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•Convenient rules are given for the general term in the time-

,·+. 

.· inde:pEmdent :perturbation-theory expansion for the self-energy operator· . 

·of quantum statistical mechanics.· The rules are derived by 'starting . 

from the usual formali~m involving· time-dependent Green.' s functions. · · 
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I. INTRODUCTION 
··•·--c········---·----·-~'---·--·- ··-··· ··---· ........ ······· ·1····· ·--··- ' ...... __ .. . . . . ---··-···· 

Peierls, in ~933, de·veioped---a-.. pertuxbation. .. theory .. .for_quantum-·- ... -·--··-

. ;. 

··, 

statistical mechanics. -However, the general. term in this theory 

was hard to characterize; furthermore, spurious terms, which are 

· now known to cancel out, seemed to appear in the expression for 

the total number of particles. In 1958, Montroll and Ward2 gave a 

perturbation theory in which the spurious terms were absent and 

the general term.was described, but their formalism, involving an 

unnecessary expansion in powers of the fugacity, was exceedingly 

complicated. In recent years any number of formalisms have been 

proposed~ 3 These are all essentially equivalent, varying only in 

details. The procedure of Glassgold, Heckrotte, and Watson 

· involves a cont:our integration, that of Bloch and de Dominicis 

multiple temperature integrations, that of Luttinger and Ward 
. 4 . . 

infinite sums •. Thouless, . however, has given aver~ convenient 

.. expression for the logarithm of the partition function. 

To propose still another fo~malism would appear to be both 

' inconsiderate and imprudent. Our motivation is that the rules we 
-···- ··-- ····- ·--

. . describe. here are" c'onsid.erabiy"simpler than any other presc'riptior.l -· .... 

· previously proposed. The rules are closely related to those given 
. . 4 
by Thouless, but we shall work with the self-energy operator in 

terms of which one ~can find not only the partition function but . 
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.. . . . ,· 

.. · .. "', ·also the single-particle excitations. Furthermore; ·it should be observed 

''·· ··'· 
·.·. 

·.that the derivation of the rules is not restricted to the single\ :: .. _ / ..... :: . 
. . '·'I . ; •'.,· .:.· 

·'particle self-en~rgy operator but, rather, is quite general. Thus, 

•· '• ,.(I 

.. ·:-;,;·· .... : .... · for example, one can easily use the method described here to obtain 
~ .. , • .. · .... 

· explicit time-independent rules for the space-time correlation function 

'·' ,) '• . 
. •: . . :...: 

... ';:· ;\· .• ·, .i'' 

·; '.' 

-~ ..... 
'.·· ;' .. 

. •' . '~. ·: 

_:;_ .· 

. -:··'·. , ... ; 

• I'< 

.;· ;, 
' -~ . ' .of any. two physical observables. 

The rules for calculating are given in Section II. These 

rules were first obtainedintuitivel~ by the following reasoning: In 

quantum statistical mechanics one computes the equilibrium :properties 
,. ,• 

... '• of a given syst~m by constructing an ensemble of similar systems, 
.. ·. 

· .... · ·.then computing quantum mechanically the :properties of each system 
.... :.·_.:': 

.. , , :in the ensemble and finally averaging over the ensemble. We know 

I .... ! .. :·:.,:' ·:.·: .·\.:.·~:·.is stro~gly peaked in the neighborhood of the most :probable system in 

. , . :·.·.; 

1 _ '.·. :" :·.~··,•:', . 1• the ensemble. This suggests intercl?.a.nging the order of (i) the 

! . .':·.,·.· .. >;:·.·:·.·:::::~.·.averaging :procedure and 

I 
I. 

(ii) the quantum-mechanical calculation of 

. : ~ .. ~. ·:. ~ . r· : : , < ·: .... '.,. 
:' 'the properties of one system~ • Thus one is led to consider the quantum 

'·' 

~- ' .. 
mechanics of a system in a s~te that is the most probable in the 

'1, :'.••' I . . ~ : 

. ~ '.; ,\. ;~ . : ' -: ' · . . ensemble, and consequently one expects that the usual rules for ground-
.. : ,! 

' •, . . •. · ~·· :· ., :. I'' 

·. :.·· 

... •., . -~ .. 
:. I 

·. • I 

state :perturbation theory6~ be m~ified only by replacing the step 

functions associated with particle and hole lines with single-particle 

r ',•· , ..• ·, .statistical-distribution .factors of the most probable state. ·In Sec. 
-' ·ir 
.-.''r :. 

'.,. 

III we derive t~ result, starting from the time-dependent formalism 

for :perturbation theory.7 

Dzyaloshinskii has recently :published a set of rules equivalent 

· · to those. of Sec •. II, but withqut an explicit. derivation of'the general 
. 8 . ··.1 . 

. term. · .. ·· .' · 
> f; 

· ..... 

. •, :·. .. , 
. ~ .' 

... '· ·.· 
..... •.,. . , ..... • 

;', · ... : 

'' 

· .... : .· •.' . . ~-- .. ' 
... ·' . ~ ' I . . . 

•, .• ,,:. f..· 
• ·.::···· • .!' 

'·. 
'·... 1 •', ,· .. ·, 

,. 
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1, • 

Formalism 

, .. : ..... : __ . _____ . ·._) -~---· ....... ---~--~~--~~~~~~~~ic -~~..!'-~.:~~=~--~fa_ syst~~an--~~ -~~de~~:~~----------------------· 

. . 

~ • ; • • > 

' from the grand potential n .defined by 

. · .. ·.· ..,. 
Sl = - ~ ~og Tr [.-~] I (II-1) 

'··. ;,:_ 

' . where · }{ = H - J..LN with · H and N 'tihe. Hamiltonian and number 
•, . 

operators. The 'pressure P 1 · the nlln:lber of particles N 1 and the 
'r' I'' ' . . . ;; .. {; ' 

\· 

,· ;' .. 
. ; ... entropy S are given by 

.·.,.,. . / 

... . '·. ' · ... ; : 

(~) . 

·~ .· ; . . . . . ' : 

. ' 
' . 

":. .... ~ ' .. · . 
. ; 

... 
.. ~ .. 

: .. :· 

· .. •. 

;.' 

p = 

N = 

. ' -~- .' 

and 

'dV •. 131 ~ 

(~) 
'· 

-. 131 v 

. . , 

I 1. ., ., 

-.,· 
s = 1$2 

(II-2) 

. .... ' 
• ; '~.' > 

.., 

,; 

. ' 

. ,: definition (II-1)1 by an integration over tem~rature:. of Sf (131 ~) 1 

.:~~_.the ensemble,.avei'Me. ·of Ji: 
I ;, 

,' 0 .f ', > R' 

''. 
•,.·' 

: -~ .: ..... . 

· An alternative and more common method is to find .n in terms of an 

. ' 
-~- ... 

._,. 

.. .. : . 

'·, 

. '· 

'. 

~ntegration of the potential ener~Y' over-thecoupling constant. 

·, ' . 

The quantity 

. .. \ .····.··' 

':··,· 
,'· 

..· ... 

. -; . ..; . "":._ 

·. ' 

1' 

I,: ,.·· 

(II-4) 

'· 
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··. · .. 
where 

.· i 

f(w) · = (II-5) 

·· (The . .::!: refers to bosons and fermions, respectively.) The spectral 

. ' '.• .. . . ~' . function A(p,w). is .a function of t> and j.l. 1 , and is given in terms 

. ': 
. ~ . 

t. 

.. ' . ' ... ~of the Fourier transform of the single-particle Green·' s function 

· ·· ·... G(p, w) · by 

A(p,w) = 1 2 Im G (~, w + i€) ' (II-6) 
:. . ·. . .. ~ 

'1·. , 
•.' 

·, ~·.. . ' 
,;, ',l .· .•• ·· ; •• 

• .... . ·· · where . w is real. The Green's function G , as a function of a comple:J:C 
,..:· ... 

. . '. ' 

·•· · ·, :variable z 1 is related to the free-particle Green's function G0 and· 
., : 

.. ' . ~·. ~ 

. . · · the self -energy opera tor l:(p, z) via the Dyson equation: 
: ·: 

.. • • •• < ~ ' ·"' 

. ' ' ' · .. >~· 
·,. 

• .. 

·.·,.: 
..... · 

. . 

· G(p1 z) I (II-7) 
·--~- -- ---·---·-~·-···-·-" .... 

where. 

(II-8 )_ 

All of the above is well known and can be found derived, for 

example, in reference 7• 

. The calculatiOI1 of thermodynamic properties is .thus reduced to a calcu

lation· of .the 'self~energy operator i·E(p, z) .•. The .rules for calculating E in 
_; .. "" :"i'_,. 

. ,:.• · ..... 
.. ·· 

' . 
· ... ' 

. ' 
. ~ .. ; 

.. : . ·,,. 

.. .'.' :.: 
:' ·.' ··~ 

·.· :,i 
··., .·.; . ' • i, 
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:perturbation theory follow. To findthe !!_th-order contribution to l:(p,z): -
1. Construct a graph by drawing n horizontal dashed lines at 

.different levels representing the :potential and by joining their 2n ends 

with so~id lines representing partic~es or·holes, and'having arrows to indicate 

·.direction, in· such a way that .one directed line enters and one leaves each end 
) 

·Of a dashed line (e.g., Fig. 1). Have .one solid.line leave the graph going·u:p 

· .. and one solid line enter the graph from .the downward direction (the "external 

·lines")·-- all other solid lines must connect ends of dashed lines. In 

· particular, . ft is acceptable ~o connect an end . of a .dashed line to itself 

(e.g., Fig •. 2a), or ·.One ert9- of .a dashed line to ·its opposite end (e.g., Fig. 2b) • 

. Draw. only graphs in which there are no unl.inked :Parts and only graphs that 

cannot be disconnected .into two :pieces by cutting one solid line, but draw ai~ 

. · ·.graphs consistent with these rules. · In . nth order, each .topographically - . . 

.·distinct diagram for z will yield n! different diagrams corresponding to 

the·· n! possible orderings· of the vertices from. top to bottom. Assign a 

distinct momentum, to each solid line and momentum p to the external 

·lines. 

line of ':~nt: c;:~u:::::::::t:::ac:: th[~:~(c:;~::~j, ~::~·:::h 
. p 2 

.. each line of momentum. pj . directed dovmward a factor ·± f( ·~ - J..l.). Do not 
"' · · 2m 

I 

assign such factors to the external lines. A line joining a dashed line to 

.itself ·is considered as directed .downward. With.each.dashed line, ·associate a 

factor V(_£i' £J' .£k' .£.t) 1 where . .£i and _.£j . are the . momenta. of the directed' 

lines leaving the vertex on the left and right, respectively, and ~ and ,£l 

are the momenta of the directed.lines entering the vertex on the left and 

·right, respectively. The factor V(~1, ~j' ~k' ~l) is just the matrix element 

. of the two-pody potential. Each of' the (n ·.• 1) intervals ·between vertices 

''· . 
.'. 

•',· 



.... 
. I 

contributes a.factor that is the inverse of the sum of 

(a) . pi
2

/2m for ·each downward-going 'lirie of momentum pi crossing the 
..... 

. interval, 

(b) . ~Pj 2/2m tor ·each ·u;pwe.rd•goi:ns.·J.ine ·of momentum !:j crossing the 

interval, 

. · (c) z . if ·both. external lines do not . eros s the interval, 
···---------

... -_ .. (d) ·,--... z'··-'1.f-1:foth ___ external'-1iries :cross the interval,-6-r------------- ----·------

(e) 0 if only_one crosses. 

-Multiply_ all the above factors together along with an additional 

(-l) t + l ' 
, where t is the number of closed loops formed by solid lines 

representing fermions. Finally integrate over all p. with a factor·(2~)-3 
. _:~. , . 

. I 
>! 

for each three-dimensional momentum integration. 

The potentiai V(~i' ~j' !X' ~t) is simply_ expressed in terms of the 

Fourier ·transform of a local two-body spin-independent-potential v(r) by 

(ll-9) . 

where 

v(p) = Je -ip•r v(r) d£ · • (ll-1 0) 

.For particles with spin,. one must .include the- spin dependence of V 

.and also sum over spins of internal lines-- exactly_as one does in ground-

state perturbation theory. 

2. · . Example · 

·As an illustration of the ·rules, .we evaluate the contribution for· 

fermions of the two third-order· diagrams -of Fig. 1: 

,.: '· :' 
'/ 

• .. 
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z(a)(~ z) = J {[1-f 1] [1-f3]f5[1-f2 ][ 1-f 4] ( -1)3 db. d.!J<d.!:3d.!:4d.!:5 v(b. ~.!: )v(.!J< "b. )v(.!:-.!J<) 

x . (2") 90 (~ + ~ ~:£'1'5) • 0 (.!J< +!4"!'l"E3 l • 0 <? !5 :!'2 "!4)} /<z -01" "3 +<5 l ("'" 02-V "5 l (2")
15 

and (II-11) 

>:(b) (£> z ) . = J { [ 1-f 1] [ 1 ~f 31 f 5 f2 f 4 ( -1 )5 d~d.!J< d.!:3 d.!:4 d.!:5 v(~ ".!: )v (.!J< -~) v(.!:-.!J< ) 

X ( 2" )
9
'>(.£1+£3 "£"£5) ·0(£2+E4 ",h"£3) ·~(£'".!!5"£2 "£4l};<·-·1-•3+<5) ( 02+ 04 -·1-·3) (2" )l5 ' 

where 
. ( 2 ) . . . 1\ 

f .. represents f -2 - '1-L 
·~ m 

3. Generalization: . . . · 

We can sum a large class of diagrams, namely those corresponding to the 

. replacement.of G0 by G in all internal lines, by rules that are essentially 

·the same.as those givel_l in Sec. II.l: 

(a) · Construc.t .only. irreducible graphs. 

(b) Calculate the contribution of an upward directed line p. by 
-~ 

assigning the factor A(~1,roi). [1 ± f(roi)) .and .for a downward directed li~e 

the factor ±A(~i1 ro1 ) f(roi). For the energy denominator the upward lines 

contribute - (roi + 1-L) and the dOW!l~!:~-~~n~-~-~j_~i-+ -.. ~~.·-----~_?~-~~~.a~·--~~.: ..... 
: Sec. II.l, and finally also integrate over all roi as well as ~i. 

These rules are greatly.more complicated, since A must be obtained 

self-consistently,.but one diagram now includes an infinite class of the old 

diagrams. 

,·: 
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III. ffiOOF OF RULES 

· The starting point from which we shall demonstrate the rules given in 

Sec. II.l is the time-dependent form of the perturbation expansion for ~ • 

. This expansion is described in detail in the appendix to reference 7. Briefly, 

to calculate any order of perturbation theory in the time-dependent formalism, 

one writes down all topologically distinct connected diagrams of that order and 

evaluates ·the .. di~g~~;~--b;··~iti~--~·· G
0 

for ea~~-~~~~;-:~~-~~~-----~~r .ea~~ -···· 
vertex as in time-dependent ground~state perturbation theory. The time 

integrations must be between t = 0 and t = -i~ in order to include 

·correctly the periodicity boundary condition obeyed by the thermodynamic 

Green's functions. In lis~ing all the distinct diagrams no attention is paid 

· to different time orderin~ The momentum parts and the numerical factors are 

the same as .in ground-state theory. One first calculates the Fourier coeffi-

1 cient of .L: 

= 
[~ 

0 

i;crr:' • ( t - t I ) 

dt e -~~ .L:(t, t') 

where v is an even integer for bosons, and an odd integer for fermions. 

Then the Fourier coefficient is continued from the zv to all complex z • 

Each ~th-order diagram in this perturbation theory corresponds to n! 

of th,e "ordered" diagrams one writes down according to the rules of Sec. II·l • 

In order to demonstrate the equivalence of those rules to the time-dependent 

perturbation theory, we must show how the,contrib,;.tion of an !!_th-order diagram 

evaluated by the time-dependent theory splits into n! .distinct contributions, 

each equal_to the contribution from one ordered· diagram evaluated by the rules 

of Sec. II·l. 

Consider a diagram of nth order in v·. The n vertices are labeled 

with n different .times; to.evaluate· the diagram, one of these times is set 
·/ 



... 
e~ual to zero, and the remaining n - 1 times are integrated from t = 0 to 

t ~ -i~. Tnese n - 1 time integrations can be split into (n - 1)! different 

integrations corresponding to different order.s of the n - 1 times along the 

line from 0 to -it). There are only (n - 1)! terms rather than n!. terms, 

since one time has been arbitrarily chosen to be zero. We shall shOiv that each 

of the (n - 1)! terms e~uals the contribution, evaluated by the rules of Sec. 

II .• l, of n "ordered" diagrams that differ only by a cyclic permutation of the 

vertices. 

Since in the (n - 1)! terms in the time-dependent perturbation theory 

the integration times are ordered, one can always replace the G0 (~, t~ tj) 

that occur. __ i..?: .. :t:;!;?.~ ___ ;i,:qteg.ral __ by ______ .. ---. --------- ---- -·~ ··- -····~ 
.......... 

1 -ip
2 

( t. -t . ) /2m 
GO,>(£, ti, tj) - -i e J.. J (III-+) 

· if ti > t j' or by 

= + -·- ' 
(III-2) 

if t. < t. • Thus to each a0, >: , ·or forward-going line, there corresponds 
J.. . . J 

a factor 1 ~ f; and to each bac~rd-gping line, or G0 < , a factor -:!:- f . 
} 

There is an over-all factor of (-1)2n-l. At each,vertex (t£)' one will have 
icrtt£ 

a factor _ e , where 

(III-3) 

where ~ · and n are the momenta of the lines leaving the vertex,. and p 
~ ~D . ~ 

and pd are the momenta of the lines entering the vertex. 
~ . . . 

For the external 

2t . lines, the factor p 1 ~m: > ··is replaced by zv One must therefore calculate 

·the integral 

/ 
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. The res'UJ.ts of the t2 integral can be written as 

t3 it20'2 . ~ i t3/1.2.0'2 

. J" dt2 L J.{ -lL e e ·- 1 
0'2 

0 /1.2=0, 1 

and it is clear that. one can write 1 as 

n 

1 = 1T 
·i=2 

where· 

:. \ ... ~.L. 

(lll-5) 

{III-6} 

_a +A.. · ra +A... (a +A... ·a-·---+c _ _.__!!J] • {III-7} 
k -----1t-l- -~ k-1:--·--·-·x-?-· -k-2 . · 1c~3 k-3 · -··--·-·--- -· ... 

The sum now contains 2n-l distinct terms, and we must rearrange it into n 

different groups of terms ~o that all terms in each group have a common value 

of :xp(~rn). This is done by rewriting the sum as 

I-··t·[! 
K=l 

' 



where the k = 1 . term. corresponds to taking all /1.. = 1. 
l. 

I = 

Call the summation in the braces . Sk. Then 

and in general 

(III-1 0) 

This latter result follows from a. simple induction argument. Assuming the 

result to be true for any. arbitrary set. of · r i for i=2, 3, · • •, k-1, we can 

write 

~ ·[k-1 ' c-;) 1r . I 
2 ', 

. i=3 /1.. =0, 1 
.l. 

{ili-12.) 

-·.·---·-d------------. ·-·--·---.---------·-· --··-·-··· _ .. __ ,,,. 
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:But the term in brackets is such a sum of "order 'L-k-L -.inyol ving 
' ··-······-~~·--~----~·--··-·:-··-···········-----·-····---- -·- .. -------........ ___________ ..... . 

cr
3 

= cr
3 

+ J...2.cr2 , and hence, by the inductive hypothesis we have 

1 (III-13) 

. Computation of the /1.
2 

summation then produces the general formula (III-11) 

for sk • 

The integral I has thus been reduced to 

n .n-1 
J.., 

I= [ 

k=l 

These n terms correspond to just n cy~lic permutations of a given diagram • 

. Let k = n • Then the summand is 

(III-14) 

.n-1 
l 

- Cj ( Cj + Cj 1) ••• ( Cj + ••• + Cj ) ( Cj + Cj 1+ •• ·+ 0"2 ) (III-15) 
n · n n- · n 3 n n-

When z . is replaced by z, the denominators clearly are the energy denominators v 

one writes down by foll·owing the rules in Sec. II for the original diagram. 

The k = n-1 term · 

differs from the k = n term by a factor 

-0· e..nd each factor has been reduced by cr n n Note that 

e . . t + 
lS JUS - 1. Thus the · k = n - 1 term corresponds to the 

time-ordered diagram formed_ by moving the latest vertex n 

(III-16) 

cr has 
n 

-••••••••·•--------·-·-. -------··----·---- -••• --.w '•-•••~·•·• '''''••• 



; 

·! 

to the earliest time (a cyclic permutation). All energy denominators 

ivill clearly be reduced by -(f ' n 
and the last denominat'or (cr ) \·Till 

change sign when it becomes the first denominator; the e 
~a n 

n 
i-T ill 

change the particles into holes and vice versa at the nth vertex, 

since e~ro f(ro) = 1 .!_. f(ro) • Thus .. I . corresponds to the sum of 

all diagrams of nth order that are just cyclic permutations of a 

single diagram of £th order. Thus we have exhibited the correspondence 

between the time-dependent perturbation diagrams and the ordered 

diagrams as well as d~rived the rules of Sec. II.l. We leave it to 

the reader to check that. the detailed numerical factors are equivalent 

as well as to generalize the derivation to cover the situation of 

Sec. II-3. ---- ··---·-----·-··--- ---...- --~ ·-

'• 
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Fig. 1. Tvo third-order diagrams ivhich contribute to the self-E:ncrw 

operator. 

Fie;. 2. The 1m-rest order diagrams "rhich contribute to the self-energy 

operator. 
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