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ABSTRACT 

The covariant photon amplitude is proved to be the smooth limit 

of the helicity amplitude for a massive vector boson. The kinematical 

consequences of this zero-mass limit and crossing are shown to include 

conservation of charge (or the equivalence principle in the case of the 

graviton), and the low energy theorems for photoproduction and Compton 

scattering. Consequently, the zero-mass limit is a practical alternative 

to the use of on-mass-shell gauge invariance. Moreover, the zero-mass 

limit provides a technique for the construction of Regge expansions and 

Veneziano parameterizations for phot'on amplitudes from the corresponding 

amplitudes for a massive vector boson. A model for the Pomeranchon 

which cont'ribues to forward elastic Compton scattering and does not fall 

off at large 2 q is proposed. Also a Veneziano parameterization of 

the amplitude for Compton scattering of off-mass-shell charged currents 

off pions is presented which satisfies the current algebra sum rule 'of 

Fubini, Dashen, and Gell-Mann. 
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I. INTRODUCTION 

. Recently an approach to the kinematics of the photon has been 

developed that replaces the usual discussion of guage invariance with 

a zero-mass limit (ZML) on the helicity amplitudes for a massive vector 

. I 2 
boson.' Here (Sec. II) we give a rigorous derivation of the proper-

ties of this ZML based on Lorentz invariance and analyticity, and we 

related these properties to the standard assumptions of gauge invariance 

for tensor amplitudes and the conserved-vector-current (CVC) hypothesis. 

Another recent development is the proposal of Veneziano-type 

parameterization for four-particlehelicity amplitudes involving the 

photon3 (photoproduction and Compton scattering). The main purpose of 

this paper is to show that the applications of the ZML to photon kine-

matics can be naturally extended to give a rederivation of the param-

~terization of Ref. 3. First (Sec. III or Ref. I) by imposing 

crossing on the external line insertion (Ell) poles, one proves in the 

ZML the low energy theorems and charge conservation for the photon (or 

4 the equivalence principle for a spin-2 boson). Then (Sec. IV) by 

applying the ZML to a Regge expansion, a modification of nonsense 

factors 2 is made which allows the ELI pole to appear on the exchanged 

4 tr:ajectory. It become,s apparent at this point (IV.B) that the pecu~ 

liarities of a zero-mass vector particle favor, rather than conflict 

with, the duality picture. Therefore it is natural to seek a repre-

sentation for photon amplitudes that combines crossing and Regge 

asymptotics. By applying the ZML to the Veneziano representation for 

a massive vector meson, one automatically obtains just such a 
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representation in the zero-Width approximation. Once the on-mass-shell 

amplitude has been constructed, one can in general continue off mass 

shell to obtain amplitudes for a conserved vector current (see Sec. II.B). 

The two-current amplitude, which enters into the Fubini-Dashen-

Gell-Mann sum rule, presents a more difficult problem. The ZML yields 

correct amplitudes only at ql-l == 0, and a fix~d pole5 must be inserted 

for ql-l fO. The important 
.' . 6 

problem of fixed poles3, in the two-

current channel is discussed briefly as an introduction to the detailed 

consideration in the forthcoming papers on vector currents and current 

algebra in a dual, zero-width model. 7 These papers extend the param-

eterization of Ref. 3 to one- and two-current amplitudes with N spinless 

hadrons, and more importantly, they begin to impose the, dynamical 

constraints of factorization and current algebra. 

The ZML provides an alternative (but equivalent) approach to 

the kinematics of the zero-mass particle. However,the usefulness of 

this approach for converting a given hadron amplitude into an amplitude 

for a photon requires a close analogy between the photon and massive-

vector-meson amplitudes. Roughly speaking, one is making a dynamical 

assumption that the photon amplitudes have the same Regge asymptotic 

and analyticity properties as hadron processes, except when this is in 

direct conflict with the requirements of the ZML, CVC, or some other 

basic principle. In Ref. 7, this point is developed more rigorously 

on the basis of unsubtracted dispersion relations in 2 q , but the 

dynamical implications are much the same .. 

~. 

.' 
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II. LORENTZ INVARIANCE AND ANALYTICITY IN MASS 

In this section, we present that basic kinematical analysis 

for helicity amplitudes for zero-mass particles (~= 0) and off-mass­

shell (curr'e~t} ~mpli tudes" We begin in II-A by considering helicity 

amplitudes for entirely massive particles, and then study the zero-mass 

limit for one of the external bosons of mass ~ and spin J B. If 

the amplitudes are bounded,the limit leads to Lorentz-invariant (hence 

gauge-invariant ). amplitudes for'massless particles. 8 Then the kine-

matical singularities in the "mass" of the photon (or equivalently the 

off-mass-shell invariant q2) is determined by a fixed J = 1 pro-

jection of a diparticle state in a multibody amplitude. Lastly, the 

relationship between the helicity-amplitude and the tensor-amplitude 

apprGach is described. We have used the helicity amplitudes in this 

paper so that the kinematical singularities, crossing relations, and 

Reggeization procedure for photonic amplitudes can be more conveniently 

compared with, and made consistent with the standard results for the 

purely hadronic amplitudes. However, tensor amplitudes are convenient 

in our future extension to a study of current algebra in the zero­

width model,7 hence they are also introduced and the explicit relation 

to helicity amplitud~s is given in Tables Ia,b. 

A. Lorentz Invariance and the Zero-Mass Limit 

In order to get gauge-invariant results from the direct appli-

cation of the zero-mass limit, we discovered in Refs. I and 2 that only 

a mild condition on the amplitude HO for thezero-helicity massive 

photon (my) is required, 
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o (2.1) 

for some region in the space of invariants (s,t,·.·). One can 

imm:ediately justify this condition on the 'basis of unitarity in the 
. . . . 1 

physical region, and go on to derive its consequences. However, 

weinberg8 has demonstrated that Lorentz invariance for a photonic 

amplitude implies "on-mass-shell gauge invariance" and, therefore, its 

consequences- conservation of charge and low energy theorems. There-

fore, it is more satisfactory to show that condition (2.1) is needed 

to derive Lorentz invariance for the massless photon from Lorentz 

invariance of the massive "photon" in the ZML. Since it is no more 

difficult, we shall consider the ZML for any boson of mass (~)and 

spin J B. 

The transformation law for a; helicity amplitude, Hf..lf;!l.
i 

Cpf ; Pr), 

with a massive boson of momentum q and helicity !l.B and N hadrons, 

is given by 

, (2.2) 
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where A.i(l-lf ) stand for the set of helicities of the incoming 

particles with momenta Pi = q, PI,"',PK (out.going particles with 

momenta Pf = PK+I"",PN) and Rw(A, Pi) is the appropriate Wigner 

rotation. Since we are interested in the transformation properties of 

the massive boson (photon, graviton, etc.) we can abbreviate (2.2) to 

read 

by surpressing the hadrons' indices. However, it is important to deal 

with amplitudes which are directly related to a cross section, rather 

than with a single-particle state,9 since our demonstration requires a 

boundedness condition (2.6) on the transformed amplitudes. 

rotation 

L q 

The problem is to take the zero-mass limit on the Wigner 

R(¢q' 9q , -¢ ) B [cosh ~ q z· q 
2 2 l . 

= (q +~.)2 /~ I , 

and A is an arbitrary element of SL(2, C). Choosing 

(2.4) 

I-l 2 2 l 
') q. = [(~ . + ~ )2,.0, 0, I~/] we demonstrate in Appendix A that the 

limit of Rw is 
; 

, 

where sin 9 oC The angle e is the z rotation of the 



-6- UCRL-19220 

Wigner "rotation" of the photon, ..f? W(A, ~) = ;(Aq -1 A ~, where 

;;fq is a boost from the standard frame, q = (1, 0, 0, 1). The 

infinite z boosts in and 
-1 

L Aq are commuted through to give a 

finite ~ as mB ~O. Consequently, if the condition 

lim 
~~O 

(2.6) 

holds, Eq. (2.}) becomes the correct transformation law for an amplitude 

with an external zero-mass boson, 

HI- =+1 ( q, ... ) 
B -

+iJB8(A,q) 
e ~ H (q ... ) 

A. =+J ' B -

The interesting group theoretical feature of this is that a 

Wigner rotation in the little group 0(3) [or, more precisely SU(2)] 

for the massive particle can have a smooth limit into a subgroup of 

the light-like little group E2 . This is possible because the semisimple 

structure of E2 and the requirement of a finite dimensional represen­

tative for the photon allows only the z rotation of ~W(A,q) to enter 

into the transformation law (2.7). Since the z rotation is in both 

little groups, the smooth limit can be achieved. The discontinuous 

group theoretical description often phs cures the smoothness in ~ of 

the physical amplitudes. 

The condition (2.1) my HO ~O is all that is required to 

construct gauge-invariant photon amplitudes and to prove charge conser-

vation and the low energy theorems. The undesired amplitude HO can 

r, j 
i 
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merely be ignored. However, for a physically reasonable off-mass-shell 

theory, one would expect HO to vanish as q2 ~ 0, since a finite HO 

would correspond to a spin-zero photon, in contradiction with experiment. 

B. Off-Mass-Shell Continuation and Analyticity in q2 

The off-mass-shell amplitude HAv(q,···) can be defined through 

the electron scattering amplitude AA.a"-b (Pa,Pb"")' where 

q = p. - p. This requires a complete knowledge of the off-mass-shell 
a. b 

electron form factor and factorization at the J = 1 singularity in 

the electron-position channel. Clearly the weak coupling of the photon 

is essential to the physical meaningfulness of this definition. When 

2 2 / 2 -q 1m > 1 e 
p 

the two photon singularities may become important, so 

that the phenomenological meaning of this decomposition becomes obscure. 

We have.studied this J = 1 projection of the diparticle state 

(~ith spinless a b particle to simplify the kinematical factors at 

the "leptonic" vertex), 

HAv (q,pl" .. ) 

f l dcos9r 

-1 

(2n 
}o 

iA. ri 
r~r 

e· 

,> where 9 , ri are the polar angles for r ~r 

1 
d"-y0(9r ) A(9r'~r,q'Pl"") 

(2.8) 

in the rest frame 

of q. We findlO that a square root kinematical singularity in 2 
q is 

introduced into the zero~helicity amplitude HO' Therefore if A is 
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to be analytic in 2 
q and if HO is to be bounded at 

2 
q = 0, we must 

have 

H (q, ... ) 

° 
2 l = O[(q )2J • 

This gives a nontrivial constraint for continuing the photon amplitude 

off shell.' In general, the J = 1, "v =0 projection has an infinite 

singularity 1/(q2)~ which can not be excluded. In the case of a 

photon this infinity is excluded because at 2 
q = ° there is a physical 

particle. The Adler-Weisberger relation for a dip ion system also 

excludes this singularity, but one needs some dynamical explanation for 

this, as in the theory with a partially conserved axial current. 

c. One- and Two-Current Amplitudes 

It is completely adequate to use helicity amplitudes for the 

description of a conserved (pure J = 1) current, but it is traditional 

to use a tensor amplitude TIJ.. (For convenience, Table I gives the 

explicit connection between the two sets of amplitudes.) We define the 

polarization vector for a massive vector particle 2 2 (q = m.y ), by 

= (2.10) 

where EV(A.,O) is the rest frame value: (0,0,0,1), (0, -l, ... i,O)/'\f2, 

and (O,l,-i,O)/V2' for A. = 0,1,,,..1 respectively. This allows 

us to relate the four-vector TIJ. to our helicity amplitude in the 

covariant equation 

= (2.11) 
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The four-vector is usually identified as the matrix elementll of a 

current ope'rator 

where 

, 

q =L p' -, [ p,. ' 
. f·· ~ 

From the condition Efl(l-.,q)q == 0, we see that Eq. (2.11) 
fl 

(2.12) 

defines only the conserved part of T (denoted V). We see this 
fl fl 

explicitly by inverting the equation to get 

L:'efl*(I-.,q) HI-. (q ... ) 

A, 

O d 't' 12 ur con ~ ~on and (2.11) can now be shown to 

imply 

, (2,14) 

and this is sufficient to insure that the conserved part Vfl is 

nonsingular at 2 
q == 0. The exclusion of this singularity is the real 

content of Lorentz invariance and analyticity for physical photons. 

This allows the tensor Tfl to be decomposed into 9-n independent vector 

and a scalar· (S'= q Tfl) part even as 
fl 

2 
q -70, 

and the scalar part S can be set to zero in accordance with the 

conserved-vector-current (CVC) hypothesis. Setting S· to zero has 

no effect on electroproduction, since the electron-positron state couples 
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only to the conserved part. However, the mass difference between 

neutrino and electron allows s to be measured in weak interactions 

(charged current) and CVC has content there. We emphasize that the only 

rigorous result (2.14) applies to neutral currents, and if it were 

extended to charged currents instead of eyc, the experimental differences 

would be exceedingly small. 13 

For a two-current amplitude, Mab~V' analogous results are 

proved for the neutral currents 

2 
= O(ql)' M ~V q 

33 2v 
2 = 0(q2) 

in order to have the correct correspondence with physical Compton 

(2.16) 

scattering. If we assume CVC, we cannot prove the divergences are zero; 

indeed, for the charged currents, the divergences are proven to be 

nonzero in accordance with current algebra. 5,7 All that can be proven 

is that the divergences cannot have the unitarity cuts .(normal threshold) 

in subenergies (sVk) that include (overlap) one photon momentum. The 

discontinuity around these cuts is related by unitarity to a single-

photon amplitude, 

= 
~.. v* 

CPk Va(k) Vb(k) . , 

and CVC is then applied to them [rhs of Eq.(2.17)]. In general, no 

simple relation exists between the entire two-current amplitude (covariant 

correlation tensor) and the matrix elements of the individual currents. 

I~' 

I, 

'I : 
: I 
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III. LOW ENERGY BEHAVIOR AND CROSSING 

For an amplitpde with a zero-mass particle (momentum qlJ.) 

there is a soft pole term or external line insertion (ELI) that contrib­

utes at qlJ. = O. For a photon, t~e residue of the ELI pole (at qlJ. = 0) 

is the charge, consequently conservation of charge is in a sense part 

of the low energy theorems for the photon. In addition, the kinematical 

singularities at threshold further specif'y the low energy behavior. For 

gravitons, the soft coupling is the inertial mass as demanded by the 

equivalence principle. We can demonstrate these points by considering 

the ZML in conjunction with crossing. 

A. Conservation of Charge 

Consider the four-particle process with the s,t, and u chanl1els 

defined by 

s VS~TU, t u VU~TS, 

where we dertote the particles in the initial state by the same letter 

as the channel. Let S, T, and U have masses mS'~' and ~ and 

charges eS' eT' and eU respectively. 

For a massive photon (my), we consider the helicity amplitudes 

in the t channel, 

H t 
1 

H t 
-1 

Hot 1 Hat 
-:I 

, 

where we have exhibited the kinematical singularities in terms of the 

Kibble function ¢ and the threshold and pseudothreshold factor 
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~ = [G - (m.r + ~)~ G - (m.r -~)' J~. We can now use the Jacob 

and Wick crossing matrix to express the s-channel helicity amplitude 

H s 
1 - s [(¢)2UJ Hl in terms of the t-channel amplitudes: 

1 

- s 1 
[Pv(s,t) 

- t 
+ -{2 my Ho t J Hl (s,t) 

~2 Hl , 

where 

2 2 .22 
(s + ~ - mS )(t + ~ - ~ ) 

2 2 .22 2 
2 ~ (rrv + ~ - m.r - mS ) 

The essential observation is that the direct~channel ELI pole 

2 (or 2 at s = mS t .rn.r ) cannot contribute to the helicity-one 

amplitude - s 
Hl (or Hlt) because of angular momentum conservation. 

On the other hand, we can use the crossing relation to calculate the 

crossed-channel pole terms from their contribution to thezero~helicity 

amplitudes. For example, the residue of the pole in at 2 
t = m.r 

is given in terms of the residue of the pole in Hot by use of Eq. 

(3.2). Therefore, we define the charge with the conventional factors 

through the zero-helicity amplitudes, 

. 2 2 l 
i ( 4m.x - Illy. ) 2 eX g , 

where X = S, T, and U, and g is the coupling at the STU vertex 

(g has units of mass). Then by use of the s-t (3.2), s-u, and t-u 

crossing relations, we determine the residue of the ELI poles in 

and and obtain the representations 

I 
~, I 

, I 
I 
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-t -{2 g e
S 

HI 2 .. 
.-12 g eU t 
-----,:"2~ + Bl (s, t) , 

s - ~ u - nu 

- S 
-{2 g e

U 
HI 2 , 

u - nu 

t s 2 
where Bl and Bl are analytic in a neighborhood of t = ~ , 

222 
s = ~, (u = ~ + rrv ) 

2 are of higher order in e 

f<;>r small ~ except for thresholds that 

With ~ ~O t -7 0 as ~ -7 0, (2.1), the 

crossing relation becomes diagonal in the ZML and we arrive at the 

nontrivial consistency condition for the representations (3.3) of 

and 

.... ,-;; 2 t . 2 s 
V 2 g ( e S + e T + eU) + (s - mS ) Bl (s, t) - (t - ~ ) Bl ( s ,t) = O. 

This not only implies conservation of charge 

the nonzero hadron vertex (g f 0), but also 

and B s = (s _ m 2) Blo 
1 S Consequently we have the representation 

1 
1 

H t 
1 

(¢)2 
2 

t - ~ [
1/2 is :S (¢)2B

l
(s,t) , 

.,.. 

s - m 
S (3·6) 

and the residue of the pole at 2 
t = ~ is Since the 

T pole enters into the amplitude with the stand~rd factorized residue, 

and crossing symmetry puts it on the same footing as the S pole 
, -, ~ ... -.., .... ,; .. ,.",. ~ .~~-.~~-------.------ .' ..... -~ .. 

""" 
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(e.g., consider the corresponding representation for which 

equals t Hl by crossing), one is forced to consider it a dynamical 

pole. 

In Ref. 1, we sketch the proof for hadrons of arbitrary spin 

(Js' J T, and J U). The main features are the same. There is one 

nonsense amplitude Ht . which does not have the pole at 
ASAu;lrJT 

t = 2 
~ 

because of angular momentum conservation for ny f 0, and in: the ZML 
. . 

a kinematical factor 1/~2 turns into a dynamical pole. In this proof, 

one has to use the crossing relation with much greater care, particularly. 

the threshold and pseudothreshold relation at 
2 

t = (~ : ny) . We note 

that, on the basis of Ref. 2, one can extend our proof of charge conser-

vation to any N-hadron process by induction. If any two hadrons with 

arbitrary spins in the N-body amplitude have a pole, by factorization, 

we reduce the problem to aI:J, (N - l)-body amplitude and a; general 
'. 

three-body vertex presented in Ref., I. 

Finally, note that a more careful use of the crossing constraint 

and the condition Hot ~ O(my) leads one to the approximate universality 

statement 

" .where is the pXX-coupling constant, and m is. a characteristic 

mass for the process involved. This may give some justification for 

an approximate rho universality. 
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B. Massless Particles of General Spin and Parity 

.With .spinless hadrons, the massless particle must have natural 

spin-parity ~ = (_)J) in order to have any ELI poles. For the gravi­

+ ton (2 ), one can essentially repeat the above discussion to show that 

the soft coupling fX is proportional to the mass ~ in the rest 

frame of particle X. The soft coupling fX is again defined through 

the zero-helici ty amplitudes, -

lim 2 (X - ~2) Ho
x 

= - 4 ~ fX g 

X~~ 

Using the crossing relation for a massive gravitonand the kinematical 

singularity-free amplitudes for t channel, 

H t 
A. 

, 

and similarly for s channel; we arrive at the representation 

1 

(6)2 fS g 

2 
mS(s - ~ ) 

1 

(6)2 fT g 

2 
~(t - ~ ) 

1 

(6)2 fU g 

~Cu _ ~2) 

+ 

If we now put mG = 0, the crossing relation reduces to 

2 2 - t 
(s - ~) H2 
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substituting Eq. (3.10) in Eq. (3.11), we find for the pole terms 

fT 2 2 
+ --- (s - ms )(t - ~ ) 
~ 

This equation is satisfied if 

Go ~., for arbitrary Go 

Since we have used center-of-mass helicity amplitudes, at q~ = 0 we 

are in the rest frame of particle X, and therefore this is the correct 

form of the equivalence princiPle. 8 Note that we have found the same 

sign for the coupling of the graviton to particles and antiparticles. 

If the zero-mass particle has a spin higher than 2, and natural 

J parity, the kinematic singularities are given by (S, T, U spinless) 

H t 
A. 

In the equation analogous to Eq. (3.12) there will be terms (2nd and 

·2 J-l 2 
4th) proportional to fS(S - ms) (t - ~) an~ 

fT(t - ~2)J-l(s - ms2 ) which cannot be matched. Therefore, the soft 

couplings of zero-mass particles with spin higher than 2 must vanish. 

If the zero-mass particle has unnatural parity, then its 

coupling to spinless part~cles is zero, due to conservation of angular 

~. 

'f' 
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momentum and parity. We studied these couplings to particles with spin 

with the techniques introduced in Ref. 1. One can prove, for example, 

that all the soft couplings of an axial vector zero-mass particle must 

vanish. We can extend this result to all unnatural parity particles 

except the - 14 o . 

C. Low Energy Theorems 

1. Photoproduction 

The representation (3.6) is the low energy theorem for photo-

production with spinless hadrons, analogous to the Kroll-Ruderman theorem 

for YN ~nN. Usually these theorems are expressed in terms of the 

momenta k(s) of the photon at fixed center-of-mass angle (9 ) 
s 

in 
1 1 

the s channel. Using (¢)2 = 2(s)2 k p(s) sin 9 and charge conser­
s 

vation, we can rewrite (3.6) as 

H s 
1 

p(s) sin 9 
s + 

At fixed angle, we have the correct amplitude to order k from the 

Born term. In pion photoproduction, the physical threshold is at 

2 
s = (Il}J + mn ) , 

• (mn/Il}J)-l and 

ot: order 

consequently the theorem is said to give orders 

(in the pion mass) relative to the background15 

In either case, the low energy theorem is 

dependent only on identifying the correct ELI term (Born approximation) 

and the correct kinematical singularities. 
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2. Compton Scattering 

Similar use of crossing relations-and the ZML yield the low 

energy theorems for Compton scattering, ± ± Y1l ~ yT( • Since we shall need 

these results in Sec. IV, -it is useful to present them here. 

The independent t-channel helicity amplitudes 

for the massive photon (mv) are 

, 

H 
t ¢ H

l
_
l 

t 
1-1 4mv 2) t(t -

BOO 
t 

= , 

1 
(¢f2 

2 
t - 4~ 

1 
2 t -~ 

where parity, 
"'1-"'2 t 

= (-) H -'" .... '" ' and st_atistics, 
1 2 

H 
00 

, 

t , 

H~ , ,give the dependent ones. To prove the low energy 
- 1'-2"'1 

theorem we also need the s-channel amplitudes 

L [+,1 -] ts F + J2 F , 

(3.16) 

where .J = [(s - (mT( + mv)~ (s - (mT( - ~)~ r~ and F± are kinemati­

cal singularity~free amplitudes with parities P = ± (_)J in leading 

order. There is a conspiracy relation at s = 0 of the form 

1 -
2 F . 
J 

,j 

! 
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Again we introduce the charge through the zero-helicity (sense) 

amplitude 

= lim 

u~m 
rr 

(u - m 2) H u 
2 rr 00 

2 -,(4m 
rr 

2 2 nv)e . 

(3. 18) 

With the use of the,Jacob and Wick crossing matrix,the residue of poles 

can be calculated in t s 
Hl +l and Hl .+l , and dropping terms of order 

- ,-
2 illy in the residues of the pion poles, we get the representations 

[ 2 
2 2e2 t 2 

Bll t] t 1 2e t mrr m 
H rr 

22 + 2 + , 
11 

t - 4nv s - mrr u - m 
rr 

\ 

H
l

_
l 

t ~[ 2.2 2e2 
B1 _1 tJ . + + 

t(t 
2 ' 2 2 -4nv ) s - mrr u - m 

rr 

(3. 19) 

_ 2. ~2(S 2 
1GS 1 S)] - m ) 

Hl;l 
s rr + :; B+ + .tIJ2 B_ , 

= 
t 2(u 2 

- m ) rr 

[

2 ~( 2) 
2e 'm s .- m. rr rr' 

t 2 
.J (u _ ~ 2) 

Note that only the u pole contributes to HS because of angular 
1;+1 

momentum conservation, and the factor 1~2 introduces a first-order 

pole at s = m rr 
2 in the ZML. 



-20- UCRL-19220 

illy ~O andap~ly the resultant crossing 

relations 

We take the limit 

t s 
Rll = Rl ·_l , 

t s 
Rl _l = Rl;l Since we have assumed charge , 

conservation, the pole terms satisfy these relations by themselves, 

leaving constraints on the background terms. These constraints are 

.-t 
solved with the new background terms Bll 

B s 
+ 

2 - t 
t Bll , 

1 - t - t 2 [Bll + s Bl _l J, 

= 

B s 

-.~ t 
and Bl _l ' where 

, 

- t - s B
l

_
1 

J. 

In addition to kinematical zeros, being ~orced into the background 

terms (B), there is the conspiracy relation B s = _ m 2 B s/2at 
+ :n:-

s = O. 

The resultant expression ~or the Compton amplitude has the full 

content o~ the low energy theorem: 

= 

= 

2 2 -2e m t 
:n: 

(s - m 2)(u _ m 2) 
:n: :n: 

- t 
+ t Bll , 

. £- t 
+ t B1 _1 

For example, it is usually stated that the Born term gives the zeroth 

and first-order contributions in the momentum o~ the photon k(s) ~or 

s 
Rl '_l , 
¢!t 

at ~ixed angle, which comes ~rom the factor 

- 2k2 s(l+ cos g). 
s 

, 

" ! 

., 
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IV. REGGE ASYMPTOTICS AND CROSSING, 

The Veneziano repres~ntat'ion16 fbr the hadron amplitude, 

i' 
w:n: ~ :n::n:, gave a simultaneous soiution to crossing and Regge asymptotics, 

provided the zero-width (1m a = 0) and linear-trajectory approxima­

tions0( t) = a + bt) are made. We demonstrate in this section that 

an equally simple solution to Regge asymptotics and crossing exists for 

photop. amplitudes. The problem is to understand how the low energy 

constraints (i.e., gauge invariance, Sec. III) are incorporated in this 

representation. To this end, we first consider the ZML for a Regge 

asymptotic expansion for massive photons (Sec. IV.A), and then include 

crossing symmetry (Secs. IV.B and IV.C) in a zero-width model. 

A. Nonsense Factors in the Regge Expansion 

Even for large energy (s ~ 00), the representation (3.6) poses 

the problem of an exchange of the particle T entering into the nonsense 

amplitude Let us consider the ZML for the standard Regge expansion 

for a massive photon (~) in the t channel (t: V T ~S u) helicity 
. 4 

amplitudes: 

H t 
o 

1 H t 

~l 

1 '-
k 

1 \' ~ Ylk( t) -i:rrCXk (S )~-l 
crtL (1 + e ) So ' 
t:d k sin:n: ~ 

(4.1) 

(4.2) 
sin :n: ~ 
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The nonsense factor ~(t) excludes all zero-spin poles for helicity 

amplitude Hl t as demanded by angular momentum conservation, and y's 

are free of kinematical singularities. 

If we take rrv ~ 0, the factor 1/-:/ reinstates the T pole, 

but it apparently occurs multiplicatively on all terms in the expansion. 

This would mean that the dynamical T pole could not be considered to 

be exclusive on the T trajectory. (For example, the pion exchange 

in + rP ~n n would not be a Regge exchange;) The solution to this 

problem is the correct use of the threshold and pseudo threshold rela-

tions at t 
± 

2 
= (~ ~ nv) . 

Using the crossing condition (3.2) on the expansion (4.1) and 

(4.2), one may derive the constraints 

= 
k -, 

- y (t )/(~12 m s ) o ~ ye n 0 

In addition, the residue for T has the normalization constraints 

from Eq. (3.3), 

If one expands Yl k and Yo k in a power series aboutt = ~ 2 

(4.4) 

\ 
and 

applies the condition (2.9), yok = o(lDy), one discovers that in the 

ZML the pole at t = 2 
~ occurs only in the T Regge term and is 

properly normalized. ' More precisely, a comparison of the coefficient 

of (my)j in (4.3) and (4.4) yields 
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Y
l 

T( t) 
aT(t) ylT(t) 2 eT g 2 

2 = - rr a' (~ ) 1/2 + o(t - ~ ) 
t - ~ 

T 2 s 
0 

(3.5 ) 

and 

-k ylk(t) 
k 1= T (3.6) Yl (t) = 2 ' 

, 
t - ~ 

where Yl are the new kinematic-singularity-free residue functions. 

Hence, we arrive at the new Regge expansion for the kinematical­

singularity-free amPlitUdeHl
t = Hlt/(¢)~ at nv = 0,· 

-irr Ak (s ).~-l 
(1 + e ) - , s o sin rr ~ 

where the nonsense factor for the ELI pole (T) is absent and the 

remaining nonsense factors are in agreement with the rule "no zero-to-

zero transitions." This expansion is in complete agreement with the 

"low energy" theorem (3.6) in the limit and s large. 

B. Duality and the Zero-Width Approximation 

The Veneziano representation requires a particular interpolation 

(referred to as duality) between the low energy region and the asymp-

totic region. If we reinspect the Regge expansion (4.7) for massless 

. ! 

.~ ... ' .. ' 
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particles, we can see that .the peculiar constraints of gauge invariance 

are themselves suggestive of this duality interpolation. At threshold, 

(lrT,)a-1 the factor .>.~ in the i".lll residue requires that the Regge 

expansion in terms of v = 2 kp Zt is given exactly by the leading 

terms of (k.p)a-Ip~(Zt)' For the zero-mass photons, the T exchange 

pole coincides with threshold 
2 .. 

(k = (t -.~ )/2), so that the exact 

s dependence of the residue of the pole is determined by the Regge· 

expansion. As t ~~2 we obtain the result 

I [-f2 g e$ 
2 2 

t-~ s-~ 

where we have used conservation of charge e --e T - S 

kinematical relation v = s -'~ 2 = -(u - mr/) for 

, 

- eU and the 

2 
t = ~ . 

(4.8) 

Consequently, we see that the full ·content of the low energy theorem 

is contained in the Regge expansion, by "summing up" the Regge expan-

sion to get a direct channel pole. Far from being in conflict with 

dualit~ Eq. (4.8) may be considered an extreme example of duality 

rv t 
for HI . 

There is apparently only one way to modify the Veneziano , 

parameterization to accommodate the double ELI pole term. (We pick 

a channel with 

= 

e - 0 U - for the present discussion.) 

B(l - a , - a ) T S 
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(4.10) 

The reader may check that this "guess" simultaneously satisfies all the 

major conditions: (i) It is even under as ~ aT' as demanded by 

crossing (ii) it has the correct low energy behavior, 

(iii) it has Regge asymptotic behavior as s -? 00 (or t -? 00) with the 

correct helicity flip factors, (iv) the residues of the poles at 

aT = J :.? 1 are polynomials of order J - 1 in as (no ancestors). 

To understand how these properties are obtained, we resort to 

the ZML once again. We take the residue of the J = 1 pole (mass 

q2 = ~2, see Fig. 1) in the five-particle beta function,17 

2 -l-a 
du du u -l-a(q )(1 _ u) 1 

1 2 1 , 1 

(4.11) 

and observe explicitly ,how to deduce the above parameterization by the 

ZML. This deductive approach to Eq" (3.9) not only guarantees the 

satisfaction of properties (i) - (iv), but also can be extended to 

photoproduction of N hadrons with the N +2-particle beta functions. 7 

It is convenient. to calculate HAt (for ~ f 0) from the 

five-particle beta function through the tensor Bst~ and the helicity 

(J = 1) projection formula H t 
A 

€ (A,q) B ~ 
~ st 

We discover that 
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From this we calculate H t 
1 

(see Table Ia), 

H t 
1 

1 B(l - ", -a) 
-{2 

(4.12) 

(4.13) 

We are permitted to take the ZML, if illy Hot ~O or equivalently12 

q~ Bst~/my ~O as my~O. This condition holds only if Sand T 

are the lowest members of the a(s) and ,,(t) trajectories (i.e., 

a = as' where a s (ms
2

) = 0, and ,,= aT' where aT(~2) = 0). 

Moreover, an off-mass-shell continuation is possible because 

or . q B t~ = O( q2) also holds. 
~. s .. We 

have chosen the "unphysical" q~-term so that 

(4.14) 

and we therefore can easily construct a conserved vector current 

amplitude V~. The following amplitude has the 'correct ELI poles at 

q~ == 0 for rs ~T U and an appropriate vector-meson pole atq2 = m 2 
p 

, (4.15) 

,;;> 

".,:" ! , 
I 
I 
I 

~.,. 1 
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where 

= 

and C - C tu us 

The amplitude in brackets, VI1/F(q2), may be thought of as an off-mass-

shell continuation of the vec40r meson amplitude, since s, t, and u 

are now constrained by 

s + t + u 
2 2 

+~. + q for any 2 
q (4.16) 

Notice that there is one arbitrary constant in (4.15) that corresponds 

to a term C(B ~ + B ~ +B ~) which, because of the condition 
st us tu 

2 as + aT + au = b q , does not affect the residue of the ELI poles. 

C. Compton Scattering and The Pomeranchon 

A similar discussion can be ma.de for Compton scattering 

(Yrr ~ Yrr), but with some significant differences, which we will point 

out. We consider the projection of two J = 1 poles (mass~) from 

.. 17 
the six-particle beta function. We must distinguish betw~en projec-

tions which yield adJacent photons (Fig. 2, st and ut terms) and 

nonadjacent photons (Fig. 2, su term). 

1. Nonadjacent Photons 

For the nonadjacent photons, again the photon-hadron channel 

can contairl the same hadron as the J = 0 particle on the sequence 

[Le., a(s) = a (s), ~(u) = a (u)] , rr J1 
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so it is not surprising that the projection results in a doubly conserved 

nonsingular tensor· (see Table Ib) 

B J..lV 
su 

From Table Ib one can deduce the helicity amplitudes and obtain 

:::: , 
(4.18) 

2:t 2e2b2 :s(_0: (s), -0: (u)) - 2e
2 

BQ. - 0: (s), 1 - o:)u)) 
J( J( . J( H 

In Ref. 3, we introduced the nonflip amplitudes 

-2t m 2 e~·2:S( -0: (s), -0: (u)) 
J( .. J( J( 

, (4.19) 

and demonstrated that this corresponded toanM :::: 1 pion with a parity 

partner that chooses nonsense at J:::: O. The solution found here with 

the ZML is an M:::: 0 pion18 which indicates some of the flexibility in 

the parameterization. 

.... i 
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Clearly the form factor may be multiplied onto 

B su 
I.lv to construct the off-mass-shell two-current amplitude 

~V(ql,q2)' just as in the single photon case. 

2. Adjacent Photons 

The projection of adjacent (massive) photon amplitudes from the 

six-point beta functions (st and ut terms in Fig. 2) in general 

does not lead to suitable amplitudes for the ZML. The difficulty 

arises because the two-photon trajectory does not correspond to the 

external masses and the resultant zero-helicity 

amplitudes diverge as illy ~O. The only exception is for a Pomeranchon 

in the t channel with intercept exactly at J = 1 at t = o. 

In this case for illy = 0, we can add to 

arbitrary terms proportional to 

t 
(-t/~)Hl_l 

, (4.20) 

which gives a Pomeranchon that couples at t = 0, and because of the 

condition a (t) - 1 + a (s) +a (u) = 0 does not affect the ELI 
p n n 

poles. Such a Pomeranchuk is needed to give constant total cross section 

for photoproduction. 

Even in this case the ZML does not lead to the necessary condition 

H 
00 

t 2 2 ' 
[but instead HOO = O(ql ) + 0(q2 )J for continuing 

this adjacent-photon amplitude off-mass-shell. In fact, one is forced 
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to introduce a fixed pole at J = 0 in the two-photon channel, in 

order to obtain an off-mass-shell continuation of (4.20), as discussed 

briefly in Sec. V. 
'" I 
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V. FIXED J SINGULARITIES IN THE TWO-CURRENT CHANNEL 

So far we have constructed pure Regge asymptotic amplitudes for 

physical (chargeless, massless) photons. It is a characteristic of 

these parameterizations, as well as all the Veneziano parameterizations 
J 

for hadron processes, that there are nonsense wrong-signature fixed 

poles19 due to the third term [e.g., B( -a(s), -a(u)) has fixed poles 

at a(t) = -1,~3,"']' We shall discuss such a fixed pole in 

for J = 1, not because it is peculiar to weak amplitude, but because 

it has been postulated as a mechanism for canceling the nonsense factor 

~(t) - 1 
20 

for the Pomeranchuk. 

In a unitary model for strong interaction, these nonsense wrong-

signature fixed poles must by "covered" by a moving Mandelstam cut. 

Otherwise fixed poles would be excluded by the quadratic nature of 

unitarity for strong amplitudes. In weak processes unitarity becomes 

linear and fixed poles cannot generally be excluded. Indeed there is 

a right-signature (J = 0) fixed pole associated with our Pomeranchuk 

solution off-mass-shell; and the right-signature (J = 1) fixed pole5 

associated with charged currents. These right-signature fixed poles in 

nonsense amplitudes (and Kronecker delta term in sense amplitudes) are 

easily identified by the resultant fixed-power behavior of the amplitude. 

Although other fixed-power behavior is consistent with linear unitarity, 

it is interesting that so far there is evidence for fixed J singu-

larities (at right signature point) only (a) in the two-current channel 

and (b) for either charged or massive currents (i.e., "unphysical 

photons"). 
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A. The Pomeranchon and Fixed Poles 

Abarbanel et al.
20 

introduced, into the double helicity flip 

amplitude of Compton scattering, a Pomeranchuk with a singular 

residue to cancel the nonsense factor. On the basis of an N/D model 

for linear unitarity in the t channel (IT ~ rtrt), they found that the 

reduced partial-wave amplitude b(+)(J,t), where 

= 

for positive signature, has the form: ' 

R(J,O) 
J - ~(t) 

for ~(O) = 1. The first term is a Regge pole with a singular residue 

derived from the Born (pion pole) contribution to the left-hand cut, 

and the second term is a "multiplicative" fixed pole derived from more 

distant left-hand singularities. If on.e rewrites the "multiplicative" 

fixed pole via' 

1 1 
J - 1 J - ~(t) 

1 1 
= ap(t) - 1 J - ~(t) 

1 1 
~(t) - 1 J - 1 

one can see that it is equivalent to a Regge singular pole minus a 

singular fixed pole, that does not contribute to the asymptotic behavior 

of the physical amplitude. 

Our Pomeranchon has precisely this structure in the J plane, 

as we see from the amplitude for Yrt± ~ Yrr±, 
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+ (1 + C ) B(.:.a (s), -a (u)"\ ] . o 11 11 ') 

The first two terms result in a Pomeranchon with a singular residue, 

which gives the asymptotic contribution 

, 

and the third term has no asymptotic contribution, but it contains a 

fixed pole19 in the J-plane at J = 1, 

oc 
1 + C o 
J - 1 

I-bt 
bt 2 

This correspondence is more than an analogy. If we assume that there 

is no fixed pole (C = -1), we arrive at the "predicted" cross section 
o 

1 

3 
, 

which is identical to the result of Abarbanel et al. In our case, the 

Pomeranchuk slope Cip(O) must be canonical (ap(O) 

and the value of this cross section is too large by a factor of 3. 

We see no reason in favor of this special value for C , especially 
o 

since these additive fixed poles are a common feature of the zero-width 

model with no direct correlation with the Pomeranchuk coupling. 
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In Ref. 7, we have generalized our Pomeranchuk to all amplitudes 

h d t t t · . 2 d 2 for N a rons and wo curren s a arbltrary ql an q2 The 

resultant model yields an amplitude ~. = (2 ~ 2 j¢) H
l

_
l 

t 

Pomeranchuk contribution with any intercept O:p(O) , 

for the 

An interesting feature of the right-signature (J ~ 0) fixed pole, 

is that it is absent for the physical Compton scattering 

only if O:p (0) = 1. The divergence. conditions 

~v q2v = 0( q22) yield 

2 
q2 • P ~ + ql • q2 ~ = 0(q2 ) , 

which require that ~. have a zero at t = ql 
2 2 to order + q2 

2 
q2 = 0), 

and 

q12q22 This is accomplished in (5 ·7) by the factor ql· q2 in the 

first term, symmetrization of the second term, and the zero at 

o:(s) +O:n(u) = -2bql· q2 = 

The factor lj(~(t) 

Oin the third term. 
I 

- 1) compensates for the t dependence of 

ql· q2 as t ~OO, and cancels the nonsense factor for fixed t and 
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s ~oo. Then the fixed pole at· J = 0 is introduced to cancel the 

singularity at ap(t) - 1 o in lower orders Df s. 

We cannot he sure if the fixed pole will be necessary in more 

general construction with additional lower-order terms. However, if 

this J = 0 singularity persists, one cannot introduce form factors 

2 2 
F(ql ) F(q2) multiplicatively on this amplitude because fixed poles 

at right-signature point must be avoided for hadronic amplitude. In 

this case, the Pomeranchuk contribution (-C ) 
o 

cannot be established by 

a vector-dominance model, since it has no counterpart in hadronic or 

single-current processes. Also, the lack of strong damping as 2 q ~ 00 

may be in agreement with the recent observation of the diffractive 

phenomenon in inelastic electron scattering. 

1m ~ 

B. Current-Algebra Fixed Poles 

The current-algebra sum rule of Fubini- Dashen-Gell-Mann for 

in the I = 1 t. (charged photon) channel requires that ~ have 

a fixed right-signature fixed pole, 

F(t) 
2s ' 

as s ~ 00 

Independently of current algebra, it has been demonstrated by Bronzan 

et a1. 5 that for conserved vector currents one has 

F(t) 
CXTs) 

11 

F(t) 
ex (u) 

11 
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at t 
2 

(and q2 = 0., t), and therefore fixed-

power behavior must exist. 

In Ref. 3, we propose the parameterization 

+ F(t)/a(s) 
J( 

(s ~u) , 

which satisfies cve (5.9), the sum rule (5.8),and for a single~pole 

form factor, 2 2 F(t) = mp /(mp - t), has good analytic properties~ The 

double projection of the six-point beta function leads to 

for which is only a slight 

help in our construction. But in the generalization7of (5.10) to all 

two-current amplitudes ~v for N spinless hadrons the 

projection of the amplitude B IlV 
H 

for VV ~ N hadrons from· the 

point beta function is an indispensable guide. 

allows one tocons~ruct the hadronic part of 

(N + 4)-

with the correct vector meson poles in 2 
ql ' the correct ELI poles at 

q;1l ~O, and the proper Regge powers. 
~ 

Then we add on by hand terms to 

satisfy CVC and to introduce the fixed-power behavior of current algebra. 

The resultant parameterization7 factorizes 6n all poles except those 

on the nonleading trajectories in the channels overlapping the two-
\ 

current channel. 

Inspired by the integral representations for the N-point beta 

17 6 function, several authors have proposed integral representations 
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(particularly for Ml ) that give them an infinite number of vector­

meson poles and fixed poles in the t channel. It is the opinion of 

this author that such an ambitious "guess" is premature, if one hopes 

to simultaneously get conserved currents, factorization, and re,pidly 

falling form factors. 

In our approach, arbitrary numbers of vector mesons from lower 

trajectories can be introduced, as follows: 

+ \' f· [F (t) - F (q12)F (q22)][B(m + 1 - q (t), -a (s)) Lm m m m P T( 

where 

F = \"' f F F (t) L. m m' m 

m - ex (0) 
p 

m - ex (t) 
P 

(5. 11) 

This factorizes on the leading trajectory in the s channel and still has 

an infinite number of undetermined constants f m· Consequently, 

tremendous freedom exists in these parameterizations until factorization 

(unitarity in the zero-width approximation) is applied to lower 

trajectories. 
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C . Concluding Remarks' 

. Two distinct approaches can now be -followed. One is the local 

adaptation of these parameterizations to the phenomenological analysis 

of a given reaction. Some work7. is under way on the general features 

of these parameterizations forYn ~ Yn and YK ~ YK, but a detailed 

and quantitative comparison of various parameterizations and .experiment 

for YN ~ YN (virtual Compton scattering and total electroproduction) 

would be vastly more tnstructive in determining the weaknesses and 

strengths of the present zero-width models. 

The global or dynamical approach attempts to determine a large 

class of amplitudes through the imposition of factorization. 2l In 

Ref. 7, we have initiated the search 'for vector-current amplitudes 

consistent with a particularly simple factorized zero-width model of 

the hadron bootstrap. In the global approach, one first constructs 

single-current amplitudes for N hadrons that are conserved and whose 

2 2 poles at ql =m are physical hadronic amplitudes (Pn ~N hadrons). 
Pn 

Then one tries to construct two-current (covariant.correlation) tensors 

that factor into a product of single-current amplitude on poles that-

overlap one current as well as yielding the current correspondence to 

2 the above single-current amplitudes for one q. 
L. 

It is the 

existence of both linear and quadratic (unitarity) relations between 

the two-current amplitudes and the one-current amplitudes that makes 

this problem so highly constrained. The exciting question of whether 

currents can be constructed consistent with the hadr"on bootstrap and 

whether these currents will obey a particular current algebra may not be 

so forbidding within the approximation of a zero-width model. 
'-
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APPENDIX 

Zero-Mass Limit of the Wigner Rotation 

In this appendix, we demonstrate that the Wigner rotation 

Rw(A,q) for a particle of mass 
.. 2 2 

~ (q = ~ ; actually Rw is only 

a function of A becomes a purez rot.ation R (8) z to first 

order in the mass ~,and this angle 

of the corresponding transformation 

e(A,q) is the z rotation part 
rv 

~ (A,q) (defined in Sec. I.A) 

in the little group E(2) for a massless particle. Hence, for an 

arbitrary fixed Lorentz transformation A and fixed three-vector ~, 

we must show that 

as ~ ~ O. 

The general Lorentz transformation may be parameterized 

A 

with the rotations 

and the z boost 

. B (1)) 
z 

e 

-i1)K 
z 

e 

, 

It follows from the definition of the Wigner rotation, 

-1 LAq A Lq , 

(A.l) 

(A.2) 

(A.3) 
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that it can be written as a product of Wigner rotation, 

(A.4) 

Primarily by observing the convention that in 

Lp = Rp(¢p,9p ' - ¢p) Bz(~) 

the azimuthal angle ~p for 

the first z rotation is the negative of 

p, the reader may easily verify that the 
'" 

Wigner" rotation of a rotation is a pure z rotation. Also, "if the 

z axis is chosen to be along q the vector Rlq is in the xz 
--' 

plane, and therefore is a pure y rotation R (9). 
y 

Hence, 

the product in Eq. (A. 4) puts the Wigner rotation in the standard' 

form 

-i¢J z 
e e 

.... i9J -iljrJ 
y e z 

Without explicitly calculating ¢ and ~ from ~(R2,BzRlq) 

and ~(Rl,q) respectively, one can demonstrate that ¢ and ~ are 

independent of the mass ~. [In fact, if 

R(a,s,y) Rp(¢p,9p ' - ¢p) = R(a' ,S' ,y'), then ~(R,p) = Rz(a' + y' ).J 

However, the mass dependence of 9 is not so trivial. By representing 

the transformation by matrices. in 0(3,1) acting on vectors 

IJ. IJ. I I 2 2.1. P = (px,Py,Pz'Pt) [and therefore q = (0,0, q , (~ + ~ )2J , 

and by performing the stra"igh~forward, but tedious, calculation of 

" IJ. 
~(Bz,Rlq) v for v = 1, IJ. = 2, one can verify that 

sin 9 = 
~ sinh 1) sin S 

hi (A.6) 
'" 
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This demonstrates that for ~ ~O the Wigner rotation becomes a 

pure z rotation through some angle¢ +~. 

We are not interested in the exact functional dependence of 

this angle ¢ + ~ on A and q, but we wish to show that it is the 
'" 

z rotation 8(1I.,~)in 1? (II.,~) '= -t II.q -1 A ;fq. In the O( ~,!) 
representation (with rows and columns in the order 1230 or xyzt), we 

use the parameterization of "If in terms of 8, JS.' X2 (see 

Weinberg, Ref. 8, Eq. (A.4)) 

cos 8 sin 8 0 0 1 0 X Xl 1 

- sin 8 cos 8 0 0 0 1 X2 X2 
~ 

Il = 
1~ 1 x2 v 0 0 1 0 Xl X2 1 - 2. 2 

0 0 0 1 Xl Xl _1 ~ 
2 1 + 1 X2 

2 

(A·7) 

where 

X2 X 2 2 
- 1 + X2 

To demonstrate that 8 = ¢ + \If, we factor from L (and L' ) the q II.q 

boost Bz(Tlo ) which takes one from the rest frame 

qll = 

with 

2 1.. 
[0,0,1,(1 + ~ )2J, qll = (0,0,0,~) to the standard frame with 

so that Lq Bz-1 (Tlo ) is the finite boost if. q in the limit ~ ~O. 

Hence, 

, 
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-t. -1 A 't, 
Aq q 

In the (!,~) representation, 

B -l(~ ) e y B (~) v 
{ 

-i9J J iJ. 
Z 0 Z 0 

lim· . B -l(~ ) e y 
{ 

-i9J 

~~O Z 0 

where 

it is easy to "explicitly calculate 

and take the limit. The result is 

1 0 -X 

010 

X 0 1_!.X2 
2 

X 0 - ~ .•. ~ 

X 

X = - lim sih 9/~ 
IrJ3~O 

(A.8) 

Notice that without a demonstration of sin 9 ~ ~, one could not be 

sure that the limit existed. Finally, conjugating Eq. (A.9) with 

B (W)iJ. , one arrive at an expression for ~ iJ. which is identical to 
Z v v 

(A·7) with the association Xl = X cos W, X2 = X sin W, and 

e = ¢ +W. 

, 



* 
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3· 
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d ill 
n 
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2 
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Table la. Connection between invariant amplitudes in the tensor 

. TI-! = PTI-! Tl + PSI-! T2 and helici ty amplitudes 

r(ql,l-!) + T(PT) ~S(PS) + U(PU) . 

H t 
o 

H t 
-A. 

= 
, 1 

4Iny:J 

2 2 [res - u)(t + Iny - ~ ) 

by parity 

H t 
A. 

for the process 
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Table rb. Connection between invariant amplitudes in the tensor 

rJlV = glJ.v MO + plJ.pv
Ml + q21J.PIJ.~ + PIJ.qlVM3 + q2IJ.QlVM4 and helicity 

t 
amplitudes. H . in the process y(ql'lJ.) + y(q2'v) ~ rr(Pl) + rr(P2)' 

f....lA.2 

where P = (PI - P2)/2. 

2( 2 2 2 2) - (s - u) t - (Illy - Illy ) Ml 
1 2 

012 2 2 
+ 2 't:l (s - u) (t + Illy - illy JM2 

·12 

01 2 2 2 014 
- 2 d (s - u)( t + Illy - Illy )~ + 4 t:J M4 ] 

12 
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Table Ib (Continued). 

"', 

Ht 
f... -f... 

= (_) 1 2 Ht by parity. 
-f...1 ,-f...2 . . f...lf...2 

Ht (s,u,t) 
It t 

= (-) H f... (u,s,t) or 
f...lf...2 f...2 1 

by Bose statistics 

I for the photons. 
#V(Ql,q2) = (_) t MVI-l(Q2,Ql) 

.". 
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i ' 
FIGURE CAPTIONS 

Fig. 1. Variables for the five-point beta fUnction B5 used in 

projecting out the term Bst~ 

Fig. 2. Adjacent photons in the st and ut terms and nonadjacent 

photons in the su term. 

\ 
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a, (T 
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Fig. 1 
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Fig. 2 
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