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Abstract

Diamond optomechanical crystals for hybrid mechanical systems

by

Jeffrey Vernon Cady

Interest in hybrid mechanical systems, in which a mechanical oscillator is coupled

to quantum elements such as spins, superconducting circuits, and optical photons, has

increased in recent years due to the novel means of controlling and coupling disparate

quantum systems that mechanical motion enables. In this dissertation we study the

specific system of diamond optomechanical crytals (OMCs), which are capable of hosting

and coupling to embedded defect qubits such as nitrogen-vacancy (NV) and silicon-

vacancy (SiV) center spins. We calculate the expected spin-phonon coupling rate for

SiV spins interacting with a diamond OMC mechanical mode and find expected zero-

point couping rates of > 1 MHz. We design, fabricate, and measure diamond OMCs,

demonstrating GHz-scale mechanical modes with quality factors > 105 at liquid helium

temperatures. We also measure nitrogen-vacancy center spins embedded in diamond

OMCs and find T2 = 72 µs, comparable to the coherence times of NV spins in bulk

diamond with natural 13C abundance.
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Chapter 1

Introduction

1.1 Hybrid mechanical systems

As quantum systems for information processing, communication, and sensing continue

to grow in size and complexity, novel methods of controlling and connecting individual

subsystems are needed. Hybrid mechanical systems, which use mechanical oscillators

to control and connect quantum elements, fulfill just such a role and have grown in

prominence in recent years due to their ability to couple to a wide variety of quantum

systems (see figure 1.1) and the number of practical advantages mechanical systems have

over their photonic analogues. For example, the reduced speed of sound at a given

frequency relative to the speed of light enables more compact devices; the inability of

sound to propagate in vacuum reduces crosstalk between adjacent devices on a chip;

and mechanical devices have been shown to be highly coherent, with mechanical quality

factors exceeding 109 [1]. Most importantly, for us, is the ability of mechanics to facilitate

interactions between quantum elements that would be difficult otherwise. Specifically,

it is notoriously difficult to engineer coherent interactions between vacancy-center spins

in diamond. Direct coupling between spins generally requires a very short (≈ 10 nm)

interaction range [2] or relies on weak coupling to electromagnetic modes for longer-range

coupling [3]. However, as we will see, these spins can couple quite strongly to mechanical

1



Introduction Chapter 1

Figure 1.1: An archetypal hybrid mechanical system, in which various quantum ele-
ments interact with a common mechanical mode via a variety of different interaction
forces. Figure from [5].

motion via crystal strain, enabling long-distance interactions between spins via a common

mechanical mode [4].

The standard figure of merit for a qubit coupled to a mechanical resonator is the

cooperativity

C =
g2

Γγth
(1.1)

where g is the zero-point motion coupling rate between the qubit and the mechanical

resonator, Γ ∝ T2 (with T2 the coherence time of the qubit) is the decoherence rate of

the qubit, and γth ∝ T/Qm (with Qm the mechanical resonator’s quality factor and T

the system bath temperature) is the thermalization rate of the mechanical resonator (see

chapter 2). C > 1 is the rough boundary for a hybrid mechanical system existing in the

quantum regime, so we see that large qubit-phonon coupling, long qubit coherence, low

temperature, and large mechanical quality factor are all critical elements for creating a

2



Introduction Chapter 1

high cooperativity hybrid mechanical system.

Prototypical hybrid mechanical systems included coupling between a magnetic-tipped

cantilever and a single spin [6] and piezoelectric coupling between a superconducting qubit

and a thin-film bulk acoustic resonator [7]. Since then, devices employing piezoelectric

coupling between mechanical oscillators and superconducting qubits have pushed fur-

ther into the quantum regime. Devices coupling transmon qubits to high-overtone bulk

acoustic resonators (HBARs) have demonstrated very high cooperativity and creation

and control of phonon Fock states [8]. Surface acoustic waves (SAWs) have also been

coupled to superconducting qubits [9, 10, 11] with the added advantage that these devices

are readily integrated into existing superconducting circuit architectures.

Outside of the quantum regime, many varieties of optically-active embedded defects

have been coupled to mechanical motion via strain in the surrounding crystal lattice.

Mechanical driving has been used to modulate the optical emission of defects in hexagonal

boron nitride [12] and InAs quantum dots [13]. Mechanical driving has also been used

to control defect spins in, for instance, silicon carbide [14] and diamond. It is the rich

environment of diamond hybrid mechanical systems that we will concern ourselves with

in the following section.

Lastly, and particularly germain to this dissertation, are devices that couple photons

and mechanical motion, so-called optomechanical devices, which are most mature in

silicon but have also been demonstrated in aluminum nitride [15], GaAs [16], and diamond

[17, 18, 19] to name a few. Such devices have been used to demonstrate laser cooling to

the mechanical ground state [20], remote entanglement of mechanical oscillators [21], and

extraordinarily high mechanical quality factors exceeding 109 for GHz-scale modes [1].

Analogous electromechanical devices consisting of a superconducting LC oscillator with

a capacitor formed by a vibrating aluminum drumhead have also been a scientifically

productive platform, demonstrating, for instance, squeezing of the mechanical mode [22].

3



Introduction Chapter 1

1.2 Diamond mechanics

The study of mechanics in diamond is primarily motivated by potential applications

in coupling to defect centers in diamond such as the negatively charged nitrogen-vacancy

(NV) and silicon-vacancy (SiV) centers, the orbital and spin degrees of freedom of which

have been shown to couple to mechanical motion via crystal strain. However, diamond has

a number of properties that make it a promising mechanical material. Firstly, it is a very

stiff material, with a Young’s modulus of 1050 GPa, nearly an order of magnitude higher

than silicon. Secondly, and relatedly, it has a larger speed of sound (12,000 m/s) than

silicon, such that the wavelength of a given frequency vibration is larger in diamond. This

results in larger (and thus easier to fabricate) devices. The main drawback to diamond

is the difficulty in fabricating monolithic mechanical structures that can take advantage

of diamond’s material properties. Thin films of diamond cannot be grown on other

materials, so a direct analogue to silicon-on-insulator membranes is not possible. This

obstacle is navigated via several fabrication protocols, including diamond-on-insulator

techniques that employ wafer bonding to adhere a diamond membrane onto a removable

dielectric layer [23, 24, 18], angled etching techniques [17], or quasi-isotropic diamond

etches [25]. This difficulty is circumvented by employing mechanics in bulk diamond

such as SAWs [26, 27] and HBARs [28], however these devices require deposition of a

piezoelectric material in order to drive the mechanics.

Below, we will give an overview of different types of diamond mechanical oscillator

and how they are applied in hybrid mechanical systems.

1.2.1 Diamond hybrid mechanical devices

Coupling diamond mechanical resonators to defect-centers in diamond (particularly

nitrogen-vacancy (NV) and silicon-vacancy (SiV) centers) [5] has shown promise for

4
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Figure 1.2: a) A scanning electron micrograph of diamond cantilevers. b) The strain
profile of a singly-clamped cantilever, showing high-strain regions near the surfaces
and clamping points. c) Plot of NV center spin coherence time T2 versus depth from
the diamond surface, from [38], showing reduced coherence for near-surface NVs.

many interesting quantum applications, such as coherence extension of defect spins via

mechanically-driven continous dynamical decoupling [29, 30], entanglement of spatially-

separated defect spins [4], and cooling of mechanical motion via phonon-assisted optical

transitions [31] and spin-strain coupling in the NV center excited orbital state [32].

Cantilevers

Diamond cantilevers, consisting of singly-clamped springboards (or analogously double-

clamped beams [33]) were very successful for initial implementations of devices coupling

mechanical motion to nitrogen-vacancy centers in diamond due to their relative ease of

fabrication, simple theoretical behavior, and ability to be driven to large amplitudes with

off-the-shelf piezoelectric actuators clamped to the sample mount (due to their relatively

low frequency range (≈ 1 MHz)). Such devices have been used to control both the spin

[34, 24] and orbital [35] states of NV centers, for measurement of the strain coupling

constants [34, 36, 35], and have shown very high mechanical quality factors [23, 37].

5
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However, cantilevers present significant obstacles to reaching the quantum regime.

Their typically low frequencies make it more difficult to passively cool them into their

ground state with cryogenics. Meanwhile, their strain profile (shown in figure 1.2b) is

such that there is high strain near the clamping point and near the surface. This strain

profile leads to large mechanical clamping losses (see chapter 2) and requires defects to be

near the surface to experience high strain coupling, leading to increased decoherence as

shown in figure 1.2c. These issues are only exacerbated by attempting to make smaller,

higher frequency and higher strain devices, in addition to being more difficult to drive

and detect the mechanical motion.

HBARs

High-overtone bulk acoustic resonators (HBARs) are formed by reflections between

the top and bottom surfaces of a bulk material topped with a piezoelectric material. The

large mode-volume of these devices enables interaction with a large number of defects

that are deep within the bulk. Experiments with these devices have shown control of

NV center spin [28, 39, 40] and orbital [41] states, and spin coherence extension with

mechanically-dressed states [29]. However, these devices typically have low mechanical

quality factors due to poor lateral confinement of the mechanical modes (which can

be partially alleviated through focusing structures on the device surface [42]) and the

large spatial extent of the mode makes it difficult to engineer single spin-single phonon

interactions.

Surface Acoustic Waves

Surface acoustic waves (SAWs) consist of propagating or standing Rayleigh waves on

the surface of a bulk material. Typically they are formed in piezoelectric substrates and

are commonly used as filters and delay lines in communication devices. While a proper

6
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SAW cavity has yet to be demonstrated in diamond, SAW devices formed by interdigital

transducers (IDTs) on top of a piezoelectric layer on diamond have been employed as a

way of interfacing defect centers with high frequency (GHz-scale) phonons. In particular,

SAWs in diamond have been used to control the spin [43] and orbital [27] states of NV

centers and the spin state of SiV centers [26].

Using SAW cavities as a means of generating quantum interactions with embedded

qubits is a promising direction [44] due to their ability to be fabricated on bulk material,

the high mechanical quality factors seen in SAW cavities in other materials, their ability

to interact with spin ensembles and be integrated into larger microwave architectures,

and a favorable strain profile that extends ≈ one wavelength (≈ 1 µm at 10 GHz) into

the material, allowing for spins to be far from noisy surfaces.

However, high mechanical quality factors have yet to be demonstrated in diamond

SAW cavities and there are open questions regarding the best way to detect the me-

chanical motion in diamond SAW cavities. Furthermore, the zero-point motion strain

generated in these cavities is somewhat smaller than in other forms of mechanical res-

onator.

Disk resonators

Disk resonators [25, 45, 46] consist of circular disks tethered to the bulk by a thin

interconnect and host coupled GHz-scale mechanical and telecom optical modes (making

them optomechanical devices, which we discuss further below). Mechanical driving of

NV center spins has been shown in these devices [19] but low mechanical quality factors

and strain in these devices make it unlikely that they will reach the high-cooperativity

regime.

7
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Optomechanical crystals

Optomechanical crystals (OMCs) [47, 48, 49, 50] are nanobeams or membranes with

holes etched in them with sizes, shapes, and periodicity to give bandgaps at optical and

mechanical frequencies of interest, creating colocalized and coupled optical (typically

1550 nm) and mechanical (typically a few GHz). Diamond OMCs have been measured

at room temperature [17, 18] and at low temperature (chapter 6 of this work) but so

far no interactions between defect centers and the mechanical motion of diamond OMCs

have been demonstrated. However, [18] (chapter 5 of this work) did shown an NV center

with good coherence embedded in a diamond OMC, a promising result that significant

nanofabrication-induced decoherence can be avoided in these structures.

Diamond OMCs have the advantage of generating high zero-point strain, having

high mechanical quality factors at low temperature (chapter 6), and are able to have

their mechanical motion driven, detected, and cooled optically via the optomechanical

interaction. However, their small mode volume does make studies of ensemble phonon

coupling difficult and there may be some difficulty linking them together in a larger

quantum network, although this may be solved by the development of diamond phononic

wires [51, 52].

Choosing our mechanical resonator

As shown in figure 1.3, we initially considered doubly clamped beams, SAW cavities,

and optomechanical crystals for the mechanical resonator we would use to push toward

the quantum regime with defect spin qubits. We simulated each architecture to deter-

mine the zero-point strain generated by their mechanical modes and found that, for a

given mechanical frequency, doubly clamped beams generated the highest strain. How-

ever, concerns about clamping loss and defect qubit quality inside such small structures

8
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Figure 1.3: Displacement and strain profiles for the three types of mechanical res-
onators considered for our push into the quantum regime: a) doubly clamped beams,
b) SAW cavities, and c) optomechanical crystals.

led us to decline this option. SAW cavities generated the least strain of the options

considered but had the advantage of being fabricated on bulk diamond, having a strain

profile that extends deep into the diamond, having the potential for high mechanical

quality factors, and the ability to couple to large ensembles of spins. Concerns about

driving and detecting the mechanical motion of these devices and the somewhat lower

strain made us decline them for the time being, but they could be employed in future

experiments that require larger numbers of spins than could reasonably fit in a much

smaller optomechanical crystal (see 7). We ultimately settled on optomechanical crys-

tals due to their large strain, z-symmetric strain profile, and proven ability to host high

quality factor mechanical modes. These aspects are discussed further in chapter 4.

1.3 Silicon-vacancy centers

Negatively charged nitrogen-vacancy (NV) centers, consisting of a substitutional ni-

trogen atom adjacent to a vacancy in the diamond lattice, [53, 54, 55] were the focus of

our lab’s initial experiments with hybrid mechanical devices [34, 35] due to their ease

of measurement and control, and their good quantum coherence even in ambient condi-

9
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Figure 1.4: a) A schematic of the SiV center in diamond from [58]. b) An energy level
diagram for the SiV center, adapted from [59].

tions. NV centers have an orbital singlet, spin triplet ground state and the spin is easily

controlled using a combination of green laser pulses to optically pump the spin into the

ms = 0 state and microwave fields to drive transitions to the ms = ±1 states. The same

mechanism that allows for spin polarization, namely an intersystem crossing from the

excited state to a metastable singlet state, also causes the ms = 0 spin state to produce

more photoluminescence when excited with green light. Thus, the spin state can be

measured via detection of the light emitted from an NV center upon optical excitation.

Taken together, the NV center is a relatively easy to use quantum platform.

However, considering measured spin-strain coupling constants [34, 36] and simulated

strain generated by diamond OMCs, we predicted zero-point spin-strain coupling of only

200 Hz. Even taking into account typical OMC mechanical quality factors of 105 and

realistic NV center spin coherence times of on the order of ms with intensive dynamical

decoupling [56, 57], reaching C > 1 seemed difficult.

This led us to consider silicon-vacancy centers (the negatively-charged variety) [60],

10
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which consist of an interstitial silicon atom between two adjacent vacancies in the di-

amond lattice (figure 1.4a). As shown in figure 1.4b, the SiV has doublet ground and

excited orbital states that are separated by ≈ 737 nm optical transitions. The orbital

splitting in both the ground and excited states is due to spin-orbit coupling from the

silicon nucleus. The orbital branches can be further split by application of a magnetic

field. Due to the spin-orbit coupling, these spin states inherit orbital character that

makes them highly susceptible to strain [59, 26] (as discussed in detail in chapter 3).

However, high strain susceptibility also makes the spin sensitive to phonons near the 50

GHz splitting of the ground state orbital branches, requiring SiV spins to be very cold in

order to suppress the thermal occupation of phonons at that frequency and achieve good

coherence [61].

Unlike NV centers, SiV center spins are not highly susceptible to microwave control

(unless in the presence of large intrinsic strain) and therefore alternative methods of ma-

nipulating the spin have had to be developed. All-optical control with Raman pulses [62],

optical pumping to initialize the spin, and even mechanical driving [26] provide a toolbox

for controlling the SiV spin. SiV centers have also proven to be a promising platform for

photonic quantum networks, with impressive demonstration of aligned implantation with

a diamond photonic crystal [58], a technology that could be used in future hybrid me-

chanical experiments with SiV centers to place SiVs deterministically in the high-strain

region of a mechanical resonator.

11



Chapter 2

Optomechanics

[63, 49, 50] all provide excellent overviews of different aspects of optomechanics, includ-

ing the optical and mechanical subsystems. Here we will simply highlight important

calculations, equations, and definitions for use later on.

2.1 Optical resonators

2.1.1 Quality factor

1 Because in general we work with the fundamental (lowest frequency) mode in our

optical cavity, our optical quality factor Qo is equivalent to the finesse and is given by :

Qo = ωcavτ = ωcav/κ (2.1)

where ωcav is the optical cavity frequency (which is ≈ 190-200 THz for the ≈ 1550 nm

light that we use in our experiment), τ is the photon lifetime, and κ = 1/τ is the photon

decay rate. By decay, it is meant that, absent any input of light into the cavity, the

1Note that the discussion of quality factor can be applied to mechanical resonators as well, just
replace photons with phonons and obviously the frequency scale will be different

12
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number of photons inside as a function of time t is proportional to e−κt. Starting from

this, we can derive some meaning from the equation for Qo. Say that the energy inside the

cavity is E (which is linearly proportional to the number of photons inside the cavity nc).

Assuming that κ ≪ ωcav (such that the resonator oscillates much faster then it decays),

then the amount of energy lost during one oscillation is E(1− eκ/ωcav) ≈ Eκ/ωcav (since

∆t = 1/ωcav for one oscillation and κ/ωcav is small to second order). Thus the energy

stored in the cavity divided by the energy lost in one oscillation is E/(Eκ/ωcav) = ωcav/κ.

Thus, the quality factor describes the fraction of the resonator’s energy that it loses each

oscillation. The most accurate way to measure the quality factor of a cavity is to excite

the resonator (such that it has some amount of energy in it) and then measure the

energy as a function of time after the excitation to extract the decay constant κ. This

is a “ring down” measurement and is easier said then done, but that discussion will

come later. Lastly, note that light exiting the cavity has a functional form proportional

to e−iωcavte−κt, which under Fourier transformation yields a Lorentzian in the frequency

domain ∝ 1/((ω − ωcav)
2 + κ2/4) such that measuring the response as a function of

frequency will give a Lorentzian signal the width of which is κ at half of its maximum.

Thus, assuming there are no other effects contributing to the linewidth, we can find

the quality factor by measuring the signal in frequency space and dividing the cavity

frequency (or wavelength) by the “full width half maximum” (FWHM). However, this

assumption regarding the linewidth is not always a good one to make, since frequency

jitter can broaden the measured linewidth, so one has to be careful when estimating the

quality factor this way.

13
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Figure 2.1: A diagram of an optical cavity evanescently coupled to a mirror-terminated
optical waveguide. The waveguide and cavity are coupled with rate κe while light is
lost from the cavity (through material losses, loss through the cavity mirrors, and
scattering into vacuum) at a rate of κi.

2.1.2 Input-Output theory

Now assume that the cavity is coupled to an input waveguide with rate κe either

through one of the mirrors or evanescently from the side. In our devices, it will always be

the case that the input channel and the output channel are the same since we terminate

the coupling waveguide with a mirror such that all light that leaves the cavity through

the waveguide is directed back along the direction of the input light. Following [49] and

[64], the cavity mode has Hamiltonian Hcav = ℏωcavâ
†â, where â†/â are the photon cre-

ation/annihilation operators for the cavity mode and [â, â†] = 1. Similarly, the waveguide

has Hamiltonian Hwg = ℏ
∫
dωωÂ†

ωÂω, where Â
†
ω/Âω are the creation/annihilation op-

erators for the waveguide mode at frequency ω, [Âω, Â
†
ω′ ] = δ(ω, ω′), and the waveguide

operators commute with the cavity operators. Finally, we assume the cavity and the

waveguide couple linearly with strength fω, such that the interaction Hamiltonian is

14
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Hint = iℏ
∫
dω(fωÂωâ

† − f ∗
ωâÂ

†
ω) (2.2)

The time evolution of the cavity and waveguide operators under the Hamiltonian

H = Hcav +Hwg +Hint is thus

˙̂a =
i

ℏ
[H, â] = −iωcavâ−

∫
dωfωÂω (2.3)

˙̂
Aω =

i

ℏ
[H, Âω] = −iωÂω + f ∗

ωâ (2.4)

The equation for
˙̂
Aω can be integrated using eiωt as an integrating factor to give

Âω(t) = Âω(ti)e
−iω(t−ti) +

∫ t

ti

dτ â(τ)f ∗
ωe

−iω(t−τ) (2.5)

or

Âω(t) = Âω(tf )e
−iω(t−tf ) −

∫ tf

t

dτ â(τ)f ∗
ωe

−iω(t−τ) (2.6)

where ti (tf ) is some initial (final) time. Substituting the solution with initial condi-

tions into the equation for ˙̂a gives

˙̂a = −iωcavâ(t)−
∫
dωfωÂω(ti)e

−iω(t−ti) −
∫
dω

∫ t

ti

dτ |fω|2â(τ)e−iω(t−τ) (2.7)

Assuming fω = f is constant for the frequency range of interest, the integrals in the
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Figure 2.2: A normalized plot of reflected light as a function of wavelength that shows
κ and Td.

last term are worked out as follows:

∫
dω|fω|2

∫ t

ti

dτ â(τ)e−i(ω)(t−τ) = |f |2
∫ t

ti

dτ â(τ)

∫
dωe−iω(t−τ) (2.8)

= 2π|f |2
∫ t

ti

dτ â(τ)δ(t, τ) = π|f |2â(t) = κe
2
â(t) (2.9)

where we have used the integration identities
∫
dωe−iω(t−τ) = 2πδ(t, τ),

∫ t

ti
dτa(t)δ(t, τ) =

a(t)/2, and defined κe = 2π|f |2. Further, we define âin(t) as

âin(t) = − 1√
2π

∫
dωÂω(ti)e

−iω(t−ti) (2.10)

Putting all of this together, moving into a frame rotating at our laser frequency ωL,

and defining ∆ = ωL − ωcav the equation for ˙̂a becomes

˙̂a(t) = i∆â(t) +
√
κeâin(t)−

κe
2
â(t) (2.11)
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Finally, defining âout(t) as

âout(t) =
1√
2π

∫
dωÂω(tf )e

−iω(t−tf ) (2.12)

we find another equation for ˙̂a

˙̂a(t) = i∆â(t)−
√
κeâout(t) +

κe
2
â(t) (2.13)

Subtracting 2.11 and 2.13 gives us the boundary condition for the cavity2

âin + âout =
√
κeâ (2.14)

We then define as κi the sum of all other loss rates (loss in the device or substrate

material, scattering into the vacuum, light that exits either of the cavity mirrors but

isn’t collected). Thus, the total loss rate κ that was discussed in the previous section is3

κ = κi + κe. κi just enters equation 2.11 as another decay term −κi/2â(t) such that the

equation for ˙̂a including internal losses is

˙̂a(t) = i∆â(t) +
√
κeâin(t)−

κ

2
â(t) (2.15)

In the steady state, ˙̂a = 0 and we can solve for ⟨â⟩
2Some references will give the boundary condition as âout − âin =

√
κe, which is just the result of

defining âin and âout with the same sign, it doesn’t change the solutions.
3In the review paper they use κ0 and κex instead of κi and κe
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⟨â⟩ =
√
κe⟨âin⟩
i∆− κ

2

(2.16)

from which we can find the average number of photons in the cavity nc = |⟨â⟩|2

nc =
κe

∆2 + κ2

4

Pin

ℏωL

(2.17)

where Pin = ℏωL|⟨âin⟩|2 is the input power to the cavity. The transmission coefficient

for the cavity (which is the same as reflection for the single-sided cavity) is

T =
⟨âout⟩
⟨âin⟩

= 1− κe
i∆+ κ

2

(2.18)

At ∆ = 0 (i.e. on resonance with the cavity) T = 1 − 2κe/κ. The transmission on

resonance is then

|T |2 = 1− 4κe
κ

+
4κ2e
κ2

(2.19)

from which we can extract a transmission depth Td (transmission on resonance relative

to transmission far off resonance (which is 1 for large ∆)).

Td = 1− |T |2 = 4κe
κ

− 4κ2e
κ2

(2.20)
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Solving for κe gives

κe =
κ± κ

√
1− Td
2

(2.21)

So, in practice, by normalizing the measured cavity response and extracting Td and

κ (the total linewidth) from the plot, you can extract κe. The plus sign would be the

case where the cavity is overcoupled κe > κ/2, whereas the minus sign would be the

case where the cavity is undercoupled κe < κ/2. Whether the cavity is over- or under-

coupled can be determined from an ‘OMIT-type’ measurement of the cavity resonance,

as discussed in chapter 6.

2.2 Mechanical resonators

2.2.1 Damped mechanical resonator

A mechanical resonator is a mass or collection of masses that obey the spring equation

meffẍ(t) +meffω
2
mx(t) = Fext(t) (2.22)

where meff is the effective mass4 of the system, ωm is a frequency at which the system

possesses a normal mode that solves the equation, and Fext(t) is the sum of all exter-

nal forces acting on the resonator, such as thermal and optomechanical forces, in our

case. x(t) ∝ sin(ωmt) here is an overall, time-dependent scaling of the motion, which is

multiplied by a normalized spatially-dependent function u⃗(r⃗) that is determined by the

4The effective mass captures the fact that in a continuous system not every point contributes equally
to the energy of the system. We will discuss this further below.
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geometry and boundary conditions of the system and which characterizes the displace-

ment at a given point in the system in order to give the total time-dependent displacement

throughout the system u⃗(r⃗, t) = x(t)u⃗(r⃗). This elucidates that a normal mode is a col-

lection of displacements in the mechanical system that all oscillate at the same frequency

ωm. These modes are called “normal” because they are orthogonal to one another. That

is to say, for two different normal modes of a system characterized by u⃗i(r⃗) and u⃗j(r⃗), then∫
dV ρ(r⃗)u⃗i(r⃗) · u⃗j(r⃗) = 0 where ρ is the density of the material. Practically, this means

that for an ideal system (no damping), driving one normal mode will not excite any other

normal modes. For small discrete systems of masses and simple continuous geometries

such as cantilevers, the shapes of the normal modes can be calculated analytically. For

more complicated geometries, such as our OMCs, the shape of the normal modes can be

found using finite-element simulation in COMSOL, which breaks the geometry up into

small pieces and estimates solutions to the differential equation that describes the elastic

interactions between all of those pieces. Linear damping of the motion at a rate γm can

be included such that the total equation is

meffẍ(t) +meffγmẋ(t) +meffω
2
mx(t) = Fext(t) (2.23)

Assuming no external force, we can solve for the form of x by guessing a solution

x(t) ∝ ect and solving for c. This gives

c = −γm
2

±
√
γ2m
4

− ω2
m (2.24)

which results in three different cases: overdamping (γm/2 > ωm), critical damping
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(γm/2 = ωm), and underdamping (γm/2 < ωm). Only in the case of underdamping

is the square root imaginary, giving oscillatory motion. This will always be the case for

our systems, in which ωm is generally several orders of magnitude larger than γm, giving

c ≈ −γm/2± iωm. The form of x(t) in this case is

x(t) ∝ e−γmt/2e±iωmt (2.25)

From this form, it can be seen that the oscillation amplitude decays as γm/2, whereas

the energy in the resonator, which goes as x2, decays as γm. As we will see, this is

quantum-mechanically the same as how we defined decay in the case of the optical cavity,

since x ∝ b̂, where b̂ is the phonon creation operator for the mechanical mode, while the

energy is proportional to ⟨b̂†b̂⟩, so you would expect the decay rate for the energy to be

double that for the vibration amplitude.

For a sinusoidal driving force Fext(t) = F0e
−iωt, x(t) will have a steady state form

of x(t) = F0χme
−i(ωt+ϕ), where ϕ is a phase lag and χm is the mechanical susceptibility,

which can be solved for by plugging this form of x(t) into eq. 2.23

χm =
1

meff((ω2
m − ω2)− iωγm)

(2.26)

When ω ≈ ωm, (ω
2
m − ω2) ≈ 2ωm(ωm − ω), such that the approximately Lorentzian

form of χm for small γm becomes clear

χm(ω ≈ ωm) ≈
1

meffωm(2(ωm − ω)− iγm)
(2.27)
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Lastly, we by defining the mechanical quality factor Qm = ωm/γm, we see that on

resonance (ω = ωm), the susceptibility is χm(ω = ωm) = iQm/meffω
2
m, so the larger the

mechanical quality factor, the more of an effect a given force has on the amplitude of

motion.

2.2.2 Effective mass

It may have been apparent that there is a degree of flexibility to how the mode

profile u⃗(r⃗) mentioned in the previous section is normalized. This choice effects the

magnitude of the time-dependent x(t) term since u⃗(r⃗, t) = x(t)u⃗(r⃗). A common choice

is to set max[|u⃗(r⃗)|] = 1. This choice then effects how the effective mass is defined,

since the elastic energy must equal meffω
2
m⟨x2⟩/2. For the choice of scaling above where

max[u⃗(r⃗)] = 1, the effective mass becomes an integral over the mode shape.

meff =

∫
V

dr⃗ρ(r⃗)|u⃗(r⃗)|2 (2.28)

Practically speaking, when COMSOL solves for a normal mode, it does not provide

a normalized mode shape, so we must account for that when using a COMSOL solution

(which is an unnormalized u⃗(r⃗)), by just dividing eq. 2.29 by max[|u⃗(r⃗)|2], giving a more

general equation for meff

meff =

∫
V
dr⃗ρ(r⃗)|u⃗(r⃗)|2

max[|u⃗(r⃗)|2]
(2.29)
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2.2.3 The simple harmonic oscillator Hamiltonian

Moving on, the review glosses over the quantum mechanical formulation of a mechan-

ical oscillator, specifically using a creation/annihilation operator formalism like the one

we used for the optical cavity. It is worth quickly deriving for reference purposes. The

simple harmonic oscillator potential at frequency ωm is just the integral of the spring

force in eq. 2.22: V =
∫ x

0
dxmeffω

2
mx = meffω

2
mx

2/2, so the simple harmonic oscillator

Hamiltonian is

HSHO =
1

2
meffω

2
mx̂

2 +
p̂2

2meff

(2.30)

Where x̂ and p̂) are the position and momentum operators. Next, a simple algebraic

trick is performed where you recognize that this is a sum of squares, which can be factored

as such:

meffω
2
m

2
(x̂2 +

p̂2

m2
effω

2
m

) =
meffω

2
m

2
(x̂+ i

p̂

meffωm

)(x̂− i
p̂

meffωm

) (2.31)

Note that this is not equivalent to the Hamiltonian, since the position and momentum

operators do not commute, but it does motivate the definition of operators ô and ô† which

can be further investigated:

ô =

√
meffω2

m

2
(x̂+ i

p̂

meffωm

), ô† =

√
meffω2

m

2
(x̂− i

p̂

meffωm

) (2.32)

which have units of square root energy. The product ô†ô can be found to be (recalling
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[x̂, p̂] = iℏ)

ô†ô =
1

2
meffω

2
mx̂

2 +
p̂2

2meff

+
iωm

2
[x̂, p̂] = HSHO − ℏωm

2
(2.33)

so that HSHO = ô†ô + ℏωm/2. Similarly, ôô† = HSHO + ℏωm/2, such that [ô, ô†] = ℏωm.

Finally, we define the boson creation and annihilation operators b̂† and b̂ by dividing ô†

and ô by
√
ℏωm to make the operators unitless (since we’ll usually end up caring about

the number of phonons in the oscillator, not the energy), giving

b̂ =

√
meffωm

2ℏ
(x̂+ i

p̂

meffωm

), b̂† =

√
meffωm

2ℏ
(x̂− i

p̂

meffωm

) (2.34)

for which HSHO = ℏωmb̂
†b̂+ ℏωm

2
and [b̂, b̂†] = 1. Note that if a state ψ has energy E (i.e.

HSHOψ = Eψ), then the state b̂†ψ has energy E+ ℏωm while b̂ψ has energy E− ℏωm, so

b̂†/b̂ creates/annihilates a phonon of energy ℏωm in the system. We can define number

states that correspond to states of integral phonon occupation in the resonator, where

a state with n phonons is given by (b̂†)n|0⟩, where |0⟩ is the zero-phonon vacuum state,

for which b̂|0.⟩ = 0. We then see that the expectation value of b̂†b̂ for a given state |n⟩ is

⟨n|b̂†b̂|n⟩ = n, so that b̂†b̂ is the phonon number operator.

We can solve for x̂ in terms of these operators:

x̂ =

√
ℏ

2meffωm

(b̂+ b̂†) (2.35)

While for the ground state, ⟨x̂⟩ = ⟨0|x̂|0⟩ = 0, ⟨x̂2⟩ = ℏ/2meffωm = x2zpf , where we

have defined the zero-point fluctuation amplitude xzpf

24



Optomechanics Chapter 2

xzpf =

√
ℏ

2meffωm

(2.36)

The potential energy in the ground state is therefore meffω
2
mx

2
zpf/2 = ℏωm/4, which is

half of the vacuum energy ⟨0|HSHO|0⟩ = ℏωm/2. We could have arrived at the zero-point

fluctuation amplitude by recognizing that the average potential energy would be half of

the zero-point energy (corresponding to strain energy in the resonator) while the other

half would correspond to the kinetic energy of the masses in the system. Thus, we could

just set meffω
2
mx

2
zpf/2 = ℏωm/4 and solve for xzpf . Recalling our discussion of effective

mass, we see that the way we define effective mass in turn affects xzpf , so consistency is

important.

2.2.4 Thermalization

When the mechanical resonator is coupled to a thermal bath at temperature T that

has phonon occupation nth ≈ kBT/ℏωm with rate γm (the damping or decay rate previ-

ously mentioned), then the phonon number n in the resonator will decay with rate nγm

and increase with rate nthγm as phonons decay out of the resonator and leak into it from

the bath. Thus, dn
dt

= −γm(n − nth). Thus, for n = 0, we have dn
dt

= γmnth, which we

define as the thermalization rate γth at low temperature

γth = γmnth ≈ γmkBT

ℏωm

=
kBT

ℏQm

(2.37)

where we recall the mechanical quality factor Qm = ωm/γm. Note that the thermaliza-

tion rate goes to 0 as T goes to 0, so its importance diminishes for very low temperatures
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(nth ≪ 1) while at moderately high temperatures (nth > 1) it is the dominant phonon

decoherence mechanism. This distinction is important when we consider quantum in-

teractions between the mechanical resonator and other systems and want to define a

cooperativity for the interaction, which will go as 1/Γm with Γm the phonon decoherence

rate. For higher temperatures, Γm ≈ γth, while at lower temperatures, Γm ≈ γm, or

whatever the mechanical linewidth is due to other effects such as frequency jitter.

2.2.5 Mechanical damping mechanisms

There are many different mechanisms which contribute to the total mechanical damp-

ing, the relative importance of which vary with temperature, pressure, and device design.

[50] gives a good overview of most of them. The mechanisms that account for most

damping are viscous damping, Akhieser/Landau-Rumer damping, thermoelastic damp-

ing, clamping loss, and two-level system damping. Each mechanism has an associated

quality factor, which add in inverse to give the total quality mechanical quality factor

Q−1
m =

1

Qvis

+
1

QA/LR

+
1

QTE

+
1

QCL

+
1

QTLS

(2.38)

Viscous damping is due to interactions between the mechanical resonator surface and

the surrounding medium (air, for instance) and can be mitigated by simply measuring

the resonator in vacuum, with higher vacuum leading to less viscous damping. Viscous

damping can also arise from lossy material deposited on the sample, such as the bonding

agent to which we attribute the low mechanical quality factors in chapter 5 or material

that cryopumps onto the device at low temperature.

Akhieser and Landau-Rumer [65, 66] damping correspond to interactions between

thermal phonons in the material and phonons in the acoustic mode that result in energy
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Figure 2.3: Left: the strain profile of a singly-clamped cantilever, showing high strain
at the clamping point. Right: The strain profile of the breathing mode of an optome-
chanical crystal, showing low strain at the clamping points.

being carried away from the acoustic mode. Akhieser damping is valid for higher tem-

peratures where the thermal phonon lifetime is short (increasing likelihood of interaction

with acoustic phonons), while Landau-Rumer damping is valid at lower temperatures

and is characterized by three-phonon scattering processes between acoustic phonons and

single thermal phonons. Both mechanisms lead to damping rates that scale linearly with

temperature.

Thermoelastic damping [67] results from strain-generated thermal gradients within

the device that result from the device’s vibration. The process of these gradients equi-

librating absorbs energy from the acoustic mode. At lower temperatures, these tem-

perature gradients become smaller due to a reduced coefficient of thermal expansion, so

thermoelastic damping is primarily a high-temperature effect 5.

At room temperature in air, the mechanical quality factor of our optomechanical

crystals is dominated by viscous, Akhieser, and thermoelastic damping, with Qvis ≈

QA+TE ≈ 104, as we see Qm approximately double from 5,000-6,000 in ambient conditions

to 11,000-13,000 in vacuum.

Clamping loss takes into account the fact the mechanical resonator is not floating in

space, but is in fact tethered to a bulk somewhere. Clamping losses consist of mechanical

5COMSOL simulations of the thermoelastic damping of a diamond optomechanical crystal at 300K
give QTE = 90, 000, however this uses the bulk thermal conductivity of diamond, which may deviate
from its thin-film value [68]
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energy radiated from the clamping point into the bulk. The strain profile of a cantilever

on the left side of figure 2.3 demonstrates the high strain generated at the clamping

point, leading to energy being radiated into the bulk. These losses can be mitigated by

minimizing the strain induced by the resonator motion at the clamping points. This is

achieved in OMCs by the Bragg-like quasi-mirrors (discussed further in chapter 4) that

attenuate modes at the mechanical frequency of interest, confining strain to the center

of the device, as shown in the strain profile of an OMC shown on the right of figure 2.3.

However, this isolation is not perfect [50], and fabrication imperfections can couple the

OMC mechanical mode to modes that can leak through the Bragg mirror and generate

clamping losses. These losses are further suppressed by surrounding the clamping point

with a phononic shield that hosts a full bandgap around the OMC mechanical frequency

such that mechanical radiation in a wide band around the OMC mechanical frequency

cannot be emitted into the bulk, allowing for very highly-confined mechanical modes.

The last and weakest (but by no means the least important) damping mechanism is

coupling to two-level systems (TLSs) [1], structural defects within the device material

(generally near the surface, in the native oxide layer of silicon, for example) and which

have two energetic configurations which can be excited by coupling to the mechanical

resonator’s motion. When these TLSs relax, they emit energy back into the mechanical

resonator, but not necessarily into the mode of interest. For OMCs, this results in

coupling to modes that lie outside the quasi- and full bandgaps of the Bragg mirror and

phononic shield, providing an avenue for mechanical loss through the clamping point.

This mechanism is what ultimately limits the mechanical quality factors of silicon OMCs.
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2.3 Optomechanics

2.3.1 Optomechanical Hamiltonian

The prototypical optomechanical system consists of an optical cavity with one move-

able mirror, such that the cavity length L is dependent on the position x of the moveable

mirror, as shown in figure 2.4. In this case the cavity frequency ωc can be expanded to

first order in x

ωc(x) ≈ ωc + x
∂ωc

∂x
(2.39)

Using this and x→ xzpf (b̂+ b̂†) we can rewrite the Hamiltonian for the optical mode

ℏωc(x)â
†â ≈ ℏ(ωc + xzpf

∂ωc

∂x
(b̂+ b̂†))â†â (2.40)

We then can make the definition g0 = −xzpf∂ωc/∂x
6 and write the interaction portion

of the Hamiltonian as HOM = −ℏg0â†â(b̂ + b̂†), where g0 is the vacuum optomechanical

coupling rate and corresponds to the change in cavity frequency due to zero-point motion

of the mechanical mode.

Thus, the entire optomechanical Hamiltonian is

H = ℏωcâ
†â+ ℏωmb̂

†b̂− ℏg0â†â(b̂+ b̂†) (2.41)

6The sign convention here is such that a positive displacement lengthens the cavity and thus lowers
the cavity frequency.
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Figure 2.4: A prototypical optomechanical cavity consisting of an optical cavity with
one moveable mirror.

We note that this Hamiltonian is general, g0 need not (and often does not) correspond

to a physical lengthening of an optical cavity, but encapsulates all mechanisms that lead

to a change of an optical cavity frequency due to the motion of a mechanical oscillator.

The two mechanisms that we treat in further detail later on are the moving boundary

and photoelastic contributions.

As in section 2.1.2, we typically apply a laser drive tone at ωL and transform into a

basis rotating at that frequency using the rotating wave approximation (RWA)

H = ℏ∆â†â+ ℏωmb̂
†b̂− ℏg0â†â(b̂+ b̂†) (2.42)

where ∆ = ωc−ωL. To proceed, it is typical to linearize the optical field by introducing

the transformation â → α + â where α is the large steady-state photon amplitude such

that |α|2 = nc and â describes the quantum dynamics that occur on top of that steady-

state. Applying this transformation and keeping terms that are linear in α (the quadratic

terms in α describe steady state phenomena and the quadratic terms in â are small), the
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optomechanical dynamics are captured by

H = ℏ∆â†â+ ℏωmb̂
†b̂− ℏG(â† + â)(b̂+ b̂†) (2.43)

where G = g0α = g0
√
nc is the optomechanical coupling due to the steady-state

photon amplitude. When ∆ = ωm (which we refer to as the red sideband and is the

regime we will work in later on), the Hamiltonian describes two oscillators of equal

frequency that can exchange quanta. Thus, we only keep excitation-preserving terms in

the interaction Hamiltonian

HOM,rsb = −ℏG(â†b̂+ âb̂†) (2.44)

This elucidates the mechanism behind optomechanical cooling of the mechanical

mode, in which quanta of mechanical energy are transferred into the cold optical mode.

As we did for the optical resonator above, we can generate equations of motions for

the optomechanical system

˙̂a = −(i∆+
κ

2
)â− ig0â(b̂+ b̂†)−

√
κeâin (2.45)

˙̂
b = −(iωm +

γi
2
)b̂− ig0â

†â−√
γib̂in (2.46)

where γi is the intrinsic mechanical damping and âin and b̂in are the optical input field

and thermal bath noise operator, respectively.
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Figure 2.5: The positions of the red and blue sidebands relative to the optical cavity
spectrum.

2.3.2 Optomechanical effects

Solving these equations of motion [49, 63, 50] illuminates the effects of the optome-

chanical coupling on the mechanical mode. Of interest to us is the effect on the mechan-

ical mode frequency and damping. The optomechanical interaction introduces an extra

damping term γOM into the overall damping of the mechanical mode, such that the total

damping γ = γi + γOM where

γOM = G2

(
−κ

κ2/4 + (∆ + ωm)2
+

κ

κ2/4 + (∆− ωm)2

)
(2.47)

This reduces to γOM ≈ ±4G2/κ for ∆ = ±ωm, such that on the red sideband (∆ =

ωm, the optomechanical interaction adds damping, while on the blue sideband (∆ = −ωm

the interaction leads to anti-damping, to the point where for high enough G we have

γ < 0, leading to a phonon lasing condition where the mechanical mode can reach
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extremely large amplitudes. We also define the optomechanical cooperativity on the

sidebands

C = |γOM

γi
| ≈ 4G2

κγi
(2.48)

The optomechanical interaction also shifts the mechanical frequency by

δωm = −G2

(
(∆− ωm)

κ2/4 + (∆− ωm)2
+

(∆ + ωm)

κ2/4 + (∆ + ωm)2

)
(2.49)

Furthermore, by solving for the phonon operator spectrum b̂(ω) [50], one can calculate

the steady state phonon occupation of the mechanical mode

⟨b̂†(t)b̂(t)⟩ = 1

2π

∫ ∞

−∞
dωSbb(ω) (2.50)

where Sbb(ω) is the spectral density of b̂

Sbb(ω) =

∫ ∞

−∞
dω′⟨b̂†(ω)b̂(ω′)⟩ (2.51)

The result of these integrations is steady state phonon occupancy as a function of

laser detuning

n(∆) =
γinb

γ
+

|G|2κ
γ

1

κ2/4 + (∆ + ωm)2
(2.52)
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From this we can see that as more photons are put into the cavity, C gets larger and

n gets smaller, such that applying a laser tone on the red sideband cools the mechanical

mode. Also note that (κ/4ωm)
2 sets a lower bound on the final phonon occupancy.

In particular, for the red sideband ∆ = ωm, the phonon occupation is

n ≈ γinb

γ
+
γOM

γ

( κ

4ωm

)2
=

nb

1 + C
+

C

1 + C

( κ

4ωm

)2
(2.53)

2.3.3 Optomechanical coupling mechanisms

For our OMCs, we only concern ourselves with two optomechanical coupling mech-

anisms: the moving boundary contribution gmb and the photoelastic contribution gpe

which add together to give the total vacuum optomechanical coupling rate

g0 = gmb + gpe (2.54)

Moving boundary optomechanical coupling

The moving boundary contribution to the optomechanical coupling is typically the

smaller of the two contributions and arises from the change in shape of the mechanical

resonator while it is oscillating, modifying the dielectric boundary experienced by the

optical mode. The coupling strength is given by [17, 50, 69]

gmb = −ωc

2

∮
(q · n̂)(∆εE2

∥ −∆ε−1D2
⊥)dA∫

ε|E|2dV
(2.55)

where q is the displacement of the mechanical mode at a given point, n̂ is the outward
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direction of the surface normal, ∆ε = εm − εair, ∆ε−1 = ε−1
m − ε−1

air , and εm is the

permittivity of the mechanical resonator material (in our case, diamond). E∥ and D⊥

are the parallel electric and perpendicular displacement fields to the resonator surface.

The integral in the numerator is over the surface of the mechanical resonator, while the

integral in the denominator is over the mechanical resonator volume and the surrounding

air.

Photoelastic optomechanical coupling

The photoelastic contribution is caused by changes in the refractive index of the

mechanical resonator material due to strain induced by the mechanical motion, charac-

terized by the photoelastic tensor of the material. For our diamond OMCs, which are

oriented along the 110 crystal axis, this coupling is given by (as in [17] but repeated here

for clarity and accessibility)

gpe = −ωcϵ0n
4

2

∫ [
E∗

x E∗
y E∗

z

]
pSxx pSxy pSxz

pSxy pSyy pSyz

pSxz pSyz pSzz



Ex

Ey

Ez

 dV
∫
ε|E|2dV

(2.56)
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where 

pSxx

pSyy

pSzz

pSyz

pSxz

pSxy


=



p̃11 p̃12 p̃13 0 0 p̃16

p̃12 p̃22 p̃23 0 0 p̃26

p̃13 p̃23 p̃33 0 0 0

0 0 0 p̃44 0 0

0 0 0 0 p̃55 0

p̃16 p̃26 0 0 0 p̃66





Sxx

Syy

Szz

2Syz

2Sxz

2Sxy


(2.57)

with Sij components of the strain tensor in the rotated frame of interest (x along 110)

and the components of the rotated photoelastic tensor:

p̃11 = p̃22 =
1

4
(p11(3 + cos(4θ)) + (p12 + 2p44)(1− cos(4θ)) (2.58)

p̃33 = p11 (2.59)

p̃12 =
1

4
(p12(3 + cos(4θ)) + (p11 − 2p44)(1− cos(4θ)) (2.60)

p̃13 = p̃23 = p12 (2.61)

p̃44 = p̃55 = p44 (2.62)

p̃66 =
1

4
(2p44(1 + cos(4θ)) + (p11 − p12)(1− cos(4θ)) (2.63)

p̃16 =
1

4
sin(4θ)(2p44 + p12 − p11) (2.64)

p̃26 =
1

4
sin(4θ)(p11 − p12 + 2p44) (2.65)

where p11 = −0.25, p12 = 0.043, and p44 = −0.172 are the photoelastic coefficients of

diamond [17, 70].
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Strain coupling to silicon vacancy
centers in diamond

3.1 Introduction

In this chapter we are going to gather some calculations for strain coupling to the

negatively-charged SiV in diamond focusing on reconciling the notation in [54] and [59]

and trying to find an exact solution for the spin-strain coupling before estimating the

zero-point coupling to our OMCs. The SiV [60] has an orbital ground (g) state and

excited state (u) separated by ≈ 737 nm, where g and u designate the parity of the states

(g = even, u = odd) upon inversion. Both the ground state and the excited state are

orbital doublets, the degeneracy of which is lifted by spin-orbit coupling of λSO,g ≈ 46

GHz and λSO,e ≈ 255 GHz respectively. The SiV also hosts an S = 1/2 spin. Like

with the NV, we can also divide the 4 possible orientations of the SiV into two groups.

Assuming the OMC is along the 110 axis, the two groups are with SiV axis parallel or

perpendicular to the OMC length (when projected into the plane of the OMC).
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3.2 Spin-orbit coupling in the SiV

The fine structure of the SiV in both the ground and excited states consists of ex and

ey states (dropping the g and u subscripts that [59] uses to differentiate the ground and

excited states), analogous to the NV center’s excited state (see [54] for the definitions),

which are mixed by the spin-orbit coupling Hamiltonian HSO = −λSO(Lz ⊗ Sz) (the

transverse terms only couple to far off A-symmetry states, so we can ignore them). For

both the ground and excited state, in the {|ex ↓⟩,|ex ↑⟩ |ey ↓⟩, |ey ↑⟩} basis and with the

appropriate λSO, we have

HSO = −λSO

0 −i

i 0

⊗

−1 0

0 1

 =



0 0 −iλSO/2 0

0 0 0 iλSO/2

iλSO/2 0 0 0

0 −iλSO/2 0 0


(3.1)

Note that this has eigenstates {|e− ↓⟩, |e+ ↑⟩, |e+ ↓⟩, |e− ↑⟩} with eigenvalues

{−λSO/2,−λSO/2, λSO/2, λSO/2}, where e± = ∓ 1√
2
(ex±iey). We will use this basis later

for working out the spin-strain coupling.

3.3 Orbital-strain coupling

The orbital-strain coupling between the ex and ey states (in both the ground state

and excited state) ends up having the same form as for the ex and ey states of the NV

excited state, where we take the SiV-axis to be the z-axis and the projection of one of

the carbon-vacancy bonds as the x-axis. In the notation of [54] following [71] for strain

38



Strain coupling to silicon vacancy centers in diamond Chapter 3

interacting with C3v and D3d-symmetric defects, this interaction is

Hstrain = [λA1ϵzz + λA′
1
(ϵxx + ϵyy)](|ex⟩⟨ex|+ |ey⟩⟨ey|) (3.2)

+ [λE(ϵyy − ϵxx) + λE′(ϵxz + ϵzx)](|ex⟩⟨ex| − |ey⟩⟨ey|) (3.3)

+ [λE(ϵxy + ϵxy) + λE′(ϵyz + ϵzy)](|ex⟩⟨ey|+ |ey⟩⟨ex|) (3.4)

Now, in [59]’s notation

Hstrain = [t∥ϵzz + t⊥(ϵxx + ϵyy)](|ex⟩⟨ex|+ |ey⟩⟨ey|) (3.5)

+ [−d(ϵyy − ϵxx) + fϵzx](|ex⟩⟨ex| − |ey⟩⟨ey|) (3.6)

+ [−2dϵxy + fϵyz](|ex⟩⟨ey|+ |ey⟩⟨ex|) (3.7)

Some quick notes: for the ϵxz and ϵyz terms, instead of using e.g. (ϵxz+ϵzx), [59] combines

this into one term since the strain tensor is symmetric, and absorbs the factor of 2 into

f . Also, [59] has the sign of the |ex⟩⟨ex| − |ey⟩⟨ey| term switched, making it impossible

to equate these constants with those in [54]. This doesn’t actually change the result, but

does affect whether the result is invariant under 2π/3 rotations (which it should be since

the x-axis definition is arbitrary).

λA1 = t∥ (3.8)

λA′
1
= t⊥ (3.9)

λE = −d (3.10)

λE′ =
f

2
(3.11)

[59] then lumps together the strain terms into ϵA1 , ϵEgx , and ϵEgy (this is a bit confusing

because these are, strictly speaking, energies, not strain) whereas [54] uses VA1 , VE1 , and
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VE2 , where the subscripts just denote the symmetry of the term. So we have

Hstrain = VA1(|ex⟩⟨ex|+ |ey⟩⟨ey|) (3.12)

+ VE1(|ex⟩⟨ex| − |ey⟩⟨ey|) (3.13)

+ VE2(|ex⟩⟨ey|+ |ey⟩⟨ex|) (3.14)

where

VA1 = λA1ϵzz + λA′
1
(ϵxx + ϵyy) (3.15)

VE1 = λE(ϵyy − ϵxx) + λE′(ϵxz + ϵzx) (3.16)

VE2 = λE(ϵxy + ϵxy) + λE′(ϵyz + ϵzy) (3.17)

Adding in the spin degree-of-freedom via tensor product with I2 (since the strain does

not affect the spin) in the {|ex ↓⟩,|ex ↑⟩ |ey ↓⟩, |ey ↑⟩} basis we have

Hstrain =

VA1 + VE1 VE2

VE2 VA1 − VE1

⊗ I2 =



VA1 + VE1 0 VE2 0

0 VA1 + VE1 0 VE2

VE2 0 VA1 − VE1 0

0 VE2 0 VA1 − VE1


(3.18)

40



Strain coupling to silicon vacancy centers in diamond Chapter 3

Adding the spin-orbit Hamiltonian to this, we get the total Hamiltonian for the

{|ex ↓⟩,|ex ↑⟩ |ey ↓⟩, |ey ↑⟩} states in the presence of strain

Horbit =



VA1 + VE1 0 VE2 − iλSO/2 0

0 VA1 + VE1 0 VE2 + iλSO/2

VE2 + iλSO/2 0 VA1 − VE1 0

0 VE2 − iλSO/2 0 VA1 − VE1


(3.19)

Diagonalizing this, we find eigenenergies

E± = VA1 ±
1

2

√
λSO + 4(V 2

E1
+ V 2

E2
) (3.20)

Thus, the strain interaction manifests as a change in the ZPL due to A1 strain of ∆ =

VA1,e−VA1,g = (t∥,e− t∥,g)ϵzz +(t⊥,e− t⊥,g)(ϵxx+ ϵyy), where e and g indicate the different

constants for the ground and excited state. [59] measures (t∥,e − t∥,g) = −1.7 PHz/strain

and (t⊥,e − t⊥,g) = 0.078 PHz/strain. We can see that the E-strain splits the orbital

branches of both the ground and excited state, but this effect is washed out until the VE1

and VE2 terms are of order the spin-orbit splitting, which requires ≈ 1000× the zero-point

amplitude.
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3.4 SiV spin-strain coupling

Transforming the above Hamiltonian into the spin-orbit eigenbasis {|e−↓⟩, |e+↑⟩, |e+↓⟩, e−↑⟩}

and ignoring the constant VA1 along the diagonal, we have

Horbit =



−λSO/2 0 −(VE1 + iVE2) 0

0 −λSO/2 0 −VE1 + iVE2

−VE1 + iVE2 0 λSO/2 0

0 −(VE1 + iVE2) 0 λSO/2


(3.21)

Now we apply a magnetic field with components parallel (Bz) and transverse (Bx) to the

SiV axis. Including the Zeeman interaction of both the spin and orbital states with this

magnetic field, the total Hamiltonian in the {|e−↓⟩, |e+↑⟩, |e+↓⟩, e−↑⟩} basis is

Htot =



−λSO

2
− (γL + γs)Bz 0 −(VE1 + iVE2) γsBx

0 −λSO

2
+ (γL + γs)Bz γsBx −VE1 + iVE2

−VE1 + iVE2 γsBx
λSO

2
+ (γL − γs)Bz 0

γsBx −(VE1 + iVE2) 0 λSO

2
+ (γS − γL)Bz


(3.22)

where γs = µB/h = 14 GHz/T and γL = qµB/h, with q = 0.1 as an orbital angular

momentum quenching factor. Note also that I have absorbed the factor of 1/2 from

the spin into the spin gyromagnetic ratio, which is nominally 2µB/h. Furthermore,

we have VE2 terms, which [59] ignores (we can ignore them too, but we’ll leave them

in). Now, looking at this Hamiltonian, we don’t see any coupling between what we

eventually want to use as our qubit basis {|e−↓⟩, |e+↑⟩} but that the off-axis magnetic field

component Bx does couple states of different spin, while the strain terms couple states of
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different orbital character. It is reasonable to guess that the combination of the two will

lead to an effective coupling between our qubit states. To determine this coupling, we

can project our Hamiltonian onto the qubit subspace using a Schrieffer-Wolff transform

H̃ = eαAHtote
−αA ≈ Htot+α[A,Htot] that makes the Hamiltonian block-diagonal to first

order in the small, arbitrary parameter α, with A a to-be-determined matrix. To find A,

split Htot into block diagonal HE and block off-diagonal Hc = αVc components. Then

H̃ = HE +αVc+α[A,HE]+α
2[A, Vc]. To first order in α, we want to eliminate the block

off-diagonal components, which gives us the condition Vc = [HE, A]. Solving this gives

us the requisite A

A = − 1

α



0 0 − VE1
+iVE2

λSO+2γLBz

γsBx

λSO+2γsBz

0 0 γsBx

λSO−2γsBz

−VE1
+iVE2

λSO−2γLBz

VE1
−iVE2

λSO+2γLBz
− γsBx

λSO−2γsBz
0 0

− γsBx

λSO+2γsBz

VE1
+iVE2

λSO−2γLBz
0 0


(3.23)

Using this A, we find the projected Hamiltonian in the {|e−↓⟩, |e+↑⟩} basis, ignoring the

constant −λSO/2 on the diagonal

H̃tot =

 −(γL + γs)Bz −
2(V 2

E1
+V 2

E2
)

λSO+2γLBz
− 2γ2

sB
2
x

λSO+2γsBz

4γsBxλSO(VE1
+iVE2

)(λ2
SO−2B2

z(γ
2
L+γ2

s ))

(λSO−2γLBz)(λSO−2γsBz)(λSO+2γLBz)(λSO+2γsBz)

4γsBxλSO(VE1
−iVE2

)(λ2
SO−2B2

z(γ
2
L+γ2

s ))

(λSO−2γLBz)(λSO−2γsBz)(λSO+2γLBz)(λSO+2γsBz)
(γL + γs)Bz −

2(V 2
E1

+V 2
E2

)

λSO−2γLBz
− 2γ2

sB
2
x

λSO−2γsBz


(3.24)

The strain term on the diagonal is of order kHz, while everything else is GHz, so we can

safely ignore it and estimate the energy difference between our qubit states to be

∆E = 2(γL + γs)Bz −
8γ3sB

2
xBz

λ2SO − 4γ2sB
2
z

(3.25)
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Figure 3.1: a) gspin and Bx as a function of Bz for constant ∆E. b) Bx and Bz in the
lab frame as a function of Bz in the SiV frame for constant ∆E.

and the magnitude of the coupling between the states to be

gspin =
4γsBxλSO

√
V 2
E1

+ V 2
E2
(λ2SO − 2B2

z (γ
2
L + γ2s ))

(λSO − 2γLBz)(λSO − 2γsBz)(λSO + 2γLBz)(λSO + 2γsBz)
(3.26)

Now, [59] measured d = 1.3 PHz/strain and f = −1.7 PHz/strain for the ground

state, which we can plug in along with our simulation of the strain tensor to determine the

values of VE1,2. Furthermore, if we define Bz = B cos θ and Bx = B sin θ as the projections

of the magnetic field along the SiV z and x axes, with θ = 54.736 degrees the angle

between the SiV z axis and 001, we can determine the magnetic field magnitude required

to match the qubit energy to our mechanical resonator frequency. Now, [59] seems to just

assume λSO ≫ γsBz, γsBx and simplifies the coupling term to gspin ≈ (2γsBx/λSO)VE1 . If

we make this simplification, we end up with twice this estimate, gspin ≈ (4γsBx/λSO)VE1 ,

and I’m not sure where the disparity arises.

3.4.1 Optimizing strain coupling with magnetic field

gspin is dependent on Bx and Bz while Bx and Bz are related by the energy splitting

between the spin states, which we set to be the mechanical frequency. Solving for Bx,
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we find

Bx =

√
(fm − 2(γl + γs)Bz)(4γ2sB

2
z − λ2SO)

8γ3sBz

(3.27)

Note that this relation requires fm/2(γl + γs) < Bz < λSO/2γs, which for fm = 7.5

GHz, corresponds to a range of ≈ 0.24 − 1.64 T. Figure 3.1a shows how gspin and Bx

depend on Bz for this case. We can then determine what the required magnetic field in

the lab frame would be to achieve the SiV-frame fields in figure 3.1a by taking

Bx,lab = Bz sin θ −Bx cos θ (3.28)

Bz,lab = Bx sin θ +Bz cos θ (3.29)
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Diamond optomechanical crystal
design and fabrication

4.1 Device geometry

OMC

As discussed in chapter 1, our OMC geometry (based off the design described in [50])

fundamentally consists of a rectangular cross-section nanobeam, typically along the 110

crystal direction, into which elliptical holes of different sizes are etched, defining a “defect

cell” at the center of the OMC which hosts optical and mechanical modes, “mirror cells”

at either end of the OMC which have optical and mechanical quasi-bandgaps around the

defect cell mode frequencies due to the periodic nature of the dielectric in those regions

and which therefore act as a Bragg mirror, and cells that adiabatically transition the

cell geometry between the defect cell and the mirror cells. In practice, we first define

our geometry by parameterizing the mirror cell hole shape with hx and hy (the radii

in the x and y directions, with x being defined as the direction along the beam length

and y across the beam width) in addition to the mirror cell lattice constant amir, which

is the distance between adjacent mirror cell holes. We then define the defect cell in

terms of the mirror cell using four parameters: d, χ, ξ, and η. The defect cell lattice
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Figure 4.1: a) An overview of a typical pair of OMC devices on either side of a
central optical waveguide, which has a tapered coupling region on the left and an
optical backmirror on the right. The OMC clamping points are surrounded by a cross
pattern phononic shield. b) A zoom-in of the OMC and waveguide.

constant is given by a0 = ab0, where b0 = 1 − d while the defect cell hole dimensions

are hx,0 = hx
√
s0/r0 and hy,0 = hy

√
s0r0, where s0 = 1 − χ(1 − b0) and r0 = bξ0. We

then define a function that describes the transition from defect cell to mirror cell over

N intermediate cells. The distance between hole i and i + 1, where i = 0 is the defect

hole, is ai = biamir, with bi = 1 − d(2j3 − 3j2 + 1) and j = (2g)η/2 for g = i/N ≤ 0.5

or j = 1 − (2(1 − g))η/2 for g = i/N > 0.5. Furthermore, hx,i = (
√
si/ri)hx and

hy,i = (
√
siri)hy, where si = 1 − χ(1 − bi) and ri = bξi . After this transition are Nmir

mirror cells. Note that i = N describes a mirror cell, such that there are actually Nmir+1

mirror cells on either side of the OMC. Together with the OMC width w and thickness

t, we fully describe the OMC geometry.
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Waveguide

The waveguide for coupling light into the OMC consists of two main parts: the fiber

coupling region and the OMC coupling region. The fiber coupling region consists of a

waveguide that tapers from an initial width wwg,i to a final width wwg,f over a distance

lwg. For coupling with tapered optical fibers, the waveguide is clamped at the narrow end

while for lensed fiber coupling it is unclamped to allow for optical access to the waveguide

endface. For tapered fiber coupling, the waveguide tapers in the opposite direction of the

fiber, allowing for adiabatic transfer of light over a region where the optical mode goes

from primarily confined in the fiber (wide fiber/narrow waveguide) to primarily confined

in the waveguide (narrow fiber/wide waveguide [72]. Longer tapering regions allow for

higher coupling efficiencies but are difficult to fabricate in non-high stress materials and

require significant room on a chip, so we compromise with lwg = 15µm which is robust

after fabrication but still gives a tapering angle of < 1◦ for typical wwg,i = 300 nm and

wwg,f = 700 nm, which is much less than typical fiber tapering angles of ≈ 5◦. For the

lensed fiber region, wwg,i is chosen to be 200 nm to mode match the waveguide to the

incoming gaussian beam of width 2.5 µm from the lensed fiber. The simulations for these

parameters are discussed in the next section.

The OMC coupling region is described by Nmir,wg, which is the number of mirror cells

at the end of the waveguide, Nwg, which is the number of cells over which the hole size and

beam width are linearly tapered up to the full mirror cell (to minimize scattering losses

at the mirror), and the gap between the waveguide and the OMC, which determines the

coupling strength between the waveguide and the OMC κe.

Finally, for both the tapered and lensed fiber variations, the waveguide is clamped to

the bulk after the tapering region by wide tethers and after the backmirror for stability.

The clamping geometry after the backmirror differs between the devices presented in
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chapters 5 and 6 but presently we employ the geometry shown in figure 4.1, which clamps

the waveguide outside of the phononic shield with a flared structure that provides added

structural stability to the waveguide.

Phononic shield

The phononic shield consists of a 2D array of cross-shaped holes in the diamond

surrounding the OMC clamping points and is parameterized by lattice spacing ashield of

the crosses in addition to the cross arm width wcross and cross height hcross which are

defined as fractions of ashield. In [1] it was reported that having 8 layers of shielding

between the OMC clamping point and the bulk was sufficient to provide mechanical

isolation of the OMC.

Rectangular versus triangular cross-section

We choose to fabricate our diamond OMCs with a rectangular cross-section (as op-

posed to a triangular cross-section as in [17]) in keeping with the design used in the

majority of the optomechanical crystal community. A rectangular cross-section is com-

patible with our top-down diamond-on-insulator fabrication method and does not require

the specialized angled etching used in fabrication of triangular cross-sections. The trian-

gular cross-section devices do have advantages, however. The angled etching techniques

[73, 74] used to form them allows for device fabrication out of bulk diamond, doing away

with the requirement for diamond membranes. Also, the triangular geometry allows for

the formation of a full phononic bandgap in the mirror regions of the OMC, which is

not possible for rectangular cross-sections. However, these devices are highly sensitive to

fabrication imperfections, particularly the etch angle and the angled etching technique

does not allow for creation of more robust phononic shields around the device to mitigate

these effects. In terms of strain coupling to defects, both geometries generate comparable
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Figure 4.2: a) Displacement and strain profiles for the flapping mode of a triangular
cross-section diamond OMC from [59]. b) Strain profile of the breathing mode of a
rectangular cross-section diamond OMC from [18].

strain. However, the flapping mode of triangular cross-section OMCs generates a strain

profile that is highest at the top surface of the device, as opposed to the z-symmetric

strain profile of rectangular cross-section OMCs.

4.2 Simulation

4.2.1 OMC optics

Simulation of the OMC optical mode is accomplished using an eigenfrequency study

in COMSOL using the “electromagnetic waves, frequency domain” package. The model

is generated with a MATLAB script that interfaces with COMSOL and defines the OMC

geometry and material parameters and surrounds the OMC with an air box, which in turn

is surrounded by a perfectly matched layer (PML) that serves to approximate infinite

vacuum, ensuring that optical power that exits the air box is not reflected back into

the simulation volume, allowing for accurate determination of quality factors later on.

The model is then reduced to 1/8 of the volume by taking advantage of the known

symmetries of the optical mode we are interested in and applying symmetry conditions

along the symmetry planes of the model. These consist of the perfect electric conductor
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condition along the xz1 and yz planes and the perfect magnetic conductor condition

across the xy plane. The mesh of the model must be set rather fine for these simulations

in order to accurately pixelate the OMC geometry and prevent artificial scattering losses

from dominating the simulated optical loss. Due to the large size and fine mesh of

these simulations, they are very memory and time-intensive, so applying symmetries

is critical for running the simulation under memory and time constraints. Running

the simulation gives a series of eigenmodes and their corresponding complex frequencies

emw.freq (which are complex due to scattering loss in the model). The quality factor of

a given mode is simply Re(emw.freq)/Im(emw.freq) and is accessible via the COMSOL

parameter emw.Qfactor. This quality factor is equal to the standard definition of quality

factor as described in equation 2.1 (energy stored in the system divided by power lost

per cycle) which in the case of our model is

Qo =
ωUEM∫

Sair

−→
P · −→n

(4.1)

where ω = emw.omega is the angular frequency of the mode, UEM = 2(emw.intWe)

is the total electromagnetic energy in the air box and OMC, and
∫
Sair

−→
P · −→n is the

power lost through the air box integrated over the whole surface and the power flow

along the different axes is emw.Poavx(y,z). In practice it is generally easier to access

the COMSOL quality factor result, as the calculation above requires the addition of a

surface just within the air box-PML interface to integrate over since that interface can

give unwanted distortions. The fundamental TE mode of interest will almost always have

the highest quality factor of the simulated modes (if it is with the frequency range of the

modes returned by COMSOL) and is thus easy to identify. If the fundamental TE mode

1Our coordinate system has x along the length of the OMC and z in the direction of the OMC
thickness
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Figure 4.3: A COMSOL optical simulation model

isn’t found, we must expand the number of eigenmodes that COMSOL finds or change

the center frequency of the search. The quality factor extracted from this simulation

describes the scattering into vacuum, mostly in the ±z directions, that ultimately limits

the optical quality factor in the absence of other loss mechanisms. In general, this value

is much higher than measured values and can be several million for optimized geometries.

Waveguide coupling

To simulate the coupling between an OMC and the optical waveguide we need to

add the waveguide geometry to our model, which reduces the symmetry of the model,

allowing us to only apply a symmetry in the xy plane. Otherwise, the model is similar

to that described above, but the analysis must be done more manually, as the figure

of merit that we are interested in (the external quality factor) is not a standard result

that COMSOL calculates. We calculate this by assuming that the vast majority of the

power that exits the air box through the surface normal to the left side of the OMC and

waveguide (the opposite side from the mirror-terminated portion of the waveguide) is

due to coupling to and propagation in the waveguide. We confirm this by measuring the
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power through this surface in the absence of a waveguide and find it to be negligible. We

can also check the power lost through the surface at the mirror-terminated end of the

waveguide and find it to be negligible as well. In this case the external quality factor is

Qe =
ωUEM∫
Px

(4.2)

where Px = emw.Poavx is integrated across the surface described above. Intuitively, the

farther the waveguide is from the OMC (the gap distance shown in figure 4.1), the smaller

the overlap between the OMC mode and the waveguide mode and the smaller the power

emitted from the end of the waveguide. The waveguide geometry should be carefully

ensured to be the same as will be used in eventual devices, as the positions of the holes

at the end of the waveguide relative to the OMC pattern will effect the mode overlap.

Because diamond is a small-index material, the OMC mode is not as well-contained in

the diamond as it would be in silicon, requiring a larger OMC-waveguide gap to achieve

a given coupling rate. After simulating a range of gaps we make a plot of κe = f/Qe vs

the gap distance. We can select a range of gaps that give κe close to or less than the κi

that we typically measure, on the order of 2 GHz (Qi ≈ 105), in order to achieve close to

critical coupling (κe = κi) in fabricated devices without overcoupling the optical mode

(κe > κi).

Scattering into the bulk

A device parameter that is difficult but important to control in our devices is the

gap underneath the OMC between the OMC and the bulk material, normally silicon but

potentially diamond. This simulation is very similar to the regular optical simulation

but we replace one of the PML boxes above or below the OMC with a box of the bulk

material of interest. The presence of this material reduces the symmetry of the model
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Figure 4.4: a) A COMSOL optical simulation model for OMC-waveguide coupling.
The bottom edge of the surface that the exiting optical power is integrated over is
highlighted in red. An example plot of κe vs OMC-waveguide gap showing that κe
decreases rapidly for increasing gap.

such that we must simulate a quadrant of the model instead of an octant. We then vary

the distance between the bottom of the OMC and this bulk material and extract the

quality factor and κi for the fundamental TE mode. Figure X shows a plot of κi vs the

gap distance above bulk silicon for the Nov 2020 8GHz design, which has a scattering-

limited simulated optical quality factor of > 106 (κi < 200 MHz). The simulated κi is

much smaller than typically experimentally realized values for gaps greater than 1 µm,

indicating that this gap distance is the minimum that we should have in our devices.

Scattering losses increase when fabrication imperfections are taken into account, so this

gap should be made as large as practically possible to minimize unwanted scattering into

the bulk.

4.2.2 Fiber coupling

Tapered fiber coupling

To determine wwg,i and wwg,f for the tapered fiber coupling region of the waveguide,

finite-difference time domain simulations were performed by the Safavi-Naeini group using

54



Diamond optomechanical crystal design and fabrication Chapter 4

Figure 4.5: The tapered fiber coupling geometry, where a tapered optical fiber (blue)
tapers down in width while the diamond optical waveguide tapers up in width. As
can be seen by the Lumerical simulations underneath the geometry, the optical mode
transitions from residing primarily in the fiber to primarily in the waveguide as the
waveguide width increases relative to the fiber.

the simulation package Lumerical. The simulation consisted of a two-dimensional model

of a 1.5 µm-wide optical fiber above a 200 nm-thick diamond waveguide, the width of

which is varied. Figure 4.5 shows how the hybridized waveguide-fiber mode transitions

from existing primarily within the fiber to primarily within the waveguide.

Lensed fiber coupling

To determine the optimal waveguide endface width for mode matching to the focused

gaussian beam of a lensed fiber, we perform a 3D simulation in Lumerical in which a

gaussian beam with the correct width (2.5µm in our case for a commercially-available

fiber) is incident upon the narrow end of our tapered waveguide geometry. We then

sweep wwg,i and monitor the transmission of the beam through a cross-section at the end

of the waveguide. Figure X shows transmission T through the waveguide as a function
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Figure 4.6: a) The lensed fiber coupling geometry (not to scale), in which a fiber
with a polished lens on its endface emits light toward the coupling waveguide. b) The
lensed fiber coupling simulation model in Lumerical. A gaussian waveform of 1550
nm light is incident on the left end of the waveguide and its transmission is measured
through the yellow box at the right end of the waveguide. c) Transmission versus
wwg,i for a 300 nm-thick waveguide and wwg,f = 700 nm.

of wwg,i for a 300 nm-thick waveguide, where we see that the peak transmission is for

wwg,i = 200 nm.

4.2.3 Mechanics

Simulating the OMC mechanical mode in COMSOL is simpler than the optical mode,

as it does not require an air box or PML 2. Similar to the optical simulation, however,

we can apply symmetry operations to the model and only have to simulate 1/8 of the

geometry. We apply symmetry conditions across the xy, xz, and yz planes. We also

set the displacement at the end of the OMC (after the mirror cells) to zero using a

fixed condition in order to suppress uninteresting flexural modes. We can then find

the mechanical eigenmodes that have the symmetry of the mechanical breathing mode

2A PML is required for simulating mechanical loss from the OMC in the case of simulating fabrication
disorder or engineered leakage, but we typically do not do this and can assume that the simulated
mechanical Q is infinite.
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Figure 4.7: A mechanical model in COMSOL consisting of 1/8 of an OMC.

by performing an eigenfrequency study in the solid mechanics package. One can then

manually search for the breathing mode among the calculated eigenmodes. However,

usually the mechanics are simulated in the course of an optomechanical model that

couples the optical and mechanical simulations and the breathing mode is easily picked

out as it has the highest optomechanical coupling to the fundamental TE mode. This is

discussed in the section describing simulation of optomechanical coupling below.

Strain

Once the breathing mode frequency is determined, we would like to determine the

zero-point strain in the OMC that an SiV would experience. To do this, we perform a

frequency domain simulation at the breathing mode frequency while applying a prescribed

displacement in the y-direction that is of order the zero-point motion amplitude as given

in equation 2.36. This displacement is not exactly the zero-point motion amplitude,

however, as that is a normalized displacement over the entire mode shape, but serves as

a guess for determining a displacement which gives a strain energy equal to ℏωm/4. We

perform this simulation with the guess amplitude y = xzpf and then calculate a fractional

energy difference
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∆E =
ℏωm/4

8Uε

− 1 (4.3)

where ωm = solid.omega is the angular frequency of the mechanical mode and Uε =

solid.Ws tot is the total strain energy in the model, which we multiply by 8 to determine

the strain energy in a full OMC since we are only simulating an octant. If abs(∆E) > .01,

we recalculate ynew = yold(1+∆E/2) and iterate until abs(∆E) < .01, indicating less than

a 1% difference between the simulated and theoretical strain energy. With this model,

we then calculate the strain tensor in the OMC basis εOMC at a point of interest, typ-

ically at x = a0/2, y, z = 0, where a0 is the lattice constant of the defect cell. This

point corresponds to a point in the high-strain region near the center of the OMC that

is simultaneously well-separated from surfaces, as it is maximally distance from the top

and bottom surfaces of the OMC as well as the nanobeam sidewalls. It is not the point

of maximal strain (which is along the perimeter of the defect cell hole). We then rotate

the strain tensor into the SiV basis for both SiV orientations (orientation 1: 111 and ori-

entation 2:111) by applying the transformation εSiV = R2(θ2)R1(θ1)εOMCR
T
1 (θ1)R

T
2 (θ2).

For orientation 1, R1 = Ry with θ1 = −54.736 degrees, and R2 = Rz with θ2 = 180

degrees. For orientation 2, R1 = Rx with θ1 = 54.736 degrees, and R2 = Rz with θ2 = 90

degrees. With the strain tensor in the SiV bases, we can then calculate VE1 and VE2 as

in equation 3.15 which are the strain susceptibilities that factor into the SiV spin-strain

coupling strength given by equation 3.26.

Phononic shield

The phononic shield is simulated with an eigenfrequency study in the solid mechanics

package using a model consisting of a unit cell of the phononic shield: an ashield square,
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Figure 4.8: a) The direction of the edge displacement for the simulation. b) The point
at which the strain tensor is evaluated.

t-thick block with a cross-shaped hole with arm width w and height h. We also take into

account rounding of the right angles in the cross that occur during fabrication as in [1]

and which fortuitously tend to actually give large bandgaps than perfect right angles.

SEMs of fabricated devices have shown typical radii of curvature of ≈ 35 nm, but this

should be continuously verified for different devices and fabrication processes. Floquet

periodicity conditions are applied between the top/bottom and left/right edges of the

model with k-vector (kx, ky, 0) with kx,y = mx,yπ/ashield. We then sweep mx and my to

trace out a path in k-space shown in figure 4.9c, performing an eigenfrequency study

for each mx,y pair to determine the first ten eigenmodes of the phononic shield cell (ten

is usually enough to see the phononic bandgap). In practice, this takes three separate

parametric sweeps in COMSOL. One keeping my = 0 and sweeping mx from 0 to 1, one

keeping mx = 1 and sweeping my from 0 to 1, and then finally sweeping mx and my from

1 to 0 simultaneously. The result is a bandstructure that will reveal a full mechanical

bandgap around some frequency, as shown in figure 4.9c. The dimensions of the phononic

shield cell can then be adjusted to change the center frequency and width of this bandgap

to suit the frequency of the OMC mechanical mode.

4.2.4 Optomechanical coupling

The optomechanical simulation is achieved with a model in which we run both op-

tical and mechanical simulations. The model is set up similarly to the regular optical
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Figure 4.9: a) The geometry of the simulated phononic shield unit cell. b) A map
in k-space of the simulated k-vectors. c) The resulting bandstructure generated from
simulating the phononic shield over a range of k-vectors, showing a full bandgap
(highlighted in orange) around the OMC breathing mode frequency (dark orange
line).

simulation: an octant of the OMC surrounded by air box and PML, but we include both

electromagnetic wave and solid mechanics physics and apply the mechanical symmetry

operations to the diamond portion of the model. We also define three regions of inte-

gration for calculations with the simulated model: the diamond volume (intop1), the air

box volume (intop2), and the diamond surface (intop3). We then run an optical eigen-

frequency simulation at the previously-determined optical frequency of the OMC (with

the solid mechanics physics turned off) and then a solid mechanics eigenfrequency sim-

ulation (with electromagnetic wave physics turned off) around the expected mechanical

frequency (6-8 GHz) and find 40 modes within which we expect to find the breathing

mode. We then pass the model to a MATLAB script that uses the simulated parameters

of the two simulations together with material definitions (particularly components of the

rotated photoelastic tensor pij given in equation 2.58 and diamond’s relative permittiv-

ity ϵd = 5.7) to perform calculations. For each simulated mechanical mode, the script

calculates the zero-point motion amplitude xzpf and the moving boundary (gmb) and

60



Diamond optomechanical crystal design and fabrication Chapter 4

photoelastic (gpe) contributions to the optomechanical coupling (see section 2.3.3).

In particular, we calculate ten different integrals. Iesq integrates the electric field

energy of the optical mode in both the diamond and the air box. Ibnd calculates the

integral over the diamond surface in equation 2.55 which captures how the displacement

of the mechanical mode boundary interacts with the optical mode electric field. Lastly,

I11, I12, I13, I16, I26, I33, I44, and I66 are integrals over the diamond volume which

describes how strain in the material interacts with the optical mode electric field. We

then have

gmb = − xzpf
dmax

fm
2

Ibnd
Iesq

(4.4)

gpe =
xzpf
dmax

fmϵ0ϵ
2
d

2

p11I11 + p12I12 + p13I13 + p16I16 + p26I26 + p33I33 + p44I44 + p66I66
Iesq

(4.5)

We then pick out the breathing mode, which is the mode for which abs(g0) = abs(gmb+gpe)

is maximized (assuming that it was within the 40 simulated mechanical modes, which it

typically is). Also note that in both equations we use the normalization factor xzpf/dmax

where dmax is the maximum displacement in the mechanical simulation. This scales all of

the simulated displacements in the mechanical eigenfrequency result down to the level of

the zero-point motion. This is not an exact normalization, which requires determination

of what the maximum displacement of the OMC is for the breathing mode zero-point

motion as described in the Strain section above, but because we do not know a priori

the frequency of the breathing mode we use this as an estimate of the correct scaling
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during optimization of the OMC design, which is where the optomechanical simulation

is typically used. Once the breathing mode is selected, the optomechanical coupling can

be corrected in postprocessing by simulating the maximum displacement for zero-point

motion dmax,zpf using the strain simulation and multiplying the previously calculated

optomechanical couplings by the correction factor dmax,zpf/xzpf , which is typically very

close to 1.

4.2.5 Optimization

We automate optimization of the OMC pattern using MATLAB’s genetic algorithm

in conjunction with a cost function that simulates the optical quality factor and optome-

chanical coupling for a set of OMC parameters and returns a fitness value (typically

−g20Qo, with Qo limited to 1 million to avoid unphysically high Qs from dominating)

that the genetic algorithm tries to minimize. We define a seed set of parameters to give

the algorithm that we know give a good fitness value (originally scaled parameters from

a silicon OMC design in [50]). The genetic algorithm then produces a ‘population’ of

parameters based on the seed parameters with a preset bounds that are simulated to give

fitness values. The cost function ensures that these parameters are physical, checking

for example that the mirror cell ellipse is not longer than the beam width. The best

sets of parameters based on these simulations then move on to the next ‘generation’ and

more sets of parameters are generated via inheritance of parameters from the dominant

sets and random mutation. This process repeats until the algorithm finds a local min-

imum in the cost function that corresponds to an optimized geometry. The algorithm

can then be re-seeded to exit this local minimum unless a satisfactory geometry has al-

ready been found. Typically, this process results in several sets of parameters that have

Qo > 1 million and g0/2π > 200 kHz after a day or two of running. It is worth noting
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that optimizing for g0 inherently optimizes for zero-point strain since the photoelastic

optomechanical coupling dominates g0 and is dependent on the strain in the OMC, so

strain or defect-spin coupling typically does not need to directly factor into the fitness

value.

4.3 Fabrication

4.3.1 Diamond samples

To fabricate diamond OMCs, we obviously need to begin with a piece of diamond.

This is generally a 500 µm-thick bulk electronic-grade single-crystal diamond formed by

chemical vapor deposition from ElementSix. These diamonds are extremely high purity,

with less than 5 parts per billion nitrogen, and have been shown to be mechanically

superior to lower-purity diamonds [37], making them an excellent clean slate from which

to fabricate our devices. From there we have to decide whether we are going fabricate our

devices out of bulk diamond using a helium-implantation or quasi-isotropic etch technique

or out of a thin, 1-20 µm diamond membrane bonded to silicon via our diamond-on-

insulator (DOI) method.

For devices fabricated in bulk diamond we first clean the samples with our standard

2-acid clean of a 1:1 mixture of sulfuric and nitric acid at 190 C for ≈ 1 hour to ensure a

pristine surface for initial processing. Then we move on to a strain-relief etch to remove

polishing-induced strain at the surface of the diamond. This etch involves 15-60 min of

our standard inductively-coupled plasma (ICP)3 etch with ArCL plasma with gas flows 25

and 40 sccm respectively at a pressure of 0.7 Pa and 500 W ICP power/200 W bias power.

This corresponds to etching ≈ 1-4 µm of diamond. We generally use this ArCl etch for

3For more information about ICP etching see appendix X
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longer etches, despite the fact that it is rather slow, as it minimizes the formation of

unwanted ‘grass’ that results from micromasking (redeposition of etched material, which

then modifies the etch in its immediate vicinity) in oxygen-containing ICP etches. We

follow this with 5s of our standard O2 ICP etch, with a flow of 30 sccm, pressure of 1.33

Pa, and ICP/bias powers of 700/200 W. This etches ≈ 10 nm of diamond to remove any

shallow-implanted Cl from the previous etch, which could have deleterious effects on any

spins we introduce into our devices later on.

For DOI devices, we must form a membrane either by etching graphitized diamond

formed via helium implantation, resulting in a ≈ 1 µm-thick membrane (discussed in

more detail below) or by having the bulk diamond laser cut and polished into 20 µm-

thick membranes. These membranes are then carefully electrostatically bonded to a piece

of silicon. Then membranes are then cleaned using the same 2-acid clean described above.

The 1 µm membranes are then ready for ion implantation while the 20 µm membranes

first undergo strain relief etching and potentially another 2-acid clean.

4.3.2 Defect implantation

The ion species we have implanted include 14N, 28Si, and 4He. The nitrogen and silicon

are implanted with the intent of forming nitrogen- and silicon-vacancy centers, while the

helium is implanted with the intent of forming graphitized carbon for later removal (which

we ignore for now and discuss in further detail below). Before implantation, we need to

determine the ion implantation energy, dose, and angle. The energy controls the depth of

the defect layer and for nitrogen and silicon we typically would like a depth of ≈ half of

the OMC thickness in order to place the defect layer as far from the top and bottom OMC

surfaces as possible. This corresponds to ≈ 100 nm and using the Stopping and Range

of Ions in Matter (SRIM) simulation package, we determine that the energy required
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for this depth is 90 keV for nitrogen and 150 keV for silicon. The dose together with

the conversion efficiency of implanted ions to defect centers (≈ 3% for NV centers and

5% for SiV centers) determines the density of defects. For initial experiments we aim

for a defect density of ≈ 1 µm−2, which should give an array of individually-resolvable,

non-interacting defects. This results in a required dose of 3 × 109 cm−2 for nitrogen

and 2 × 109 cm−2 for silicon. Finally, we choose to implant at a tilt of 7◦, which allows

for channeling of the implanted ions through the diamond lattice, minimizing damage

induced by the implantation.

Following ion implantation, the samples are annealed at 450 C in an O2 atmosphere

and next at 850 C in a H2/Ar atmosphere to mobilize vacancies introduced during im-

plantation. This serves two purposes: to form vacancy centers with the implanted ions

and to move the lattice damage from implantation to the surface of the diamond. This

graphitized layer is then removed with a one hour clean in a boiling perchloric, nitric,

and sulfuric acid mixture which also serves to oxygen terminate the diamond surface.4

4.3.3 Diamond-on-insulator

All of the devices measured in this dissertation were fabricated using a diamond-on-

insulator technique in which a diamond membrane is mounted (defect side down) to a

silicon carrier chip with Hydrogen silsesquioxane (HSQ) and cured in a wafer bonder at

420 C and with 80 mBar of bonding pressure. After this bonding/curing process, the

HSQ acts functionally as SiO2 (hence ‘on insulator’) and is robust to the temperatures

and acids required in subsequent fabrication steps, only being etched by hydrofluoric acid,

which we take advantage of to undercut our devices toward the end of the fabrication

process. Excess HSQ is removed from the silicon carrier wafer with a 10s dip in buffered

4This graphitized layer can also be removed with a much less scary clean involving a heated mixture
of sodium nitrate and sulfuric acid. We discuss this in the context of helium implantation later on
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hydrofluoric acid (BHF) before the diamond is thinned to the device thickness of 200-

300 nm with repeated ArCl plasma etches (as described above) interleaved with solvent

cleaning of the sample in acetone and isopropyl alcohol and 2-acid cleaning as necessary.

A significant drawback to using 20 µm membranes with this method is that they

typically have a wedge to their thickness, sometimes varying in thickness by up to 1

µm or more over 2 mm. This results in only a portion of the thinned diamond being

the correct thickness for fabricating OMCs. If one is lucky and the wedge is small, this

area can be rather large, as for the samples described in chapter 5. However, for the

sample in chapter 6, the wedge was more significant, resulting in only a single row of

functional devices. This uncertainty in fabrication and device yield is one motivation

for seeking other methods of fabricating our OMCs. The 1 µm membranes formed via

helium implantation avoid this since their thickness is determined by the highly uniform

depth of implanted helium ions. However, these membranes are difficult to form and

release from the bulk diamond, and because of this typically have much smaller areas (a

few hundred µm to a side) than the mm-sized 20 µm samples and are very fragile and

difficult to handle. A drawback to the DOI technique overall is the inability to high-

temperature (> 850 C) anneal the sample post-fabrication, as the diamond membrane

delaminates from the HSQ bond at these temperatures. Ideally, we would like to be able

to perform such an anneal to heal any lattice damage incurred during fabrication, which

should improve the properties of both the OMCs and any embedded vacancy centers.

Following bonding and thinning, the sample is ready to be patterned with our OMCs.

We have done this using two different etch masks for transferring the OMC pattern into

the diamond membrane. For the devices in chapter 5 we used an HSQ mask, while in 6

we used a SiN hard mask. These two process are described below.
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HSQ mask

The original method used for fabricating diamond OMCs employed an HSQ mask for

defining the devices and was adapted from the previously-developed recipe for making

earlier diamond cantilever devices. The benefit of this method is that it does not require

additional films to ask as hard masks since HSQ is able to withstand the O2 etch used

to transfer our device pattern into the diamond membrane, but the high dose required

for electron beam lithography with HSQ can lead to charging issues and over-curing of

HSQ on the backside of the device, making the bonding HSQ more difficult to remove.

After thinning and cleaning the sample (typically 2-acid and then piranha if needed),

3 nm of Cr are evaporated onto the diamond using the thermal evaporator. This acts

as a sticking layer for the HSQ that we use as an electron-beam resist. 6% HSQ is then

spun onto the Cr-coated diamond at 3 krpm 5 and baked at 95 C for 1 minute, followed

by spinning Aquasave at 3 krpm and baking at 95 C for 15 seconds. The Aquasave

provides a conductive surface above the HSQ, increasing the sample’s conduction to

ground to attempt to mitigate charging during electron beam lithography. Next, we

perform electron beam lithography on the sample. A typical dose for this Aquasave/HSQ

bilayer on top of our DOI stack is 1100 µC/cm2. Following the lithography, the Aquasave

is removed with a 5 second dip in de-ionized (DI) water. The HSQ is developed in 25%

tetramethylammonium hydroxide (TMAH) for 1 minute. The development in stopped

with a DI water dip.

The pattern is quickly inspected with a scanning electron microscope. If the pattern

turned out well, the sample is ICP etched, first with O2/Cl2 (40/25 sccm, 500W ICP/15W

bias, 0.7 Pa) for 30 seconds to remove the Cr sticking layer, then in O2 (30 sccm, 700W

ICP/200W bias, 1.33 Pa) for ≈ 4 minutes to transfer the pattern into the diamond. The

5Recipe #5 on the nanofab spinners
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Figure 4.10: A simplified fabrication flow for diamond OMCs fabricated with an HSQ
mask.(1) A silicon carrier chip is prepared and (2) coated with HSQ. (3) A ≈ 20 µm
thick diamond membrane is wafer-bonded to the HSQ above the curing temperature
for HSQ.(4) The diamond is thinned to the device layer thickness of 200 nm using a
series of ArCl inductively coupled plasma (ICP) etches.(5) HSQ is patterned on top
of the diamond using electron-beam lithography and then (6) used as an etch mask to
define the devices in the diamond with an O2 ICP etch.(7) The patterned devices are
undercut with a BHF dip, which selectively etches the HSQ bonding layer underneath
the devices.(8) The devices are further undercut using XeF2 gas, which isotropically
etches the silicon carrier wafer.

sample is then exposed to a gentle plasma for 1 minute while being heated to 200 C6 to

slightly etch the surface of the exposed HSQ layer, making it easier to remove with BHF

in the next step.

Next the devices are undercut by etching the HSQ bonding layer with a series of ≈ 10

second BHF dips7, which are stopped in DI water before transferring to IPA, inspecting

after each etch to determine the undercut progression. Once the devices are undercut,

we avoid blow drying them, instead transferring them from IPA to a 95 C hotplate

for evaporative drying. These BHF dips also remove the HSQ mask. We then etch the

sample for 15s in Cr etchant to remove the chrome sticking layer. Finally, we use XeF2 to

6Recipe 2 or 3 in the Gasonics 2000
7Originally this was done for ≈ 10− 15 seconds before inspecting the undercut, but if this process is

used in the future, a short (few second) BHF dip should be done to just remove the exposed HSQ before
performing a XeF2 etch and more, longer BHF dips, as described in the SiN process below.
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isotropically etch the silicon bonding wafer under the devices to increase the separation

between the OMC and the bulk silicon which is necessary for achieving high optical

quality factors since the separation provided by the HSQ bonding layer is typically only

≈ 200 nm. The etch entails 3 15-second cycles of 2 torr of XeF2 in the etching chamber

but can be adjusted in time or pressure to etch more or less silicon. The gap between

the OMC and the bulk silicon should be checked after this etch by examining the sample

at an angle in the SEM to ensure that it is at least 1 µm, preferably more. Lastly, the

sample is cleaned using a standard 2-acid clean.

SiN mask

The current method used for fabricating OMCs out of diamond membranes uses

CSAR-62 instead of HSQ as an electron beam resist, which is used to pattern a low-

stress SiN hard mask, which in turn is used to transfer the pattern into the diamond.

This method has many advantages over the HSQ mask method. These include lower

doses required for electron beam lithography (320 µC/cm2 for CSAR versus 1100 µC/cm2

for HSQ), spatial separation between the lithography layer and the HSQ bonding layer

provided by the ≈ 200 nm-thick SiN layer, and ease/safety of developing, as CSAR is

developed in amyl acetate, a common solvent, as opposed to the more dangerous TMAH

required to develop HSQ.

After thinning and cleaning the sample, ≈ 20 nm of aluminum oxide (AlOx) is grown

on the sample via atomic layer deposition (ALD), followed by ≈ 200 nm8 of low-stress

SiN deposited via plasma-enhanced chemical vapor deposition (PECVD). The AlOx layer

serves as an etch stop when the SiN is etched, protecting the diamond membrane. The

SiN film surface is then etched for 10 seconds at 200 C in a downstream etcher to slightly

8This is typically 30 minutes of deposition in the PECVD2 tool.
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modify the surface in preparation for spin-coating electron beam resist9. CSAR-62 that

has been mixed in a 3:1 ratio with anisole 10 is spun onto the sample at 4 krpm for 1

minute with an 800 rpm/s ramp rate and baked at 150 C for 1 minute.

Next, the resist is exposed using electron beam lithography, with a typical electron

dose of 320 µC/cm2 and developed in amyl acetate for 1 minute followed by a 30 second

stop in IPA before blowing dry. The patterned CSAR can be examined in the SEM to

ensure that all features have been properly realized. The resist pattern is then trans-

ferred into the SiN layer with a ≈ 1 minute 15 second CHF3/O2 ICP etch (40 sccm/10

sccm, 500W ICP/50W bias, 0.5 Pa, ≈ 180 nm/minute). The CSAR is stripped with

N-Methylpyrrolidone (NMP) at 80 C for 10 minutes. At this point, the patterned SiN

can be inspected in the SEM. If satisfactory, the AlOx layer is etched with a BCl3 ICP

etch (30 sccm, 500W ICP/200W bias, 0.5 Pa, 1.1 nm/second) for 20-25 seconds, exposing

the diamond through the mask layers. The OMC pattern is then transferred into the

diamond with the same O2 ICP etch described above. This etches the diamond with a

selectivity of at least 20:1 over the SiN, making the SiN a very robust etch mask11. The

SiN is then removed with a > 1 hour etch in 85% o-phosphoric acid at 155 C. This etch

selectively etches the SiN, leaving the bonding HSQ untouched, as opposed to the more

commonly used BHF. The sample is then downstream etched for 1 minute at 200 C to

prepare the HSQ bonding layer for etching with BHF.

The sample is then dipped in BHF for 10 seconds to etch the HSQ mainly in the

exposed regions, then DI water, then IPA before evaporative drying on a hotplate at 95

C. The silicon carrier wafer is then isotropically etched with XeF2 (3-4 15 second cycles,

9The resist will not stick if this step is skipped.
10This dilution gives a ≈ 300 nm spun layer
11The caveat here is that thin features in the SiN mask such as the 40 nm phononic shield linkages

can have relatively shallow and rounded sidewalls for SiN layers thinner than 200 nm, worsening during
the diamond etch such that the bottom of the mask can be thinned away, causing the diamond feature
to be thinner than desired.
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Figure 4.11: A simplified fabrication flow for diamond OMCs fabricated with a SiN
mask. (1) A silicon carrier chip is prepared and (2) coated with HSQ. (3) A ≈ 20 µm
thick diamond membrane is wafer-bonded to the HSQ above the curing temperature
for HSQ. (4) The diamond is thinned to the device layer thickness of 200 nm using a
series of ArCl inductively coupled plasma (ICP) etches.(5) Low-stress SiN is deposited
and electron beam lithography is performed with CSAR electron beam resist. (6)
CHF3O2 plasma transfers the electron beam pattern into the SiN mask (7) followed by
an O2 plasma etch to transfer the pattern into the diamond layer. (8) Phosphoric acid
removes the SiN layer and (9) buffered HF acid removes the HSQ directly underneath
the device. (10) XeF2 gas etches the silicon carrier wafer to increase the undercut
depth below the devices before (11) another buffered HF dip removes any leftover HSQ
on the diamond backside. (12) A 2-acid clean removes any additional contaminants
prior to measurement.
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2 torr XeF2), before a 5-10 second BHF dip to remove HSQ on the exposed backside of

the diamond. The BHF dips also serve to remove the AlOx layer. Lastly, the sample is

cleaned with a 2-acid clean.

4.3.4 Uniform-thickness diamond membrane creation via he-

lium implantation and graphitization

As was previously mentioned, an outstanding challenge in diamond fabrication is the

creation of large, high-quality, uniform-thickness membranes out of which nanostructures

can be fabricated. One potential solution is the creation of a subsurface graphitized

layer via ion implantation and subsequent high-temperature annealing [75, 76, 77, 78,

79]. The ion implantation process is capable of producing a damaged diamond layer of

uniform depth and thickness. Above a critical vacancy threshold of ≈ 1− 5× 1022cm−3

[80] (with deeper damaged layers having a higher graphitization threshold [78]), the

damaged layer converts to graphite, which can be selectively etched by a variety of

methods, including electrochemical etching [76, 81], annealing in the presence of oxygen

[79], etching in a heated solution of sodium nitrate and sulfuric acid, or potentially a

quasi-isotropic oxygen plasma etch. However, to this point this method has focused on

the creation of lifted-off membranes that can subsequently be used similarly to the laser

sliced membranes described in the diamond-on-insulator section above. This focus has

limited these membranes in size and quality due to the difficulty of etching a subsurface

graphitized layer greater than ≈ 300 µm2 and the fragility and poor surfaces of these

lifted-off membranes [82]. In theory, any ion can be used for this process, but helium

is typically used due to its narrower implantation distribution (and thus more clearly

delineated damage/graphite layer).

Our proposed improvement to this process is to perform device fabrication on a bulk

72



Diamond optomechanical crystal design and fabrication Chapter 4

Figure 4.12: A simplified fabrication flow for diamond membranes with a subsurface
graphite layer. (1) A bulk diamond piece is prepared and (2) implanted with He
ions, leading to (3) a subsurface damaged layer. A high-temperature vacuum anneal
causes this damaged layer to become (4) graphitized. (5) Low-stress SiN is deposited
and photo- or electron beam lithography is performed to define a device pattern. (6)
CHF3O2 plasma transfers the electron beam pattern into the SiN mask (7) followed by
an O2 plasma etch to transfer the pattern into the diamond and graphite layers. (8)
The graphite layer is selectively removed with either a heated solution of sodium ni-
trate and sulfuric acid, an oxygen anneal, an electrochemical etch, or a quasi-isotropic
oxygen plasma etch.

diamond with a subsurface graphitized layer and perform the graphite etch after defining

the devices, as shown in figure 4.12. Retaining the attachment to the bulk diamond

would allow for larger sample sizes and for further high-temperature annealing to repair

implantation and fabrication-induced damage without fear of the membrane delaminating

as in the case of bonded membranes. For our lab, prior to helium implantation the

samples are cleaned and undergo a strain-relief etch as described in the previous section.

The samples are then sent to Los Alamos/Sandia National Laboratories, which have a

variety of ion implantation tools capable of covering a wide range of ion dose and energy

combinations. SRIM calculations are carried out to determine the dose and energy of an

implantation for a given application. A typical dosage of 1e17 cm−2 and energy of several

hundred keV should give graphite layers several hundred nm thick and on the order of

1 micron deep. Multiple implantations at different energies can be used to increase
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the graphite layer thickness. The implantations are masked with a micromachined grid

of openings to create an array of ≈ 100 µm2 damaged regions. This will allow for

subsequent removal of graphite while maintaining attachments to the bulk diamond and

avoid unwanted stress due to lattice mismatch between the graphite and diamond layers.

After implantation, the samples are annealed in high vacuum at 850 C for 2 hours to

form the graphitized layer. After this, as is mentioned above, there are several options

for removing the graphite while protecting (to varying degrees) the diamond layer. A

standard method is to use an electrochemical etch in which the diamond is submerged

in ultrapure water and voltage probes (with ≈ 50 V across them) are placed close to the

diamond. These conditions selectively etch graphite, but it has been seen before in our lab

that the etch rate is relatively slow and highly dependent on the positions of the voltage

probes relative to the region to be etched. Another method of selectively etching graphite

is by using a mixture of 1 cm3 sodium nitrate and 40 mL sulfuric acid at 245 C for several

hours (or days). This etch is very slow but relatively controllable. A cover slip should be

used for long etches to minimize evaporation of the etch solution. There are two other

methods that can etch graphite but can also etch diamond in undesirable ways. First,

the diamond can be annealed at 450 C in the presence of oxygen, however this etch is also

rather slow and puts the diamond surface at risk of being roughened, as diamond starts to

be etched by oxygen at temperatures slightly higher than this. Lastly, a quasi-isotropic

O2 plasma etch [25] can be used to simultaneously etch the graphite and diamond in

the case that etching the diamond is desirable (if one wants to tune the thickness of the

diamond membrane layer). Work on this method of diamond fabrication is ongoing but

would enable very high fabrication yield and larger, more complex phononic systems if

successful.
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Chapter 5

Diamond optomechanical crystals
with embedded nitrogen vacancy
centers

5.1 Introduction

Our OMC design consists of a single-crystal diamond nanobeam with a rectangu-

lar cross-section and a one-dimensional array of etched ellipses along its length and is

fabricated using a diamond-on-insulator technique. The rectangular cross-section is in

contrast to the work in [17], which employs diamond OMCs with triangular cross-sections

fabricated using an angled-etching technique. The rectangular cross-section enables im-

portant advantages, namely the z-symmetric strain profile of the fundamental ‘breathing’

acoustic mode and the ability to fabricate two-dimensional phononic shields and couple to

single-mode waveguide structures [51]. We engineer the OMC optical resonance to be ≈

200 THz to facilitate integration with mature 1550 nm telecommunication technologies.

OMCs with this optical frequency also host mechanical resonances with frequencies

of a few GHz. We choose an OMC thickness of 200 nm, which provides a balance be-

tween the competing values of optical quality factor, for which a thicker OMC would be

optimal, and strain, which increases for thinner OMCs. We then follow the design prin-
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Figure 5.1: a) The system under study, in which an NV center is embedded near the
center of a diamond OMC and interacts with the mechanical motion of the OMC via
crystal strain. The NV is measured by collecting the light it emits with a confocal
microscope, while the OMC is probed via coupling to an adjacent diamond optical
waveguide. b) The normalized displacement of the fundamental ‘breathing’ mechan-
ical mode and c) the normalized electric field of the optical mode of the diamond
OMC, simulated using the finite-element method (FEM).(d) The εyy component of
the strain tensor in the device basis due to the displacement of the breathing mode,
also simulated with FEM. The line cut shows the z-symmetric nature of the strain
profile and the optimal placement of an NV in a large-strain region that is also isolated
from the device surfaces.

ciples outlined in [50] in which ‘mirror’ unit cells at either end of the OMC adiabatically

transition to a ‘defect’ unit cell at the center through slight changes in the shape and

spacing of the etched holes in the region between the defect and mirrors. The mirror

cells host incomplete, symmetry-dependent acoustic and optical band gaps around the

breathing acoustic mode (figure 5.1b)) and fundamental transverse-electric (TE) opti-

cal mode (figure 5.1c)) frequencies. Further acoustic isolation is provided by a phononic

shield surrounding the OMCs, which hosts a full phononic bandgap around the breathing

mode resonance frequency.

5.2 Initial OMC tests

Initial OMC tests were useful for working out general aspects of the OMC geometry

and design. The first set of measurements taken in the Safavi-Naeni lab on the first OMC

showed fiber coupling but no resonances, leading to the hypothesis that the gap between

the OMCs and the silicon was too small. After using a XeF2 etch to increase this gap,
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very low-Q optical resonances were observed near 1400 nm, too low for the mechanical

signal to amplified and detected with typical telecom equipment. This result enabled

us to fine-tune our OMC design protocol, leading to the second set of devices that are

discussed below.

5.3 Adjustments and optimizations

To optimize our OMC design for optical quality factor and strain, we simulate the

optical and mechanical resonances of the OMC with the finite element method (FEM)

software COMSOL and use a genetic algorithm to search the design parameter space and

maximize the product Qoε0, where Qo is the optical quality factor for the fundamental

TE optical mode and ε0 is the strain due to zero-point motion of the mechanical res-

onance. We simulate the zero-point optomechanical coupling g0 between these optical

and mechanical modes to be g0/2π ≈ 330 kHz and a zero-point amplitude of ≈ 3 fm for

the finalized design. The strain profile of the breathing acoustic mode for our rectan-

gular cross-section devices is constant throughout the thickness of the device, allowing

an embedded NV center to experience high-strain even if it is equidistant from the top

and bottom surfaces of the OMC, isolating the NV center from surface-induced noise

[38, 56]. Thus, as shown in figure 5.1d, the ideal placement of an NV center in one of our

diamond OMCs based on the FEM simulated strain profile for the breathing mode would

be approximately halfway between the defect hole and the adjacent hole and equidistant

from the top and bottom surfaces of the diamond. This would place the NV in a high-

strain region that is approximately 100 nm from any surface, providing isolation from

surface-related decoherence mechanisms. At this location, we simulate the strain due

to zero-point motion to be ≈ 10−8. Using the formalisms and measured stress coupling

constants presented in [83, 36] for the spin interaction and [71] for the orbital interaction,
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Figure 5.2: a) SEM micrograph of a pair of diamond OMCs on either side of a diamond
optical waveguide. The devices are surrounded by a cross pattern phononic shield.b)
A scanning confocal micrograph of a device similar to that shown in a). Single NVs
can be discerned in the area surrounding the phononic shield but scattering from the
etched holes and sidewalls makes them difficult to see inside the OMCs.

we estimate zero-point coupling strengths of ≈ 200 Hz and ≈ 10 MHz, respectively.

5.4 Basic OMC characterization

We measure the optical and mechanical resonances of our OMCs using a room-

temperature fiber setup, as shown in figure 5.3. For measurement of optical resonances,

light is sent from a wavelength-tunable laser (1500-1630 nm) through a fiber polarization

controller to match the polarization of the light to that of the OMC TE optical mode,

then through a fiber circulator. To couple the light onto the diamond chip, we employ

a tapered optical fiber setup such as in [84], in which light is transferred from a tapered

optical fiber into an on-chip diamond optical waveguide (which is centered between two

nominally identical OMCs, as shown in figure 5.2a. The optical frequencies of adjacent

OMCs are nearly always spectrally resolvable by more than the optical linewidth, ensur-

ing their ability to be individually addressed. The incident light can then evanescently

couple into the OMCs when on resonance with the optical mode hosted by the OMC or

continue down the waveguide and reflect off mirror cells which are designed to be iden-

tical to those in the OMCs. The reflected light then couples back into the tapered fiber
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Figure 5.3: A combined NV and OMC characterization setup. To measure the optical
response of the OMC, light from a tunable laser is sent through a fiber polarization
controller (FPC) and a fiber circulator to a tapered optical fiber, which couples light
into an on-chip diamond optical waveguide. The light reflects from the OMC and a
patterned mirror at the end of the waveguide and re-enters the tapered fiber. The
light goes once more through the fiber circulator before being measured with a DC
photodiode. To measure the thermal mechanical motion of an OMC, the laser wave-
length is set within an optical resonance but instead of being measured with a DC
photodiode, is amplified with an erbium-doped fiber amplifier(EDFA) and sent to a
fast photodiode which converts the intensity modulated light into an electrical signal
which can be measured with a spectrum analyzer(SA). NV measurements are carried
out with a home-built scanning confocal microscope in which 532 nm light is used to
excite the NVs and fluoresced red photons are measured using an avalanche photo-
diode (APD). Microwaves for NV spin manipulation are delivered via a wire bonded
over the diamond.
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and gets circulated to a photodiode, where the DC power of the reflected light is mea-

sured. Light that interacts with the OMC before leaking back into the waveguide gains

a phase relative to the light that reflects off the waveguide mirror; an optical resonance

is thus identified by a dip in the reflected power spectrum at the OMC optical resonance

wavelength due to interference between these two optical paths. Figure 5.4a shows such a

spectrum with an optical resonance at 1564.2 nm and a quality factor of 42,000. Since our

optical resonances are not in the sideband-resolved regime for the 6 GHz OMC acoustic

mode, we detect the mechanical mode by setting our laser to a wavelength within the

bandwidth of the OMC optical resonance. The Brownian motion of the OMC imprints

phase fluctuations onto the light that interacts with the cavity, which then interferes with

light that reflected off the waveguide mirror. The resulting intensity-modulated reflected

optical signal is amplified with an erbium-doped fiber amplifier before being measured

with a fast (12 GHz) photodetector and sent to a signal analyzer. Figure 5.4b shows the

detected mechanical spectrum, which we associate with the breathing acoustic mode. A

fit to this signal gives a mechanical quality factor of 118. Due to the inherent thickness

wedge of the diamond and intentional variation of the optical coupling gap, there were ≈

100 usable devices on the chip out the ≈ 1000 fabricated, of which ≈ 50 were measured

and found to consistently have optical resonances in the 1530–1560 nm range and quality

factors of 10,000–40,000, consistent with the device thickness, coupling gap, and simu-

lated loss in the silicon substrate. Of these, ≈ 10 were measured for mechanics and were

all found to have mechanical resonances near 5.9 GHz with mechanical quality factors of

≈ 100.

This low mechanical quality factor, when compared to other devices in ambient con-

ditions [17], could be due to leftover HSQ on the backside of the devices that was not

completely removed during the undercut step (step 7 in figure 4.10), etch-induced side-

wall roughness, or deviations in the fabricated device dimensions from the design. The
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Figure 5.4: a) A typical optical resonance for a diamond OMC. A Lorentzian fit gives
a quality factor of 42000. b) The measured mechanical spectrum, which we associate
with the OMC breathing mode. A fit to the signal gives a quality factor of 118.

large electron-beam dose required to expose the HSQ mask also exposed the HSQ on

the backside of the devices, making it particularly difficult to remove. In the future,

this issue can be avoided by using an electron-beam resist that requires a lower dose,

undercutting with XeF2 before the HF HSQ undercut step to allow the HF more ac-

cess to the backside of the device, and spacing the devices further apart to allow for

longer HF etch times without completely releasing the diamond. We do not suspect

etch-induced sidewall roughness to be a dominant mechanical dissipation mechanism, as

optical quality factors, which are high and consistent with device simulations, would also

be deteriorated. Because devices with and without phononic shields had similar quality

factors, imperfections in the phononic shield are also not suspected to limit performance.

Lastly, from SEM images, we see that the fabricated device dimensions differ slightly

from the design: namely, the mirror holes are ≈ 15% wider while the beam width in the

y-direction is ≈ 10% narrower. Simulations, however, indicate that these deviations do

not limit the mechanical quality factor.
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5.5 NV center spins in diamond OMCs

Preserving the spin properties of NV centers near nanofabricated surfaces is a peren-

nial challenge. To characterize the ground state spin properties of the NV centers in

our OMCs, we use a home-built confocal microscope, a simplified version of which is

shown in figure 5.3. A fluorescence image of representative OMC devices is shown in

figure 5.2b. We first detect the presence of NV centers near the center of our OMC using

optically-detected magnetic resonance of the NV center spin, in which the NV center is

continuously excited with 532 nm light while being irradiated with microwaves. We note

that most OMC devices contain an NV center near the center, with some containing

2 or 3. A dip in the photoluminescence of the NV center near 2.68 GHz (figure 5.5a)

corresponds to a transition from the ms = 0 spin state to the ms = −1 spin state, with

a small external magnetic field shifting the transition from the 2.87 GHz zero-field split-

ting. Three dips are present due to hyperfine coupling to the 14N nuclear spin of the NV

center. The ability to resolve hyperfine splitting is already indicative of well-preserved

spin coherence. To quantitatively characterize the spin coherence of this NV center, we

perform microwave-driven Rabi, Ramsey, and Hahn echo measurements in which the

NV center is prepared in the ms = 0 ground state with a 532 nm laser pulse before

undergoing the microwave pulse sequences called for by these measurements. For the

measurement of Rabi oscillations, the NV center spin evolves under continuous exposure

to microwaves resonant with the transition from the ms = 0 state to one of the hyperfine

sublevels of the ms = −1 state for some amount of time before the spin-state is read out

via spin-dependent fluorescence. Figure 5.5b shows persistent Rabi oscillations between

these two states. Deviation of the signal from a cosine function is due to beating with the

other hyperfine sublevels. For the Ramsey measurement shown in 5.5c, the spin is pulsed

into a superposition of the ms = 0 and ms = −1 states with microwaves slightly detuned
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from the transition. The spin then freely evolves for T = τ before being projected back

onto the ms = 0 state and measured. The decay of the resulting oscillations, which are

due to interference between the different hyperfine sublevels, is fit to exp−(τ/T ∗
2 )

2 where

T ∗
2 is the bare coherence time of the NV center spin. From the fit we extract T ∗

2 = 1.5

µs. In order to measure the NV center spin coherence when decoupled from slowly evolv-

ing noise sources, we perform a Hahn echo measurement. Microwaves resonant with the

ms = 0 to ms = −1 transition place the spin in a superposition of the two states, after

which the spin is allowed to evolve for T = τ before a refocusing pulse is applied and the

spin is again allowed to evolve for T = τ , for a total free evolution time of 2τ . The result

of this measurement is shown in figure 5.5d. We associate the oscillations in the signal

with hyperfine coupling to a proximal 13C nuclear spin as well as the Larmor precession

of the 13C nuclear spin bath present in the diamond. The decay of this signal is fit to

exp−(2τ/T2)
2, where T2 is the Hahn echo coherence time of the NV center spin. From

the fit we find T2 = 72± 6 µs, comparable to NVs in non-isotopically purified bulk dia-

mond, in which T2 is limited to ≈ 300 µs, with further degradation possibly arising due

to local implantation damage and adjacency to surfaces [85].

5.6 Summary and discussion

In summary, we have demonstrated the fabrication of rectangular cross-section di-

amond OMCs with embedded NV center spins. Rectangular cross-section OMCs are

particularly promising for hybrid NV-mechanical systems due to the z-symmetric strain

profile of the fundamental breathing acoustic mode and the ability to fabricate two-

dimensional phononic shields, which should allow for high mechanical quality factors.

Our diamond OMCs host optical modes with quality factors of up to 42,000 and an

acoustic breathing mode near 6 GHz with quality factors of ≈ 100 in ambient conditions.
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Figure 5.5: a) NV spin characterization measurements for an NV located near the
center of an OMC. a) Microwave-driven optically-detected magnetic resonance mea-
surement of the ms = −1 spin state of the NV, in which the hyperfine sublevels due to
the adjacent 14N nucleus are resolved. b) Persistent, microwave-driven Rabi flopping
between the ms = −1 and ms = 0 spin states of the NV. c) A Ramsey measurement
of the qubit formed by the ms = 0 and ms = −1 spin states. A fit to the decay gives
T ∗
2 = 1.5 µs. d) A Hahn echo measurement on the same states as in c). A fit to the

signal that includes both the effects of a 13C spin bath and a proximal 13C nucleus
gives T2 = 72 µs. In c) and d) error bars indicate one standard deviation.
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Importantly, our fabrication process preserves the long spin coherence time of NV cen-

ters, which we demonstrate by measuring a coherence time of T2 = 72 µs. To reach the

high cooperativity regime for coupling between an NV center spin and the mechanical

motion of a diamond OMC (C = 1 for the current devices), improvements to the me-

chanical quality factor and NV center spin coherence are necessary, in addition to larger

engineered strain. For an OMC with a mechanical quality factor of 106 in its ground

state of motion, a zero-point coupling strength of 1 kHz, and NV center spin T2 of 10

ms [57], C > 1 becomes possible. To this end, future iterations of these devices will

implement modifications to the design and fabrication procedure to ensure full removal

of the HSQ from the backside of the OMCs as well as accuracy of the fabricated device

dimensions in an attempt to increase the mechanical quality factor. Furthermore, by

using diamond that has been grown with isotopically pure 12C and using a delta-doped

nitrogen layer and electron irradiation to form NV centers [86], we hope to improve the

NV center spin properties in our OMCs. If the high cooperativity regime is reached, ex-

periments such as quantum state transfer between 1550 nm light and an NV center spin

and phonon-mediated spin–spin interactions become realizable. While the NV center

spin properties have been preserved in our OMCs, future experiments at low tempera-

ture will be required to determine the properties of the NV center orbital excited state.

For a zero-point coupling strength of 10 MHz, a mechanical quality factor of 106, and an

excited state linewidth of 100 MHz [87], C ≈ 10 for the orbital-phonon interaction. This

high cooperativity would enable, for example, cooling of the mechanical resonator using

phonon-assisted transitions to the NV center orbital excited state. A final phonon occu-

pation n ≈ 1 is possible using either a resonant or off-resonant cooling scheme, assuming

optical Rabi frequencies of ≈ 1 MHz and ≈ 1 GHz, respectively [31]. Furthermore, the

larger strain interaction strength in the excited state can be used to provide an enhanced

spin-phonon interaction using phonon-assisted Raman transitions [43, 88], indicating a
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potential alternative path to high cooperativity for NV spin-mechanical devices.
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Chapter 6

Low-temperature characterization
and optical absorption heating of
diamond OMCs

6.1 Introduction

As mentioned previously, OMCs are an active area of study in the field of quantum

technologies due to their long phonon lifetimes and their potential role in quantum com-

munication. However, their uses for sought-after protocols such as frequency conversion

between microwave and telecom frequencies and dissipative squeezing of mechanical mo-

tion are currently limited by optical absorption heating at the high intracavity optical

powers required for these experiments, which raises the phonon bath temperature and

lowers the mechanical quality factor. In silicon, this absorption is thought to be predom-

inately due to near-surface defects in the native oxide layer which can be excited by 1550

nm photons and release mechanical energy into the OMC upon relaxation [1, 89]. In

silicon OMCs at 20K, at intracavity photon numbers less than 103, this absorption has

been shown to lead to increases in the bath temperature of more than 10K and a cor-

responding increase in the intrinsic mechanical linewidth of nearly 50% [20]. The effect

of this heating becomes more dramatic at dilution refrigerator temperatures [90, 91, 1]
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when the thermal conductivity of the thin film out of which the OMC is fabricated de-

creases, preventing absorption-generated heat from being effectively dissipated into the

bulk [92]. This can be mitigated somewhat by using device architectures that increase

thermal contact with the cold surrounding material, but nevertheless significant heat-

ing and degradation of mechanical quality factor were still seen in such devices, making

operation in the ground state of mechanical motion difficult. From these results, it is

clear that minimizing optical absorption heating in OMCs would be a significant boon

to the field and enable many interesting experiments that are infeasible with previously

demonstrated devices fabricated in other materials. Diamond, which hosts a large optical

bandgap and lacks a native surface oxide, is ideally suited to avoid or mitigate heating

due to optical absorption.

On the diamond mechanics front, we seek to improve upon the devices presented

in the previous chapter by way of modifications to the OMC geometry and fabrication

process in order to improve the mechanical quality factors of our devices. We then

seek to measure OMCs at low temperature in our closed-cycle helium cryostat to better

understand their operation in the quantum regime for future experiments involving em-

bedded defect centers. In particular, demonstration of a diamond mechanical resonator

with high enough strain and mechanical quality factor at low temperatures to support

high-cooperativity coupling to defect center spins is an outstanding challenge.

In this chapter, we detail the device and fabrication modifications made to improve

our diamond OMC performance as well as characterization of these devices at room

temperature to determine their zero-point optomechanical coupling rate g0 their optical

and mechanical quality factors at room temperature and 6K, to demonstrate laser cooling

of a diamond OMC, and to examine the effects of large photon amplitudes in the OMCs

on the OMC temperature and mechanical quality factor. We find the largest fQ product

ever reported for a diamond mechanical resonator, demonstrate laser cooling of the OMC
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mechanical mode to a mode occupancy of n = 18, and find mechanical quality factors

greater than 105 even for nc > 104 photons in the cavity.

6.2 Device design and fabrication

Modifications to the device architecture were made to mitigate potential sources of

mechanical losses. First, the OMCs were completely decoupled from the optical waveg-

uide such that the OMC was only clamped at points surrounded by phononic shielding.

To allow for this decoupling, the optical waveguide was clamped outside of the phononic

shielding, and a tapered coupling structure was added at the end of the waveguide to make

it a stiffer structure. The parameters for the OMC geometry were determined using a ge-

netic optimization algorithm in tandem with finite element simulations in COMSOL. Two

designs resulted from running this optimization for a figure of merit involving the simu-

lated vacuum optomechanical coupling g0 and optical quality factor Qo, f = g20Qo, limit-

ing Qo to less than 106 to avoid unrealistic optical quality factors from unfairly weight-

ing the simulation. Design 1 had a simulated mechanical frequency of ωm/2π = 7.64

GHz for the fundamental breathing mode (shown in figure 6.1a) and optical frequency of

ωc/2π = 197.5 THz (Qo = 129, 000) for the fundamental TE-mode (shown in figure 6.1b),

with a simulated vacuum optomechanical coupling |g0|/2π = 270 kHz (moving boundary

contribution gmb/2π = −26 kHz, photoelastic contribution gpe/2π = −244 kHz). Design

2 had ωm/2π = 6.34 GHz, ωc/2π = 195.4 THz (Qo > 106), |g0|/2π = 224 kHz (moving

boundary contribution gmb/2π = 2.5 kHz, photoelastic contribution gpe/2π = −226.5

kHz). The device parameters are listed in appendix ??.

The diamond OMCs were fabricated using the SiN mask diamond-on-insulator method

described in section 4.11. More separation between devices than was used previously al-

lowed for additional BHF etching without fully undercutting the diamond. Due to the
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Figure 6.1: COMSOL simulations showing a) the normalized displacement of the
OMC mechanical breathing mode and b) the normalized y-component of the electric
field of the OMC’s fundamental TE mode for device type 1. c) A scanning electron
micrograph of a fabricated pair of OMCs on either side of a mirror-terminated opti-
cal waveguide. d) Overview of the OMC fiber optic measurement setup. A tunable
(1500-1630 nm) laser sends light through a fiber polarization controller (FPC), variable
optical attenuator (VOA), and 90/10 beam-splitter that is used to monitor the input
power with a photodiode (PD2) before it is circulated into the cryostat. A tapered op-
tical fiber couples light into and out of an on-chip waveguide. Light reflected from the
device is recirculated to a switch that directs it to either optical power detection with
a DC photodiode (PD1) or a mechanical detection chain in which it is amplified by an
erbium-doped fiber amplifier (EDFA) before being slightly attenuated by a VOA to
avoid saturating a fast 40 GHz photodiode. The output of the photodiode is detected
by a combined real-time spectrum analyzer/vector network analyzer (RTSA/VNA).
For measurements involving the VNA, the VNA output drives an electro-optic modu-
lator (EOM). Light is directed through the EOM path by a pair of switches. An FPC
controls the polarization of the light entering the EOM.
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more significant variation in thickness across the diamond membrane than in chapter 5

(≈ 1 µm across the length of the diamond), only one row of devices was approximately

the correct thickness to give measureable devices. A scanning electron micrograph of a

fabricated pair of OMCs on either side of an optical waveguide is shown in figure 6.1c.

6.3 Room-temperature OMC characterization

The OMCs were then measured at room temperature in vacuum (< 100 µtorr) by

circulating light from a tunable (1500-1630 nm) laser into a single-ended tapered optical

fiber that is placed within the coupling region of the optical waveguide by moving the

sample with piezoelectric stages. Light is then coupled into the optical waveguide with

a typical single-pass efficiency ηf ≈ 15% and either reflects off of a patterned mirror

at the waveguide or evanescently couples into an OMC before recoupling into the fiber

and being circulated to either a DC photodiode for measurement of the OMC optical

mode, or an erbium-doped fiber amplifier (EDFA) for amplification before being measured

with a fast (40 GHz) photodiode, the output of which is sent to a real-time spectrum

analyzer (RTSA), for measurement of the OMC mechanical mode. An overview of the

measurement setup is shown in figure 6.1d. The optical resonances of the OMCs are

measured by sweeping the laser wavelength and detecting dips in the reflect optical

spectrum. Figure 6.3a shows an example optical spectrum for a device of design 1 (which

we call device 1 b10 l, and which we study the most in-depth), which was fit with a

fano resonance function to extract a linewidth κ/2π = 3.4 GHz, corresponding to an

optical quality factor Qo = 56, 000. The depth of the dip is used to back out the coupling

rate κe between the optical waveguide and the OMC. For this device, which was very

undercoupled (κe < κ, κe/2π ≈ 100 MHz. The other OMC in this pair of devices

(1 b10 u) had κ/2π = 2.92 GHz (Qo = 66, 000 and κe/2/π = 140 MHz while the single
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Figure 6.2: An EIT-type measurement in which an applied laser is detuned by ∆ from
the OMC optical frequency. A network analyzer generates sidebands on the applied
laser, one of which is swept across the cavity optical resonance as the network analyzer
sweeps its output frequency. The resulting beat signal (see figure 6.3) between this
sideband and the applied laser is detected on the network analyzer and can be used
to determine κ, κe, and ∆ by fitting to equations 6.2-6.4.

design 2 device (device 2 b10 u) had κ/2π = 1.466 (Qo = 130, 000) GHz and κe/2π = 42

MHz.

6.4 Low temperature characterization

The mechanical properties of the OMCs were then measured by setting the applied

laser frequency ωl red-detuned (see figure 2.5) from the cavity by ∆ = ωc − ωl = ωm and

detecting the power spectrum of the reflected light for a range of input optical powers

(corresponding to different numbers of intracavity photons nc according to equation )

and then fitting the Lorentzian lineshape to extract the total mechanical linewidth
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Figure 6.3: Room-temperature vacuum measurements of a diamond OMC. a) Optical
resonance near 1570 nm with κ/2π = 3.4 GHz (Qo = 56,000) and κe/2π = 100 MHz.
b) An OMIT-type measurement used for determining laser detuning from the cavity
resonance. The small response is indicative of undercoupling. c) γ/2π versus nc at
room temperature. Fitting the data to equation 6.1 gives a vacuum optomechanical
coupling rate g0/2π = 271 kHz and γi/2π = 676 kHz (Qm = 11,100). The error bars
on the data correspond to the standard deviation of multiple measurements at each
point. d) Inferred phonon occupancy of the mechanical mode for the spectra in c. A
fit (dashed black line) to the cooling model in equation 6.7 gives a mechanical bath
temperature of nb = 621±43 (223±15K). The red error bars are determined similarly
to those in figure 6.5, while the black error bars are the standard deviation of the
inferred phonon occupancy over 5 measurements.
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γ = γi + γOM = γi +
4g20nc

κ
(6.1)

where γi is the intrinsic mechanical linewidth and γOM = 4g20nc/κ is the optomechanically-

induced damping on the red sideband. The detuning wavelength for these measurements

was set using an ‘OMIT-type’ 1 measurement defined by imprinting sidebands on the

input laser using an electro-optic modulator (EOM) driven by a vector network ana-

lyzer (VNA) and detecting the transmitted amplitude of the lower-frequency sideband

as it was swept across the optical cavity resonance. The result of this sideband locking

measurement is fit to:

|S21| = |y(ωm)

y(∞)
| (6.2)

where y(∆) is

y(∆) = −(r(0,∆)(α + eiθ))∗r(−ω,∆)eiθ + r(0,∆)(α + eiθ)(r(ω,∆)eiθ)∗ (6.3)

and r(ω,∆) is

r(ω,∆) = 1− κe
i(∆− ω) + κ/2

(6.4)

where ∆ = ωc−ωL (where ωL is the laser frequency and ωc is the optical cavity frequency)

is the detuning from the optical cavity, and α and θ are parameters that account for the

asymmetric presence of the other sideband generated by the EOM. A typical plot and

1OMIT = optomechanically-induced transparency. We are not measuring this here, but it uses the
same measurement setup and similar fitting
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fit for this measurement is shown in figure 6.3b. This fit allows us to determine the laser

detuning from the optical resonance. The laser wavelength is then adjusted until the

measurement gives a detuning within 50 MHz of the mechanical frequency. This process

is repeated following each measurement. Figure 6.3c shows γ vs nc for device 1 b10 l’s

7.55 GHz breathing mode. Fitting the data to the formula for γ with γi and g0 as fit

parameters allows us to determine g0/2π = 271 kHz and γi/2π = 676 kHz (correspond-

ing to mechanical quality factor Qm = 11,100). A similar set of measurements on device

2 b10 l’s 6.32 GHz breathing mode gave g0/2π = 216 kHz and γi/2π = 465 kHz (corre-

sponding to a mechanical quality factor Qm = 13,600). Finally, the phonon occupancy

of the mode is inferred from the measured spectra, following methodology similar to that

described in the following section. The result of n vs nc at room-temperature is shown

in figure 6.3d. A fit to equation 6.7 gives n = 621 (T = 223K). The deviation from

room-temperature is most likely due to large uncertainty in setting the laser to the cor-

rect detuning based on the EIT-type measurement or unaccounted loss in the detection

chain.

6.5 Low temperature characterization

Next, we cool the device to 5.9K, measured with a thermometer mounted near the

sample, in a closed-cycle helium cryostat (this does not correspond to the mechanical

mode temperature, as we will see shortly). Figure 6.4a shows the optical spectrum of

device 1 b10 l. From this spectrum we extract κ/2π = 3.08 GHz and κe/2π = 54 MHz.

Deviations from the room temperature values (κ/2π = 3.4 GHz and κe/2π = 100 MHz)

are attributed to sample cleanliness in the case of κ and fiber position in the case of κe

2. Figure 6.4b shows a mechanical spectrum taken ≈ 100 pm (12 GHz) red of the optical

2The sample was cleaned between the room-temperature and low-temperature measurements, leading
to a slight increase in optical quality factor. κe is highly dependent on both the fiber being used and
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Figure 6.4: Low-temperature measurements of a diamond OMC. a) Optical resonance
near 1570 nm with κ/2π = 3.08 GHz (Qo = 62,000) and κe/2π = 54 MHz. b) A
mechanical spectrum taken with the laser far-detuned from the optical resonance. A
lorentzian fit to the spectrum gives γ/2π = 37 kHz (corresponding to a lower bound
on Qm of 205,000).

resonance. This large detuning is chosen to minimize optomechanical damping of the

mechanical mode while still allowing for a measureable signal. A Lorentzian fit to the

spectrum gives γ/2π = 37 kHz. Since even at this large detuning, the mode is being

optomechanically damped, this measurement corresponds to placing an upper bound on

the intrinsic mechanical linewidth γi (or, equivalently, a lower bound on Qm).

We then look to characterize the mechanics as a function of intracavity photon number

to determine the mechanical linewidth γ and phonon occupancy n as a function of nc.

In order to determine the red sideband wavelength, we employ a different technique than

was used at room temperature. This was required due to drifts in the optical resonance

wavelength (several pm per minute) over the course of the long time required by the

sideband-locking measurements as a result of poor vacuum at low temperature3. This

technique involves stepping the applied laser wavelength across where we expect the red

sideband to be and taking a mechanical spectra at each wavelength. This gives us a

plot of γ versus wavelength such as the plot shown in figure 6.5a. This is fit to the

its position along the coupling waveguide, both of which affect the standing waveguide mode, which in
turn modifies the mode overlap between the waveguide mode and the OMC mode that determines κe.

3Better vacuum, a faster network analyzer, and higher κe (and hence a bigger signal) could all
circumvent the problem of drift in future experiments.
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Figure 6.5: Extracting phonon occupancy under optomechanical damping
a) Mechanical linewidth as a function of laser wavelength as the laser is stepped
across the red sideband. A fit to the optomechanical model in equations 6.2-6.4
allows us to estimate the red sideband wavelength (indicated by the red line) and
select the mechanical spectrum at the wavelength closest to it for further analysis. b)
Power spectral density for low (light purple) and high (teal) applied power on the red
sideband, showing significant broadening and cooling of the mechanical mode with
higher applied power. c) γ/2π versus nc on the red sideband. The linewidths of
the spectra shown in b are highlighted in their respective colors. A fit to equation
6.1 with only γi as a free parameter gives γi/2π = 35.3 ± 3.2 kHz, corresponding
to Qm = 214,000. The fit values for γi/2π are shown in blue. d) Inferred phonon
occupancy of the mechanical mode for the spectra in c. A fit (dashed black line) to
the cooling model in equation 6.7 gives a mechanical bath temperature of nb = 90
(32.5K, compared to the fridge temperature of 5.9K measured with a thermometer
mounted near the sample stage). The lowest measured occupancy is n = 18.6 ± 3.8
(6.7K).
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optomechanical model for damping as a function of detuning from the optical resonance

γ = γi + ncg
2
0

(
−κ

κ2/4 + (∆ + ωm)2
+

κ

κ2/4 + (∆− ωm)2

)
(6.5)

where nc is as in equation 2.17 and ∆ = ωrsb + ωm − ωL (where ωm is the mechanical

frequency and ωrsb is the red sideband frequency). Only the input power Pin, γi, and

ωrsb are allowed to vary. The mechanical linewidth is then calculated using these fit

parameters and the spectrum for the wavelength closest to the fit red sideband wavelength

is selected for further analysis. Figure 6.5b shows two mechanical spectra selected this

way, corresponding to high (teal) and low (light purple) input power. As expected, the

spectrum for high input power exhibits significant broadening and damping relative to

the spectrum for low input power. This process of determining the mechanical linewidth

at the red sideband is repeated for a range of input powers, the results of which are

shown in figure 6.5c, which plots the inferred mechanical linewidth (red points) and fit

values for the intrinsic mechanical linewidth (blue points) versus nc. The values of γ are

fit to γ = γi + 4g20/κ, only allowing γi to vary. This fit gives γi/2π = 35.3 ± 3.2 kHz,

corresponding to Qm = 214,000, consistent with our measurement in figure 6.4b. The

error bars for these points take into account the standard deviation of the fit parameters

for γi, Pin, and ωrsb in addition to wavelength stability of the laser, uncertainty in κ

and κe from fits of optical spectra, and uncertainty in the fit value for g0. Both γ and

γi appear to decrease from their expected values at higher values of nc. This could be

due to a few different causes. Namely, κ could be increasing with nc, such that we are

overestimating the number of photons in the cavity and therefore underestimating what

γ should be. However, optical spectra and OMIT-type detuning measurements taken at a

wide range of input powers do not show significant variation of κ with intracavity photon
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number (if anything, κ decreases slightly with higher nc). Another possibility is that

γi is actually smaller for the higher power measurements because they were taken first

and γi subsequently increased due to deposition of contaminants on the device. Better

vacuum conditions in the chamber in future cooldowns and retaking data in different

power regimes over several days should clarify the effect.

Lastly, we aim to infer the phonon occupation of the mode n as a function of nc in an

effort to demonstrate red sideband cooling of the mechanical mode. To do so, we follow

a similar method to [51] to convert the integrated power in the mechanical spectrum into

a rate of photons exiting the OMC, which in turn is proportional to n. The result is that

n =
1

Gtot

(PRF

ℏωc

)( κ

κeγomηfη0

)
(6.6)

Gtot = Gnorm(GA)
2 is the total gain in the detection chain, with Gnorm the reflected

power-dependent normalized gain which mostly characterizes heterodyne and electronic

gains that should not change significantly over time and GA the product of all optical

gains and attenuations provided by the EDFA, attenuators, and fiber loss in the mechan-

ical detection chain and which is measured for each data set. PRF is the integrated power

in the mechanical signal as measured on the real-time spectrum analyzer, ωc is the optical

cavity frequency, γom = γ − γi is the optomechanical coupling, ηf is the fiber coupling

efficiency, and η0 is the total efficiency of the rest of the detection chain (capturing losses

in the circulator and switch). Gnorm is characterized by running a calibration protocol

described in appendix A.1 for a range of reflected optical powers entering the mechanical

detection chain, allowing calibration of the gain provided to the optomechanically gener-

ated sideband photons both through beating with the high-amplitude reflected laser tone

and electronic amplification in the photodiode and RTSA. The result of a calibration run

is shown in figure A.2.
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The result of this conversion is shown in figure 6.5d, where inferred n is plotted versus

nc. The data points are fit to [50]

n =
nb

1 + C
+

C

1 + C
(
κ

4ωm

)2 (6.7)

where nb is the bath temperature and C = γOM/γi = 4g20nc/κγi is the optomechanical

cooperativity. Only nb is allowed to vary and γi is taken from the fit in figure 6.5c. The fit

to the n data gives a bath temperature of nb = 90 (32.5K). The discrepancy between this

temperature and the thermometer temperature is first attributed to radiative heating

of the device through a window in the radiation shield surrounding the sample mount

and stages within the cryostat that is used for imaging fiber placement, akin to what

has been seen in silicon OMCs at similar temperatures [20, 51]. Further heating could

be due to physical contact between the tapered optical fiber and the diamond, an effect

that will be removed in the future through the use of lensed optical fibers that do not

require physical contact with a waveguide to operate. The lowest n recorded in these

measurements was 18.6, corresponding to a mode temperature of 6.7K. This corresponds

to an optomechanical cooperativity C = 4.6, comparable to what has been demonstrated

in other diamond optomechanical crystals [17] but with two orders of magnitude fewer

photons.

6.6 Conclusions and future directions

The apparent insensitivity of γi and nb for nc > 103 are promising initial indications

that diamond either experiences less optical absorption heating or is more robust to its

effects than silicon. Further testing is required to study how nc = 104 − 105 affects the
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mechanical properties of diamond OMCs. Cooling into the mechanical ground state with

n < 1 without witnessing deviation from the theoretical cooling curve at high nc would

be a strong demonstration of diamond’s superior material properties for optomechanical

devices.

The main limitations to cooling further with this sample are low fiber coupling ef-

ficiency and severe undercoupling between the OMC and the waveguide, both of which

limit the maximum achievable nc. For reasonable values of κ/2π = 3 GHz, and critical

coupling κe/2π = 1.5 GHz, cooling to n < 1 with achievable Pin from n = 90 is possible.

For more liberal optical parameters κ/2π = 1 GHz, κe/2π = 500 MHz, in addition to a

potential four-fold enhancement in ηf provided by lensed fiber coupling [51], cooling from

n = 90 to n = .25 is theoretically possible. Lastly, measuring diamond OMCs at mK

temperatures in a dilution refrigerator would be another test of diamond’s insensitivity

to optical absorption, since its thermal conductivity would decrease significantly such

that any heating effects would be readily apparent.

Another potential direction to demonstrating diamond’s lack of absorption heating

would be on-resonance thermometry, in which the laser is tuned to the optical resonance

and the optomechanically generated photons from the interaction between the resonant

light and the OMC mechanics are detected and converted into a phonon occupation.

Being resonant with the optical cavity would allow for very large nc > 105. This discussed

in more detail in the following chapter.
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Future directions

7.1 On-resonance thermometry

We would like to perform on-resonance thermometry for a couple of reasons: being

on resonance with the optical cavity allows us to generate a large steady-state photon oc-

cupation in the cavity while simultaneously extracting the intrinsic mechanical linewidth

and (hopefully) the mechanical bath temperature. Let’s start with the steady-state quan-

tum Langevin equation for the quantum component of the intra-cavity field (where the

field is linearized as â→ α0 + â, with α0 a steady-state classical amplitude).

˙̂a = 0 = −(±iωm +
κ

2
)â− iG(b̂+ b̂†) (7.1)

where ± is for photons detuned from the cavity by ∆ = ωc − ω = ±ωm and G = α0g0

is the enhanced optomechanical coupling rate due to the classical steady state photon

occupation. Solving for â and using the input-output relation âout =
√
κeâ gives the

output fields of red (+) and blue (-) detuned photons a mechanical frequency from the

cavity resonance

â± = iG(b̂+ b̂†)

√
κe

∓iωm − κ/2
(7.2)
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Now the total output field α(t) will be proportional to the sum of the outputs of the

classical field αout =
√
κeα0(t) where α0(t) = α0e

−iωct and the quantum fields â±(t) =

â±e
−i(ωc∓ωm)t. The time-dependent voltage generated at the photodiode upon detection

is proportional to |α(t)|2

v(t) ∝ |α(t)|2 = αout[â
†
+e

−iωmt + â+e
iωmt + â†−e

iωmt + â−e
−iωmt]

∝ (â†+ + â−)e
−iωmt + (â†− + â+)e

iωmt

∝
( −i
iωm − κ/2

+
i

iωm − κ/2

)
e−iωmt +

( −i
−iωm − κ/2

+
i

−iωm − κ/2

)
e−iωmt

= 0

So obviously, our standard method of measuring the mechanical spectrum and ex-

tracting a phonon occupation will not work here. However, if we employ a tunable

Fabry-Perot cavity on the detection chain to block pump laser tone and the blue-sideband

generated photons, then we can detect the optomechanically generated photon flux from

a single sideband with a superconducting nanowire single photon detector and use that

to determine the number of phonons in the mechanical resonator, as was done in [92]. In

this case the detected photon flux Γ will be

Γ = |a+,det|2 = ηG2 κe
κ2/4 + ω2

m

(
x2

x2zpf
) = ηG2 κe

κ2/4 + ω2
m

n (7.3)

where η is the product of various inefficiencies in the detection chain (fiber and insertion

losses, switches, circulators). Therefore, the phonon occupancy is
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n = Γ
κ2/4 + ω2

m

ηG2κe
(7.4)

If κ≪ ωm this can be simplified to

n ≈ Γ

ηγOM

(
2ωm

κ
)2 (7.5)

where γOM = 4G2/κ and the optical efficiency κe/κ has been lumped into η.

The drawback here is that we only get information about the phonon occupancy, not

the mechanical linewidth, so another method of measuring the linewidth at high optical

powers will need to be developed.

7.2 Dissipative mechanical squeezing

In an optomechanical system, if one applies pump laser tones on both the red (+)

and blue (-) sidebands with corresponding optomechanical couplings G+ and G−, with

G+ > G−, then an arbitrarily large squeezing interaction is generated [93, 94], dependent

only on the optical power capabilities of the pump tones and the amount of optical power

the cavity can handle before either the optical or mechanical mode begin to heat. The

optimal ratio of red and blue driving power for the optomechanical cooperativity of the

red pump tone C = 4G2
+/κγi is

G−

G+

≈ 1

2

√
1 + nb

C
(7.6)

which gives a variance of the squeezed quadrature X̂1
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⟨X̂2
1 ⟩

⟨X̂2
1 ⟩zpf

=
γi
2κ

(1 + 2nb) +

√
1 + 2nb

C
(7.7)

For the approximate measured parameters of our OMC in chapter 6 intrinsic mechan-

ical linewidth γi/2π = 35 kHz, optical linewidth κ = 3 GHz, cooperativity C = 5, and

bath temperature nb = 90, this would give ⟨X̂2
1 ⟩/⟨X̂2

1 ⟩zpf = 6. With improved device

parameters, increased fiber coupling, and lower bath temperature in a dilution refrig-

erator, κ = 1 GHz, C = 360, and nb ≈ 1, we would have ⟨X̂2
1 ⟩/⟨X̂2

1 ⟩zpf = 0.09, over

10dB of squeezing. However, this depends on the increased optical power not heating

the mechanical bath temperature, showing once again the importance of avoiding optical

absorption heating. In fact, demonstration of this expected strong squeezing would be a

de facto demonstration of lack of optical absorption heating.

The squeezed mechanical mode β̂ can be measured analogously to the detection of

phonon occupancy in the previous chapter, by integrating the detected mechanical spec-

trum and backing out the occupancy of the squeezed mechanical mode ⟨β̂†β̂⟩. This

measurement gives an upper bound on the variance of the squeezed quadrature

⟨X̂2
1 ⟩

⟨X̂2
1 ⟩zpf

≤ e−2r(1 + 2⟨β̂†β̂⟩) (7.8)

where r is the squeezing parameter tanh(r) = G−/G+.

The squeezing can also be measured at an arbitrary angle in quadrature space by

applying slightly detuned (by several mechanical linewidths), equal-power weak probe

tones red of both the blue and red pump tones. Then by varying the phase ϕ of these

tones relative to the pump tones and detecting the sideband spectra and using them to
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back out ⟨β̂†β̂⟩, one can map out ⟨X̂2
ϕ⟩ as in [94, 22].
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Experimental setup details

A.1 Gain calibration

The gain calibration protocol for the phonon occupancy measurement in chapter 6

follows the supplement of [51]. We use two lasers tuned near the optical resonance of the

OMC of interest (but far enough detuned to not interact with the OMC). The two lasers

are detuned from each other by approximately the mechanical frequency of the mode

being calibrated for. One laser, the ‘carrier’ laser simulates the laser tone that we use to

measure the OMC. The ‘probe’ laser simulates the optomechanically generated photons

emitted from the cavity. Both lasers are sent through variable optical attenuators (VOAs)

to control their power. The power of the probe laser is set to be constant throughout of

the course of the calibration run, while the carrier laser power is varied. The two lasers

are combined at a 90/10 beamsplitter with the carrier tone entering the 90 arm and

then combined pathway is split at another 90/10 beamsplitter for power monitoring with

a photodiode (PD2) in order to calculate the fiber coupling efficiency ηf as described

in the following section. The fiber coupling efficiency is not actually important for the

calibration measurement, but just for the user to maximize the range of possible reflected

powers. The tones are then circulated (with calibrated efficiency ηc12 into a tapered

optical fiber that couples into the on-chip diamond waveguide, reflects off the mirror at

107



Experimental setup details Chapter A

Figure A.1: The setup for calibrating measurement gain (described in detail in the text).

the end of the waveguide, re-enters the fiber, and is circulated (with efficiency ηc23 to

the detection chain. The first measurement we take is with the probe laser turned off

(the VOA tuned to its maximum attenuation, ≈ 50dB), by sending the reflected carrier

tone to photodiode PD1 through a switch with efficiency ηs13. The power measured here

PPD1 is then used to define the reflected carrier power Pcar = PPD1ηs14ηs23/ηs13 where

we have divided out ηs13 and then multiplied the efficiency for the other configuration

of the first switch and the efficiency of the configuration of the next switch that directs

the light toward an EDFA. This gives us the carrier power immediately before entering

the EDFA, which we typically vary from 10-200 µW to mimic values we see when taking

actual measurements. We also measure the power PPD incident on the fast 40 GHz

photodiode, which we use a VOA to keep constant at ≈ 9 dBm. We use this power and

the carrier power to define the gain-attentuation product GA provided by the EDFA and

subsequent VOA:

GA =
PPD

Pcar

(A.1)
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Next, we turn off the carrier tone and measure the power of the reflected probe

tone with photodiode PD3, which we then use to define the power of the probe tone

Pprobe = PPD3ηs23/ηs23. This power is typically ≈ 20 nW. Then, with both beams on, we

first use a broad measurement bandwidth spectrum analyzer to find the ≈ 7 GHz beat

signal of the reflected carrier and probe tones before zooming in on that signal with a

narrow (10 MHz) measurement bandwidth real-time spectrum analyzer (RTSA) (which

is conveniently just a different mode of the same tool as the spectrum analyzer). The

RTSA displays the raw, unaveraged beat signal, which jumps around quite rapidly due

to small variations in the laser wavelengths in time. Here, there is an interruption of the

automation of the rest of the protocol and the user must stop the RTSA measurement

while the signal is within the 10 MHz measurement window. A typical trace is shown in

figure A.2a. This process is repeated for a range of Pcar that correspond to the anticipated

range during measurements.

In processing, each probe signal is divided by the resolution bandwidth (typically 35.7

kHz) to give a spectral density of the signal, the area under which is then integrated to

give a total power in the detected signal PRF . The total system gain is then

Gtot =
PRF

Pprobe

(A.2)

We then define a normalized gain

Gnorm =
Gtot

(GA)2
(A.3)

which characterizes the (usually stable) electronic gain of the system. The denomi-
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Figure A.2: a) A typical trace of the beat signal between the reflected carrier and
probe tones. b) A plot of Gnorm versus Pcar for one set of calibration measurements.
The black line indicates the fit to the third-degree polynomial.

nator is squared because, while the voltage v(t) output by the fast photodiode is linear

in GA, the detected electrical power at the RTSA is proportional to |v(t)|2, which is

proportional to (GA)2 (see the supplement to [51]). The data processing takes all the

calibration runs for different Pcar and creates a plot of normalized gain versus reflected

carrier power, as shown in figure A.2b. We then fit this data to a third-degree polyno-

mial, such that the inferred normalized gain can be calculated for any Pcar within the

range measured. In subsequent measurements of n, we can measure GA and Pcar in

real-time and use them to calculate the expected total gain, which we can then use in

our calculation of n.

A.2 Fiber coupling efficiency

If we are waveguide-coupled, then measuring the fiber coupling efficiency is straight-

forward. Assuming that the reflection from the end of the waveguide is near-unity then

we can infer ηf by measuring the power entering and exiting the tapered fiber and noting

that η2f = P0/Pout where P0 is the power before the tapered fiber and Pout is the power
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exiting the tapered fiber. Practically speaking, the way we actually do this is by splitting

off ≈ 10% of our laser light with a beamsplitter before the circulator and measuring that

power, then inferring P0 by accounting for the measured asymmetry of the beamsplitter

and loss in the circulator. Pout is measured after going back through the circulator and

the optical/mechanical detection chain switch. For side-coupling, the situation is more

complicated, since we don’t have the luxury of a well-defined mirror at the end of the

waveguide. In this case, I propose that we can use the measured optomechanical damping

γom = γ − γi = 4g20nc/κ to calibrate nc, which in turn can be used to calibrate the input

power Pin to the cavity via the equation

nc =
( Pin

ℏωL

) κe

∆2 + κ2

4

(A.4)

such that

Pin =
ℏωLκ(γ − γi)(∆

2 + κ2

4
)

4g2oκe
(A.5)

Therefore the fiber coupling efficiency is:

ηf =
Pin

P0

=
ℏωLκ(γ − γi)(∆

2 + κ2

4
)

4g20κeP0

(A.6)
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