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ABSTRACT - ,
Thé cé?ariant'phbton amplitude islproved to be the smooth 1limit
of ﬁhe hélicity amplitude for é massive vector boson. The kinematical
consequences of this zéro-maés limit dnd crossing'are shown to include
consérvation of charge (or thé eQuivalence.principle in the case of the

graviton),'and.the low energy theorems for photoproduction and Compton

‘Scattering. Conéequently, the zero-mass limit is a practical alternative

to the use of on-mass-shell gauge invariance. Mofeover, the zero-mass
limit provides a technique for thé constructioh_of Regge expansions'énd
Veneziano parametérizatiéns for phofon amplifudes from the cofrésponding
amplitudes for a massive vector bosén.;.A model for the Pomeranchon

whichlédntribues to forward elastic Compton scattering and does not fall

_off at large q2 is proposed. Also a Veneziano parameterization of

the amplitude for Compton scattering of off-mass-shell charged currents
off pions is presented which satisfies the current algebra sum rule of .

Fubini, Dashen, and Gell-Mann.
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I. INTRODUCTION

‘Recently an approach to the kinematics of the photon‘has been

"developed that replaces the usual discussion of guége'invariahce with

a.zero—massvlimit (ZML) on the helicity amplitudes for a massive vector
voson. 7% Here (Sec. II) we give a rigorous défivation of the proper-
ties of this ZML 5ased on Lorentz invariance and analyficity, and we
félated these properties to the standard assumptions of gauge invariancé
for tensér'amplitudes and the conserved-vector;current'(CVC)Jhyfothesis.
Anqther recent development is the proposal of Veneziano-type
parameferiiation for fqur-partiéle.helicity ampl%tudeé iﬁv@lving the
i)hoton5 (photoproducfion and Comptdn scattering); The main.purpose of
this paper is to show that the appiications of the ZML to photon kine-
matics can be nafurally extended to give a rederivation of the param-
eterization of Ref. 3. First (Sec. IIIlor;fi Ref..1) by imposing
crossing on the external'line insertion (ELI) poles, one proves in.the
ZML the lOW'energy'ﬁheorems and charge conservation‘for the photonﬁ(or
the equivalence principle for a spin-2 bosoﬁ).h“Then'(Séc. IV) by
applying the ZML to a Regge expansion, a modification of nonsénse
factors2 is made which allows the ELI-polé_to‘appear on the'exchanged
trajectory;u It becomes appafent at this point (IV.B) that thglpécu—
liarities éf a zero-mass vector particle favor, rather-thanvconflict-
with, the duality picture. -Therefore it is natural to seek a“repfe-
sentation for photon amplitudes that combines crossing and Regge
asymptotics. By applying the ZML to the Véneziano.representation for

a massive vector meson, one automatically obtains just such a
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Arepreséntation in the zero;Width approximation. Once the on-mass-shell
amplitude hasvbeen constrUcted; one can in genérél continue off mass
shell to oﬁtain amplitudes for a coﬁserved vector cufrent (see Séc. I1.B). -ﬁ.

The two-current amplitude, ﬁhichAénters into the Fubini—Dasheh— |

Gell-Maﬁn éum.rule, presghts a mofé difficﬁlt problem. The ZML'&ields
" correct ampiitudes only a£ qu ;'o, and a fixéd §01e5
. 5.6

mist be inserted
~ for q“ %‘O.' The important problem of fikedlﬁdles in:theyfwo- |
current channel is discussed briefiy as an intréduction to the detailed
cbnsidefation in the forfhcoming papers on vector currents:and Eurrent
algebra in a dual, zero-width model.7 These papers extend the param-
.eférization of Ref. 3 to §ne¥ and two-éurrentramplitudes with'N‘spinless
hadrons, and more importantly; they begin to impose the dynamical
constraints of factorization and current aléebra. |
,vThé ZML prbvideé an alternative (but equivalent) abproach to
the kinematicstof the zero-mass ﬁaftiéle. Hdwe#er,-the uéefulness of
this approach for conVerting a given hadron amplitude into aﬁ amplitude
for a photon requires a-close:analogy betwéen the photon and massive-
. Qéctor-meson amplitudes. .Roughly speaking, one is making avdynamiéél
assumption that the phbton amplitudes have the same Regge asymptotic
and analyticity prqperties as hadron ?rocesses, except when tﬁié‘is in
direct conflict with the requirements of the ZML, CVC, or some other
baslc principlé. In Ref. 7, this point is aeVeloped more rigorously
‘on the basis of unsubtracted dispé¥sion relations in q2, but the v i

dynamical implications are much the same.
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II. LORENTZ INVARIANCE AND ANALYTICITY IN MASS .
In this section, we present’fhat basic kinematical analysis
for helicity amplitudes for zero-mass particles (mB = 0) ‘and off-mass-

-

shell (current) @mplifudes.; We begin in II.A by considering helicity

amplitudes for entirely massive particles, and then study the zero-mass

limit for one of the.éxternal bosons of méss mﬁ and spin JB. Iif

the amplitudes are bounded,,the limit leads to Lorentz-invariant (hence

~ gauge-invariant) amplitudes for’massleSS'particles.8 Then the kine-

matical'singularities‘in the "mass" of the photon (or equiv&lently the
off-mass-shell invariant q2) is determined by a fixed J =1 pro-
jéction of a diparticle state in a multibpdy gmplitude. Lastly, the
relationship between the helicity-amplitude and the tensor—amplitude
approach is described. We have used the helicity amplitudes in this
@aper S0 thaf the kinematical singularities, crossing relations, and
Reggeization procedure for photonig_amplitudes can be more conveniently
compared with, and made consistent wifh'the étandard results for the
pﬁrely hadronic amplitudes. However, tenéor amplitudes are convenient

in our future extension to a study of current algebra in the zero-

width model,7 hence they are also introduced and the explicit relation

to helicity amplitudes is given in Tables Ia,b. .

A. TLorentz Invariance and the Zero-Mass Limit
: L : 5
In order to get gauge-invariant results from the direct appli-
cation 6f the zero-mass limit, we discovered in Refs. 1 and. 2 that only

a mild condition on the amplitude HO' for the zero-helicity massive

photon (mV) is required,
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lim vaHO'(s,t,?--) =0 _ (2.1)
=0 |
for some region in the space of invariants (s,t,+++). One can
.immédiately justify this éondition on the basis of unitarity in the
physical‘regioﬁ, and éé dn o deri?e its COhsequénces.l However,
Weinbérg8 has demonstrated that Lorentz invariance for a photonic_
amplitudevimplies:"on-mass-shell gaugeiinvariance" and, therefore, its
consequences--‘conservétion of charge and lOW'ehergy theorems. There-
fore, it is more_satisfactor& to show that condition (2.1) is needed
to derive Lorentz‘iﬁvérianée for the'masslessAphotOﬁ‘from Lofentz
invariance of the massive "photon" in the ZML. Since it is no more
difficult, we shall consider the ZML for any‘boson of mass (mB)
bspin JB'. | |

The transformation law for a helicity amplitude, Hu . (5}; pi),
' - - £3M

with a massive boson of momentum q and helicity ‘A, and N hadrons,

"B
is given by

H (pf,p ) TT@ »(9 ?(RW(A, D)) .

K
f f=K+1

: J. : :
]_1/ i - .
1=0 i1 . £71 _ ‘
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where xi(uf) stand for the set of helicities of the incoming -
particles with momenta p; = pl,°°',pK .;(oﬁtgoing particles-with
momenta Sf = 5K+l’;j"'5ﬁ) “and RW(A; Pi) is the apﬁrbpriate Wignef
rotation. Since wegare interested in the transformation properties of
the massive boson (photon, gfaviton, etc.) we can abbreviate (2.2) to
read ‘ ‘
JB

B (a) - ,%é%B»RW(A’ a)) H () (2.3)
Ey surpressing the hadrons' indices. However, it is imporfdnt to deal
with amplitudes which are directly related to a cross section, rather

9

than with a single-particle state,” since our demonstration requires a
boundedness.condiﬁion (2.6) on the transformed amplitudes.
‘The problém is to take the zero-mass limit on the Wigner
-1

rotationv‘Rw(A, a) =L, AL

L, = BB, o B,) Bleosh 0 = (@ + mD2m T (2.)

and A is an arbitrary element of SL(2, C). Choosing

) : N | o
" = [(q2.+ mBE)?,O, o, !gf] we demonstrate in Appendix A that the

1imit of Rﬁ is
' VR -i0J :
RW ~ -e'.l(’F)(A,g)JZ A e ¥ c . (2.5)

g

where sin © oc TET . The angle @ is the z rotation of the

~
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Wigner "rotation" of the photon, 7ﬁ?w(A, q) = af;q—l A 5(: , where

:19q is a boost from the standard frame, gq = (1, O, O, 1). The

infinite z boosts in Lq and L-l are commuted through to give a

Aq
finite Rw as mp - 0. Conseqﬁently, if the condition

. JB_IKBl o | ’ !
lim  my HK = 0, g # g L (2.6)
holds, Eq. (2.3) becomes the correct transformation law for an amplitude

with an external zero-mass boson,

liJB®(A,g)

By _q(200) =e H_xla) @)

Kg=tl
The interesting group theoretical feature of this is that a

Wigner rotation in the little group 0(3) [or, more precisely SU(2)]

for.the massive particle can have a smooth limit into a subgroﬁp of

This is possible Bécause'ﬁhe semisimple

the light-like little group E,-

structure of E and the requiremeﬁt of a finite dimensional represen-

2
tative for the photbn ailows only the z rotation of 1&1N(A,q) té enter
into the transformation law (2.7). Siﬁce the z rotation is in both
little groups, fhe smooth limit can Be achieved. The discontinuoug
group theoretical description often obscures the smbothness in my of
the physical amplitudes.

| The condition (2.1) m, Hy -0 is all that is required to |
construct gauge-invariant photon amplitudes and to prove charge conser-

vation and the low energy theorems. The undesired amplitude HO can

L}
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merély be ilgnored. However, for a physically reasonable off-mass-shell
theory, one would expect HO to'vanish as q2 — 0, since a finite HO

would correspond to a spin-zero photon, in contradiction with experiment.

B. Off-Mass-Shell Continuation and Analyticity in g°

. The off-mass-shell amplitude H (q,;'-) can be defined through

A (P 3Dy 5"
Mol oD
a = Py This requires a complete knowledge of the off-mass-shell

the electron scattering amplitude -+), where
9=p
electron form factor and factorization at the J =1 singularity in
the electron-position channel. Cléarly the weak coupling of the photon
is essential‘to.the physical meaningfulness of this definition. When
-qg/mp2 > ;/eg ‘the two photon singularities méy become important, so
that the phenomenological meaning of this decomposition becomes obscure.
We have studied this J.= 1 projection of the diparticle state
(With spinless a bv particle to éimplify the kinematical factors at

the "leptonic" vertex),
| HKV(Q;Pl:"')

: 25 N g
. rr ] - )
- d cos O ag. e al ' (e,) A(e,,8,,9,00, ") »

-1 §0 i
(2.8)

.where er?_¢r‘ are the polar angles for r = P, - Py in the resﬁ frame
of q. We £ind’® that a square root kinematical singularity in q2_ is

introduced into the zero-helicity amplitude HO‘ Therefore if A is
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to be‘analytic in q2 and if HO is to be bounded at q2 ='O, we must

havé
B(gs--) = OE(qg)%] . SR (2.9)

This gives a nontrivial constréint for continuing the-phétoﬁ amplitude
off shell.” In geheral, the J =,l’ My = 0 projection hasvap infinite
singularity l/(q2)%_vwhi0h can not be excluded. In the case of a
'photon this iﬁfinity is excluded because.étv q2-= 0. there is a physical
particle. The Adler—Wéisberger relation for a dipion system aléo
excludes this singularity, but one ﬁeeds some dynamical expianation for

this, as in the theory with a partially éonserved axial current.

C. One- and Two-Current Amplitudes

It'is compietély adequate‘to use helicity-am@litudes'for fhe
description of a conserved (pure J = 1) current, but it ié traditional
tq use‘a tensor amplitude Tu. (For convéﬁience; Table I gives the.
explicit connection between the two sets of amplitudes.) We'define the

polarization vector for a massive vector'particle (q2 =>mV2). by
Fosa) = TPy 00, o (2.10)

where €”(A,0) is the rest frame value: (0,0,0,1), = (0,-1,-1,0)/y/2,
and (O,l,ri;o)/WVE--' for A =0,1,71 respectively. This allows
us to relate the four-vector TV to our helicity amplitude in the

covariant equation

H(a,00) = *0na) T (a,-0) o (2.11)
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The four-vector is usually identified as the matrix elementll of a

current operator

v(a,) = Gl (2.12)

_ where gq = }:Ef -'_"Zpi"' |

From the condition e“(;\,q)q“ = 0, we see that Eq. (2.11)
defines only'the conserved. part of TH (denoted VH); We see this

explicitly by inverting the equation t6 get

W= (@ - *Y/4%) T = - Zl',e“*(x,q) H(g-r) . (2.13)
| »

-

Our conditiont? Ho(q,~-i)-= O[(qg)z] and (2.11) can now be shown to

imply

T qp’.Tl‘L =.O‘(q2) ) a . v ' : ' (-2.111-)

‘and this is sufficient to insure that the conserved part vWoois

nonsingulaf at q2 = 0. The exclusion of this singularity is the real
content of Lorentz invariance and analyticity for physical photons.
This allows thebtensor ™ to be decomposed into an independent vector

(V) and a gcalar - (S-= q, ™) part even as 'q2 -0,
™ - el o : (2.15)

and the scalar part 8 can be set to zero in accordance with the
conserved-vector-current (CVC) hypothesis. Setting S to zero- has

no effect on>electroproduction, since the electron-positron state couples
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only to the conserved part. However, the mass difference between
neutrino and electron allows ;g" _to‘be measured in weak interactions
(charged current) and CVC has content‘there. We emphasize that the only
rigorous result (2.14) applies to neutral currents,_andvif;it were-
eXtended to charged currents-instead of’CYC; the experimental}differences

13

would be exceedingly small.

For a tWo-cnrrent amplitude, M “V,'analogous:results are

ab

proved for the neutral currents
a, w7 = 0e,®), M a, = 0(a?) (2.16)
lu 733 17 33 2y T2 v
in order to have the correctvcorresfondenee with physical Compton |
scattering.  If we assume CVC, we cannot-prove thevdivergences are zero;
inaeed for the charéed currents, the divergences'are proven to be
nonzere in aceordance with current algebra 257 Allvfhat can be proven
is that the divergences ‘cannot have the unitarity cuts (normal threshold)
in subenergies (SVk) that include (overlap) one photon momentum. The
discontinuity around these cuts is related by unitarity to a single-

photon amplitude,

\

Disc, [M, ”V] Z jd o va(k) b'(k)v*' , (2.17)

Vk

and CVC is then applied £0'them [rhs of Eq. (2.17)]. Invgeneral, no- -
simple relation exists between the entire two-current émplitnde-(coVariant

correlation tensor) and the matrix elements of the individual currents.

1
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III. LOW ENERGY BEHAVIOR AND CROSSING

For an amplitude with a Zéimeassiparticlé (momentum q*)

_there is a soft pole term or external line ihsertion (ELI) that cohtrib—

utes at q* = o. Fbr a photon, tne'résidue of the ELI pole (at q" = o)
is the chérge, consequently conservation qf charge is in‘é sense'part

of the low energy theorems for the photon. In addition, the'kinematical
singularities at threshold furthef épecifyvthe lOW'energy behavior. For
grévitons, the soft coupliné is the inertial masé as‘deménded by the
equivalence principle. We Can demonstrate these points by considering

the ZML in conjunction with crossing.

A. Conservation of Charge

Consider the four-particle process with the s,t, and u channels

defined by
s:VS-TG,  t:vVT-5T,  w:VU-TS,

where we denote the particles in the initial state by the same letter
as the channel. Let S, T, and U have masses Mgy Moy and My and
charges eg, ep, and ey - respectively. ‘

For a massive photon (mv), we consider the helicity amplitudes

in the t channel,

« 1 ) |
t £ 2~ ¢ t 1 =t :
Hy = -H, = %L oy Ho= 5— B (5.1)

where we have exhibited the kinematical.singularities in terms of the

Kibble function ¢ and the threshold and pseudothreshold factor
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.f:7 = [(t - (mT + mv)?)(g.; (mT —‘mv)?>]%. We can now use the Jacob

and Wick crossing matrix to express the s-channel helicity émplitude

' i -
= [(§)2/af] HlS in terms of the t-channel amplitudes:

H (s t) :—71—2 (2, (s, ) ﬁl“ *'ﬁmv,ﬁot] ,

where
P (s,t) = (s + mV - mg )(t + mV mU )
- 2 ( -m 2) . (3.2)
mv mV mU mT s/ - Y
The essential observatlon is that the direct-channel ELI pole
at s = m82 (or t ='mT2) cammot contribute to the helicity=-one

amplitude ﬁls (or ﬁit) because of angular momentum conservation.

On the other hand, we can use fhe crossing relation to calculate the

crossed-channel pole terms from their contribution to the zero-helicity

amplitudes. For_éxample, the residue of the pole in . ﬁis at t = ng

is given in terms of the residue of the pble in H by use of Eq.

0

(3.2). Therefore, we define the charge with the conventional factors

through the zero-helicity amplitudes, - : ‘

. 2, '
2 T

where X =8, T, and U, and g 1is the coupling at the 8 T U vertex

(g has units of mass). Then by use of the s-t (3.2), s-u, and t-u

crossing relations, we determine the reéidue of the ELI poles in ﬁit,

-~ 8 )
and Hl and obtain the representations

: 1<+mx n2)2 e g (3.3)
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2 g eé _\[5 g er

% |
= 2 + Bl (S)t) J

2.
somg o memg

=t

ok
_ (3.4)

_s VEeey Ve Sp .
1 ) ) - ) + Bl (S)t) ]

u - mU t - mT ‘

€
jon
Il

where Bl? and BlS are analytic in a neighborhood of t = ng,
s = msg, (u = ng + mvg) for small m, except for thresholds that
are of higher order in e, With mvvﬁot -0 as m; -0, (2.1), the
crossing relation becomes diagonal in the ZML and we arrive at the

nontrivial consistency condition for the repreéentations (3.3) of

=t = s
Hl and Hl s
- - = 2 s
Ve.g(es +eq + eU) + (s - ms.) B, (s,t) = (¢ - o ) Bl-(s’t) = 0.
(3.5)
This not only implies conservation of charge eq + e + eU = 0 "for
the nonzero hadron vertex (g # 0), but also Blt = (t - mTe) Ei
and BlS = (s - msg) ﬁi. -Consequently we have the representation
N : . . ‘
et oo @7 | VTES  VEES L 5 (o
. 1 £ - mTE s - m 2 u - mU2 1Y7? ’
) V S ,
4 : . . . . (5.6)
- | 2 L .- i bhe
w . and the residue of the pole at +t = mn,  is 17J§ B8 - Since the

T pole enters into the amplitude with the standard>factorized residue,

and crossing symmetry puts it on the same footing as the § pole

e ke et e
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(e.g., consider the corresponding répresentation for Hls, which
equals Hlt by crossing), one is forced to consider it a dynamical
pole.
In Ref. 1, we sketch the proof for hadrons of arbitrary spin

(JS, Jps and JU). The main features are the same. There is one.
nonsense amplitude- H;stslfJf which does not have the pole at t = ng
because of angular momentum conservation for m, # O,.ahd in the ZML
a kinematical factor 1/272' turns into a dynémical poie. In thié proof,
one has to use the crossing relatién with much greater caré, particularly_
‘the threshold and}pseudothfeshold relation at t = (mT't mv)e. We note
that, on the basis of Ref. 2, one can. extend our proof of charge conéer-
vation to any N-hadron process by induction. Ifbany two hadrons»with
:arbitrary spinsnin the N-body amplitude have a ﬁole, by faétorization;
 we reduce the problemlto‘an (N - 1)-body amplitude and & general
three-body vertex presented in Ref.il;

| Finally, note that_a‘more careful use of the érossing constraiﬁt
and.the condition HOt ~ O(mv) leads one to the approximate.universality

statement . _
ey + ep t ey = O(r—§—. 5 . (3.7)
- . H : .
. o v

where ey is the pXi-coupling constant, and m is a characteristic
mass for the process involved. This may give some justification for

an approximate rho universality.
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B. Massless Particles of General Spin and Parity

.. With Spinléss hadrdns, the masslessvparticle must have natural
a4 | spin-parity (? = (-)f) in order to have any ELI poles. For the gravi-
toﬁ ,(2+), one can essentially repeat fhe above discussion to show that
the soft coupling f, is proportional to the mass My in the rest

X

frame of particle X. The soft coupling fX is again defined_thfough

the zero-helicity amplitudes;‘

lim (X - mxg) B = -bm fog - | (3.8)
X_amxe | 0

Using the crossing relation for a massive'gravitontand the kinematical

singularity-free amplitudes for t channel,: . =
t [§QZ%JIK| =% | | ‘ ,
H = H , , (3.9)

and similarly for s channel; we arrive at the representation

. 1 1 ' )
H = —_— e e 4+ B s
o (s - 2) (o - 2) 2
S g O\ R = Iy
. . (3.10)
_ (6)2 £ g (6)? £. &g
5,° = —_r_ ., 2 T . BQS

_ mT(t - ng) my(u - mUE)

If we now put m, = O, the crossing relation reduces to

G

(s = msg)? ﬁét = (t _--ng)2 ﬁés . - E | '(3.11)
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Substituting Eq. (3.10) in Eq. (3.11), we £ind for the pole terms

—S-—><s-ms> v —<s-m ®)(t - m,2)

. | fv | :
: 2,2 T 2 .2
<:—— - — Kt - My, )T+ = (s - m )(t - m, ) . - (3.12)
o TR
This equation is satisfied if
fy = G om, .for a;bltrary G, E - (3.13)

Since we ha&e used eentef-of-ﬁass helicity ampiitudes, at q# =vO we .
are indthe rest frame of'particle X,.and therefore this_is the correct
.fer@ of the equiﬁalence priﬁciple;8 Note that we have foﬁnd the_eame
sign for the coupling oflthevgraviton fo particles and antiparticlee;

| If_tﬁe Zero-mass perticle has a spin higher-fhan 2, and natural

J parity, the kinematic singularities are given by (S, T, U spinless)

LY . o
2 —

gt - @RI =t (3.14)
A 3:3' A .
In the equation analogous to Eq. (3. 12) there will be terms (2nd and
Lth) proportlonal to fs(s - mg ) - m, ) and

_2yJ-1
fT(t - my ) (s -

couplings of zero-mass particles with spin higher than 2 must vanish.

mS ) which cannot be matched. ‘Therefore, the soft

If the zero—massvparticle has unnatural parity, then its

coupling to spinless particles is zero, due to conservation of angular
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momentum and parity. We studied these couplings to parficles with spin
with the techniques introduced in Ref. 1. One can prove, for example,

that all the soft couplings of an axial vector zero-mass particle must

vanish. We can extend this result to all unnatural parity pa}ticles

except the o'.lu

C. wa“EnergyﬁTheorems

1. Photoproduction

The representation (3.6) is the low energy theorem for photo-
production with spinless hadrons, analogous to the Kroll-Ruderman theorem
for W - nN. Usually these theorems are expressed in terms of the

momenta k(s) of the photon at fixed center-of-mass angle (@S) in-

L L
the s channel. Using (¢)2 = 2(s)2 k p(s) sin 6, and charge conser-

vation, we can rewrite (3.6) as

“ K[E g ey }{5 g en

H = p(s) sin S, - A T (3.15)

1 2 2 1
u - mU t - mT

At fixed angle, we have the correct amplitude to»order k from the
Born term. In'pion photoproduction, the physical threshold is at

s = (mN + mﬁ)e, éonsequently the theorem is éaid to give orders
(vmﬂ/mN)_l and (mﬂ/mN)O (in the pion mass) relative‘to the backgroundl5
of order (mn/mN>' In eithgr case, the low energy theoreﬁ is

dependent only on identifying the correct ELI term (Born‘approximation)

and the correct kinematical singularities.
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2. Compton Scattering

Similar use of crossing relations. and the ZMIL yield'the low
energy theorems for Compton scattering, Yhi —>Yh*. Since we shall need
these results in Sec. IV, it is useful to present them here.

The independent t-channel helicity amplitudes : (Yv — wn)

Xlxe

for the massive photon (mv) are

. | ‘: .
. — . 3 _ %
.t oo 2 _ 7%, g b (@2 gt

L. J
11 £ - hmvg 11 lQ. £ - hmvg .lO
(3.16)
I ¥ Q o= % .t 1 = t
H"»_ ] = . - » H: = H ’ 2
1-1 6(t —'hmvg) 1-1 QQ £ - mv2, @Q
- t MM g
where parity, HS& . = (=) = ¢ 5 - » 2nd statistics,
172 » 1 2
t t . : . o
H = H 5 ‘give the dependent ones. To prove the low energy
Mo MM o | -

theorem we also need the é-channel amplitudes

S + 1 - s
Haoa o= - %E {F * ;{5 F ]v ’ Hl;-l =% {F- ';é?? F } ’
' (3.17)

1 -
— . + . .
2 and F-. are kinemati-

wmere 8 = (G- @ +m))6 - @ - 7))
cal singularity-free amplitudes with parities P = 4-,(-)J in leading

order. There is a conspiracy relation at s = O ‘of the form
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Again we introduce the charge through the zero-helicity (sense)

amplitude
¢ 2 s 2 u 2 2, 2
13 - = 1i - = =(k - .
lm12(S J%)I%Q» lim @ 1%)1%0 (ﬂr ije
“ s—m u—>n ' :
‘ T = (3.18)

With the use of the Jacob and Wickbcrossing matrix, - the residue of poles

. t s ' . '
can be calculated in Hlirl and .Hl;tl’ and dropping terms. of order

mv2 in the residues of the pion poles, we get the representations

2

2e2 tm 2. 2e2 tm '
g b 1 o, ro, gt
T t -hm | s - m? u-m 2 1L ’
v n .
. ‘:\
t o) 1 2e? 2e? t
. . H = : : " + B ,
1-1 . 2 2 2 1-1
_ _ t(t - hmv s - m u-m
(3.19)
2 2 1,
g S g 2e"(s = ) + 7 (?;S + —i— B s) s
. = = s N+ 2 "=
151 €1 920 - n D) | 28
T
‘ 26° m 2(s -m 2) .
S b1 ) - 8 1 8
H - o= - t - B + —— B
13;-1 2 5 T+ ,ng -
#&, (u - mﬂ') ‘ E
Note that only the u pole contributes to Hi.+i because.of-angular
. Al A

momentum conservation, and the factor lééfzz introduces a first-~order

pole at s = mn2 in the ZML.
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We take the 1limit my, — 0 and apply the resultant crossing

t s t

. ) s . ’
relations. Hll = Hl;-l’ Hl-l = Hl;l . Since we have assumed charge

‘cohservation, the poie terms satisfy these relations by themselves,
leaving constraints on the background terms. These constraints are

solved with the neW‘background,termsi §iit»_and: §i:it; where

11 11 ° -1 T P11

(s - m %)

' 1 == - s
B, = 5By +sB 1, B =-—3—[B; -sB

In addition to kinematical zeros, being forced into the background

terms (B), there is the conspiracy relation B+S = - mﬁ2 B_S/2 at

s = 0.
The resultant éxpression for the Compton amplitude has the full

content of the low energy theorem:

s _ t -2e m t - %
H = H = + t B, ,

1;-1 11 s -2 -n2) 11

(3.21)
. ' 2 g . 3
s t g : - Pe : _ g'— t.
Hyy = H = -% 5, o, T B
(s - m“)(u=m?") o

For example, it is usually sﬁdted that the Born term gives'the zeroth
and first-order contributions in the momentum of the phbton' k(s) for
. .

Hl'—l at fixed angle, which comes from the factor
>

g/t = - 2k° s(1 + cos 6,)-

g -t
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IV. REGGE ASYMPTOTICS AND CROSSING.

The Veneziano represéntationl6 for the hadron amplitude,
wﬂv¥9ﬂﬂ, gavéa.simgltaheous solution to crossingiand Regge asymp%bticé,
provided the zero-width ‘(Im o = 0) and linear-trajectory approxima-'
tions _Gﬁ(t) = g + bf) are.made. We demonstrate in this section that
an equally simple solution to Regge asymptotics and crossing exists for
photon amplitudes. The proﬁlem is to uﬁderstand how the low energy
constraints (i.eo; gauge invariance, Sec. III) are incorporated in this
representation. To this end, we first consider the ZML for‘a Regge
asymptotic expanéion for massive photons (Sec. IVQA), and then include

crossing symmetry (Secs. IV.B and IV.C) in a zero-width model.

A. Nonsense Factors in the Regge Expansion

Even for large energy (s — ), the_represenfation (3.6) poses
the.problem of an exchange of the particle T entering into the nonsehse
amplitude Hlt. Let us consider the ZML for the standard Regge expansion
for & massive photon (mV) in the t channel (t : VT -8 ﬁ) helicity

a,rrrplitudes:lL

F@
|

.-
Q4
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The nonsense factor ak(t) excludes all zero-spin poles for helicity
amplitude Hlt as demanded by angular moﬁentum conservation, and TY's
are free of kinematical singularities.

If we take m, —0, the factor 1/ .reinétateS'the T pole,
but it apparently occurs multiplicatively on all terms in the expaﬁsion.
This would mean that the dynamiéai T pole could not be considered-to
be exclusive oﬁ the T frajectqry; (For‘ékample, the pibﬁ exchange
in 7Tp —>n+ﬁ would not_be.a Regge exchange'!) The solution to this
problem is the correct use of fhe fhresholdvahd pseudothreshold rela-
tions at -t£'= (mT + mv)g.‘. | | |

Using_the’croséing conditioﬂr(3.2) on the expansion (h;l) and

(k.2), one may derive the constraints

rale) n5) = - e /(VEw s) ()

In addition, the residue for T has the normalization constraints

from Eq. (3.3),

o) = §aye’) mlm® -t es )

in a power series about t = ng and
k

- If one expands Yik ~and ka

applies the condition (2.9), L

ZML, the pole at t = mT2  occurs only in the T_vRegge term aﬁd’is

= o(mv); one discdvers that in the

properly normalized. " More precisely; a comparisbn of the coefficient

of (mv)j inv(h.j) and (4.4) yields

)
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_ o (6) 7. T(t) | 0 €
. _ YiT(t) _ Tt i mig = =m0 (mT ) \[E - + 0Ot - ng)
" - . . o)

(3.5)

-and

v 5(%) | |
=, k{T , S (3.6)

]

RO

where 7i are the new kinematic-singularity-free residue functions.

Hence, we arrive at the new Regge expansion for the kinematical-

singularity-free amplitude H = Hy /(¢)2 at m, =
~ % Ty (t) | moz Op=1
H & = (1 +e (: :)
sin x ap
—k ] o =1 .
A N L TN s %
: —~2-aze M(E) .

Sinnak

where the nonsense factor for the ELI pole (T) is absent and the
remaining nonsense factors are in agreement with the rule "no zero-to-
zero transitions." This expansion_is-in complete agreement with the

"low energy" theorem (3.6) in the limit ¢t —amTE and s large.

B. Duality and the Zero-Width Approximation

6 _ . The Veneziano representation requires a particular interpolation
(referred to as duality) between the low energy region and the asymp-

totic region. If we reinspect the Regge expansion (4.7) for massless
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particles;‘we can see that the peculiar cbnstraihts of gauge invariance
are themselves suggestive\of.this duality interpolation. At threShold,
the factor (kp)afl in-the full residue requires that the Regge
e#pansioﬁ in terms of vy =2 kp‘zt- is giﬁen exactly by the leading
terms of (kp)afl.P&(zt); For the zero-mass photbns, the T exchange

' pole coincides with threshold <? =.(t'f'mT2)/é>’ so that the exact

s dependence of the residue of the pole is determined by the Regge-

s

expansion. As 't 4>mT2 we obtain the result o ;U”"'

~ g legfg.eS} 1J§-g eyl bg
(Hl )Regge - 2 - T 7 4 : (4.8)

2 2
t - My, s_f Mg _”u - mU

where wé héve used conservation of charge eT ;'-es - eU and the

kinematical relation v = s -ﬂmsg = -(u - ng) for t =_mT2._
Consequently, we see that the full‘contenf of the low energy theorem
is contéined in the Regge expansion, by "summing up" the Regge expan-

sion to get a direct channel pole. Far from being in conflict with

duality, Eq. (4.8) may be considered an extreme example of duality

~
for Hl .

There is apparently only one way to modify the Véneziano;!

parameterization to accommodate the double ELI pole term. (We'pick

a channel with eUE= 0 ‘for the present discuésion.)
~ t VQ ge:b2 . _ 5~
H& = —— B(l - Qps - as) = 1¢2 geb B(-aT, - as) s
aT(t) _ :

(4.9)

(A
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where ' '
r(-o) rl-og)

(4.10)

B
|
Q
1
o
e
i

| r(x - ova-.aS)__

The reader may check that this "guess" simultaneously satisfies all the

S T

(ii) it has the correct low energy behavior,

major conditions: (i) It is even under ¢« <— Q., as demanded by

crossing ﬁlt :-gls’

(iii) it has Regge asymptotic behavior as s »® (or t —w) with the
correct helicity flip factors, (iv) the residues of the poles at

Op = J > 1 are polynomials of order J -1 in o (no ancestors).

To understand how these properties. are obtained, we resort to

the ZML once again. We take the residue of the J = 1 pole (mass

q2 = mvg’ see Fig. 1) in the five-particle beta function,17

_ 1
2 _
Béﬂq),CQ,cp T, @) = | duduyu
0

2 -1-C
l‘l‘?(q )(l,- ul) 1

o -l-0  -1-1

o, =QL, = '
)5 T @)y, , (4.11)

X (1 - u;u
and oﬁserve explicitly how to deduce the above parameterization by the
ZML. This deducti&é approach to Eg. (3.9) not only guar@ntees the
satisfaction of properties (i) - (iV); but also can be extended to
?hotoproduction.of N hadroﬁs with the N + Emparticle beta functions.7

It is convenient to calculate H t

A

five-particle beta function through the tensor Bstu and the helicity

(J = 1) projection formula th = eu(x,q) Bstu‘ We discover that

(for 'mv # O) from the

T
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B = (3" +2) B(l -1, -0) '(2 ) +2p) B(L -0 -) .

(4.12)

From this we calculate Hlt (see Table Ia), .

L .
1 : , _ . .
gt oo @2 1 50 . ) . | (4.13)
1 §7 \/ET : T - 2
-t . 12
. We are permltted to take the ZML, if mV H - 0 or equivalently
M | g A
BSt /mV -0 as m, — 0. This condition holds only if § and T
are the lowest members of the' o(s) and <t(t) trajectories (&.e.,
. 2 _ , - c 2 _' _
o = O, where as(ms ) =0, and T = O, where aT(mT ) = O).
Moreovér, an off-mass-shell continuation is'possible because
the condition H O[(q )2] or g, BstH :»O(qe)- also holds. We

have chosen the "unphysical” g"-term so that

1]
(@)
.

v . : .
a B = O B(1L - T’ q@s) o B(-O@, 1 as)

(b.1k)

and we therefore can easily construct a conserved vector current

amplitude v". The following amplitude has the correct ELI poles at

, q“ =0 for Y8 -TTU and an_appropriate-vector-meson pole at.~q2 = mpg’

Hye, B M+c B.M O,  (k.15)

noo 2
Vo= Fla )[Cst Bst tu “tu us "~ tu
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where

i1
=]
o
~
—~
=
no
]
ol

Vgg €p b2)

F(q°)

=
Q
]
Q
i

2 2
and Ctu - Cus = VE g e ey b .

The amplitude in brackets, VH/F(qg), may be thought of as an off-mass-
shell continuation of the vector meson amplitude, since s, t, and u

are now constrained by
e 2 2 2 2 2
s+t+u = mS +m” +mS +g for any g~ . (L4.16)

Notice that there is one arbitrary constant in (L4.15) that corresponds
to a term c(B_ " + B M +B_") which, because of the condition
st us tu

aS +Qn * aU =b q2, does not affect the residue of the ELI poles.

C. Compton Scattering and The Pomeranchon

A similar discussion can be made for Compton scattering
(vr —;Yh),_but with some.significant‘differences, which we will point
out. We consider the projection of‘two J =1 poles (mass mV)v from
the six-particle beta functibn.l7 We‘musf distinguish bétwéen projec-
tions which yield adjacent photons (Fig. 2, st and ut terms) and

nonadjacent photons (Fig. 2, su term).

1. ‘Nonadjacent Photons
For the nonadjacent photons, again the photon-hadron channel

can contain the'same hadron as the J = O particle on the sequence

e, o(s) =a (s), w(w) = @],
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so 1t is not surprising that the projection résulté in a doubly conserved -

nonsingular tensor - (see Table Ib)

'BSU“VA = %;Z B(} - a (s), 1_-'aﬂ(ui) QVP“PV B(Aaﬂ(s), -aﬂ(ui)'

g MPYB( - a(s), (W) - 5 3(x (s), < ()]
+ P“qlV[BGozﬂ('s), 1 -dﬁ(u»"ﬁ% B(—o:n(s), - ozﬁ(u))]

+ qéHQIV[BQ - aﬁ(s); 1- ozﬂ(u)) - i— B -onn(s), -ozﬁ(u))]‘ .

(k.17)
From Table Ib one éan deduce the helicity amplitudesvand'obtain
gt - - gzégbg §<—a,.(s) '-oz. (u)) L
1=l t 7t .’ T ’
! (4.18)
t g 2.2 v~ 2
Hyo o= $ees B(a (s), < (w) - 2¢” BQ - a (s), 1 - o ()
In Ref. 3, WG introduced the‘nonflip‘amplitudes
ot 2 22 |
H, = -2t m e?b‘ B(-a%(s), -a%(q)) s (4.19)

and demonstrated that this corresponded toan M=1 pion with a parity
partner that chooses nonsense at J = 0. The solution found here with
the ZML is an M =0 pion18 which indicates some of the flexibility in

the parameterization.
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Clearly the form factor F(qlg) F(q22) may be multiplied onto
Bquuv to construct the off-mass-shell two-current amplitude

MHV(ql,qg); just as in the single photon case.

2. Adjacent Photons

The proJjection of adjacent (massive) photon amplitudes from the
six-point beta functions (st and ut terms in Fig. 2) in general
does not lead to suitable amplitudes for the ZML. The difficulty
arises because the two-photon trajectory does not correspoﬁd to the
external masses (ql2 or q22) and the resultant zero-helicity
amplitudes diverge as  my - 0. The only exception i; for a Poﬁeranchon
in the t channel with intercept exaétlj at =1 at t =0,

In this case for m, =0, we caﬁ add to (-t/¢)Hl E

-1

arbitrary terms proportional to
Spom = B - (8), < (s)) + 3Q - a(t), -a (w)

v 3 (s), o @) (4.20)

which gives a Pomeranchon that couples at t = 0, and because of the
condition db(t) -1+ a#(s) +_aﬂ(u) = 0 does not affect the ELI
pples. Such a Poméranchuk is needed to give constant total cross section
for photoproduction.
Even in this case the ZML does not lead to the necessary condition
= o(qlgqég)"[tut instéad ‘Hoot

q t
00
this adjacent-~photon amplitude off-mass-shell. In fact, one is forced

’

= O(qlg) + o(qgg)] for continuing
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to introduce a fixed pole at J = O in the two-photon channel, in
order to obtain an off-mass-shell continuation of (h.EO), as discussed

briefly in Sec. V.

Y

é




&
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V. FIXED._J SINGULARITIES IN THE TWO~CURRENT CHANNEL
So far we have consﬁrﬁcted'pure Regge asymptotic amplitudes for
physical (chargeless, maséless) photons. It is a characteristic of
these parameterizations, as well as all the Veneziano parameterizations

for hadron processes, that there are nonsense wrong-signature fixed.

poles19 due to the third term [e.g., B(}a(s), 4a(ui) has fixed poles

-t

at a(t) = -1,-3,-+-]. We shall discuss such a fixed pole in H, ;

for J = 1, not because it is peculiar to weak amplitude, but because
it has been postulated as a mechanism for canceliﬁg the nonsense factor

aP(t) - 1 for the Pomeranchuk.go

‘In a unitary model for strong interaction, these nonsense wrong-

vsighature fixed poles must by "covered" by a moving Mandelstam cut.

Otherwise fixed poles would be'excluded by the quadratic nature of
uhitarity for strong amplitudes. In weak p?ocesses unitarity becomes
linear and.fixed polés cannot generally be excluded. Indeed tﬁere is

a fight;signature (J =0) fixed polé associated with our Pomeranchuk:
solution off-mass-shell; and the right-signature,'(J = 1) fixed pole5
associated with chargéd currents. These right-signature fixed poles in
nonsense amplitudes (and Kronecker delta term in sense amplitudes) are
easily identified by the resultént.fixed—power behavior of the amplitude.
Although other fixed-power behavior is consistent with linear unitérity,
1t is interesting that so far there is evidence for fixed J singu-
larities (at right signature point) only (a) in the two-current channel
and (b) for either charged or massiVe currents (i.e:, "unphysical

photons").
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A. The Pomeranchon and Fixed Polesl

Abarbanel et al.go introduced, into the double helicity flip
amplitude Hl_lt of Compton scatterihg, a Pomeranchuk with a singular
residue to cancel the nonéeﬂse féctor. On the basis of an N/D model
for linear unifarity in the t cﬂannel (rr —>ﬁn>, %héy féund fﬁat the

reduced partial-wave amplitude b(f)(J;t), where
e - )P )@ DI - 1210, ¢

for positive signature, has the form:

() o1 1 ke®  R(3,0)
b ’.(J,t) = le 3—:7;;z;; Tt 7T 7- ngt). (5.1)

for :aP(Q)_= 1. ‘Ihe first térm is.a Réggevpole with a singﬁlar reéidue
derived from the Born (pion pole) contribution to the left-hand cut,
and the second term is a "multiplicative" fixed pole dérived from mére
distant left-hand singularifies. If one rewrites the_"multipliéative”

fixed pole via'

1 1 1

' 1 1 1 ‘
YJ'lJ‘_O‘P(t7=O‘P(t)‘1J-aPT’G7--OLP(t)-lJ-l )(5'2)_

1

one can see that it is equivalent to a Regge singular pole minus a

singular fixed pole, that does not contribute to the asymptotic behavior

of the physical amplitude.
Our Pomeranchon has precisely this structure in the J plane,

as we see from the amplitude for Yﬁt —aYﬁi,
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Hl_’lJG = hg g_t [c, B(l-o: - (s))+c B(l-ozp, -oz(u))

+ (1ec)BCa(s), @ @D . (5.3)

The first two terms result in a Pomeranchon with a singular residue,

-which gives the'asymptotic contribution

-in -2
ERLEETRTS S ) r(l-ap(t)(1+e “Bye) P, (5.0)

and the third term has no asymptotic contribution, but it contains a

19

fixed pole™ in the J-plane at J = 1,

1 +C
_—20
J -1

b(+)(J,t) oc %E bt (5.5)

Thls correspondence is more than an analogy. If we assume that there

is no fixed pole (CO —'—l), we arrive at the "predicted” cross section
.0 .
= 2 e_" ' -]; .
GTOT(CO) = 16x I o (0) 3 | (5.6)

which is identical to'the result of Abarbanél et.al. In our case, the
Pomeranchuk slope a%(o)' must be canonical (@%(O) =b=~=1 GeV-?),v

and the value of this cfoss sectioﬁ is toQ large by a factor of 3.

We see no reason in favor of this special value for Co’ especially
since these additive fixed poles are a commonrféature of'the zerQ—width'

model with no direct correlation with the_Pomeranchuk coupling.
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In Ref. 7, we have generalized our Pomeranchuk to all amplitudes
fof N hadrbns and ‘two currents at arbitrary q12 and q22. The
S - S, 2 % '
resultant model yields an amplitude M = (29°/9) H _;  for the

Pomeranchuk contribution with any intercept aP(O),

. o 2 .
5 } 24y azb b(q;” +a, ) + 1 - ap(0)

Moo= 8 Wj‘?@ - 0p(t), - (s)) - — 5o(8) - 1

X 3Q - (s) + (s —ou)) + 8% Bl (s), o (w)
(5.7)
An interesting feature of the right-signature (J = 0) fixed pole,
is that it is absent for the'physical'Compton scattering (ql2 = q22 = 0),
only if aP(O) = 1. The divergence.conditions

pv 2y
Y, M = O(ql ) and

2 R
id dp, = O(q2 ) yield
'_ A 2
G PM g ea My = 0(g7)

| L
WP M + g M = O0) ,

which require that Mi- have a zero at t = ql2 + q22 to order

qlgqgg. This is accomplished in (5{7) by the‘factor.»ql- 4, in the
first terﬁ, symmetrization of the'secondvtérm, and thevzero at
als) + dn(u) = -2bq;- q; = 0 in the third term.

‘ The factor l/(&P(t) - l) compensates for the t dependence of

4,4y as t — o, and cancels the nonsense factor for fixed t and
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s — . Then the fixed pole at .. J = 0 is introduced<to_cancel.the"

singularity at aP(t) -1 = 0 in lowervdrders.of s.

We cannot be sure if the fixed pole will bé necessary in more

genéral construction with ad&itional lower-order terms. However, if

 this J = O singularity persists, one cannot introduce form factors -

2) F(qgg) multiplicatively. on this amplitude begauée'fixed poles
at right-signature point must be avoided for hadronic amplitude. In
this case, the Pomeranchuk. contribution (-CO) cannot be established by

a vector-dominance model, since it has no counterpart in hadronic or

single-current procéssesf Also, the lack of strong damping as qevfaa'

'.may be in agreément with the recent observation of the diffractive

phenomenon in inelastic electron scattering.

B. Current-Algebra Fixed Poles

The current-algebra sum rule of Fubini——Dashen——Geil-Mann for
Im M, in. the I, =1 (charged photon) channel requires that M .have
a fixed right-signaturé fixed pole, |
Independently of current algebra, it has been demonstrated by'Bfonzan

et al.5 that for conserved vector Currents one has

1

Moo= Q‘T([Tg) - gr&%) : o (5:9)
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at ql2 = 0, q22 =t (and q22 = 0, q12v= t), and therefore fixed-
power behavior must exist.

In Ref. 3, we propose the parameterization -

o’'|

< TR - () #e, ) B - o (4), ()
FRe)fa(e) - (sew) ,  (5.00)

which satisfies CVC (5.9), the sum rule (5.8), and for a 51ngle-pole

form factor, F(t) =m ‘/(m - t), has good analytic properties. The
double projection of the six-point beta function leads to : -
B(2 - ozp(t), _‘-ozﬂ(s)> - (s «>u) for %Ml, which is only a slight

help in our construction. But in fhe generalizationYOf (5. lO) to all
two—currentiamplitudes MY for N splnless hadrons the

projection of the amplitndev BH“V for vV —eN hadrons from the (N + b4)-

o
By

allows one to construct the hadronic part of MY (@(qlg) F(Qé?) BH”2>_

point beta function is. an indispensablé guide. This amplitude

with the correct vector meson poles in qlg, the correct ELI polesfat

q:"

i — 0, and the proper Regge powers. Then we add on by‘hand terms. to

satisfy CVC and to introdiuce the fixed-poﬁer behavior of current algebra.

7

The resultant parameterization factorizes on all poles eicept those
on the nonleading trajectorics in the channels'overlapping the two-~
current channel.

Inspired by the integral representations for the N-point beta
17 '

function, several authors6 have proposed integral representaﬁions
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(particularly for Ml) that give them an infinite number'of vector-
meson poles and fixed poles in the t chahnel. It is the opinion of
this author that such an ambitious "guess" is premature, if one hopes
to simultanedﬁsly get conserved currents, fﬁctorization, and rapidly
falling form factors.

| In our approach, arbitrary numbers Qf vector mesons from’lower

trajectoriesvcan be - introduced, as follows: .

W - Tr(s) - 7(q,%) P82 - (), = (s)) + F(8)/a ()
roy £ [Fy(t) - Fm(qlgﬁrmﬁqég)']EB(m +1 -..a.p(t), < (s))
- B(2 - O‘p(t)’, Qozn(é)_:')] . (s <) , - (5.11)
where
| m- o (0)

F o= Z fm Fm, Fm(t) —- m—_—aSm

This factorizes on the leading trajecfory in the s channel and stiil has -

an infinite number of undetermined constants ‘fm’ Consequently, -

. tremendous freedom exists in these parameterizations until factorization
(unitarity in the zero-width'approximation) is applied to lower

trajectories.
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C. ConCludinngemarks

_Two distinct approaches can now be followed. One is the loéal
adaptation ofvthese parameteriéations-td the phendmenological énalysis
of a given reaction. Some work7~is'under way on the general features
of these parameterizations for "Yn — Tr and YKi—aYK, but a détailed.
and quantitative compariSon of various par@meferizations and,experiment
for YN — N (virtuai Compton'scattérihg and total electroProéuétion)j.
would be vastly more instructive.in determiﬁing thé weaknesses andh
stfengthé of -the present zero-width models.

The global or dynamical appfoach attempts to determine a large
. class of amplitudes.through the imposition éf factdrization.zl :In
Ref. 7, we héVe initiated the search for véctor-current amplitudes
consistent with a‘particulérly simple fébtorizedeero-width model of
the hadron boétstrap. In the glébal approach, one first constructs
single~-current amplitudes for N hadrons that ére conserved and whose

poles at ql2 = 2 are physical hadronic amplitudes (pn:—aN hadrons).

Then one.tries to Eonstruct’fwofcurrent (COvaridnt‘correlation) tensors
that factor.into a product’qf single—curfent amflitude'on ?oles-that:
overiap oné current as well‘as yielding:the-cufrent_cofreSpondenéé to
tﬁe above gingle—currént amplifudés.fornéne gig =‘ﬁb;2.
existence of bbth linéar”and‘quadratié (uni%arity)'r;iations between

It is the
the two-current amplitudés and the oneQCurfent amplituaes that makes
this problem so highly constrained. The exciting question of whether
currents can be constructed consistent with the hadrbn’bootétrap and'

whether these currents will obey a particular current algebra may not be

so forbidding within the apprbximation of a Zéro4width model.

~
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APPENDIX
Zero-Mass Limit of the Wigner Rotation

In this appendix, we demonstrate that the Wigner rotation
RW(A,q) for.a particle of ma§§ mB'u(q2 = mBQ; actually va is only
a function of A and %/mB)' beCOmeé a pure z rotation RZ(Q). to first
order in the mass My, and this_angle Q(A,%) is the z rotation part
of the corrésponding transformation ‘#?(A,q) (defined in Sec. I.A)
in the little group E(2) for a massless particle. Hence, for an
arbitrary fixed Lérentz transformation A and fixed three—vector q,

we must show that
RWW)Q%@m@+u%L as my - 0. (a.1)
The generai Lorentz transformation may be parameterized .
with the rotations
- il -ipT -ivd
_ Z Yy CZ
R(alBlY) = e e e
and the z boost
-inK
. Z
B,(n) = e

It follows from the definition of the Wigner rdtation,,

Rha) = 1, ata | (8.3)
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' RW(BZ,RlQ)u v for v =1, p =2, one can verify that B | I
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that 1t can be written as a product of Wigner rotation,

Ry(8,a) = Ry(Ry,B R a) Ry(B,Ra) Ry(Ry,a) - (A.4)
Primarily by observing the convention that in

I =R 6 - B ’ the first z rotation is the negative of
D p(¢'P’ v’ ¢p) Z(np) g

the azimuthal angle Qp for: g; the reader may easily verify that the
Wigner rotation of a rotation iska pure -2 rotation. 'Also,’if'the .

z axis is chosen to be along q the vector Riq is in the xz

plane, and therefore RW(BZ,qu) is a pure ;‘;;tation Ry(@). Hence, -
the product in Eq. (A.k4) puts the Wignef rotation in the standard -

form

N ~igT -163 -iyd .
o Ra) = R(EeN) = e Fe Ve P (a.5)

 Without explicitly calculating @ and ¥ from RW(RQ,BZqu)

and (R,,q) respectively, one can demonstrate that and V. are
) 1 J J

independent of the mass my. [In fact, if

R(0,8,7) R (#,8,, - #)) = R(a,8',7"), then 'Ry(R,p) = Rz(a' +7').]
However, the mass dependence of © is not so trivial. By representing
the transformation by matrices in 0(3,1) acting on vectors

' - : ‘ L2 2\%
p“=.(px,py,pz,pt) [and therefore Aq"l = (0,0,]q[, (% + my )21,

and by performing the straightforward, but tedious, calculation of

m, sinh 7 sin B
gl

sin e =

(4.6)
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This demonstrates that for my — O - the Wigner rotation becomes a
pure z rotation through some angle '¢v+'¢4

We are not interested in the‘eiact fuhctional dependenée of
this angle ¢ +V¥ on A and q, but we wish to show-fhat it is the
z rotation (A,q)in 1%? (#,9) = Zf Aq'l A Zf;.' In the o(éké)
representation (with rows and columns in the order 1230 or xyzt), we
use the parameterization of 1%? in terms of e, Xl’ X2 ‘ <éee

Weinberg, Ref. 8, Eq. (A.hi)

N o sin @ - =X X
| v cos sin 0 0 1 0 A 1
'4? H .'__: -sin® cos® 0 OO l - X2 XE
RY =| | | 1 Ly
o . 0 1 o|x X 1 2X2 5 X
. ; 1 1.2
B 1L T LR L
(8.7)
where
2 2 2
X = Xl + X2

To demonstraté that 06 = ¢ + ¥, we factor from. Lq (and LAq) the
boost Bz(nd) which takes one from the rest frame with

: | 1

" = (0,0,0,m;) to the standard frame with ot = [0,0,1,(1 + mB2)2],
-1 . A . . R e s '

so that Lq B, _(no) is the finite boost 5{ q in the limit my - O.

Hence,
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_‘c‘qu'lA - 1m B 7H(n) R(A,)B(n)

d mB—>O
-ig7_ - . -16J. AT
= e 2 1im B l(n ) e Y B (n)Y e z
mB—’O z o z' o
(A.8)
In the '(%)%)‘ representation, it is easy to explicitly calculate
1 -16J [ :
B, (no) e y Bz(no) v and take the limit. The result is
1 0 X X
1 _ngy " 0.1 0 0
lim* <B ""(n) e B_(n.) = 1.2 1.2
o z'o'f v - = =
1 1.2
i X 0 - 5 1+ § X j
(A.9)
where
X = -1lim sin 6/
mB—§O g

Notice that without a demonstration of sin 0 cc ms, one could not be
sure that the limit existed. ‘Finally, conjugating Eq. (A.9) with
'BZ(W)“V, one arrive at an expression for -ﬁ? MV' which is identical to

(A.7) with the association X; = X cos &, X, = X sin W,” and. 

@ =¢+v. - = ™ i
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“We investigate space-space . commutators through the Bjorken limit,

electroproduction phenomenology, and electromagnetic mass differences.
S. Weinberg, Phys. Rev. 135, BLOK9 (196k4).
Factors of the mass .mB are essential in this argument, therefore

for défini%eness we choose our amplitudes to obey the unitarity

condition
‘ {
H H 1 Z a o H "
. - . = 7 ) ; oyt ' ]
xf,xi : xi,xf .2 ’ - n xi,x xf,x
. : >\.,>\.
where
' k + 2 2 L , -
d_ o= | ! (2)? 8(p - m ) (Y P - pr)' .

K .
The préjéction of high-spin particles from multibody amplitudes for
spinless (and spin %) particles is a general technique for deriving
ail kineﬁatical.sihgularitieé, croésing relations, and threshold

properties for‘amplitudes with high-spin particles. However, since

: high-spin particles are in general resonances, the direct use of

multiparticle amplitudes is preferable, and perhaps more convenient,
as indicated by the zero-width_modei based on the:N point beta
function or by the multiperipheral model.

Although the matrix elemént is eééily defiﬁed, it is not obvious
whether or notvtherebactually exists a local_operator’.Ju(x)
defined on the Hilbert space of asymptotic states. |

By expanding ™ in terms of the vecfors available (p#“), one can

see that polarization vector
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(= 0,9) = 7%:Hﬂ,?qg
o (@9)z ~ ~

1
2

is "responsible" for the (qe) singularity in. H,. Also, from the

‘expansion

Moy o _ oM : B ofm )
(= O;q) = Q¢ /o + mv/2|g| 63? + 0(my)
we see that m, Hy -0 is equivalent to on-mass-shell gauge -
invariance, q, T”/mv_;ao as my; —0.
In field theory, one sometimes writes the exchange of an elementary
J =1 particle of maSS'(mv) in the (3%, %) representation,
T TP - 2 w 2 2y . |
(pflJTVIO>[guv_ quqv/mv ](o]q' lpi)/(q - m;"), and one must have
a conservedvcurrent if the ZML (mV - 0) is applied to this object.
However, this off—mass—shell propagator_hasino precise meaning in
an S-matrix theory, therefore one can just as well use the pure
24 2 2 R . .
J=1 propagator. [guv - quqv/q 1/(a" - m, ), which regulres only
condition (2.14) to remove the unwanted singularity at q2'= 0.
The kinematical singularities in the helicity ampiitudes makes .the

analysis for high-spin hadrons quite involved, but several inter-

esting results are obtained, such as the restriction on the elastic

¢ a
Mhg LT

form factor for arbitrary spin hadrons,F. i(d?)a= ed .
- | Mo 172 1Mo

i 2
As emphasized by Henry_stapp (Lawrence Radiation Laboratory, private
communiéation) a more elegant formalism can probably bevfound in

terms of the M function.
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preprint, 1968; C. J. Goebel and B. Sakita, Phys. Rev. Letters
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It is a general_feature of the N-poiht beta function model that the

leading trajectories are parity singlets.
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gives a good example of this global approach to the meson bootstrap;
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Table Ia. Connection between invariant amplitudes in the tensor
oo pTu Tl + pS'“L T2 and helicity amplitudes th for the process

r(a,,u) + T(pgp) = S(pg) + Ulpy) -

v (92
HS = I T,
& 1 | 2 2 SRS
HO = -‘m [{(s -»u)('b+mv - oy ) :
- 2(ms2 - ng)G: - e(mv2 + mTE»} T, + va_g(Tl + 2 T2)]
H-Kt = nSnTnU(-)x H;" by parity
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. Table Ib. Connection between invariant amplitudes in the tensor
v v (VARY, [TIRYA o V., Loov . .
M =g My + PP + o PP, + PP "M, + q%ay M, end helicity

amplitudes H;G\ N

in the process 7(a),u) + 1(ay,v) = x(py) + n(p,),
12 -

where P = (pl - pg)/a.

gt =_g___.'Ml

T of
2

t _ ___ggz%____ (s - | em 2 2y o 2 1]
o Ve 9%, [(e - w)(t +my = - my ") .2:»:7 M
1
& (9)2 | 2 5, 2
g IRRYAE " [(S,f )t + v, T ™M, Y w2 7]
Vs | :
t 1 2 2 2
Hoo = 2 [-8F7(t - my = - my Iy
6
16" my my B
G - - S

+ 2 gg(s =~ u)(t + .mvllg - mV;)M2

-2 ge(s - u)(t + mvlg - mvgg)Ms + hgh Mh]"
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Table Ib (Continued).

‘ Y
B - ()t PE by parity.
12 - ' 1Mo S
s Iy t
N (s u,t) = (=) N (u,s, t) or Y -
NS , oM .
' > by Bose statistiecs
v, v ‘ It vu ' for the photons.
MY(ay,0) = () M M(age)
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,. FIGURE CAPTIONS

Fig. 1. Variables for the five~point beta function B5 used .in

vprojectihg out the term Bstu' B
Fig. 2. Adjacent photons in the st and ut terms and nonadjacent

photons in the su term.
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