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ABSTRACT OF THE THESIS

Code Search using Code2Seq

By

Aishwariya Rao Nagar

MASTER OF SCIENCE in Software Engineering

University of California, Irvine, 2021

Professor Cristina V. Lopes, Chair

The rapid development of software has led to the existence of a number of large, complex

and swiftly growing codebases consisting of thousands of source code files. Therefore, the

process of searching for code that performs a particular function has become an inherent part

of the process of software development today. Developers often use general purpose search

engines like Google or Q&A sites such as Quora and StackOverflow to search for relevant

examples, which are not dedicated specifically to code search. In addition to this, code that

is proprietary to a particular company or organization will not be available on these public

platforms. In order to address these challenges, various semantic code search approaches

based on information retrieval and deep learning techniques have been proposed which al-

lows a user to search a code repository using natural language queries. However, information

retrieval based code search systems rely on keywords and may not return relevant results if

the query keyword is not present in the search documents. Deep learning approaches are able

to retrieve code snippets that are similar to the user query even if the exact keywords aren’t

present but they treat source code as natural language and do not take into account the

intrinsic semantic and syntactic information of source code. In this thesis, I aim to develop a

hybrid semantic code search system that combines a neural model which leverages the syn-

tactic properties of software artifacts to generate comments that automatically summarizes

the function of the code snippet with information retrieval that returns methods that are
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similar to the user query by computing the cosine similarity between the query input vector

and the machine generated comment vectors present in the search corpus. Specifically, I

use Code2Seq which represents a code snippet as an aggregation of individual paths in its

Abstract Syntax Tree and learns the relevance of paths using attention in order to generate

the target comment sequence. The code snippets along with the automatically generated

comments form the IR search space which is used to find and retrieve code snippets that

are relevant to the user query. The dataset, preprocessing steps involved, system design and

implementation details are discussed in depth. Finally, the proposed system is evaluated

through a precision study which shows that the top result returned is relevant to the user

query 40% of the time.
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Chapter 1

Introduction

1.1 Motivation

The existence of large, complex and rapidly growing code repositories both in open-source

communities as well as organizations contain a plethora of syntactic and semantic information

that can be used to develop a range of tools to boost developer productivity. The process of

searching for similar code snippets or examples of how to execute a particular coding task is

much more efficient than going through the documentation and source code of various APIs

before using them. Developers often rely on search engines such as Google, Q&A platforms

such as Quora and StackOverflow as well as technical blog posts for comprehension and

assistance. These public resources cater to novice as well as experienced programmers who

have questions pertaining to how a certain API is used, a programming language’s syntax,

examples of how to write code that performs a particular task in a particular programming

language etc. These resources are extremely helpful as somebody else might have already

faced the same road-block before and found a solution and written a blog post about it or

posted a question on one of these platforms that was answered by someone else. However,
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as useful as these resources are, they do not always have the answer that the developer is

looking for. Additionally, code repositories of organizations are particularly challenging as

the APIs and libraries used may be proprietary to the company and cannot be discussed on

public platforms and an internal, company-specific Q&A forum might not be available.

Since code repositories of complex projects usually contain thousands if not millions of

lines of code, code snippets that closely match the developer’s intention are likely to exist

somewhere within the source code. The objective of code search is to retrieve code snippets

from a large code repository that is relevant to what the programmer plans to do, where the

intention or goal of the developer is expressed in natural language. [26]. In theory, these

code repositories should be well documented with clear, accurate and succinct comments

which allow a developer to correctly ascertain what the program is doing without having

to go through the entire source code. These comments can then be used to develop an

application that is able to search for code snippets that closely match the developer’s natural

language query quickly and easily. However in practice, such summaries are too laborious,

expensive and time consuming to produce manually. As a result, comments are often missing,

inaccurate or out-of-date. In addition to this, if a code snippet is well documented, the

comments need to be updated and maintained whenever the code snippet is modified in any

way. The challenge here is to find and retrieve snippets in raw, unannotated or inaccurately

annotated source code in an efficient manner.

1.2 Approaches for Code Search

Existing code search systems use annotated code corpora combined with information retrieval

or deep learning based techniques to learn and compute the semantic similarity between code

snippets and text query inputs. Information retrieval based search engines work by treating

code snippets as text documents and indexing them in a database using keywords. This
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database is searched to find indexes that match the text query and the corresponding code

snippets are returned as ranked results. One of the key issues with code search engines based

on Information Retrieval is that user queries often contain terms that do not exist in the

source code document corpus. Thus, queries that do not contain the exact keywords present

in the corpus will not have any matches in the database and no results will be returned even

if they exist in the database.

In order to address the drawbacks of IR based code search engines and improve their per-

formance, various deep learning approaches were proposed. The main idea behind these

approaches is the concept of embedding code snippets and comments in a shared vector

space such that the corresponding code-comment vectors are mapped close together and cal-

culating the similarities between the code snippet - comment vectors and the query vector

using a similarity metric such as cosine distance and returning the most similar code snippets

to the user. This allows the system to learn the semantic similarity between the comments

and queries and is able to find relevant code snippets even if the exact keywords aren’t used

in the input query.

While this is useful, both these approaches do not account for mismatches between code and

its corresponding documentation. Also, existing approaches treat code as natural language

and do not leverage the rich syntactic information present in it. In addition to this, unanno-

tated code snippets present in the source code cannot be searched and retrieved since there

is little to no overlap between the keyword search terms and source code tokens.

In this thesis, I address these problems by combining deep learning with information retrieval

in order to develop a semantic code search system. A deep learning based neural network

model is used to automatically generate high-level natural language descriptions that sum-

marize the overall function the code snippet directly from the source code. Specifically, I

use Code2Seq [1] created by Alon et al. which leverages the syntactic information present in

source code by taking an aggregated bag of paths over the code snippet’s Abstract Syntax
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Tree as input instead of treating source code as a bag of tokens. The descriptions generated

by Code2Seq are then used to develop an information retrieval based code search engine that

is able to find and retrieve code snippets that are documented to be performing a task that

closely matches the developer’s query input using cosine distance.

1.3 Research Questions

The main goal of this thesis is investigate if the semantic and syntactic information present

in source code can be leveraged to improve upon existing semantic code search systems.

RQ1: Can automatically generated comments for code snippets be used to retrieve relevant

code snippets?

Existing deep learning approaches for code search use corpora that contain code-comment

pairs in order to train a model to learn the semantic similarity between source code and

natural language in order to retrieve relevant results. However, these models rely on anno-

tated source code and cannot search for relevant code snippets in undocumented code. Iyer

et al. [17] present their approach for code search using automatic comment generation along

with their results. This approach treats code as natural language and does not leverage the

syntactic structure of programming languages. The hypothesis behind this research question

is that the comments generated for code snippets by a neural model will be accurate and up

to date can be used to retrieve all relevant code snippets.

RQ2: Will the performance of the code search system be affected by the size of the retrieved

set of code snippets?

The code search system presented in this thesis works in two stages to retrieve code snippets

that are relevant to a user query - automatic comment generation for code snippets and

similarity matching between the query input and all the machine-generated comments in the
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database. Since the relevance of a code snippet for a particular task is subjective and can

vary according to the number candidate code snippets present in the database along with

the machine generated comments, I evaluate the Top-1, Top-2 and Top-5 precision of the

system through a precision study.

RQ3: Will the performance of this code search system that leverages the syntactic and

structural information present in source code be comparable to state-of-the-art methods that

treat code snippets as natural language?

Deep learning models that are used for code search are designed for NLP tasks and treat

source code as natural language. However, natural language and programming language

differ in many ways. While natural language tends to be ambiguous and unstructured,

programming languages have their own respective grammars and source code written in

them are unambiguous and structured. Also, natural language corpora usually consist of a

limited vocabulary of a few thousand words that have the highest frequency. Words outside

of this vocabulary are marked as UNK. This is an effective strategy because words outside

this vocabulary are too rare to be considered. However, in the case of code corpora, the

vocabulary consists of keywords, operators, and identifiers. A codebase that is used to build

a probabilistic model will likely have a vast amount of out-of-vocabulary identifiers and alot

of important information is lost. Therefore, a model that is able to take advantage of the

semantic and syntactic information present in source code by representing a code snippet

using its Abstract Syntax Tree has the potential to perform better than existing models that

treat code as a bag of tokens.

1.4 Contributions and Chapters Overview

The first contribution of this thesis is adapting the existing Code2Seq [1] model for the task

of automatically generating comments that summarize source code fragments.The second
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contribution is building a semantic code search engine using the comments generated by

the Code2Seq model. The third contribution is evaluating the relevance of the top N code

snippets retrieved by the system through a precision study.

The thesis is divided into the following chapters. In chapter 2, the background and existing

approaches for code search has been discussed. Chapter 3 contains details of the dataset and

preprocessing steps followed, the overview of the system pipeline along with implementation

details of the two stages in the code search system namely automatic comment generation

using Code2Seq and information retrieval. In chapters 4 and 5, the results, analysis and

threats to validity are discussed. Finally, the thesis is concluded in Chapter 6 with potential

directions for future work.
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Chapter 2

Background and Related Work

2.1 Background

This thesis is a follow-up work to Code2Seq [1] which is a deep learning model that predicts

appropriate method names for code snippets and the dataset provided by the authors of the

DeepCom paper [14] which have been discussed in detail in later sections. I evaluated the

application of Code2Seq for the task of automatically generating comments for Java source

code methods in order to develop a semantic code search system that utilizes these machine

generated comments to find and retrieve code snippets that are relevant to a natural language

query input.

Alon et al. created Code2Seq [1], a neural model that uses the syntactic information present

in source code to produce better code embeddings. They achieve this by representing a

code snippet as a collection of paths in its abstract syntax tree and using attention to select

which paths to decode, one at a time. The authors use this model to predict method names

for a given code snippet based on the notion that code snippets that perform similar tasks

will have similar code embeddings. They evaluate their model by training it on 3 distinct
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datasets consisting of 700K, 4M and 16M examples respectively and show that the model is

able to predict appropriate method names for examples that were not present in the training

set with an F1-score of 59.19 for the largest dataset. While they only used code2seq for the

prediction of method names, the authors state that it can be used for a range of applications

such as code documentation, summarization etc.

Prior to Code2Seq, the same authors designed Code2Vec [2] which employs a neural network

to produce a single vector that represents the entire code fragment. They do this by ex-

tracting the Abstract Syntax Tree (AST) of a given code snippet, representing each path in

the AST as a distributed vector and finally aggregating all the path vectors using attention

to produce a continuous distributed representation of the code fragment body. This system

was used to predict the probability of each target method name given the code vector.

2.2 Related Work

Various code search approaches have been proposed. These can broadly classified into two

categories-

(1) Information Retrieval based techniques that preprocess and index source code in databases

to facilitate efficient exploration and retrieval of relevant code snippets.

(2) Deep learning based approaches that embed code along with their corresponding natural

language descriptions into vectors and then use a vector similarity measure such as cosine

similarity to find and retrieve code snippets that have a semantic correlation with the query

sentence.
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2.2.1 Information Retrieval Based Approaches

Chatterjee et al. [8] describe a flexible code search system called SNIFF (SNIppet for Free-

Form queries) which retrieves a small set of code snippets that match a free-form English

text query. SNIFF utilizes the documentation present in the source code of APIs and library

methods to annotate publicly available Java code. Each API or library method call in a

code snippet is appended with the corresponding Javadoc description which adds relevant

and meaningful comments to otherwise undocumented source code. This annotated source

code is then indexed in a database. A free-form query to SNIFF searches the database and

retrieves chunks of code that are closely related to the query input. The system finally

constructs the most pertinent code snippet using type-based intersection to retain the most

important and common parts of the candidate code chunks.

JSearch[27] is a scalable code search tool that supports various types of query searches over

thousands of source code files in a repository. Java source code files are first preprocessed

by replacing all the variable names with class names and then parsing them using an AST

parser to extract syntactic elements such as classes, method names, comments, imported

libraries, return types etc. Indexes are then created for each of these fields using Lucene to

facilitate flexibility in searches. Given a query input string, the tool returns results ranked

according to their relevance based on keyword matches between the text string query and

source code indexes.

Bajracharya et al. [3] developed a code search engine that extracts and stores structural

information present in source code available in open-source repositories to rank results and

allow for flexible search queries at the function class, algorithm or property level. The

infrastructure was built using a relational database that stores program entities and indexed

keys along with Lucene to maintain a mapping between the keys and entities. Keywords

present in a search query are matched to keywords stored in Lucene and the set of matching
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keys along with the corresponding entities are used to fetch the source code files which are

finally ranked using a novel ranking scheme and returned to the user.

JIRiSS [23] (short for Information Retrieval based Software Search for Java) is a code search

tool that allows users to search for fragments or code at the class or method level using nat-

ural language queries. A corpus containing structural information, comments and identifiers

is first created by decomposing the source code of a project along with associated documen-

tation into text documents. This corpus is then projected onto a semantic search space using

Latent Semantic Indexing. The user query input is mapped as a document into the same

semantic search space and the similarity between the query document and every document

in the search space is computed. The ranked results of the query are returned as methods or

classes. This system also supports fragment-based searh, automatic spell checking of input

queries and word suggestions if the query word is not present in the software vocabulary.

Holmes et al. [13] describe the Strathcona tool which retrieves code snippets present in a

repository that match the structure of the code being written. The client portion of the

system automatically extracts structural information of the code being developed by the

user in order to form the query when the user requests relevant example code snippets to

be fetched from a repository. The client sends this structural context description to the

server which stores the repository that needs to be explored. The server then searches the

repository using a set of heuristics in order to match the structure of the query code snippet

and returns the code examples with the best structural context matches to the user.

Jiang et al [18] combined information retrieval and supervised learning to propose a system

called ROSF (Recommending cOde SNippets with multi-aspect Features). First, a code

snippet corpus is created from a large collection of Android projects. When a free-form text

query is provided to the system, it creates a candidate set with as many relevant code snippets

as possible by searching the code snippet corpus using an information retrieval technique.

In the next stage, the candidate set of code snippets, the probabilities for different relevance
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scores between the candidate code snippets and the query text are predicted by a learned

multi-class logistic regression model. The candidate code snippets are re-ranked according

to these probability values and the top K results are returned to the user.

2.2.2 Deep Learning Based Approaches

Sachdev et al.[26] proposed a code search tool for large code repositories called NCS (Neural

Code Search) that finds and retrieves code snippets that are related to the search query

directly from source code. Their tool employs an unsupervised technique for learning vector

representations which only uses embeddings derived from code examples. The model treats

the code snippet as natural language and generates token embeddings for code snippets

as well as query input using fastText.[5] The code snippet embedding is then formed by

summing over these unique code token embeddings using TF-IDF weights. The search query

embedding is formed by summing over the individual query token embeddings. Finally, the

code snippet vectors with the smallest cosine distance to the search query vector are retrieved.

Cambronero et al.[6] extended the existing NCS model by adding a supervised learning

component to it. The training data consists of code snippet - docstring pairs which are

are tokenized and embedded using fastText [5]. The code and docstring tokens are then

combined using attention to generate the code snippet and docstring sentence embeddings

respectively. The query input embedding is generated by computing an average over the

query token embeddings. Lastly, the code vectors that have the highest cosine similarity to

the query input vector are fetched. Their findings show that a simple model with supervision

outperforms NCS as well as more sophisticated deep learning models. Their experimental

results also prove that an idealized training corpus with supervision can deliver great results.

Iyer et al. [17] employ a deep neural network for supervised learning. Their domain agnostic

CODEnn model, short for Code Description Embedding Neural Network, uses an LSTM
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network with attention on the code snippets to model the conditional distribution of the

natural language summary and generate it one word at a time. This model is trained

on a dataset consisting of C# and SQL code snippets they collected from StackOverflow.

CODEnn first extracts the method name, API call sequence and a bag of code tokens from

the raw code snippet. The method name and API call sequence are fed into two separate

biLISTM networks while the bag of code tokens is fed into a feed forward network. The final

code embedding is obtained by combining these three vectors which is then fed as input into

a dense neural network which generates the natural language summary, one word at a time.

The bag of docstring tokens is used to generate the query input embedding which is then

compared with all the summary vectors present in the retrieval set. The code snippets are

ranked according to the cosine distance between the query input vector and the summary

vectors and the top ranked code snippets are retrieved.

Husain et al. [15] developed another code search tool called SCS (short for Semantic Code

Search) by embedding code and natural language in a shared vector space. Their approach

is divided into four distinct steps. In the first step, python code snippets and their corre-

sponding docstrings are fed as input into a seq2seq model which generates code summaries.

Secondly, a separate language model is trained to embed query input tokens. The seq2seq

model used to generate code summaries is then fine-tuned to generate summary embeddings

that are mapped to the same vector space as the code embeddings such that the distance be-

tween the code vector and summary vector for a particular code snippet is minimal. Finally,

a search index of code vectors is created which is used to retrieve the nearest neighbors to

the query input vector in the shared code-summary vector space.

Heyman et al. [12] present an approach for code search which retrieves code snippets anno-

tated with succinct intent descriptions using natural language query inputs. Two discrete

embedding models are trained independently to learn the similarity between the intent de-

scriptions present in the code snippet and query inputs as well as between the code snippets
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and queries. The similarity between queries and descriptions are learnt by the Universal

Sentence Encoder (USE) [7] while the similarity between code snippets and queries is learnt

by the NCS model [26]. The code corpora was augmented by inserting description word

tokens in the middle of source code tokens as well as appending the description word tokens

to the code tokens. This was done to force the code tokens and description words that

appear in the same code snippet closer together in the training corpus in order to make

their embeddings more similar. Finally, an ensemble model computes the similarity between

the query input and code snippets as a linear combination of the cosine similarities of the

Universal Sentence Encoder and Neural Code Search model outputs.

Husain et al. [16] followed earlier work and implemented a code search system by jointly

embedding code and natural language vectors in a single vector space. Their model architec-

ture consists of two distinct encoders, one for code and one for natural language respectively

which are trained to map the inputs into a shared vector space such that the code and cor-

responding natural language descriptions are close to each other. Finally, an embedding is

generated for the query input and the code snippet neighbours that are closest to the query

vector are returned. Code search experiments were also run on a popular search engine called

ElasticSearch by creating an index using the function name and code snippet for every func-

tion in the code corpus. The authors also contributed a dataset called CodeSearchNet which

was created from open-source projects from GitHub and consists of 6 million functions across

6 programming languages to enable researchers to develop and evaluate novel approaches in

code search and retrieval systems.

Yao et al. [32] developed a reinforcement learning based framework called CoaCor (short

for Code Annotation Code Retrieval) where a model is trained to generate natural language

annotations for code snippets which can then be used by a code retrieval model to find and

fetch relevant code snippets. First, a code retrieval model is trained on code snippet - natural

language comment pairs. A code annotation model is then trained to predict the annotation
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for a code snippet as a sequence of natural language tokens and receives a reward from

the code retrieval model based on how effectively the machine generated code annotation is

able to discern the corresponding code snippet from a candidate set. Finally, another code

retrieval model is trained on the code snippet - machine generated annotation pairs. At test

time, given a natural language query, the code snippets are ranked by combining the scores

of both the code retrieval models. Their results show that machine generated annotation for

code can substantially boost the performance of code search systems.

Feng et al. [10] implemented a bimodal pre-trained model called CodeBERT which learns

the semantic relationship natural language and programming languages such as Java, PHP,

Go, Python, Javascript and Ruby. A multi-layer bidirectional Transformer model is trained

in a manner that is similar to multilingual BERT where a one pre-trained model is trained

on the CodeSearchNet dataset [16] consisting of code snippets across 6 different program-

ming languages without any indication of the programming language for the code snippet

inputs. CodeBERT is trained with biomodal data-points which consist of natural language-

code snippet pairs as well as unimodal data-points consisting of only function level natural

language comments and only code snippets. For code search, the language model is fine-

tuned for each programming language and the aggregated hidden representations of the code

snippet - comment pair is used to compute the semantic similarity between the code and

natural language query input.
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Chapter 3

Design and Implementation

3.1 Dataset

3.1.1 Data Collection

The dataset from DeepCom [14] is used for training and evaluation. It is a Java corpus built

from 9,714 open source projects from GitHub. The training set consists of 470,486 examples

while the test and validation sets consist of 58,811 examples each. The dataset contains 3

json files, for train, test and validation respectively.

This dataset is especially challenging for two reasons:

(1) the Javadoc comments are extracted from the code using Eclipse’s JDT compiler and

they were not checked by humans to ensure its correctness.

(2) The dataset is also orders of magnitude smaller than the dataset used for the task of

predicting method names by Alon et al. [1].
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3.1.2 Data Preprocessing

The json files containing the code-comment pairs are first converted to individual raw .java

files in order to extract the AST. The Javadoc comment associated with each method is

written to a text file with the file name of the corresponding code snippet. The Javadoc

comment text files are then preprocessed to remove HTML tags and converted to lowercase.

Comments with 0 tokens or greater than 40 tokens are excluded since Code2Seq is trained

to predict short method names and cannot learn extremely long sequences of text. Code

snippets with duplicate method names are removed because the comment for each code

snippet is mapped to the AST using the method name and each comment had to be associated

with a unique method name in order to be correctly mapped.

3.2 System Overview

This thesis focuses on developing a semantic code search system for code snippets by com-

bining an encoder-decoder based neural model (Code2Seq [1]) with traditional information

retrieval techniques in order to fetch relevant code snippets that are closest to the free-form

text query input. The system can be divided into two distinct parts. First, the code2seq

model generates comments for all the code snippets in a repository. Secondly, the task of

code search is treated as an information retrieval problem where the candidate code snippets

along with the corresponding machine generated comments are stored in a database and

code snippets whose comments are semantically similar to the natural language query are

retrieved. This step is described in detail in section 3.4.

Section 3.3 describes the first part of the system- comment generation using Code2Seq [1]

in detail. This section contains foundational concepts required in order to comprehend how

the Code2Seq [1] model is used for this task - Abstract Syntax Trees, feature extraction,
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model architecture, model training and hyperparameters used. Section 3.4 comprehensively

describes how code snippets relevant to the text query are retrieved using traditional in-

formation retrieval techniques. An overview of the system pipeline is provided in Figure

3.1.

Figure 3.1: System Pipeline for Semantic Code Search

3.3 Comment Generation using Code2Seq

3.3.1 Abstract Syntax Trees

In this thesis, an abstract syntax tree (AST) refers to the basic tree representation of the

abstract syntactic structure of source code written in the Java programming language [31].

The leaf nodes in an AST are called terminals and usually refer to user-defined identifiers and

names (such as float, num etc.) in the code snippet. Syntactic structures in the code such
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Figure 3.2: Code Snippet to Calculate
Sum of All Elements in an Array using
For Loop

Figure 3.3: Code Snippet to Cal-
culate Sum of All Elements in an
Array using While Loop

as loops (ForStmt denotes a for loop) and variable declarations (VarDec) are represented by

non-leaf terminals and are called non-terminals.

An AST is a very effective way of encoding source code. Consider the two Java methods

in Figure 3.2 and 3.3. Both these methods find the sum of all the elements in an array.

These methods are implemented differently but perform the same function. If the vector

representations for these code snippets are generated using a bag of tokens, the recurring

pattern between the two methods that suggests a common method name won’t be considered.

However, when the syntactic structure of the two methods are observed, it can be seen that

the ASTs only differ in a single node - a while statement is used in one versus a for loop

in the other. Therefore, an AST is able to normalize a lot of variance that occurs in source

code and a model that is able to leverage this can generalize much better to examples not

seen during training.

The Code2Seq model decomposes code snippets to a set of paths over their ASTs and learns

the representation of the code snippet using these path embeddings. This is described in

detail with an example in Section 3.3.2.
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3.3.2 Feature Extraction

After the preprocessing steps in section 3.1 were performed, the AST for each code example

is extracted using the Java extractor provided by Alon et al. [1]. The methodology used to

extract the paths from a code snippet’s AST is explained below with an example.

Figure 3.4: Code Snippet Example for Calculating the Sum of Two Numbers

Consider a code snippet (figure 3.4) that calculates the sum of two integers m and n whose

AST (shown in Figure 3.5) is constructed by the Java extractor. Then, every pairwise path

between two terminal leaf tokens is traversed and represented as a string of sequences, where

each sequence contains the AST nodes, connected by up and down arrows which denote the

up or down link between connected nodes in the tree.

Figure 3.5: AST Representation of figure 3.4
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Examples of some paths extracted from the above AST would be:

• (int, parameter ↑ Method Declaration ↓ BlockStmt ↓ ReturnStmt ↓ Binary Expr:plus, m)

denoted by the colour red in Figure number 3.5.

• (int, Method Declaration, f) denoted by the colour green in Figure number 3.5.

A tuple is then constructed for every pair of AST leaf tokens and the path connecting them

where each token is split to subtokens using the ”|” character. This tuple is called a path-

context. Code snippets that could not be parsed and code examples with empty method

bodies are dropped by the extractor. This step generated a single text file for train, test and

validation respectively where each row is an example. Each example is a space-delimited

list of all the path-contexts in a code snippet’s AST separated by commas. The comments

are finally inserted at the beginning of each example as a set of tokens, also separated by

the ”|” operator. The final training data consisted of 142,550 examples while the test and

validation data consisted of 8325 and 9000 examples respectively.

3.3.3 Model Architecture

The model presented by Alon et al. [1] is used for this task. This model is based on the

traditional Encoder-Decoder Architecture used in NMT problems.

A given code snippet is represented as a set of compositional paths over its Abstract Syntax

Tree. Paths in the AST are sampled and encoded by a BiLSTM to create a vector repre-

sentation for each path along with its values in the AST separately instead of reading the

input as a flat sequence of tokens. The decoder then attends over the encoded AST paths

while generating the target comment sequence. At each decoding step, the probability of

the next target token depends on the previously generated token. A detailed explanation of

the model can be found in the original paper. [1]
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Figure 3.6: Code2Seq Model Architecture

3.3.4 Model Hyperparameters and Training

The Code2Seq model is trained on Google Colab Pro with high RAM setting. The batch

size is reduced to 128 in order to fit into memory. The encoder BiLSTM that encodes the

AST paths consists of 256 units and a recurrent dropout of 0.5 is applied on each LSTM.

The decoder LSTM consists of 2 layers, each of size 512 in order to support the generation

of longer target sequences. The maximum length of the target sequence is set to 40 in

accordance with the maximum number of ground truth comment tokens in the training

dataset. This configuration resulted in 69M trainable params. The model is trained for 39

epochs or until there is no improvement after 10 iterations.
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3.4 Information Retrieval

3.4.1 Indexing Source Code

The test set consisting of 8300 code snippets along with the corresponding machine generated

comments form the candidate set of source code fragments that is searched in order to find

and retrieve code snippets that are relevant to the user query. In order to find methods that

match the user’s objective, the natural language comments in the candidate set along with

the query input text need to be converted to vectors before they can be compared using a

similarity measure such as cosine distance.

Popular text embedding models such as Word2vec [21] and Glove [22] convert individual

words in a sentence to a vector. But while embedding a sentence, the words along with

the context in which they are used needs to be captured by the vector which isn’t possible

using Word2Vec or Glove. In order to address this, Google proposed the “Universal Sen-

tence Encoder” [7] which generates an a fixed-length 512-dimensional vector for each input

sentence. The Universal Sentence Encoder model comes with two variations - one employs

a transformer architecture while the other uses a deep averaging network (DAN). The two

variants have a trade off between accuracy and amount of computational resources required.

The transformer based model has higher accuracy but requires more computational resources

while the DAN based model is computationally less intensive with lower accuracy. These

models are pre-trained and can be downloaded from Tensorflow-Hub. In this thesis, the

transformer encoder version is used to generate a sentence embedding for each comment in

the candidate set.

The code snippets are indexed using the corresponding comment embedding and are stored

in a Pandas dataframe [28] to simulate the indexed database that is used for efficient search

and retrieval in IR based code search engines.
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3.4.2 Querying Source Code

Before a search starts, all the code snippets in the candidate set are indexed using the

corresponding comment embeddings. When a developer enters a search query such as “how to

convert json object to csv”, “how to open url in html browser”, ”prompt user to enter details”

etc., it is expressed as a natural language sentence. The Universal Sentence Encoder model

[7] is first used to embed the query sentence to generate a 512-dimensional vector that is of the

same size as the candidate set comment embeddings. Then, the cosine similarity between the

query sentence embedding and all the comment embeddings present in the candidate set is

computed using equation 3.1. Finally, the top-K code snippets whose comment embeddings

are most similar to the query input embedding are returned as results. The value of K is set

to 5 in my experiments.

cos(A,B) =
A.B

‖A‖‖B‖
(3.1)

23



Chapter 4

Results

4.1 Evaluation Metrics

This chapter showcases the experimental results of the semantic code search system when

applied on the dataset obtained from the Deep Code Comment Generation paper [14].

Section 4.1 provides a brief overview of the evaluation metrics used in this thesis. Since the

code search system first generates comments for code snippets which is then used for retrieval,

the performance of the system heavily depends on how well the code2seq model performs

on the task of automatic comment generation. Therefore, the comment generation model

is first evaluated using precision and recall and then with ROUGE and BLEU which are

metrics used to assess the performance of neural-machine translation problems in literature.

The information retrieval based code-search system is then evaluated through a precision

study which is described in detail in section 4.1.2.
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4.1.1 Automatic Comment Generation Metrics

Ideally, the machine generated comments should be manually evaluated by human annota-

tors, but given that manual evaluation is very difficult to scale, I adopted the measures used

in literature - precision, recall, Rouge and BLEU which is measured over case-insensitive

tokens. The basic idea behind these metrics is that the quality of the machine generated

comments mainly depends on the words used to compose it along with the word overlap

between the predicted and ground truth comments.

BLEU (bilingual evaluation understudy) [29] is a popular metric that is used to evaluate the

quality of output text in neural machine translation problems. In this thesis, the translation

of a code snippet written in the Java programming language to a natural language sentence

(prediction of a comment that summarizes the function of the code snippet) is being evalu-

ated. The idea behind BLEU is that the quality of a machine generated translation depends

on how close it is to a professional human translation. This is done by using a modified form

of precision to compare the predicted translation against the reference text. An n-gram is a

sequence of words within a window of size n. BLEU compares the n-gram of the predicted

translation with the n-gram of the reference text to count the number of matches, regardless

of the positions at which these matches occur. Higher the number of matches between the

predicted text and reference text, better is the machine translation. Generally, BLEU scores

are based on an average of unigram, bigram, trigram and 4-gram precision [25]. However,

BLEU is problematic for a number of reasons which is discussion in detail in section 4.4.

This metric is used to compare the output of the code2seq model to the benchmark model

described in the Deep Code Comment Generation [14] paper that performs the same task

on the same dataset. The BLEU score was computed using SacreBLEU. [24] which is an

open-source tool that can be used to predict a corpus level BLEU score between the reference

file and predicted file.
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ROUGE ( Recall-Oriented Understudy for Gisting Evaluation) [30] is a modification of BLEU

that focuses on recall rather than precision.It consists of a set of metrics rather than just one.

ROUGE-N looks at how many n-grams in the reference text show up in the predicted text.

ROUGE reports the precision, recall and F-1 score for each value of N under consideration. In

this thesis, ROUGE-1 and ROUGE-2 scores are reported. Additionally, ROUGE-L calculates

the longest shared sub-sequence of tokens between the reference text and predicted output

as a longer common sub-sequence indicates a higher similarity between the two.

BLEU and ROUGE scores complement each other and therefore, both were used in this

thesis in order to evaluate the model in a comprehensive manner.

4.1.2 Precision Study

The evaluation of the retrieval of code snippets that are relevant to the user’s query input

is a challenging task as it is laborious and requires specialized manual effort. Popular infor-

mation retrieval metrics such as Mean Reciprocal Rank (MRR) and Normalized Discounted

Cumulative Gain (NCDG) cannot be applied to this task since ground truth data is required

in order to determine the precision of the code retrieval system which can only be provided

by humans.

In this thesis, an experiment-driven analysis of the system is conducted through a precision

study involving three developers in order to determine the relevance of the retrieved code

snippets. This is performed using 10 natural language queries obtained from the paper

written by Bajracharya et al. [4]. The search space is a small corpus of 8300 code snippets

obtained after pre-processing the test set [14]. The search queries used in this study are

presented in table 4.1.

The top-5 queries with the highest cosine similarity values are first retrieved for each query.
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Sl. No. User Queries

1 copy paste data from clipboard
2 open url in html browser
3 track mouse hover
4 open file in external editor
5 prompt user to select directory
6 open dialog and ask yes no question
7 parse source string ast node
8 run job in ui thread
9 open external file
10 remove problem marker from resource

Table 4.1: Table of Queries Used in Precision Study

Each developer then manually examined these top-5 code snippets and answered ”Yes” or

”No” depending on whether they found the code snippet to be pertinent to the objective

described in the query or not. After this, the answers provided by the three developers is

examined and aggregated using the following rule - the answer to whether a code snippet

returned by the system is relevant is ”Yes” or ”Y” if and only if 2 or more developers out of

3 answered ”Y”. Otherwise, the answer is ”No” or ”N”.

The precision of the system is also determined by the aggregation rule followed. Farmahini-

farahani et al. [9] evaluated the precision of eight different code clone detection tools through

a precision study involving three judges. They reported the results obtained by taking the

majority vote as well as by taking the unanimous vote. They observed a drop in precision for

certain tools when it was calculated using the unanimous voting method. This gap indicates

that the judges disagreed on the classification of some code clones and shows that precision

experiments are highly dependent on what the judge perceives to be a clone.

As discussed earlier, the precision of the code retrieval system is calculated by aggregating

the answers using the majority voting method. The results of this study are presented in

section 4.2.2.
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4.2 Experimental Results

4.2.1 Comment Generation

Table 4.2 shows the results for automatic comment generation using the Code2Seq model

when evaluated on the test set consisting of 8300 code snippets unseen during training.

Evaluation Metric Percentage Value

Precision 30.65
Recall 35.77

F1-Score 33.01

Table 4.2: Precision, Recall and F1-Score for Automatic Comment Generation

The model was also evaluated using ROUGE scores on the test set. The results are reported

in table 4.3.

ROUGE Metric Precision % Recall % F1-Score %

ROUGE-1 21.07 26.59 20.73
ROUGE-2 5.71 7.36 5.66
ROUGE-L 25.255 24.16 22.33

Table 4.3: ROUGE Scores for Automatic Comment Generation

In addition to this, the BLEU score for this model is 3.64 when evaluated on the test set.

Table 4.4 presents some of the results of the automatic comment generation task by compar-

ing the ground truth comments for the test set with the comments predicted by Code2Seq.

4.2.2 Information Retrieval Precision Study

Table 4.5 provides the results for the precision study conducted in order to manually evaluate

the precision of the code retrieval system. Columns labelled 1 through 5 indicate the order
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Ground Truth Comment Predicted Comment

accept role assignment event handle role assignment request event
acquires the write lock if the lock is not avail-
able then the current thread becomes dis-
abled for thread scheduling purposes and lies
dormant until the lock has been acquired

write locks to all of the set of threads

add new module adds a module to be used in the template
add text part without background from re-
sources

create text builder

a version suitable for our viewholders create a tag for a view id
a method to add a bookmark create a new bookmark bookmark and user
a check to be used as method reference returns true if this is a message

Table 4.4: Comparison of Ground Truth Comments and Comments Predicted by Code2Seq

Sl. No. User Query 1 2 3 4 5 Top-1 Top-2 Top-5

1 copy paste data from clipboard Y Y Y N N Y Y Y
2 open url in html browser Y Y N N Y Y Y Y
3 track mouse hover Y N Y N N Y Y Y
4 open file in external editor N N N Y N N N Y
5 prompt user to select directory Y N N Y N Y Y Y
6 open dialog and ask yes no question N N Y N N N N Y
7 parse source string ast node N N N N Y N N Y
8 run job in ui thread N Y N N N N Y Y
9 open external file N N N Y N N N Y
10 remove problem marker from resource N N N N Y N N Y

Table 4.5: Comparison of Ground Truth Comments and Comments Predicted by Code2Seq

in which a code snippet was retrieved i.e 1 refers to the top code snippet with the highest

cosine similarity to the query vector that was retrieved by the system, 2 refers the code

snippet with the second highest cosine similarity, 3 refers to the code snippet with the third

highest cosine similarity and so on.

The Top-1 column refers to whether the top code snippet retrieved is relevant to a particular

query. (”Y” in column 1). The Top-2 column indicates whether atleast one out of the top

two code snippets returned by the system is relevant or not. (”Y” in either column 1 or

column 2 or both). The Top-5 column specifies whether one or more code snippets out of

the top-5 results returned by the system was relevant to the user query or not. (”Y” in one
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or more columns from column 1 through column 5).

From the table, it can be seen that the Top-1 precison of the system is 40% , Top-2 precision

is 50% and Top-5 precision is 100% when calculated using the majority voting method.

4.2.3 Analysis of Results

This section qualitatively analyses the results from section 4.2.2 using two examples.

Consider the query ”copy paste data from clipboard”. Table 4.5 shows that the top-3 code

snippets returned by the system were considered relevant by atleast 2 out of the three

developers involved in the precision study. The top-5 retrieved code snippets are presented

in table 4.6.

The top-3 code snippets that were considered relevant all have one common characteristic

- they all open a file in write mode. The task of opening a file and writing data can be

considered to be similar to copy pasting data from the clipboard to a text file. A text file

needs to be opened before the data from the clipboard can be written to it and a code

example that opens a text file is relevant to the task the developer is trying to accomplish.

Now consider the query ”remove problem marker from resource”. Table 4.5 shows that the

top-4 code snippets returned by the system were all irrelevant whereas the 5th code snippet

was considered relevant. The top-5 retrieved code snippets are presented in table 4.7.

The top-4 code snippets with the highest cosine similarities to the query vector are all

irrelevant. These results are interesting as the top-2 code snippets are both performing

resource management. The top code snippet is removing the resource itself while the second

code snippet is returning the location of the resource. However, the task the the developer
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Sl. No. Code Snippet Cosine Sim% Relevance

1

public static Document openDocu-
ment(OutputStream outputStream){
return openDocument(outputStream,
PageSize.A4);
}

82.89 Yes

2

public static void writeProtoText-
ToFile(File outputFile, Message proto)
throws IOException {
try (BufferedWriter outWriter =
Files.newWriter(outputFile, Standard-
Charsets.UTF 8))
{TextFormat.print(proto, outWriter);}
}

79.96 Yes

3

public static PrintWriter openFile-
ForPrintWriter(final File file) throws
IOException {
if (file.getName().endsWith(”.gz”)) {
return new Print-
Writer(openFileForWriting(file));}
else {return new PrintWriter(file);}
}

79.41 Yes

4

protected TimelineReader loadAudi-
oTimeline(String fileName) throws
IOException, MaryConfigurationEx-
ception {
return new TimelineReader(fileName);
}

78.85 No

5

private static String[] show-
Choices(Component parent, Document
doc, String classification) {
final boolean doTaxonomy = classifi-
cation.equalsIgnoreCase
(Classification.Taxonomy);
...
choice1.getCurrentText(false),
choice2.getCurrentText(false) };}
return null; }

78.33 No

Table 4.6: Top-5 Retrieved Code Snippets with Corresponding Cosine Similarities for the
”copy paste data from keyboard” User Query
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Sl. No. Code Snippet Cosine Sim% Relevance

1

void discardResource() {
R old = resource;
lifecycle.onRemoval(resourceKey
.getKey(),old);}

81.59 No

2

public ResourceLazyLoadingScript
script(String resourceLocation) {
this.resourceLocation = resourceLoca-
tion; return this; }

71.59 No

3

public static Map¡String, Object¿
createUserPrefMap(GenericValue rec)
throws GeneralException { return
addPrefToMap(rec, new Linked-
HashMap¡String, Object¿()); }

71.12 No

4

public boolean removeEdge(Edge e) {
if (!edges.remove(e)) return false;
srcMap.remove(e.getSrc(), e);
tgtMap.remove(e.getTgt(), e);
unitMap.remove(e.srcUnit(), e);
return true;}

70.95 No

5

public static void removeMark-
ers(JTextComponent component,
SimpleMarker marker) {
Highlighter hilite = compo-
nent.getHighlighter();
Highlighter.Highlight[] hilites =
hilite.getHighlights();
for (int i = 0; i ¡ hilites.length; i++) {
if (hilites[i].getPainter() instanceof
SimpleMarker) {
SimpleMarker hMarker = (Simple-
Marker)
hilites[i].getPainter();
if (marker == null ——
hMarker.equals(marker)){
hilite.removeHighlight(hilites[i]);
} } } }

70.86 Yes

Table 4.7: Top-5 Retrieved Code Snippets with Corresponding Cosine Similarities for the
”remove problem marker from resource” User Query
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is trying to accomplish is removing a problematic marker from the resource and therefore,

these two methods aren’t useful. The third code snippet uses hash maps which is definitely

irrelevant. A potential reason as to why it was retrieved by the system might be because the

comment generated by the neural model is incorrect. Code snippet 4 assigns more importance

to the keyword ’remove’ but this example removes code snippets in a map and is unhelpful.

The 5th code snippet is returned since it contains the keywords ’remove’ and ’marker’ and

is relevant because it is similar to the objective of the developer. One key observation that

could potentially have implications on future work is the reliance of information retrieval

techniques on the presence of keywords in the search corpus. However, it is difficult to

determine the relative importance of each word in the query without an attention based

neural model.

This concludes the results chapter. The next chapter discusses answers to the research

questions mentioned in section 1.3 along with the summary of the results and threats to

validity.
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Chapter 5

Discussion

Overall, the preliminary quantitative results are promising and validate the combination

of neural models with information retrieval for the code search task, the system is still a

work-in-progress with lots of room for improvement. This section includes a summary of the

results, answers to research questions and threats to validity.

5.1 Summary

As stated in the previous section, the performance of information retrieval is heavily de-

pendent on the quality of comments generated by the neural model. Upon analysing the

results, it can be concluded that the task of automatic comment generation is best mod-

elled as a neural machine translation problem where the code written in a programming

language has to be translated to natural language rather than as an information retrieval

problem. This is because information retrieval based approaches rely on an exhaustive set

of keywords to generate comments whereas this approach can generate sequences unseen

in the training data. Retaining the tree-like structure of the AST represents the code bet-
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ter rather than treating source code as natural language. This allows the model to learn

underlying patterns in code and enable it to predict similar comments for code snippets

that have different implementations but perform similar tasks. Treating code search as a 2

stage problem also has some advantages. Firstly, the output predictions of the neural model

can be manually examined before performing the retrieval and incorrect predictions can be

modified for better retrieval results. Secondly, most existing neural code search models work

by mapping the code snippets and corresponding comments in a shared vector space such

that the code-snippet pairs are pushed close together. These approaches do not leverage the

syntactic information present in source code, while the approach followed in this thesis is

able to utilize this information in an effective manner.

However, semantic code search is a rapidly evolving area of research with researchers swiftly

making improvements and advances to existing systems using pre-trained models, reinforce-

ment learning and other hybrid techniques. Recently, Feng et al. [10] developed a single

model architecture that is able to utilize both natural language as well as programming

language data together. This is a huge break-through in the field of NLP, especially for the

task of code search. This highlights the rate at which the interest in this field is growing and

all the research that is being done to potentially make the lives of developers easier.

5.2 Research Questions

RQ1: Can automatically generated comments for code snippets be used to retrieve relevant

code snippets?

Yes. This thesis demonstrates that comments generated by a machine can successfully

be used to implement a hybrid code search system that utilizes deep learning as well as

information retrieval to retrieve relevant code snippets from a search corpus.
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RQ2: Will the performance of the code search system be affected by the size of the retrieved

set of code snippets?

Yes. The search corpus in this thesis consisted of 8300 code snippets. The results show that

the top result returned by the system was relevant to the user query 40% of the time. This

can be attributed to the fact that the search space was small compared to other code search

systems. However, the experimental results also show that users found at least one retrieved

code snippet among the top-5 search results that was relevant to the search query. This

shows that the hybrid code search system presented in this thesis performs well even with

small code corpora.

RQ3: Will the performance of this code search system that leverages the syntactic and

structural information present in source code be be comparable to state-of-the-art methods

that treat code snippets as natural language?

Yes. The primary advantage of a model that effectively utilizes the syntactic and structural

information present in source code is that it is able to learn patterns in code snippets that

have similar functions that might be overlooked in models that treat code as natural language.

This means that code snippets that perform the same function with different implementations

will be retrieved by this system and the developer can choose which implementation is best

suited for the task at hand.

5.3 Challenges and Threats to Validity

1. Lack of good datasets for auto-comment generation: The training data corpus used to train

the code2seq model for the task of automatic comment generation consisted of approximately

150k examples which isn’t sufficient. In order to get viable results, the model will have to

be trained on millions of examples. Existing datasets are small and noisy and this problem

will need to be addressed by either creating a new dataset altogether or combining existing
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datasets if possible to generate a sufficient amount training data.

2. Code documentation and user queries are fundamentally disparate: The dataset used

in this thesis collected the comments for Java methods from the first sentence of Javadocs

leading to the presence of mismatched and incomplete comments in the dataset. Documen-

tation also provides a general description of the code snippet and becomes outdated as time

passes whereas a user query is usually structured as a question. It isn’t ideal to use code

documentation in order to learn the semantic meaning behind source code but currently, it is

the only option since it bridges the gap between the source code (written in a programming

language) and the query input (written in natural language).

3. Evaluation metrics for automatic comment generation: The gap between machine gener-

ated comments and human-written comments is evaluated using the Rouge or BLEU score.

These metrics are used to reduce the the subjectivity of manual evaluation. However, these

metrics measure the number of words that overlap between the comments that were written

by humans and those generated by the machine. The automatically generated and manual

comments may describe similar functionalities but with different words or order. This re-

duces the overall BLEU score portraying that the model has poor performance which may

not be the case. In addition to this, the BLEU score tends to favour short predictions, which

are usually not informative, especially for the task of automatic comment generation. It

also does not take into account the underlying meaning or grammatical correctness of the

translated text output.

4. Code snippet search corpus: The corpus of 8300 code snippets used to create the search

space for information retrieval is extremely small in comparison to thousands of Java projects

available on GitHub. Plans for future work include running experiments to evaluate the

effectiveness and scalability of this code search system on code corpora of different sizes.

5. Quantitative evaluation of code search: The relevance of code snippets depends on the
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developer, what task they’re trying to achieve and their level of experience with the pro-

gramming language. In addition to this, more than one code snippet might be relevant to the

user query. Evaluating the search results quantatively using popular information retrieval

techniques wasn’t a feasible option as no dependable human annotated ground truth dataset

that was similar to the training corpus was available. Therefore, a qualitative evaluation

was performed through a precision study. However, the precision study had to be small and

restricted to ten queries because the number of participants were limited in number.

6. Generalizability of Results: The code search system has only been applied to a Java corpus

[14]. The effectiveness of this system for languages other than Java and how generalizable

the experimental results and model performance reported in this thesis are when applied to

different datasets is a fascinating question yet to be answered.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis formulates the task of code search as a hybrid two stage problem comprising of

automatic comment generation and information retrieval. The task of automatic comment

generation for code is formulated as a neural machine translation problem which translates

source code written in a programming language to comments written in natural language.

An attention-based code2Seq model that is able to learn semantic and syntactic information

from code snippets is used to generate comments for Java methods. These code snippets

along with the corresponding machine generated comments are then used to form a database

which is searched in order to find and retrieve methods that are relevant to a user query

based on the cosine similarity between the query and the machine generated comments for

the methods in the search corpus. I have demonstrated that neural models that leverage

the syntactic structure of source code can be combined with traditional information retrieval

techniques in order to develop a robust semantic code search system that is able to fetch

relevant code snippets even if the query doesn’t contain the exact keywords present in the

39



search corpus. I hope that this thesis encourages more researchers to build code search

systems that can learn and utilize the semantics from the syntactic nature of source code. I

hope to build upon my solution in the future by improving and refining it through iterative

development of the designed model.

6.2 Future Work

Plans for future work include improving the performance of the model by collecting copi-

ous amounts of training data making the model more generalizable by training it on code

snippets from other languages; running experiments with different datasets and improving

the information retrieval technique used in this thesis in order to make it more efficient and

scalable to large datasets.

6.2.1 Dataset Experimentation

The results reported in this thesis are values obtained when the model is trained on 140k

examples. NLP models, especially ones used for neural machine translation problems are

data hungry and require millions of examples in order learn the semantics between the two

languages. Running experiments with different datasets and more training data will improve

the model’s predictions on unseen code snippets as it will have more data to learn from. NLP

is also a rapidly growing field and there is a possibility of replacing the Code2Seq model used

in this thesis with an improved model that is able to generate better documentation for source

code.
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6.2.2 Programming Languages

Source code of large,complex software systems consist of thousands of lines written in differ-

ent programming languages such as Java, Python, Scala, Javascript etc. In this thesis, the

model was trained on Java methods and can therefore only generate comments for Java code.

In order for it to be useful in the industry, this work needs to be made more generalizable by

training the model on code snippets written in different languages so that the entire codebase

can be maintained searched instead of just the parts written in Java. This goal of language

extension can be achieved by modifying the model and script to construct Abstract Syntax

Trees and extract paths from code snippets written in additional languages. PathMiner [19]

is an an open-source library that can be used to mine path-based code representations for

different programming languages in order to extend this thesis to other languages.

6.2.3 Improvements to Information Retrieval Technique

The current implementation performs information retrieval by storing the code snippets and

the corresponding machine generated comment embeddings in a Pandas dataframe. [28]

and computing the cosine similarity between the query embedding with all the embeddings

in the search corpus and retrieving the code snippets with the highest cosine similarity to

the query embedding. While this works efficiently for a small dataset, it isn’t very efficient

when searching through millions of code snippets. Thus, future work includes making the

storage and search of the code snippets more efficient and scalable by using techniques such

as inverted indices to reduce memory usage, storing it in a relational database instead of a

dataframe, storing the location of the code snippets in a repository and retrieving it when

required instead of storing the actual code snippet in memory, clustering similar user queries

together and hashing the results so that the cosine similarity between a query and the search

corpus need not be computed everytime.
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6.2.4 Comprehensive Evaluation of Code Search

This thesis evaluated the semantic code search system through a precision study consisting of

three participants and ten queries. A more thorough evaluation involving more developers

and more queries is required in order to assess the impact code search has on developer

productivity. As this is hard to do in an academic setting, another possible direction is to

evaluate the system using a reliable human annotated ground-truth dataset which takes into

account the subjectivity involved in determining the relevance of a code snippet.
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