M
RC C

L

 
− − 

=  
 
  

  (1.6) 

The eigenvalues of M  can be obtained from the characteristic equation of M  by 

setting det( )M I−  to zero. The characteristic equation of the RLC oscillator is 

 
2 1 1

0
RC LC

 + + =   (1.7) 
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where the eigenvalues   are the roots of (1.7). The roots of the characteristic equation are 

 
2

2 2
1,2 1,2

1 1 1
or

2 2
o

RC RC LC
    

 
= −  − = −  − 

 
  (1.8) 

where 
1

2RC
 =  is the damping factor or the loss/gain parameter as we will call it in the 

next chapters and 
1

o
LC

 =  is the resonant frequency of the RLC oscillator. The associate 

eigenvectors of the matrix M  are 1,2

1 1
, 1,2Ψ

T

n n
C RC


− 

= + = 
 

. From the eigenvectors 

expression, we observe that degenerate eigenvalues lead the eigenvectors to coalesce 

which indicates a second order EPD. This EPD will cause critically damped modes of the 

RLC oscillators.  In the rest of the Thesis we investigate higher order degeneracies that do 

not exhibit critical damping, i.e., they may have purely imaginary eigenvalues (purely real 

resonant frequencies). 

 

Sec. 1.3 Negative Resistance: 

Negative resistance is a regular resistor with a negative value such that the device obeys 

Ohm’s law but the current flows backwards (from low voltage to high voltage). The I-V curve 

for such device has negative slope. A passive device displaying these properties violate the 

principles of conservation of energy. Therefore, when we refer to a negative resistor in the 

next chapters as R− , we assume that it is obtained using active devices. One way to obtain 

negative resistance is using the so called negative impedance convertor (NIC) shown in 

Figure 3. 
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Figure 3: Negative impedance convertor as one example to represent a negative resistor. 

Sec. 1.4 Organization of the thesis and contents: 

The thesis is organized into Chapters that involve the theory and validations of the third 

order EPD in the coupled resonators. 

Chapter 2. We introduce in this chapter the third order EPD coupled resonators and their 

configuration. Furthermore, we also present the state variables of the coupled resonators 

and their corresponding normal-from equations. We further establish the characteristic 

equation of the system which we use to plot the dispersion diagram. 

Chapter 3. In this chapter, two methods are presented to validate the existence of a third 

order EPD by examining the system eigenvectors. The first method is called hyperdistance 

which indicates a third order EPD as it goes to zero. The second is to use the magnitude of 

the complex correlation coefficient as indication of coalescence. 

Chapter 4. We analyze the coupled resonators time domain response by finding the explicit 

time domain functions of the state variables. We further show the simulation results of the 

modes at the 3rd order EPD and normal condition.  
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CHAPTER 2 

THIRD ORDER EPD COUPLED 

RESONATORS  

 

Sec. 2.1 The Configuration of the Third Order EPD Coupled Resonators: 

In this section, we introduce the third order EPD coupled resonators and its 

configuration. It consists of an LC tank associated with 𝐶𝑎 and 𝐿𝑎 which is coupled with the 

pair coupled RLC oscillators (similar to the RLC oscillators discussed in Sec. 1.1) and the 

whole configuration is shown in Figure 4. In this figure, 𝐶𝑐3 is used to couple the two RLC 

oscillators and 𝑅1 here represents a negative resistance −𝑅 which provides linear 

amplification, i.e. gain as discussed in Sec. 1.3. Note that in practical configuration there must 

more than one −𝑅 to compensate for the coil loss in the inductors to maintain oscillations. 

Whereas 𝑅2 represents linear attenuation with equal amount to 𝑅, i.e. loss. A two coupled 

RLC oscillators one with gain and the other with equal loss are an ideal PT-symmetry dimer, 

studied in [13], where a breaking point between the exact and “broken phase” was shown 

and defined as PT-symmetry breaking point which is also an example of a second order EPD 

as we will see in Sec. 2.2. Here, 𝐶𝑐1 and 𝐶𝑐2 couple the additional LC tank to the RLC resonator 

with gain and RLC resonator with loss, respectively. Another way to couple the resonators is 
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to use mutual coupling, i.e. to couple the inductors instead of the capacitance coupling. For 

simplicity, we only used capacitance coupling connecting the nodes as shown in Figure 4. 

 

Figure 4: The proposed third order EPD coupled resonators and coupling mechanism 
with capacitances.  

 

Sec. 2.2 The Multidimensional First Order Differential Equation:  

This section analyzes the normal mode dynamics of this 3rd order EPD coupled 

resonators. To obtain the normal-form equations of the coupled resonators in which we use 

to construct the multidimensional first-order differential equation (the matrix equation), the 

state variable method discussed in Sec. 1.2.1 is used. We start by drawing the tree diagram 

of the coupled resonators, shown in Figure 5. KCL is used at the top three nodes of Figure 5 

to obtain 1Cdv

dt
, aCdv

dt
, and 2Cdv

dt
 equations while considering the assigned polarity 

references  for the voltages and assigned direction for the current.  
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Figure 5: Normal tree of the third order EPD coupled resonators showing the state 
variables. Solid lines are the voltage across the capacitors and dashed lines are the 
current through the inductors and the resistors. 

KVL is then used in loops (1), (2), and (3) in Figure 5 to obtain 1Ldi

dt
, aLdi

dt
, and 2Ldi

dt
 

respectively. We finally consider that   

 
11c aC C Cv v v= −   (2.1) 

 
22c aC C Cv v v= −   (2.2) 

 
1 23c

C C Cv v v= −   (2.3) 

For simplicity, all capacitors are chosen to be equal to C . For a balanced loss and gain, 

𝐿1and 𝐿2 must be equal [13], i.e., 𝐿1 = 𝐿2 = 𝐿, and also 𝑅1 = −𝑅2 = −𝑅. We then can redraw 

the coupled resonators in Figure 4 taking into account those values of the different 

parameters as in Figure 6. 

The state variables have been arbitrary ordered as 
1 2 1 2
, , , , ,

a aC C C L L Lv v v i i iand . The 

six normal-form equations are  
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1

1 2 1 2

1 1 1
0.5

2 4 4a

C
C C L L L

dv
v v i i i

dt C C C
 = − − − −  

1 2 1 2

1 1 1
0.5 0.5

4 2 4

a

a

C
C C L L L

dv
v v i i i

dt C C C
 = − − − −  

2

1 2 1 2

1 1 1
0.5

4 4 2a

C
C C L L L

dv
v v i i i

dt C C C
 = − − − −  

 1

1

1L
C

di
v

dt L
=   (2.4) 

1a

a

L
C

a

di
v

dt L
=  

2

2

1L
C

di
v

dt L
=  

where 
1

2RC
 =  is the loss/gain parameter.  

 

Figure 6: The simplified third order coupled resonators showing loss and gain. For some 
value of R this circuits shows a third order EPD. 
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As discussed in Sec. 2.1, EPD can be observed when the eigenfrequencies and 

eigenmodes of the system coalesce. One method to obtain the eigenfrequencies and 

eigenmodes is discussed in Sec. 1.2.1 namely the state variable method. We define the state 

vector that contains all the state variables as ( )
1 2 1 2

Ψ
a a

T

C C C L L Lt v v v i i i =
  , where 

T  denotes the transpose operator. The time evolution of the state vector obeys the 

multidimensional first-order differential equation   

 ( )
Ψ

MΨ
d

t
dt

=   (2.5) 

where M  is the 6 × 6 system matrix. From the normal-form equations in (2.4), we construct 

the system matrix and the state vector as 

 

1 1 1
0

2 2 4 4

1 1 1
0

2 2 4 2 4

1 1 1
0

2 4 4 2

1
0 0 0 0 0

1
0 0 0 0 0

1
0 0 0 0 0

M

a

C C C

C C C

C C C

L

L

L




 




 
− − − − 

 
 − − − −
 
 
 − − − −
 

=  
 
 
 
 
 
 
 
 

  (2.6) 

 ( )
1 2 1 2

Ψ
a a

T

C C C L L Lt v v v i i i =
    (2.7) 

We can observe the behavior of the eigenfrequencies and eigenmodes of such a system when 

the loss/gain parameter ( ) changes through finding the eigenvalues of the system matrix 
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M .  Assuming solutions of the equation (2.5) of the form Ψ te  ,  we can construct the 

eigenvalue problem as 

 ( )M Ψ 0I− =   (2.8) 

where k  with 1,2, ,k m=  and m  is the order of the matrix,  6m =  in this case, are the 

eigenvalues of the system matrix M . Assuming a time varying convention j te  , the complex 

system eigenfrequencies k  are related to the eigenvalues as k kj = . The eigenvalues of 

M  can be obtained by finding the roots of the characteristic equation ( ) 0M I− =det . Upon 

expanding the determinant of the system matrix, we evidently get a 6th order polynomial 

equation of the from   

 6 4 2

2

2

2 3

2
2

2

12
0

2 16 1

3 43

4 6

6

a a

a a

a

L L L L C

C C L L

L

CL LL L


  

  
+ + + =    
  

+ −
−



+
  (2.9) 

By the fundamental theorem of algebra, this polynomial (2.9) has 6 roots. Since all the 

coefficients are real, the roots must be either real or complex conjugate pairs. Thus, a 6 × 6 

matrix has 6 eigenvalues where we can have repeated eigenvalues. Repeated eigenvalues of 

M  is desired in order to obtain EPD.  

 

Sec. 2.3 Exceptional Point of Degeneracy (EPD) in the Coupled 

Resonators: 

The EPD is the point in parameter space (like in a dispersion diagram) where because of 

loss/gain in the coupled resonators, the system matrix M  in (2.6) is not diagonalizable and 
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is similar to a matrix that contains one or more Jordan blocks. As discussed in Sec. 1.2, EPD 

occurs due to the coalescence of system eigenstates in both their eigenvalues and 

eigenvectors which will form a degenerate eigenvector, i.e., the point at which the algebraic 

multiplicity of an eigenvalue is larger than its geometrical multiplicity. Algebraic multiplicity 

of an eigenvalue is defined in Ch. 5 of [40]  as the number of repetition of that eigenvalue, 

denoted by p  and the geometric multiplicity as the number of the linearly independent 

eigenvectors associated with that eigenvalue, denoted by l . In this Thesis we consider a third 

order EPD which indicates an algebraic multiplicity of the eigenvalues 3p =  and their 

geometric multiplicity 1l = . We show that this is obtained by properly coupling three 

resonators with loss and gain. 

 

2.3.1: Necessary Condition for the Third Order EPD: 

At the third order EPD frequency, the characteristic dispersion equation of the system 

can be simply arranged since the coupled resonators has two repeated eigenvalues of 

multiplicity 3 which must appear in complex conjugate pair. Therefore, the characteristic 

equation in (2.9) at the third order EPD must have the following form 

 ( ) ( )
33

0e e   − − =   (2.10) 

where the symbol   denotes the complex conjugate and e r ij  = +  is the eigenvalue of the 

system matrix M . The third order EPD eigenfrequency e  is equal to ej− . The 

characteristic equation (2.9) and the general dispersion equation (2.10) are both sixth order 
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polynomials. By equating and simplifying the coefficients of different powers of   , we obtain 

the three following equations:  
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  (2.11) 

Coupled resonators parameters of a system which exhibit a third order EPD must satisfy 

these equations. These are the necessary (but not sufficient) conditions of the different 

coupled resonators parameters that grant the occurrence of a third order degeneracy of 

eigenvalues in the described system [41]. 

 

Sec. 2.4 Dispersion Using the State Variable Method:  

We solve the three necessary equations in (2.11) for third order EPD numerically by 

assuming some values for C  and L  such that the coupled resonators can operate at radio 

frequencies. We then obtain the values of i , aL , and    at which the 3rd order EPD of the 

system occurs; i.e., the characteristics equation (2.9) will have two repeated roots of 

multiplicity 3. We denote   obtained from solving (2.11) by e  which indicates the 

gain/loss parameter at which 3rd EPD exists. When we assume 330 pFC =  and 10 HL = , 

we get 12 HaL  , and 4 S
10.9 10

F
e =  . 
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We plug in these parameters into the system matrix M  to obtain the eigenvalues and 

plot the dispersion diagram. Figure 7 illustrates the dispersion diagram of the normalized 

eigenfrequencies /k o   of M  where 
1

17 Mrad / so
LC

 = =  , versus the normalized 

gain/loss parameter / e  . The six eigenfrequencies come in two sets of positive-negative 

pairs, each set containing three eigenfrequencies.  

 

Figure 7: Dispersion diagram of the real and imaginary parts of the eigenfrequencies 
versus the gain/loss parameter of the RLC coupled resonators. The three dashed lines 
indicate three EPD points. The first and last EPDs are EPDs of second order and the 
middle one is the desired third order EPD. 
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In Figure 7, we identify three special points, shown with dashed vertical lines. The first 

point as / e   increases, is a 2nd order EPD which we will define as 1̂  (an algebraic 

multiplicity of the eigenvalues 2p = ).  The second point is the desired 3rd order EPD 

occurring at e =  (an algebraic multiplicity of the eigenvalues 3p = ). Finally, we observe 

the third point which is another 2nd order EPD and is defined as 2̂ (an algebraic multiplicity 

of the eigenvalues 2p = ). 

In the region of 1ˆ0 / e    , the six eigenfrequencies are purely real. Considering the 

these purely real eigenfrequencies, the solutions of the state variables are just oscillatory 

(we will elaborate more on this in the time domain section in Ch. 4). This interval can be 

compared to the “exact phase” seen in [13] since the modes here are “exactly” PT-symmetric 

where it can be shown that the time varying 
1Cv and 

2Cv responses are symmetric. 

While in the two regions of 1 2ˆ ˆ/ e     (excluding when e = ), there complex 

conjugate eigenfrequencies. Due to the existence of real and imaginary eigenfrequencies, 

there modes are exponentially growing and exponentially decaying that oscillate at the same 

frequencies. This region can also be referred to as “broken phase”. 

The final region observed is when 
2
ˆ / e   . Here, this region is similar to the 

aforementioned region where we observe complex conjugate eigenfrequencies. Note, the 

branching point at  2̂  is a second order EPD. 

The time domain responses of the state variables at these special points will be 

discussed in Sec. 4.3. To validate the dispersion diagram in Figure 7, we create another sixth 
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order polynomial equation in which its roots are the eigenfrequencies of the coupled 

resonators. This is possible by using the transverse resonance method which we will explain 

in the next section. 

 

Sec. 2.5 Dispersion Using the Transverse Resonance Method: 

The transverse resonance technique which originated as an application of the 

microwave circuits formalism  in the longitudinal direction to the actual power flow in a 

cylindrical waveguide [42]. It has then been widely used in waveguides to solve the 

dispersion relation for the dominant mode [43]. We use this technique here to solve for the 

coupled resonators frequency response. This method does not depend on the state variables, 

instead it only analyzes the impedances (admittance) of the whole coupled resonators. The 

approach is to split the coupled resonators in Figure 6 into two parts (left part and right part) 

with each part conserving its own equivalent impedance kZ  or admittance kY  with k 

indicating each side (L for left or R for right). Adding the two impedances (admittances) and 

equating them to zero will provide a 6th order polynomial equation. The roots of this 

polynomial equation are the eigenfrequencies of the system which can be compared to the 

eigenfrequencies obtained in Sec. 2.3. 

 Breaking the circuit of Figure 6 into two parts (left and right parts) will results in 

finding the impedances (admittances) of a three-terminals circuit. An easier way for 

obtaining two terminal circuit when broken into two parts to calculate the equivalent 

impedances (admittances) of each part is to transfer the delta configuration containing the 

three  coupling capacitors 𝐶𝑐1, 𝐶𝑐2, and 𝐶𝑐3 into a Y configuration as shown in Figure 8. The 
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three capacitors in the delta configuration are assumed to be equal to 𝐶 which results in 𝐶𝑦 

being three times larger than 𝐶 since 

 3y

CC CC CC
C C

C

+ +
= =   (2.12) 

 

Figure 8: (a) The original coupled resonators showing the delta configuration. (b) Thee 
transformed coupled resonators showing the Y configuration. 

Figure 9 demonstrates the left and right parts of the circuit in Figure 8 (b) with LY  and 

RY  corresponding to the total admittance of the left and right parts respectively. The 

frequency response of the circuit is obtained by solving 

 0L RY Y+ =   (2.13) 

Equation (2.13) is a 6th order polynomial equation consisting of a single variable   and 

some complex coefficients caused by the admittance of the capacitors and inductors as they 

are purely imaginary.  
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Figure 9: The right and Left parts of the circuit with their equivalent admittances. 

We solve for the roots of equation (2.13) which correspond to the complex frequencies 

of the coupled resonators. Then, we compare these complex frequencies with the 

eigenfrequencies obtained in Sec. 2.3. A comparison of two methods dispersion diagram of 

the real and imaginary frequencies versus the gain/loss parameter is shown in Figure 10. As 

expected, there is an excellent agreement of the two methods.  

 

Figure 10: Comparison of state variable and transverse resonance methods dispersion 
diagram. Black colored line is the dispersion diagram obtained in Sec. 2.4. The agreement 
of the two results is shown. 
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Sec. 2.6 Summary: 

In this chapter, we have demonstrated the configuration of the third order EPD coupled 

resonators. We have shown the use of the state variable method to construct the 

multidimensional differential equation which represents the state vector containing the 

state variables i.e. the voltages and currents of the capacitors and inductors respectively in 

the time domain. We have also presented the dispersion diagram of the eigenfrequencies of 

the coupled resonators versus the loss/gain parameter where three special points were 

shown. Two of these three special points are second order EPDs and the third one is a third 

order EPD. We finally used the transverse resonance method to obtain the dispersion 

diagram and compare it with the aforementioned diagram in which we showed the two 

methods produced the same dispersion as expected.  
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CHAPTER 3 

VALIDATION OF THE OCCURANCE OF 

THIRD ORDER EPD 

 

In Ch. 2, we observed the existence of a third order EPD by investigating the behavior of 

the eigenfrequencies. However, EPD occurrence is only confirmed at degenerate resonance 

frequencies where multiple eigenmodes (i.e. the eigenvectors of M ) of the system coalesce. 

Noteworthy is that coalescing of all the independent eigenvectors result in the third order 

EPD.  It is necessary for an individual to examine the quality of the EPD states that can 

undergo any design of perturbation, including losses, the tolerance of the parameters or a 

possible frequency detuning. Therefore, it becomes essential to incorporate qualitative 

validations that enable the observation of precise exceptional points of degeneracy (EPD). 

We use two figures of merits for the numerical validation of the third order EPD. 

Sec. 3.1 Hyperdistance: 

The first figure of merit we use is defined in [44] as the development of the concept of 

hyperdistance ( )HD   among all the eigenvectors of the system matrix  M  to establish the 

closeness to an EPD. In [44], they developed this method to investigate the occurrence of a 

degenerate band edge (DBE) which is an example of a fourth order EPD. For our purpose, we 

define the hyperdistance for the third order EPD as  
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 ( ) ( ) ( )( )
6

1, 1, 1

1
sin sin sin

60
H mn ml nl

m n l
m n l

D   
= = =
 

= + +   (3.1) 

where for two general vectors, ,Ψ Ψm n , the angle between the two vectors, mn , in three-

dimensional complex vector space is define as 

 
( )1 Re

cos
Ψ Ψ

Ψ Ψ

m n

m n
mn −  

=   
 

  (3.2) 

where   is the scalar product of two vectors and Ψn  represents the norm of the vector. 

When the coupled resonators undergo a third order EPD, it indicates that all the eigenvectors 

in the matrix system are coalesced. As a result, the Figure of Merit (FOM) will automatically 

attain a hyperdistance that is identically equivalent to zero. It is essential to note, when losses 

or perturbation of parameters are added, the proposed figure of merit is always not zero at 

the frequency of the third order EPD. It is important to assume that the EPD emerge 

practically when the FOM is significantly at a minimum value. This happens regardless of the 

precision of the third order EPD as a mathematical condition that is feasible in ideal lossless 

using numerical techniques. We illustrate this concept in Figure 11 where we plot the 

hyperdistance obtained from (3.1)  for different values of the gain/loss parameter  . The 

real frequencies of the system are also plotted as a reference for the location of the EPD 

points. The blue line in Figure 11 represent the ( )Udet  used for comparison purposes. 

Where U  is a 6×6 matrix containing the six eigenvectors of M  in its columns namely 

1 2 3 4 5 6U Ψ Ψ Ψ Ψ Ψ Ψ =   .  
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Figure 11: Dispersion relation of the real frequency compared with hyperdistance as the 

normalized gain/loss parameter increases. The blue line is the ( )Udet  used to show all 

the EPD points. The hyperdistance provides the validation of the 3rd order EPD since it 
is minimum only at that location. 

EPDs occur at the minimum value of ( )Udet . However, the third order EPD (when 

e = ) can only be observed by monitoring the minimum value of the hyperdistance HD  as 

seen in Figure 11. This technique validated the existence of the third order EPD although the 

minimum value of HD  was not as low as the minimum value of ( )Udet , but it was 

significantly at minimum value at desired EPD compared to its other value. 

 

Sec. 3.2 Complex Correlation Coefficient: 

The second figure of merit proposed here is to use a well-known method in statistics 

namely the Pearson product-moment correlation coefficient. This method was developed by 

Karl Pearson during the end of the nineteenth century [45] and has been widely used since 

then. The Pearson product-moment correlation coefficient is commonly referred to as 

Pearson’s correlation or simply as the correlation coefficient and it is dimensionless and 
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denoted by  . It is a value between -1 and 1 that summarizes the closeness of linear 

relations between two real variables. A correlation coefficient of zero indicates the two real 

variables are not related. A correlation coefficient value of 1 indicates that for every positive 

rise in one real variable, the other real variable will also rise of a fixed proportion. Similarly. 

When a -1 correlation coefficient means for every positive rise in one real variable, there is 

a negative decay of a fixed proportion in the other real variable. 

Here we compare the correlation of the eigenvectors shown in matrix U . However, 

these eigenvectors are not real, they are usually complex instead which will result in a 

complex correlation coefficient  . The correlation coefficient of complex sequences is 

widely used and has an important role in array signal processing [46]. Another application 

where the complex correlation coefficient is utilized is in Synthetic Aperture Radar (SAR) in 

which the magnitude and the phase of the complex correlation coefficient are used to 

compare and combine the information of two images [47]. The complex correlation 

coefficient between two eigenvectors Ψm  and Ψn  is defined as  

 
Cov[ , ]

Std[ ]Std[ ]
Ψ Ψ

Ψ Ψ

Ψ Ψm n

m n

m n

 =   (3.3) 

where Cov[ , ]Ψ Ψm n  is the covariance between the two eigenvectors Ψm  and Ψn ,  and 

Std[ ]Ψ  is the standard deviation of  the eigenvector Ψ  which can be calculated respectively 

by 

 

( )( )
1

[ ] [ ]

[ , ]
1

Ψ Ψ Ψ Ψ

Cov Ψ Ψ

L

m m n n
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m n

k k

L



=

− −

=
−


  (3.4) 
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with L  being the length of the eigenvector and 
1

1
[ ]Ψ Ψ

L

k

k
L =

=   which is the average of 

eigenvector Ψ . We combine (3.3), (3.4), and (3.5) to obtain the final formula of the complex 

correlation coefficient as a function of any two eigenvectors presented in U to be equal to 

( )( )

( )( ) ( )( )

6

1

6 6

1 1

[ ] [ ]

[ ] [ ] [ ] [ ]

Ψ Ψ Ψ Ψ

Ψ Ψ Ψ Ψ

Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ

m n m n

m m n n
jk

m m m m n n n n

k k

k k

e

k k k k

 



=

 

= =

− −

= =

− − − −



 

 

 (3.6) 

where 1,2, ,5m = , 2,3, ,6n = , and m n  in our system. Note that 0 1Ψ Ψm n
  . 

Although, the magnitude of the complex correlation coefficient Ψ Ψm n
  by itself does not 

necessarily provide valuable insight on the relation between any two eigenvectors, it can 

detect the similarity or closeness of the two eigenvectors as it approaches to 1. When 

Ψ Ψm n
  equals to unity, it indicates that  Ψm  and Ψn  are perfectly correlated [48]; i.e. the 

two eigenvectors Ψm  and Ψn coalesce to create at least a second order EPD. Hence, we first 

use it as a validation of a second order EPD. In Figure 12 (a), we plot all the possible 

magnitudes of the correlation coefficients between all the eigenvectors in U  (fifteen 

possibilities in our system). As expected, we observe the three EPDs illustrated in the 

dispersion diagram for real resonance frequencies (top plot in Figure 12 (a) to have a value 
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of the magnitude of the complex correlation coefficient   equal to unity. Our ultimate goal 

is to validate the existence of a third order EPD as we did using the first figure of merit, hyper 

distance. Thus, we simply take the average of any two magnitudes of the complex correlation 

coefficients as  

 ( )1

2
Ψ Ψ Ψ Ψm n m l

  = +   (3.7) 

where 1,2, ,5m = , 2,3, ,6n = , 3,4, ,6l = , and m n l  for our case. This average,  ,  

will be between 0 and 1 where 1 will indicate the occurrence of a third order EPD. 

In Figure 12 (b) we plot all the possible averages of (3.7) (twenty possibilities in our 

case). Note that the average of two magnitudes of the complex correlation coefficients    

here can only confirm the coalescence of three eigenvectors  Ψm , Ψn , and Ψl . Clearly, when  
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e = , the average of two magnitudes of the complex correlation coefficients becomes equal 

to unity which validates the occurrence of a third order EPD. 

 

Sec. 3.2 Summary: 

In this chapter we have validated the existence of a third order EPD point as well as 

second order EPD points. We used two techniques to confirm the coalescence of all the 

independent eigenvectors. The first one was the hyperdistance HD  technique where we 

showed it undergoes a minimum value only at third order EPD. The second method was the 

magnitude of complex correlation coefficient which on the other hand validated both second 

order EPD points and third order as its value approaches 1.  

Figure 12: (a) Dispersion relation for real resonance frequency compared with the 
magnitude of the complex correlation coefficient. (b) Dispersion relation of the real 
frequency compared with the average of the magnitudes of the complex correlation 
coefficients. Validation of 3rd order EPD is shown in (b) as it only approaches 1 at the 
desired EPD. 
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CHAPTER 4 

TIME DOMAIN SOLUTION AND 

SIMULATION 

In this chapter, we first analyze the coupled resonators (shown again here in Figure 13) 

time domain response by finding the explicit time domain functions of the state variables. 

Recall that we defined the state vector in Sec. 2.2 as 

( )
1 2 1 2
( ) ( ) ( ) ( ) ( ) ( )Ψ

a a

T

C C C L L Lt v t v t v t i t i t i t =
   where 

1
( )Cv t  for example is the 

voltage across the capacitor of the resonator associated with gain (i.e. the left side containing 

the negative resistor shown in Figure 13). The matrix equation representing the set of 

normal-from equations for our sixth order system was obtained in (2.5) and it is repeated 

here for convenience as 

 ( )
Ψ

MΨ
d

t
dt

=   (4.1) 

In the case of time-invariant coupled resonators components, the 6×6 system matrix M  

contains constant elements (i.e. capacitors, inductors, and resistors), and 
Ψd

dt
 and ( )Ψ t  are 

all vectors of six elements.  
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Figure 13: The third order EPD Coupled resonators showing the gain and loss sides. 

For the full solution of the matrix equation, we must solve for ( )Ψ t , which is a linear 

combination of the six independent solutions ( ) ( ) ( )1 2 6, , ,Ψ Ψ Ψt t t . Each must be found as 

a function of time which will provide every voltage and current in our coupled resonators. 

Ch.5 of [40] outlines the method for finding the matrix equation representing the set of 

equations general solution as follows: 

• Obtain the eigenvalues of the system matrix by solving characteristic equation 

( ) 0M I− =det  where   is the eigenvalue ( 1 2 6, , ,    for our case) and I  is the 

6×6 identity matrix.  

• Attempt to find the 6 linearly independent eigenvectors of matrix M  associated with 

the above eigenvalues. An eigenvector associated with the eigenvalue   is a nonzero 

vector Ψ  such that MΨ= Ψ , which will lead to  ( ) 0M I Ψ− = . Note Ψ represents 

the eigenvector of M . 

• If the above step is possible, we obtain six linearly independent eigenvectors 

1 2 6, , ,Ψ Ψ Ψ  and six linearly independent solutions  
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 61 2
1 1 2 2 6 6( ) , ( ) , , ( )Ψ Ψ Ψ Ψ Ψ Ψ

tt t
t e t e t e

 
= = =   (4.2) 

For this case the matrix equation representing the set of normal-from equations general 

solution is 

 1 1 2 2 6 6( ) ( ) ( ) ( )Ψ Ψ Ψ Ψt c t c t c t= + + +   (4.3) 

where 1 2 6, , ,c c c  are constant coefficients that can be obtained from the initial conditions 

of the state variables.    

Generally, the eigenvalues of any matrix can be distinct or repeated, real or complex. We 

will briefly investigate each of the cases of the different type of eigenvalues and find the 

corresponding general solution. It is necessary to recall that the eigenvalue j =  is 

discussed in Sec. 2.2 where   is the eigenfrequency of the coupled resonators. Thus, we can 

rewrite equation (4.2) as 

 61 2
1 1 2 2 6 6( ) , ( ) , , ( )Ψ Ψ Ψ Ψ Ψ Ψ

j tj t j t
t e t e t e

 
= = =   (4.4) 

  Figure 14 is the dispersion diagram of the eigenfrequencies of the system as the 

gain/loss parameter increases which we obtained in Sec. 2.3 and Sec. 2.4. Here we highlight 

three regions as shown in Figure 14. The red colored region contains only real 

eigenfrequencies (distinct imaginary eigenvalues). The blue colored regions are where the 

complex eigenfrequencies located (distinct complex eigenvalues). Finally, the white colored 

regions show the EPD eigenfrequencies (repeated imaginary eigenvalues). 
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Figure 14: dispersion diagram of the eigenfrequencies highlighting three regions. Red: 
only real eigenfrequencies, blue: complex eigenfrequencies, and white: EPD 
eigenfrequencies. The dashed line is at the third order EPD. 

 

Sec. 4.1 Distinct Real Eigenvalues (only imaginary eigenfrequency): 

 

As shown in Figure 14, we do not obtain a case where only imaginary eigenfrequencies 

are presented. Therefore, our system matrix M  does not have a characteristic equation 

where its roots (the eigenvalues) are only distinct real eigenvalues. If this was not the case 

and we could get distinct real eigenvalues, the general solution will be as (4.3). This will 

cause an exponential growth or decay of the state variable These modes correspond to the 

overdamped modes of a single oscillator (Ch. 1 in [49]). 
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Sec. 4.2 Distinct complex conjugate Eigenvalues (complex eigenfrequency): 

 

The method described previously is still valid if the eigenvalues are distinct. Therefore, 

the time evolution differential equation (4.1) will yield six linearly independent solutions, 

but the eigenvectors associated with the complex eigenvalues are also complex. This will 

lead to a complex general solution. Note that any complex eigenvalues must appear in 

complex conjugate pairs. We can obtain real valued solutions by taking the real and 

imaginary parts of a single complex-valued solution 1( )Ψ t , one of the six independent 

solutions, associated with the complex eigenvalue  . These two solutions (real and 

imaginary parts) will provide real-valued solutions corresponding to the two complex 

conjugate eigenvalues   and  . We consider one of the complex conjugate pair of the 

eigenvalues as p jq+  and its corresponding eigenvector is 1Ψ A+ Bj=  where A  and B  

resemble real and imaginary N×1 vectors respectively (N = 6 in our case). The real and 

imaginary parts of the solutions ( )1Ψ t  will appear respectively as 

 

  ( )

  ( )

1

1

Re ( ) cos sin

Im ( ) cos sin

Ψ A B

Ψ B A

pt

pt

t e qt qt

t e qt qt

= −

= +

  (4.5) 

which are associated with the complex conjugate eigenvalues p jq . 

These distinct complex eigenvalues are also complex eigenfrequencies which are 

displayed in the blue regions of Figure 14.  To better understand the time domain response 

of the coupled resonators we use (4.5), but interchange p  with q  and change their signs 

since j = . Depending on the signs of the complex eigenfrequencies, we can clearly expect 
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the mode time domain response. The mode will exponentially grow and decay due to the 

imaginary eigenfrequencies, both of which oscillate at frequencies caused by the real 

eigenfrequencies shown in Figure 14. We illustrate this case by simulating the time domain 

evolution of the capacitance voltage in the resonator with gain 
1
( )Cv t . The transient behavior 

of the coupled resonators is simulated using the time domain solver Keysight ADS. In Figure 

15 we show the time domain simulation of the absolute value of the state variable 
1
( )Cv t  

with an initial condition 
1
(0 ) 0.01 VCv − = on the capacitor C  in the resonator with gain . The 

gain/loss parameter  , is chosen here to be slightly less than e  (in the blue region of Figure 

14) 0.85 e = . The other parameters of the coupled resonators are set as 330 pFC = , 

10 HL = , 12 HaL  , and 4 S
10.9 10

F
e =   (or per second). In this example, we plot the 

absolute value of the 
1
( )Cv t  showing only the exponentially growth in addition to an 

oscillatory behavior (red line) and the average of the absolute value of the 
1
( )Cv t  (black line). 

The results of Figure 15 agree with our expectations mentioned above.  

In the case of only distinct imaginary eigenvalues i.e. pure real eigenfrequencies as 

presented in the red region of Figure 14, there are six purely real eigenfrequencies that come 

in three sets of positive-negative pairs. The behavior in this regime is simply oscillatory and 

occurs at three distinct eigenfrequencies since the positive and negative frequencies of equal 

magnitude are essentially identical. 

We can prove the oscillatory behavior mentioned above by using (4.4) and substituting 

each   by the purely real eigenfrequencies r  so that the solutions will be proportional to 
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rj t
e

 . In Figure 16, We illustrate this behavior by simulating the time domain evolution of 

the magnitude capacitance voltage in the resonator with gain of the coupled resonator (left 

side) (i.e. 
1
( )Cv t ) with the same initial condition and parameters 

 

Figure 15: The simulated absolute value of the time domain voltage across the capacitor 
in the resonator with gain in the presence of complex eigenfrequencies. Red colored 
lines represent the actual absolute voltage and the black colored line is its average. The 
mode is exponentially growing with oscillations. 

values used in the previous case except the gain/loss parameter here is 0.1 e =  (in the 

red region of Figure 14).  
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Figure 16: The time domain results of the magnitude of the capacitor voltage at the 
resonator with gain is simulated where the eigenfrequencies are purely real. The 
behavior of this mode is simply oscillatory. The mode here is just oscillatory. 

 

Sec. 4.3 Repeated Eigenvalues (Repeated eigenfrequency): 

 

In this section we discuss the general solution of the matrix equation when the 

characteristic equation of the system, ( ) 0M I− =det , does not have only distinct roots but 

has at least one repeated root. In general, an eigenvalue is of multiplicity (or algebraic 

multiplicity) p if it is a p-fold root of the characteristic equation. For an eigenvalue of 

multiplicity 1p  , there might be fewer than p  linearly independent associated 

eigenvectors. As a result, we cannot find a complete set of six linearly independent 

eigenvectors of M . But an eigenvalue of multiplicity p  will be called complete if it has p  

linearly independent associated eigenvectors. In this case a general solution of the time 

evolution differential equation (4.1) is still given by (4.4). However, the eigenvalues of M  

for the EPD case are not complete, they are called defective instead since the number of 



38 
 

linearly independent eigenvectors is less than the multiplicity p  as discussed in Sec. 2.3. 

 Ch.5 of [40] defines an eigenvalue   of multiplicity p  defective if it has l p  linearly 

independent eigenvectors. The defect number d p l= −  provides the number of missing 

eigenvectors of the defective eigenvalue. Thus, our third order EPD has multiplicity 3p =  

and defect 2d = . To find the linearly independent solutions of ( )
Ψ

MΨ
d

t
dt

= , we need to find 

the generalized eigenvectors. The third order EPD has multiplicity 3  of eigenvalue e  which 

requires 3 generalized eigenvectors  1 2 3, ,Ψ Ψ Ψ . The third order EPD generalized 

eigenvector 3Ψ  associated with the eigenvalue e  of multiplicity 3p =  of the matrix M  is 

obtained by  

 ( ) ( )
3 2

3 30 and 0M I Ψ M I Ψe e − = −    (4.6) 

such that the eigenvectors  

 ( ) ( )2 3 1 2andΨ M I Ψ Ψ M I Ψe e = − = −   (4.7) 

are both nonzero. Then the three linearly independent solutions of the rate matrix equation  

( )
Ψ

MΨ
d

t
dt

=  are equal to 

 ( )

1 1

2 1 2

2
3 1 2 3

( )

( )

1
( )

2

Ψ Ψ

Ψ Ψ Ψ

Ψ Ψ Ψ Ψ

e

e

e

t

t

t

t e

t t e

t t t e







=

= +

 
= + + 
 

  (4.8) 



39 
 

Since e ej =  and e  is purely real at e =  (the middle white region of Figure 14), 

we observe that when using (4.8) the real eigenfrequencies only cause the general solution 

to be a oscillatory in time. Thus, we expect the mode to have a quadratic increase and 

decrease. The quadratic growth is unique to having a third order EPD as we showed in  (4.8)

. To illustrate this, we simulate the time domain evolution of the magnitude of capacitance 

voltage  
1
( )Cv t  shown in Figure 17. The initial condition and all of the parameters are similar 

to the previous cases except the loss/gain parameter now is e = .  

Evidently, we observe here the dominant quadratic growth in the voltage across the 

capacitor of the resonator with gain since the system has a third order EPD. 

 

Figure 17: The simulated absolute value of the time domain of the voltage across the 
capacitor in the resonator with gain  at the third order EPD. Red colored lines represent 
the actual absolute voltage of 

1
( )Cv t  and the black colored line is its average. Although 

we have only a pure real frequency, we observe the quadratic growth in this plot due to 
the 3rd order EPD. 

From (4.8), we clearly expect a dominant quadratically growing modes as an  
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an indication of the occurrence of the third order EPD  since this equation is valid only if 

generalized eigenvectors are needed which is the case for EPD. To validate our conclusion 

that Figure 17 exhibits a quadratic growth, we compare the average of the absolute 

capacitance voltage 
1
( )Cv t  (black colored line in Figure 17) with three different curves using 

the curve fitting tool in MATLAB (shown in Figure 18).   

The first fitted curve shown in Figure 18 (a) is linear growth which would be an 

indication of a second order EPD as in [26]. While the second fitted curve in Figure 18 (b) is 

an exponential growth (similar to the behavior we observed in Figure 15). Finally, we curve 

 

 

Figure 18: Average of the simulated absolute capacitance voltage of the resonator 
with gain results at the 3rd order EPD curve fitted. (a) Comparison of simulation with 
fitted   linear growth (b) with fitted exponential growth and (c) with fitted quadratic 
growth where 1c  and 2c  are just constants. Clearly figure (c) shows perfect agreement 

between the fitted curve and the curve from simulation, indicating the quadratic 
algebraic growth.  
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fit the simulation results with a quadratic growth shown in Figure 18 (c). Evidently, we 

observe the best fitted curve is in Figure 18 (c) where we fit a quadratic function to our 

simulation results. Remarkably, at the third order EPDs the eigenstates of the coupled 

resonators grow quadratically even when the resonance frequency is purely real. 

 

Sec. 4.4 Summary: 

In this chapter we examined the coupled resonators in the time domain. We showed the 

exponential growth with oscillation condition of the coupled resonators, i.e., when the 

system has complex conjugate eigenfrequencies and in purely real resonance frequencies 

where the eigenstate only oscillate. Finally, at the third order EPDs the eigenstates of the 

coupled resonators grow quadratically even when the resonance frequency is purely real. 

Moreover, we have illustrated how such temporally induced EPDs may have potential 

applications in the development of very accurate sensing devices by demonstrating how 

sensitive the third order coupled resonators to small perturbations. The time domain solver 

ADS simulations of the three conditions of the coupled resonators they undergo by changing 

the loss/gain parameter were also shown. We finally validated the quadratic growth of the 

eigenstate of the coupled resonators at the third order EPD using the curve fitting tool in 

MATLAB in which we showed a confirmation of our expectations. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

We have demonstrated in this thesis that the coupled resonators which consist of an LC 

tank coupled with two RLC oscillators one with amplification and the other with equivalent 

attenuation, exhibit a third order EPD. We have also discussed the necessary conditions to 

realize a third order EPD in the coupled resonators. Using the necessary conditions, we 

showed the dispersion of the eigenfrequencies of the system versus the loss/gain parameter 

by using the state variable method. We then compared the state variable method with the 

transverse resonance method which does not require information about the state variables 

and only rely on the system parameters. Furthermore, we have proven the existence of EPDs 

in the coupled resonators by using the hyperdistance and magnitude of the complex 

correlation coefficient methods. Analysis in the time domain of the coupled resonators was 

shown in the exponential growth with oscillation condition, i.e., when the system has 

complex conjugate eigenfrequencies and in purely real resonance frequencies where the 

eigenstate only oscillate. Finally, at the third order EPDs the eigenstates of the coupled 

resonators grow quadratically even when the resonance frequency is purely real. Moreover, 

we have illustrated how such temporally induced EPDs may have potential applications in 

the development of very accurate sensing devices by demonstrating how sensitive the third 

order coupled resonators to small perturbations. The time domain solver ADS simulations 

of the three conditions of the coupled resonators they undergo by changing the loss/gain 

parameter are also shown.   
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Further practical analysis of the third coupled resonators are currently in final 

optimization process, as of June of 2018. We are constructing the coupled resonators to 

operate at radio frequencies. It is important to note that the physical resonators differ 

substantially from the ideal resonators as the attempt to balance the configuration is limited 

by the components tolerances and thermal and temporal drifts. Therefore, we acquired 

components with very low tolerances and that are also tunable to obtain the desired third 

order EPD. We will then implement these coupled resonators to operate as sensors that are 

very accurate. 
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