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ABSTRACT  

Background: Measurement precision and uncertainty estimation are important factors for all residual 

stress measurement techniques. The values of these quantities can help to determine whether a particular 

measurement technique would be viable option. Objective: This paper determines the precision of hole-

drilling residual stress measurement using repeatability studies and develops an updated uncertainty 

estimator. Methods: Two repeatability studies were performed on test specimens extracted from an 

aluminum and titanium shot peened plate. Each repeatability study included 12 hole-drilling 

measurements performed using a bespoke automated milling machine. Repeatability standard deviations 

were determined for each population. The repeatability studies were replicated using a commercially 

available manual hole-drilling milling machine (RS-200, Micro-Measurements). An updated uncertainty 

estimator was developed and was assessed using an acceptance criterion. The acceptance criterion 

compared an expected percentage of points (68%) to the fraction of points in the stress versus depth 

profile where the measured stresses ± its total uncertainty contained the mean stress of the repeatability 

studies. Results: Both repeatability studies showed larger repeatability standard deviations at the surface 

that decay quickly (over about 0.3 mm). The repeatability standard deviation was significantly smaller in 
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the aluminum plate (max ≈ 15 MPa, RMS ≈ 6.4 MPa) than in the titanium plate (max ≈ 60 MPa, 

RMS ≈ 21.0 MPa). The repeatability standard deviations were significantly larger when using the 

manual milling machine in the aluminum plate (RMS ≈ 21.7 MPa), and for the titanium plate 

(RMS ≈ 18.9 MPa). Conclusions: The single measurement uncertainty estimate met a defined 

acceptance criterion based on the confidence interval of the uncertainty estimate. 

Keywords: Residual stress, uncertainty, hole-drilling, precision, repeatability, regularization 

TABLE OF SYMBOLS 

ā, b! Numerical calibration coefficient matrices 
p, q, t Strain invariant vectors 

P, Q, T Stress invariant vectors 
N Number of rows in the invariant vectors 
𝜈 Poisson’s ratio 
𝐸 Elastic modulus 
𝜀 Measured strain 
𝑧̅ Average cut depth 
ℎ Cut depth 
𝜎 Normal stress 
𝜏 Shear stress 
β Regulation parameter 
C penalization matrix  
α Regulation parameter 

𝒑,, 𝒒,, and 𝒕0 Fitted strain invariants 
Uσ,ε Stress uncertainty from strain uncertainty 
𝑼! Strain uncertainty 
e Lower limit of strain uncertainty 

𝑼",$%& Stress uncertainty from regularization uncertainty 
𝑼",'(' Total stress uncertainty  

pstd, qstd, tstd “Standard errors” in the strain invariants 
prms, qrms, trms Mean squares of the misfit strain vectors 

1. INTRODUCTION 

Precision is an important parameter to consider when selecting a measurement technique since it 

provides the expected measurement variability for a given test method. The definition of precision is the 

closeness of agreement between independent test results obtained under stipulated conditions and is 

closely related to measurement repeatability. Repeatability is the precision where the stipulated 
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conditions require that the same test method is applied to identical test specimens, in the same 

laboratory, by the same operator, over a short interval of time [1]. Repeatability is quantified by the 

repeatability standard deviation, which is simply the standard deviation of test results from a 

repeatability study.  

The precision of a measurement does not quantify the measurement accuracy, which is determined 

by comparing the closeness of a test result to an accepted reference standard [1]. There are no perfect 

reference standards available for residual stress measurements, which limits quantification of residual 

stress measurement accuracy. Inter-method comparisons are often used to provide insight into 

measurement accuracy [2,3,4,5] as well as experiments on specimens having an expected residual stress 

field found from an analytical model [6,7]. This paper is intended to address measurement repeatability, 

not measurement accuracy.   

The repeatability of hole-drilling has been determined in a prior publication for near-zero residual 

stress, using stress relieved specimens in AISI 1018 carbon-steel and 304 stainless steel [8]. The 

repeatability standard deviation was 14 MPa for the carbon steel specimens and 12 MPa for the stainless 

steel specimens under the assumption that the stress was constant with depth. The study included a 

cautionary note stating that measurements in specimens with non-zero residual stresses would be 

expected to exhibit larger variability compared to unstressed samples and that the variability would be 

larger if the study had assessed residual stress as a function of depth (i.e., a residual stress versus depth 

profile) instead of constant stress as assumed in the prior study.  

The reproducibility of hole-drilling was also studied in a prior publication using shot peened steel 

specimens and friction stir welded aluminum specimens [9]. A reproducibility experiment is similar to a 

repeatability experiment, except that measurements are performed at different laboratories rather than at 

one laboratory. The hole-drilling measurements in [9] determined residual stress as a function of depth. 
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The study reported stress versus depth profiles for only some of the participating laboratories at only 

some cut depths, but omitted reporting the reproducibility standard deviations. The reproducibility 

standard deviation was estimated to be around 40 MPa for the friction stir welded aluminum specimens 

and several hundred MPa for the shot peened steel specimens. Data for both specimen types had higher 

stress standard deviation of stress at shallow depth (0.02 to 0.2 mm) than was found 1 mm below the 

surface (the nominal hole diameter was 2 mm).  

The primary objective of the present study is to establish precision for hole-drilling when assessing 

typical residual stress versus depth profiles. Additionally, the present study develops an improved 

uncertainty estimate for hole-drilling. Lastly, the precision of hole-drilling will be compared between 

two different hole-drilling machines, where one is a bespoke automated machine and the other is a 

commercially available manual machine (RS-200, Micro-Measurements [10]). 

2. METHODS 

2.1. Overview 

Hole-drilling repeatability is assessed in two different configurations: a shot peened aluminum plate 

and a shot peened titanium plate. Each repeatability assessment includes 12 hole-drilling measurements 

and a statistical analysis to determine the repeatability standard deviation for each set. Each set of 

measurements is performed on the same plate. The description of each specimen is provided later.  

2.2. Hole-drilling measurement 

A useful summary of the theoretical background for hole-drilling is given in [11] and the technique 

is standardized in ASTM E837-13 [8]. Key details are summarized here to provide context needed to 

establish the improved uncertainty estimator. Hole-drilling (also known as incremental center hole-

drilling) involves drilling a small hole in a test specimen in small increments of depth, h1, h2, …, hN. The 

removal of stressed material causes deformation as the initial residual stresses are redistributed. 
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Deformation is recorded after each material removal step using a strain gage rosette located near the 

hole on the surface of the specimen. The recorded strain versus depth data are then used to compute the 

stress versus depth profile present prior to hole-drilling.  

The stress computation uses numerical calibration coefficient matrices ā and b! (also known as 

compliance matrices) that relate the strains measured at the strain gage locations to those that would be 

measured for a chosen set of stress basis functions. The stress basis functions used here (and in ASTM 

E837-13) are unit pulses. The numerical coefficients are computed using an elastic finite element 

calculation as described in [12,13]. The ā calibration coefficient matrix provides the strain at each cut 

depth that would be caused for a unit magnitude mean equibiaxial stress (i.e., σxx = σyy = 1) applied to 

the hole boundary over each cut depth increment and the b! calibration matrix provides the strain that 

would be caused for a unit magnitude mean shear stress (i.e., τxy = 1) applied to the hole boundary. The ā 

and b! calibration coefficient matrices are formed by applying the loading described above for each cut 

depth increment (for each cut depth), determining strain, and forming a lower triangular matrix of 

dimension N x N, where N is the number of cut depth increments. ASTM E837-13 provides a tabulation 

of ā and b! for various strain gage designs.  

With the compliance matrices known, the in-plane stresses can be calculated using the constitutive 

equation 

𝐚!𝑷 =
𝐸

1 + 𝜈 𝒑, 

𝐛̅𝑸 = 𝐸𝒒, 

𝐛̅𝑻 = 𝐸𝒕 

(1) 
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where p, q, and t are strain invariant vectors and P, Q, and T are stress invariant vectors having N rows, 

one for each cut depth increment [8]. Strain invariants are combinations of strains at different clock 

positions around the hole, with elements 

𝑝) 	= <𝜀*!° + 𝜀+*!°= 2⁄ , 

𝑞) 	= <𝜀+*!° 	− 	𝜀*!°= 2⁄ , 

𝑡) 	= <𝜀*!° + 𝜀+*!° 	− 	2𝜀,,-!°= 2⁄  

(2) 

Stress invariant vectors have one row for each average depth increment, 	𝑧)̅ 	= (ℎ) + ℎ)./) 2⁄ . They 

are linear combinations of the stress components with elements defined as  

𝑃) 	= F𝜎00! + 𝜎11!G 2⁄ , 

𝑄) 	= F𝜎11! 	− 	𝜎00!G 2,⁄  

𝑇) 	= 𝜏01! 	. 

(3) 

The above constitutive equations inherently assume there is no noise in the measured strain data, and 

noise is known to cause erroneous, large stress gradients in the calculated stresses [14]. To smooth out 

noise in the strain data, Tikhonov regularization is added to Eq. (1) and changes the constitutive 

equations to 

(𝐚!𝐓𝐚! + β3𝐂𝐓𝐂)𝑷 =
𝐸

1 + 𝜈 𝐚
!𝐓𝒑, 

	F𝐛̅𝐓𝐛̅ + β4𝐂𝐓𝐂G𝑸 = 𝐸𝐛̅𝐓𝒒,	 

	F𝐛̅𝐓𝐛̅ + β5𝐂𝐓𝐂G𝑻 = 𝐸𝐛̅𝐓𝒕 

(4) 

where C is a matrix that penalizes the second derivative of the stress solution [8]. The matrix C consists 

of zeros in the first and last rows and a tridiagonal structure for the other rows (i = 2, N-1). The 

tridiagonal entries for row i are computed from depths as 
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−2
(ℎ)6/ − ℎ)./)(ℎ) − ℎ)./)

,
2

(ℎ) − ℎ)./)(ℎ)6/ − ℎ))
,

−2
(ℎ)6/ − ℎ))(ℎ)6/ − ℎ)./)

. (5) 

Scalar parameters β (βP, βQ, βT in Eq. (4)) determine the amount of regularization used. Often in 

practice, values of β can be very small (~10-15) and can vary significantly. For clarity, in this work β is 

defined in terms of a new regularization parameter α (αP, αQ, αT), via  

β3 = 107# , 

β4 = 107$ , 

β5 = 107% . 

(6) 

The above provides a means for computing the stress invariant versus depth vectors P, Q, and T 

given vectors of strain invariant versus depth data, p, q, and t and specific values of a  

𝑷 = 𝑽𝑷𝒑,	 

𝑸 = 𝑽𝑸𝒒, 

	𝑻 = 𝑽𝑻𝒕 

(7) 

where 

𝑽𝑷 = (𝐚!𝐓𝐚! + β3𝐂𝐓𝐂).𝟏 N
𝐸

1 + 𝜈O 𝐚
!𝐓, 

	𝑽𝑸 = F𝐛̅𝐓𝐛̅ + β4𝐂𝐓𝐂G
.𝟏𝐸𝐛̅𝐓,	 

	𝑽𝑻 = F𝐛̅𝐓𝐛̅ + β5𝐂𝐓𝐂G
.𝟏𝐸𝐛̅𝐓 

(8) 

Given the stress invariant versus depth vectors P, Q, and T, from Eq. (7), the fitted strain invariants 𝒑,, 𝒒,, 

and 𝒕0 are determined from  

𝒑, =
1 + 𝜈
𝐸 𝒂Q𝑷, (9) 
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𝒒, =
1
𝐸 𝐛̅𝑸, 

𝒕0 =
1
𝐸 𝐛̅𝑻. 

The fitted and measured strain invariants are nearly equal, 𝒑, ≈ 𝒑, 𝒒, ≈ 𝒒, and 𝒕0 ≈ 𝒕 when the value of a 

is highly negative (β near zero) but for a typical value of a there is a finite strain misfit defined as  

𝒑<=>?=' = 𝒑 − 𝒑,,  

𝒒<=>?=' = 𝒒 − 𝒒,, 

𝒕<=>?=' = 𝒕 − 𝒕0. 

(10) 

The value of the regularization parameters α, and subsequently β in Eq. (4), significantly influence 

the calculated residual stress. In an extreme case with no regularization (a << 0, so β ≈ 0), the measured 

strains are fit exactly and strain measurement noise is amplified in the calculated residual stress. In the 

other extreme case, with α ≈ 0, the measured strains will be overly smoothed and the calculated residual 

stress versus depth profile will likely miss important features. A specific value of α must be selected 

during data reduction, and since the best value is not known a priori the selection increases uncertainty 

in the measured residual stress. 

2.3. Uncertainty estimation 

Two stress uncertainty sources will be used to determine the total uncertainty in the hole-drilling 

measurements. The first uncertainty source is the strain uncertainty (Uσ,ε) that determines the uncertainty 

in the calculated stress due to uncertainty in strain. This was established by Prime and Hill [15] and is 

given by:  

𝐔𝝈𝑷,𝜺𝐩
, = 𝑑𝑖𝑎𝑔 <𝑽𝑷 X𝐷𝐼𝐴𝐺 <𝑼𝜺𝒑

𝟐 =]𝑽𝑷𝑻=, 

𝐔𝝈𝑸,𝜺𝒒
, = 𝑑𝑖𝑎𝑔 <𝑽𝑸 X𝐷𝐼𝐴𝐺 <𝑼𝜺𝒒

𝟐 =] 𝑽𝑸𝑻=, 
(11) 
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𝐔𝝈𝑻,𝜺𝒕
, = 𝑑𝑖𝑎𝑔F𝑽𝑻^𝐷𝐼𝐴𝐺F𝑼𝜺𝒕

𝟐 G_𝑽𝑻𝑻G 

where 𝐔𝝈𝑷,𝜺𝐩
, , 𝐔𝝈𝑸,𝜺𝒒

, , 𝐔𝝈𝑻,𝜺𝒕
,  are vectors of the squares of stress uncertainties caused by uncertainties in 

the measured strain invariants at each cut depth, diag is an operator that provides a vector of the 

diagonal elements of a square matrix, DIAG is an operator that provides a diagonal matrix from a 

vector, V is defined in Eq. (8), and vectors of strain invariant uncertainties are 

𝑼!- = 𝑚𝑎𝑥(𝒑<=>?=', 𝑒), 

𝑼!. = 𝑚𝑎𝑥(𝒒<=>?=', 𝑒), 

𝑼!/ = 𝑚𝑎𝑥(𝒕<=>?=', 𝑒), 
(12) 

where e is a lower limit of strain uncertainty taken as the precision inherent to the experimental 

apparatus and for this work was taken as 0.25 με (based on the precision of the strain reader used in the 

following measurements). 

The second uncertainty source to be addressed is the uncertainty arising from the choice of the 

regularization parameters in Eq. (4), which will be called the regularization uncertainty. This uncertainty 

arises because the choice of α (and subsequently β) in Eq. (4) can significantly influence the calculated 

residual stress and optimal regularization is unknown and uncertain.  

The uncertainty estimation scheme employed here follows the approach recently developed for 

slitting [16] and consists of taking the standard deviation of the calculated residual stress over a selected 

range of α (αP, αQ, αT) values. For a specific value of α = α,, the regularization uncertainty is established 

by assessing a set of residual stress invariant versus depth results computed using different values of α 

near α, (i.e., different amounts of regularization), which defines the sensitivity of the computed residual 

stress to α. Each member of the set of residual stress results is computed for a range of α called αsubset. 



 10 

The range αsubset is defined by two key characteristics, the number of values that it contains, M, and the 

range of α that it spans. The present work uses a logarithmically spaced set of M = 60 values of α 

spanning a range αsubset = [α, ± R] where R = 2. The justification for the value of the R parameter is 

presented later. The value for the M parameter was previously established in [16]. Vectors of 

regularization uncertainty versus depth, 𝑼"#,$%&, 𝑼"$,$%&, and 𝑼"%,$%& are then defined as the standard 

deviation of the set of residual stress invariant values at each depth computed for the different values of 

α in αsubset 

𝑼"#,$%&(𝛼0) 	= e
1

𝑀 − 1g
[𝑷) − 𝑷Q],

C

)D/

, 

𝑼"$,$%&(𝛼0) 	= e
1

𝑀 − 1g
[𝑸) − 𝑸Q],

C

)D/

, 

𝑼"%,$%&(𝛼0) 	= e
1

𝑀 − 1g
[𝑻) − 𝑻Q],

C

)D/

 

(13) 

where the vectors Pi, Qi, and Ti reflect stresses computed for values of α in αsubset and 𝑷Q, 𝑸Q , and 𝑻Q are the 

average values of the stress invariants at the set of depths.  

The total uncertainty is taken as the root of the sum of squares (RSS) of the two uncertainty sources  

𝑼E#,'('
, = 𝑼E#,!-

, + 𝑼E#,$%&
, ,	 

𝑼E$,'('
, = 𝑼E$,!.

, + 𝑼E$,$%&
, ,	 

𝑼E%,'('
, = 𝑼E%,!/

, + 𝑼E%,$%&
, . 

(14) 

The stresses are computed using the stress invariants as 
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𝝈00 = 𝑷	– 	𝑸, 

𝝈11 = 𝑷	 + 	𝑸, 

𝝉01 = 𝑻. 

(15) 

The stress uncertainties are computed using the stress invariant uncertainties as  

𝑼E00,'('
, = 𝑼E11,'('

, = 𝑼E#,'('
, + 𝑼E$,'('

, , 

𝑼F01,'('
, = 𝑼E%,'('

, . (16) 

 

Additionally, the strain and regularization uncertainty in the stresses are computed using the stress 

invariant uncertainties as  

𝑼E00,$%&
, = 𝑼E11,$%&

, = 𝑼E#,$%&
, + 𝑼E$,$%&

, ,	 

𝑼F01,$%&
, = 𝑼E%,$%&

,  (17) 

and 

𝑼E00,G
, = 𝑼E11,G

, = 𝑼E#,G
, + 𝑼E$,G

, ,	 

𝑼F01,G
, = 𝑼E%,G

,  (18) 

2.4. Regularization parameter 

The selection of α (and therefore β) can be determined using the recommendation in ASTM E837-13 

[8]. In ASTM E837-13, the regularization is chosen such that the “standard errors” in the strain 

invariants (pstd, qstd, tstd) are within 5% of the root mean squares of the misfit vectors (prms, qrms, trms). The 

“standard errors” in the strain invariants are determined from the measured strain invariant data using  
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𝑝HIJ𝟐 = g
F𝑝K − 3𝑝K6/ + 3𝑝K6, − 𝑝K6LG

𝟐

20(𝑁 − 3)

M.L

KD/

 

𝑞HIJ𝟐 = g
F𝑞K − 3𝑞K6/ + 3𝑞K6, − 𝑞K6LG

𝟐

20(𝑁 − 3) ,
M.L

KD/

 

𝑡HIJ𝟐 = g
F𝑡K − 3𝑡K6/ + 3𝑡K6, − 𝑡K6LG

𝟐

20(𝑁 − 3) .
M.L

KD/

 

(19) 

and the mean squares of the misfit vectors are defined as 

𝑝NOH𝟐 =
1
𝑁g

(𝑝<=>?=')K𝟐
M

KD/

, 

𝑞NOH𝟐 =
1
𝑁g

(𝑞<=>?=')K𝟐,
M

KD/

 

𝑡NOH𝟐 =
1
𝑁g

(𝑡<=>?=')K𝟐.
M

KD/

 

(20) 

It is possible for this selection strategy to prescribe overly large α values (αP, αQ, αT) and produce 

overly smooth stress data. A modified approach using the strain invariant misfits was explored here. We 

call this approach the misfit plateau approach and refer to the recommendation in ASTM E837-13 as the 

ASTM approach. The misfit plateau approach will select α values (αP, αQ, αT) as the minimum α values 

that are selected from either the ASTM approach or at α values where the RMS strain invariant misfit is 

at a value of 95% of where the of the RMS strain invariant misfits reach a steady value (i.e., a plateau).  

2.5. Regularization parameter selection procedure 

The regularization parameters in this work were selected using the following procedure. First, apply 

the above formulae (Eq. (1) through (10)) to calculate stress and strain misfits invariants over a range of 

α values, starting with a highly negative α value (-20) that increases in small increments (~0.1) to an 

arbitrary maximum α value where the maximum misfit invariant exceeds a set maximum value (10 με).  
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Next, calculate the "standard errors” (pstd, qstd, tstd) and root mean squares of the strain invariant 

misfit vectors (prms, qrms, trms) as given in Eq. (19) and (20). Next determine the lowest α values where 

prms, qrms, trms are within 5% of pstd, qstd, tstd. This gives αP, ASTM, αQ, ASTM, and αT, ASTM. 

Using the RMS strain invariant misfits (prms, qrms, trms), determine the value where each plateaus. To 

determine this value, assume the plateaued value is where prms, qrms, trms are changing less than 1% for a 

0.1 change of α (applied separately for prms, qrms, trms). Typically, prms, qrms, trms plateaus occur for large 

values of α and is then nominally constant over a wide range of increasing α values (see Fig. 12 for an 

example). Next, find the α values where (prms, qrms, trms) = 0.95(prms, plateau, qrms, plateau, trms, plateau) and this 

will provide αP, plateau, αQ, plateau, and αT, plateau. 

Lastly compare the αP, ASTM, αQ, ASTM, and αT, ASTM with αP, plateau, αQ, plateau, and αT, plateau. If 

αplateau + 0.5 < αASTM, then use αplateau otherwise use αASTM. This criterion is used to ensure the plateau 

approach is only used when the ASTM approach has significantly oversmoothed the data.  

2.6. Numerical experiment to evaluate the uncertainty estimation scheme 

To determine whether the regularization uncertainty as defined above provides a useful estimate of 

regularization error, a numerical experiment is performed. The numerical experiment consists of 

choosing a stress distribution (initialized residual stress) and determining the strains that would occur 

after each of a set of cut depth increments (initialized strain). The initialized stress is a smoothly varying 

stress profile similar to the stress profile from machining [17,18] and is defined using a polynomial 

function 

σx(z) = σy(z) = 100∙(1/21 - (1-z)20) for 0 < z ≤ 1 mm 
τxy(z) = 0 (21) 

as shown in Fig. 2a. The numerical experiment used cut depths specified in ASTM E837 where N = 20 

and hi = 0.05, 0.10, …, 1.0 mm. 
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The strains due to stresses in Eq. (21) are directly determined using the ā and b! calibration 

coefficient matrices in ASTM E837. This is accomplished by using the constitutive equation relating 

stress to strain (Eq. (1) through (3)) so that  

𝜺*° =
(1 + 𝜈)𝐚!𝑷	 −	 𝐛̅𝑸

𝐸  

𝜺+*° =
(1 + 𝜈)𝐚!𝑷	 +	 𝐛̅𝑸

𝐸  

𝜺,,-° =
2(1 + 𝜈)𝐚!𝑷	 −	 𝐛̅𝑻

𝐸  

(22) 

where P, Q, and T are calculated from Eq. (3) and Eq. (21), at depths corresponding to the average of 

the neighboring depth increments [8]. 

The resulting strains are shown in Fig. 2b. After the strains are determined, noise is added to the 

strains. The added noise is normally distributed with a standard deviation of 0.5 με and when added to 

the initialized strains provides the noisy strains of Fig. 2b. The magnitude of the added noise was 

approximated from the precision of a range of commercially available strain readers. Residual stress and 

uncertainties are subsequently determined from the noisy strains for a range of α values. Since both the 

non-noisy strains and the noisy strains are known, the error arising from the strain noise can be 

determined and provides a useful benchmark to assess the uncertainty estimation scheme. 

2.7. Acceptance criterion 

To test whether the uncertainty estimate accurately estimates the random uncertainty that is present 

during a hole-drilling measurement, an acceptance criterion will be used. The acceptance criterion will 

determine the acceptance fraction which is the percentage of points where the calculated stress ± its 

estimated uncertainty contains the true value, as was done in earlier work [16,19,20]. For the numerical 

experiment, the true stress profile is known (the initialized residual stress). For the repeatability studies, 
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the true value is taken as the mean of the repeated measurements because that is the best available 

estimate of the underlying residual stress field (and the difference between the mean and each 

measurement provides an approximation of the random measurement error, assuming each specimen has 

a similar initial residual stress state). If the underlying stress measurement uncertainty follows a normal 

distribution, a useful uncertainty estimate would provide an acceptance fraction of 68%.  

2.8. Repeatability experiments 

Both specimens used for repeatability experiments have nominally identical geometry and are 

fabricated from low stress rolled plate. The plate dimensions have a nominal length of 381 mm (15 in), 

width of 190.5 mm (7.5 in), and thickness of 25.4 mm (1 in), as can be seen in Fig. 1. The coordinate 

system used here has the x-direction along the width, the y-direction along the length, and the z-

direction into the thickness (Fig. 1). The aluminum specimen is made from a 7050-T7451 aluminum 

plate that had been stress relieved by stretching and the titanium specimen is made from Ti-6Al-4V 

titanium alloy that had been mill annealed and stress relieved. Both specimens underwent shot peening 

to introduce significant magnitude residual stresses that are nominally equibiaxial. The aluminum plate 

is assumed to have an elastic modulus of 71.7 GPa (10,400 ksi) and a Poisson’s ratio of 0.33. The 

titanium plate is assumed to have an elastic modulus of 113.8 GPa (16,500 ksi) and a Poisson’s ratio of 

0.34.  

For each specimen, hole-drilling repeatability is assessed by performing 12 hole-drilling 

measurements on each specimen. The measurements are made at identical locations in each specimen, at 

selected points on a grid with 25.4 mm (1 in) spacing in the x and y-directions. The selected points are 

more than 50 mm from the free edges of the specimen. The 25.4 mm spacing ensures that the 

measurements don’t affect one another [21]. The hole is drilled using an automated, hands-free, bespoke 

milling machine, with a 1.59 mm diameter end mill cutter, and a drill speed of 80,000 rpm. Strains are 
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measured using an ASTM Type A strain gage rosette with gage lengths of 1.59 mm (0.062 in) (Vishay 

CEA-13-062UL-120) and a 5.13 mm (0.202 in) diameter gage circle. The drilled holes have a diameter 

of 2 mm (0.080 in) and hole depths are cut from 0.05 mm to 1.00 mm in increments of 0.05 mm 

(0.002 in to 0.040 in with 0.002 in increments).  

Each measurement provides the in-plane stresses (σxx, σyy, τxy) as a function of depth from the 

surface. All measurements are performed in a consistent manner to assess measurement repeatability. 

Given data from the hole-drilling measurements, the mean and repeatability standard deviation are 

calculated as functions of depth using standard formulae for the two repeatability experiments.  

3. RESULTS 

3.1. Numerical experiment 

The initialized stresses and the calculated stresses with added noise and without regularization are 

shown in Fig. 3. The initialized normal stresses follow Eq. (21) with a minimum value of -100 MPa at 

z = 0. The stresses calculated without regularization follow the initialized stresses very well at shallow 

depths, but at larger depths have sharp gradients and differ from the initialized stresses by up to 60 MPa 

(55% of the stress range).  

The misfit versus cut depth for various levels of regularization is shown in Fig. 4. For very low 

regularization there is essentially no misfit (i.e., the data are fit perfectly), but the noise in the data have 

a significant effect on the calculated stress (Fig. 3). The misfit for the selected regularization 

approximates the noise that was introduced to the strain data. When a high amount of regularization is 

used, misfits are very high (up to 6 με, Fig. 4).  

One component of calculated stress (σxx) is shown in Fig. 5a for the chosen α values. The calculated 

stress matches the initialized stress well. Fig. 5b compares the absolute value of the stress error 

(calculated – initialized) to the total uncertainty and the uncertainties due to strain misfit and 
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regularization. The total uncertainty is in reasonable agreement with the error, with both having high 

values at small depth, lower values at moderate depth, and larger values near the final cut depths. The 

maximum uncertainty is higher than the maximum error (13.5 MPa error vs. 6.0 MPa total uncertainty). 

Both the regularization and strain uncertainties are significant contributors to the total uncertainty (Fig. 

5b). The acceptance criterion (i.e., the calculated stress ± the total uncertainty contains the initialized 

stress) is met at 70.0% of points for the case shown in Fig. 5 (σxx) and of an average of 77.5% of points 

for σxx over 50 iterations with independent, noisy data added to the initialized strains (for other stress 

components the acceptance criterion was at was 78.3% for σyy and 79.9% for τxy over the 50 iterations).  

3.2. Repeatability study: Shot peened aluminum plate 

The results of the repeatability study using the shot peened aluminum plate can be seen in Fig. 6. 

The results show that all 12 measurements (Fig. 6a,c,e) are in nominal agreement and show an 

equibiaxial stress state with low magnitude shear stress. Both σxx and σyy (Fig. 6a,c) show a high 

magnitude compressive stress at the surface (min ≈ -275 MPa) that quickly decays to low magnitude 

compressive stress (falls to -30 MPa at a depth of 0.3 mm). The shear stress (Fig. 6e) is low over the 

entire cut depth, but has somewhat larger magnitude near the surface (max ≈ 25 MPa). 

The repeatability standard deviation of the population and the estimated uncertainty for each 

measurement are shown in Fig. 6b,d,f. There is general agreement over the entire cut depth between the 

repeatability standard deviation and the estimated uncertainty. The uncertainty in both σxx and σyy show 

similar trends with the uncertainty being largest near the surface (max ≈ 25 MPa), falling below 5 MPa 

for depth greater than about 0.5 mm, and then increasing to ~12 MPa near the final depth. The 

repeatability standard deviation follows the same trend, but with smaller peaks (~15 MPa) near the 

surface, falling below 5 MPa for depth greater than about 0.25 mm, and 7 MPa at the final depth. The 

shear stress uncertainty is very small (most values are below 3 MPa) and the shear stress repeatability 
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standard deviation is somewhat larger at shallow depth (~12 MPa), but falls below 4 MPa for depth 

larger than 0.2 mm.  

The acceptance fraction for each measurement is shown in Fig. 7. The mean acceptance fractions for 

the stress components are 75.4%, 76.7%, and 36.3% for σxx, σyy, and τxy, respectively. Some 

measurements meet the acceptance criteria at fewer points than expected for some stress components. 

The shear stress component falls far below the expected acceptance fraction, indicating that the 

uncertainty estimator for shear stress is too small.  

3.3. Repeatability study: Shot peened titanium plate 

The results of the repeatability study using the shot peened titanium plate can be seen in Fig. 8. The 

results show that all 12 measurements (Fig. 8a,c,e) are in nominal agreement and show an equibiaxial 

stress state with low magnitude shear stress. Both σxx and σyy (Fig. 8a,c) show very high magnitude 

compressive stress at the surface (min ≈ -800 MPa) that quickly decays to low magnitude stress (falls to 

±10 MPa at a depth of 0.2 mm). The shear stress (Fig. 8e) is low in magnitude (under ±50 MPa) over the 

entire cut depth, but has more variability near the surface (depth < 0.2 mm). 

The repeatability standard deviation and uncertainty for each measurement are shown in (Fig. 8b,d,f) 

and are in general agreement. The uncertainty in σxx and σyy show similar trends, with the uncertainty 

being largest at the surface (max ≈ 95 MPa), falling to ~8 MPa beyond 0.3 mm, and finally increasing to 

~20 MPa at depth of 1 mm. The repeatability standard deviation follows the same trend as the 

uncertainties, but with smaller peaks (~60 MPa at the surface and 5 MPa at the final cut depth). The 

shear stress uncertainty is significantly smaller than the normal stress uncertainty and is also largest near 

the surface (max ≈ 25 MPa) and small (less than 8 MPa) beyond 0.25 mm. The shear stress repeatability 

standard deviation is initially larger than the uncertainty, especially at the surface (~51 MPa vs. 

~20 MPa) and is similar to the uncertainties beyond 0.3 mm.   
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The acceptance fraction for each measurement is shown in Fig. 9. The mean acceptance fractions are 

78.3%, 86.7%, and 33.3% for σxx, σyy, and τxy, respectively. The acceptance fractions follow the same 

trends as the acceptance fractions for the aluminum plate, namely some measurements meet the 

acceptance criteria at fewer points than expected and the acceptance fraction for shear stress falls far 

below the expected value. 

4. DISCUSSION 

4.1. Numerical experiment 

The calculated stresses for the numerical experiment (Fig. 3) show the need for regularization in the 

stress calculation procedure, since without it, the calculated stresses have significant, erroneous 

gradients (55% of the stress range), especially at deeper depths. The numerical experiment also shows 

the total uncertainty estimate (Fig. 5) to be a reasonable predictor of the error present in the case 

investigated.  

To further illustrate how the uncertainty estimate performs, the RMS uncertainties (regularization, 

strain, and total) and the RMS error for σxx are shown in Fig. 10 over a range of α values (-20 to 6.7). 

The results show that the total uncertainty is representative of the error for a relatively narrow band of α 

values (-12 to -8) and that it significantly underestimates the error for low and high α values. This 

highlights the importance of choosing a reasonable α value to simultaneously minimize error, produce 

an accurate uncertainty estimate, and accurately calculate stress.  

The numerical experiment was useful in determining the α scaling factor, R, used in the 

regularization uncertainty estimate. The numerical experiment was run with numerous values of R, 

ranging from 0 to 5. For each R, the numerical experiment was run with 50 sets of independent, random 

noise added to the strain data (same set of strain data for each R iteration). The mean acceptance fraction 

over the range of R values is shown in Fig. 11a using three different α selection criteria. One α selection 
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criterion was the ASTM selection criterion (described above), another was where α was selected at 95% 

of the RMS misfit plateau (described above), and the final α selection criterion choose an α where the 

RMS misfit equals the RMS of the applied noise (that value should result in an optimally smoothed 

stress where the noise is essentially removed from the calculated stress). The results show the same 

trends for all α selection criteria, with the mean acceptance fraction initially low (30% for R = 0) and 

gradually increasing to ~90%. R was set to 2 to produce a mean acceptance fraction that was somewhat 

larger than necessary (78-80% vs. 68%). The mean acceptance fraction versus α is shown in Fig. 11b for 

R = 2 (using the misfit plateau selection criterion) to further illustrate the effect of the choice of α on the 

mean acceptance fraction. The results show the mean acceptance fraction for low α values is smaller 

than the expected value of 68%, peaks for moderate α values, then quickly decays to very low values 

(between 0 and ~15%). This shows that as the data are oversmoothed, the calculated stress isn’t 

accurately reflecting the underlying data.  

Two additional numerical experiments were performed (not shown for brevity). One used a constant 

stress of 100 MPa and the other used a linearly varying stress profile that started at 100 MPa at the 

surface and decreased to 0 at a depth of 1 mm. For both cases, when the ASTM α selection criterion was 

used, the selected α was very large and caused there to be large errors in the calculated stress. To remedy 

the poor selection of α in these cases, the α selection criterion was modified (as described earlier). The 

additional step consisted of determining the α value where the RMS strain invariant misfit reaches 95% 

of the value where it plateaus (shown in Fig. 12 for the original numerical experiment). This α value is a 

reasonable approximation of the ideal α value because, if the RMS invariant misfits are no longer 

increasing, the stress profile is smoothed to an acceptable degree. For the linear stress profile case, the 

ASTM selected α value was 5.0 and the plateau approach α value was -3.1, so the difference is 

significant. However, this issue only appeared during the two numerical experiments where the stresses 

where straight lines, so perhaps this is an issue that will rarely present itself in practical experiments. 
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The α selected using the ASTM α selection criteria worked well for all the measurements in the 

repeatability experiments reported here, so the plateau criterion is required in only certain cases. 

4.2. Repeatability experiments 

Results for both repeatability experiments follow the trends from the numerical experiment, with 

repeatability standard deviation being largest at the surface, falling to a significantly smaller value for 

most of the remaining cut depth, and then increasing at the final depths. The repeatability standard 

deviations at the surface, over most of the cut depth, and near the final cut depth are about 25, 5, and 

12 MPa for the shot peened aluminum plate and about 60, 6, and 5 MPa for the shot peened titanium 

plate. Additionally, the mean acceptance fraction was around the expected value of 68% in both 

repeatability studies for normal stresses, but about 50% of the expected value for shear stress. The 

numerical character of the compliance for the initial cut depths contributes to the larger uncertainty at 

shallow depths and additional uncertainty may arise from errors in establishing the zero-depth datum. 

The present repeatability standard deviations are nominally consistent with those reported in earlier 

work [8,9], although the earlier studies are difficult to directly compare to the work here. Of the four 

specimens assessed in the earlier studies, only one had a material in common with the present study, the 

friction stir welded aluminum specimens of [9]. That study found larger peak repeatability standard 

deviation than for the shot peened aluminum specimen here (~40 MPa vs. ~15 MPa). The other 

specimens had standard deviations that are similar to the values found here, but only a qualitative 

comparison can be made. For reference, the repeatability standard deviations reported in [8] are 14 MPa 

for stress relieved AISI 1018 specimens and 12 MPa for stress relieved 304 stainless steel specimens. 

Interlaboratory reproducibility standard deviations in [9] were estimated to be around 40 MPa for 

friction stir welded aluminum specimens and several hundred MPa for shot peened steel specimens. 

Several additional caveats in the previous studies are notable, such as in [8] where the stresses were 



 22 

assumed to be uniform with depth (which would cause the repeatability standard deviations to be lower 

than those for a non-uniform case [8]) and in [9] where the study reported interlaboratory reproducibility 

rather than intralaboratory repeatability. Additionally, the use of different materials can cause 

differences in repeatability, where higher elastic modulus leads to larger repeatability standard 

deviations [22]. The measurements here, and in some of the previous studies, used specimens that had 

residual stresses induced from shot peening, which causes an equibiaxial stress state. Such a stress state 

would reduce effects of the b! calibration coefficient matrices in the stress calculation procedure and thus 

could reduce the repeatability standard deviation.  

Often a series of nominally identical repeated measurements are performed to provide a first order 

uncertainty assessment rather than relying on a single measurement uncertainty estimator. During 

repeated measurements, the experimenter would seek to minimize controllable sources of uncertainty. 

One such source of uncertainty is the selection of α values. As shown above the choice of a α values can 

have a significant impact on the calculated stress and when the experiment is attempting to minimize 

uncertainty (using a first order estimate) there is temptation to choose larger α values, such that the 

stress will be smoother and more consistent between measurements. This will minimize the repeatability 

standard deviation (and first order uncertainty estimate), but often at the expense of measurement 

accuracy. To illustrate this point, the RMS repeatability standard deviation for σxx is shown in Fig. 13 

(dashed red line in) in the shot peened aluminum plate. This shows the repeatability standard deviation 

monotonically decreases with increasing α, even though the calculated stress is over smoothed as α 

becomes large. This result shows that even though the precision increases as α increases, as quantified 

by the repeatability standard deviation, at some point the accuracy decreases with increasing α (and the 

calculated stress is erroneous). This further raises the issue that α selection is critical and that both the 

precision and accuracy of a measurement technique need to be considered when such information is 

available.  
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4.3. Comparison between hole-drilling machines 

As a validation exercise in the development of the bespoke automated milling machine used here, 

replicate repeatability studies were performed on the same plates using a commercially available manual 

hole-drilling machine (RS-200, Micro-Measurements). The results from both machines are shown in 

Fig. 14 for the aluminum plate and in Fig. 15 for the titanium plate. The results show that measurements 

from each machine are generally self-consistent. The results also show similar stress profiles, where the 

stresses have peak compression at the surface that decay to low magnitude stress subsurface. However, 

there are significant differences in results of measurements made with each machine. First, results from 

the commercial machine have lower magnitude compressive stress at the surface. The average surface 

stresses (σxx and σyy) for the aluminum plate are -275 MPa for the bespoke automated machine 

and -210 MPa for the commercial machine, with analogous values for the titanium plate being -800 MPa 

and -550 MPa. Second, the near surface stresses decay more sharply in results from the bespoke 

automated machine compared to the results from the manual machine, with the depth of significant 

compressive stress differing by about a factor of two. Third, the repeatability standard deviation is 

significantly smaller for the measurements from the bespoke automated machine in both samples, but 

particularly in the titanium sample.  

The mean acceptance fraction of σxx for the commercial manual machine is 38.6% for the shot 

peened aluminum plate and 43.3% for the shot peened titanium plate, which was significantly different 

from those found from the bespoke automated machine (75.4% and 78.3%, respectively). The 

significantly lower mean acceptance fraction from the commercial manual machine is due to the larger 

variation in the measured stress despite both sets of measurements having similar levels of calculated 

uncertainty (Fig. 14 and Fig. 15).  
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The significant differences in the measured stresses between the repeatability studies using different 

milling machines is concerning. The primary cause of discrepancy is expected to be inferior dimensional 

control for the hole that are present in the manual machine. Possible sources of bias may be inaccurate 

cut depth [23] and hole eccentricity [24,25], both of which cause errors because they invalidate 

assumptions inherent in the stress calculation procedure. The differences in stress could also be caused 

by differences in cutting induced strains that interfere with the strains due to release of residual stress. 

The air-driven spindle of the manual machine has no control over cut speed, whereas the electronic 

spindle of the bespoke automated machine has feedback control, which yields more consistent cutting.  

The differences in the stresses measured by the two different milling machines further emphasize 

that the proposed uncertainty estimate provides a measure of precision and does not indicate 

measurement accuracy. Additionally, the repeatability standard deviations presume the residual stress in 

the samples are uniform at all measured locations, which implies that the reported repeatability standard 

deviations arise from measurement imprecision. Some fraction of the differences in measured stress are 

likely due to stress field variability, so the reported repeatability standard deviation is likely to be 

conservative (i.e., larger than would be found with a perfectly uniform stress field).  

5. SUMMARY/CONCLUSIONS 

Repeatability of hole-drilling residual stress measurements using a bespoke automated machine was 

determined in two configurations: a shot peened aluminum plate and a shot peened titanium plate. Each 

repeatability assessment included 12 hole-drilling measurements. The results show similar trends 

between both studies: larger repeatability standard deviations at the surface that decay quickly (over 

about 0.3 mm). The repeatability standard deviation was significantly smaller in the aluminum plate 

(max ≈ 15 MPa) than in the titanium plate (max ≈ 60 MPa). 
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The work here also developed an uncertainty estimate that includes uncertainty arising from 

regularization of the measured strains. The uncertainty estimate was tested in a numerical experiment, 

which showed the uncertainty estimate to reasonably predict the error present in the numerical 

experiment and to meet a statistically based acceptance criterion. Application of the uncertainty estimate 

in both repeatability studies showed that the uncertainty estimate was consistent with the repeatability 

standard deviation (precision) and met the statistically based acceptance criterion. 

Repeatability of hole-drilling residual stress was also characterized for a commercially available 

manual hole-drilling machine (RS-200, Micro-Measurements). The comparison between results from 

two measurement devices show differences in the measured stresses, which indicate that bias errors may 

be present in one or both sets of measurements, which are not quantified by the uncertainty estimate nor 

the repeatability standard deviation.  
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FIGURES 

 

 
Fig. 1 – Diagram of the aluminum and titanium shot peened plate. The measurement locations are at 

cross-hatched lines. Dimensions in mm 

 

 
 

(a) (b) 

Fig. 2 – Initialized (a) stress and (b) strain for the numerical experiment 
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Fig. 3 – Initialized stresses and calculated stresses with added noise and no regularization (i.e., no 
smoothing) for the numerical experiment  

 

 

Fig. 4 – Misfit versus cut depth for various levels of regularization for the numerical experiment as 
well as noise added to the signal 
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(a) (b) 

Fig. 5 –(a) Initialized and calculated stress and (b) uncertainty and error for the numerical 
experiment (σxx) 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 6 – Repeatability data for the shot peened aluminum plate stress (and mean with the 
repeatability standard deviation shown as error bars) (left column) (a) σxx, (c) σyy, (e) τxy and 

uncertainty and repeatability standard deviation (right column) (b) σxx, (d) σyy, (f) τxy  
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Fig. 7 – Acceptance fraction for each measurement in the shot peened aluminum plate repeatability 
experiment 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 8 – Repeatability data for the shot peened titanium plate stress (and mean with the repeatability 
standard deviation shown as error bars) (left column) (a) σxx, (c) σyy, (e) τxy and uncertainty and 

repeatability standard deviation (right column) (b) σxx, (d) σyy, (f) τxy  
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Fig. 9 – Acceptance fraction for each measurement in the shot peened titanium plate repeatability 
experiment 

 

 

Fig. 10 – RMS regularization, strain, and total uncertainty and the RMS error for σxx as a function of 
α (α = αP =  αQ =  αT) for the numerical experiment 
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(a) (b) 

Fig. 11 – Mean acceptance fraction for (a) range of R values using a variety of α selection criterions 
and (b) vs. α (R=2) where the markers are at the misfit plateau 

 

 
Fig. 12 – RMS misfit as a function of α for the numerical experiment. The markers show α values at 

95% of the misfit plateau 
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Fig. 13 – RMS total uncertainty and repeatability standard deviation for σxx in the shot peened 

aluminum plate vs α (α = αP =  αQ =  αT) 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 14 – Repeatability data for the shot peened aluminum plate using the bespoke (DART) and 
RS200 milling machines. Calculated stress (and mean with the repeatability standard deviation 

shown as error bars) (left column) (a) σxx, (c) σyy, (e) τxy and uncertainty and repeatability standard 
deviation (right column) (b) σxx, (d) σyy, (f) τxy  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 15 – Repeatability data for the shot peened titanium plate using the bespoke (DART) and RS200 
milling machines. Calculated stress (and mean with the repeatability standard deviation shown as 

error bars) (left column) (a) σxx, (c) σyy, (e) τxy and uncertainty and repeatability standard deviation 
(right column) (b) σxx, (d) σyy, (f) τxy  

 




