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'Convenient rules are given for the general term in the time-

Ra~

;5independént perturbation-theory expansion forfthe self-energy_operat6r~[

"7 of quantum statistical mechanics. The rules are derived by starting . .~

/-“ - [T
[ o L
N
. b
i

?.i;l_from tﬁe usual formalism involving time-dependent Green's functions, = . i
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- I. INTRODUCTION

-u?éigfié;imiﬁf1933;m&éVéIOPed”a“perturbatidnwtheory”forquantumg;mﬂm—

Lo statistical mechanics. -However, the general. term in this theory

. perturbation théory in which the spurious terms were absent and

. the general term.was described; but their formalism, involving an

was hard to characterize; furthermore, spurious terms, which are

.- now known to cancel out, seemed to appear in the expression for

the total number of particles. In 1958, Montroll and Ward® gave a

ﬁnneqessary'expansion in powers of the fugacity, was exceedingly .

z:w;complicated. In recent years any number of formalisms have been :

. proposed.

3

These are all eésentially equivalent; varying only‘in '

i 1details. The procedure of Glassgold, Heckrotte, and Watson

'f'involves a contour integration, that of Bloch and de Dominicis

'*:multiple temperature integrations, that of Luttinger and Ward

‘ : L _ ’
.infinite sums.. Thouless, = however, has given a very convenient

:.fexpression for the logarithm of the partition function.

To propose still another formalism would appear to be both

- inconsiderate and imprudent. Ouxr motivation is that the rules we

.. describe here are considerably simpler than any other prescription ™ ™ -

'3'previously proposed. The rules are closely related to those given

'by'Thouless,h'but we shall work with the self-energy operator in

terms of which oneféan find'n6£ only the‘partition function but

i s -



- "also the single~particle excitations. Furthermore; it should be observed

:71that the derivation of the rules 16 not restricted to the single-

i‘particle self-energy operator but, rather, is quite general. Thus,
fmfor'example, one can'easily use the method described here to obtain
ﬁgexplic1t time~ independent rules for the space-time correlation function
'ﬁ?of any two physical observables.
 Tne rules for calculating are'given in Section II. These
-ﬁgrules were first obtainedintuitively5 by the follow1ng reasoning: In-
:équantum statistical mechanics one computes the equilibrium properties
giof a given_system by ‘constructing an ensemble of similar systems,
rithen computing quantum mechanically the properties of each system |
;«in the ensemble and finally averaging over the ensemble. We know
.t;from the work- of”Darwin ‘and " Fowler that the average over the ensemble
3is strongly peaked in the neighborhood of the most probable system in‘
the ensemble. This suggests interchanging thetorder of (i) the
- averaging procedure and (ii) the quantum-mechanical-calculation of
ﬂ‘thelproperties of one system.  Thus one is led to consider the quantum i
v‘mechanics:of & system in aﬁstate that is the most probable in the
;;ensemble, and consequently one expects that‘thelusual rules for ground-
”bstate perturbation theory6wiu,be modified only by replaCing the step |
:Zﬂ functions associated with particle and hole lines with single-particlel
i".'statistical-distribution factors of the most probable state. In Sec.
III we derive thm:result, starting from the time-dependent formalism
'hv;fd_for perturbation theory.7 N L |
) . Dzyaloshinskii has recently published & set of rules equivalent
'7li: to those. of Sece II, but without an explicit derivation of ‘the general

;

“cniterm.:j_;;




. L. TFormalism |

The thermodynamlc properties of a system can all be deduced

bt o

i o i dot b o e eth 828

. s _from the grand potential & defined by

[+] x= - %'"16gTr [e-&] ’ B ‘ ~ (II"J-)_'

ERAY ::‘:,"."_‘where_ H ='H - uN w'ith H and N the Hamiltonian and number

operators. The' pressure P ’ the number of particles N, and the.

entropy S are given by ‘ JZ
' o0 p
Po= - (W. ByH !
fa
N = -
(_53.) BV L
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% One canicompute 8 ,"-1n:v"additionf‘to’-caﬂ.cﬁla‘cing it directl&‘froxﬁ" 15"
'l:.'definltlon (II-l), 'by an 1ntegration over temperature of 3{ B, 1)y

_-i.;:the ensemble.. average of 311

. 00
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An a.lternative and more common method is to find &£ in terms of an
A :Lntegratlon of the pOtentlal energy over- the couPlins constant.

_-:,:gb The quantity. ﬂ(g, p,) we express in the form . .

L

Ma, u) -(—23?3- f Zx (m+ o " u) A(p,m) tlw) , (II-4)

e o
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.. where -

+Bw - l"b o ‘
Ce) = [P Pt o (m-s)
B (The ‘+ refers to bosons and I“ermlons, respectively.) The spectra.l

' -'i'_bfunctlon A(p, cb) is & functlon of B and. (VI a.nd is given m terms '

< iof the Fourler transform of the single-partiCle Green § function

""'.‘,‘-"_G(p,w) by

AMpo) = ~3InG (p 0+ie) , - (1I-6)

. ‘f‘where @ is.real. The Green s func tion G , &asa functlon of a complex

:';'varlable z, is related to the free-particle Green s function G, and’

0
S (' the self-energy operator Z‘.(p, z) via the Dyson equatlon' o
Calpn) = Gy(a) {1+'z,(p,z> clma)] e
"'whe‘r.e,
| GO(E’Z) = (z =&+ )™ S | . (11-8)

s

‘A1l of the sbove is well known and can be found derived, for
T vv..lexample, in reference 7.
The calcu.'latlon of thermodynamic properties is thus reduced to a calcu~-

'fv;_“'lation of the self-energy operator Z(p, z) The rules for calculatmg Z in
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' perfurbatidn:theory‘follow.A To find.the nth-order contribution to Z(p,z):

1. Construct a graph by drawing n ‘horizontal dashed lines at

4

different levels representing. the potential and by JoiningAtheif 2n ends

with solid lines representing particles or holes, and having arrows to indicate
: vldirection, in such a'way‘that:one4directéd.line enters énd one leaves each end
{ .-of a dashed line (e.g., Fig. 1). Have one solid.line leave the graph going up

:Jand_one;sdlid line enter the graph from the downward direction (the "external .

i'lines")‘-é-all'other-solid lines must-connect.ends of dashed lines. In
;'particulary:;f is acceptable to cohnect an end-of a .dashed line to itself. »
ﬁf;u-(e.g., Fig..2a$,_or10né end ofja daéhed’line to -its opposite -end (e,g., Fig; 2b); 
'varaw only grafhs in whicﬁ there are no unlinked parts and only graphs that ’
“~:‘cannot be ‘disconnected into two pieces by cutting: one ‘'solid llne, but draw all
;.';rgraphS'con31stent.W1th these rules. - In . nth order, each topographlcally |
} H 'aistinc£<diégram for- i. Will'yield n! different-diagrams corresponding to .
;aff: the - n! ﬁoésible orderings'of'the-verticés'frqmltop to bottbm. Assign a
”.diéﬁiﬂct‘ﬁomentum,> Ei’ fo‘each‘soiid line and momenﬁum"g to the external

. ‘lines.

2, To compute the contiibution of the graph, associate with each

 ‘tline of momentum 'p, dlrected upward a- factop—aE?d-uf (-:_,_- p)] . aﬁd with
1{ ‘each line of momentum PJ . directed . downward a factor * £( —i— - u). Do not
"ass1gn such faqtors ‘o the external lines. A line joinlng a dashed line to |
}fitself'is.cbhsidered,;s’directed_downmard. With.each.@ashed.line,’aSSOC1ate a
factor V(p i Py P pz), where p; end pj' are the momenta of the directed
"lineS'leav1ng the vertex on the left and right, respgctively, and gk and Bﬂ
are the momenta of the directed.iines entering the vertex on the left and
: 'r1ght, respectively. The factor V(pi, pj, pk, pz) is just the matrix element

of the. two-body potentﬂal. Each of the (n - l) intervals between vertices

g
/




. )
contributes a.factor that is the inverse of the sum of

a) . p. ./2m 6r~eac ownvward-go ‘line of momentum p, crossing the
(a) 12/2 £ hd d-going line of t N th
.interval, ' | | '
) =P, /2 ‘or-eaé upward-going. line of momentum P ,crossing the
(B) -z 32/2 o f h a line . of % h

©interval, | |

~(e) =z .if both external lines do not.cross the interval,

—— ——

(&) +wzif both external Iinés cross the Anterval, OF T e e
- (e) 0 if only one érosées. | |
Multiply all the above factors togetﬁer along with an additional
J_(-l)z * 1; where £ is the.numbér‘of c1osed‘loops formed by éolid lines

. 'representing fermions. Finally integrate over all p, Witha faCtOT‘(QTf)-3

T
1
]

i
i

for each three-dimensional momentum integration.

_  The'potentia1 V(pi; pj, Ek; pz) is simply expressed in terms of the

vlfiFou?ier»ﬁransformqula.lécal ﬁ#oJ?oéy spié-indepeédeét-potentia} vv(r) by

'Y@i’? ¥ Pl;’ P.z.) - .(:2")3 .Ef-(:?,i * 3;1 ;'_ .?,k.“ 22), ?(?.i'f D) ” C @

1.whére'f

- v(p) = _fa'ip'r' jr(r) dr » o ‘ .(Ii-\lO) '
Fér’particies with spin,.oné mus#.;ncludé.the-spin dependence of V.‘

.and .also sum bver spins of internal lines - = exactly as one does in’ground-

state perturbation theory.

2. - Example
'As an illustration of the rules, we evaluate the contribution for:

- fermions of ‘the two third-order diagrams -of Fig. 1: g



E'(a.)(zi, z—) = f {[_l-fl]fl-f31f5.[l-£21[l-fu](-l’)3d'gld32d23d£hdg5\'(gl-g)\'(32-gl)V(g-ge5

X (Qn)95(p +;357p p5) 5(p2+pu pl-p3) *8(p+ps=0,-D),) /(z-€ -&gt ) (w-¢, 276+ )(2::) 15

‘vand »', ,-'. o | ' : '< - ul—llj-
_ z<b)<£?z)= jt{[l-fl][l £ ]f £ fh('l) dgldgadgadpudp v(p p)v(p ~l) (2'22)..

X (21{)95'(214-23.2;.25).8(22+£h-2i-£3)-5(y£5-22-2h) /(z-€ -€3+€ )(6 +€)+-€ -€3)(2ﬁ)15 ’
R o ; pi2 T : IO
_where fi . represents f Eaf - .

3. Generalization .

~We can sum a large class of diagrams, namely.those,corresponding to the
“replacement .of Gb

Yy G in all intercal lines, by rules that are essentially
‘the same as those given in Sec. II.l: Ti | | |
' (a) Construct only irreducible graphs," »
(») Caleulate the contribution of an upwaf@ directcd line 25 by
1:assigning the-factor. A(Bi’wi)j[l £ f(wi)] ~and for a downward directed line
:thecfactor iA(Bi’aﬁ)'f(wi)' For the energy denominator the upward lines
‘coﬁtribuce -Gni-+.u) and the downward lines _(w ). Proceed as in

. See, II.l, and»finally also integr&te over all wi as well as p..
These rules are greatly more . complicated, since A must be obtained
self-consistently; but one diagram now includes an infinite class of the old

diagrams.
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III. FROOF OF RULES

’ The starting point from which we shall demonstrate the rules glven in
Sec. II.1l is the tlme-dependent form of the perturbation expansion for I .
;:fThis expansion is described in detail in the appendix to reference 7. Briefly,
~ to calculate-any order of perturbation theory in the time-dependent formalism,

_ one writes down all topologically distinct connected‘dlagrams of that order and

'ii evaluates “the diegrams by wrltlng a GO for each line, and a V for each
l vertex as iu time-dependent'groundestate perturbation theory. The time
E integreﬁxns must.be between‘ t=0and t = ;iB in order to include .
“‘Z'correctly tﬁe'periodicit& boundary condition obeyed by the tuermodyhamic
~{:Green's funetions. In llstlng all the distlnct diagrams no attentlon is pald‘
" %o dlfferent time orderlng; The momentum parts and the numerical factors are
flthe same-as,ln ground-state theory. One first calculates the Fourier coeffi-
;2.2cient,of' z , N - | |
' B T (5. g) |
2pz,) = f at e "1 £(t, t*)
‘where Vv is an even integer for besons, and an odd integer for fermions.
,ijhen the Fourierfcoefficient isvcontinued from the 2z, 6 to all complex z .
‘Each nth~order diagram in this perturbation theory corresponds to n:
, of the "ordered diagrams one wrltes down according te.the rules of’Sec. II-1 .
“In oxrder to deuonstrate the equivalence of. those rules to the time-dependent
perturbation theory, we must show how thevcontribution ef an gth-order diagramv
l evaluated by the'time-depenQent theory splits into n! ,distinct contributions,
each equal to the contribution from one orderea-diagram evaluated by the rules
of Sec. II.l. - |

Consider a diagram of nth order in V'. The n vertices are labeled

with n different,times;'to.evaluate‘ the diagram, one of these times Is set

g



- . . the integration times are'brdered, one can always replace the Go(p, t, t
. ~ 1

v, eépal to zero, and the remaining n - 1 times are integrated from t =0 to
t o= ~ip. These n»- 1 time integrations can be split into (n - 1)! different
integrations'corresponding to different ordem of thée n - 1 times along %he
'line from O to -ip. There are only (n = 1)! terms rather than n!. terms,

.since éhe time has been arbitfarily chosen to be zero. We ghall show that each
of the (n = 1)! terms equals the contribution, evaluated by the rules of Sec.
II,l, of n "ordered"'diagrams that differ only by a cyclic permutation of the :
vertices.

Since in the {n -1)! terms in the time~dependent perturbation theory

5)

. ip (ti ytj)/Qm {li f(PE - )] , (III-;L)

- that occur. in the integral by ... . e

Co, >Br By tj) = om

CRege

“if #i > #j’ Qr by

o ., D2 . ‘ )
: - -ipg(ttht.)/zm‘ {2 : ) .
1 R R e
= -+ — : Goe - -
GO, <(£, ty tj) E e , £} 5 s (111-2)
»if ti < tj . Thus to each ‘GO N ‘or forward-going line, there corresponds
o ’ 70,
~ a factor 1% f£; and to each backward-going line, or GO <’ a factor ¥ £ .
7 _ s
. There is an over-all factor of (_l)Qn-l . At each rvertex (tz), one will have
o ilogty ' » ' ‘
- .a factor e » where

2)

1,2 2 _2 2y
% T 2u (pa TR P, " Py ’ _(111-5)

- where By and P, are the momenta of the lines leaving ‘the vertex, and P
and pd are the‘momenta of the lines entering the vertex. For the external
lines, the factor zfyémf;”is replaced by Zv"  One must therefore calculate

‘the integral
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~-ip . t
it ¢ n i 3 it.¢
I N n-l n-1 22
I= f at e [ at, . e f dt,e . (11I-4)
0 N ¢ NN e e
. The results of the t, integral can be written as
t3 it20’2 . iﬁ_l))éeltBKEUQ ' : . ‘
dt, e ° = Z Ly ' (I1z-5)
: 2 ' : : o - »
0 | - .}\.2=O,l ' '
. and 1t is clear that one can write I as )
no B
_ RICTURY- L PR KO3 v
oo T e ()Yt N
I-= Iﬂ" pas S - F \I.'..I"é,‘
L =2 : Tl Tl ' '
LT N=0,1 , '
1 .
where
P =%t My Ty
= + : S -«--ni N 2K . ITTI—?“
Gk.7:-—'-\4{-31.—-—[qk--l-i'-}*:k-a' (9 * M5 Gzg *)]-- S
The sum now contains 2n-l “distinct terms, and we must rearrange -it into n
di_fferent groups of ﬁerms SO that all terms in each group have a common value
»ﬂof_exp(BI‘n'). This is done by rewriting the sum as -
S N
-
e [ ., BAT - J III-8)
I - Z ' k-1 in 1 e nn ( l)j— ( J
- r
M S Dyeeel T
k=1 =2 =0,1 23 n-1'n



. where the kX = 1  ‘term.corresponds to taking all )x.i = 1.

) : -1 -k . A s SRR B o [ e
_ 'Iﬂ""in' (-:L)n exp[ﬁ Z O'J] . L g o
& b j=2 .
I = ’ dekerd 'ﬂ’ Y oz (-1) . (uI-9)
n n_l oooI‘ 1_‘ .
. | _ : Nl Tl |
k=1 Zc Zc 1=2 A;=0,1 o ‘
. g J k+1 : Jan ' ' kk
B ' kel pod T L o B
l ”Cga,ll the éumma,j:ion in the braces S, . Then
Sl = 1’ * -
« -1
82 =9

e o9 ) .

= - = g o ‘ ' I-

S5 = Z T&jﬁ%‘)‘c— = ["“3("3:‘+ da)} R . 1-10)
el ta ¢ . ,

and in genéral

= e o 0 * 00 . T ’-V- ll
Sy [c (c + 0y ) (crk+ork 1O 2) (c:k+crk l +or ) (c Ot +c73+02)_l (II-11)
. This latter result follows from a.simple ;nduction argument: .Assuming the

result to be true for any arbitrary set.of - Pi for i=2,3,.-.,k-1, we can

‘write

T Ay 27‘3 |

S = Z L.;;L—L— .' ‘-IT / ( ) .‘. ' . . (I_II-lZ’)
k ) P «e°l ‘

v }\2=O,l' 2 X i=3 N=0,1 X k-1l 3 . _ :

. I.L




2 -

But the term in brackets is such a sum of "order'-—k-l._involving ,
O, = 0, + NG and hence, by the inductive hypothesis we have ’

37 73 ‘era’

| e (-1)x2 - 1 .

S, = :E: — . (1II-1%)
N A dk(crk+ck_l) (ck+ck_l+- . ‘*"’u) (dk+°k-l . +c5h+c:5 |

27 : | \

- Computation of the N, summation then produces the general formula (I11-11)

for .Sk
The 1ntegral I has thus been reduced to
‘n N B(c+~--+c )
: . ;{:, n 1 ( 1)n-k o n k+2 (III—lh)
= oo, gF e oy, 1)(° R R A DAE CIE R )
These 1 terms correspond to just n cyelic permutations of a given diagran.
Let k ;‘n . Then the summand is
v in-l
. (111-15)
- L AN LN 2 .+ * 0 0
cn(_cnﬁ-cn_j) .(cn+ 03) (cn+cn_l+ +0’2)

14

_ When z, - is replace& by Z, the denominators clearly are the energy denominators
one wrltes down by following the rules in Sec. II for the original dlaéram

~ The Xk = n-1 term-

.n-1 Pay; o . . . 1 p
i 1 e h(dn-l)(gn-1+cn-2)'"(Gn-l+"'+q2) (fcnzg (I11-16)
_ po,

. differs from the k = n term by a factor e , and furthermore the o has

"become -G, snd each factor has been reduced by cﬁ . Note that
Pz, '

e . is just T 1, Thus the k =n - 1 term corresponds to the

time~ordered diagram formed by mbving the latéest vertex n




,_13-

to the earliest time (a cyclic permutation). A1l energy'denominators
will cléarly be.reduceo by -0, ‘and the last denominéﬁogd (on) will
~change sign when it becomes the.fifst'denominator; the e = will
change‘the'particles into holes and vice versa at the nth vertex,
since &% f{w) A= 1.i;f(w) . Thus .I: corresponds to the sum of

all diagrams of nth order that are just cyclic permutations of a
single diagram of gﬁhAorder. Thus we have exhibited the correspondence
betwoen the time-dependent perturbétion diagroms and tho ordered
fdiagrams as well as derived the rules of Sec. II.l. .We leave it to
the reader to check.that'the detailed numerical factors ére equivalent
. as well ag to generalizé/the derivation fo'oover the situation'of

' Sec. II.3.
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Fig. 1. Two third-order diagrams which contribute to the self-encrgy
operator.
Fig. 2. The lowvest order dlagrams which contribute to the self-energy

operator.
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