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Abstract 

Multi-omic analyses and organoid models for identification of therapeutic 

vulnerabilities and developmental origins in childhood cancer 

by 

Lauren M. Sanders 

 
Pediatric cancers are different from adult cancers in that they often have few 

targetable DNA mutations, and in most cases are thought to be developmental in origin 

rather than environmental. While overall survival rates for pediatric cancer have 

increased in the past few decades, there remain several difficult-to-treat pediatric 

cancer types, including deadly pediatric diffuse midline and brainstem gliomas. 

However, advances in genomics data generation and analysis methods have made it 

possible to start identifying the dominant signaling pathways, developmental origins, 

and ultimately therapeutic vulnerabilities of these tumors.  

Here I present my work in the UCSC Treehouse Childhood Cancer Initiative 

using comparative gene expression analysis methods to identify a rare cancer subtype 

with treatment and outcome implications (Chapter 2). This work demonstrates the 

utility of gene expression data for molecular subtyping in the clinic, especially in rare 

or difficult-to-diagnose pediatric cancers. I also present my work identifying a 

developmental window of opportunity for the histone H3 K27M mutation event, which 

characterizes a majority of brainstem gliomas and is associated with especially poor 

overall survival (Chapter 3). The cell-of-origin and developmental timing for 
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gliomagenesis in this tumor type has been a subject of much research in the past decade, 

and my work helps to address this clinically relevant issue.  

Finally, in Chapter 4 I present an analysis of multiple types of genomic data 

across thousands of primary tumors and diverse cancer laboratory models (cell lines, 

organoids, and patient-derived mouse xenografts). I report that cancer organoids have 

the advantage of being relatively accurate cellular representations of primary tumors, 

and time- and cost-effective. Therefore, in Chapter 5 I present the development of a 

novel human embryonic stem cell based cerebral organoid model of the histone H3 

K27M mutation in early human embryonic brain development. This model can be used 

to answer outstanding questions in the field to better help treat these devastating 

tumors. 
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Chapter 1. Introduction 

1.1 Pediatric Cancer Background 

Although survival rates for pediatric cancer have dramatically improved over 

the past five decades, cancer is still the leading cause of disease-related death in 

childhood. With recent advances in sequencing technology, pediatric pan-cancer 

genomic studies at several clinical centers have well described the childhood cancer 

mutational and epigenetic landscape[1–3]. It is now clear that the mutational burden is 

significantly lower in pediatric cancer overall as compared to adult cancer[2]. But 

epigenetic alterations and gene expression dysregulation are prevalent in pediatric 

cancer[4]. These results, combined with experimental modeling studies, have indicated 

that many pediatric cancers arise from progenitor cells during important developmental 

windows[5,6]. The oncogenesis mechanisms are varied, including chromosomal fusion 

events, histone mutations, epigenetic modifier mutations, or non-genetic epigenetic 

dysregulation events that are still poorly understood[6]. The common theme is that each 

of these oncogenetic events stalls or otherwise interferes with normal development, 

resulting in maintenance of a progenitor cell state which is particularly susceptible to 

tumorigenesis. It is thought that in many tumor types, specific developmental times and 

cell types are most vulnerable to these alterations. The resulting tumors often harbor 

gene expression signatures which are strongly reminiscent of the developmental cell of 

origin. 
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While the 5-year survival rate for pediatric cancer is now at 80%, the remaining 

20% of patients are very difficult to treat effectively[7]. Due to the developmental 

origins of these diseases, many pediatric cancers display overexpression of oncogenes 

and oncogenic pathways without a targetable oncogenic mutation. Although many 

pediatric cancers harbor an epigenetic alteration that indicates their developmental 

origin, epigenetic alterations are in general very difficult to target therapeutically[8]. 

Epigenetically-directed treatment regimens can be especially dangerous in pediatric 

patients, because normal development requires delicately maintained epigenetic 

processes and children are particularly susceptible to stunted growth, tissue 

development, and neurocognitive function[6].  

Faced with this evidence, over the past few years several clinical centers have 

begun to incorporate high-throughput RNA sequencing (RNA-seq) into treatment 

decision-making[9–12]. Analysis of cancer gene expression via RNA-seq has been 

shown in many cases to increase the identification of actionable genetic abnormalities, 

especially for children with relapsed or refractory cancer who have failed standard-of-

care and run out of treatment options. Although there are currently few targeted 

molecular therapies designed specifically for pediatric cancers, the adult cancer field 

has generated a wide library of precision medicine targeted agents. Because childhood 

cancers often display oncogene overexpression or activated oncogenic signaling, it is 

possible in many cases to repurpose a targeted therapeutic which has displayed efficacy 

in adult cancers.  
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In addition to its usefulness in detecting aberrant oncogenic signaling, cancer 

gene expression often carries the signature of the tumor cell and tissue of origin. 

Identification of the cell and tissue of origin of many pediatric cancer types is an 

ongoing research effort. Once we better understand the developmental timing of each 

cancer type, we can identify therapeutic vulnerabilities for improved treatment. Single 

cell RNA-seq has proven particularly useful in this regard, as this technique can 

characterize individual cell type populations in each tumor[13–16]. Separately, 

identification of the tissue of origin or tissues with similar gene expression profiles can 

be of immediate clinical relevance for molecular subtyping and classification of 

pediatric cancers, which may be especially difficult to classify through 

histopathological analysis alone[17].  

1.2 Gene Expression in Pediatric Cancer 

Previous studies have shown that transcriptomic analysis of patient cancer 

samples can aid in comprehensive molecular characterization of poorly understood 

cancer types. The most influential transcriptomic studies have come from The Cancer 

Genome Atlas, which included over 11,000 patient tumor samples and yielded 27 

papers on 33 of the most common adult cancer types[18]. These studies influenced the 

inclusion of genomics in cancer treatment decisions, and helped establish the paradigm 

that comparative transcriptomic analysis of patient samples can yield clinically relevant 

findings.  
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This paradigm has held up through its application in pediatric cancer, as several 

studies have characterized the transcriptomic landscape of pediatric cancers such as 

leukemia[1], neuroblastoma[19], and glioma[3]. Many of these studies were made 

possible through the Therapeutically Applicable Research To Generate Effective 

Treatments (TARGET) project to generate genomic data on pediatric cancers. 

However, the most difficult-to-treat cancers are rare, and an individual institution may 

only see a few cases per year, making it particularly challenging to perform large-scale 

comparative transcriptomic analyses. Therefore, the UC Santa Cruz Treehouse 

Childhood Cancer Initiative (Treehouse) assembles cancer RNA-seq datasets from 

many sources to enable data sharing and analysis[20]. These datasets together make up 

the Treehouse cancer compendium of over 12,000 uniformly processed tumor RNA-

seq samples. 

Accordingly, my thesis research leverages Treehouse transcriptomic data and 

other publicly available datasets to identify therapeutic vulnerabilities and 

developmental origins of the most devastating pediatric brain cancers. While survival 

rates of other pediatric cancers have risen, the overall survival rate for pediatric 

brainstem gliomas (diffuse intrinsic pontine glioma, DIPG) remains at less than a year 

for initial diagnosis[21]. Over four decades of clinical trials in DIPG have resulted in 

several failed therapies, partly because sequencing analysis of biopsy samples only 

began in the early 2000’s[22–24]. A majority of these tumors are characterized by a 

lysine-to-methionine mutation in the K27 residue of histone H3, resulting in loss of the 
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H3K27 trimethyl transcriptional repressive mark and causing widespread oncogenic 

dysregulation of developmental genes[25]. 

The rare and deadly nature of these brain tumors has resulted in a limited 

amount of genomic information, a situation which has only improved somewhat in the 

last decade. Since much of our knowledge about these rare brain tumors has derived 

from experimental models, part of my thesis research focuses on evaluating the 

biologically representative nature of tumor models and identifying their limits. In 

particular, for cancers with epigenetic and developmental origins, models derived from 

biopsy material may not be useful for studying the early events leading to 

tumorigenesis. Ultimately, this led me to pioneer the development of a new 

experimental model of H3K27M in early brain development.  

Finally, I would like to present my thesis research as a message for future 

researchers. At the time of this writing, a search for the keyword “cancer” on the 

National Center for Biotechnology Information Gene Expression Omnibus database 

returns 768,734 public human datasets. Only a fraction of these high-dimensional gene 

expression data are currently being repurposed to answer additional research questions. 

The majority of the data in these studies is often only used for the original authors’ 

purpose, which too often is to study only one or two biological gene sets, leaving a 

great deal of data uninvestigated. The status quo in biology is to pioneer a new 

experimental study instead of mining the thousands of publicly available datasets and 

leveraging the power of previously published expression data. In some cases, a novel 

experimental study is justified, but the huge amount of existing data should warrant at 
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least a preliminary analysis. Accordingly, a secondary motivation of my research is to 

demonstrate the possibility and the necessity of repurposing existing expression 

datasets from a variety of sample types and experimental models to develop and test 

novel biological hypotheses.  
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Chapter 2: Treehouse comparative RNA-seq analysis for 

molecular subtyping of pediatric cancer 

2.1 Chapter Introduction 

To aid in identification of personalized treatments for individual childhood 

cancer patients, the Treehouse Childhood Cancer Initiative has developed a pipeline 

for comparative analysis of RNA expression (Treehouse CARE). Treehouse deploys 

this analysis in partnership with multiple clinical sites including Stanford, University 

of California at San Francisco (UCSF), and Children’s Hospital of Orange County. The 

Treehouse CARE analysis provides two clinically-relevant outputs: first, identification 

of oncogenes with outlier expression in a single tumor sample as compared to a 

background cohort, and second, identification of other tumors within the Treehouse 

cancer compendium with similar gene expression profiles to the tumor of interest. The 

first goal can aid in identification of targeted therapeutics, and the second goal can help 

in molecular subtyping or classification.  

Treehouse uses the UCSC TumorMap tool[26] to identify and visualize 

molecular similarity between a focus sample and the top 6 most similar tumors in the 

Treehouse cancer compendium. TumorMap was developed as a tool for finding 

similarities among tumors from different tissues, based on TCGA findings that 

clinically and prognostically relevant cancer subtypes can originate from different 

tissues but share underlying signaling[27]. TumorMap similarity analysis is 
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particularly relevant in the context of pediatric cancers, for which the tissue-of-origin 

is not always easy to determine. In many cases, identification of similar tumors among 

a background cancer cohort can help assign a molecular subtype based on clinically 

relevant cancer signaling.  

The following publication details a case of ovarian cancer in a 10-year-old girl 

treated at Stanford, in which the Treehouse CARE pipeline and TumorMap analysis 

helped refine the subtype diagnosis with implications for treatment and outcome. 

Although I served as the case analyst for several Treehouse cases, the original analysis 

for this case was performed by Du Linh Lam, a previous Treehouse research analyst. I 

was responsible for re-analyzing the case against a more recent version of the 

Treehouse compendium, completing all writing, and generating all figures for this 

publication except Figure 1 in which the H&E images were provided by Inge 

Behroozfard and Dr. Florette Hazard at UCSF. 
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Comparative RNA-seq analysis aids
in diagnosis of a rare pediatric tumor
Lauren M. Sanders,1 Arun Rangaswami,2 Isabel Bjork,1 Du Linh Lam,1

Holly C. Beale,3 Ellen Towle Kephart,1 Ann Durbin,1 Katrina Learned,1 Rob Currie,1

A. Geoffrey Lyle,3 Jacob Pfeil,1 Avanthi Tayi Shah,4 Alex G. Lee,4

Stanley G. Leung,4 Inge H. Behroozfard,4 Marcus R. Breese,4 Jennifer Peralez,2

Florette K. Hazard,2 Norman Lacayo,2 Sheri L. Spunt,2 David Haussler,1,5

Sofie R. Salama,1,5 E. Alejandro Sweet-Cordero,4 and Olena M. Vaske3

1Department of Biomolecular Engineering, UC Santa Cruz Genomics Institute, Santa Cruz, California 95064,
USA; 2Stanford University School of Medicine and Stanford Cancer Institute, Stanford, California 94305, USA;
3Department of Molecular, Cell and Developmental Biology, UC Santa Cruz Genomics Institute, Santa Cruz,
California 95064, USA; 4Department of Pediatrics, Division of Hematology and Oncology, University of
California San Francisco, San Francisco, California 94143, USA; 5Howard Hughes Medical Institute, University
of California Santa Cruz, Santa Cruz, California 95064, USA

Abstract Gliomatosis peritonei is a rare pathologic finding that is associated with ovarian
teratomas and malignant mixed germ cell tumors. The occurrence of gliomatosis as a ma-
ture glial implant can impart an improved prognosis to patients with immature ovarian ter-
atoma, making prompt and accurate diagnosis important. We describe a case of recurrent
immature teratoma in a 10-yr-old female patient, in which comparative analysis of the RNA
sequencing gene expression data from the patient’s tumor was used effectively to aid in the
diagnosis of gliomatosis peritonei.

[Supplemental material is available for this article.]

INTRODUCTION

Immature ovarian teratomas are malignant tumors of germ cell origin (Gheorghisan-
Galateanu et al. 2013). Teratomas are the most common germ cell tumor, but, in rare cases,
immature teratoma can occur with gliomatosis peritonei, which is characterized by mature
glial tissue in the peritoneum (Liang et al. 2015). The presence of mature glial tissue implants
can indicate a favorable prognosis in patients with immature ovarian teratoma (Marwah et al.
2016). However, all lesions must be sampled to confirm mature histological status, and full
excision is important. Additionally, recurrence potential is high, requiring careful follow-up
and monitoring.

Gliomatosis peritonei can be difficult to identify through histopathological analysis
alone. Recent studies have shown that molecular analysis can aid cancer type classification
(Cancer GenomeAtlas ResearchNetwork 2015). Inmany cases, DNA sequencing and variant
identification can help subtype cancers by grade and outcome. However, the paucity of re-
current DNA mutations in rare pediatric cancers can make variant-based disease classifica-
tion difficult. RNA sequencing (RNA-seq) of tumor gene expression can provide additional
classification information, through a comparative analysis of RNA-seq from the pediatric tu-
mor and with a compendium of RNA-seq data from known cancer types (Newton et al. 2018).
In this study, we describe the use of comparative RNA-seq analysis in a case of relapsed
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pediatric immature teratoma cooccurring with gliomatosis peritonei with no informative
DNA mutations.

RESULTS

Clinical Presentation and Family History
A 10-yr-old female patient was diagnosed with immature teratoma, relapsed to the pericardi-
um and diaphragm. Treatment history included laparotomy with resection of ovarian and fal-
lopian tube mass, video-assisted thoracoscopic resection of lung nodule, and resection of
diaphragmatic andpericardial lesions. Thepericardial lesionwas submitted for RNAsequenc-
ing. FoundationMedicineDNAtestingof thediaphragmatic lesion identifiedonlyonevariant:
MLL3p.C310S. Thismutationwas not informative for diagnosis or subtyping.Whole-genome
sequencing (WGS) detected three somatic coding variants in genes FCGR1A, ANKRD36C,
and HLA-DRB1 at hg38 Chr 1:g.[149790230C>T], Chr 2:g.[95855406C>G], and Chr 6:g.
[32584172C>G] (Table 1). Interestingly, ANKRD36 has been previously characterized by
TCGA as a significantly mutated gene in adult glioblastoma (Brennan et al. 2013).

Histologic sections of the pericardium (Fig. 1A) showed fibroadipose tissue and mature
glial cells, with lymphovascular invasion. Histologic sections of the right diaphragm (Fig. 1B)
showed extensive involvement by teratoma, with no malignant elements present.

Genomic Analyses
The patient was enrolled in the “Clinical Implementation of Genomic Analysis in Pediatric
Malignancies” study at Stanford University, and through this trial, her tumor RNA-seq data
set was analyzed. This analysis uses anN-of-1 analysis approach, which compares an individ-
ual pediatric tumor to a cancer compendium of uniformly processed RNA-seq data from
11,456 other tumors (https://treehousegenomics.ucsc.edu/public-data/). This approach
aids in the molecular classification of the pediatric tumor through the identification of
most similar tumors in the Treehouse cancer compendium.

We calculated pairwise Spearman correlation scores between the patient’s tumor and all
tumors in the Treehouse cancer compendium. For 232 samples, the pairwise correlation
scores with the focus sample exceeded the 95th percentile correlation score in the cancer
compendium (0.875); 228 of these (98%) were glioma or glioblastoma multiforme samples,
and the remaining four were various brain tumors (Supplemental Fig. S1). The top 6 most
correlated tumors are shown in Table 2. In addition, glioma samples had a significantly high-
er correlation to the patient’s tumor than to other tumor types in the cancer compendium
(Supplemental Fig. S2). A neural network classification approach (Abadi et al. 2016) also
classified the patient’s tumor as most similar to glioma (Supplemental Fig. S3). Overall this
indicates a strong gene expression similarity between the patient’s pericardial lesion and
high-grade adult glioma tumors.

Table 1. Variants detected in the pericardial lesion by whole-genome sequencing

Gene Chr

HGVS
DNA

reference
HGVS protein
reference

Variant
type

Predicted
effect

(substitution,
deletion, etc.)

dbSNP/
dbVar ID

Genotype
(heterozygous/
homozygous)

FCGR1A 1 GRCh38 NP_000557.1 Missense Substitution rs637882 Heterozygous

ANKRD36C 2 GRCh38 NP_001297083.1 Missense Substitution rs77972623 Heterozygous

HLA-DRB1 6 GRCh38 NP_001230894.1 Missense Substitution rs16822805 Heterozygous
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The TumorMap algorithm (seeMethods) was used to visualize the top six most correlated
tumors in the context of all tumors in the Treehouse cancer compendium (Newton et al.
2017). TumorMap visualization generates a two-dimensional (2D) “map” of the similarity be-
tween tumor RNA-seq samples based on pairwise Spearman correlation. The six most cor-
related samples to the focus tumor are indicated using red pins (Fig. 2). All six most
correlated samples fall in amodular cluster that includes both adult and pediatric glioma (yel-
low) and glioblastoma brain tumors (green). This indicates that the patient’s pericardial lesion
is most transcriptionally similar to high-grade glial brain tumors.

Diagnosis of Gliomatosis Peritonei
As a result of the combined histologic and genomic analysis, the patient was subsequently
diagnosed with gliomatosis peritonei. This diagnosis is consistent both with the presence of
glial tissue in the pericardial lesion, and with the Treehouse genomic finding that the pa-
tient’s tumor is most similar to high-grade glioma tumors. Molecular similarities between
high-grade glioma and gliomatosis peritonei include high expression of the stem cell marker
SOX2 and low expression of transcription factors OCT4 and NANOG (Nogales et al. 2014;
Liang et al. 2015). Consistent with these characteristics, Figure 3A shows that the patient’s

Table 2. The top six most correlated RNA-seq samples to the patient’s RNA-seq sample belong to older pa-
tients with glioma or glioblastoma

Sample ID Diagnosis (grade) Histology Patient age (yr) Spearman correlation

TCGA-DU-7012-01 Glioma (3) Astrocytoma 74 0.93

THR14_0312_S01 Glioma (3) Astrocytoma 18 0.92

TCGA-CS-4941-01 Glioma (3) Astrocytoma 67 0.91

TCGA-HT-7680-01 Glioma (2) Astrocytoma 32 0.91

TCGA-DU-8158-01 Glioma (3) Astrocytoma 57 0.91

TCGA-28-5215-01 Glioblastoma (4) Astrocytoma 62 0.91

Figure 1. Teratoma involving the pericardium and diaphragm. (A) (H&E stain, 40×) Pericardial involvement by
mature glial implant composed of mature neurons, neuropil, and schwannian stroma. (Inset) (H&E stain, 100×)
Nodules of implants within vascular spaces. (B) (H&E stain, 40×) Diaphragm involvement by a mixture of ma-
ture and immature germ cell components. (Inset) (H&E stain, 100×) Immature neuroepithelium forming ro-
settes set within neuropil.
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tumor expresses SOX2 at very high levels, comparable to glioma and glioblastoma tumors in
the Treehouse cancer compendium. Figure 3B,C shows that the patient’s tumor also ex-
presses very low levels of OCT4 and NANOG, similar to gliomas.

The patient underwent resection of the pericardial gliomatosis implant as well as the dia-
phragmatic immature teratoma implant. Two years post-resection, she was healthy and was
discharged from oncology.

A B

Figure 2. TumorMap clustering visualization of the Treehouse cancer compendium. (A) Treehouse cancer
compendium v8 shown visualizedwith the TumorMap tool. Each colored dot represents an individual patient’s
tumor RNA-seq data. Tumors are grouped based on RNA-seq similarity and selected tumor types are labeled.
The top six most similar tumors to the patient’s pericardial lesion are indicated with red pins. (B) Zoomed-in
image of the location of the sixmost correlated tumors on the TumorMap. Five out of six of themost correlated
tumors fall in the leftmost brain tumor cluster, which contains the majority of glioblastoma samples and high-
grade glioma samples.

A B C

Figure 3. Expression levels of SOX2, OCT4, and NANOG. (A) SOX2 expression. The majority of the tu-
mors in the Treehouse cancer compendium express SOX2 at very low levels. However, the glioma tumors
exhibit exceptionally high SOX2 expression. The patient’s pericardial tumor expresses SOX2 at a level
comparable with the glioma tumor group. (B,C ) OCT4, NANOG expression. The majority of Treehouse
cancer compendium tumors express OCT4 and NANOG at very low levels, including most gliomas.
The patient’s pericardial tumor also expresses OCT4 and NANOG at very low levels, comparable with
the glioma tumor group.
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DISCUSSION

We describe here the utility of comparative RNA-seq analysis using the TumorMap method
for molecular classification and diagnosis of a rare pediatric tumor. The TumorMap algorithm
has been used previously to describe the global similarity between tumor types and to dis-
cover novel subtypes (Ceccarelli et al. 2016; Farshidfar et al. 2017), but this is the first pub-
lished use of TumorMap for N-of-1 tumor classification.

We demonstrate the utility of the publicly available Treehouse cancer compendium, an
extensive database of thousands of tumor RNA-seq samples. N-of-1 comparison of a pedi-
atric pericardial tumor aided in molecular classification by identifying other tumors with sim-
ilar gene expression profiles, all of which were glioma or glioblastoma brain tumors. The
diagnoses of the most similar tumors were clinically meaningful and consistent with the sub-
sequent diagnosis of gliomatosis peritonei in this pediatric patient.

Themethods described here are widely applicable for enabling precisionmolecular clas-
sification or diagnosis in cases of rare or difficult-to-diagnose cancer. Beyond the application
described here, the Treehouse cancer compendium and TumorMap clustering analysis can
also be used to accurately identify molecular subtypes of cancer, a useful application for can-
cer types with the subtype-dependent outcome and treatment differences (Newton et al.
2017). Additionally, in some cases it can be impossible to determine cancer tissue of origin
using clinical or radiologic data, making it difficult to design a treatment regimen (Park et al.
2018). These methods could aid diagnosis and treatment strategies for both childhood and
adult cancers with unknown tissue of origin, by clustering a tumor tissue RNA-seq sample in
the TumorMap and identifying other tumors with most similar molecular features. Overall,
the comparative RNA sequencing analysis presented here is a powerful tool for precision
molecular subtype classification and diagnosis of cancer.

METHODS

Tissue Source and Processing
A sample of the pericardial lesion was flash frozen, embedded into OCT, sectioned to a
depth of 5 µm, and stained with H&E. The sample was evaluated for tumor content by a cer-
tified pathologist. The tumor was macro-dissected from the OCT block to a depth of up to
5 mm, disrupted with a mortar and pestle under liquid nitrogen, and homogenized with a
QIAshredder (QIAGEN, 79654). Nucleic acids were extracted using the AllPrep DNA/RNA
kit (QIAGEN, 80204). The RNA integrity was quantified using the RNA 6000 Pico kit
(Agilent, 5067-1513) on the Bioanalyzer (Agilent).

Whole-Genome Sequencing
WGS was performed on the pericardial lesion. Average WGS depth was 60.67× (tumor),
29.10× (germline). The read length was 2×150 bp (paired-end). The read depths for report-
ed somatic variants are as follows: Chr 1:g.[149790230C>T] Tumor ref,alt: 45, 6; Germline
ref,alt: 31,0. Chr 2:g.[95855406C>G] Tumor ref,alt: 59, 9; Germline ref,alt: 35, 1. Chr 6:g.
[32584172C>G] Tumor ref,alt: 11, 5; Germline ref, alt: 19, 0 (Table 3).

RNA Sequencing
Libraries were prepared using the TruSeq StrandedmRNA kit (Illumina, RS-122-2101) with an
input of 400 ng in accordance with manufacturer’s instructions. All manufacturer controls
were used in preparation. Libraries were quantified using the High Sensitivity DNA kit
(Agilent, 5067-4626) on the BioAnalyzer (Agilent). Sequencing was performed on the
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Illumina HiSeq 4000 with PE75 chemistry at the Stanford Functional Genomics Facility. The
total sequence depth for this sample was 97,983,221 reads.

Comparative RNA-seq Analysis
The RNA-seq data from the patient’s pericardial lesion was processed at UC Santa Cruz and
gene expression quantification was performed using the TOIL RNA-seq pipeline (Vivian et al.
2017). Genome alignment was performed with genome assembly hg38. RSEM quantifica-
tion TPM measurements were used as input to normalization and compendium building.
The Treehouse comparative RNA-seq analysis is designed to compare an N-of-1 sample
against a larger background cohort of RNA-seq data from many cancer samples. Pairwise
Spearman correlation scores are calculated between the gene expression vector from the fo-
cus sample and all other samples in the background cohort. The top six most correlated sam-
ples are used to identify tumor types with gene expression are most similar to the focus
sample.

TumorMap
TumorMap (tumormap.ucsc.edu) is a hexagonal 2D representation of similarity between
samples based on gene expression (Newton et al. 2017). The spatial representation of sam-
ples in the TumorMap is based on vector similarity using a multidimensional scaling tool
called OpenOrd. Sample information, such as patient age, tumor grade, or clinical outcome,
can be displayed as attributes on the map. TumorMap also has built-in correlation analysis
tools for discovering correlations between attributes.

Neural Network Classification
As validation, we trained a fully connected neural network to classify disease type. The net-
work was comprised of an input layer, a batch normalization layer, two hidden layers of size
32 with a dropout of 0.5 and relu activation, and a one-hot output layer, one per disease type
with sigmoid activation. We trained the network on 80% of the data using binary cross entro-
py as a loss function and tested it using the remaining 20% of the data. The train and test
were stratified by disease to ensure an equal representation of each disease type. The net-
work was implemented using the Keras library in a Jupyter notebook. All code is available
here: https://nbviewer.jupyter.org/github/rcurrie/pancan-gtex/tree/cf249e64f7ac5da95c2
64f946f2ae5fd69410f63/

ADDITIONAL INFORMATION

Data Deposition and Access
All processed RNA sequencing data is publicly available in the Treehouse cancer compen-
dium: https://treehousegenomics.soe.ucsc.edu/public-data/. The interpreted variants were

Table 3. Sequencing coverage table for somatic variants detected in the pericardial lesion

Gene Chr Pos
Ref
allele

Alt
allele

Avg depth
(tumor)

Ref
(tumor)

Alt
(tumor)

Avg depth
(germline)

Ref
(germline)

Alt
(germline)

FCGR1A 1 149790230 C T 60.67 45 6 29.10 31 0

ANKRD36C 2 95855406 C G 60.67 59 9 29.10 35 1

HLA-DRB1 6 32584172 C G 60.67 11 5 29.10 19 0

(Avg depth) average read depth, (Ref) number of reads for reference allele, (Alt) number of reads for alternative allele.
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submitted to ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) under accession numbers
SCV000994650–SCV000994652.

Ethics Statement
The patient was enrolled on a Stanford protocol “Clinical implementation of genomic anal-
ysis in pediatric malignancies” (IRB#34383). The UCSC Treehouse protocol was approved by
the institutional review board at the University of California Santa Cruz (No. HS2648).
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Chapter 3: Comparative analysis and data re-use to 

investigate developmental origins of histone mutant pediatric 

glioma 

3.1 Chapter Introduction 

There is an open question in the pediatric brain cancer field about the 

developmental timing and cell of origin for histone H3 K27M mutant gliomas. Several 

studies have addressed this question, and have contributed valuable insights, but the 

issue remains unclear. This is in part due to limitations of experimental mouse and cell 

models to recapitulate accurately the oncogenic histone mutation event in early neural 

development. It is important to understand the origins of these tumors since the H3 

K27M mutation results in global transcriptional dysregulation of thousands of 

developmental genes. Identifying the correct developmental cell of origin is the key to 

understanding the underlying signaling driving the mature tumor, and leveraging this 

knowledge into therapeutic opportunities. 

As a doctoral student in the labs of Drs. David Haussler and Olena Vaske, I was 

uniquely positioned to help answer this question, because the Haussler lab specializes 

in early cerebral development, while the Vaske lab / Treehouse has assembled a large 

cohort of pediatric glioma RNA-seq data.  

In this study, I performed a unique comparative analysis, leveraging the 

publicly available high-grade pediatric glioma (pHGG) RNA-seq cohort in the 
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Treehouse cancer compendium and a previously published normal cerebral organoid 

development RNA-seq dataset from the Haussler lab[28]. I also included a publicly 

available single-cell RNA-seq glioma dataset from the Broad Institute[14]. Following 

the tradition of previous landmark papers which used single cell RNA-seq to 

deconvolute signatures in bulk data[16,29], this study links H3K27M-specific 

expression to specific types of early neural cells, identifying a developmental window 

for H3K27M-driven tumorigenesis. In addition to its novel biological contributions, 

this study is a demonstration of the power of data reanalysis as the main results come 

from comparative analysis of three independent datasets.  

I led this study and was responsible for the analysis and writing. The 

contributions of others are as follows: the original analysis of the Treehouse pHGG 

cohort was performed by Allison Cheney (co-first author) and she developed the 

epithelial mesenchymal transition hypothesis via literature review and her analysis. 

Allison contributed Figure 2A (top panel) and wrote the Introduction, Lucas Seninge 

contributed Figure 2E, and Anouk van den Bout contributed Figure 4C and E.  

This manuscript has been submitted to Giga Science, April 2020. 
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Abstract 

Background  

Diffuse midline gliomas with Histone H3 K27M (H3K27M) mutations occur in 

early childhood and are marked by an invasive phenotype and global decrease in 

H3K27me3, an epigenetic mark which regulates differentiation and development. 

H3K27M mutation timing and effect on early embryonic brain development are not fully 

characterized.  

Results  

We analyzed multiple publicly available RNA sequencing datasets to identify 

differentially expressed genes between H3K27M and nonK27M pediatric gliomas. We 

found that genes involved in the epithelial-mesenchymal transition (EMT) were 

significantly overrepresented among differentially expressed genes. Overall, the 

expression of pre-EMT genes was increased in the H3K27M tumors as compared to 

nonK27M tumors, while the expression of post-EMT genes was decreased. We 

hypothesized that H3K27M may contribute to gliomagenesis by stalling an EMT in 

early brain development, and evaluated this hypothesis by employing another publicly 

available dataset of single-cell and bulk RNA sequencing data from developing 

cerebral organoids. This analysis revealed similarities between H3K27M tumors and 

pre-EMT normal brain cells. Finally, a previously published single-cell RNA 

sequencing dataset of H3K27M and nonK27M gliomas revealed subgroups of cells at 

different stages of EMT. In particular, H3.1K27M tumors resemble a later EMT stage 

compared to H3.3K27M tumors.  

Conclusions  
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Our data analyses indicate that this mutation may be associated with EMT 

arrest, and that H3K27M cells preferentially exist in a pre-EMT cell phenotype. This 

study demonstrates how novel biological insights could be derived from combined 

analysis of previously published datasets, highlighting the importance of making 

genomic data available to the community in a timely manner. 

Background 

Pediatric high grade gliomas (pHGGs) are aggressive brain tumors occurring 

at a median age of 6[1]. Sixty percent of pHGGs harbor a histone H3 K27M mutation, 

which is associated with an aggressive phenotype and dismal survival rates[2]. 

H3K27M-mutant pHGG tumors are located along the midline, including in the pons, 

cerebellum, and brainstem. A diffuse phenotype and delicate location leave them 

unsuitable for surgery, and their pronounced chemoresistance renders the standard 

treatments for gliomas ineffective, resulting in a median survival time of only 12 

months[3,4]. The prognostic significance of the H3 K27M mutation in these gliomas 

resulted in a new WHO tumor classification, diffuse midline glioma with H3K27M 

mutation[5]. 

The H3K27M mutation results in a global decrease in H3K27me3, an 

epigenetic repressive mark and posttranslational histone modification[6]. Seventy five 

percent of gene loci lose or have reduced H3K27me3, although a few loci gain the 

mark as a result of the H3K27M mutation[2,7]. H3K27me3 is deposited predominantly 

by EZH2, the catalytic subunit of the PRC2 methyltransferase complex. By regulating 

H3K27me3, EZH2 maintains cell identity and regulates cellular differentiation[8–11]. 

Silencing EZH2 in neuroepithelial cells before their differentiation alters the distribution 
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of the progeny cell types[12]. EZH2 also maintains neuroepithelial cell integrity, and 

midbrain identity[13,14].  

Because H3K27me3 is globally lost in H3K27M-mutant glioma, the subsequent 

deregulation of gene expression is thought to lead to tumorigenesis, although the 

developmental timing of the mutational event is important[15]. H3K27M expression in 

neural stem cells has led to tumorigenesis in mice when accompanied by TP53 

knockout and/or PDGFRA amplification, but this combination of molecular aberrations 

failed to result in tumorigenesis when introduced in mature astrocytes[16,17]. 

However, the precise cell type of origin for H3K27M gliomas is not yet known. 

Candidate cell types include neuroepithelial cells (also known as neural stem cells), 

radial glia (also known as neural progenitor cells), and oligodendrocyte precursor cells 

(OPCs)[16–18]. 

Many important brain developmental processes are regulated by H3K27me3 

deposition and could contribute to gliomagenesis if not well controlled. One of these is 

the epithelial-mesenchymal transition (EMT), which is essential for gastrulation, 

migration of neural crest cells, and neural tube formation[19–21]. The EMT is regulated 

by SNAI1, a transcription factor master regulator[22–24]. By regulating EMT, SNAI1 

plays a critical role in many developmental processes, including gastrulation and 

differentiation of embryonic stem cells[25–27]. SNAI1 induces EMT through direct 

recruitment of PRC2, resulting in H3K27 trimethylation of key epithelial genes such as 

concurrently upregulating mesenchymal genes[28,29].  

In the brain, processes closely resembling EMT are involved in key 

developmental steps such as the differentiation of neuroepithelial cells to both 

neuronal and glial cells[30,31]. These processes, which control cell fate and identity in 
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early neural progenitor cell development, are regulated by EZH2[32]. Interestingly, 

while EMT mainly results in a differentiation event, in some cases EMT causes 

increased stem cell properties[33–37]. Recent research potentially reconciles these 

results by introducing the hybrid epithelial/mesenchymal phenotype: the result of a 

partial EMT in which both epithelial and mesenchymal genes are expressed[38,39]. 

This process may allow cancer cells to revert to a more stem cell-like phenotype.  

Given the regulation of the EMT by H3K27me3 deposition, and the disruption 

of this deposition by the H3K27M mutation, we sought to investigate the EMT status 

in pHGGs with and without the H3K27M mutation. We analyzed RNA sequencing data 

from 78 pHGGs obtained from three different studies. First, we performed differential 

expression analysis using RNA sequencing (RNA-seq) derived gene expression from 

bulk tumor samples, and found that H3K27M gliomas differentially express pre-EMT 

genes[40]. Secondly, we examined previously published cerebral organoid data and 

observed similarities between pre-EMT neural stem cells and H3K27M gliomas[41]. 

Finally, we leveraged a recent single cell RNA sequencing dataset to uncover multiple 

stages of EMT in H3K27M tumor cells[18]. Overall, our results suggest that the 

H3K27M mutation may cause an arrest in development of a neural stem cell type at 

an early stage of EMT, indicating a developmental window of opportunity for H3K27M 

occurrence.  

Our study highlights the importance of genomic data sharing for rare diseases, 

such as pHGGs. By combining RNA sequencing data from multiple previously 

published studies, we were able to assemble a cohort of 78 pHGG, large enough for 

the differential expression analysis of pHGGs with and without the H3K27M mutation. 
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We used this new cohort of previously published data to derive a novel biological 

model to describe the molecular pathogenesis of the disease.   

 

Analyses 

A. Differential expression analysis of pediatric gliomas with and without 

H3K27M mutation reveals deregulation of genes involved in epithelial-

mesenchymal transition. 

We obtained RNA-seq data from 33 H3K27M pediatric high grade gliomas 

(pHGG) and 45 nonK27M pHGG from the Treehouse Childhood Cancer Initiative 

public cancer compendium [42] (Supplementary Table 1). These data came from 

several cohorts including the Pacific Pediatric Neuro-Oncology Consortium (PNOC), 

Dr. Michelle Monje’s studies, and The Cancer Genome Atlas[43–48].  

Using the limma package in R[49], we conducted differential expression 

analysis between the H3K27M and nonK27M pHGG cohorts. A total of 1905 genes 

are differentially expressed between the two tumor types (Supplementary Table 2). 

Using Gene Set Enrichment Analysis (GSEA) and the Molecular Signatures Database 

(MSigDB)[50], we found 23 biological signaling pathways with significant enrichment 

in coding genes overexpressed in the H3K27M cohort (Supplementary Table 2). The 

top 5 most significantly enriched gene pathways included “Hallmark KRAS Signaling 

Down” (genes repressed by KRAS activation) and the “Hallmark Epithelial 

Mesenchymal Transition” (Figure 1A). KRAS pathway enrichment is consistent with a 

recent study which found RAS signaling to be activated in H3K27M gliomas[51]. 
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Because the epithelial-mesenchymal transition (EMT) is regulated by 

deposition of H3K27me3, an epigenetic transcriptional repressive mark that is lost in 

H3K27M cells, we were particularly interested in the differential expression of genes 

involved in the EMT pathway. The Hallmark EMT pathway gene list is limited to 200 

genes[52], so to comprehensively characterize differential EMT activity in H3K27M 

mutant versus nonK27M tumors, we generated a master list of non-redundant EMT-

related genes (n=1226) by merging all MSigDB EMT-related gene sets and by 

identifying EMT-related genes through manual literature curation (Supplementary 

Table 2). This list includes genes implicated in both epithelial and mesenchymal cell 

states, as well as several intermediate EMT cell states and EMT-like processes.  

To investigate differential EMT gene expression, we calculated the overlap 

between the EMT master list and the differentially expressed genes (Supplementary 

Table 2). We found 123 differentially expressed genes from the EMT master list, 

indicating potential differential activity of the EMT pathway in H3K27M mutant gliomas 

(pvalue<2.38-28, hypergeometric test). Of these genes, 73 were more highly expressed 

in H3K27M tumors, and the remaining 50 were more highly expressed in nonK27M 

tumors. (Figure 1B). Further investigation revealed that, in general, the EMT-related 

genes overexpressed in the H3K27M cohort are associated with epithelial-like cell 

states, and are normally upregulated prior to the EMT. In contrast, many of the EMT 

genes underexpressed in H3K27M tumors are mesenchymal markers or associated 

with a post-EMT cell state. 

A few examples illustrate this striking trend. SFRP1 and SFRP2, which are 

more highly expressed in H3K27M tumors, have been shown to inhibit pro-EMT 

transcription factors and thereby increase expression of E-cadherin in epithelial cells 
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(SRFP1 log fold change (LFC)=0.5, SFRP2 LFC=0.8)[53]. GALNT3, which has been 

characterized as one of the best expression markers for epithelial cells, has higher 

expression in H3K27M tumors (LFC=0.6)[54]. In contrast, GSC/Goosecoid is a key 

marker of mesenchymal cells, and displays lower expression in H3K27M tumors 

compared to nonK27M tumors (LFC=-3.1)[55,56].  

In particular, we noted that SNAI1, a transcription factor and key regulator of 

the EMT, is significantly overexpressed in H3K27M tumors (LFC=0.6; Figure 1C). High 

expression of SNAI1 is a marker of EMT induction in epithelial cells. If the EMT is 

successful, this is followed by high expression of mesenchymal markers TWIST1[57], 

fibronectin (FN1)[58], N-cadherin (CDH2)[59] and cadherin-11 (CDH11)[60]. Using a 

Mann-Whitney nonparametric significance test, we found significantly reduced 

expression of all of these mesenchymal markers in H3K27M tumors (TWIST1 LFC=-

1.2, FN1 LFC=-0.2, CDH2 LFC=-0.2, CDH11 LFC=-0.3; Figure 1C). TWIST1, CDH2 

and CDH11 are also underexpressed in the H3K27M cohort by the limma analysis.  

Because SNAI1 induces EMT by directly recruiting PRC2 methyltransferase 

activity for H3K27-trimethylation, a process blocked by the H3K27M mutation, we 

hypothesized that the occurrence of the H3K27M mutation may promote 

tumorigenesis by stalling EMT during early neuroepithelial differentiation. To further 

investigate this hypothesis, we performed comparative RNA-sequencing expression 

outlier analysis developed by the Treehouse Childhood Cancer Initiative, which 

identifies genes with outlier expression in individual samples as compared to a 

background cohort of highly correlated and disease-matched samples (pan-disease 

analysis, see Methods) [40]. We identified genes with outlier expression only in 

nonK27M pHGG samples (but not H3K27M pHGG samples) as compared to a 
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background glioma cohort, and noted that many mesenchymal and post-EMT 

pathways were identified as enriched among the outlier genes (Supplementary Figure 

1, Supplemental Table 1).  

Overall, our multiple analyses of the pHGG RNA-seq cohort suggest that 

H3K27M pHGG tumors are associated with pre-EMT gene expression, while 

nonK27M pHGG tumors are characterized by post-EMT and mesenchymal gene 

expression. 

 

 

Figure 1. The EMT pathway is differentially expressed in H3K27M gliomas as 

compared to nonK27M gliomas. A) Differential expression analysis of a cohort of H3K27M 

and nonK27M pHGG revealed significant enrichment of Hallmark Epithelial Mesenchymal 
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Transition in genes overexpressed in H3K27M gliomas. B) Heatmap of differentially 

expressed EMT genes between H3K27M and nonK27M pHGG. C) SNAI1, master regulator 

of EMT, is overexpressed in H3K27M glioma, while mesenchymal markers TWIST1, FN1, 

CDH2 and CDH11 are underexpressed in H3K27M glioma as compared to nonK27M 

gliomas (Mann-Whitney significance test; * pvalue < 0.05, ** pvalue < 0.01, *** pvalue < 

0.001).  

 

B. H3K27M-mediated gliomagenesis is associated with pre-EMT cell 

types. 

Consistent with our differential expression analysis, a review of the literature 

revealed that H3K27M-associated gliomagenesis has been experimentally 

recapitulated only in cell types which are poised to undergo an EMT differentiation 

event (Figure 2A). For example, a combination of H3K27M, p53 loss, and PDGFRA 

constitutive activation in human neural progenitor cells (NPCs) induced low grade 

gliomas when injected into the pons of neonatal mice[16]. These gliomas expressed 

markers of pre-EMT neuroepithelial cells. Another study found that H3K27M and 

Trp53 loss was sufficient for gliomagenesis in the NPCs of embryonic mice in the 

forebrain and hindbrain[17]. Strikingly, when introduced post-natally, H3K27M and p53 

loss in NPCs was not sufficient for gliomagenesis, although post-natal induction of 

H3K27M, Trp53 loss and PDGFRA amplification in neural stem cells resulted in glioma 

formation[61,62]. Additionally, no tumorigenesis was observed upon introduction of 

H3K27M, p53 loss and PDGFRA constitutive activation in mature astrocytes, a post-
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EMT cell type[16]. These observations indicate that experimental H3K27M-mediated 

gliomagenesis occurs in a pre-EMT cell type.  

Based on our gene expression analysis and review of the literature, we 

hypothesized that H3K27M gliomas arise in pre-EMT cell types and retain the EMT 

signature of the cell type in which the mutation arises. Given this hypothesis, we expect 

that H3K27M gliomas harbor gene expression signatures of normal pre-EMT cell types 

that exist during neuronal development. In order to compare the expression of the 

EMT-related genes of interest between H3K27M tumors and normal developing brain 

cells, we examined total and single cell RNA-seq data from a human embryonic stem 

cell-derived cerebral cortex organoid time course experiment (Figure 2B)[41]. These 

organoid cultures mimic the early weeks of human prenatal cortical development and 

generate relevant cell types, uniquely allowing us to investigate early time-points in 

development which are not available in existing human fetal brain datasets. After 

induction of neural epithelium by week 1, at week 2 radial glia cells and Cajal-Retzius 

neurons are present in addition to some remaining neuroepithelial cells. By week 5, 

the organoids contain populations of radial glia, intermediate progenitors and deep-

layer neurons. 

When we investigated EMT-related gene expression in cerebral organoids 

during gestational weeks 1-6, we noted the presence of 2 distinct EMT processes 

(Figure 2A, lower panel). The first process starts as SNAI1 expression peaks in neural 

stem cells (week 1), coincident with low expression of mesenchymal markers TWIST1, 

CDH2, CDH11 and FN1. As differentiation from neural epithelial cells to early radial 

glia occurs, SNAI1 expression decreases while mesenchymal marker expression 
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increases. In the second process, as radial glia cells prepare to undergo a second 

EMT into intermediate progenitor cells, SNAI1 expression increases once again.  

To further characterize the EMT states represented in cerebral organoids, we 

utilized single cell RNA-seq data from the cerebral organoids at gestational weeks 3 

and 6[41]. These sample collection times effectively covered all relevant cell type 

diversity, as gestation week 3 organoids contain substantial populations of neural 

epithelial cells, early radial glia cells and Cajal-Retzius neurons, while week 6 

organoids are composed of late radial glia cells, intermediate progenitors, and 

immature neurons. We scored the EMT status of each cell using a gene signature 

representing EMT completion (Figure 2C, Supplementary Table 3)[18,63–66]. Neural 

epithelial and early (presumably pre-EMT) radial glia cells show significantly lower 

EMT scores than post-EMT intermediate progenitors, late radial glia and neurons 

(Mann-Whitney test, pvalue<0.0001). This shows that our assay contains distinct 

populations of pre- and post-EMT cerebral cells, and is consistent with the levels of 

SNAI1, CDH2, CDH11, FN1 and TWIST1 in the bulk weeks 1-6 organoid data. This 

dataset enables us to investigate transcriptional similarities between H3K27M-mutant 

gliomas and normal pre-EMT cell types during neural development.  

We then examined the expression of genes overexpressed in H3K27M gliomas 

in the single cell organoid RNA-seq dataset, to see which normal cell type is most 

similar to H3K27M glioma cells. Of the 1180 H3K27M-overexpressed genes, 152 

genes passed the single cell RNA-seq expression filter (Supplementary Table 3, see 

Methods). Hierarchical clustering of the expression profiles of these genes in normal 

cell types during neural development revealed highest expression in pre-EMT neural 

epithelium and early radial glia (Figure 2D). We then ranked this gene signature based 
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on each gene’s expression in each cell type (see Methods). We found that this 

signature is ranked most highly in pre-EMT neural epithelium and in early radial glia 

(pvalue<0.05, Figure 2E).  

Overall, these results suggest that the differential EMT gene expression 

observed in our tumor cohort is related to stages of EMT in the normal developing 

brain, and that H3K27M tumor cells resemble pre-EMT neural cell types. 

 

 

Figure 2. H3K27M-specific EMT transcriptional signature is similar to pre-EMT neural 

stem cell expression in cerebral organoids. A) In vitro and in vivo experimental H3K27M-

associated gliomagenesis occurs exclusively in pre-EMT cell types (upper panel). These 
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cell types are represented in our cerebral organoid assay, and a time course of these 

organoid cultures represents 2 EMT events in early brain development (lower panel). B) 

Experimental workflow for total RNA-seq and single cell RNA-seq from a human embryonic 

stem cell derived cerebral cortex organoid time course experiment. C) Single cells from 

cerebral organoids were scored for EMT completion. Pre-EMT neural epithelium and early 

radial glia were least enriched for the EMT score, while post-EMT intermediate progenitors, 

late radial glia and neurons were the most enriched. D) A signature of genes differentially 

expressed in H3K27M gliomas and expressed in cerebral organoids shows highest 

expression in pre-EMT neural epithelium and early radial glia. E) EMT-related genes highly 

expressed in H3K27M-mutant gliomas are also highly expressed in neural epithelium and 

early radial glia. (Mann-Whitney significance test; * pvalue < 0.05, ** pvalue < 0.01, **** 

pvalue < 0.0001) 

C. Single-cell profiling of H3K27M gliomas reveals groups of cells at 

different stages of EMT. 

We utilized recently published single cell RNA-seq data from 6 H3K27M and 2 

H3 wild type (H3WT) gliomas to directly investigate the EMT signatures of single cell 

populations within each tumor type[18]. One of the H3K27M tumors harbors the 

mutation in the HIST1H3B gene (referenced as H3.1K27M), while the remaining 5 

H3K27M tumors harbor the mutation in the H3F3A gene (referenced as H3.3K27M).  

We performed hierarchical clustering of 3057 tumor cells using 629 genes from 

the EMT master list which passed expression filters (see Methods, Supplementary 

Table 4)[67]. Ten EMT-related clusters were discovered and named A-J (Figure 3A, 

Supplementary Table 4). Cluster gene signatures were identified by assigning each 
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cluster the genes with maximum mean expression in that cell cluster across the 

dataset (Supplementary Table 4).  

We assigned cluster function based on manual review of genes in each 

signature, and observed several populations of cells whose presence in this dataset 

has already been noted[18]. Cluster C has highest expression of cell cycle markers 

including E2F2 and MCM2-7, indicating that these are actively cycling cells[68]. 

Cluster E is composed predominantly of non-malignant immune cells, indicated by 

comparatively highest expression of immune markers such as CD68[69]. Cluster I 

resembles oligodendrocytic cells, with highest expression of CD9 and ZEB2, and 

cluster J resembles oligodendrocyte precursor cells with the highest expression of 

PDGFRA[70–73]. The presence of each of these cell types has already been noted in 

H3K27M gliomas, and these cell type signatures are not informative for assessing 

EMT state[18]. 

However, the remaining clusters are defined by gene expression representing 

various stages of EMT. We again scored the EMT status of each cell with a gene 

signature representing EMT completion (Figure 3A, see Methods)[18,63–66]. Cluster 

A scored the lowest overall, while clusters F, G, and H scored the highest overall. 

Cluster relationships are shown with Uniform Manifold Approximation and Projection 

(UMAP) in Figure 3B, and expression patterns of selected EMT marker genes are 

shown in the lower panel of Figure 3B. Of the EMT marker genes identified in the bulk 

RNA sequencing analysis (Figure 1C), only FN1, CDH2 and CDH11 were expressed 

in the glioma single cell RNA-seq data, so we also visualized VIM as a post-EMT 

marker and OCLN as a pre-EMT marker.   
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In keeping with our previous analysis, we noted that clusters F and G, which 

are composed mainly of H3WT glioma cells, strongly resemble post-EMT cells and 

most highly express canonical mesenchymal markers including CDH2, CDH11, FN1 

and VIM[74,75]. This is consistent with our observation that nonK27M gliomas 

transcriptionally resemble a post-EMT state as compared to H3K27M in the bulk RNA-

seq pHGG cohort. Thus, we defined Clusters F and G “post-EMT”. 

Interestingly, within the clusters composed predominantly of H3K27M cells, 

multiple stages of EMT emerged. Cluster A cells exhibit comparatively highest 

expression of several genes known to be active in epithelial or pre-EMT cell types, 

including CADM1, EGR1, PTEN, NOTCH1, and OCLN[76–80]. Additionally, cluster A 

cells are characterized by high expression of genes activated at the early stages of 

the SMAD3-induced EMT pathway, including SMAD3, CTNNB1, FOS, and 

FOSB[79,81,82]. Therefore, we defined Cluster A “pre-EMT”. In contrast, Cluster B 

has comparatively highest expression of only 6 genes (ACTG1, BMP2, COPA, 

PLXNA2, RPS27A and TP53INP1) and has no clear expression signature of any stage 

of EMT, so we defined Cluster B “EMT-ambiguous”.  

Clusters D and H were defined “EMT-intermediate”, because both clusters 

display high expression of genes normally expressed while the EMT process is taking 

place, without a clear bias towards epithelial or mesenchymal gene expression. For 

example, cluster D has the highest expression of MMP2, VCAN, and SMAD2, which 

are activated during the EMT process rather than before or after[79,83]. Cluster H cells 

display both pro-EMT and anti-EMT signaling, as evidenced by expression of genes 

involved in activating EMT (TNC, MMP14, and FGFR3), and genes implicated in 

suppressing EMT (DLG5, LRIG1, and WWC1)[84–89]. Cluster H also has the highest 
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expression of several genes previously identified as characterizing an intermediate 

epithelial/mesenchymal (E/M) state (COL6A1, NR2F1, TFPI, WNT5A)[39]. 

 

 

Figure 3. Single cell RNA sequencing of H3K27M and nonK27M gliomas reveals 

multiple EMT stages within tumors. A) Expression heatmap showing hierarchical 

clustering of 3,057 cells from 6 H3K27M and 2 nonK27M high-grade gliomas, with a master 

list of EMT genes. Ten clusters (A-J) were assigned gene signatures based on maximum 

mean gene expression in each cluster, and clusters were classified based on manual review 

of each gene signature. Histone H3 mutation status and EMT score are shown at the bottom 
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of the heatmap (ODC=oligodendrocyte, OPC=oligodendrocyte precursor). B) UMAP 

dimensionality reduction projection of the same expression data as the heatmap and labeled 

by cluster, Histone H3 mutation status and EMT score. Expression of selected epithelial and 

mesenchymal genes shown in bottom panel. 

 

D. Histone H3.1K27M glioma cells may represent a more advanced stage 

of EMT than H3.3K27M glioma cells. 

Further examination revealed that cluster D mainly consists of cells from the 

H3.1K27M mutant tumor, and cluster H consists of a mixture of H3.1 and H3.3K27M 

cells. H3.1 and H3.3K27M characterize two functionally different subtypes of H3K27M 

gliomas; H3.1K27M gliomas are comparatively rare but have a slightly better 

prognosis[46,90]. The H3.1 histone is diffusely distributed throughout the genome, 

while the H3.3 histone is preferentially located at active chromatin[91–93]. This leads 

to distinct patterns of epigenetic reprogramming in each histone variant, where loss of 

the H3.3K27me3 mark is directly correlated with areas of H3.3 genomic enrichment, 

but H3.1K27me3 loss is not localized[93]. Because the H3K27M mutation is known to 

induce dose-dependent inhibition of PRC2 methyltransferase, this suggests that the 

localized distribution of H3.3 histone may result in higher local inhibition of PRC2 and 

loss of H3K27me3 at H3.3K27M sites, whereas the widespread distribution of 

H3.1K27M results in diffuse PRC2 inhibition[61,93]. Because precise control of gene 

transcription via active chromatin is necessary for a successful EMT, a H3.3K27M 

mutation would be particularly damaging to proper regulation of the EMT pathway. 

Indeed, functional analysis of enhancer regions in H3.3K27M-expressing NPCs 
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revealed enrichment of regions positively regulating EMT, indicating that H3.3 active 

chromatin regions are directly involved in transcriptional control of EMT genes[93]. 

This suggests that EMT-poised H3.3K27M cells will be unable to properly complete 

EMT due to lack of transcriptional control.  

 Accordingly, we observed EMT-intermediate or E/M hybrid expression genes 

in glioma single-cell clusters D and H, both of which have substantial numbers of 

H3.1K27M glioma cells. We hypothesized that H3.1K27M cells may be more 

differentiated and farther along the EMT process than H3.3K27M cells.  

In order to investigate this hypothesis further, we subset the single cell glioma 

RNA-seq data to 2458 cells with H3.1K27M or H3.3K27M mutation and performed 

Wilcoxon rank-sum test to identify genes overexpressed in each variant group 

(Supplementary Table 4; Supplementary Figure 2). Consistent with our previous 

observations, GSEA of Gene Ontology (GO) gene sets (Figure 4B, Supplementary 

Table 4) revealed enrichment of epithelial gene sets in H3.3K27M compared to 

H3.1K27M (GO Adhesion pathways, GO Neurogenesis, GO Embryo Development) 

and mesenchymal gene sets in H3.1K27M compared to H3.3K27M (GO EMT 

pathway, GO Mesenchymal Cell Differentiation and GO Mesenchyme Development). 

Additionally, scoring of all cells for EMT completeness shows that H3.1K27M cells 

score significantly higher overall than H3.3K27M cells, while nonK27M cells score 

significantly higher than either mutant cell type (Supplementary Figure 3). However, 

because the H3.1K27M cells come from a single tumor, we performed additional 

analysis to investigate this observation. 

We cultured diffuse intrinsic pontine glioma (DIPG) primary cell lines isolated 

in a previous study  to investigate the expression of EMT markers in H3.3K27M, 
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H3.1K27M and nonK27M glioma cells[94]. Morphologically, we observed that when 

cultured in serum-free conditions, the H3.1K27M cell lines preferentially grow attached 

to the flask (4 of 5 cell lines), while the H3.3K27M cells preferentially grow as 

neurospheres (8 of 9 cell lines) (Figure 4C). Because differentiation of neurospheres 

is accompanied by attachment and increased expression of N-cadherin, this 

morphological trend is consistent with our hypothesis that H3.1K27M cells exist in a 

more differentiated state than H3.3K27M cells[95].  

We analyzed RNA-seq data from 3 DIPG cell lines to compare the expression 

of EMT genes (SU-DIPG-IV is H3.1K27M mutant; SU-DIPG-VI and JHH-DIPG1 are 

H3.3K27M mutant). We used 4 replicate samples from each SU-DIPG-IV and SU-

DIPG-VI and 3 replicate samples from JHH-DIPG1. Each sample was scored using a 

gene signature of EMT completion (see Methods), and the H3.1K27M samples scored 

significantly higher than the H3.3K27M samples (Figure 4D, pvalue<0.05). 

We then performed RT-PCR to quantify expression of FN1 and CDH2, 

canonical mesenchymal marker genes which were previously identified in the bulk 

glioma RNA sequencing analysis (Figure 4E, full-length gel in Supplementary Figure 

4). We attempted to quantify E-cadherin/CDH1 as it is a canonical epithelial marker, 

but the levels were so low as to be undetectable by RT-PCR in these cell lines (RNA-

seq <1.0 log2(TPM+1)). We compared 9 H3.3K27M cell lines (SU-DIPG-VI, XIII, XVII, 

XIX, 24, 25, 27, 35 and 43) with 5 H3.1K27M cell lines (SU-DIPG-IV, XXI, 33, 36 and 

38) and included 5 H3 wild-type lines (SU-DIPG-48, pcGBM2R, KNS42, SJG2 and 

normal human astrocytes hTERT) and a negative RT-PCR control (NC). Overall, the 

H3 wild-type and H3.1K27M cell lines appear to more highly express both 

mesenchymal markers, in keeping with the bulk and single-cell RNA-seq analyses. 

39



 

 
 

Our computational and in vitro observations are consistent with a recent study 

indicating that H3.1K27M tumor cells are overall more differentiated than H3.3K27M 

tumor cells[93].  

Overall, these data suggest that the histone H3K27M mutation is associated 

with a preferentially early or pre-EMT cell state as compared to nonK27M cells, but 

that H3.1K27M cells may represent a somewhat later or intermediate-EMT cell state 

as compared to H3.3K27M cells.  

 

Figure 4. H3.1K27M glioma cells appear more mesenchymal than H3.3K27M glioma 

cells. A) UMAP dimensionality reduction of 2458 histone mutant glioma single cells. B) 

Gene set enrichment analysis of genes overexpressed in H3.3K27M versus H3.1K27M 
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(top graph) or H3.1K27M versus H3.3K27M (lower graph) by Wilcoxon rank-sum test using 

glioma single cell RNA-seq data. C) Representative images of H3.1K27M and H3.3K27M 

glioma derived cell cultures. Scale bar 400 um. D) Total RNA sequencing datasets from 

glioma cell lines were scored for EMT completeness (4 samples from SU-DIPG-IV, 4 

samples from SU-DIPG-VI and 3 samples from JHH-DIPG1). Scoring is shown in a 

heatmap and a boxplot. (Mann-Whitney significance test; * pvalue < 0.05) E) RT-PCR of 

FN1 and CDH2 expression in glioma primary cell cultures (all numbered lines are SU-

DIPG).  

Discussion 

H3K27M diffuse midline gliomas are aggressive tumors generally occurring in 

early childhood in the hindbrain or midline. These tumors have poor prognosis and do 

not respond to standard chemotherapies for adult gliomas[96]. Unlike most adult 

cancers, pediatric cancers, including pediatric gliomas, are thought to have a 

developmental origin[15,46,97]. The temporal- and region-specific occurrence of 

pediatric diffuse midline gliomas reinforces this possible developmental origin. EZH2-

deposited H3K27me3 transcriptional marks are known to have crucial roles in cell 

differentiation and development in the brain and are lost in H3K27M cells[6].  

Research has implicated the epithelial mesenchymal transition in pediatric 

gliomas[98,99], particularly those with a more invasive phenotype. A large portion of 

diffuse midline glioma tumors highly express genes known to be involved in EMT 

occurring in adult glioblastomas[100]. EZH2 appears to play an important role in EMT 

in adult gliomas: EZH2 depletion in adult glioblastomas leads to a reduction in 

expression of mesenchymal markers, and an increase in epithelial markers[6]. Other 
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studies suggest EZH2 is important for the invasion of gliomas[101–103]. Thus, a 

molecular aberration affecting the activity of EZH2 might prevent a complete epithelial-

mesenchymal transition.  

In this study, we observed that various canonical EMT-inducing genes are 

significantly overexpressed in H3K27M mutant pHGGs, compared to nonK27M 

pHGGs, while many canonical mesenchymal markers are underexpressed in H3K27M 

pHGGs as compared to the nonK27M tumors. In particular, we noted higher 

expression of the pro-EMT transcription factor SNAI1 in H3K27M-mutant gliomas. 

Because SNAI1 relies on PRC2 and H3K27me3 to facilitate EMT through gene 

expression regulation, this may indicate an arrest in the EMT process. The existence 

of a hybrid epithelial/mesenchymal phenotype is well-established: the result of a partial 

EMT is the expression of both epithelial and mesenchymal genes[38]. Studies have 

shown that a hybrid E/M phenotype may indicate a worse prognosis than 

mesenchymal-only states in solid tumors[38,39,104].  

We hypothesized that if H3K27M mutation prevents full EMT, neural stem cells 

harboring H3K27M may be forced to retain a proliferative, stem cell phenotype, 

eventually leading to tumorigenic development. Accordingly, we observed from 

extensive literature review that experimental induction of H3K27M-associated gliomas 

has occurred exclusively in pre-EMT cell types, and that two consecutive EMT 

processes occur early in normal brain development. 

Single cell RNA-seq from H3K27M and nonK27M tumors confirmed a more 

mesenchymal expression signature in the nonK27M cells, and also revealed subsets 

of H3K27M cells at various stages of EMT. Specifically, we observed an intermediate 

EMT signature in the H3.1K27M cells as compared to the more epithelial H3.3K27M 
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cells. This was also observed in bulk RNA-seq and in vitro analysis. We hypothesize 

that because the H3.1K27M mutation is not concentrated at active chromatin, it has 

less repressive power as specific developmental pathways such as EMT are activated 

over time. If a subset of H3.1K27M cells are able to differentiate through the EMT, this 

may explain why H3.1K27M gliomas have a slightly better prognosis.  

To conclude, we mined 3 publicly available RNA-seq datasets from pediatric 

gliomas and cerebral organoids to generate a hypothesis for the gliomagenesis of 

H3K27M gliomas. We propose that the H3K27M mutation is tumorigenic when the 

mutational hit occurs in a cell poised to undergo the EMT, due to the dependence of 

normal EMT on the correct timing of the H3K27me3 mark (Figure 5). More work is 

needed to characterize the observed difference in the EMT status between the H3.1 

and H3.3K27M variants. These results hold important implications for better 

understanding the developmental origin and timing of these aggressive and 

untreatable cancers. Further, the presence of an epigenetically-driven differentiation 

stall may imply that a pharmacological methylation agent or a pro-differentiation 

therapy may aid in future treatment of H3K27M mutant tumors[105].  
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Figure 5. Proposed model for EMT stall in H3K27M cells. We propose that 

H3K27M cells retain high levels of SNAI1 expression but remain stalled in a pre-

EMT state due to inability of PCR2 to tri-methylate H3K27.  

 

Potential Implications 

Our study holds implications for other diseases, because H3K27M mutation is 

not exclusive to diffuse midline gliomas. It can also be found in a fraction of pediatric 

ependymomas and medulloblastomas[106]. Interestingly, ependymomas located in 

the posterior fossa typically do not harbor the H3K27M mutation, but exhibit the K27M-

associated H3K27 hypomethylation phenotype. Thus, the proposed EMT arrest and 

differentiation stall as a result of H3K27me3 loss may also apply to these cancers. 

Beyond the SNAI1-H3K27me3 axis, EMT is also regulated by other epigenetic 

marks[107]. Given the epigenetically dysfunctional nature of many pediatric 
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cancers[15], EMT arrest could conceivably play a role in the oncogenesis of these 

tumors as well.  

 

Methods 

Glioma bulk RNA sequencing data 

Gene expression data from 78 pediatric high grade glioma samples were 

downloaded from the Treehouse Childhood Cancer Initiative public compendium 

v8[42]. All samples in the compendium have been uniformly processed using the UC 

Santa Cruz TOIL RNA-seq pipeline (v3.3.4)[108]. This dataset (n=58581 genes) is in 

transcripts per million (TPM) and normalized by log2(TPM+1). We divided the dataset 

into 33 H3K27M mutant samples and 45 nonK27M samples, and performed differential 

expression analysis of all genes between the two groups using R library limma v3.34.9 

in R v3.3.4. We performed gene set enrichment analysis (GSEA) of the resulting 1905 

differentially expressed genes (pvalue<0.1) with Molecular Signatures Database 

(MSigDB) v7.0 on the GSEA/MSigDB web site v6.4 (Supplementary Table 2). Since 

the epithelial-mesenchymal transition (EMT) pathway was in the top 5 most 

significantly enriched pathways in H3K27M over expressed genes, we created a non-

redundant master list of EMT genes (n=1226) by merging 15 EMT related MSigDB 

pathways and by identifying EMT-related genes through manual literature curation 

(Supplementary Table 2).  

We performed pan-disease outlier analysis on all the pHGG samples using 

Treehouse CARE (see Availability of source code and requirements section) against 

the Treehouse Cancer Compendium v10. Pan-disease outlier analysis identifies 

genes with outlier expression in each sample of interest as compared to a background 
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cohort of tumors identified as most similar[40]. We identified a list of genes with outlier 

expression in the nonK27M pHGG samples that did not also have outlier expression 

in the H3K27M pHGG samples, and performed gene set enrichment analysis using 

Enrichr in the GSEApy package (gseapy-v0.9.17)[109] against BioPlanet_2019 library 

with p-value cutoff 0.05 (outlier genes and enriched pathways in Supplementary Table 

2). We used the EnrichmentMap app in Cytoscape to visualize functionally similar 

clusters of enriched pathways[110].  

Cerebral organoid RNA sequencing data (bulk and single cell) 

Gene expression data (TPM) from 6 weekly timepoints of human cerebral 

organoid growth were downloaded from accession GSE106245[41]. Organoid weeks 

0-5 were converted to gestational weeks 1-6 and duplicate gene measurements were 

averaged. For Figure 2A, expression of each gene was normalized between 0-1. 

Single cell RNA sequencing data from weeks 2 and 5 (gestational weeks 3 and 6) 

cerebral organoids were downloaded from accession GSE106245[41]. Expression 

data were filtered to remove genes with expression in fewer than 10% of cells. Cell 

types were assigned using a list of marker genes (Supplementary Table 3).  

Glioma single cell RNA sequencing data 

Smart-seq2 RSEM TPM single cell RNA sequencing data from 3,057 glioma 

cells were downloaded from accession GSE102130[18]. Data were log2-normalized 

and filtered to remove genes with expression in fewer than 20% of cells. Hierarchical 

clustering of all cells was performed using the Python scipy.cluster.hierarchy function 

(scipy v1.4.1) after subsetting to a non-redundant master list of EMT genes (n=1226, 
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Supplementary Table 2). Of these genes, 629 passed the expression filter and were 

included in the hierarchical clustering. The clustering results were plotted using the 

scipy.cluster.hierarchy.dendrogram function with threshold set to 3.5. Gene signatures 

for each cluster were assigned by identifying the cluster in which each gene has 

maximum mean expression, and assigning that gene to that cluster. For UMAP 

visualizations, Leiden clustering was performed on the single cell data using the 

scanpy.tl.leiden function (scanpy v1.4.5.post1) with resolution set to 0.5 and top 10 

principle components used as input.  

DIPG Cell Lines 

The patient-derived DIPG cell lines (SU-DIPG-IV, SU-DIPG-VI, SU-DIPG-XIII, 

SU-DIPG-XVII, SU-DIPG-XIX, SU-DIPG-XXI, SU-DIPG-24, SU-DIPG-25, SU-DIPG-

27, SU-DIPG-33, SU-DIPG-35, SU-DIPG-36, SU-DIPG-38, SU-DIPG-48) were kindly 

provided by Dr. Michelle Monje (Stanford University School of Medicine, Stanford 

CA)[44]. SU-DIPG-IV, SU-DIPG-XXI, SU-DIPG-33, SU-DIPG-36, and SU-DIPG-38 

cells harbor a H3.1K27M mutation while SU-DIPG-VI, SU-DIPG-XIII, SU-DIPG-XVII, 

SU-DIPG-XIX, SU-DIPG-24, SU-DIPG-25, SU-DIPG-27, SU-DIPG-35, SU-DIPG-43 

cells harbor a H3.3K27M mutation. SU-DIPG-48 and Glioblastoma cell line SU-

pcGBM-2 are H3WT. Glioblastoma H3WT cell lines; KNS-42 (RRID:CVCL_0378), SJ-

GBM2 (RRID:CVCL_M141), and one normal astrocyte cell line NHA hTERT were 

kindly provided by Prof. Sameer Agnihotri (UPMC Children’s Hospital of Pittsburgh, 

Pittsburgh PA). The Universal Mycoplasma Detection Kit (AACC) was used for testing 

SU-DIPG-XIII, XVII, XIX, and VI latest on January 10, 2020. All cells were cultured in 

tumor stem medium containing 50X B-27 Supplement Minus Vitamin A (Invitrogen), 
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H-EGF at 20ng/mL (Shenandoah Biotechnology), H-FGF-basic-154 at 20ng/mL 

(Shenandoah Biotechnology), H-PDGF-AA at 10ng/mL (Shenandoah Biotechnology), 

H-PDGF-BB at 10ng/mL (Shenandoah Biotechnology), and 0.2% Heparin Solution at 

2ug/mL (STEMCELL Technologies). All experiments used cells collected within 5 

passages after thawing. The cells were passaged by the treatment of TrypLE (Gibco) 

and DNAse I (Worthington) rocking at 37°C for 5-15 minutes then HBSS (Corning) was 

added to deactivate TrypLE. The cells were transferred to new Nunc EasYFlask Cell 

Culture Flasks (ThermoFisher Scientific) and grown in tumor stem medium as 

previously described. The bulk RNA sequencing data from lines SU-DIPG-VI, SU-

DIPG-IV and JHH-DIPG1 were obtained with permission from Dr. Michelle Monje from 

dbGap accession phs000900.v1.p1.  

RNA Extraction and RT-PCR 

Total RNA was extracted from cell pellets using the Quick-RNA Miniprep Kit 

(Zymo Research). cDNA was synthesized from 1 ug of total RNA using Oligo(dT)20 

primers and the SuperScript III First Strand Synthesis System (Invitrogen). PCR was 

performed using KAPA HiFi HotStart ReadyMixPCR Kit (KAPA Biosystems), 50 ng of 

template DNA and the appropriate primers and 27 PCR cycles. CDH2 primer 

sequences: forward: ggcttaatggtgattttgctcag reverse: tccataccacaaacatcagcac. FN1 

primer sequences: forward: cttgaaccaacctacggatgac reverse: tcccatcatcataacacgttgc. 

Primer oligos were purchased from Integrated DNA Technologies. 
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Data Analysis  

All statistical comparisons are performed with a two-sided Mann-Whitney test, 

with measurements taken from distinct samples without assumption of normality. 

Single cell and bulk tumor samples were scored for EMT activity using a manually 

curated set of mesenchymal genes and a scoring method based on aggregate 

expression of the gene set as compared to a control gene set (Supplementary Table 

3)[18,64,111].  

Supplementary Figures 

 

Supplementary Figure 1. Comparative gene expression analysis shows enrichment 

of post-EMT and mesenchymal pathways in genes with outlier expression in H3WT 

pHGG tumors.  Left: Top 10 pathways from Enrichr gene set enrichment analysis of genes 

with outlier expression in only nonK27M pHGG samples as compared to a background 

cohort of similar tumors. Right: Cytoscape EnrichmentMap graph showing clusters of 

functionally similar pathways enriched for genes with outlier expression in nonK27M pHGG 
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(node p-value < 0.05, edge p-value < 0.38). 

 

 

 

Supplementary Figure 2. Top 30 differentially expressed genes by 

Wilcoxon rank-sum test comparing H3.3K27M mutant glioma cells 

with H3.1K27M mutant glioma cells.  
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Supplementary Figure 3. Continuum of EMT completeness 

scores in glioma single cell RNA-seq data. 

 

 

Supplementary Figure 4. Full-length RT-PCR gel 

images for FN1 and CDH2 quantification. Top row of 
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each gel: SU-DIPG-VI, 13, 17, 19, 24, 25, 27, 35, 43, 

negative RT-PCR control. Bottom row of each gel: SU-

DIPG-IV, 21, 33, 36, 38, 48, pcGBM2R, KNS42, SJG2 and 

normal human astrocytes hTERT. 
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Chapter 4: Large genomics datasets for analyzing the utility 

of preclinical cancer models 

4.1 Chapter Introduction 

 

Preclinical models, including cancer-derived cell lines, are essential for drug 

development in pediatric cancer. While it is well known that cancer cell lines do not 

completely recapitulate the original tumor biology, the environmentally induced 

molecular differences between tumor and cell line have not been well characterized. It 

is important to know which signaling pathways are not representative of tumor biology, 

especially in the context of precision drug testing.  

For example, a screen of DIPG cell lines identified the histone deacetylase 

inhibitor panobinostat as a promising agent both in cell lines and xenografts[21]. 

Unfortunately, in a subsequent clinical trial where 11/15 patients were treated with 

panobinostat in combination with other therapies, all 11 patients were deceased by the 

end of the trial[30]. While this example partly speaks to the overall difficult nature of 

DIPG, it is still puzzling that the in vitro cell line response did not better predict the 

clinical response.  

In 2016, an excellent review article from the labs of Drs. Joe Gray and James 

Costello called for large-scale genomic analysis of publicly available cell line and 

tumor data to provide a comprehensive understanding of tumor vs. cell line biology, 
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which they noted is becoming particularly important in the era of precision 

medicine[31]. As a student at the UCSC Genomics Institute, where huge amounts of 

genomic cancer data are uniformly processed to remove technical batch effects and 

made publicly available on the UCSC Xena platform[32], I was well positioned to 

undertake this analysis. Accordingly, I motivated the reprocess of the Cancer Cell Line 

Encyclopedia (CCLE) raw mRNA sequencing data through the UCSC TOIL RNA-seq 

pipeline, so that it would be comparable with The Cancer Genome Atlas (TCGA) 

expression dataset which had also been processed through TOIL[33]. Because of this 

effort, the processed CCLE dataset is now publicly available on Xena for the larger 

scientific community to use Xena’s many visualization and analysis tools, or download 

the dataset.  

This study involves not only the comparison of CCLE and TCGA mRNA 

expression data, but protein and miRNA data as well. In order to comprehensively 

evaluate the utility of the most widely used preclinical cancer models, I also included 

publicly available cancer organoid and patient derived xenograft gene expression data. 

This study identifies certain cancer driver pathways which are not representative of 

tumor biology and provides a roadmap for preclinical cancer researchers to evaluate 

the appropriateness of their models, avoid potentially non-translatable experiments, 

and develop improved models. 

I designed and led this study. The contributions of others are as follows: the 

CCLE reprocess was completed by Jacob Pfeil, Rob Currie and Ellen Kephart. The 
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original support vector machine analysis was performed by Rahul Chandra (second 

author) with oversight from Dr. David Vengerov.  

This manuscript has been submitted to Communications Biology, June 2020. 
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Abstract 

Cancer cell lines have been widely used for decades to study biological processes 

driving cancer development, and to identify biomarkers of response to therapeutic 

agents. Advances in genomic sequencing have made possible large-scale genomic 

characterizations of collections of cancer cell lines and primary tumors, such as the 

Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA). These 

studies allow for the first time a comprehensive evaluation of the comparability of 

cancer cell lines and primary tumors on the genomic and proteomic level. Here we 

employ bulk mRNA and micro-RNA sequencing data from thousands of samples in 

CCLE and TCGA, and proteomic data from partner studies in the MD Anderson Cell 

Line Project (MCLP) and The Cancer Proteome Atlas (TCPA), to characterize the 

extent to which cancer cell lines recapitulate tumors. We identify dysregulation of a 

long non-coding RNA and microRNA regulatory network in cancer cell lines, 

associated with differential expression between cell lines and primary tumors in four 

key cancer driver pathways: KRAS signaling, NFKB signaling, IL2/STAT5 signaling 

and TP53 signaling. Our results emphasize the necessity for careful interpretation of 

cancer cell line experiments, particularly with respect to therapeutic treatments 

targeting these important cancer pathways, and highlight the importance of 3D 

culturing techniques, which our analysis suggests may lack some of these differences. 

Introduction 

Tumor-derived cell lines provide a robust model environment for testing 

treatment hypotheses, identifying biomarkers of response to therapies, and studying 

underlying cancer biology. Cancer cell line models grow quickly, are comparatively 
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cost effective, and are readily available. Their integration into pre-clinical research has 

led to remarkable advances in cancer characterization and treatment1.  

However, additional genomic characterization of cancer cell lines has indicated 

that the transition from in vivo to in vitro may introduce key genomic alterations. One 

of the first groups to compare tumor and cell line used microarray gene expression 

profiles to identify breast cancer cell lines that seemed to be genetically inappropriate 

models for breast carcinoma2. As mutation detection has become more accurate, 

multiple studies have reported that head and neck cancer cell lines tend to harbor 

more mutations than their tumors of origin3,4. A recent study showed that colorectal 

cancer cell lines recapitulate colorectal tumor subtypes, but that cell lines have more 

mutations than tumors5. In general, the current consensus concerning cancer cell lines 

as primary tumor models is that cell lines share many of the original tumor 

characteristics, but can harbor genetic changes of poorly characterised significance; 

and that some cancer cell lines may not even be molecularly appropriate or 

representative models for their tumor of origin6.  

Nevertheless, cancer cell lines continue to be widely used in cancer research 

and therapeutic discovery. As the focus on molecularly targeted therapeutics grows, 

so does the need to thoroughly characterize how cancer cell lines diverge 

phenotypically from tumors due to their in vitro growth environment6. It is essential that 

preclinical researchers know which biological pathways behave similarly in vivo and in 

vitro, and even more importantly, which pathways demonstrate altered activity as a 

result of alterations in environmental signals and stressors in the in vitro growth setting. 

If a key pathway behaves differently in cell lines as compared to primary tumors, 
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preclinical testing of a drug targeting that pathway will not accurately predict patient 

tumor response.   

In order to characterize the specific pathway alterations that occur between 

primary tumors and tumor-derived cell lines, we analyze three types of high-throughput 

molecular data from The Cancer Genome Atlas (TCGA) and the Cancer Cell Line 

Encyclopedia (CCLE). We perform transcriptomic analysis of bulk RNA sequencing of 

TCGA and CCLE samples and identify a set of differentially expressed genes. We 

integrate micro-RNA sequencing from the same projects and identify an interaction 

network of microRNA, long non-coding (lncRNA) and protein coding genes that is 

aberrantly expressed in cell lines compared to tumors. This network implicates 4 key 

cancer driver pathways that are often the subject of preclinical drug evaluation in cell 

lines, but whose activity in cell lines is not representative of original tumors. We use 

proteomic quantification data from many of the same samples to demonstrate that the 

aberrant cancer driver pathway expression observed in cell lines extends to the 

proteomic level. Finally, we demonstrate that in some tumor types, tumor-derived 

organoids and PDX models can serve as more accurate representations of tumor 

biology. 

Results 

A. Support vector machine classifier identifies a set of genes differentially 

expressed between primary tumors and tumor-derived cell lines. 

We hypothesized that genes with differential expression between the TCGA 

and CCLE datasets would represent differences in biological pathway activity. In order 
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to identify novel sources of variation within these datasets, we eliminated immune-

related genes because it is already known that cancer cell lines are unable to 

recapitulate the immune signatures of the primary tumors7 (see Methods, 

Supplementary Fig. 1, Supplementary Table 1).  

We then used a support vector machine (SVM) linear classifier within the 

Python sklearn module to identify genes (features) which are the most useful and 

important for classifying a new tumor or cell line based on a trained model8. In order 

to ensure robust results, we repeated the classification on fifty different random 80/20 

test/training splits of the data. After sorting the genes by their SVM-assigned feature 

importance coefficients, we merged the top 10% of genes from all fifty classifications, 

resulting in 1854 genes that were in the top 10% most important genes for each 

classification (Supplementary Table 1). These genes included 54 long non-coding 

RNA (lncRNA) and 1799 protein-coding genes. 

In order to characterize the functional significance of our SVM-derived gene 

set, we performed gene set enrichment analysis (GSEA) on the 1799 protein-coding 

genes using the Hallmark cancer pathway set from the Molecular Signatures Database 

(mSigDB)9. We found 27 gene sets with significant enrichment in the SVM-derived 

differentially expressed protein-coding genes (Fig. 1a, Supplementary Table 1, tab 3).  

Since lncRNA play known regulatory roles in normal tissue and in cancer, we 

hypothesized that the 54 differentially expressed lncRNA may be involved in regulating 

the differentially expressed coding genes, and may compose an interaction network 

with aberrant expression in cell culture. In order to characterize the functional 

interactions of these lncRNA, we employed miRNet, a tool that integrates multiple 

interaction databases for identification of lncRNA-miRNA and miRNA-gene regulatory 
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networks10. miRNet identified 227 miRNA with known interactions to our 54 lncRNA. 

In turn, these 227 miRNA had 580 known gene targets among the 1799 differentially 

expressed coding genes (pvalue<7.8-27, hypergeometric test). GSEA of the 580 coding 

genes revealed 24 Hallmark gene sets with significant enrichment (Fig. 1b, 

Supplementary Table 1, tab 3). Strikingly, 20 of these Hallmark pathways overlapped 

with the enriched pathways from the coding genes GSEA (Fig. 1c, Supplementary 

Table 1, tab 3), indicating that the set of SVM-derived important lncRNAs is closely 

involved in many of the same pathways as the set of SVM-derived important coding 

genes.  

We categorized the pathways into 6 categories (cellular response, 

development, cancer driver, metabolism, blood, and immune) and were particularly 

interested in the 5 cancer driver pathways which overlapped between the coding 

genes GSEA and the lncRNA-derived GSEA.  
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Fig. 1. Workflow for support vector machine (SVM) classification of samples from 

TCGA and CCLE to assign feature importance to all genes. a) GSEA pathway enrichment 

results of 1799 protein coding genes in the overlap of the top 10% most important genes in 

50 independent SVM classifications. b) GSEA pathway enrichment results of 580 protein 

coding genes linked by miRNet databases to the 54 lncRNAs found in the overlap of the top 

10% most important genes in 50 independent SVM classifications. c) Overlap of pathways 

from the protein coding gene GSEA and the lncRNA-based GSEA.  
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B. Four main types of cancer driver pathways exhibit differential 

expression and protein levels in cancer cell lines compared to primary 

tumors. 

The 5 cancer driver pathways with significant enrichment in both SVM-derived 

coding genes and lncRNA-related genes are KRAS Signaling Up and Down, P53 

Pathway, IL2/STAT5 Signaling, and TNFA Signaling Via NFKB (Fig. 2a). With respect 

to KRAS signaling, since both pathways are a result of activated KRAS signaling, all 

subsequent analysis focuses on KRAS Signaling Up, which represents genes 

upregulated as a result of activated KRAS signaling.  

Interestingly, all 4 pathways show much higher overall expression in tumors 

than in cell lines, indicating that these genes are downregulated as a result of the 

transition from tumor to cell culture dish (Fig. 2b). As a control, we also examined the 

gene expression of the Hallmark PI3K-AKT-mTOR pathway, a cancer driver pathway 

that was not significantly enriched in SVM-derived genes (pvalue < 0.426). This 

pathway did not show differential expression between CCLE and TCGA 

(Supplementary Fig. 2). We also verified that this signal was not a disease-specific 

artifact by repeating the SVM after subsetting the data to the disease with the largest 

number of samples in TCGA (BRCA) and the smallest number of samples (DLBC). 

The same 4 cancer driver pathways were identified in both analyses (Supplementary 

Table 1).  

We next examined whether the downregulation of these pathways extended 

beyond gene expression into protein activity. Proteomics quantification of many CCLE 

74



and TCGA samples was performed using Reverse Phase Protein Array (RPPA) in the 

MD Anderson Cell Lines Project (MCLP) and The Cancer Proteome Atlas (TCPA)11,12. 

Using the RPPA Level 4 Normalized data, we identified proteins that are normally 

highly expressed downstream of each cancer driver pathway, and examined their 

levels in the cell line and tumor data (Fig. 2c). PIK3R1 (antibody PI3KP85) is activated 

subsequent to KRAS signaling, and Cyclin D1 (antibody CYCLIND1) is activated 

downstream of the P53 pathway13,14. STAT5 (antibody STAT5ALPHA) represents the 

protein counterpart of the STAT5 gene. The antibody NFKBP65_pS536 binds to 

phosphorylated p65, one of the two protein subunits of NFKB. Phosphorylation of p65 

is one of several molecular mechanisms known to activate the NFKB pathway15,16.  

We noted significantly lower protein expression of PIK3R1, Cyclin D1 and 

STAT5 in the cell line data, consistent with our gene expression results in the 

corresponding pathways. This carries important implications for the applicability of 

preclinical drug tests against these targets in cancer cell lines. Interestingly, the 

phosphorylation level of p65 is higher in cell lines than tumors, opposite the gene 

expression of the NFKB signaling pathway. This suggests that p65 phosphorylation 

may be playing a different role in cell lines, and underscores the importance of 

examining multiple types of data to elucidate complex molecular interactions.  

To explore disease-specific pathway expression differences, we calculated 

pairwise gene expression correlation scores between all TCGA and CCLE samples of 

each disease type (Fig. 2d), as well as mean correlation scores between all disease 

types in both datasets (Supplementary Fig. 3). We observed that the correlations 

between tumor and cell line were consistently higher in certain tumor types, across all 

four cancer driver pathways. HNSC, SKCM and COAD ranked highest, with tumor-cell 
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line correlation scores in the top 4 most correlated diseases for all four cancer driver 

pathways. Conversely, LIHC and LUSC consistently ranked lowest and had tumor-cell 

line correlation scores in the bottom 5 least correlated diseases for each pathway. 

These results suggest that while global dysregulation of these cancer driver pathways 

occurs consistently across cancer cell lines, the HSNC, SKCM and COAD derived cell 

lines most closely resemble their primary tumors while LIHC and LUSC cell lines are 

least similar to their primary tumors. This analysis suggests the need for caution when 

interpreting preclinical results, particularly in disease types with low tumor-cell line 

correlation in the relevant signaling pathways. 

Because activation of the KRAS and TP53 pathways are associated with 

mutations in the KRAS and TP53 genes17,18, we investigated whether there is a 

correlation between diseases with heavy mutation burden in these genes and 

diseases with higher correlation between tumor and cell line, with the assumption that 

cell lines derived from mutated tumors maintain those mutations. We found that there 

is no correlation between mutational burden and tumor-cell line correlation; in fact, in 

the case of the TP53 pathway, there is a slight inverse correlation between the two 

factors (Supplementary Fig. 4). This indicates that dysregulation of these pathways 

occurs in cancer cell lines regardless of the mutational status of the primary tumor, 

and is unrelated to the activating DNA mutations.  
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Fig. 2. KRAS Signaling, TP53 Pathway, IL2/STAT5 Signaling and NFKB Signaling are 

significantly enriched for genes with reduced expression in CCLE compared to TCGA. 

a) GSEA results for the cancer driver pathways which overlap with SVM-derived genes. P 

values are shown for significance of gene overlap with SVM-derived protein coding genes, 

and for genes linked by miRNet to SVM-derived lncRNA. b) Heatmaps showing expression 

of SVM-identified genes in 4 cancer driver pathways in TCGA compared to CCLE. Samples 

shown are a random subset with equal representation from each dataset in each disease. 

c) Boxplots showing overall protein quantification of representative proteins from each of the 
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4 cancer driver pathways in tumor and cell line datasets. (Mann-Whitney significance test; * 

pvalue < 0.05, ** pvalue < 0.01, *** pvalue < 0.001) d) Boxplots show pairwise Spearman 

correlation scores between all CCLE and TCGA RNA-seq samples in each disease type, for 

all 4 cancer driver pathways. Plots are sorted by mean correlation. 

 

C. Dysregulation of a lncRNA-miRNA regulatory network in cancer cell 

lines is associated with underexpression of key cancer pathways. 

Because the four cancer driver pathways were derived in the context of 

lncRNA-related gene expression, we hypothesized that cell-line-specific dysregulation 

of lncRNA-based regulation programs may cause aberrant pathway-level gene 

expression. lncRNA control gene expression in a tissue-specific manner, and one of 

their key regulatory mechanisms is by sequestering or “sponging” microRNA (miRNA) 

through base pairing interactions19–21. miRNA directly affect gene expression by 

binding mRNA and targeting them for degradation22–24. In this method of expression 

control, lncRNA regulate miRNA, while miRNA regulate gene expression (Fig. 3a).  

To investigate potential non-coding RNA dysregulation in cell lines as 

compared to tumors, we focused on the 54 lncRNA identified as differentially 

expressed through the SVM classification (Fig. 1, Supplementary Table 1). We used 

miRNet databases to link the 54 differentially expressed lncRNA to the 4 differentially 

expressed cancer driver pathways via shared miRNA interactions (Supplementary 

Table 2). Via miRNet, we found that 77 miRNA have known interactions both with 

genes in the four cancer driver pathways, and with 11 of the differentially expressed 

lncRNA (11 lncRNA: LBX2-AS1, CERS6-AS1, DLGAP1-AS1, H19, IQCH-AS1, 
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LINC00240, LINC00665, LINC00707, LINC00847, LINC00622, LIMD1-AS1). With the 

exception of LINC00707, 10 of the 11 lncRNA are significantly underexpressed in 

CCLE (Fig. 3b,C). We hypothesized that the reduced cell line expression of these 

lncRNA may cause subsequent expression changes in the downstream miRNA 

regulatory network, which in turn would cause aberrant expression of the four cancer 

driver pathways being controlled by the miRNA network. 

In order to investigate this hypothesis, we leveraged publicly available miRNA 

sequencing (miRNAseq) data from CCLE and TCGA. We used ComBat correction to 

remove experimental batch effects (see Methods, Supplementary Fig. 5)25. Sixty-nine 

of the 77 miRNA were quantified in both miRNAseq datasets, so we used these miRNA 

for all downstream analyses (Supplementary Table 3). We calculated the log fold 

change (LFC) in expression between CCLE and TCGA for these 69 miRNA. Notably, 

over half of the miRNA (n=43) are more highly expressed in cell lines than tumors. 

Cytoscape was used to visualize the lncRNA-miRNA-coding gene network colored by 

gene type or by LFC (Fig. 4a,b, Supplementary Table 3)26.  

In keeping with the lncRNA “sponge” regulatory model, the lncRNA are 

underexpressed in cancer cell lines, which in turn allows the observed overexpression 

of a majority of the miRNA whose expression is normally kept in check by these 

lncRNA. The end result is the observed underexpression of key genes in 4 important 

cancer driver pathways in cancer cell lines, due to aberrant overexpression of 

inhibitory miRNA. Indeed, we noted several miRNA with higher expression in cell lines 

that are known to play roles in regulation of the four cancer driver pathways. mir-497, 

mir-195, mir-148a and mir-152 directly inhibit genes in the KRAS/RAF/MEK/ERK 

pathway27,28. The TP53 pathway is repressed by mir-339, and TP53-associated gene 
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TP53INP1 is regulated by mir-9229,30. mir-519d directly represses STAT3, a key gene 

in the IL2/STAT5 signaling pathway31. The NFKB pathway is activated by mir-301a, 

which has lower expression in cell lines compared to tumors, in keeping with lower 

NFKB activity in cell lines32. 

Because lncRNA and miRNA are known for cell-type-specific expression, we 

hypothesized that the observed dysregulation of lncRNA-miRNA expression networks 

is caused by biological selection for a subset of cancer cells which are more likely to 

survive the cell line derivation process and thrive in a cell culture setting. Consistent 

with this hypothesis, both stem cell and epithelial cell specific lncRNA and miRNA 

display reduced expression in cancer cell lines. Specifically, CCLE samples have 

reduced expression of H19, a lncRNA strongly associated with the cancer stem cell 

state33, but show increased expression of mir-1 and mir-206, which promote cellular 

differentiation by blocking anti-differentiation signaling targets34,35. Additionally, CCLE 

samples show reduced expression of CERS6-AS1, IQCH-AS1 and LINC00240, 

lncRNA implicated in mediating tight junctions or extracellular matrix interactions, 

which are features of epithelial and endothelial cells36–39. At the same time, CCLE 

samples have comparatively high expression of mir-9, which directly represses E-

cadherin, a well known epithelial marker40. E-cadherin repression is known to induce 

the epithelial-mesenchymal-transition, a process which plays a role in cancer 

progression from an epithelial state to a motile and invasive metastatic state41. CCLE 

samples display reduced expression of E-cadherin/CDH1, and higher expression of 

mesenchymal markers including N-cadherin/CDH2, MUC1, and claudins CLDN1, 

CLDN2, CLDN342 (Supplementary Fig. 6).  
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The observed reduced epithelial and stem cell expression in cancer cell lines 

suggests that cancer cell culture conditions select for the subset of cancer cells with a 

mesenchymal, invasive and metastatic phenotype. Overall, these results indicate that 

selection against specific cancer cell types in tumor-derived cell lines may cause global 

downregulation of key cell-type-specific lncRNAs, which in turn allows overexpression 

of a variety of miRNA, many of which play important roles in regulating cancer 

signaling pathways.  

In light of recent research identifying a panel of 110 CCLE cell lines with highest 

correlation to their primary tumor samples, the TCGA-110-CL7, we examined whether 

these cell lines show more representative expression of the 4 cancer driver pathways. 

We repeated the SVM after subsetting the CCLE dataset to the TCGA-110-CL and the 

TCGA dataset to the tumor types in the TCGA-110-CL (Supplementary Table 1). 

Interestingly, the same 4 cancer driver pathways were again identified as differentially 

expressed, although for IL2/STAT5, TP53 and NFKB signaling the overall correlations 

were higher (Supplementary Fig. 7). However, several metabolic, cellular response 

and developmental pathways that were identified in the original analysis were not 

identified here, including Hedgehog Signaling, Apical Junction and Fatty Acid 

Metabolism (Supplementary Table 1). Overall, these results indicate that while the 

TCGA-110-CL cell line panel is indeed more representative of its primary tumors by 

overall gene expression, our pathway-level examination reveals that caution must still 

be used when interpreting results involving targeting these 4 cancer driver pathways. 

This result is consistent with our hypothesis that the dysregulation of cancer driver 

signaling is driven by a loss of cellular heterogeneity overall in cancer cell lines. 
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Fig. 3. Long non-coding RNA associated with 4 cancer driver pathways are significantly 

underexpressed in cancer cell lines. a) In the “sponge” model of lncRNA gene expression 

regulation, lncRNA competitively inhibit miRNA which would otherwise be responsible for 

inhibiting mRNA. b) Heatmap showing expression of 11 lncRNAs with miRNA-dependent 

associations to protein coding genes in the four cancer driver pathways. Samples shown are 

a random subset with equal representation from each dataset in each disease. c) Boxplots 

showing expression of the 11 lncRNAs associated with four cancer driver pathways. All 

samples from both datasets are shown. (Mann-Whitney significance test; * pvalue < 0.05, ** 

pvalue < 0.01, *** pvalue < 0.001) 
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Fig. 4. Dysregulation of lncRNA-miRNA regulatory network causes downregulation of 

key cancer driver pathways in tumor derived cell lines. a) Types of genes are identified 
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by color and positioning in the Cytoscape graph. Gene interactions from miRNet databases 

are denoted by grey lines. lncRNA are on the left, miRNA in the center and differentially 

expressed protein coding genes from each of the four cancer driver pathways are on the 

right side of the graph. b) Positive LFC (purple) denotes higher expression in CCLE. 

Negative LFC (green) denotes higher expression in TCGA. 

 

D. Tumor-derived organoids and patient-derived xenografts have lowest 

tumor correlation in KRAS signaling. 

Finally, we investigated how well two other types of cancer models (organoids 

and patient-derived xenografts) recapitulate cancer driver pathway expression as 

compared to primary tumors. 

Tumor-derived organoids have been shown to recapitulate several properties 

of the primary tumor including cellular heterogeneity, hypoxic gradient, activated 

molecular pathways and specific molecular aberrations such as mutations and 

fusions43,44. Notably, organoid cultures have the capacity to maintain the cancer stem 

cell population of the original tumor44. In contrast, patient-derived xenograft (PDX) 

models are intrinsically capable of recapitulating host-tumor interactions such as 

maintenance of substantial populations of stromal cells45. However, PDX cancer 

models are comparatively time intensive and costly, motivating significant advances 

in cancer organoid modeling technology in the last decade.  

We investigated RNA sequencing data from both model types in order to 

determine which model best recapitulates the expression of KRAS, TP53, NFKB and 

IL2/STAT5 signaling. We hypothesized that both types of models would maintain the 
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stem cell population lost in the 2D cell culture, thus preserving the biological activity of 

the lncRNA-miRNA regulatory network and the four cancer driver pathways. To test 

this hypothesis, we leveraged publicly available gene expression data from two recent 

publications on tumor-derived organoids from bladder cancer (n organoids=34, n 

tumors=8) and liver cancer (n organoids=15, n tumors=10)46,47. We also utilized 

rhabdomyosarcoma PDX gene expression data (n=7) and disease-matched patient 

samples (n=40) from the St. Jude Cloud48, accessed through the UC Santa Cruz 

Treehouse cancer compendium v10 (treehousegenomics.soe.ucsc.edu/public-data/; 

Supplementary Table 4).  

We performed Mann-Whitney significance test to compare the expression of 

representative genes from each cancer driver pathway between tumor and organoid 

or PDX (Fig. 5a,c,e). As compared to cancer cell lines, both model types are overall 

more similar to their associated tumors. However, in both organoid models, the KRAS 

gene is significantly under-expressed compared to tumors, the same pattern observed 

in cancer cell lines. The NFKB gene is also under-expressed in liver organoids, but 

not bladder organoids. Interestingly, PDX models show slight overexpression of the 

KRAS and TP53 genes as compared to tumors.  

To look more broadly at pathway-level expression differences, we calculated 

pairwise correlation between all tumor and organoid or PDX samples in each dataset 

(Fig. 5b,d,f). We noted disease-specific in pathway correlation in the organoid models. 

Notably, IL2/STAT5 Signaling has highest correlation in bladder cancer organoids 

(mean=0.7) but second to lowest expression in liver cancer organoids (mean=0.25). 

This indicates that the degree of success for organoid cancer modeling may be 

disease-specific, and more work is needed to ensure consistent recapitulation of 
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cancer signaling. Additionally, the significant underexpression of NFKB in liver 

organoids indicates a potential loss of intrinsic immune signaling in some types of 

organoids.  

In keeping with our previous observations, KRAS Signaling has the lowest 

overall correlation between tumors and organoids or PDX models. Even in the 

rhabdomyosarcoma PDX dataset, in which the other 3 cancer driver pathways have 

greater than 0.67 mean correlation, the KRAS Signaling pathway has only 0.59 mean 

correlation. The KRAS Signaling pathway appears to be uniquely dependent on the 

original host microenvironment, and is not fully recapitulated even in an animal model 

such as a PDX. This may help to explain the marked lack of effective RAS inhibitor 

therapeutics49.  

Overall, these analyses suggest that because tumor-derived organoids and 

PDX models better recapitulate cell type heterogeneity and cellular interactions of 

primary tumors, gene signaling and cancer driver pathway activity are also more 

accurately preserved than in 2D cancer cell lines. However, additional research efforts 

are needed towards including immune signaling in organoids, as well as efforts to 

ensure KRAS signaling in both model types is accurately recapitulated. 

 

86



 

Fig. 5. Cancer driver pathway expression in 3D cancer-derived organoids and PDX 

models. a) Normalized gene expression from bladder cancer samples (n=36) and matched 

cancer-derived organoids (n=8). b) Pairwise correlation of all bladder tumor and organoid 

samples using all genes in each pathway gene set. c) Gene counts from liver cancer samples 

(n=10) and matched cancer-derived organoids (n=15). d) Pairwise correlation of all liver tumor 

and organoid samples using all genes in each pathway gene set. e) Normalized gene 

expression from rhabdomyosarcoma cancer samples (n=40) and sarcoma-derived PDX 

models (n=7). f) Pairwise correlation of all sarcoma cancer and PDX samples using all genes 

in each pathway gene set. (Mann-Whitney significance test; * pvalue < 0.05, ** pvalue < 0.01, 

*** pvalue < 0.001)  
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Discussion 

The ability to model and manipulate cancer cells has empowered therapeutic 

discovery since the derivation of the first cancer cell line50. Two dimensional cancer 

cell cultures have enabled researchers to discover how cancers arise, characterize 

cancer cell types and growth patterns, and identify effective pharmaceuticals through 

drug screens1. Today, personalized tumor-derived 2D and 3D cultures are increasingly 

in use for identification of precision therapies for individual patients51–53. The rise of 

precision medicine and small molecule inhibitor development brings an urgent need 

for molecular characterization of the cell culture models used widely for therapeutic 

development. Large-scale genomic efforts such as The Cancer Genome Atlas (TCGA) 

and the Cancer Cell Line Encyclopedia (CCLE) have enabled comprehensive 

comparison of cancer cell cultures and primary tumors.  

Here, we provide a comparative multi-omic analysis of cancer cell lines and 

primary tumors by leveraging several types of genomic data from large public 

compendia. Our gene expression analysis reveals reduced expression of key cancer 

driver pathways including KRAS signaling, TP53 pathway, IL2/STAT5 signaling and 

NFKB signaling in cancer cell lines. These results are recapitulated in comparative 

analysis of protein levels for key proteins from each pathway. Our analysis indicates 

the need for caution when interpreting in vitro preclinical testing results of inhibitors 

targeting these pathways.  

In fact, the consequences of preclinical testing in cell lines against these 

pathways have already been felt. For example, during preclinical testing several 

MDM2/TP53 small molecule inhibitors displayed potent cancer cell line inhibitory 

activity, but could only achieve partial tumor regression in xenograft models54. 
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Subsequent optimization of these compounds led to success in clinical trials, but initial 

results in cell lines did not predict in vivo results. Targeting both wild-type and mutant 

KRAS in cancer has been notably unsuccessful; in particular, several high-throughput 

screens of KRAS mutant cancer cell lines identified compounds which subsequently 

only partially reduced tumor volumes in xenograft models49,55. In contrast, targeting the 

cholesterol biosynthesis pathway, which is not differentially expressed in cancer cell 

lines by our analysis, has been promising both in vitro and in vivo through the usage 

of the statin family of drugs56,57. In addition, targeted inhibition of cyclin-dependent 

kinases (CDKs) by agents such as PD-0332991/palbociclib has been promising in 

phase I and II clinical trials, and this drug was originally identified in cancer cell 

lines58,59. CDKs are active during cell cycle entry from G0 and during the G2M 

checkpoint pathway, which were not differentially expressed in cancer cell lines by our 

analysis. We note that apart from the four cancer driver pathways identified as 

dysregulated in cell lines, preclinical testing in cell lines can in many cases reliably 

predict in vivo responses.  

To identify potential causes of dysregulation of cancer driver signaling in cell 

lines, we analyzed the expression of lncRNA and miRNA implicated in regulation of 

these pathways. In cell lines, we found reduced expression of a set of lncRNA 

predicted to regulate a downstream network of regulatory miRNA, which are in turn 

overexpressed. Several of these miRNA are directly involved in specific inhibition of 

these cancer driver pathways, linking their overexpression to the observed reduced 

expression of cancer driver pathways.  

We speculate that our results may indicate a partial loss of cancer stem cells 

in cancer cell culture due to the presence of serum in culture media. All CCLE cell 
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lines were cultured in RPMI or DMEM media with 10% fetal bovine serum60. It is well 

known that the presence of serum in culture media encourages cellular differentiation, 

and cancer cell lines grown in serum-free conditions contain larger populations of 

cancer stem cells61,62. This hypothesis is supported by the markedly lower expression 

of stem-cell-specific lncRNAs in cell culture, and higher expression of pro-

differentiation miRNAs. Because cancer stem cell populations are known for their 

chemoresistance and even small populations are thought to be capable of tumor 

recurrence63–65, it is essential that preclinical models accurately model the response of 

cancer stem cells to potential therapeutics.  

We investigated the recently identified TCGA-110-CL cancer cell line panel7, 

which has higher overall cell line-tumor gene expression correlation. The same four 

cancer driver pathways were identified by an SVM comparing these cell lines to 

disease-matched primary tumors, and in particular the KRAS pathway had the lowest 

overall cell line-tumor correlation. This indicates that even this subset of cancer cell 

lines does not fully recapitulate the cancer driver signaling of primary tumors and 

studies on these pathways must be interpreted with caution. 

We find that in certain tumor types, 3D cancer-derived organoids and PDX 

models, which are known to better recapitulate tumor heterogeneity including cancer 

stem cell populations, are more similar to their primary tumor counterparts with respect 

to expression of the four cancer driver pathways. However, future work needs to focus 

on the preservation of cancer-immune microenvironment in organoids. Notably, all 

three cancer models we studied had lower model-tumor correlations in the KRAS 

pathway than the other three cancer driver pathways. KRAS signaling depends on 

certain signal transduction and cell-cell interaction events such as ligand-dependent 
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EGFR activation66 and TWIST-dependent senescence bypass67, which may be 

uniquely dependent on the original tumor microenvironment. This indicates that future 

model development must emphasize preservation of intrinsic KRAS signaling in order 

to develop effective anti-KRAS therapeutics. Indeed, genetic manipulation via 

overexpression or knockdown of certain epigenetic regulators such as lncRNA or 

miRNA may improve the generation of cancer cell lines or organoids from primary 

tumors.  

Taken together, our results underscore the need for caution when interpreting 

preclinical cancer testing results in multiple model types, and point to specific signaling 

networks which can serve as litmus tests for the accuracy of past and future cancer 

laboratory models. We suggest several potential solutions to improve the efficacy of 

tumor-derived cell lines and organoids. Cancer cell culture in serum-free conditions 

may improve the maintenance of tumor stem cell populations and reverse the 

dysregulation of important regulatory gene networks. Specific efforts to model the 

immune microenvironment in cancer-derived organoids may improve cancer driver 

pathway expression related to the tumor microenvironment. A potential solution may 

be genetic manipulation of tumor-derived models with an emphasis on preserving or 

rescuing the intrinsic cancer driver pathway expression which is most at risk for 

dysregulation. Overall, this study provides much-needed genomics-based guidelines 

for future preclinical cancer model development.  
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Methods 

RNA sequencing data 

Gene expression transcripts per million (TPM) matrices from TCGA (n samples = 

10535) and CCLE (n samples = 933) were downloaded from the UCSC Xena browser. 

These data were processed uniformly through the TOIL UCSC RNA sequencing data 

processing pipeline to remove technical batch effects68. Both datasets were 

normalized by log2(TPM+1) and duplicate genes were averaged. Genes not 

expressed in 80% of samples were removed, and 20% of the lowest varying remaining 

genes were removed, leaving 46865 remaining genes. Both datasets were subset to 

the 19 overlapping cancer types for subsequent analysis (BRCA, LUSC, LIHC, DLBC, 

THCA, PRAD, OV, STAD, BLCA, KIRC, UCEC, COAD, SARC, CESC, SKCM, PAAD, 

HNSC, ESCA, GBM). All heatmaps use a random subset of samples from each 

dataset with equal numbers from each disease.  

micro-RNA sequencing data 

TCGA micro-RNA (miRNA) Illumina sequencing read counts data was downloaded 

from the Genomic Data Commons Data Portal69. CCLE Nanostring probe miRNA 

quantification data was downloaded from the Broad Institute CCLE database: 

https://portals.broadinstitute.org/ccle/data70. For dataset comparability, miRNA 

naming formats were harmonized and duplicates averaged. Because different miRNA 

sequencing methods were used in each dataset, ComBat was used to batch correct 

the data25. Pre- and post-batch effect correction data was then log2(count+1) 

normalized for downstream visualization and analysis. Supplementary Figure 5 shows 

92



pre- and post-batch effect correction expression distributions of several housekeeping 

genes to validate successful correction71,72. 

RPPA data 

Level 4 Reverse Phase Protein Array (RPPA) data for the TCGA and CCLE samples 

were downloaded from the The Cancer Proteome Atlas (TCPA) portal 

(https://tcpaportal.org/tcpa/download.html and http://tcpaportal.org/mclp/#/download). 

Both datasets were subset to the 16 overlapping cancer types for subsequent analysis 

(BLCA, BRCA, COAD, DLBC, HNSC, KIRC, LGG, LIHC, LUAD, OV, PAAD, PRAD, 

SARC, SKCM, STAD).  

Organoid and PDX RNA sequencing data 

RNA sequencing normalized counts data from 36 bladder cancer samples and 8 

bladder cancer-derived organoid samples were downloaded from accession 

GSE10399046. RNA sequencing gene counts data from 10 liver cancer samples and 

15 liver cancer-derived organoid samples were downloaded from accession 

GSE8407347. Gene expression TPM data from sarcoma PDX samples (n=7) and 

disease-matched patient samples (n=40) were downloaded from the UC Santa Cruz 

Treehouse cancer compendium v10 (treehousegenomics.soe.ucsc.edu/public-data/), 

and normalized by log2(TPM+1). The cancer compendium contains gene expression 

data generated from the raw data in the St. Jude Cloud48. 

Statistical gene selection via support vector machine  

In Python (v3.6.8), the sklearn module (v0.21.2) was used with linear kernel to train a 

support vector machine (SVM) on 50 random 80/20 splits of the merged TCGA-CCLE 
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gene expression dataset. The top 10% of genes from each training run based on their 

feature weights coefficients were merged in a non-duplicate manner, resulting in 1858 

genes. Gene set enrichment from this analysis revealed 26/100 enriched pathways 

were immune-related, so a non-redundant immune gene list was created by merging 

all genes from the 26 enriched immune pathways (Supplementary Table 1). A second 

SVM analysis was conducted on a set of 50 random 80/20 splits of the merged TCGA-

CCLE gene expression dataset with the immune-related gene list removed, and the 

top 10% of genes from each run based on feature importance coefficients were 

merged, resulting in 1854 genes which were used in all downstream analysis. We 

verified that the cancer driver pathway signal identified in the second SVM analysis is 

not related to immune signaling by calculating pairwise correlation between SVM-

identified cancer driver genes and the immune genes which were removed from the 

analysis (mean=0.1, Supplementary Fig. 1). 

Statistical methods 

Expression comparisons of individual genes between datasets were performed using 

a two-sided Mann-Whitney significance test with significance defined as pvalue < 0.05. 

Significantly enriched gene sets were identified using gene set enrichment analysis9 

with FDR q-value < 0.05.  
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Supplementary Figures 

 

Figure S1. Pairwise correlation of expression of immune genes and cancer driver 

genes. a) Pairwise correlation between the immune genes removed from the SVM 

analysis and the cancer driver genes identified by the SVM analysis (mean 

correlation=0.1). b) Heatmap showing pairwise correlation scores between immune 

genes and cancer driver genes.  
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Figure S2. Hallmark PI3K-AKT-mTOR Pathway shows non-significant expression 

change between TCGA and CCLE. Heatmap showing expression of genes in the PI3K-

AKT-mTOR pathway in cancer cell lines and tumors. Samples shown are a random 

subset with equal representation from each dataset in each disease. 
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Figure S3. Heatmaps showing mean correlation scores between all disease types 

in each cancer driver pathway. 
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Figure S4. Relationship between KRAS or TP53 mutational burden and tumor-cell 

line correlation by disease type. a) Barplot of KRAS mutant TCGA samples and TP53 

mutant TCGA samples by disease type. b) Mean correlation between cell line and tumor 

in the KRAS pathway (left) and TP53 pathway (right) colored by disease.  
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Figure S5. Expression of housekeeping miRNA mir-

23a and mir-16 pre- and post-ComBat correction in all 

CCLE or TCGA samples.  
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Figure S6. Expression of cell type markers in TCGA vs. CCLE. Boxplots 

showing expression of the E-cadherin/CDH1 (an epithelial cell marker) and N-

cadherin/CDH2, MUC1, and claudins CLDN1, CLDN2, CLDN3 (mesenchymal 

cell markers) in TCGA and CCLE. All samples from both datasets are shown. 

(Mann-Whitney significance test; * pvalue < 0.05, **** pvalue < 0.0001) 
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Figure S7. Expression of cancer driver pathways in TCGA-110-CL. a) Heatmaps 

showing expression of SVM-identified genes in 4 cancer driver pathways in TCGA-110-

CL cell lines as compared to TCGA samples. Samples shown are a random subset with 

equal representation from each dataset in each disease. b) Boxplots show pairwise 

Spearman correlation scores between all TCGA-110-CL and TCGA RNA-seq samples in 

each disease type, for all 4 cancer driver pathways. Plots are sorted by mean correlation. 
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Chapter 5: Current technologies for modeling embryonic 

effects of histone H3 K27M mutation 

5.1 Chapter Introduction 

Much of the research on H3 K27M mutant glioma has been appropriately 

focused on understanding and treating the mature tumors. However, because my work 

(Chapter 3) and the work of others points to a K27M-associated stall in early neural 

cell differentiation, a better understanding of the developmental origins of this tumor 

may aid treatment and prevention. Some excellent experimental models of K27M 

gliomagenesis have already been developed; for example, Dr. Suzanne Baker’s lab 

showed that induced K27M expression in neonatal mouse hindbrain accelerated DIPG 

formation[34]. But because it seems that the K27M mutation can arise prenatally[35] 

while the tumor itself does not arise until a median patient age of six[36], this suggests 

that inducible mouse models may not fully recapitulate the long-term epigenetic and 

developmental effects of the K27M mutation on the embryonic human brain. 

Additionally, previous studies have not reached a conclusion on the developmental 

timing and cell of origin for the K27M mutation event, which would contribute 

significantly to understanding the pathogenesis of the mature tumor. In a 2019 review, 

leading pediatric neuro-oncologists Drs. Mariella Filbin and Michelle Monje concluded 

that better biological understanding and therapies for K27M glioma and other 

109



developmental pediatric tumors, will come from studies on early developmental and 

epigenetic cell states[6].  

Accordingly, I took advantage of the Haussler lab expertise in modelling early 

human brain development with human embryonic stem cell derived cerebral organoids. 

Because the cerebral organoid assay developed in the Haussler lab can currently model 

up to the first 70 days of embryogenesis (with ongoing improvements in durability), I 

was motivated to create a K27M-inducible version of this organoid assay to study the 

effects of K27M expression during human embryogenesis. Notable advantages of this 

novel assay are that it is in human cells, it is possible to induce K27M expression at 

any time point, and organoid culture is relatively scalable and cost-effective. 

Because of the COVID-19 pandemic, some results from this project have been 

delayed. Here I report the successful development of a novel H3 K27M inducible 

human cerebral organoid model, and preliminary results which indicate K27M-

associated epigenetic and transcriptomic effects, as well as potential observation of 

cellular differentiation stall in K27M cells. 

I designed and led this project. The contributions of others are as follows: I 

trained and mentored Marissa Chen and Liam Tran as undergraduate assistants on this 

project. Marissa Chen helped write the Introduction and Methods sections and helped 

with the stem cell culture maintenance, lentiviral transduction, digital droplet PCR and 

Western blots. Liam Tran helped with the organoid culture maintenance, tissue slicing 

on the cryostat, and immunofluorescence staining. Dr. Sameer Agnihotri provided the 

viral vector reagents. Dr. Sofie Salama provided scientific oversight and mentorship.  
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This manuscript reflects the current state of this work. Future directions are 

described in Chapter 6. 
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Abstract 
Histone H3 K27M mutant diffuse midline glioma are extremely aggressive 

pediatric brain tumors with universally poor prognosis and no known effective 

treatments. This histone mutation occurs in 80% of pediatric brainstem gliomas, and 

confers a significant survival disadvantage as compared to pediatric gliomas without 

the mutation. The H3K27M mutation causes global loss of the H3K27 trimethyl 

transcriptional repressive mark, resulting in widespread transcriptional dysregulation 

of developmental genes. This mutation is thought to be oncogenic only during specific 

developmental windows where correct transcriptional regulation is particularly 

important for neural cell differentiation. However, the developmental timing and cell of 

origin for the H3K27M mutation event and subsequent gliomagenesis have not been 

conclusively identified. Here we report the development of a novel human embryonic 

stem cell derived cerebral organoid model with inducible H3K27M expression. This 

model recapitulates known epigenetic and transcriptional changes associated with the 

presence of the H3K27M mutation. Using preliminary immunofluorescence and single 

cell RNA sequencing characterization, we observe a possible stall in neural stem cell 

differentiation, identifying a potential cell of origin for these lethal tumors.  

 

Introduction 
Diffuse intrinsic pontine gliomas (DIPG) are highly aggressive tumors, with 

peak incidence occurring in patients ages 6-8[1]. This incurable tumor resides in the 

pons and brainstem, making surgical resection impossible. DIPGs are also profoundly 

chemoresistant, with a median overall survival time of less than one year after 
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diagnosis. The overall survival rate for this tumor type is approximately 30% at 1 year, 

10% at 2 years, and less than 1% at 5 years[2–4].  

Eighty percent of DIPG tumors harbor a lysine 27 to methionine (K27M) amino 

acid mutation[5]. The majority of these mutations occur in the H3F3A gene encoding 

histone H3.3, while a small portion occurs in the HIST1H3B gene encoding histone 

H3.1[6,7]. The H3K27M mutation inhibits Polycomb Repressive Complex 2 (PRC2) 

methyltransferase activity, leading to a global reduction of the transcriptional 

repressive trimethyl mark on histone H3 K27 (H3K27me3). The loss of H3K27me3 

results in the uncontrolled transcription of thousands of genes whose expression is 

normally tightly controlled during early brain development[8,9]. Tumors characterized 

by the H3K27M mutation are correlated with a significantly worse prognosis and a 

reduced chance of survival. Accordingly, the World Health Organization in 2016 

designated a molecular classification “diffuse midline glioma with H3K27M mutation” 

for this tumor type, one of the first such classifications for pediatric cancers[10].  

The constricted developmental time of growth and the distinct midline location 

of H3K27M-driven DIPG formation indicates that the tumorigenic mutation event may 

occur early in development, specifically prenatally. Induction of the H3K27M mutation 

with p53 loss was insufficient to generate tumors in the postnatal mouse brain, 

supporting the idea that the initial histone mutation takes place during 

embryogenesis[8]. Another study successfully generated an in vivo model of H3K27M-

driven DIPG by expressing the mutation in early neural progenitor cells (NPCs), again 

promoting the idea that the initial stage of tumorigenesis occurs prenatally[11].  

Attempts using human pluripotent stem cells (hPSCs) as a model for studying 

DIPG have shown promising results as the generation of embryonic stem cell derived 
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NPCs with the H3K27M mutation, p53 shRNA, and mutant PDGFRA with the D82V 

mutation gave rise to neuronal tumor cell formation. Conversely, when these 

genetically modified NPCs were transplanted into immunocompromised mice the 

results showed that these cells solely generated a lower grade glioma compared to 

the high-grade glioma that are present in patients. Furthermore, when mature 

astrocytes were transduced with the same combination as NPCs there was an 

absence of tumor formation concluding that tumorigenesis for H3K27M-driven DIPGs 

occurs within a specific cell type[12].  

However, the specific cell of origin and developmental timing for the H3K27M 

tumorigenic mutation remains a subject of study. Studies have suggested that 

neuroepithelial cells (neural stem cells), radial glia (neural progenitor cells), and 

oligodendrocytes precursor cells are possible candidates for the initial origin of this 

mutation[13,14]. Previous work from our lab demonstrates that H3K27M cells are 

transcriptionally similar to early neural cells which have not yet undergone an 

epithelial-to-mesenchymal transition (EMT). Because the EMT occurs several times in 

embryonic brain development and is controlled by H3K27me3 deposition, our study 

suggests that pre-EMT cells are particularly susceptible to the H3K27M mutation.   

Past models of H3K27M-driven tumorigenesis have been exclusively in cell 

culture or murine models. While these experiments have contributed invaluable 

insights, they are limited by the need to induce K27M expression in all cells in a 

particular population, and the inability to compare H3K27M induction at multiple time 

points. In addition, most studies have been in mice, which have notable differences in 

developmental timing and cell populations as compared to the embryonic human 

brain. These limitations have made it difficult to draw conclusions about the origins of 
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H3K27M gliomas, but fully understanding the cell of origin and developmental timing 

of gliomagenesis will be fundamental to successfully treating these tumors.  

Therefore, we present here the first human embryonic stem cell based cerebral 

organoid model of H3K27M occurrence in embryonic brain development. Human brain 

organoids have been shown in recent years to recapitulate with unprecedented 

accuracy the self-organizing cellular layering and neural signaling that occurs during 

early corticogenesis[15,16]. 3D organoid models provide researchers with a flexible 

and manipulatable platform for interrogating cellular trajectories and 

neurodevelopmental subtyping seen in human prenatal embryogenesis[17,18]. Thus, 

cerebral organoids allowed to develop over time recapitulate many of the processes 

and cell types that have been implicated in H3K27M-driven gliomagenesis. While 

recent studies have shown the successful generation of cancer organoids using 

glioma cells taken from patient tumors, these models are limited to studies of mature 

tumor growth, rather than allowing study of the initial oncogenic events[19,20]. Here, 

we generated a model which allows induction of H3K27M expression in isolated cells 

in an otherwise normal organoid, mimicking the initial H3K27M mutation event.  

 

Results 

A. hESCs with doxycycline-inducible H3K27M-GFP display reduced 

H3K27 trimethyl levels and robust GFP expression. 

In order to recapitulate the H3K27M mutation event in early brain development, 

we generated an H9-derived hESC line in which a single genomic copy of H3F3A-

mutant K27M is expressed from a TRE promoter in the presence of consistent 
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doxycycline. This system allows for flexible induction of the K27M mutation in order to 

study its effects at any developmental time point, and also allows turning off the 

mutation to evaluate whether its effects can be reversed.  

An eGFP sequence was included immediately downstream of the mutant 

histone sequence to allow detection of the mutant cells. A control line was generated 

in which wild-type H3F3A-GFP is expressed in the same manner. Two lentiviral 

transductions of H9 hESCs were necessary to generate these lines; the first 

transduction introduced a vector with the tTS/rtTA sequence which controls the TRE 

promoter (Figures 1A, S2) and the second transduction introduced the TRE-H3K27M-

eGFP or TRE-H3F3A-eGFP vector (Figures 1B, S1). Digital droplet PCR was used to 

verify single genomic integration of each construct (Figures S2, S3).  

We demonstrate expression of K27M-mutant histone H3 only in H3K27M-GFP 

hESC cells, after growing for 120 hours in 10 ug/mL doxycycline (Figure 1C). We also 

observe decreased levels of the transcriptional repressive mark H3K27 trimethyl (me3) 

in the H3K27M-GFP hESCs as compared to the H3WT-GFP (Figure 1C). We 

quantified the comparative decrease in H3K27me3 using ImageJ, and observed a 

nearly 50% decrease in trimethylation in the H3K27M cells compared with the H3WT 

cells (Figure 1D). This demonstrates that our experimental system recapitulates the 

epigenetic phenotype of H3K27me3 loss found in H3K27M-mutant gliomas. Finally, 

fluorescence imaging shows robust GFP expression after growing for 96 hours in 10 

ug/mL doxycycline, with no GFP expression without doxycycline (Figure 1E). This 

indicates that there is no leaky expression of the histone mutation in non-doxycycline 

conditions. 
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Figure 1. Generation of doxycycline-inducible H3K27M-GFP and H3WT-GFP 

expressing hESC lines. A) Map for the tTS/rtTA lentiviral vector. B) Map for the 

TRE promoter controlled H3K27M-GFP and H3WT-GFP lentiviral vectors. C) 

Western blots on protein lysate from cells incubated with Dox for 120 hours showing 

H3K27M expression and decreased H3K27me3 levels only in the H3K27M-GFP 

line. D) ImageJ quantification of H3K27me3 levels in both cell lines, normalized to 

the H3WT-GFP levels. E) GFP fluorescence in H3K27M-GFP cells after incubation 

with Dox for 48 hours. (TL, transmitted light) 
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B. Cerebral organoids seeded with H3K27M-expressing hESCs show 

preliminary alterations in cell type.  

To study the effects of H3K27M expression on the developing embryonic brain, 

we generated normal hESC-derived cerebral organoids seeded with either 0.5% or 

10% of H3K27M-GFP or control hESCs at aggregation (Figure 2A). The 0.5% 

organoids were used for immunofluorescence cell type marker staining, so that the 

smaller population of GFP+ cells would make it easier to visually discern cell 

interaction patterns. The 10% organoids were used for single cell RNA sequencing, 

so that the cell population of interest would be large enough to draw statistical 

conclusions. 

These organoid cultures recapitulate the early weeks of human prenatal 

cerebral development, and generate several relevant neural cell types whose normal 

development is dependent on H3K27me3-driven transcriptional control. Neural 

epithelial cells are induced during week 1, and by week 2 have differentiated into radial 

glia cells and Cajal-Retzius neurons. Intermediate progenitors and early deep-layer 

neurons are generated between weeks 4 and 5.  Differentiation into radial glia and 

intermediate progenitor cells from more primitive neural stem cells involves the 

epithelial-to-mesenchymal transition (EMT), which is controlled by H3K27me3-

induced transcriptional repression of epithelial genes[21,22]. Because the H3K27M 

mutation causes global reduction of H3K27me3, we hypothesized that H3K27M-

expressing cells would stall in differentiation at one of these developmental timepoints.   

The organoids were allowed to develop normally over 5 weeks according to 

previously published protocols[23] (see Methods), except that on day 8 10 ug/mL 

doxycycline was added to the growth media. Doxycycline was added at every media 
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change thereafter. Morphologically, the organoids appeared to develop normally, and 

no gross morphological changes were observed between the H3K27M-seeded or 

H3WT-seeded organoids (Figure 2A).  

At week 5, we harvested 0.5% H3K27M and H3WT organoids for 

cryopreservation and antibody staining for cell type marker proteins. Preliminary 

results shown in Figure 2B demonstrate feasibility and illustrate trends, but the 

cryosectioning and staining protocols are still being optimized, so these results are not 

final. The cell marker protein antibodies were co-incubated with an anti-eGFP antibody 

to ensure robust GFP visualization even after fixation. Anti-PAX6 staining of the 

H3K27M-seeded organoid (Figure 2B left) shows almost no mixing between the 

H3K27M cells (green) and the PAX6+ radial glia (purple), consistent with an H3K27M-

induced stall prior to differentiation into radial glia. In contrast, we observed significant 

co-staining (white) and mixing between the H3WT and PAX6+ populations (Figure 2B 

right).  

We also stained for TBR2, a marker of intermediate progenitor (IP) cells, whose 

differentiation should be impacted if H3K27M stalls EMT in early neural development 

(Figure 2C). We observed mixing and co-staining between the GFP+ and TBR2+ 

populations in both the H3K27M and H3WT seeded organoids. We also observed 

mixing between GFP+ and CTIP2+ (early deep layer neurons) in both types of 

organoids. Notably, the CTIP2 antibody was not co-incubated with the anti-GFP 

antibody, demonstrating that robust GFP fluorescence is visible even after fixation. 

Subsequent optimization of the staining protocol may eliminate the anti-GFP 

antibodies to decrease background signal. 
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The TBR2 and CTIP2 staining results may be explained because in this 

experiment, doxycycline was erroneously left out of the organoid growth media during 

weeks 4-5. This would not have impacted the generation of most radial glia cells, as 

much of their development occurs prior to week 4. However, intermediate progenitor 

cells and deep layer neurons are developing during week 4, so we hypothesize that 

removal of doxycycline may have induced the “rescue” of the H3K27M-induced 

epigenetic and transcriptional phenotypes, allowing normal development of the more 

mature cell types. We plan to repeat this experiment with and without the doxycycline 

in order to study this result. Additionally, because deep layer neurons are only 

beginning to arise in week 5, we will stain week 10 organoids to further study the effect 

of H3K27M on the differentiation patterns of these cells.  
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Figure 2. Developing human cerebral organoids with small populations of H3K27M 

cells. A) hESC-derived cerebral organoids were seeded with 0.5% or 10% of the experimental 

cell line (H3K27M-GFP or H3WT-GFP) and allowed to develop normally. B) PAX6 positive 

cells indicate radial glia cells. C) TBR2 positive cells indicate intermediate progenitors. D) 

CTIP2 positive cells indicate early deep layer neurons.  

 

C. Preliminary single cell RNA sequencing of H3K27M-seeded cerebral 

organoids reveals H3K27M-driven transcriptional changes. 

We performed single cell RNA sequencing (scRNA-seq) from week 2 +Dox 

cerebral organoids seeded with 10% H3K27M-GFP cells. Figure 3A shows confocal 
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microscope imaging of whole week 2 and week 5 organoids (TL=transmitted light). We 

observed discrete populations of GFP+, H3K27M-expressing cells with limited mixing 

with the wild-type cells.  

These results are preliminary since this was a low-depth sequencing run to 

check library quality. Higher-depth sequencing has been delayed due to the COVID-

19 pandemic. However, stringent quality control measures were implemented to 

ensure only cells with robust expression were analyzed. We followed the MULTI-seq 

protocol[24] for multiplexing samples with lipid-tagged indices, before processing 

samples with 10X Genomics single cell kit. We took three replicates from each 

genotype, with approximately 4 organoids per replicate. Single cell suspensions of 

each replicate were labeled with unique lipid-tagged indices and then combined, and 

de-multiplexed after sequencing using the MULTI-seq de-multiplexing computational 

protocol. The data from the H3WT-seeded organoids were of too poor quality to 

analyze, meaning that we are not able to take into account any biological changes 

introduced by the transduction procedure. However, we are still able to compare the 

H3K27M-expressing cells with H3 wild-type cells in the same organoids.  

The H3K27M scRNA-seq data were preprocessed and analyzed using the 

scanpy library in Python. Data from the 3 replicates were aggregated together for a 

total of 703 cells, which were reduced to 574 after filtering. H3K27M-transduced cells 

(n=27, 4%) were identified by implementing an H3F3A expression cutoff of 5, after 

observing a bimodal H3F3A expression distribution with the second mode starting at 

5, and with the assumption that cells transduced with an extra copy of H3F3A would 

have much higher expression than the rest of the cells (Figure 3B “Inferred 
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Transduction”). This is a preliminary measure and future analysis will instead identify 

transduced cells by reads that map to the eGFP gene.   

Leiden clustering found 8 clusters (Figure 3B “leiden”), and top ranked genes 

from each cluster were used to assign cell type based on cell type marker gene 

expression (Figure 3B “Cell Type”) using the scoreCT tool 

(github.com/LucasESBS/scoreCT). Substantial populations of neuroepithelial and 

radial glia cells were identified, along with a small population of intermediate 

progenitors which are most likely misassigned since week 2 is too early for this cell 

type. A few cells were unable to be assigned and are designated “NA”, likely a result 

of the low sequencing depth. Figure 3C shows expression of canonical early neural 

induction markers NR2F1, NES and VIM, indicating that our cerebral organoid model 

is undergoing neural induction as expected. 

Finally, we investigated whether the inferred transduced H3K27M-expressing 

cells demonstrate altered gene expression associated with the H3K27M mutation. The 

H3K27M mutation is known to reduce the activity of the PRC2 methyltransferase 

enzyme so that it is unable to deposit transcriptional repressive trimethyl marks at the 

H3K27 residue[25]. Thus, in H3K27M mutant cells, many genes whose transcription 

is usually targeted for repression by PRC2 activity exhibit uncontrolled expression[25]. 

We observed that in our dataset, expression of the PRC2 catalytic subunit EZH2 is 

comparatively low in the cluster containing most inferred H3K27M transduced cells 

(Figure 3D), consistent with reduced PRC2 activity. We next examined the expression 

of a list of PRC2 gene targets (BENPORATH PRC2 TARGETS from the Molecular 

Signatures Database), including only genes remaining in our dataset after filtering out 

lowly expressed genes. We observed overall higher expression of the PRC2 target 
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genes in the inferred H3K27M-transduced genes, consistent with reduced PRC2 

activity due to the H3K27M mutation (Figure 3E). As a comparison, we visualized the 

expression of a set of housekeeping genes[26–28] and observed similar overall 

expression between the inferred H3K27M-transduced cells and nontransduced cells 

(Figure 3F). 

 

 

Figure 3. Single cell RNA sequencing of H3K27M-seeded cerebral organoids. A) Confocal 

organoid images of whole 10% H3K27M-GFP organoids at week 2 and week 5. B) Scanpy 

UMAP projection analysis of 574 single cells. 4% are inferred transduced with H3K27M-GFP. 

Cell type was assigned based on expression of cell type marker genes in the highest ranked 
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genes in each cluster (scoreCT method). C) Expression of neural induction marker genes in 

the single cell RNA sequencing dataset. D) Expression of EZH2. E) Expression of PRC2 

targets by dot plot and log mean expression in the inferred transduced and nontransduced cell 

populations. In the dot plot, mean expression is shown by color, and fraction of cells expressing 

that gene in that category is shown by size of the dot. F) Expression of housekeeping genes 

by dot plot and violin plot in the inferred transduced and nontransduced cell populations. 

 

 

Discussion 
We demonstrate the successful generation of a cerebral organoid model of 

human embryonic brain development, with inducible H3K27M expression. We 

anticipate that this novel system will be very useful in characterizing the morphological, 

transcriptional and epigenetic effects of the histone mutation on early brain 

development. This system can be used to identify times in development which are 

most susceptible to the H3K27M mutation event, and can aid in identifying one or more 

potential cells of origin for deadly H3K27M-mutant gliomas.  

Preliminary data from this experimental system indicates that H3K27M-mutant 

hESCs develop differently than H3 wild-type cells in the same organoid. 

Immunofluorescence data suggests that H3K27M-expressing neuroepithelial cells 

may fail to differentiate successfully into radial glia cells, consistent with a stall in the 

epithelial to mesenchymal transition caused by global loss of H3K27 trimethyl 

transcriptional control. Single cell RNA sequencing shows that inferred H3K27M-

expressing cells tend to have higher expression of PRC2 target genes which would 

normally be repressed by the H3K27 trimethyl mark.  

126



Overall, although these experiments will need to be repeated, we have 

established the necessary cell lines and optimized robust protocols. Our novel 

experimental organoid system holds tremendous promise for answering longstanding 

questions in the field about the developmental origins of H3K27M gliomas.  

 

 

Materials and Methods 

 

Cell Culture  

Human embryonic stem cells (hESCs) were passaged every four to seven days 

at a splitting ratio of 1:3 to 1:6 to ensure that the cultures were 80 to 90% confluent on 

the day of the passage. The cells were passaged by washing thoroughly with DPBS 

(ThermoFisher Scientific) followed by treatment of 0.5 mM EDTA (Invitrogen) for 4-6 

minutes then gently washed to ensure that all the cells were completely lifted off the 

plate but not broken down to single cells. The cell suspension was transferred to new 

culture vessels pre-coated with vitronectin (ThermoFisher Scientific) and maintained 

in StemFlex medium (ThermoFisher Scientific). After 24 hours of passaging, the media 

was changed followed by bi-daily media changes.  

 

Lentiviral Transduction and Generation of Stable Cell Lines Expressing 

Doxycycline-inducible H3K27M-GFP or H3WT-GFP 

H9 hESCs were plated at a density of 7x104 cells per well of 24-well plate 

(Millipore Sigma). After 24 hours, the cells were transduced with a lentiviral vector 

carrying an expression construct with the tTS/rtTA open reading frame (ORF) and a 
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puromycin resistance sequence (Figure S1) at 20, 30 and 40 infectious units (IU). 

These IU were used for transduction optimization to give the lowest number of 

integrated viral vector copies. The hESCs were incubated for 6 hours at 37 ̊C, but after 

the first 6 hours the amount of StemFlex medium (ThermoFisher Scientific) was 

doubled per well. Medium was changed the next day. 48 hours post transduction, the 

cells were taken to single cell suspension using Accutase and seeded onto mouse 

embryonic fibroblasts (MEFs). Puromycin selection (10 ug/mL) was started 24 hours 

after seeding on MEFs and maintained at every media change. Colonies arising from 

a single cell were allowed to grow among MEFs for 4-7 days and were then transferred 

to vitronectin-coated culture vessels and grown and passaged normally. Digital droplet 

PCR was performed to quantify the number of genomic copies of the tTS/rtTA 

sequence in each cell clone (see next section). Two cell lines (named c5 and c8) were 

identified with single integration of the tTS/rtTa sequence. c5 was derived from the 30 

IU transduction and c8 was derived from the 20 IU transduction. Gene and protein 

expression of the tTS/rtTA construct were validated by RT-PCR and Western blot 

(Figure S2).  

c5 and c8 were each transduced with both the H3K27M-GFP virus and 

H3F3Awt-GFP (H3WT-GFP) virus separately, as described above except that the 

H3WT-GFP virus required incubation with 8ug/mL of polybrene (Millipore Sigma). Both 

plasmids contain a neomycin resistance sequence. Neomycin (ThermoFisher 

Scientific) selection (50 ug/mL) was started 24 hours after seeding on MEFs and 

maintained. Two independent cell lines will be derived from each tTS/rtTA line, for both 

H3K27M-GFP or H3WT-GFP. Currently, 2 H3WT-GFP and 1 H3K27M-GFP line have 
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been derived from RTTA c5 transductions (Figure S3). Nineteen clones have been 

isolated from the c8 transductions and are frozen awaiting ddPCR quantification.  

 

Reverse Transcriptase (RT) PCR 

RNA was isolated and purified from 5x106 cells per cell line (Zymo Direct-Zol 

kit). cDNA was generated from 1 ug of total RNA using random hexamers and the 

SuperScript III First Strand Synthesis System (Invitrogen). PCR was performed using 

the following primers to the tTS/rtTA ORF: CCAGTTTGAACAAGCAGAGG (forward 

sense), CAGAGGTTCTCGCCTGAATA (reverse sense). cDNA from non-transduced 

hESC cells was used as a negative control; cDNA from the same cells with purified 

tTS/rtTA vector DNA spiked in was used as a positive control. 

 

Digital Droplet Polymerase Chain Reaction (ddPCR) 

For ddPCR, genomic DNA was isolated and purified from 5x106 cells per cell 

line (Zymo Quick-DNA Kit). Before the initial ddPCR assay, purified DNA samples 

were digested with ECORI in a reaction containing 5 μL 10x CutSmart Buffer (BioLabs 

cat# B7204S), 5 μL HF ECORI (BioLabs cat# R310RL) and 44 μL of gDNA at 37°C 

for 1 hour and 65°C for 20 mins in an Applied Biosystems Veriti 96 Well Thermal Cycler 

(Fisher Scientific). The ddPCR assays were carried out in a total volume of 30 μL 

containing 50 ng of DNA template, 40 μL 3 ×ddPCR Master Mix (Bio-Rad 

Laboratories), 3.6 μL of forward, 3.6 μL of reverse primer, 11.8 μL of water and 1 μL 

of probes. The primer and probe sequences are shown in Table 2. A Bio-Rad QX200 

ddPCR droplet generator (Bio-Rad Laboratories) was used to divide the 20 μL mixture 

into approximately 20,000 droplets in a disposable DG8 Cartridge for the 
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QX100/QX200 Droplet Generator (Bio-Rad Laboratories). This was performed by 70 

μL of Probes droplet generation oil (Bio-Rad Laboratories) being added to the bottom 

wells of the same cartridge. The final volume of droplets in oil was approximately 40 

μL. The thermocycler was set to: 10 min at 95 ̊C, followed by 40 cycles of 30 seconds 

at 94 ̊C and 1 minute at 60 ̊C, followed by enzyme inactivation at 98 ̊C for 10 min and 

holding at 4 ̊C. Finally, the amplified products were analyzed using a QX200 droplet 

reader (Bio-Rad Laboratories). For quantification, probes and primers for the Ago gene 

(2 genomic copies) were included.  

 

Primer/Probe Sequences  

Ago - F 5’ TCTTGAGATGCCGGAACATAG 3’ 

Ago - R 5’ ACCAGCTGCGGAAGATTT 3’ 

Ago - P 5’-/56-

FAM/CCAGGGTCA/ZEN/ACCTTGTTTCTGCAAATA/31ABkFQ/- 3’ 

tTS/rtTA - F 5’ TACCGTGAGGTGATGCTGGAG 3’ 

tTS/rtTA - R 5’ CACCTTTGGTTTGGTAAACAGG 3’ 

tTS/rtTA - P 5’ -/5HEX/TTACAGCAA/ZEN/CCTGGCCTCCATGGCA/3IABkFQ/- 

3’ 

GFP - F 5’ ACTGGGTGCTCAGGTAGTGGTTGT 3’ 

GFP - R 5’ CAGCTCGCCGACCACTACCA 3’ 
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GFP - P 5’-

/5HEX/AACACCCCC/ZEN/ATCGGCGACGGCCCCGT/3ABkFQ/- 3’ 

 

Organoid Aggregation 

hESC cultures were incubated with Accutase for 10 minutes at 37C and then 

washed into single cell suspension and counted. The cells were then aggregated into 

spheroids using AggreWell-800 plates (3x106 cells per AggreWell well), after coating 

with Anti-Adherence solution for 2 hours (STEMCELL Technologies). During the 

aggregation process, the H3K27M-GFP or H3WT-GFP hESCs were mixed with 

normal H9 hESCs at final percentages of either 0.5% (for immunofluorescence) or 

10% (for single cell RNA-seq) based on initial cell counts. The organoids were 

transferred to a low-adherence 6 well plate (Corning) 48 hours after aggregation. For 

the first 18 days including aggregation, organoids were incubated in AggreWell media 

with 10 uM SB431542 and 3 uM IWR1. At day 18, the organoid plates were moved to 

an orbital shaker (100 rpm). For days 18-35, organoids were incubated in Sasai II 

media (see Supplemental Methods) with 10 ng/mL bFGF and 10 ng/mL EGF for the 

first week. For days 35-70, organoids were incubated in Sasai III media (see 

Supplemental Methods), and after day 70 incubated in Sasai IV media. Doxycycline 

(10 ug/mL) was added on day 7.  

 

Western Blotting  

Cell pellets (1.5x107 cells) were lysed with 1X RIPA buffer (abcam) and 

protease inhibitor (Millipore Sigma). 26 μL of total protein lysate was loaded in 12% 

NUPAGE Bis-Tris protein gel (ThermoFisher Scientific) and electrophoresed. Proteins 
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were transferred onto nitrocellulose membranes by using a transfer apparatus iBlot 2 

(ThermoFisher Scientific) at 20V for 4 minutes. Membranes were then blocked with 

5% non-fat milk in PBST for 1 hour. The membranes were washed three times for 5 

minutes in PBST and incubated with antibodies against H3 (1:5000, Abcam cat# 

12079), H3K27M (1:250, Abcam cat# 190631), or H3K27me3 (1:500, Cell Signaling 

cat# 9733) at 4°C overnight in 5% non-fat milk. Membranes were again washed with 

PBST three times for 5 minutes and incubated with the appropriate secondary antibody 

containing chemiluminescence for 1 hour in 5% non-fat milk. Blots were washed with 

PBST three times for 5 minutes each, incubated in HRP Chemiluminescent Substrate 

(ThermoFisher) and visualized on ChemiDoc Imaging System (BioRad). Secondary 

antibodies were used against the appropriate primary antibodies shown in Table 1. 

Each experiment was repeated independently three times. Quantification of the 

western blots were completed using the Image J software.  

 

1° Antibodies Dilutions Company & 

Catalog Number 

TetR Monoclonal Antibody (mouse) 1:1000 Takara Bio cat# 

631131 

Histone H3 (goat) 1:5000 Abcam ab12079 

H3K27M (rabbit) 1:250 Abcam ab190631-

10 
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H3K27me3 (rabbit) 1:500 Cell Signaling 

Technology 

9733S 

2° Antibodies Dilutions Company & 

Catalog Number 

Goat Anti-Mouse IgG-HRP 1:10,000 SCBT sc-2005 

Donkey Anti-Goat IgG H&L (HRP)  1:12,500 ThermoFisher 

cat#15999 

Goat Anti-Rabbit IgG H&L (HRP)  1:250 (for H3K27M) 

1:1000 (for 

H3K27me3) 

Abcam cat#6721 

 

Single cell RNA sequencing 

We followed the MULTI-seq protocol[24] for multiplexing samples with lipid-

tagged indices before processing samples with the 10X Genomics Chromium Next 

GEM Single Cell 3’ Kit v3.1. Biological replicates (4-8 organoids per replicate) were 

treated with trypsin to generate single cell suspensions and filtered through cell 

strainers. Cell counts were generated to ensure 500,000 cells or fewer per replicate 

and final pellets were resuspended in 180 uL PBS. All subsequent MULTI-seq steps 

were performed on ice. Cell suspensions were incubated for 5 minutes with a 1:1 molar 

mixture of an “anchor” lipid modified oligonucleotide (LMO) with a unique MULTI-seq 

sample barcode per replicate. A “co-anchor” LMO was diluted 1.1 uL in 20 uL PBS 
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and 20 uL of dilution was added to each replicate for 5 additional minutes before 

quenching with 1 mL 1% BSA. Cells were pelleted and washed with 1% BSA twice. 

All samples were combined, filtered through a cell strainer, counted, and diluted to 575 

cells/uL to achieve 15,000 cells per each of 2 10X lanes. GEM generation, GEM-RT, 

and GEM-RT cleanup were performed according to 10X Chromium v3.1. cDNA 

amplification was performed according to 10X protocol except that the cDNA 

amplification mix included 1 uL of 2.5 uM MULTI-seq additive primer to ensure cDNA 

amplification of MULTI-seq barcodes. The barcode and endogenous cDNA fractions 

were separated during a 0.6X SPRI bead size selection, and the endogenous cDNA 

fraction was prepared according to the 10X protocol. The barcode fraction was 

prepared using a small RNA enrichment protocol with 3.2X SPRI and 1.8X 

isopropanol, before washing beads with 80% ethanol and resuspension in elution 

buffer. Finally, library PCR used 3.5 ng barcode DNA with 2.5 uL 10uM each Universal 

I5 primer and RPI primer (unique for each 10X lane). Endogenous cDNA and barcode 

libraries were sent for NGS and the resulting cDNA data were de-multiplexed using 

the barcode data. 

 

Immunofluorescent staining of cryopreserved organoids 

Individual organoids were fixed in 200 uL 4% PFA at room temperature for 30 

minutes and then rinsed 3x in PBS. Each organoid was then incubated in 200 uL 30% 

sucrose in 4C for 24 hours. The organoid was then preserved in tissue freezing 

medium (Thomas Scientific) in a cryomold (Fisher Scientific) at -80C. Preserved 

organoids were sliced to 20 um and placed on microscope slides. Slides were stored 

at -80C. For staining, slides were warmed to room temperature and washed once in 
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PBST for 5 minutes without rocking to remove tissue freezing medium. We performed 

secondary fixation of the slides in 4% PFA for 30 minutes, followed by a second set of 

3x PBST washes with rocking. Samples were then incubated in a permeabilizing 

solution (0.15% TritonX in PBS) for 15 minutes, and then blocked in 15% BSA (15% 

BSA in PBS) for 2 hours. Primary antibodies were diluted to either 1:500 or 1:1000 in 

blocking solution. Samples were then incubated overnight at 4C in primary antibody 

solution. The next day, samples were washed 3x in PBST with rocking. Secondary 

antibodies were diluted in blocking solution to either 1:500 or 1:1000. Samples were 

then incubated in secondary antibody solution at room temperature for 2 hours without 

exposure to light. Samples then went through another set of 3x PBST washes. A drop 

or about 20 uL of ProLong Gold Antifade Mountant (Thermo Fisher) was applied to 

each sample and a glass coverslip was placed atop each sample. The samples were 

then allowed to dry for 24 hours in the dark. 
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Supplementary Figures 
 

 

Figure S1. Vector maps used for lentiviral transductions. A) tTS/rtTA vector. B) H3.3 

K27M vector. C) H3.3 wild type vector. 
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Figure S2. Digital droplet PCR, Western blot and RT-PCR validation of tTS/rtTA 

expressing hESC cell lines. A) ddPCR quantification of rtTA sequence genomic copies 

(normalized to Ago quantification). Clones 3-8 show single genomic integration. Negative 

control is gDNA from non-transduced hESC cells. B) Western blot (TetR mouse monoclonal 

antibody) showing expression of rtTA protein (35 kDa) in cell lysate. Clones 2, 3, 5 and 8 

show robust expression. C = negative control lysate from non-transduced cells. C) RT-PCR 

showing RNA expression of the rtTA sequence (expected PCR product 200 bp). Of the single 

integrant clones with robust protein expression, only clones 5 and 8 show RNA expression. 

The rtTA+ positive control lane has cDNA from non-transduced hESCs with purified tTS/rtTA 

vector DNA spiked in, and the rtTA- negative control lane just has cDNA from the non-
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transduced hESCs.  

 

 

 

Figure S3. Digital droplet PCR validation of H3K27M-GFP and H3WT-GFP expressing 

hESC cell lines. ddPCR quantification of eGFP sequence genomic copies (normalized to 

Ago quantification). Shown here are the current successful cell lines with only one genomic 

copy of the eGFP sequence, resulting from lentiviral transduction. All 3 lines were derived 

from RTTA clone 5, which is used as the negative control here since it does not express 

eGFP.  
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Chapter 6: Future Directions and Other Work 

6.1 Future directions: H3K27M-inducible cerebral organoid experiments 

I have designed a plan for comprehensive characterization of the novel 

H3K27M-inducible cerebral organoid system. For these experiments, H3K27M-GFP 

or H3WT-GFP expression will be induced on day 8 as before, in organoids seeded with 

0.5% or 10% of the appropriate transduced cell line. At weeks 2, 5 and 10, single cell 

RNA sequencing data (4 replicates each genotype) will be taken from 10% seeded 

organoids and processed using the MULTI-Seq protocol for sample multiplexing[37], 

followed by 10X Genomics Single Cell RNA-Seq Kit v3.1. At the same weekly 

timepoints, 3 organoids from each genotype will be cryopreserved and sectioned for 

staining. At all timepoints, each genotype will be stained for SOX2 (neural epithelium), 

PAX6 (radial glia), and nuclear DAPI. At weeks 5 and 10, each genotype will also be 

stained for TBR2 (intermediate progenitors) and CTIP2 (deep layer neurons). We will 

also take CHIP-seq data on the H3K27me3 mark to show its chromatin binding patterns 

in the H3K27M-mutant cells as compared to the wild-type cells.  

If no interesting differentiation patterns are observed with H3K27M induction 

at day 8, we will try induction during week 3 when stem cells are differentiating into 

progenitor cells, and week 6 when deep layer neurons are developing.  

For long-term future directions, this experimental platform lends itself to 

therapeutically-directed testing, and as the organoid technology evolves, may be 
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improved by the addition of relevant immune or progenitor cells. For drug testing, the 

UCSC Chemical Screening Center (CSC) has several large compound libraries 

including both FDA-approved drugs and novel drug-like molecular compounds. A 

clinically-relevant future direction would be to subject the H3K27M-expressing 

organoids to high-throughput drug screening at the CSC to identify compounds with 

activity against pre-oncogenic H3K27M-expressing cells. Pro-differentiation therapies 

have shown promise in developmental pediatric cancers[38–40], so this approach has 

the potential to identify compounds which reverse the H3K27M-associated 

differentiation stall. 

Additionally, in order to understand the role of the brain’s immune system in 

the early development of H3K27M-associated gliomagenesis, involving microglia cells 

would be a very relevant addition to this model. Preliminary work in the Haussler lab 

has already shown the capacity for including microglia in cerebral organoids.  

Lastly, because several groups have identified an oligodendrocyte-precursor-

like (OPC) dominant malignant cell type in mature H3K27M gliomas, it would be 

worthwhile to investigate the consequences of inducing H3K27M at the OPC stage as 

compared to other developmental stages. Currently, our system shows a small cell 

population with early OPC-like signaling, but additional optimization and 

characterization is needed to promote differentiation along the oligodendrocytic 

lineage and show the presence of OPCs and mature oligodendrocytes. A recent study 

demonstrated the successful generation of organoids containing mature 

oligodendrocytes, astrocytes and neurons, and importantly shows that oligodendrocyte 
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developmental stages are present and observable[41]. Future work incorporating OPCs 

into our organoids could follow a similar protocol. 

6.2 Other work: Cholesterol biosynthesis as a novel therapeutic vulnerability in 

DIPG  

In an effort to identify unique therapeutic vulnerabilities in DIPG, I identified 

genes with outlier expression in in 3 DIPG tumor-derived cell lines[21] as compared to 

the Treehouse cancer compendium (pan-cancer) or other gliomas (pan-disease) 

(github.com/UCSC-Treehouse/CARE, compendium v5). HMGCR, the rate-limiting 

enzyme in the cholesterol biosynthesis pathway[42], was the only targetable gene with 

both pan-cancer and pan-disease outlier expression in all 3 DIPG cell lines. Further 

investigation revealed that HMGCR, HMGCS1, and IDI1, key enzymes in the 

cholesterol biosynthesis pathway, all have significantly higher expression in DIPG 

patient samples (Treehouse compendium) as compared to TCGA adult glioblastoma 

(aGBM) or GTEx normal healthy cerebellum[43] (Figure 6.2.1), indicating a potential 

dependence of DIPG cells on cholesterol biosynthesis.   

 
Figure 6.2.1. Expression of key cholesterol biosynthesis enzymes in samples from DIPG tumors, TCGA 
adult GBM tumors, and GTEx normal cerebellum from healthy deceased donors. 
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Notably, most of the brain’s endogenous cholesterol is used for the production 

of myelin[44,45], which is interesting in the context of recent work showing that DIPG 

cells integrate into neural circuits and promote neuronal excitability for 

proliferation[46,47]. Such dependency on neuronal activity suggests that DIPG tumors 

may hijack normal myelination pathways for glioma cell proliferation. I found that 

myelin subunits MBP and CNP have significantly higher expression in DIPG compared 

to aGBM or normal cerebellum (Figure 6.2.2 A,B). Additionally, the myelination 

pathway displays higher overall expression in DIPG (Figure 6.2.2 C,D). These results 

suggest that if DIPG tumors hijack myelination for proliferation, this could introduce a 

metabolic dependence on production of endogenous cholesterol in the brain. Because 

decreased myelin is involved in multiple sclerosis and other myelin disorders[48], 

therapeutically targeting myelination in a young child can have long-term negative 

effects on cognitive development and function, but I hypothesized that targeting 

cholesterol biosynthesis using a statin may be effective and relatively harmless. 
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Figure 6.2.2 Expression of myelin genes and pathway in DIPG, aGBM and normal cerebellum. A) 
Expression of MBP (myelin subunit). B) Expression of CNP (myelin subunit). C) Heatmap of 
myelination pathway genes in DIPG and normal cerebellum. D) Heatmap of myelination pathway genes 
in DIPG and adult GBM. 

 

To test this hypothesis, the Agnihotri lab (University of Pittsburgh) treated 

DIPG tumor-derived cell lines SU-DIPG-IV and SU-DIPG-VI with simvastatin, a well-

characterized inhibitor of HMGCR and cholesterol biosynthesis[49]. As compared to 

vehicle control, simvastatin decreased DIPG cell viability nearly 50% in both cell lines, 

with almost no effect on normal human astrocytes or neural stem cells (Figure 6.2.3). 

This indicates that simvastatin is preferentially toxic to DIPG cells, and demonstrates 

that outlier gene expression can predict in vitro response. 
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Figure 6.2.3. Simvastatin treatment of DIPG cell lines SU-DIPG-IV and SU-DIPG-VI, normal human 
astrocytes and neural stem cells. (Agnihotri lab) 

 

This project will be continued in the Vaske lab. Future directions include 

repeating simvastatin treatment on a larger (n=14) cohort of DIPG cell lines, evaluating 

whether simvastatin affects myelination activity using a myelination assay, and 

knocking out HMGCR with CRISPRi or shRNA to validate that DIPG cells are 

dependent on HMGCR activity.   

6.3 Other work: Hydra Bayesian hierarchical clustering analysis identifies novel 

subtypes of pediatric high grade glioma 

Identifying clinically relevant subtypes in pediatric cancer is an ongoing 

challenge, because while individual patients within a disease type may respond 
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differently to therapy, often the small numbers of tumor cases at each institution make 

it difficult to assemble a cohort large enough to represent clinically meaningful 

diversity. Because the Treehouse cancer compendium contains pediatric high grade 

glioma (pHGG) RNA-seq samples from many institutions, I used the recently 

published hydra clustering method to search for clinically relevant pHGG 

subtypes[50].  

Identifying relevant subtypes in high-dimensional gene expression data is 

difficult overall because the number of genes greatly exceeds the number of samples, 

making traditional unsupervised clustering methods underpowered. Therefore, hydra 

identifies clusters based on multimodal gene expression, based on previous work that 

shows that cancer subtypes fall into multimodal expression patterns[51]. Hydra has 

been shown to identify clinically relevant subtypes in other pediatric cancers such as 

neuroblastoma and small blue round cell tumor cohorts[50]. Therefore, I applied the 

hydra enrich unsupervised clustering method to the Treehouse pHGG cohort (n 

samples=78, compendium v9), and 3 novel clusters were identified (Figure 6.3.1).  

Interestingly, clusters 0 and 1 were composed of a mixture of H3K27M-mutant 

and H3WT gliomas, whereas past pan-glioma analyses have typically found that 

H3K27M gliomas clustered together[3]. This indicates that hydra is capable of 

identifying subtle gene expression subtypes beyond the genes correlating with mutation 

status. Cluster 0 was enriched for BCR and complement immune activation, as well as 

oligodendrocytic and skeletal developmental signals which may be expected for 

H3K27M-mutant gliomas. Cluster 1 was enriched for interferon and neutrophil 
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immune signaling, as well as other cancer pathways including NFKB signaling. Cluster 

2, composed of a mixture of IDH-mutant and wild-type gliomas, was not enriched for 

immune signaling but was characterized by metabolism and RNA processing 

pathways.  

 
Figure 6.3.1. Hydra clustering analysis reveals 3 novel clusters in a pHGG cohort. A) Gene 
expression heatmap of the 3 hydra clusters, showing the expression of 95 multimodally expressed genes 
which are enriched for coordinated expression of GO term genes, identified by the hydra enrich 
command. B) Representative GO terms significantly enriched in each cluster.  

 

I next correlated hydra clusters with specific types of immune cells, because 

clusters 0 and 1 appear enriched in immune signaling, and cancer subtypes based on 

immune enrichment have prognostic significance[52]. First, I used ESTIMATE to infer 

the levels of immune cell infiltrate in each sample[53], confirming that clusters 0 and 

1 have significantly higher immune infiltration than cluster 2 (Figure 6.3.3 A). Then, I 

used CIBERSORT and the leukocyte LM22 immune gene expression signatures to 

identify specific immune cell types with high expression in each cluster[54]. 
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Monocytes have higher expression in clusters 0 and 1, while activated natural killer 

cells and eosinophils have higher expression in cluster 0 (Figure 6.3.3 B). A next step 

for this analysis would be to identify levels of microglia infiltration, since the 

CIBERSORT LM22 immune signatures dataset does not include microglia, and the 

microglia-glioma microenvironment has been the subject of much study on 

immunosuppression and potential immunotherapy development[55,56].  

 
Figure 6.3.2. Hydra pHGG clusters are characterized by immune infiltration. A) Immune 
infiltration score from ESTIMATE for samples within hydra clusters. B) CIBERSORT enrichment for 
three types of immune cells with significant differences between hydra clusters.  

 

Finally, I hypothesized that although the H3K27M mutation introduces a strong 

gene expression signal due to epigenetic dysregulation, K27M-mutant pHGG patient 

cohorts may in fact harbor diverse gene expression subtypes. I attempted hydra enrich 

on the H3K27M cohort (n=33) but only one cluster was identified, highlighting the 

known transcriptional similarity of H3K27M gliomas. Then, I applied the hydra sweep 

method to identify gene sets with differential expression within the H3K27M-only 

pHGG cohort. Hydra sweep results can be used to identify clusters with differential 

expression of each specific gene set. The sweep command identified 169 differentially 

expressed Gene Ontology (GO) terms in the H3K27M-only cohort. The majority of the 

GO terms had non-clinical relevance; for example, several gene sets were differentially 
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expressed due to the presence of genes on the Y chromosome and so neatly separated 

the dataset into male and female patients.  

However, 2 GO terms were particularly interesting: GO Stem Cell 

Differentiation and GO Mesenchymal Cell Differentiation. Both GO terms contained 

2 transcription factors known for their roles in early brain cell type differentiation: 

PAX3 and SOX10. Interestingly, the expression of these genes was nearly opposite each 

other: pHGG patient samples with high PAX3 expression had lower expression of 

SOX10, and vice versa (Figure 6.3.3 A). A PAX3-high DIPG subtype has already been 

characterized as inhibiting apoptosis and enhancing PDGFb-induced brainstem 

gliomagenesis[57]. However, the SOX10-high subtype is novel, as is the observation 

that the expression of these transcription factors is mutually exclusive in a H3K27M-

only cohort.  

Notably, PAX3 and SOX10 have extremely time- and cell-type-restricted 

expression during early brain development (Figure 6.3.3 B). PAX3 is exclusively 

expressed in neural stem cells, with no expression in mature astrocytes[58]. In contrast, 

SOX10 is a marker of the oligodendrocytic lineage whose expression is required for 

formation of myelinating oligodendrocytes[59]. Most interestingly, both neural stem 

cells and oligodendrocyte precursors have been proposed as cells of origin for 

H3K27M glioma[14,60]. Therefore, I hypothesize that the expression of these 

transcription factors may represent different lineages deriving from each glioma’s cell 

of origin, and that H3K27M-mutant gliomas may actually have at least 2 possible cells 

of origin. Further experimental study is needed to follow up on this hypothesis. 
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Figure 6.3.3. Hydra clustering analysis of H3K27M-only pHGG reveals novel developmental 
subtypes. A) Expression of PAX3 and SOX10 in clusters derived from hydra sweep. B) Illustration of 
normal expression timing of PAX3 and SOX10 during brain development. 

 

As a preliminary in vitro verification, we performed RT-PCR for PAX3 and 

SOX10 in 10 H3K27M glioma patient-derived cell lines and 2 H3 wild-type (wt) cell 

lines (Figure 6.3.4). Several cell lines did not express either transcription factor, but 

SU-DIPG-4, 19 and 21 expressed PAX3 but not SOX10, while SU-DIPG-6, 25, and 30 

expressed SOX10 but not PAX3. This partially recapitulates the computational analysis 

and provides a potential experimental framework for comparing PAX3+ vs SOX10+ 

glioma cells.  

 

 
Figure 6.3.4. Hydra H3K27M pHGG subtypes are represented in DIPG patient-derived cell lines. 
All cell lines except pcGBM2r are “SU-DIPG” cell lines supplied by Dr. Michelle Monje, Stanford 
University. pcGBM2r is a pediatric glioblastoma patient-derived cell line. 

 

152



This project will be continued in the Vaske lab. Future directions include 

repeating the hydra analysis with a larger cohort of pHGG recently included in the 

Treehouse cancer compendium (total=120, H3K27M=59), and correlating hydra 

clusters with co-mutation and clinical attributes.   
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Chapter 7: Summary of Doctoral Achievements 

In addition to the projects detailed here, my achievements during my doctoral 

program involve authorship on other publications where I had a collaborative role, 

analysis of clinical pediatric cancer cases in the Treehouse Initiative, presentation of 

my work at research conferences, and mentoring and teaching younger students.    

I have collaborated with Dr. Sameer Agnihotri’s lab at University of Pittsburgh 

on several projects, providing computational analysis of RAS signaling, methionine 

metabolism, and developmental cell signaling in pediatric gliomas. As a result, I am a 

co-author on the 2019 Cancer Research publication “Identification of novel RAS 

signaling therapeutic vulnerabilities in Diffuse Intrinsic Pontine Gliomas”[61], and 

have contributed to other projects that are not yet published.  

As a PhD student in the Treehouse Childhood Cancer Initiative, I served as the 

case analyst for many pediatric cancer cases from Stanford, UCSF and Children’s 

Hospital of Orange County. Serving as a case analyst involves analyzing gene outlier 

and pathway enrichment data for an individual childhood cancer RNA-seq sample, to 

provide a summary of oncogenic overexpression and potential therapeutic directions. I 

have presented Treehouse analysis to oncologists in molecular tumor boards at these 

institutions, and I also served as the second reviewer for several cases. My involvement 

in Treehouse analysis led to my inclusion as a co-author on the 2019 JAMA Network 

Open publication “Comparative Tumor RNA Sequencing Analysis for Difficult-to-

Treat Pediatric and Young Adult Patients With Cancer”[12] and the Scientific Data 

publication “Barriers to accessing public cancer genomic data”[62]. 
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Over the past several years, my work has been selected for presentation at 

several national and international research conferences. Less than a year into my 

doctoral program, I represented Treehouse at multiple events, including serving as a 

panelist at the UCSC Kraw Lecture Series on precision medicine in pediatric cancer, 

and giving an oral presentation at the Cancer Informatics for Cancer Centers 

Symposium. Additionally, I presented my research in poster sessions at the TGen 

Pediatric Precision Oncology Conference and the International Symposium on 

Pediatric Neuro-Oncology in 2018. I also presented the results of Treehouse 

comparative gene expression analysis in a Stanford-based clinical registry at the 

American Association for Cancer Research Advances in Pediatric Cancer Research 

Conference in 2019. My research abstract was also selected for an oral presentation at 

the Society of Neuro-Oncology Pediatric Research Conference in early 2019.  

Finally, I have served as a mentor to several high school and undergraduate 

students during my PhD. I worked as a Graduate Student Teaching Assistant for two 

BME courses, and was awarded the 2016-2017 Outstanding Teaching Assistant Award. 

Additionally, during the summer of 2018 I was hired as an instructor to teach a 

workshop on cancer genomics for the Stanford Pre-Collegiate International Institutes 

(SPII). The SPII is designed to give a diverse, international group of high-school 

students from underrepresented populations the opportunity to experience American 

college life through academic workshops and social and cultural activities, and I 

contributed by teaching one of the few STEM workshops. I was selected for the 2017-
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2018 UCSC T-32 Genome Sciences NIH Training Grant, and designed and led the 

NHGRI Bootcamp for incoming UCSC BME graduate students.  

In conclusion, my doctoral work has addressed outstanding questions in clinical 

research, and particularly in pediatric neuro-oncology. My computational research has 

contributed to the field by demonstrating how gene expression can be used for 

identifying both known and novel molecular subtypes in pediatric cancers, and in 

characterizing therapeutic vulnerabilities and developmental origins in lethal pediatric 

brainstem gliomas. I have also developed a novel experimental organoid model for 

histone mutant gliomas, with unprecedented capabilities for intrinsically and flexibly 

characterizing tumorigenic origins, thus paving the way for finally understanding and 

effectively treating these deadly cancers. 
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