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This dissertation explores the advancement of exceptional points of degeneracy (EPDs) in

electrical circuits and their applications in highly sensitive devices, alongside the model-

ing of traveling wave tubes (TWTs) for microwave amplification. The EPD phenomenon,

where two or more eigenmodes coalesce at a critical point, results in systems with height-

ened sensitivity to perturbations. This work illustrates how EPDs can be achieved using a

gyrator-based and simpler circuit without the use of nonreciprocal components. A detailed

analysis of various circuit configurations, including series and parallel LC resonators coupled

via a gyrator, reveals the potential of these systems to exhibit second- and third-order EPDs.

These systems demonstrate exceptional sensitivity, where small changes in capacitance, in-

ductance, or other parameters lead to significant shifts in the resonance frequency, enabling

applications such as material characterization and high-performance signal processing.

This dissertation investigates time-modulated systems and their ability to obtain EPDs.

Time modulation introduces an additional degree of freedom to systems by periodically

varying system parameters, such as damping or capacitance. A dual analogy between me-

chanical and electrical systems is presented to better understand how energy is dynamically

redistributed within these modulated systems. By applying this approach to a mechani-

cal system equipped with a time-modulated damper, the results demonstrate increases in
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harvested power, making this technique highly advantageous for applications like wireless

sensors, remote monitoring devices, and energy-autonomous systems. This dissertation also

explores the use of space-time modulation in transmission lines (TL) as a method to directly

induce EPDs, a novel approach that can significantly impact microwave circuits and telecom-

munication systems. By modulating the per-unit-length capacitance of a single transmission

line in both space and time, two propagating eigenmodes coalesce at EPD. This research

highlights the advantages of this approach, demonstrating how small variations in modula-

tion parameters can lead to large shifts in system behavior, thus providing a powerful tool

for next-generation electronic and communication devices.

In the second part of the thesis, the focus shifts to TWTs, which are essential devices for

high-power microwave amplification based on linear electron beams. TWTs are widely used

in telecommunications, radar, and satellite communication due to their ability to amplify

RF signals over a broad frequency range. This research focuses on the inclusion of dispersive

slow-wave structures (SWS) and the space-charge effect to better understand and optimize

TWT performance. A critical aspect of this work is the introduction of EPD in TWTs

by carefully tuning the dispersive properties of the SWS and accounting for electron beam

(e-beam) and electromagnetic (EM) wave interactions.

Parametric modeling of serpentine waveguide TWTs is presented as a key advancement in un-

derstanding wave propagation and amplification in TWTs. We developed a model for TWTs

and applied it to helix TWT and serpentine TWT which are well-known types of TWTs in the

industry. This model provides insight into optimizing beam-wave interactions for maximum

gain without dealing with the high burden of PIC simulation. Furthermore, the dissertation

explores multi-stage TWT designs, introducing the concept of severs—components that stop

RF wave propagation at the middle of TWT to prevent back reflections and improve stability.

Additionally, the work investigates the small-signal behavior of TWTs, examining how small

perturbations in beam current, phase velocity, or input power affect the overall amplifica-
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tion process. Numerical simulations and theoretical models are provided to compare various

TWT configurations, offering a clear pathway to design improvements that maximize gain

while minimizing energy loss. By bridging the gap between theoretical modeling and prac-

tical implementation, this dissertation contributes to the development of more efficient, and

high-performing TWTs, making them well-suited to next-generation communication where

power, efficiency, and bandwidth are paramount importance.
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Chapter 1

Introduction

1.1 Exceptional Point of Degeneracy

Exceptional points of degeneracy (EPDs) represent a profound physical phenomenon where

two or more eigenvalues and their corresponding eigenvectors coalesce into a single eigenmode

under certain conditions [3, 4, 5, 6, 7, 8]. We denote these points as EPD, and the degeneracy

order represents the number of coalescing eigenmodes. This point of coalescence occurs in the

parameter space of a system and is distinctly different from conventional degeneracy, which

often refers to the matching of eigenvalues without the simultaneous merging of eigenvectors.

Such a condition is also simply referred to as “EP” in various works [9, 10]; here, the

“D” is used to stress the importance of the degeneracy [11]. The concept of EPDs has

received significant attention due to its wide range of applications across various domains,

including electromagnetics, optics, and quantum mechanics [12, 13, 14, 15, 16, 17]. A general

description of possible electromagnetic (EM) structures that may exhibit EPDs is shown in

Figure 1.1. The structures were categorized into four main categories.

It is possible to observe the EPD phenomenon in EM systems, waveguides, and circuits.
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In multimodal waveguides, for instance, eigenvectors may coalesce into a single eigenvector

as parameters such as frequency or geometrical properties of the structure are varied [18].

This condition leads to unique behaviors such as diverging waves in time and space, as

explored in time-varying structures [19]. In such cases, the system matrix is defective and

non-diagonalizable, a characteristic that distinguishes EPD from typical degeneracies where

the system matrix is diagonalizable [20, 21]. However, EPDs are not common in nature but

can be engineered into various structures for significant performance enhancements in devices

such as sensors, amplifiers, and oscillators [15]. For example, periodic guiding structures can

exhibit EPDs at the band edges where group velocity approaches zero. This class of EPDs

is known as the Regular Band Edge (RBE), where two Floquet-Bloch eigenwaves coalesce at

the Brillouin zone edge [22]. Higher-order EPDs, such as the Degenerate Band Edge (DBE),

can also be found in more complex periodic systems. These higher-order degeneracy are

particularly advantageous in microwave and photonic applications, allowing for the creation

of high-power and highly efficient devices [23]. Also, an EPD occurs in systems where the

evolution of the system vector, in space or time, is described by a non-Hermitian matrix

which can be imposed by periodicity [24, 20, 19] or by having losses and gain in the system

[6, 7, 25, 26, 27]. EPDs of second order may occur with asymmetric distributions of gain

and loss in uniform CTLs [25, 28]. Also, in [28] second order EPDs in uniform CTLs with

loss and gain have been investigated from the bifurcation theory point of view. Forth order

EPDs have been demonstrated in [29] using waveguides without loss and gain, and also with

loss and gain.

Another intriguing aspect of EPDs arises in Parity-Time (PT)-symmetric systems, where

the system’s refractive index obeys the condition n(x) = n∗(−x), where the asterisk means

complex conjugation, leading to a symmetric balance of gain and loss [30, 31, 7]. PT-

symmetric systems are known for having a real-valued spectrum when the PT symmetry is

unbroken, and a transition from real to complex eigenvalues occurs at the EPD, also known

as the bifurcation point [32, 33, 28]. This transition is critical in systems such as coupled
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Figure 1.1: Classification of the different structure and topologies that can exhibit EPDs.

waveguides and resonators, where the interplay between gain and loss leads to fascinating

phenomena like low-threshold lasing and enhanced sensitivity in sensors [34, 35].

The occurrence of EPDs is not limited to systems with PT-symmetry. EPDs can also be

found in systems with periodic spatial or temporal variations, even in the absence of gain

and loss. In periodic structures, for instance, EPDs manifest at the cut-off frequencies

or zero frequencies in waveguides, leading to interesting degeneracy related to EM band

gaps [18, 36, 24]. Time-varying systems, on the other hand, can exhibit EPDs when the

system parameters, such as frequency or gain and loss, are periodically changed. Under

such conditions, the eigenvalues and eigenvectors coalesce, resulting in unique resonance

behaviors.

In summary, the exploration of EPD offers a rich and versatile framework for advancing

the design and performance of various electromagnetic and waveguide devices. Through

careful engineering of system parameters, EPDs can be exploited to achieve superior device

functionalities, making them a key focus of ongoing research in high-power microwave, RF

systems, and beyond.
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1.2 Applications of EPD

EPDs hold significant potential in various applications due to their ability to enhance sys-

tem performance through careful parameter design. EPDs are implemented in systems such

as sensors, oscillators, and amplifiers to achieve remarkable properties like ultra-sensitivity,

high efficiency, and enhanced nonlinear effects. This section explores the wide-ranging ap-

plications of EPDs and how their presence improves system functionality.

1.2.1 Sensors

EPDs play a crucial role in developing sensors with ultra-sensitivity to small perturbations.

In optical microcavity systems, for instance, traditional sensing methods depend on changes

in linewidth, frequency shift, or splitting of a resonance, which scales proportionally to

perturbation strength. However, by operating at EPDs, sensors can achieve significantly

enhanced sensitivity.

In PT-symmetric systems, EPDs are obtained by carefully balancing gain and loss parame-

ters. Such systems exhibit real eigenfrequencies, leading to sharp resonances, which enhance

spectral resolution beyond what passive systems can achieve. This improvement in spectral

resolution directly impacts the sensor’s ability to detect minor changes in the environment

[37, 38].

For example, the study in [37] reports the observation of EPDs in a coupled-cavity photonic

laser, where a precisely tailored gain-loss distribution enabled the system to operate at

an EPD. In this configuration, the frequency response follows a cube-root dependence on

refractive index perturbations, highlighting the sensitivity of such a system to structural

changes. Similarly, another study in [38] demonstrates a sensor design based on a whispering-

gallery mode microtoroid cavity, where nanoscale scatterers introduced EPDs that led to
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enhanced sensitivity. Due to the frequency splitting resulting from the perturbation strength,

the system is much more sensitive than traditional sensors.

1.2.2 Oscillators

EPD-based oscillators offer significant efficiency improvements, especially for radio-frequency

(RF) and microwave sources. The key advantage of these oscillators lies in their ability to

utilize modal degeneracy, which allows for reduced oscillation thresholds, frequency indepen-

dence from load variations, and the elimination of active output buffer stages.

For example, the degeneracy condition can be exploited in spatially periodic coupled trans-

mission lines (TLs), where multiple Bloch eigenmodes coalesce into a single eigenmode at

the band edge. This results in high-Q resonances and improved efficiency. Various oscil-

lator designs based on EPDs have been proposed, including the DBE oscillator made from

a double-ladder resonant circuit. This design shows enhanced performance, such as lower

oscillation thresholds and improved output loading robustness.

Another oscillator design uses a periodically-loaded circular waveguide structure to support

slow-wave electromagnetic modes that coupled with a linear electron beam. Here, the coales-

cence of four degenerate modes (in the ”cold” structure) results in the so called ”multi-mode

synchronization regime” resulting in low beam current requirements for oscillation initiation,

further improving efficiency [39, 40, 41]. Analogously, microstrip-based oscillators achieve

EPDs through spatial periodicity in coupled microstrip lines leading to a DBE in the lossless

waveguides; the system oscillates at the DE frequency when small gain is introduced [42, 43].

Finally, a new class of array oscillators have been proposed using waveguides where gain

elements compensate for radiation loss of arrayed antennas, paving the way to high power

highly-synchronous directive radiation [44, 45].
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1.2.3 Amplifiers

EPD-based amplifiers have been proposed as a solution to exceeding the performance lim-

its of conventional amplification techniques. These amplifiers, operating under degeneracy

conditions, can achieve higher gain and greater efficiency [17].

The core principle behind these amplifiers lies in the electromagnetic eigenmode degeneracy

in periodic slow-wave structures (SWS). The third-order degeneracy, known as stationary in-

flection points (SIPs), coalesces three Floquet-Bloch eigenmodes, leading to amplified perfor-

mance. When synchronized with an electron beam (e-beam), a periodic structure operating

at an SIP offers possible advantages, such as gain enhancement, improved gain-bandwidth

products, and higher power efficiency [23].

1.3 Traveling Wave Tubes

Traveling wave tubes (TWTs) are high-gain, high-frequency amplifiers that play a crucial role

in various communication and radar systems [46]. Since their invention in the 1940s, TWTs

have remained indispensable due to their unique ability to amplify microwave signals over

a broad range of frequencies, which cannot be easily achieved with conventional amplifiers.

The operational principle of a TWT relies on the interaction between an electron beam

(e-beam) and an RF signal traveling along an SWS, which allows for continuous energy

transfer between them [47]. This continuous interaction ensures that even weak signals can

be amplified significantly without being limited by resonance frequency bands.

In the TWTs, amplification is achieved through the interaction between an e-beam and EM

wave traveling along the SWS. A typical TWT is shown in Figure 1.2. The e-beam is typi-

cally generated by an electron gun, accelerated through a vacuum tube, and directed along

the SWS, where it interacts with the RF signal [48, 49]. As the EM wave propagates along
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the structure at nearly the same velocity as the e-beam, synchronism is established, allow-

ing electrons to transfer energy efficiently to the EM wave, leading to signal amplification.

This process relies on electron bunching, where the EM field influences the e-beam, causing

electrons to cluster and create a space-charge wave that further amplifies the RF field by

inducing additional current back into the RF circuit, enhancing the electron bunching effect.

This positive feedback amplifies the EM field as the RF signal travels down the structure

where the large RF signal is collected at the output. The SWS plays a crucial role by pro-

viding slow-wave modes that match the electron velocity, which is typically a fraction of the

speed of light, ensuring in-phase interaction and efficient extraction of kinetic energy from

the e-beam. This mechanism enables TWTs to operate across a wide frequency spectrum,

from several GHz up to millimeter-wave frequencies, and allows for high power output and

linearity, making TWTs ideal for applications that require both high efficiency and minimal

signal distortion, such as satellite communications, radar, scientific research, and electronic

warfare [47].

1.4 Applications of TWTs

There are several variants of TWTs, each designed with specific applications and performance

characteristics in mind.

1.4.1 Helix TWTs

The helix TWT is one of the earliest and most commonly used types. It features a helix-

shaped slow-wave structure that enables wideband amplification [50]. The helix serves to

slow down the RF wave to match the velocity of the e-beam, facilitating continuous energy

transfer across a broad frequency range. Helix TWTs can operate at frequencies from a
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Figure 1.2: Schematic representation of a TWT with the required components. As the input
RF signal enters the input port on the left, the amplified output signal is extracted from the
output port on the right. The original illustration is adapted from Encyclopedia Britannica,
and the colors and composition were modified by the author.

few GHz up to millimeter-wave bands, typically offering wide bandwidths and moderate

power output [51]. These characteristics make them ideal for use in satellite communication

systems, terrestrial microwave links, and telemetry systems, where broad frequency coverage

and consistent amplification are required.

1.4.2 Coupled-Cavity TWTs

Coupled-cavity (CC) TWTs use a series of resonant cavities instead of continuous SWS

[52, 53]. The EM wave interacts with the e-beam at specific intervals determined by cavity

spacing. This design allows CCTWTs to achieve higher power output than helix TWTs,

though typically at the expense of bandwidth [54, 55]. These TWTs are most suitable for

applications requiring high-power amplification in a narrow frequency range, such as military

radar systems and electronic warfare devices. The precise tuning of CCTWTs makes them

well-suited to environments where signal integrity and power are critical.
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1.4.3 Folded Waveguide TWTs / Serpentine Waveguide TWTs

Folded waveguide (FW) TWTs represent an evolution in TWT design, offering improved

efficiency and compactness for high-frequency applications [56, 57]. In this design, the SWS

consists of a waveguide that is ”folded” into a series of tight, parallel sections, which sig-

nificantly slows the phase velocity of the RF signal to match the e-beam. This allows the

device to operate at higher frequencies than helix TWTs while providing efficient amplifi-

cation over a moderately wide bandwidth [58]. The FW structure is inherently robust and

compact, reducing losses and enhancing thermal performance. These characteristics make

FWTWTs ideal for use in applications such as millimeter-wave radar, electronic warfare, and

space-borne communication systems, where both high power and efficient heat dissipation

are crucial.

FWTWTs also offer the advantage of high gain and lower noise levels, making them a

preferred choice in situations where signal integrity is paramount [46]. For instance, in high-

resolution radar systems and satellite transponders, the folded waveguide design ensures

that the amplified signal remains clear and precise, even at high frequencies where other

TWT types may introduce more distortion or signal degradation. Additionally, these TWTs

are valued for their long operational lifetimes and reliability in harsh environments, making

them well-suited to aerospace and defense applications.

The primary difference between serpentine waveguide (SW) TWTs and FWTWTs lies in

the design and geometry of their SWS, which directly affects their performance character-

istics. SWTWTs use a meandering or serpentine path for the waveguide, where the wave

travels through multiple bends, slowing the phase velocity of the RF signal to match that

of the e-beam. In other words, an SW has a winding, snake-like path, whereas an FW is

essentially a flat waveguide that is folded back and forth on itself to slow down the EM wave,

allowing for better interaction with the e-beam. This design offers a compact form factor
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and is typically used for moderate power applications, where the primary goal is to achieve

wideband operation in a relatively small package. On the other hand, FWTWTs feature

a more tightly folded or zigzag structure that compresses the waveguide into even smaller,

parallel sections. This design is optimized for high-frequency operation and better thermal

management, allowing the FWTWT to handle higher power and maintain efficiency in more

demanding environments. While both types offer advantages in terms of bandwidth and

compactness, FWTWTs are generally preferred for high-power, high-frequency applications,

where efficiency and power output are crucial, whereas SWTWTs are often used when size

constraints are more critical.

1.5 Classification of Different Types of TWTs

TWTs can be classified based on several factors, including their SWSs, the application they

are designed for, and their operating frequency range. In the following classification, TWTs

are divided into a number of categories.

1.5.1 Based on SWS

• Helix TWT: Characterized by a helix-shaped SWS, these TWTs offer wide bandwidth

and are commonly used in communication systems such as satellite transponders and

microwave links.

• CCTWT: Utilizing a series of resonant cavities, this type of TWT is suited for high-

power applications with narrow bandwidth, typically used in radar and military sys-

tems.

• FWTWT: Featuring a folded or zigzag waveguide structure, FWTWTs are compact

and provide high-efficiency amplification at millimeter-wave frequencies. They are used
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in space-borne systems, radar, and electronic warfare.

• SWTWT: These TWTs use a meandering waveguide path to slow down the RF wave.

They are compact, provide moderate power, and are suitable for wideband applications

where space is limited.

1.5.2 Based on Applications

• Communication TWTs: Primarily helix TWTs are used due to their wide band-

width, making them ideal for satellite communications, television broadcasting, and

telemetry systems.

• Radar and Electronic Warfare TWTs: CCTWTs and FWTWTs are used in

applications requiring high power and precision, such as military radar, air traffic

control, and electronic warfare systems.

• Scientific and Medical TWTs: These TWTs are designed for high precision and

power output, used in particle accelerators, plasma research, and medical devices like

linear accelerators for cancer treatment.

• Space Exploration TWTs: TWTs are employed in deep-space communication sys-

tems, providing reliable, high-power amplification for signals transmitted over vast

distances. They are essential for spacecraft communications and data relay on inter-

planetary missions.

• Industrial Processing TWTs: Used in industrial processing applications requir-

ing high energy, such as microwave heating, drying, and material processing, where

precision and controlled power are crucial.

• Instrumentation and Test TWTs: These TWTs are used in laboratory and indus-

trial test equipment, enabling accurate signal generation and amplification for testing
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various electronic and communication components.

• Security and Surveillance TWTs: TWTs provide high-power amplification in se-

curity and surveillance radar systems, including those used in perimeter monitoring,

maritime patrol, and border security.

1.5.3 Based on Frequency Range

• Low-Frequency TWTs (GHz Range): These TWTs operate in the GHz frequency

range and typically include helix TWTs for communication applications.

• High-Frequency TWTs (Millimeter-Wave Range): FWTWTs and SWTWTs

are commonly employed at millimeter-wave frequencies, where high power and efficient

amplification are needed.

1.6 Application of TWTs

TWTs are integral to a vast array of high-frequency systems, thanks to their ability to

offer high-power amplification over a wide frequency range with excellent linearity [46]. In

satellite communications, TWTs are used as the primary amplifiers in satellite transponders,

where they are responsible for boosting signals transmitted from Earth to space and vice

versa. The wide bandwidth of TWTs allows for the simultaneous transmission of numerous

communication channels, enabling a variety of services including television broadcasting,

internet access, and secure communications. Their high power output ensures that signals

can be transmitted over long distances with minimal loss of fidelity, a critical requirement

for maintaining reliable satellite links.

In radar systems, particularly in military and air traffic control applications, TWTs provide
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the power needed to transmit radar signals over great distances and to detect objects with

high precision [51]. TWTs are essential for both continuous-wave and pulsed radar systems,

where their high efficiency and ability to operate at microwave and millimeter-wave frequen-

cies allow for superior detection capabilities. In military radar systems, TWTs enhance the

ability to track fast-moving objects, while in air traffic control, they help ensure aircraft

safety by providing real-time data on their positions.

TWTs are also widely used in electronic warfare systems, where their broad bandwidth

enables the generation of powerful jamming signals that can disrupt communication and

radar systems across a wide spectrum. The ability to generate high-power, wideband signals

is particularly valuable in modern electronic warfare, where adversaries may employ various

communication methods over a wide range of frequencies.

In scientific research, TWTs are used in fields such as particle physics and plasma research

[59]. They are integral components of particle accelerators, where they provide the microwave

energy needed to accelerate charged particles to near-light speeds. TWTs are also employed

in plasma heating systems for nuclear fusion research, where their high-frequency output

is used to heat and sustain plasma for experiments aimed at developing sustainable fusion

energy.

Additionally, TWTs find application in medical devices like linear accelerators, which are

used for radiation therapy in cancer treatment. In these systems, TWTs amplify the mi-

crowave signals that generate high-energy x-rays used to target and destroy cancerous cells

while sparing surrounding healthy tissue. TWT reliability and precision in these medical

applications are critical to ensuring patient safety and treatment efficacy.

TWT amplifiers offer several advantages over semiconductor amplifiers, particularly in ap-

plications requiring high power and wide bandwidth. TWTs can operate at much higher

power levels than typical semiconductor amplifiers, making them suitable for systems such
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as satellite communications and radar, where substantial signal strength is essential over

long distances [60]. Additionally, TWTs provide a broader frequency range, often covering

multiple GHz, which supports a wider array of channels or signals simultaneously—critical in

both communication and scientific applications. Their inherent linearity is another significant

advantage, enabling TWTs to handle complex modulation schemes with minimal signal dis-

tortion, a key factor in maintaining fidelity for data transmission. Moreover, TWTs tend to

have better thermal stability in high-power operations, whereas semiconductor amplifiers can

suffer from heat dissipation challenges at similar power outputs [60]. These characteristics

make TWT amplifiers especially advantageous in demanding environments and applications

where reliability, power, and bandwidth are prioritized.

In summary, traveling wave tubes are versatile and powerful devices that have been es-

sential in advancing technology in communications, radar, electronic warfare, and scientific

research. Their ability to amplify signals over a wide range of frequencies with high effi-

ciency and linearity makes them invaluable for both commercial and military applications.

As technology continues to demand higher frequencies, greater bandwidth, and more pow-

erful signals, TWTs will remain a critical component in the evolution of high-frequency

electronic systems.

1.7 Organization of the Dissertation and Contents

Chapter 2: This chapter focuses on a system comprising a gyrator and two unstable res-

onators, which is designed to exhibit EPD. The gyrator is a non-reciprocal element and

couples two LC resonators, both intentionally designed with negative inductances or capac-

itances, creating instability. These instabilities are key to achieving the desired degenerate

state. We further explore various configurations, such as when both inductances are nega-

tive or when both capacitances are negative, to demonstrate how the system reaches EPD.
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A significant portion of the analysis is dedicated to frequency-domain analysis, where the

resonance frequencies are examined in both lossless and lossy circuits. The role of loss is also

considered, showing how EPDs can still occur in circuits that experience damping, though

with different sensitivity characteristics. The practical implications of this are explored in

a liquid level sensing application, where the extremely high sensitivity near the EPD is uti-

lized to measure changes in liquid content by detecting shifts in resonance frequencies. This

chapter concludes by illustrating the potential of this system to serve as a high-precision

sensor, especially in applications that require detecting small environmental changes.

Chapter 3: This chapter extends the work from Chapter 2 by investigating various config-

urations of gyrator-based circuits, all of which exhibit EPDs. It discusses both series and

parallel configurations of LC resonators connected via a gyrator. The first part of the chap-

ter provides an in-depth review of the theoretical background, explaining how second-order

and third-order EPDs occur in these circuits. A second-order EPD occurs when two eigen-

modes merge, while third-order EPDs involve the coalescence of three eigenmodes, leading

to even greater sensitivity. The chapter then details the mathematical framework for an-

alyzing the eigenfrequencies of these circuits, with a focus on how small perturbations in

system parameters, such as capacitance or inductance, affect the eigenfrequencies near the

EPD. This characteristic makes these systems ideal candidates for high-sensitivity sensors.

Additionally, the chapter discusses the physical realization of both stable and unstable EPD

frequencies, and how these can be controlled by adjusting the circuit components. The abil-

ity to manipulate the order of the EPDs, as well as the sensitivity of the circuit to parameter

changes, is highlighted as a major advantage in designing precision sensors or oscillators.

Chapter 4: In this chapter, the focus shifts to a simple, reciprocal circuit that still exhibits

an EPD. This system consists of two LC resonators (series and parallel) coupled via a shared

capacitor. The circuit is reciprocal, meaning it does not require a gyrator, yet it achieves

a similar Jordan canonical form to that of more complex nonreciprocal systems. This is
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significant because it shows that a simpler, more easily realizable system can still demonstrate

the desirable properties of EPD, including enhanced sensitivity to perturbations. The chapter

delves into the mathematical formulation of the circuit, providing a detailed analysis of its

eigenvalues and the conditions under which it reaches EPD. The coalescence of eigenmodes

is discussed in terms of the system’s Lagrangian and Hamiltonian structures, which further

illuminate how symmetry plays a role in the circuit’s behavior. This theoretical framework

is complemented by numerical simulations, which show excellent agreement with analytical

results. Given its simplicity and ease of implementation, this reciprocal circuit offers a

more accessible pathway to designing high-sensitivity systems without the need for complex

nonreciprocal elements.

Chapter 5: This chapter introduces the concept of time modulation as a means of enhancing

energy harvesting from external vibrations. The primary focus is on mechanical systems

that convert vibrational energy into electrical energy, a process that is often limited by the

efficiency of the energy conversion mechanism. By introducing time-periodic modulation of

certain system parameters, such as the damping coefficient, the energy harvested can be

increased significantly. The time modulation creates a dynamic EPD in the system, which

allows it to resonate more efficiently with external vibrations and thus extract more energy.

The chapter begins by explaining the underlying physics of time modulation and its effect

on system eigenmodes. It then presents a mathematical derivation of the EPD condition

in a time-modulated mechanical system, followed by a dual circuit analog that clarifies the

electrical equivalent of the mechanical process. Detailed simulations show how different

modulation frequencies affect power output. A key result is that time modulation at specific

frequencies can increase harvested power by an order of magnitude compared to systems

without modulation.

Chapter 6: This chapter explores the use of space-time modulation in a single TL to in-

duce EPDs. Unlike previous chapters, which rely on circuit components like inductors and
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capacitors, this chapter demonstrates how the distributed parameters of a TL—such as its

capacitance—can be modulated in time and space to achieve an EPD. This approach is

particularly promising for applications in microwave circuits and telecommunications, where

modulated TLs can be used. The chapter begins with a background on space-time modula-

tion and its effects on wave propagation in TLs. It then presents a detailed mathematical

analysis of how periodic modulation of per-unit-length capacitance leads to eigenmode coa-

lescence. This phenomenon creates a second-order EPD, where the system’s wavenumbers

exhibit a square-root dependence on small perturbations. The practical significance of this

result lies in the fact that such systems can be used to design highly sensitive sensors or am-

plifiers, with the TL acting as both the signal propagation medium and the sensor element.

This dual functionality makes the space-time modulated TL a highly efficient and compact

design for next-generation electronic devices.

Chapter 7: This chapter serves to bridge the gap between the two main concepts explored

in this thesis, namely, EPD and TWT. This chapter discusses the occurrence of EPDs in

TWTs with dispersive SWS and accounts for space-charge effects. TWTs are widely used in

high-power microwave amplification, and this chapter explores how introducing dispersive

media and space-charge effects can lead to exceptional degeneracy. The chapter begins with

an overview of how TWTs operate, followed by a detailed mathematical formulation of the

conditions required for an EPD in such systems. By carefully tuning the SWS parameters,

such as its phase velocity and impedance, it is possible to achieve an EPD, which leads to

enhanced gain and efficiency in the TWT. The chapter provides a practical example using

a realistic helix TWT, showing how theoretical predictions align with simulation results.

This work has significant implications for the design of more efficient high-power amplifiers,

especially in applications where compact size and high performance are critical.

Chapter 8: This chapter delves into the parametric modeling of SWTWTs, a type of SWS

commonly used in microwave amplification. The chapter provides a comprehensive analysis

17



of SW, beginning with an equivalent circuit model that describes cold (unpowered) SWS.

This model is used to study the wave propagation characteristics in SW, including its dis-

persion and interaction impedance. The chapter also introduces the concept of a cascaded

circuit model, where each segment of SW is modeled as a TL. In addition to the cold SWS,

the chapter discusses the interaction between the e-beam and the EM wave in the hot (pow-

ered) SWS. This interaction is key to understanding the gain and efficiency of the TWT.

The chapter also presents a detailed analysis of the on-axis electric field distribution within

the beam tunnel and how it affects the interaction impedance. The theoretical findings are

validated through simulations, which show excellent agreement with the circuit model. This

work provides valuable insights into the design of SWTWTs, particularly in optimizing their

gain and efficiency.

Chapter 9: This chapter presents a small-signal model for multi-stage SWTWTs, with a

particular focus on the use of severs. A sever is a device used to interrupt EM wave in a

multi-stage TWT, which improves stability by reducing reflections. The chapter begins by

outlining the theoretical background for modeling small-signal interactions in TWTs and

then applies this model to a two-stage SWTWT with ideal and realistic severs. The model

is used to predict the TWT gain at different frequencies, and the results are compared with

simulations. The chapter also explores the design of a wedge-shaped sever, which introduces

losses in a controlled manner to attenuate the wave. By comparing theoretical predictions

with simulation results, we demonstrate how severs can be optimized to mitigate instability

and better performance in multi-stage TWTs. This work has important implications for the

design of high-power microwave amplifiers with multiple stages.

Chapter 10: The final chapter provides an in-depth analysis of wavepacket propagation in

TWTs. Wavepackets are short bursts of EM waves that propagate through the SWS of a

TWT, and their behavior is critical to understanding the device’s performance. The chap-

ter begins by reviewing the fundamental equations of wavepacket propagation in dispersive

18



media, followed by a detailed analysis of how different design parameters, such as the SWS

geometry and the beam-wave interaction, affect wavepacket propagation. One of the key

findings is that wavepacket propagation is highly sensitive to the signal frequency near the

EPD. When the pulse frequency composition is close to the transition point between sta-

ble and unstable modes, the propagated wavepacket can distort dramatically. The chapter

provides several examples of wavepacket behavior in realistic TWTs, showing how these

phenomena can be used to analyze the device’s performance.
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Chapter 2

Exceptional Point in Degenerate

System Made of Gyrator and Two

Unstable Resonators

We demonstrate that a circuit comprising two unstable LC resonators coupled via a gyrator

supports an EPD with purely real eigenfrequency. Each of the two resonators includes either

a capacitor or an inductor with a negative value, showing a purely imaginary resonance fre-

quency when not coupled to the other via the gyrator. With external perturbation imposed

on the system, we show analytically that the resonance frequency response of the circuit

follows the square-root dependence on perturbation, leading to possible sensor applications.

Furthermore, the effect of small losses in the resonators has been investigated, and we show

that losses lead to instability. In addition, the EPD occurrence and sensitivity are demon-

strated by showing that the relevant Puiseux fractional power series expansion describes the

eigenfrequency bifurcation near the EPD. The EPD has the great potential to enhance the

sensitivity of a sensing system by orders of magnitude.
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2.1 Background, Motivation, and State of the Art

An EPD is a point in parameter space at which the eigenmodes of the circuit, namely

the eigenvalues and the eigenvectors, coalesce simultaneously [3, 61, 4, 62, 63, 18, 64, 24,

65]. As the remarkable feature of an EPD is the strong full degeneracy of at least two

eigenmodes, as mentioned in [11], the significance of referring to it as a “degeneracy” is here

emphasized, hence including “D” in the EPD. An EPD in the system is reached when the

system matrix is similar to a matrix that contains a non-trivial Jordan block. EPD-induced

sensitivity according to the concept of PT-symmetry in multiple coupled resonators has been

studied [66, 67, 12]. Also, the electronic circuits with EPD based on PT-symmetry have been

expressed in [9, 33] and then more developed in [68, 69] where the circuits are made of two

coupled resonators with gain-loss symmetry and a proper combination of parameters leads to

an EPD. Primarily, it has been confirmed that the eigenvalues bifurcation feature at EPD can

significantly increase the effect of external perturbation; namely, the sensitivity of resonance

frequency to component value perturbations can be enhanced. Moreover, frequency splitting

happens at degenerate frequencies of the system where eigenmodes coalesce, and this feature

at EPDs has been investigated to conceive a new generation of sensors [70, 71, 72, 15].

The resulting perturbation leads to a shift in the system resonance frequency that can

be recognized and measured using the proper measurement setup [70]. When a second-

order EPD at which specifically two eigenstates coalesce is subjected to a small external

perturbation, the resulting eigenvalue splitting is proportional to the square root of the

external perturbation value, which is bigger than the case of linear splitting for conventional

degeneracies [73]. The concept of EPD has been employed in various sensing schemes such

as optical microcavities [12], optical microdisk [74], e-beam devices [75], mass sensors [76],

and bending curvature sensors [77].

The gyrator is a two-terminal network in which the transmission phase shift in one direction

differs by π from the transmission phase shift in the reverse direction [78]. Another property
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of the gyrator network is that of impedance inversion. The inductance at the output of the

gyrator is observed as capacitance at the input port, and a voltage source is transformed to

a current source. A relevant alias for the gyrator might be the “dualizer” since it can inter-

change current and voltage roles and turns an impedance into its dual [79]. Gyrators could

be designed directly as integrated circuits [80, 81]. Also, many opamp-based gyrator circuits

have been proposed [82, 83, 84], which can be classified into two types. First, 3-terminal

gyrator circuits in which both ports are grounded [82]; second, 4-terminal gyrator circuits in

which the output port is floating [83, 84]. Because of the availability of different realizable

circuits for gyrators and their versatility as practical circuit devices, gyrator-based circuits

may form an essential part of integrated circuit technology in a wide range of applications.

In this chapter, we study the second-order EPDs in a gyrator-based sensing circuit as Figure

2.1 and explore its enhanced sensitivity (variation in the sensor’s resonance frequencies to

external perturbations) and its potential for sensing devices in the vicinity of the EPD. At

the EPD, the degeneracy is in both the real and imaginary parts of the eigenvalues, as well

as in the eigenvectors. Two series LC resonators are coupled in the utilized circuit via an

ideal gyrator, as explained in [85]. Contrary to the study in [85], this chapter demonstrates

the conditions to get the EPD with real eigenfrequency by using unstable resonators. In

other words, we study the case of two unstable resonators coupled via an ideal gyrator. A

general mathematical approach for constructing lossless circuits for any conceivable Jordan

structure has been developed in [86], including the simplest possible circuit as in Figure 2.1

and other circuits related to the Jordan blocks of higher dimensions. In addition, impor-

tant issues related to operational stability, perturbation analysis, and sensitivity analysis

are studied in [87], whereas analysis of stability or instability by adding losses to the cir-

cuit is not discussed. We show that the gyrator-based circuit can achieve EPD with real

eigenfrequency even when two unstable resonators are used in the circuit. Hence, dispersion

diagrams corresponding to perturbations in the circuit’s parameters show the eigenfrequen-

cies split. Then, we show examples for different cases and analyze the voltage signals by
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using time-domain simulations. We then study the impact of small losses in the circuit and

explain how they can make it unstable. Besides, we look at the sensitivity of circuit eigen-

frequencies to component variations, and we show that the Puiseux fractional power series

expansion well approximates the bifurcation of the eigenfrequency diagram near the EPD

[4]. The sensitivity enhancement is attributed to the second root topology of the eigenvalues

in parameter space, peculiar to the second-order EPD. Lastly, we examine the gyrator-based

circuit’s enhanced sensitivity and provide a practical scenario to detect physical parameter

variations and material characteristics changes. This work is important for understanding

the instability in the coupled resonators circuit, in addition to exploring EPD physics in

gyrator-based circuits. The given analysis and circuit show promising potential in novel

ultra high-sensitive sensing applications.

2.2 Gyrator Characteristic

A gyrator is a two-port component that couples an input port to an output port by a

gyration resistance value. It is a lossless and storage-less two-port network that converts

circuits at the gyrator output into their duals, with respect to the gyration resistance value

[88]. For instance, this component can make a capacitive circuit behave inductively, a series

LC resonator behave like a parallel LC resonator, and so on. This device allows network

realizations of two-port devices, which cannot be realized by just the basic components,

i.e., resistors, inductors, capacitors, and transformers. In addition, the gyrator could be

considered a more fundamental circuit component than the ideal transformer because an

ideal transformer can be made by cascading two ideal gyrators, but a gyrator cannot be

made from transformers [78]. The circuit symbol for the ideal gyrator is represented in

Figure 2.1 (red dashed box), and the defining equations are [78, 89]
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
v2 = Rgi1

v1 = −Rgi2

(2.1)

where Rg is called gyration resistance and has a unit of Ohm. A gyrator is a nonreciprocal

two-port network represented by an asymmetric impedance matrix Zg as [89]

Zg =


0 −Rg

Rg 0

 . (2.2)

2.3 EPD Condition in The Lossless Gyrator-based Cir-

cuit

This section provides an analysis of a gyrator-based circuit in which two series LC resonators

are coupled via an ideal gyrator as illustrated in Figure 2.1. In the first step, we consider

the circuit’s components to be lossless. The circuit resembles the one in [85], but here the

two resonance angular frequencies ω01 = 1/
√
C1L1 and ω02 = 1/

√
C2L2 of the two uncoupled

resonators are imaginary with a negative sign (also the counterpart with the positive sign is a

resonance), since we consider three cases: (i) both L1 and L2 are negative while the capacitors

have positive values, (ii) both C1 and C2 are negative while the inductors have positive values,

and (iii) L1(C1) and C2(L2) are negative while other elements have positive values. Then, we

investigate the conditions for an EPD to occur in the three cases just mentioned. In realistic

sensing devices, various sensor types are used. For instance, capacitive sensors are used

to sense humidity, temperature, and distance. Proximity sensors and distance measurement

sensors are available on the market, which operate based on electromagnetic induction, hence
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Figure 2.1: The schematic illustration of the proposed gyrator-based circuit with the ideal
gyrator is indicated by the red dashed box. In this circuit, two different (unstable) LC
resonators are embedded in a series configuration, coupled via an ideal gyrator.

the variation of inductance mutual coupling. Some other sensors are based on a perturbation

of the inductance. Therefore, both the inductance and capacitance can be used as sensing

components, and we will investigate both cases in two separate subsections.

In the past years, EPDs have been found by using balanced loss and gain in a PT-symmetry

scheme [33, 12]. More recently, EPDs have also been found in systems with time-periodic

modulation [19, 90]. Here, we obtain EPDs by using a negative inductance and a negative

capacitance in the gyrator-based circuit, constituting a new class of EPD-based circuits.

We consider the Kirchhoff voltage law equations in the time-domain for two loops of the

circuit in Figure 2.1. In order to find the solution of the circuit differential equations, it

is convenient to define the state vector as Ψ(t) ≡ [Q1, Q2, Q̇1, Q̇2]
T, where T denotes the

transpose operator. The state vector consists of stored charges in the capacitors Qn =
´
indt = Cnvcn , and their time derivative (currents) Q̇n = in, n = 1, 2. We utilize the

Liouvillian formalism for this circuit as [85]
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dΨ(t)

dt
= MΨ(t), M =



0 0 1 0

0 0 0 1

−ω2
01 0 0 Rg

L1

0 −ω2
02 −

Rg

L2
0


, (2.3)

where M is the 4 × 4 circuit matrix. Assuming time harmonic dependence of the form

Qn ∝ ejωt, we obtain the characteristic equation allowing us to find the eigenfrequencies by

solving det(M− jωI) = 0, where I is the identity matrix. The corresponding characteristic

equation of the circuit is

ω4 − ω2

(
ω2
01 + ω2

02 +
R2

g

L1L2

)
+ ω2

01ω
2
02 = 0, (2.4)

where any solution ω is an eigenfrequency of the circuit. In the case of Rg = 0, the two

resonators are uncoupled, and the circuit has two eigenfrequency pairs of ω1,3 = ±ω01, and

ω2,4 = ±ω02, that are purely imaginary (in contrast to the case studies in [85], where the

resonance frequencies have real values). All the ω’s coefficients of the characteristic equation

are real, so ω and ω∗ are both roots of the characteristic equation, where * indicates the

complex conjugate operator. Moreover, it is a quadratic equation in ω2; therefore, ω and

−ω are both solutions of the Equation (2.4). As we mentioned before, we only consider

unstable resonators, i.e., resonators with an imaginary resonance frequency. Therefore, only

one circuit element in each resonator should have a negative value, leading to ω2
01 and ω2

02

with negative values. After finding the solutions of the characteristic equation, the angular

eigenfrequencies (resonance frequencies) of the circuit are expressed as
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ω1,3 = ±
√
a+ b, ω2,4 = ±

√
a− b, (2.5)

where

a =
1

2

(
ω2
01 + ω2

02 + ω2
g

)
, (2.6)

b2 = a2 − ω2
01ω

2
02

, (2.7)

where it has been convenient to define ω2
g = R2

g/(L1L2), that may be positive or negative

depending on the considered case. According to Equation (2.5), the EPD condition requires

b = 0, (2.8)

leading to an EPD angular frequency ωe =
√
a (with its negative pair −ωe). According

to Equation (2.7), the EPD condition is rewritten as a2 = ω2
01ω

2
02. As in [85], we consider

positive values for a to have a real EPD angular frequency ωe , so we have

ω2
01 + ω2

02 + ω2
g > 0. (2.9)

Finally, the EPD frequency is calculated by using Equations (2.6), (2.7), and (2.8) as

ωe =
√

1
2

(
ω2
01 + ω2

02 + ω2
g

)
. (2.10)
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The last equation can also be rewritten as ωe = 4
√

ω2
01ω

2
02, with the quartic square root

defined by taking the positive value; in other words, if we consider that the two unstable

frequencies have the following purely imaginary expression, ω01 = −j/
√
|C1L1| and ω02 =

−j/
√
|C2L2|, the EPD frequency can be expressed as ωe =

√
−ω01ω02. We obtain the

desired value of a real EPD frequency by optimizing the values of the components in the

circuit. Theoretically, the employed optimization method is not critical, and we need to find

the solutions of Equation (2.8). Obviously, practical limitations also affect the selection of

suitable constraints for optimization. In the particular case the two circuits are identical,

one has ω2
0 ≡ ω2

01 = ω2
02 = 1/(LC) < 0, and the EPD condition reduces to 4ω2

0 = −ω2
g,that

in turns leads to the EPD angular frequency ωe =
√
−ω2

0
. In the following subsections, we

analyze the circuit in three different cases, i.e., the three different assumptions mentioned

earlier.

2.3.1 Negative Inductances L1 and L2

As a first case, we consider a negative value for both inductances and a positive value for

both capacitances; hence, in this case ω2
g > 0. According to the required condition for

EPD expressed in Equation (2.8) and by using Equation (2.7), the first and second terms

in Equation (2.6) are negative and the third term is positive. Equation (2.10) shows that, if

|ω2
01 + ω2

02| < ω2
g we obtain a real value for EPD frequency, and if |ω2

01 + ω2
02| > ω2

g, the EPD

frequency yields an imaginary value.

We explain the procedure for obtaining an EPD in this circuit by presenting an example. We

select L1, L2, and C2 to have standard commercial values. Then, the calculated value for C1

can be realized by a combination of the standard capacitors values and a trimmer capacitor.

Various combinations of values for the circuit’s components can satisfy the EPD condition

demonstrated in Equation (2.8), and here as an example, we consider this set of values:
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Figure 2.2: The sensitivity of the (a) real/imaginary parts and (b) magnitude/phase of
the eigenfrequencies to gyration resistance perturbation, while inductances are negative.
Voltage v1(t) under the EPD condition in the (c) time-domain, and (d) frequency-domain.
The frequency-domain result is calculated from 40 kHz to 120 kHz by applying an FFT with
106 samples in the time window of 0ms to 0.4ms. The three-dimensional plot of the (e) real
and (f) imaginary parts of the eigenfrequencies to C1 and C2 perturbation. The real part of
eigenfrequencies for (g) higher and (h) lower value of resonance frequencies which colormap
show the resonance frequency value. The black dashed line in these plots shows the EPD.

L1 = −47 µH, L2 = −47 µH, C2 = 47 nF, and Rg = 50 Ω. Then, the capacitance of the first

resonator is determined by solving the resulting quadratic equation from the EPD condition

demonstrated in Equation (2.8). In this example, we consider C1 as a sensing capacitance

of the circuit, which has a positive value and it can detect variations in environmental

parameters and transform them into electrical quantities. According to Equation (2.8), after

solving the quadratic equation, two different values for capacitance in the first resonator are

calculated, and we consider C1,e = 139.17 nF for the presented example. In this example,

both ω2
01 and ω2

02 have negative values, with ω01 = −j391krad/s, and ω02 = −j672.82krad/s,

leading to a positive result for a in Equation (2.6) and real EPD angular frequency ωe =

512.9 krad/s. The results in Figures 2.2(a), and (b) show the real/imaginary parts and

magnitude/phase of perturbed eigenfrequencies obtained from the eigenvalue problem when

Rg of the ideal gyrator is perturbed, revealing the high sensitivity to perturbations. An EPD

occurs when both eigenvalues and eigenvectors coalesce. Therefore, the eigenvalues coalesce
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in both the real and imaginary parts.

To investigate the time-domain behavior of the circuit under EPD conditions, we use the

Keysight ADS circuit simulator. The transient behavior of the coupled resonators with the

ideal gyrator is simulated using the time-domain solver with an initial condition vc1(0) =

1mV, where vc1(t) is the voltage of the capacitor in the left resonator. Figure 2.2(c) shows the

time-domain simulation results of the voltage v1(t), where v1(t) is the voltage at the gyrator

input port (see Figure 2.1). The extracted result is obtained in the time span of 0 ms to 0.4

ms. The solution of the eigenvalue problem in the Equation (2.3) and at the EPD is different

from any other regular frequency in the dispersion diagram since the system matrix contains

repeated eigenvalues associated with one eigenvector. Thus, the time-domain response of the

circuit at the second-order EPD is expected to be in the form of Ψ(t) ∝ tejωet, as it is indeed

shown in Figure 2.2(c). The envelope of the voltage signal grows linearly with increasing

time, whereas the oscillation frequency is constant. This remarkable feature is peculiar to

an EPD, and it is the result of coalescing eigenvalues and eigenvectors that also correspond

to a double pole in the circuit (or zero, depending on what is observed). We take an FFT of

the voltage v1(t) to show the frequency spectrum, and the calculated result is illustrated in

Figure 2.2(d). The result is calculated from 40 kHz to 120kHz by applying an FFT with 106

samples in the time window of 0ms to 0.4ms. The numerically observed oscillation frequency

is fo = ωo/(2π) = 81.63 kHz, which shows the frequency corresponds to the maximum value

in Figure 2.2(d). The numerically obtained value is in good agreement with the theoretical

value calculated above.

So far, we have used the gyrator-based circuit to measure the perturbation near EPD by

varying the gyrator resistance. Next, we analyze the circuit’s sensitivity to independent per-

turbations in the positive values of both capacitances. We change the capacitance value on

each resonator independently and calculate the eigenfrequencies’ real and imaginary parts.

The three-dimensional result for the calculated eigenfrequencies is illustrated in Figures
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2.2(e), and (f). The elevation value of any point on the surface shows the eigenfrequency,

and the associated color helps to recognize it conveniently. In these figures, only the two

solutions with Re(ω) > 0 are illustrated. Although the resonance frequency of each res-

onator in this chapter is imaginary, in the specific range of C1 and C2, the EPD frequency

is purely real. To utilize these calculated results, the flat version of the three-dimensional

diagram for the real part is provided in Figures 2.2(g), and (h) for higher and lower eigen-

frequency. These figures can help designers in the design procedure to select the proper

value for components to achieve the desired real resonance frequency. The intersection of

two surfaces (eigenfrequencies surface and surface of constant z plane) is a one-dimensional

curve. Therefore, there is a different set of values for capacitances to produce oscillation at

a certain frequency. Moreover, the intersection of the higher eigenfrequencies surface and

lower eigenfrequencies surface indicates the possible EPD that various combinations of ca-

pacitances values can yield. Designers can use these figures to pick the proper value in the

design steps according to their practical limitations.

2.3.2 Negative Capacitances C1 and C2

In the following section, we consider another condition in which negative capacitances are

used on both resonators; so ω2
g > 0. Using the mentioned presumption, the first and sec-

ond terms in Equation (2.6) are negative because of the imaginary value of the resonance

frequencies of resonators, and the third term is positive. So, if the EPD condition is met,

the sign of a in Equation (2.6) indicates whether the eigenfrequency is real or imaginary.

According to Equation (2.5), if |ω2
01 + ω2

02| < ω2
g we get a real value for the EPD frequency,

and if |ω2
01 + ω2

02| > ω2
g, the EPD frequency is imaginary.

Different combinations of values for the circuit’s components can satisfy the EPD condition

demonstrated in Equation (2.8), and here as an example, we use this set of values: C1 =
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Figure 2.3: The sensitivity of the (a) real/imaginary parts and (b) magnitude/phase of
the eigenfrequencies to gyration resistance perturbation, while capacitances are negative.
Voltage v1(t) under the EPD condition in the (c) time-domain, and (d) frequency-domain.
The frequency-domain result is calculated from 100 kHz to 180kHz by applying an FFT with
106 samples in the time window of 0ms to 0.2ms. The three-dimensional plot of the (e) real
and (f) imaginary parts of the eigenfrequencies to L1 and L2 perturbation. The real part of
eigenfrequencies for (g) higher and (h) lower value of resonance frequencies which colormap
show the resonance frequency value. The black dashed line in these plots shows the EPD.

−47 nF, C2 = −47 nF, L2 = 47 µH, and Rg = 50 Ω. The inductance value on the left

resonator is calculated by solving the resulting quadratic equation from Equation (2.8). In

the presented example, L1 can be a sensing inductor in a system. According to Equation

(2.8), two different values for inductance in the first resonator are calculated after solving

the quadratic equation. We consider L1,e = 15.87 µH for this example, so both ω2
01 and ω2

02

have negative values, with ω01 = −j1.16 Mrad/s, and ω02 = −j672.82 krad/s. Then, we

obtain a positive value for a in Equation (2.6), leading to a real EPD angular frequency

of ωe = 881.6 krad/s. The results in Figures 2.3(a), and (b) shows the the real/imaginary

parts and magnitude/phase of eigenfrequencies obtained by perturbing Rg near the value

that made the EPD.

The time-domain simulation result by using the Keysight ADS with an initial condition

v1(0) = 1mV is presented in Figure 2.3(c). The voltage v1(t) is calculated in the time interval

of 0 ms to 0.2 ms. Figure 2.3(c) shows the envelope of v1(t) is growing linearly with increasing
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time. The growing signal demonstrates that the circuit eigenvalues coalesce, and the output

envelope rises linearly at the second-order EPD frequency. In order to evaluate the oscillation

frequency from the time-domain simulation, we take an FFT of voltage v1(t) from 100 kHz

to 180kHz using 106 samples in the time window of 0ms to 0.2ms. The calculated spectrum

is shown in Figure 2.3(d), showing an oscillation frequency of fo = ωo/(2π) = 140.31 kHz,

which is in good agreement with the calculated theoretical value obtained from Equation

(2.10).

In the following step, we investigate the circuit’s sensitivity to independent perturbations

in the value of both inductances. The real and imaginary parts of the eigenfrequencies are

calculated when the values of the inductances are changed. The three-dimensional eigenfre-

quencies map of the two solutions with Re(ω) > 0 is shown in Figures 2.3(e), and (f). In

order to provide a better representation, the flat view of the three-dimensional diagram for

the real part is shown in Figures 2.3(g), and (h) for higher and lower eigenfrequencies.

2.3.3 Negative Inductance on One Side and Negative Capacitance

on the Other Side

In this last case, different constraints for components value are considered. We assume

a component with a negative value on one side (capacitance/inductance) and the other

component with a negative value on the other side (inductance/capacitance); hence, in this

case ω2
g < 0. For instance, we consider a negative inductance on the right resonator and

a negative capacitance on the left resonator. So, we have two unstable resonators when

they are uncoupled. When two resonators are coupled, EPD should satisfy Equation (2.7).

According to Equation (2.10), all terms inside the square root are negative, and the sum of

negative values is always negative. As a result, it is impossible to achieve an EPD with a

real eigenfrequency under the assumption mentioned above. Since we focus on cases with
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real EPD frequency in this chapter, we will skip considering this condition in the rest of the

chapter.

2.4 Frequency-Domain Analysis of the Resonances in

Lossless Gyrator-Based Circuit

We demonstrate how the EPD regime is associated with a special kind of circuit’s resonance,

directly observed in frequency-domain circuit analysis. First, we calculate the transferred

impedance on the left port of the gyrator in Figure 2.1, which is

Ztrans(ω) =
R2

g

Z2(ω)
, (2.11)

where Z2(ω) = jωL2+1/(jωC2) is the impedance of LC tank on the right side of the gyrator.

The total impedance observed from the input port (see Figure 2.1) is

Ztotal(ω) ≜ Z1(ω) + Ztrans(ω) = Z1(ω) +
R2

g

Z2(ω)
, (2.12)

where Z1(ω) = jωL1 + 1/(jωC1) is the impedance of LC tank on the left side of the gy-

rator. The complex-valued resonance frequencies of the circuit are calculated by imposing

Ztotal(ω) = 0. Figure 2.4 shows the zeros of such total impedance Ztotal(ω) for various gy-

ration resistance values (arrows represent growing Rg values). When considering the EPD

gyrator resistance Rg = Rg,e = 50Ω, one has Ztotal(ω) ∝ (ω − ωe)
2, i.e., the two zeros co-

incide with the EPD angular frequency ωe, that is also the point where the two curves in

Figure 2.4 meet. For gyrator resistances Rg < Rg,e, the two resonance angular frequencies

are complex conjugate, consistent with the result in Figure 2.4. Also, for gyrator resistances

34



Figure 2.4: Root locus of zeros of Ztotal(ω) = 0 shows the real and imaginary parts of
the resonance frequencies of the circuit when varying gyration resistance (arrows represent
growing Rg values). In these figures, we consider two cases with a negative value of (a) both
inductances and (b) both capacitances, discussed in Section 2.3. At the EPD, the system’s
total impedance is Ztotal(ω) ∝ (ω − ωe)

2; hence it exhibits a double zero at ωe.

such that Rg > Rg,e, the two resonance angular frequencies are purely real. In other words,

the EPD frequency coincides with the double zeros of the frequency spectrum, or double

poles, depending on the way the circuit is described.

2.5 EPD in the Lossy Gyrator-Based Circuit

The following section analyzes the EPD condition in the gyrator-based circuit by accounting

for series resistors R1 and R2 in resonators as illustrated in Figure 2.5. A procedure analogous

to the one discussed earlier, using the same state vector Ψ ≡ [Q1, Q2, Q̇1, Q̇2]
T, leads to [85]

dΨ

dt
= MΨ, M =



0 0 1 0

0 0 0 1

−ω2
01 0 −γ1 Rg

L1

0 −ω2
02 −

Rg

L2
−γ2


. (2.13)
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Figure 2.5: Schematic view of the lossy gyrator-based circuit, with a resistor in each res-
onator.

In the presented lossy circuit matrix, γ1 = R1/L1, and γ2 = R2/L2 determine losses in

each resonator. These eigenfrequencies of the circuit are calculated by solving the below

characteristic equation,

ω4 − jω3 (γ1 − γ2)− ω2
(
ω2
01 + ω2

02 + γ1γ2 +
R2

g

L1L2

)
+ jω (γ1ω

2
02 + γ2ω

2
01) + ω2

01ω
2
02 = 0.

(2.14)

The coefficients of the odd-power terms of the angular eigenfrequency in the characteristic

equation are imaginary; therefore, ω and −ω∗ are both roots of the characteristic equa-

tion. In order to obtain a stable circuit with real-valued eigenfrequencies, the coefficients

of the odd-power terms in the characteristic equation of Equation (2.14), −j(γ1 − γ2) and

j(γ1ω
2
02 + γ2ω

2
01), should vanish, otherwise a complex eigenfrequency is needed to satisfy the

characteristic equation. The coefficient of the ω3 term is zero when γ1 = γ2, but according

to this condition, the coefficient of the ω term is non-zero because ω2
01 and ω2

02 are both

negative. Moreover, the coefficient of the ω term never vanishes when both resonators are

lossy because both ω2
01 and ω2

02 have the same sign. Consequently, it is not possible to have

all real-valued coefficients in the characteristic polynomials, except when γ1 = γ2 = 0, which

corresponds to a lossless circuit.
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2.5.1 RLC Resonators With Negative Inductances L1 and L2

In the first case, we assume inductances with negative values. In Figures 2.6(a) and (b), γ1

is perturbed while we assume γ2 = 0, whereas in Figures 2.6(c), and (d), γ2 is perturbed

while γ1 = 0. These four figures present the real/imaginary parts and magnitude/phase of

eigenfrequencies when the resistances R1 and R2 are perturbed individually. We use the

same values for the circuit components as already used in the lossless circuit presented in

Subsection 2.3.1. The normalization term ωe is the EPD angular frequency obtained when

γ1 = γ2 = 0, which is the same EPD frequency as the lossless circuit. In this case, losses

in the circuit are represented by negative γ1 and γ2 since L1, and L2 are negative, so the

right half side of the figure axes show the loss and the left half side of the axes represent

the gain in the circuit through a negative resistance. In Figures 2.6(a)-(d), we recognize

the bifurcations of the real/imaginary parts and magnitude/phase of the eigenfrequencies,

so the circuit is extremely sensitive to variations of resistances in the vicinity of EPD. By

perturbing γ1 or γ2 away from γ1 = γ2 = 0, the circuit becomes unstable, and it begins to self

oscillate at a frequency associated with the real part of the unstable angular eigenfrequency.

In addition, we show the real and imaginary parts of the eigenfrequencies by separately

perturbing the resistances on both sides in Figures 2.6(e)-(f). The black contour lines in these

three-dimensional figures show constant real and imaginary parts of the eigenfrequencies.

We observe that by adding either loss or gain, the circuit becomes unstable. Instability in

the circuit is not due to the instability of the uncoupled resonators, but rather it is unstable

because of the addition of losses, as was the case in [85] for different configurations. When γ1

or γ2 is perturbed from the EPD, the oscillation frequency is shifted from the EPD frequency,

and it could be measured for sensing applications. The eigenfrequency with a negative

imaginary part is associated with an exponentially growing signal (instability). Considering

the existence of instability, there are a few possible ways of operation: preventing the system

from reaching saturation by switching off the circuit, partially compensating for losses, or
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Figure 2.6: Case with negative value of the inductances on both resonators. Variation of (a)
real/imaginary parts and (b) magnitude/phase of the angular eigenfrequencies to a resistor
perturbation on the left resonator, i.e., when −γ1 changes and γ2 = 0. (c) and (d), as in (a)
and (b), but the resistor perturbation is on the right resonator, i.e., −γ2 changes and γ1 = 0.
Variation of (e) real and (f) imaginary parts of the angular eigenfrequencies to independent
resistor perturbation on the both sides.

making the circuit an oscillator. In the partial compensation scheme, the instability effect

due to losses in the circuit can be counterbalanced by adding an independent series gain

to each resonator. A negative resistance can be easily implemented using the same opamp-

based circuit designed to achieve negative inductance and capacitance. This issue is beyond

the scope of this chapter, and it seems a complicated strategy for stability. We believe that

exploiting the system’s instability may be an excellent strategy to design sensitive oscillators

that work as sensors; this could be the subject of future investigations.
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Figure 2.7: Case with negative value of the capacitances on both resonators. Variation of (a)
real/imaginary parts and (b) magnitude/phase of the angular eigenfrequencies to a resistor
perturbation on the left resonator, i.e., when −γ1 changes and γ2 = 0. (c) and (d), as in (a)
and (b), but the resistor perturbation is on the right resonator, i.e., −γ2 changes and γ1 = 0.
Variation of (e) real and (f) imaginary parts of the angular eigenfrequencies to independent
resistor perturbation on the both sides.

2.5.2 RLC Resonators With Negative Capacitances C1 and C2

In the second case, we consider the negative value for capacitances. In Figures 2.7(a) and (b),

γ1 is perturbed while we consider γ2 = 0 and in Figures 2.7(c), and (d), γ2 is perturbed while

γ1 = 0. These figures show the real and imaginary parts of the eigenfrequencies when each

resistor is perturbed individually. We use the same values for the circuit components as used

earlier in the lossless circuit shown in Subsection 2.3.2, and the EPD angular frequency is

obtained for these circuit parameters when γ1 = γ2 = 0, which is the same EPD frequency as
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the lossless circuit. In Figures 2.7(a)-(d), we observe the bifurcations of the real/imaginary

parts and magnitude/phase of the eigenfrequencies, so the circuit exhibits extreme sensitivity

to resistance value variations in the vicinity of EPD. We show the real and imaginary parts

of the eigenfrequencies by independently changing the resistances in both sides in Figures

2.7(e)-(f). The black contour lines in these three-dimensional figures show constant real and

imaginary parts of the eigenfrequencies. Angular eigenfrequencies are complex-valued when

perturbing γ1 and γ2 away from γ1 = γ2 = 0; hence the circuit gets unstable and it starts to

oscillate at a fundamental frequency associated with the real part of the unstable angular

eigenfrequency. In Figures 2.7(a)-(f), both conditions γ1 > 0 and γ2 > 0 represent loss,

whereas the conditions γ1 < 0 and γ2 < 0 represent gain in the circuit through a negative

resistance.

2.6 High-Sensitivity and Puiseux Fractional Power Se-

ries Expansion

Eigenfrequencies at EPDs are extremely sensitive to perturbations of the circuit elements, a

property that is peculiar to the EPD condition. We study the circuit under EPD perturbation

to investigate the circuit’s sensitivity near the EPD. We demonstrate how small perturbations

in a component’s value perturb the eigenfrequencies of the circuit. In order to do this analysis,

the relative circuit perturbation ∆X is defined as

∆X =
X −Xe

Xe

, (2.15)

where X is the perturbed parameter value, and Xe is its unperturbed value that provides

the EPD. The perturbation in ∆X value leads to a perturbed circuit matrix M(∆X). We

demonstrate the extreme sensitivity to extrinsic perturbation by resorting to the general
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Figure 2.8: Sensitivity of (a) real and (b) imaginary parts of the eigenfrequencies to a
capacitance perturbation (solid lines), ∆C = (C1 − C1,e)/C1,e, while the inductances values
on both sides are negative. Dashed lines show the perturbed eigenfrequencies according to
the Puiseux expansion up to its first order. Sensitivity of (c) real and (d) imaginary parts
of the eigenfrequencies to an inductance perturbation (solid lines), ∆L = (L1 − L1,e)/L1,e,
while the capacitances values on both sides are negative. Dashed lines show the perturbed
eigenfrequencies according to Puiseux expansion up to its second order.

theory of EPD and utilizing the Puiseux fractional power series expansion [4]. Accordingly,

when a small relative perturbation in component value ∆X is applied, the resulting two

different eigenfrequencies ωp(∆X), with p = 1, 2 are estimated using the convergent Puiseux

series. Here, we provide the first two terms to estimate the eigenfrequencies near an EPD,

using the explicit formulas given in [91],

ωp(∆X) ≈ ωe + (−1)pα1

√
∆X + α2∆X, (2.16)

α1 =

√√√√− ∂H(∆X,ω)
∂∆X

1
2!

∂2H(∆X,ω)
∂ω2

∣∣∣∣∣∣
∆X=0, ω=ωe

, (2.17)

α2 = −
α2
1
1
3!

∂3H(∆X,ω)
∂ω3 + ∂2H(∆X,ω)

∂ω∂∆X

∂2H(∆X,ω)
∂ω2

∣∣∣∣∣
∆X=0, ω=ωe

, (2.18)

where H(∆X, ω) = det[M(∆X)− jωI], and α1, and α2 are first- and second-order coefficients

respectively. Equation (2.16) indicates that for a tiny perturbation in component value
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∆X ≪ 1 the eigenvalues change sharply from their original degenerate value due to the

square root function, which is an essential characteristic of second-order EPD.

Typically, the inductor or capacitor changes in response to an external perturbation of the

parameter of interest, leading to a shift in resonance frequency. We consider variations of L1,

or C1, one at the time, and the calculated real and imaginary parts of the eigenfrequencies

near the EPD is shown in Figures 2.8. In the first case, the perturbation parameter is the

capacitance, ∆C = (C1 − C1,e)/C1,e, and a negative value for both inductances is assumed,

so the first-order Puiseux expansion coefficient is calculated as α1 = 3.228 × 105 rad/s. To

calculate the coefficients, we use the components value utilized in Subsection 2.3.1. Figures

2.8(a) and (b) exhibit the real and imaginary parts of the perturbed eigenfrequencies ω

obtained from the eigenvalue problem after perturbing ∆C. Furthermore, green dashed lines

in these figures demonstrate that such perturbed eigenfrequencies are well estimated with

high accuracy by using the Puiseux expansion truncated at its first order. For a negative but

small value of ∆C, the imaginary part of the eigenfrequencies experiences a rapid change, and

its real part remains constant. On the other hand, a very small positive value of ∆C causes

a sharp change in the real part of the eigenfrequencies while its imaginary part remains

unchanged.

In the second example, the inductance value in the left resonator is considered as a perturbed

parameter, ∆L = (L1 − L1,e)/L1,e, whereas capacitances values are both negative. By using

Equations (2.17), and (2.18) and using the components values utilized in Subsection 2.3.2,

the coefficients of the Puiseux expansion are calculated as α1 = j5.548 × 105 rad/s and

α2 = −3.960 × 105 rad/s. The calculated results in Figures 2.8(c), and (d) show the two

branches (solid lines) of the exact perturbed eigenfrequencies evaluated from the eigenvalue

problem when the external perturbation is applied to the circuit. This figure shows that

the perturbed eigenfrequencies are estimated accurately by applying the Puiseux expansion

truncated at its second order (dashed lines). For a tiny value of positive perturbation, the
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imaginary part of the eigenfrequencies undergoes sharp changes, while its real part remains

approximately unchanged. However, a small negative perturbation in the inductance value

rapidly changes the real part of the two eigenfrequencies away from the EPD eigenfrequency.

The bifurcation in the diagram, described by a square root, is the most exceptional physical

property associated with the EPD. It can be employed to devise ultra-sensitive sensors for

various applications [37, 68, 92, 93].

2.7 Sensing Scenario for Liquid Content Measurement

In recent years various well-established techniques have been proposed to measure the liquid

level, such as light-reflection sensors [94], chirped fiber Bragg grating [95, 96], fiber optic

sensors [97, 98, 99], ultrasonic Lamb waves [100], and capacitive sensors [101, 102, 103, 104].

The use of a capacitive sensor is a well-known method for liquid level measurement [105].

This kind of sensor has been proven to be stable, can be assembled using various materials,

and can provide high resolution [106]. The principle of operation of capacitive sensors is that

they converts a variation in position, or material characteristics, into measurable electrical

signals [107]. Capacitive sensors are operated by changing any of the three main parameters:

relative dielectric constant, area of capacitive plates, and distance between the plates. In

conventional methods, a capacitive liquid level detector can sense the fluid level by measuring

variations in capacitance made between two conducting plates embedded outside a non-

conducting tank or immersed in the liquid [108, 105]. The same concept applies when the

liquid occupies a varying volume percentage of a mixture’s components.

In order to compare the advantages of the EPD-based sensors with conventional sensors

based on a single LC circuit, we use a simple ideal scheme for liquid content measurement.

We demonstrate the sensitivity of a gyrator-based circuit by operating near the EPD is

much higher than the one of a conventional LC resonator circuit. We provide the required
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setup and the measurement procedure to measure the liquid volume. Here, we use the

following set of values for the components in the gyrator-based circuit: L1 = −4.7 nH,

L2 = −4.7 nH, C2 = 47 pF, and Rg = 50 Ω. Consider a cylindrical glass with top and

bottom metal plates. This structure can serve as a variable capacitor in which the volume

of filled liquid (or a percentage of a mixture) can change the total capacitance. A schematic

structure for this scenario is illustrated in Figure 2.9(a). The designed device includes the

gyrator-based circuit (see Figure 2.1) where the positive capacitor on the left side is the

cylindrical container with height d2 = 3.0142 cm, of which a height d1 is filled with water

and the area of metal plates are A = 100 cm2. Pure water is assumed to have a relative

permittivity of εr = 78.7 at T = 22.0o C, and we neglect losses in this simple case [109].

Two series variable capacitors model the structure, that the bottom one has a capacitance

Cfilled = ε0εrA/d1,and the top one has a capacitance Cempty = ε0A/(d2 − d1). The total

capacitance is Ctotal = CfilledCempty/(Cfilled + Cempty), which changes when varying the water

level. By opening the top inlet, the height of the water will increase, so the capacitance

value will be increased. On the contrary, the water’s height decreases when opening the

bottom outlet, and the total capacitance value will be decreased. In summary, the level of

water is related to the capacitance, and the perturbation in the value of capacitance will

change a circuit’s eigenfrequencies. Using the steps explained in Section 2.3 and by solving

the eigenvalue problem, the plot of resonance frequency versus water level percentage for this

specific example is illustrated in Figure 2.9(b) by the solid blue line. The measuring scheme

is very sensitive near 0 water content. The EPD can be designed for different water contents,

so the frequency variation caused by changes in the water level around that mentioned level

would be very sensitive. We now compare the sensitivity of the EPD-based scheme with

that of a single LC resonator. We consider an LC resonator with the resonance frequency of

ω0 = ωe, i.e., coincident with one of the EPD systems. We assume that the sensing capacitor

is the same as the one in Figure 2.9, i.e., the same as that considered in the EPD system.

The variation in the resonance frequency by perturbing the capacitance as described above,
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Figure 2.9: (a) Schematic illustration of a device for liquid level measurement. (b) The
EPD is designed at a given level of water content (0 in the figure). The solid blue line in
the plot shows the two resonance frequencies of the gyrator-based circuit versus water level
variation with very high sensitivity near 0. Also, the red dashed line shows the resonance
frequency of a single resonator when the water content changes. The EPD-based circuit
and the single LC resonator have the same resonance frequency at 0. It is clear that the
EPD-based circuit provides much higher sensitivity to the capacitance perturbation than the
single LC resonator.

i.e., the level of water content, is shown in Figure 2.9(b) by the red dashed line. It is clear

that the EPD-based bifurcation in the dispersion diagram, characterized by a square root,

dramatically enhances the circuit’s sensitivity compared to the sensitivity of the single LC

resonator to the same capacitance perturbation.

In the proposed scheme for liquid content measurement, we assume that the gyrator-based

circuit works in the stable region where eigenfrequencies are purely real. However, when

considering the instabilities generated by losses, one eigenfrequency has a negative imag-

inary value, as explained in Section 2.5. Consequently, the circuit starts having growing

oscillations. The exponential growth rate can be controlled in two ways: either by stopping

(switching off) the circuit to reach saturation or by letting it saturate. In this latter case,

the gyrator-based circuit should be designed as a sensor that oscillates. The circuit can be

used to sense physical or chemical parameters changes by measuring the oscillation frequency

variations.
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2.8 Conclusions

A second-order EPD with a real (degenerate) eigenfrequency in a gyrator-based circuit is

achieved using two unstable series LC resonators coupled via a gyrator. Each unstable res-

onator has either a negative capacitance or a negative inductance; hence, the resonance

frequency of each resonator is purely imaginary when they are uncoupled. We have demon-

strated that coupling the two unstable resonators can make the overall circuit marginally

stable with a purely real-valued EPD frequency. We have also shown that the system be-

comes unstable when small losses or gains are considered in the circuit. We investigated

and demonstrated the enhanced sensitivity to perturbations when operating at the EPD. In

particular, we have considered the perturbation of the gyration resistance, capacitance, and

inductance. The perturbation in physical or chemical parameters affects the circuit compo-

nent’s value in realistic applications. Such a perturbation could be estimated by measuring

the shift of resonance frequencies that follow the square root behavior typical of an EPD

perturbation. The presented results may impact sensing technology, security systems, parti-

cle monitoring, and motion sensors. Future studies using resonators with purely imaginary

frequencies like waveguides below cutoff may help miniaturize microwave sensing devices.
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Chapter 3

High-Sensitivity in Various

Gyrator-Based Circuits With

Exceptional Points of Degeneracy

EPD can enhance the sensitivity of circuits by orders of magnitude. We show various configu-

rations of coupled LC resonators via a gyrator that support EPDs of second and third-order.

Each resonator includes a capacitor and inductor with a positive or negative value, and the

corresponding EPD frequency could be real or imaginary. When a perturbation occurs in the

second-order EPD gyrator-based circuit, we show that there are two real-valued frequencies

shifted from the EPD one, following a square root law. This is contrary to what happens

in a PT-symmetric circuits where the two perturbed resonances are complex valued. We

show how to get a stable EPD by coupling two unstable resonators, how to get an unstable

EPD with an imaginary frequency, and how to get an EPD with a real frequency using an

asymmetric gyrator. The relevant Puiseux fractional power series expansion shows the EPD

occurrence and the circuit’s sensitivity to perturbations. Our findings pave the way for new

types of high-sensitive devices that can be used to sense physical, chemical, or biological
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changes.

3.1 Background, Motivation, and State of the Art

The presence of at least one nontrivial Jordan block in the Jordan canonical form of the

system matrix shows an EPD [3, 61, 4, 113], as was demonstrated in PT-symmetric systems

[114, 64, 115, 116, 117, 71, 15, 72]. Analogous concepts were discovered in the area of slow

light in propagation in photonic crystals by Figotin and Vitebskiy in [118, 18, 24, 20] even

though they did not use the term “exceptional point”. The strong sensitivity of the degen-

erate eigenvalues (i.e., degenerate resonance frequencies) to perturbations is a remarkable

feature of EPDs [4]. We emphasize the necessity of referring to it as a “degeneracy”, hence,

incorporating the D in EPD, because the defining feature of an exceptional point is the

strong full degeneracy of at least two eigenmodes, as implied in [11]. When a second-order

EPD with two coalesced eigenstates is subject to a small perturbation ∆, the eigenvalue

splitting is proportional to the square root of ∆, which is larger than the linear splitting of

conventional sensors without degeneracy [73]. Moreover, the sensitivity increases by increas-

ing the order of the degeneracy, whereas a more complex system is needed. The physics of

operating near an EPD may improve a sensor response to a perturbation by an amount that

grows with the proximity of the sensor’s operating point to the EPD [71, 119, 38]. Noise may

also play a critical role in the performance of these kinds of sensing applications based on

EPD, also depending on the chosen circuit configuration [72]. Although this topic requires

further investigation, some discussion can be seen in [120, 121, 122, 123]. The concept of

EPD has been investigated in lossless, spatially [18, 124, 29] or temporally [19, 125] periodic

structures and in circuits with loss and/or gain under PT-symmetry [33, 9]. The EPD-based

principle of higher sensitivity has been proposed in various sensing systems, including optical

microcavities [12], e-beam devices [75, 126], optomechanical mass sensors [76], and ring laser
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gyroscopes [127].

Previously, most of the published EPDs circuits were based on coupled resonators with gain

and loss, satisfying PT-symmetry [114, 64, 115, 116, 117, 71, 15, 72]. This paper shows and

discusses a new way developed at UC Irvine to obtain EPDs based on coupling LC circuits

by gyrators. A gyrator is a two-port and nonreciprocal component invented by Tellegen in

1948 and proposed as a fifth fundamental network element, alongside the resistor, capacitor,

inductor, and transformer [78]. Numerous publications on the development and deployment

of the gyrator have been written since its invention. Gyrators have been designed using

vacuum tubes, transistors [89, 80, 81, 128, 129, 130, 131, 132], and opamps [82, 84, 133,

134, 135, 136, 137, 138] due to their nonreciprocal property. In addition, a brief review of

various methods and electronic circuits to realize the gyrator is summarized in Appendix

A. In addition, the gyrator concept is not restricted to a two-port network, and it can be

extended to various complex models such as the three-port gyrator [139]. A gyrator loaded

with a capacitor is used to realize an effective inductance, so passive RLC networks can

be synthesized using only resistors, capacitors, and gyrators [82]. Also, RLC filters can be

constructed utilizing gyrators without using inductances [82]. More details on important

features and specific characteristics of the gyrator are presented in Section 3.2.

In this paper, we study various schemes to get EPDs in gyrator-based sensing circuits, as well

as their enhanced sensitivity when operating near an EPD. First, two series LC resonators

are coupled via a gyrator, as explained in [86, 87, 110, 85], leading to a second-order EPD.

Next, we extend our study to a third-order EPD obtained using three LC resonators and

two gyrators. In this case, the circuit’s sensitivity is enhanced, although the circuit is

always unstable. The second part of this paper investigates gyrator circuits with parallel

LC resonators, a dual version of the series configuration. It covers various cases leading to

(i) stable EPDs by coupling two unstable resonators, (ii) EPDs with imaginary frequency,

and (iii) EPDs using two LC circuits and an asymmetric gyrator. We show examples for all
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the cases and analyze the second-order circuits’ signal using time-domain simulations. In

addition, the sensitivity of circuit eigenfrequencies to component variations is investigated.

We demonstrate that the Puiseux fractional power series expansion closely approximates

the eigenfrequency diagram bifurcation near the EPD [4]. This paper explores and reviews

specific cases, whereas a mathematical framework for constructing lossless circuits for any

conceivable Jordan structure using a gyrator has been presented in [86]. In addition, we

consider lossless components in our study, and the analysis of stability or instability in

some circuit configurations by adding small losses to the circuits is discussed in [110, 85].

The analysis and circuit presented in this paper have great potential applications in novel

ultra-high-sensitive schemes.

3.2 Gyrator

A gyrator is a two-port component defined by its gyration resistance value that connects an

input port to an output port. This two-port network converts circuits at the gyrator output

into their dual regarding the gyration resistance value [136, 88, 140]. This component can

cause a capacitive circuit to behave inductively and a parallel LC resonator to act like a series

LC resonator. Gyrator enables the development of two-port devices that would otherwise

be impossible to build with only the basic components, i.e., resistors, capacitors, inductors,

and transformers. The gyrator, unlike the other four conventional elements, is nonreciprocal.

Moreover, the gyrator could be considered a more fundamental circuit component than the

ideal transformer because an ideal transformer can be made by cascading two ideal gyrators,

but transformers cannot make a gyrator. The circuit symbol for this component is illustrated

in Figure 3.1(a). The voltage on one port is linked to the current on the other in an ideal

gyrator and vice versa. So, the voltages and currents are converted by [89]
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Figure 3.1: (a) Gyrator schematic circuit symbol and corresponding voltages, currents, and
gyration resistance direction. (b) Equivalent circuit for an ideal gyrator by using two depen-
dent current sources.


v2(t) = Rgi1(t)

v1(t) = −Rgi2(t)

(3.1)

The gyration resistance Rg is the crucial parameter of the gyrator, which has a unit of ohm,

and it has a gyration direction shown by an arrow in the circuit symbol. Although a gyrator

is defined by its gyration resistance value, an ideal gyrator is a lossless element. A gyrator is

a nonreciprocal component that can be determined by an antisymmetric impedance matrix

as

Zg =


0 −Rg

Rg 0

 . (3.2)

Also, we can characterize it by admittance matrix as
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Yg =


0 Gg

−Gg 0

 , (3.3)

where Gg = 1/Rg is gyration conductance. The aforementioned equations show that the

gyration impedance and direction may be determined by connecting a voltage source to one

port and measuring the current through a short circuit to another [141]. Therefore, we can

model the gyrator using two dependent current sources, as shown in Figure 3.1.

3.3 EPD in Series Configuration

This section reviews various series configurations with gyrators to obtain an EPD. We provide

the required circuit equations to get the EPD conditions based on a Liouvillian formalism.

We build the eigenvalue problem to find a secondorder EPD, leading to two resonant frequen-

cies, and demonstrate the condition for obtaining EPD at the desired frequency. Moreover,

we show the circuit’s perturbation effects on the eigenfrequencies. Besides the theoretical

calculations, we also perform time-domain circuit simulations. We estimate the eigenfre-

quencies by using the Puiseux fractional power series expansion. The first part summarizes

the analysis provided in [85] but later is cast in a more general way to include all cases. Next,

we demonstrate a third-order EPD in three LC series resonators coupled via two gyrators.

In this latter case, the circuit’s sensitivity increases dramatically because of the higher EPD

order. However, a more complex circuit with more components is needed, and the circuit is

unstable.
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3.3.1 Second-Order EPD

In the first circuit, shown in Figure 3.2(a), two series LC tanks are connected via an ideal

gyrator. All of the components in the circuit are assumed to be ideal, so there is no resistance

in the circuit. The Kirchhoff voltage law equations are written in two loops [85]


Q̈1 = − 1

C1L1
Q1 +

Rg

L1
Q̇2

Q̈2 = − 1
C2L2

Q2 − Rg

L2
Q̇1

(3.4)

In the above equations, Qn is the stored charge in the capacitor Cn, where n = 1 indicates

the left resonator and n = 2 indicates the right resonator. It is convenient to define a state

vector as Ψ ≡
[
Q1, Q2, Q̇1, Q̇2

]T
, which consists of a combination of stored charges and

their time derivative on both sides, and the superscript T denotes the transpose operation.

Finally, we express the equations in Liouvillian form as [85]

dΨ

dt
= MΨ, M =



0 0 1 0

0 0 0 1

−ω2
01 0 0 −Rg

L1

0 −ω2
02 −

Rg

L2
0


. (3.5)

Here, ω01 = 1/
√
C1L1, and ω02 = 1/

√
C2L2 are resonance angular frequencies of two isolated

resonators, i.e., without coupling. We will assume that both resonators have a real resonance

frequency in this section, so the inductance and capacitance in each resonator have the same

sign. Considering signals of the form Qn ∝ ejωt, where ω is the angular eigenfrequency. We
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write the eigenvalue problem associated with the circuit equations, and the characteristic

equation is obtained from det(M− jωI) = 0, where I is the identity matrix, leading to [85]

ω4 − ω2

(
ω2
01 + ω2

02 +
R2

g

L1L2

)
+ ω2

01ω
2
02 = 0. (3.6)

In the characteristic equation, all the ω ’s coefficients are real, so both ω and ω∗ are roots

of the equation, where * represents the complex conjugate operation. In addition, the char-

acteristic equation is quadratic in ω2; so, ω and −ω are both solutions. When Rg = 0, the

two resonators are uncoupled, and the two independent circuits have two angular eigenfre-

quency pairs of ω1,3 = ±ω01, and ω2,4 = ±ω02. In the gyrator-based circuit, the angular

eigenfrequencies are determined as [85]

ω1,3 = ±
√
a+ b, ω2,4 = ±

√
a− b, (3.7)

a =
1

2

(
ω2
01 + ω2

02 +
R2

g

L1L2

)
, (3.8)

b2 = a2 − ω2
01ω

2
02. (3.9)

Based on Equation (3.7), the EPD can be obtained when b = 0 and the corresponding EPD

angular frequency is ωe =
√
a. Here we consider EPD with real eigenfrequency, so a is a

positive value. The condition for real EPD frequency is expressed as [85]
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Figure 3.2: (a) The schematic illustration of the gyrator-based circuit with the ideal gyrator
in series configuration. In this circuit, two different LC resonators are used in a series
configuration, coupled via an ideal gyrator. The sensitivity of the (b), (d), (f) real and
(c),(e),(g) imaginary parts of the eigenfrequencies to (b), (c) gyration resistance, (d), (e)
positive capacitance C1 (f), (g) positive inductance L1 perturbation. Solid lines: solution
of eigenvalue problem of Equation (3.5); green-dashed lines: Puiseux series approximation
truncated to its second term. Voltage v1(t) under the EPD condition in the (h) time-domain,
and (i) frequency-domain. The frequency-domain result is calculated by applying an FFT
with 106 samples in the time window of 0µs to 100µs. (j) Root locus of zeros of Ztotal(ω) = 0
showing the real and imaginary parts of resonance frequencies of the circuit when perturbing
gyration resistance. At the EPD, the system’s total impedance is Ztotal(ω) ∝ (ω − ωe)

2; hence
it shows a double zero at ωe.

ω2
01 + ω2

02 − ω2
gs > 0, (3.10)

where the equivalent gyrator frequency is defined as ω2
gs = −R2

g/ (L1L2) for the series con-
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figuration [85]. To obtain an EPD in this configuration using Equations (3.8), and (3.9) the

following equation should be satisfied [85],

(ω01 − ω02)
2 = ω2

gs. (3.11)

First, if ω01 and ω02 are purely real, the value of either L1 or L2 should be negative to have

the same sign on both sides of Equation (3.11). Thus, one of the resonators should have a

negative inductance to have a pure real ω01 or ω02.

Second, if both ω01 and ω02 have imaginary values, the selected values for L1 and L2 should

have the same sign. When L1 and L2 are positive, C1 and C2 should be negative, or vice

versa.

Finally, if only one of the ω01 or ω02 has imaginary value and the other one has a real value,

there are no conditions to obtain an EPD [85]. In this section, we consider the first case in

which only one inductor and one capacitor in the same resonator have a negative value so

ω2
gs is positive. The required circuit to synthesize the negative components is described in

Appendix B.

The EPD frequency is calculated by using Equations (3.7), (3.8), and (3.9) as

ωe =

√
1

2

(
ω2
01 + ω2

02 − ω2
gs

)
=
√
ω01ω02. (3.12)

The EPD condition can be satisfied by many different combinations of component val-

ues, and we will use this set of values for components as an example: L1 = 33 µH, L2 =

−33 µH, C2 = −33 nF, and Rg = 100 Ω. Then, the capacitance C1 is determined by solving

the quadratic equation from the EPD condition, i.e., b = 0. There are two different values
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of the capacitance C1 in the first resonator that satisfies the EPD condition, and we select

C1 = 1.90 nF for this example. The real and imaginary parts of eigenfrequencies calculated

from the eigenvalue problem by perturbing the gyrator resistance Rg near the EPD value of

100Ω are shown in Figures 3.2(b) and (c). In this example, we have ωe = 1.95 × 106 rad/s

and the calculated eigenvalues are normalized to ωe. In addition, the calculated results

in Figures 3.2(d) and (e) show the real and imaginary parts of eigenvalue by perturbing

the positive capacitance C1 in the left resonator. Finally, by changing the positive induc-

tance, the real and imaginary parts of eigenfrequencies are shown in Figures 3.2(f) and

(g). To confirm the calculated results and show the sensitivity of the eigenvalues to exter-

nal perturbation, the eigenfrequencies are also calculated by the Puiseux fractional power

series expansion. More details about this method are in Section 3.5. The approximated

results calculated by the Puiseux series are shown by the green dashed lines in Figures

3.2(b)-(g), which show a good agreement with the solutions of the eigenvalue problem in

Equation (3.5). In the approximated results, the coefficients of the Puiseux series are cal-

culated as, α1 = j2.14 × 106 rad/s, and α2 = −1.17 × 106 rad/s when perturbing Rg, α1 =

j1.74×106rad/s, and α2 = −1.26×106rad/s when perturbing C1, and α1 = j8.52×102rad/s,

and α2 = −6.74 × 105 rad/s when perturbing L1. The results in Figures 3.2(b)-(g) demon-

strate that by perturbing Rg, C1, and L1, the eigenfrequencies in the gyrator-based circuit

always show an analogous behavior. So, by individual variation of the components value,

the real parts of the eigenfrequencies split when the value is smaller than the EPD value,

and the imaginary parts of the eigenfrequencies split when the value is bigger than the EPD

value.

Furthermore, Figures 3.2(h) and (i) show the time-domain and frequency-domain simulation

results obtained with the Keysight ADS time-domain circuit simulator. The calculated

results in these two plots are the voltage v1(t) in the left gyrator port and its frequency

spectrum, where we use 1 mV as an initial voltage on the left capacitor C1. According to

Figure 3.2(h), the voltage increases linearly, which is an important aspect peculiar to an
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EPD. This typical signal is the inverse Laplace transform of a double pole, i.e., the result

of coalescing circuit eigenvalues and eigenvectors corresponds to a double pole (or a double

zero of the total circuit admittance). A linear growth demonstrates a second-order EPD

with real frequency in the circuit. We take the FFT of the voltage v1(t) to calculate the

frequency spectrum, with 106 samples in the time window of 0µs to 100µs, and the calculated

spectrum is illustrated in Figure 3.2(i). According to the frequency spectrum of the signal,

the oscillation angular frequency corresponds to ωe = 1.95 × 106 rad/s, that is the same as

the one obtained from solving the eigenvalue problem. In this example, we used lossless

components in the circuit. A complete investigation showing the effect of losses in the series

configuration is presented in [85].

The following part demonstrates how the EPD regime is related to a specific type of circuit’s

resonance, which can be found directly in a frequency-domain analysis of the circuit. The

transferred impedance on the left side of the gyrator is expressed as (see Figure 3.2(a))

Ztrans (ω) =
R2

g

Z2

. (3.13)

In the above equation, Z2(ω) = jωL2 + 1/ (jωC2) is the series impedance on the right side

of the gyrator. The total impedance observed from the circuit input port (see Figure 3.2(a))

is calculated by

Ztotal(ω) = Z1(ω) + Ztrans(ω), (3.14)

where Z1(ω) = jωL1 + 1/ (jωC1) is the series impedance connected to the left side of the

gyrator. The complexvalued resonant frequencies are obtained by imposing Ztotal (ω) = 0.

The real and imaginary parts of calculated resonance frequency by finding the zeros of such
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total impedance Ztotal (ω) for various gyration resistance values are shown in Figure 3.2(j).

When the gyration resistance is equal to the corresponding EPD value, the two zeros coincide

with the EPD angular frequency ωe, that is also the point where the two curves in Figure

3.2(j) meet where Ztotal(ω) ∝ (ω − ωe)
2. For gyrator resistances such that Rg < Rg,e, two

resonance angular frequencies are purely real. Instead, for Rg > Rg,e, the two resonance

angular frequencies are complex conjugate. In other words, depending on how the circuit

is defined, the EPD frequency coincides with double zeros (or double poles, depending on

what we look at) of the frequency spectrum.

3.3.2 Third-Order EPD

In this section, we investigate the third-order EPD in the gyrator-based circuit. Three series

LC tanks are coupled via two ideal gyrators to obtain third-order EPD, as shown in Figure

3.3(a). We write the Kirchhoff voltage law equations in three loops as



Q̈1 = − 1
C1L1

Q1 +
Rg1

L1
Q̇2

Q̈2 = − 1
C2L2

Q2 − Rg1

L2
Q̇1 +

Rg2

L2
Q̇3

Q̈3 = − 1
C3L3

Q3 − Rg2

L3
Q̇2

(3.15)

In these equations, Qn is the stored charge in the capacitor Cn(n = 1 for the left resonator,

n = 2 for the middle resonator, and n = 3 for the right resonator). In this circuit, we

consider two different values for the gyration resistance of two gyrators. The state vector for

the thirdorder circuit is conveniently defined as Ψ ≡
[
Q1, Q2, Q3, Q̇1, Q̇2, Q̇3

]T
. Finally, the

circuit’s equations are written in Liouvillian form as
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dΨ

dt
= MΨ, M =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−ω2
01 0 0 0 Rg1

L1
0

0 −ω2
02 0 −Rg1

L2
0 Rg2

L2

0 0 −ω2
03 0 −Rg2

L3
0



, (3.16)

where M is the six-by-six circuit matrix for the third-order circuit. Moreover, ω01 =

1/
√
C1L1, ω02 = 1/

√
C2L2, and ω03 = 1/

√
C3L3 are resonance angular frequencies of three

isolated resonators (without coupling). The characteristic equation is expressed by

ω6 − ω4

(
R2

g2

L2L3

−
R2

g1

L1L2

+ ω2
01 + ω2

02 + ω2
03

)
+ ω2

(
R2

g2ω
2
01

L2L3

−
R2

g1ω
2
03

L1L2

+ ω2
01ω

2
02 + ω2

01ω
2
03 + ω2

02ω
2
03

)
− ω2

01ω
2
02ω

2
03 = 0.

(3.17)

For Rg1 = 0 and Rg2 = 0, the three series resonators are uncoupled, and the three circuits

have three angular eigenfrequency pairs of ω1,4 = ±ω01, ω2,5 = ±ω02, and ω3,6 = ±ω03. As

an example, we use the following component values to obtain third-order EPD: L1 = 1 µH,

L2 = −33.33 µH, L3 = 3.33 mH, C1 = 3 µF, C2 = −30 nF, C3 = 0.1 nF, Rg1 = 3.33 Ω

and Rg2 = 333.33 Ω. The obtained EPD frequency that corresponds to the mentioned com-

ponent values is ωe = 106 rad/s. The calculated results in Figures 3.3(b) and (c) show

the real and imaginary parts of perturbed eigenfrequencies by solving the eigenvalue prob-

lem presented in Equation (3.16). In these two plots, the first gyration resistance Rg1 is

perturbed near the EPD, and the calculated eigenfrequencies are normalized to the corre-
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Figure 3.3: (a) The schematic illustration of the gyrator-based circuit with the ideal gyrator
in third-order configuration. In this circuit, three different LC resonators are coupled via
two different ideal gyrators. The sensitivity of the (b), (d), (f), (h) real and (c), (e), (g),
(i) imaginary parts of the eigenfrequencies to (b), (c) gyration resistance of the first gyrator
Rg1, (d), (e) gyration resistance of the second gyrator Rg2,(f), (g) positive capacitance C1

(h), (i) positive inductance L1 perturbation. Solid lines: solution of eigenvalue problem of
Equation (3.16); green-dashed lines: Puiseux series approximation truncated to its second
term.

sponding EPD frequency. Also, Figures 3.3(d) and (e) show analogous results by perturb-

ing the second gyration resistance Rg2. Let’s consider the first resonator to be a sensing

resonator. We can quantify its perturbation due to variations of external parameters in

the surrounding environment by measuring the changes in the eigenfrequencies. The cal-

culated eigenfrequencies when perturbing either the capacitance or the inductance in the

first resonator are displayed in Figures 3.3(f) and (g) and Figures 3.3(h) and (i), respec-

tively. The eigenfrequencies near the EPD are also estimated by using the Puiseux fractional

power series expansion, as explained in Section 3.5. According to the computed values in
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Figures 3.3(b)-(i), eigenfrequencies always have a negative imaginary part that shows in-

stability. The green dashed lines in Figures 3.3(b)-(i) represent the estimated results by

the Puiseux series, which exhibit good agreement with the eigenvalues obtained directly

from the eigenvalue problem in Equation (3.16). The coefficient of the Puiseux series are

calculated as, α1 = 5.50 × 105rad/s, and α2 = −5.05 × 104rad/s when perturbing Rg1,

α1 = 2.75×105+j4.77×105 rad/s and α2 = −1.77×105+j3.06×105 rad/s when perturbing

Rg2, α1 = 1.73×105+j3.00×105 rad/s, and α2 = 7.01× 104−j1.21×105 rad/s when perturb-

ing C1, and finally α1 = 2.50×105+j4.33×105 rad/s, and α2 = 6.25× 104−j1.08×105 rad/s

when perturbing L1.

3.4 EPD in Parallel Configuration

This section analyzes various types of second-order EPD in the parallel configuration. First,

we show the general condition for second-order EPD in the parallel configuration and com-

plement the theoretical calculations using time-domain circuit simulators. Second, we show

how to get an EPD with real frequency by coupling two unstable resonators, i.e., imaginary

resonance frequencies. Next, we show how to obtain an EPD associated with instability, i.e.,

where the EPD frequency is purely imaginary. Finally, we get EPD in a circuit that two

stable resonators coupled via asymmetric gyrator compared to the symmetric case.

3.4.1 Second-Order EPD

In this configuration, two parallel LC tanks are coupled by an ideal gyrator, as displayed

in Figure 3.4(a). We first write the Kirchhoff current law equations describing current and

voltages in terms of charges [85]
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
Q̈1 = − 1

C1L1
Q1 +

1
RgC2

Q̇2

Q̈2 = − 1
C2L2

Q2 − 1
RgC1

Q̇1

(3.18)

Introducing the state vector as Ψ ≡
[
Q1, Q2, Q̇1, Q̇2

]T
analogously to what was defined in

the series configuration, leads to the following system of equations [85]

dΨ

dt
= MΨ, M =



0 0 1 0

0 0 0 1

−ω2
01 0 0 1

RgC2

0 −ω2
02 − 1

RgC1
0


, (3.19)

The eigenfrequencies of the circuit are evaluated by solving the characteristic equation [85]

ω4 − ω2

(
ω2
01 + ω2

02 +
1

C1C2R2
g

)
+ ω2

01ω
2
02 = 0. (3.20)

All the coefficients are real, so ω and ω∗ are both roots of the equation. Also, the character-

istic equation is a quadratic equation in ω2, so both ω and −ω are solutions. The angular

eigenfrequencies are determined as [85]

ω1,3 = ±
√
a+ b, ω2,4 = ±

√
a− b, (3.21)
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a =
1

2

(
ω2
01 + ω2

02 +
1

C1C2R2
g

)
, (3.22)

b2 = a2 − ω2
01ω

2
02. (3.23)

Based on Equation (3.21), the EPD can be achieved when b = 0 and the EPD angular

frequency is ωe =
√
a. We assume a > 0, so the EPD has a real angular frequency. Therefore,

the condition to get EPD with real frequency is rewritten as [85]

ω2
01 + ω2

02 − ω2
gp > 0, (3.24)

where the equivalent gyrator frequency for the parallel circuit is defined as ω2
gp = −1/

(
C1C2R

2
g

)
.

The following condition must be achieved to obtain EPD based on Equations (3.21), (3.22),

and (3.23), [85]

(ω01 − ω02)
2 = ω2

gp. (3.25)

We investigate three cases to select the components’ values. First, if ω01 and ω02 are purely

real, so the value of either C1 or C2 should be negative to have the same sign on both sides

of Equation (3.25). As a result, to have a real value for ω01 and ω02, one resonator needs to

be composed of both negative C and L.

Second, if ω01 and ω02 have imaginary values, then C1 and C2 should have the same sign,

either positive or negative. In this case, each resonator is unstable when uncoupled, and

more details for this case are provided in Subsection 3.4.2.
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Figure 3.4: (a) The schematic illustration of the gyrator-based circuit with the ideal gyrator
in parallel configuration. In this circuit, two different LC resonators are used in a parallel
configuration, coupled via an ideal gyrator. The sensitivity of the (b), (d), (f) real and
(c), (e), (g) imaginary parts of the eigenfrequencies to (b), (c) gyration resistance, (d), (e)
positive capacitance C1 (f), (g) positive inductance L1 perturbation. Solid lines: solution
of eigenvalue problem of Equation (3.19); green-dashed lines: Puiseux series approximation
truncated to its second term. Voltage v1(t) under the EPD condition in the (h) time-domain,
and (i) frequency-domain. The frequency-domain result is calculated by applying an FFT
with 106 samples in the time window of 0µs to 100µs. (j) Root locus of zeros of Ytotal(ω) = 0
showing the real and imaginary parts of resonance frequencies of the circuit when perturbing
gyration resistance. At the EPD, the system’s total admittance is Ytotal(ω) ∝ (ω − ωe)

2;
hence it shows a double zero at ωe.

Lastly, if only one of the ω01 or ω02 is imaginary, and the other is real; there is not any

condition to obtain an EPD. In this section, we consider the first case in which one capacitor

and one inductor on the same resonator have a negative value so ω2
gp is positive. When the

EPD condition is satisfied, two eigenfrequencies coalesce at a real EPD angular frequency
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ωe =

√
1

2

(
ω2
01 + ω2

02 − ω2
gp

)
=
√
ω01ω02. (3.26)

As an example, we use the following values for the components: L1 = 33 µH, L2 = −33 µH,

C2 = −33 nF, and Rg = 50Ω. The capacitance C1 is determined by solving the quadratic

equation from the EPD condition. There are two possible values of the capacitance C1 that

satisfies the EPD condition, and we select C1 = 15.43 nF in this example. Then the corre-

sponding value for EPD frequency is calculated as ωe = 1.16 × 106 rad/s. The calculated

results in Figures 3.4(b) and (c) show the real and imaginary parts of the angular eigenfre-

quencies obtained from the eigenvalue problem when varying the gyrator resistance near the

EPD. Moreover, the results in Figures 3.4(d) and (e) show the real and imaginary parts of

eigenfrequencies when varying the positive capacitance C1. Then, by varying the positive

inductance L1, the real and imaginary parts of eigenfrequencies are shown in Figures 3.4(f)

and (g). All the angular eigenfrequencies in the plots are normalized to the EPD angular

frequency. In addition, the eigenfrequencies are also estimated using the Puiseux fractional

power series expansion to show the sensitivity of angular eigenfrequencies to perturbation.

Section 3.5 provides additional details on this method. The calculated eigenfrequencies us-

ing the Puiseux fractional power series expansion are shown by the green dashed lines in

Figures 3.4(b)-(g). The approximated results show excellent agreement compared to the

solutions of the eigenvalue problem of Equation (3.19). The coefficients of the Puiseux series

up to second order are calculated as, α1 = 3.13 × 105 rad/s, and α2 = 4.24 × 104 rad/s

when perturbing Rg, α1 = j3.26 × 105 rad/s, and α2 = −3.35 × 105 rad/s when perturbing

C1, α1 = j3.94 × 105 rad/s, and α2 = −3.57× 105rad/s when perturbing L1. According to

the obtained eigenfrequencies in Figures 3.4(b) and (c), by varying Rg, the real part of the

eigenfrequencies split when Rg > Rg,e and the imaginary part of the eigenfrequencies splits

when Rg < Rg,e. In addition, the results in Figures 3.4(d)-(g) show that by perturbing C1

and L1, the dispersion diagram exhibits an analogous frequency behavior.
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The time-domain simulation is provided using the Keysight ADS time-domain circuit simula-

tor, and the voltage on the node v1 is shown in Figure 3.4(h) . In the simulation, we use 1mV

as an initial voltage on the left capacitor C1 and we use an ideal gyrator model. The voltage

increases linearly with time, indicating that two circuit eigenfrequencies are coalescing, and

the system signal is described by a double pole. The spectrum is calculated by using the

FFT of the voltage v1(t) with 106 samples in the time window of 0µs to 100µs, and the result

is shown in Figure 3.4(i). According to Figure 3.4(i), the oscillation frequency corresponds

to ωe = 1.16 × 106 rad/s, hence there is a very good agreement with the theoretical EPD

angular frequency. In this example, the components are lossless.

We demonstrate how the EPD is related to the circuit’s resonance, which can be recognized

directly in a frequencydomain analysis. We calculate the circuit’s total input admittance

Ytotal(ω) using the same method as we did for the series configuration. We define the admit-

tances of the resonators as Y1 = jωC1 + 1/ (jωL1), and Y2 = jωC2 + 1/ (jωL2). Then the

transferred admittance on the left side is calculated by (see Figure 3.4(a))

Ytrans(ω) =
1

R2
gY2

. (3.27)

The total admittance observed from the circuit input port (see Figure 3.4(a)) is calculated

by

Ytotal(ω) = Y1(ω) + Ytrans(ω). (3.28)

The resonant angular frequencies are obtained by solving Ytotal(ω) = 0. The resonance fre-

quencies by perturbing gyration resistance values are calculated in Figure 3.4(j), normalized

to the EPD angular frequency. Considering the gyrator resistance value at the EPD, two
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zeros coincide, representing the point where the two curves meet exactly at the EPD angular

frequency. According to Figure 3.4(j), for Rg < Rg,e, the resonance angular frequencies are

complex conjugate pairs, and for Rg > Rg,e, the resonance angular frequencies are purely

real.

3.4.2 Stable EPD Frequency via Unstable Uncoupled Resonators

This section employs unstable resonators to obtain an EPD with real eigenfrequency. In

other words, we study the case of two unstable resonators coupled via an ideal gyrator. This

issue can be investigated in both series and parallel configurations; here, we look at the

case with the parallel configuration. A comprehensive analysis of the unstable resonators

for series configuration is presented in [110]. The analysis in this section is analogous to

one in Subsection 3.4.1. Each resonator should have only one component with a negative

value to have an unstable resonance frequency. Without loss of generality, we consider a

negative value for both inductances and a positive value for both capacitances; hence, ω2
gs

has negative value. Based on the condition for EPD (b = 0) and by using Equation (3.23),

the first and second terms in Equation (3.22) are negative, and the third term is positive.

According to Equation (3.26), if |ω2
01 + ω2

02| < ω2
gp the calculated EPD frequency will be real,

and if |ω2
01 + ω2

02| > ω2
gp, the EPD frequency yields an imaginary value.

In order to obtain EPD with real frequency by using unstable resonators, we use the following

set of values for components: L1 = −33 µH, L2 = −33 µH, C1 = 2.32 nF, C2 = 33 nF, and

Rg = 25Ω. Therefore, both ω2
01 and ω2

02 have negative values, with ω01 = −j3.62×106 rad/s,

and ω02 = −j9.58× 105 rad/s. The used value for components leads to a real EPD angular

frequency of ωe = 1.86×106rad/s. The normalized eigenfrequencies by solving the eigenvalue

problem of Equation (3.19) while perturbing Rg, C1, and L1 are shown in Figures 3.5(a)-(f).

In addition, the eigenfrequencies are estimated using the Puiseux fractional power series
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expansion to confirm the calculated results. More information for the Puiseux series is

provided in Section 3.5. The calculated eigenfrequencies using the Puiseux series are drawn

by the green dashed lines in Figures 3.5(a)-(f). To calculate the estimated eigenfrequencies,

the coefficients of the Puiseux series are calculated as, α1 = j3.24 × 106 rad/s, and α2 =

−2.81× 106 rad/s when perturbing Rg, α1 = j1.05× 106 rad/s, and α2 = −7.60× 105 rad/s

when perturbing C1, α1 = 2.03 × 106 rad/s, and α2 = 6.46 × 105 rad/s when perturbing

L1. The calculated results in Figures 3.5(a)-(d) demonstrate that by perturbing Rg and

C1, the circuit shows the analogous frequency behavior. So, when the component value

is smaller than the EPD value, the real parts of the eigenfrequencies split, and when the

component value is bigger than the EPD value, the imaginary parts of the eigenfrequencies

split. According to the obtained eigenfrequencies in Figures 3.5(e) and (f), by varying L1,

the real part of the eigenfrequencies split when L1 > L1,e and the imaginary part of the

eigenfrequencies split when L1 < L1,e.

We use the Keysight ADS circuit simulator to analyze the time-domain response of the

circuit under EPD conditions. The transient response of the coupled resonators with the

ideal gyrator is simulated using the timedomain solver with an initial condition v1(0) = 1mV,

where v1(t) is the voltage of the capacitor in the left resonator (see Figure 3.4(a)). Figure

3.5(g) shows the time-domain simulation results of the voltage v1(t). The voltage is obtained

in the period of 0 µs to 100 µs. As previously stated, the solution of the eigenvalue problem

at the EPD differs from any other regular frequency in the dispersion diagram because the

circuit matrix contains repeated eigenvalues associated with one eigenvector. As a result,

the voltage increases linearly with increasing time, while the oscillation frequency remains

constant. It is the consequence of coalescing eigenvalues and eigenvectors, which correspond

to a double pole or a zero in the circuit, depending on the observed parameter. The spectrum

is calculated by using the FFT of the voltage v1(t) with 106 samples in the time window of 0µs

to 100µs, and the calculated result is shown in Figure 3.5(h). According to Figure 3.5(h) , the

oscillation frequency corresponds to ωe = 1.86×106 rad/s, so there is a very good agreement
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Figure 3.5: The sensitivity of the (a), (c), (e) real and (b), (d), (f) imaginary parts of
the eigenfrequencies to (a), (b) gyration resistance, (c), (d) positive capacitance C1 (e), (f)
positive inductance L1 perturbation. Solid lines: solution of eigenvalue problem of Equation
(3.19); green-dashed lines: Puiseux series approximation truncated to its second term. Here,
both resonators are unstable, i.e., resonance frequency of resonators is purely imaginary.
Voltage v1(t) under the EPD condition in the (g) time-domain, and (h) frequency-domain.
The frequency-domain result is calculated by applying an FFT with 106 samples in the time
window of 0 µs to 100 µs.

with the theoretical EPD angular frequency. In the presented example, all components were

ideal, and we did not consider any lossy element in the circuit. A comprehensive study for

the effect of losses in the stability of the circuit with unstable resonators is presented in [110].

3.4.3 Unstable EPD Frequency

So far, we have focused on the EPD with real frequency, which is a practical case due to

the stability of the resonance frequency. This section analyzes the case with unstable EPD

frequency, i.e., EPD with imaginary frequency. Here we investigate the example for second-

order EPD in the parallel configuration. The required analysis in this section is the same as

the discussion presented in Subsection 3.4.1. The only difference is that the selected value

for components leads to imaginary EPD frequency.
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As an example, we use the following values for the components: L1 = 15 µH, L2 = −50 µH,

C2 = −15 nF, and Rg = 25 Ω. The capacitance C1 is obtained by solving the quadratic

equation from the EPD condition. There are two possible values for C1 that satisfies the

EPD condition, and we select C1 = 3.50 nF in this example. Then the corresponding value

for EPD frequency is calculated as ωe = j2.24 × 106 rad/s, which shows that the circuit is

unstable at EPD. The results in Figures 3.6(a) and (b) show the real and imaginary parts of

perturbed eigenfrequencies calculated from the eigenvalue problem when varying the gyration

resistance near the EPD. Also, the obtained results in Figures 3.6(c) and (d) show the real

and imaginary parts of eigenfrequencies by perturbing the positive capacitance C1. Then, by

perturbing the positive inductance L1, the real and imaginary parts of eigenfrequencies are

shown in Figures 3.6(e) and (f). The calculated eigenfrequencies in these plots are normalized

to the absolute value of imaginary EPD frequency. In addition, the eigenfrequencies are

calculated using the Puiseux fractional power series expansion. Section 3.5 contains further

information on this method. The obtained eigenfrequencies using the Puiseux series are

shown by the green dashed lines in Figures 3.6(a)-(f). The estimated results show perfect

agreement compared to the solutions of the eigenvalue problem in Equation (3.19). In the

calculated estimated eigenfrequencies, the coefficients of the Puiseux series are calculated

as, α1 = 3.90 × 106 rad/s, and α2 = −j3.39× 106 rad/s when perturbing Rg, α1 = 1.26 ×

106 rad/s, and α2 = −j9.16 × 105 rad/s when perturbing C1, α1 = j2.45× 106 rad/s, and

α2 = j7.78 × 105 rad/s when perturbing L1. Using the ideal model for the gyrator, the

time-domain simulation result for the node voltage v1 in Figure 3.6(g) is obtained using the

Keysight ADS circuit simulator. We use 1mV as an initial voltage on the capacitor C1. The

voltage exponentially increases over time without any oscillation, indicating that the circuit

is unstable.
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Figure 3.6: The sensitivity of the (a), (c), (e) real and (b), (d), (f) imaginary parts of
the eigenfrequencies to (a), (b) gyration resistance, (c), (d) positive capacitance C1(e), (f)
positive inductance L1 perturbation. Solid lines: solution of eigenvalue problem of Equation
(3.19); green-dashed lines: Puiseux series approximation truncated to its second term. Here,
the EPD frequency is unstable, i.e., EPD frequency is purely imaginary. (g) Voltage v1(t) for
the unstable EPD condition in the time-domain, which increases exponentially over time.

3.4.4 Asymmetric Gyrator

In this section, two parallel LC tanks are coupled by an asymmetric gyrator with the forward

gyration resistance of Rgf and backward gyration resistance of Rgb, as displayed in Figure

3.7(a). The concept of asymmetry in the gyrator is discussed in Appendix C. We find the

EPD condition by writing the Kirchhoff current law equations and finding the Liouvillian

matrix. As a result, the following equations are written by describing currents and voltages

in terms of charges


Q̈1 = − 1

C1L1
Q1 +

1
RgbC2

Q̇2

Q̈2 = − 1
C2L2

Q2 − 1
RgfC1

Q̇1

(3.29)
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By defining the state vector as Ψ ≡
[
Q1, Q2, Q̇1, Q̇2

]T
, we represent equations in Liouvillian

form

dΨ

dt
= MΨ, M =



0 0 1 0

0 0 0 1

−ω2
01 0 0 1

RgbC2

0 −ω2
02 − 1

RgfC1
0


. (3.30)

The eigenfrequencies of the circuit are calculated by solving the below characteristic equation

ω4 − ω2

(
ω2
01 + ω2

02 +
1

RgbRgfC1C2

)
+ ω2

01ω
2
02 = 0. (3.31)

Then the angular eigenfrequencies are determined as

ω1,3 = ±
√
a+ b, ω2,4 = ±

√
a− b, (3.32)

a =
1

2

(
ω2
01 + ω2

02 +
1

C1C2RgbRgf

)
, (3.33)

b2 = a2 − ω2
01ω

2
02. (3.34)

According to Equation (3.32), the EPD is achieved when b = 0. The following condition

must be met to achieve EPD in the asymmetric configuration using Equations (3.33), and
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Figure 3.7: (a) The schematic illustration of the gyrator-based circuit with the assymetric
gyrator in parallel configuration. The sensitivity of the (b), (d), real and (c), (e), imaginary
parts of the eigenfrequencies to (b), (c) forward gyration resistance and (d), (e) backward
gyration resistance. Solid lines: solution of eigenvalue problem of Equation (3.30); green-
dashed lines: Puiseux series approximation truncated to its second term.

(3.34)

(ω01 − ω02)
2 = − 1

C1C2RgbRgf

. (3.35)

When the EPD condition is satisfied, two eigenfrequencies coalesce at a real EPD angular

frequency

ωe =

√
1

2

(
ω2
01 + ω2

02 +
1

C1C2RgbRgf

)
=
√
ω01ω02. (3.36)

Here we use the values derived for parallel configuration in Subsection 3.4.1 where L1 = 33µH,

L2 = −33 µH, C1 = 15.43 nF, C2 = −33 nF, Rgf = 100 Ω, and Rgb = 100 Ω. Then the EPD

frequency is calculated as ωe = 1.16× 106 rad/s. The results in Figures 3.7(b) and (c) show

the real and imaginary parts of perturbed eigenfrequencies obtained from the eigenvalue

problem of Equation (3.30) when varying the forward gyrator resistance near the EPD value
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and Figures 3.7(d) and (e) are eigenfrequency evolution by varying the backward gyration

resistance. All the obtained eigenfrequencies in the mentioned plots are normalized to the

EPD frequency. In addition, the eigenfrequencies are calculated using the Puiseux fractional

power series expansion to measure the sensitivity of the eigenfrequencies to perturbation,

and the calculated eigenfrequencies are drawn by the green dashed lines. Section 3.5 provides

additional information on this method. In the presented estimated result, the coefficients

of the Puiseux series are calculated as, α1 = 2.21 × 105 rad/s, and α2 = 2.12× 104 rad/s

when perturbing Rgb or Rgf. As we demonstrate for symmetric case in Subsection 3.4.1, by

varying Rg, the real part of the eigenfrequencies split when Rg > Rg,e, and the imaginary part

of the eigenfrequencies split when Rg < Rg,e. In addition, the calculated eigenfrequencies

in Figures 3.7(b)-(e) demonstrate that by perturbing Rgf and Rgb, the gyrator-based circuit

shows the analogous frequency behavior. On the other hand, we know that higher sensitivity

is achieved when the bifurcation of the dispersion diagrams is wider [92]. So, by comparing

the symmetric and asymmetric cases, it is clear that the symmetric case is more sensitive

than the asymmetric case.

3.5 Puiseux Fractional Power Series Expansion

The sensitivity of a system to a specific parameter may be detectable where the perturba-

tion on the system changes observable quantities such as the system’s resonance frequency.

Changes in the system will be detected by measuring frequency changes and determining

their relationship to perturbation. Puiseux fractional power series expansion helps us to find

this relation for eigenvalues in the vicinity of EPD. For EPDs, sensitivity is boosted because

of the eigenvalue’s degeneracy. We consider a small perturbation ∆X of a system parameter

X as
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∆X =
X −Xe

Xe

, (3.37)

where Xe is the parameters’s value at EPD, and X is the parameter’s value after applying

perturbation. A perturbation ∆X to a system parameter results in a perturbed system

matrix M (∆X), which results in perturbed eigenfrequencies ωp (∆X) with p = 1, . . . , n close

to the n-th order EPD angular frequency. The perturbed eigenfrequencies near an EPD are

found using a Puiseux fractional power series expansion [4]. A Puiseux series is a generalized

power series with fractional and negative exponents in one variable. The Puiseux fractional

power series expansion of ωp (∆X) is defined by [91]

ωp (∆X) ≈ ωe +
∞∑
k=1

αk

((
ej

2π
n

)p
∆

X
1
n

)k
, (3.38)

where the first two coefficients for the second-order approximation are expressed as [91]

α1 =

(
−

∂H(∆X ,ω)
∂∆X

1
n!

∂nH(∆X ,ω)
∂ωn

) 1
n

, (3.39)

α2 = −
αn+1
1

1
(n+1)!

∂n+1H(∆X ,ω)
∂ωn+1 + α1

∂2H(∆X ,ω)
∂ω∂∆X

nαn−1
1

(
1
n!

∂nH(∆X ,ω)
∂ωn

) . (3.40)

The coefficients are calculated at the EPD, where ∆X = 0, ω = ωe, and H (∆X , ω) =

det (M (∆X)− jωI). In this paper, we utilize this series expansion for the second-order

and third-order EPD. For second-order EPD, we express Puiseux fractional power series

expansion by
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ωp (∆X) ≈ ωe + α1(−1)p
√

∆X + α2∆X , (3.41)

α1 =

√√√√−2 ∂H(∆X ,ω)
∂∆X

∂2H(∆X ,ω)
∂ω2

, (3.42)

α2 = −
α2
1
1
6
∂3H(∆X ,ω)

∂ω3 + ∂2H(∆X ,ω)
∂ω∂∆X

∂2H(∆X ,ω)
∂ω2

. (3.43)

Moreover, for third-order EPD, we calculate Puiseux fractional power series expansion by

ωp (∆X) ≈ ωe + α1

(
ej

2π
3

)p
3
√

∆X + α2

(
ej

4π
3

)p
3

√
(∆X)

2, (3.44)

α1 =
3

√√√√−6 ∂H(∆X ,ω)
∂∆X

∂3H(∆X ,ω)
∂ω3

, (3.45)

α2 = −
α3
1

1
24

∂4H(∆X ,ω)
∂ω4 + ∂2H(∆X ,ω)

∂ω∂∆X

α1

(
1
2
∂3H(∆X ,ω)

∂ω3

) . (3.46)

3.6 Conclusions

We have provided a comprehensive description of a new technique based on using gyrators

and resonators to get EPDs. This new method opens up a new way to realize EPDs offering

many new circuit configurations complementary to those satisfying PT-symmetry.

We have shown various circuits based on resonators coupled via gyrators that support an

EPD, where some resonators are made of negative inductance and negative capacitance that

can be realized using operational amplifiers. We have provided the theoretical conditions
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for second-order EPD to exist with either purely real or imaginary frequency. We have

complemented our theoretical calculations with time-domain circuit simulations, showing an

excellent agreement. We have shown how to obtain a stable second-order EPD by using two

unstable (when isolated) coupled resonators and also using two stable resonators coupled via

an asymmetric gyrator. We have demonstrated that the eigenfrequencies are extremely sen-

sitive to the circuit’s perturbation, which may have important implications for ultrasensitive

sensing technologies and RF sensors. An important feature is that when we perturb a circuit

component (e.g., a capacitor), the circuit provides two shifted frequencies with real values,

contrary to the case of EPD based on PT-symmetry where the two shifted frequencies are

complex valued.

In this paper, the lossless circuits are analyzed, whereas the effects of additional loss or

gain on each resonator for some configurations have been investigated in [85, 110]. Any loss

or gain in the circuit leads to complex-valued eigenfrequencies, which cause instability and

start an oscillatory regime. To prevent the circuit from saturating and still using the high

sensitivity advantage, we could switch on and off the circuit and work in the transient regime

as was done in [125].

Higher sensitivity is achieved using third-order EPD, with the important property that the

circuit is always unstable, which is a feature that can be exploited to make an oscillator

based on an EPD. Based on duality theory, all the cases mentioned above can be explored

for both series and parallel resonators. Calculating the relevant Puiseux fractional power

series expansion for all the cases shows the EPD’s occurrence and the circuit’s sensitivity

when operating at the EPD. We believe that the demonstrated results pave the way for

conceivable new operation strategies for boosting the overall performance of highsensitive

sensors.
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Chapter 4

Simple Reciprocal Electric Circuit

Exhibiting Exceptional Point of

Degeneracy

An EPD occurs when both the eigenvalues and the corresponding eigenvectors of a square

matrix coincide and the matrix has a nontrivial Jordan block structure. It is not easy to

achieve an EPD exactly. In our prior studies, we synthesized simple conservative (lossless)

circuits with evolution matrices featuring EPDs by using two LC loops coupled by a gyrator.

In this chapter, we advance even a simpler circuit with an EPD consisting of only two LC

loops with one capacitor shared. Consequently, this circuit involves only four elements and

it is perfectly reciprocal. The shared capacitance and parallel inductance are negative with

values determined by explicit formulas which lead to EPD. This circuit can have the same

Jordan canonical form as the nonreciprocal circuit we introduced before. This implies that

the Jordan canonical form does not necessarily manifest systems’ nonreciprocity. It is natural

to ask how nonreciprocity is manifested in the system’s spectral data. Our analysis of this

issue shows that nonreciprocity is manifested explicitly in: (i) the circuit Lagrangian and (ii)
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the breakdown of certain symmetries in the set of eigenmodes. All our significant theoretical

findings were thoroughly tested and confirmed by numerical simulations using commercial

circuit simulator software.

4.1 Background, Motivation, and State of the Art

A key motivation for this work is an interest in systems that exhibit EPDs. EPD refers

to the degeneracy of the system matrix that occurs when both the eigenvalues and the

corresponding eigenvectors of the system coincide [4, 145, 114, 64, 115]. The corresponding

system matrix is not diagonalizable at EPD. Also, EPD occurs when the system matrix is

similar to a matrix containing a nontrivial Jordan block that is a Jordan block with a size of

at least two [114]. One application of EPD systems is high-sensitivity, which has attracted

a great deal of interest [70, 71, 38].

Considerable efforts are required to design an EPD system, and several methods have

been proposed for achieving EPD. Those approaches are based on: (i) non-Hermitian PT-

symmetric coupled systems with balanced loss and gain [66, 146, 147]; (ii) lossless and gainless

structures associated with a stationary inflection point (and degenerate band edge [39, 148];

(iii) coupled resonators [9, 33, 149, 37]; and (iv) time-varying systems [19, 92, 150]. Addi-

tionally, the EPD is investigated in a nonreciprocal circuit consisting of two LC resonators

without gain and loss coupled via a nonreciprocal element, i.e., a gyrator [86, 87, 110, 142].

Although one of the approaches suggests that loss and gain are essential for EPD, our recent

studies indicate that an EPD can be obtained in time-varying [19, 92, 150] and gyrator-based

[86, 87, 110, 142] systems without gain and losses.

Following studies in [86, 87, 110, 142] we ask whether conservative and reciprocal circuits exist

such that their evolution matrices exhibit EPDs. The answer to this question is positive and
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Figure 4.1: The real (dark blue solid curve) and imaginary (dark red solid curve) parts of the
eigenvalues (s = iω, where ω is eigenfrequency) of the circuit by varying (a) capacitance (C0)
and (b) inductance (L0). In these plots, thicker branches indicate a multiplicity of two, and
we limited the plots to eigenvalues with positive imaginary parts. Due to the bifurcation near
the EPD, a second-order EPD with high sensitivity can be applied to sensing applications.
The proposed reciprocal circuit is shown here where the perturbed elements are colored in
blue (capacitance) and green (inductance).

we construct here a circuit with EPD that does not involve nonreciprocal or lossy elements

(see circuits in Figure 4.1). One of our primary goals here is to synthesize a conservative

circuit by using only reciprocal components so that its evolution matrix has the nontrivial

Jordan canonical form subject to natural constraints considered later on as will be discussed

in Subsection 4.5.1. The approach to achieve EPD without a gyrator, and still not relaying

PT symmetry, would be useful because implementing a gyrator may be cumbersome because

it may require active components or nonreciprocal elements that are usually lossy. As a result,

removing the gyrator from the circuit and proposing a circuit with the Jordan canonical form

without using any nonreciprocal elements is an important simplification of the earlier circuit’s

implementation.

In this chapter, we advance a perfectly conservative and reciprocal circuit that can be used to

obtain the desired Jordan canonical form and achieve second-order EPD. Our comparative

studies of reciprocal and nonreciprocal circuits suggest that circuit reciprocity information

is not necessarily encoded in the relevant Jordan canonical form but rather in certain sym-
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metries of the circuit eigenvectors. Nonreciprocity can manifest in various ways depending

on the specific system and its Lagrangian. In terms of the Lagrangian itself, signs of nonre-

ciprocity might include terms that explicitly depend on time or velocity (current), or terms

that violate symmetries such as time-reversal symmetry. In addition, both reciprocal and

nonreciprocal schemes can lead to the same eigenvalues whereas their Lagrangian equations

are different. We demonstrate the conditions for equivalence between reciprocal and non-

reciprocal circuits in general (i.e., when circuits are degenerate or non-degenerate) to have

the same Jordan canonical form despite different Lagrangian equations. The present study

includes mathematical analysis as well as time-domain numerical simulation results for verifi-

cation computed by a well-known commercial circuit simulator. A number of examples with

different values for elements that satisfy the EPD condition were examined. All the exam-

ples demonstrate the validity of our investigation in both the time and frequency domains.

However, only one example is presented for ease of reading. The eigenvalues of the proposed

circuit, which will be discussed later, are exceedingly sensitive to perturbations in circuit

parameters (such as capacitance or inductance) as shown in Figure 4.1. Hence, the proposed

circuit provides exceptional capabilities for applications that require high-sensitivity sensing

when a component of the circuit, which is essentially a sensing component, is perturbed

externally.

The structure of the chapter is as follows. The mathematical setup of the problem is pre-

sented in Section 4.2. The main achievements and results of this chapter are reviewed in

Section 4.3. Then, we show our primary circuit with lossless and reciprocal elements in

Section 4.4. We study the Jordan canonical form of the circuit and the condition to ob-

tain second-order EPD in our proposed circuit in Section 4.5. Section 4.6 demonstrates the

Lagrangian and Hamiltonian structures and their relation in the general case. Next, we

review briefly the gyrator-based circuit introduced in our previous studies and explain the

mathematical analysis behind the nonreciprocal design in Section 4.7. In Section 4.8, we

analyze both reciprocal and nonreciprocal circuits to identify the signs of nonreciprocity in

84



the Lagrangian and eigenvectors of the circuits. Also, we provide the equivalency condition

for both reciprocal and nonreciprocal circuits in Section 4.9 to have the same eigenvalues

while the circuits’ Lagrangian equations are different. Finally, we support our mathematical

analysis and findings by giving examples that are verified by using a time-domain circuit

simulator in Section 4.10 and wrapping up the chapter in Section 4.11. Also, we include

many appendices for readers to provide more information and details.

4.2 Mathematical Setup of the Problem

Our primary focus here is to develop a conservative electric circuit with 2 fundamental loops

(see circuit in Figure 4.1) that its evolution matrix H has a Jordan canonical form J

subject to natural constraints considered later on. According to the definition of the Jordan

canonical form, we have H = S J S −1 where S is an invertible 4 × 4 matrix for the

two-loop circuit that is a block diagonal matrix of the form

J =


J (ζ1) 02

02 J (ζ2)

 , J (ζj) =


ζj 1

0 ζj

 , j = 1, 2, (4.1)

where 02 is 2×2 zero matrix, ζj are real or complex numbers, and J (ζj) are the corresponding

so-called Jordan block. We assume that circuit evolution is described by the following

Hamilton evolution equation

∂tX = H X , (4.2)

where X is 4 dimensional vector-column describing the circuit state and H is 4× 4 matrix.

The matrix H is going to be a Hamiltonian matrix and we will refer to it as the circuit

evolution matrix or simply circuit matrix (see Section 4.6). Also, the circuit state vector is
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represented by the two time-dependent charges qj (t) (j = 1, 2) which are the time integrals

of the corresponding loop currents ∂tqk (t) (see the circuit in Figure 4.1).

The eigenvalue problem of Equation (4.2) can be written as

sX = H X , s = iω, (4.3)

where s is the eigenvalue and ω is the eigenfrequency. If the Jordan canonical form J

of the circuit matrix H has a nontrivial Jordan block, the circuit must have at least one

negative inductance and capacitance (see Section 4.5.1). The origin of the constraints is the

fundamental property of a Hamiltonian matrix H to be similar to −H T (T is transpose

operator). In addition to the Hamiltonian spectral symmetry, the Jordan structure of Hamil-

tonian matrices may be arbitrary. Our proposed approach for the generation of Hamiltonian

and the corresponding Hamiltonian matrices is related to the Hamiltonian canonical forms

(see Appendix F of [86]).

Another important mathematical point for the synthesis of the simplest possible conservative

circuit with nontrivial Jordan blocks originates from the property of a square matrix M to

be cyclic (see Appendix B of [86]). The matrix M is referred to as cyclic if the geometric

multiplicity of each eigenvalue is exactly 1 which corresponds to exactly one relevant eigen-

vector. So, if a matrix M is cyclic its Jordan canonical form JM is completely determined

by its characteristic polynomial χ (s) = det {sI4 −M } where I4 is the 4× 4 identity matrix.

Namely, as shown in Equation (4.1), every eigenvalue s0 of multiplicity 2 is associated with

the single Jordan block J (s0) in the Jordan canonical form JM . Therefore, the character-

istic polynomial of a cyclic matrix M encodes all of the information regarding the Jordan

canonical form JM .

Another important property of any cyclic matrix M associated with the monic polynomial

χ is that it is similar to the so-called companion matrix Cχ defined by a simple explicit

expression involving the coefficients of the polynomial χ (see Appendix B of [86]). The
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companion matrix Cχ is directly related to the high-order differential equation χ (∂t)x (t) =

0, where x (t) is a complex-valued function of t (see Appendices B and D of [86]). As a result,

the cyclicity property is relevant to the evolution of simpler systems described by higher order

differential equations for scalar functions. Accordingly, we focus here on cyclic Hamiltonian

matrices H because they lead to the simplest conservative circuits with evolution matrices

H having nontrivial Jordan canonical forms J .

Let us assume that the Jordan canonical form J is a matrix subject to the Hamilto-

nian spectral symmetry and cyclicity conditions. For the two-loop circuit we have χ (s) =

det {sI4 −J } which is an even monic polynomial of the degree 4. Then, we consider the

companion to χ (s) matrix C (see Appendix B of [86]), that is

C = Y J Y −1, (4.4)

where the columns of matrix Y comprise the Jordan basis of the companion matrix C asso-

ciated with the characteristic polynomial χ (s). We introduce our principal Hamiltonian H

and recover from it 4×4 Hamiltonian matrix H that governs the system evolution according

to Equation (4.2). Due to our specific choice of the Hamiltonian H the corresponding to it

Hamiltonian matrix H is similar to the companion matrix C and consequently they have

exactly the same Jordan canonical form. So, we construct 4× 4 matrix T such that

C = T −1H T , H = Z J Z −1, Z = T Y , (4.5)

where the columns of matrix Z comprise the Jordan basis of the evolution matrix H .
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Figure 4.2: Comparison between (a) the 4-element reciprocal circuit (the focus of this chap-
ter), also denoted as PRC, and (b) the 5-element nonreciprocal circuit that uses a gyrator
as a nonreciprocal element, also denoted as GNC. (c) Equivalent resonators with the equiv-
alency value of gyration resistance Rg,eq =

√
L0/C2 =

√
L2/C0. Stored charges calculated

by time-domain circuit simulator in (d) the capacitor of the PRC C0 and (e) the capacitor
of the GNC C2 under the both EPD and equivalency conditions. Furthermore, the envelope
of the charge signals shows linear growth over time, which is a distinguishing characteristic
of second-order EPDs.

4.3 Review of the Main Results

We advance here a perfectly conservative circuit without a gyrator which has an EPD and

consequently a nontrivial Jordan canonical form. This circuit is shown in Figure 4.2(a) and

we will refer to it as a principle reciprocal circuit (PRC) or simply a reciprocal circuit in the

rest of the chapter. The circuit has only four elements which are all lossless and reciprocal.

The nontrivial Jordan canonical form is already obtained in the gyrator-based nonreciprocal

circuit (GNC) which has a nonreciprocal element [86, 87, 110, 142], as shown in Figure 4.2(b).
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Table 4.1: List of component and required conditions for equivalent reciprocal and nonre-
ciprocal circuits.

4-Element⋆ 5-Element† Equivalency

Capacitance - left loop C1 C1

Inductance - left loop L1 L1 L1C1 = L1C1

Capacitance - right loop C0 C2

Inductance - right loop L0 L2 L2C2 = L0C0

Gyrator None Rg Rg,eq =
√

L0

C2
=
√

L2

C0

⋆ 4-Element: Principal reciprocal circuit
† 5-Element: Gyrator-based nonreciprocal circuit

We define the nonreciprocity property in the Lagrangian as explained in Definition 1. The

list of components for reciprocal and nonreciprocal circuits and the necessary conditions to

pick the equivalency value of gyration resistance is summarized in Table 4.1. The list of our

main achievements that are elaborated in the rest of the chapter is as follows:

• Construction of a reciprocal and lossless circuit with an EPD. We prove that the non-

trivial Jordan canonical form can be obtained in a circuit without a gyrator (see Section

4.4).

• PRC can have exactly the same Jordan canonical form as GNC and we find conditions

for this to occur. If we consider the gyration resistance value of Rg,eq (see Figure 4.2(c)),

the reciprocal and nonreciprocal circuits can have the same Jordan canonical forms

implying that the eigenvalues of both circuits are the same. We conducted numerical

simulations of PRC and GNC using a commercial time-domain circuit simulator for

comparison. In particular, we observe the charge stored in the capacitor associated with

right loops as shown in Figures 4.2(d) and (e) for reciprocal (C0) and nonreciprocal

(C2) circuits, respectively. There is excellent agreement between numerical simulations

when the above condition of equivalency is satisfied (see Sections 4.9 and 4.10).
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Figure 4.3: The principal two-loop circuit with reciprocal and lossless elements. For partic-
ular choices of values for quantities L1, C1, L0, and C0, the evolution matrix of the circuit
develops second-order degeneracy, and its nontrivial Jordan canonical form consists of ex-
actly two Jordan blocks of size 2. In this circuit, it is possible to replace C0 and L0 with
each other since they are parallel. It is noteworthy that the zeroth loop and the first loop
serve different purposes, with the capacitance C0 being shared within the loops to couple
them together.

• Our analysis of the spectral data shows that nonreciprocity in the GNC is manifested

in the breakdown of certain symmetries for the set of eigenvectors while this symmetry

exists for PRC. The nonreciprocity is also manifested in the circuit Lagrangian. De-

spite this, nonreciprocity is not captured by analyzing the eigenvalues or the Jordan

canonical form of the circuit matrix (see Section 4.8).

Definition 1 (Nonreciprocity). The concept of nonreciprocity has many definitions, each of

which emphasizes one aspect of it. Nonreciprocity in Lagrangian equations occurs when the

Lagrangian is not symmetric with respect to time [118]. The terms in the Lagrangian that

depend on velocities (currents) ∂tq can introduce nonreciprocal behavior. If the Lagrangian

does not exhibit time-reversal symmetry, meaning it behaves differently when time is reversed

(t → −t), then the system’s dynamics are nonreciprocal [118]. This can occur if there are

terms in the Lagrangian that explicitly break this symmetry. It follows that if x (t) is the

solution of the nonreciprocal system, then x (−t) is not its solution [118].

90



4.4 Principal Reciprocal Circuit

We advance here our proposed simple reciprocal circuit with a circuit matrix having the

nontrivial Jordan canonical form without the need for gyrator. Figure 4.3 shows the PRC

made of two fundamental loops connected directly. In this circuit, quantities Lj and Cj

(j = 0, 1) are respectively inductance and capacitance of the corresponding loops. The

Lagrangian associated with PRC displayed in Figure 4.3 is expressed by

Lr (qr, ∂tqr)|Θr
=

L1 (∂tq1)
2

2
+

L0 (∂tq0)
2

2
− (q1)

2

2C1

− (q1 − q0)
2

2C0

, (4.6a)

qj (t) =

ˆ t

ij (t
′) dt′, j = 0, 1, (4.6b)

where qj and ij are the charges and the currents associated with loops of the PRC depicted in

Figure 4.3 and Θr = {L1, L0, C1, C0} is the set of circuit’s parameters. We introduce a vector

of charges as qr = [q1, q0]
T (T denotes the transpose operator) that composed of the charges

associated with two fundamental loops. According to time reversal symmetry in reciprocal

systems, the Lagrangian associated with the PRC depicted in Figure 4.3 has the property

Lr (qr, ∂tqr) = Lr (qr,−∂tqr). The reciprocity principle and features of the Lagrangian of

reciprocal circuits will be further examined in Subsection 4.8.1. The corresponding Euler-

Lagrange equations of the PRC are given by

d

dt

(
∂

∂q̇1
Lr

)
− ∂

∂q1
Lr = 0, (4.7a)
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d

dt

(
∂

∂q̇0
Lr

)
− ∂

∂q0
Lr = 0, (4.7b)

which are simplified in the form of

L1q̈1 +

(
1

C1

+
1

C0

)
q1 −

1

C0

q0 = 0, (4.8a)

L0q̈0 −
1

C0

q1 +
1

C0

q0 = 0. (4.8b)

It is well known that the Euler-Lagrange formulations of Equations (4.8a) and (4.8b) repre-

sent the Kirchhoff voltage law for each of the two fundamental loops. The Kirchhoff voltage

equations for the PRC are calculated in Subsection 4.4.1. Accordingly, each term in Equa-

tions (4.8a) and (4.8b) corresponds to the voltage drop of the relevant element, as can be

seen from the current-voltage relations reviewed in Appendix D.

The circuit vector evolution equation by using the state vector of qr = [qr, ∂tqr]
T is given by

∂tqr = Crqr, Cr =



0 0 1 0

0 0 0 1

−
(

1
L1C1

+ 1
L1C0

)
1

L1C0
0 0

1
L0C0

− 1
L0C0

0 0


, (4.9)

where Cr is the circuit matrix corresponding to the PRC. The characteristic polynomial

related to the matrix Cr defined by Equation (4.9) is expressed by
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χr (s) = det {sI4 − Cr} = s4 + s2 (ξ1 + ξ0 + δ) + ξ1ξ0 = 0, (4.10)

where the loop resonance frequencies are defined as

δ =
1

L1C0

, ξ0 =
1

L0C0

, ξ1 =
1

L1C1

. (4.11)

In the above equations,
√
ζ0 indicates the resonance frequency of the zeroth loop,

√
ζ1 indi-

cates the resonance frequency of the first loop and
√
δ is defined as a cross loop resonance

frequency or coupling term. We demonstrate the following properties in the structure of the

characteristic polynomial: (i) the characteristic polynomial is a quadratic equation in s2, so

if s is the solution of the characteristic polynomial then −s is its solution as well; (ii) the

coefficients of the characteristic polynomial are real; hence s and s∗ (∗ denotes the complex

conjugate operation) are both solutions of the characteristic polynomial. Note that using

circuit resonance frequencies defined in Equation (4.11), we recast the circuit matrix Cr in

Equation (4.9) as below

Cr =



0 0 1 0

0 0 0 1

−ξ1 − δ δ 0 0

ξ0 −ξ0 0 0


, (4.12)

which shows that matrix Cr defined by Equation (4.12) is a block off-diagonal matrix.
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4.4.1 Kirchoff’s Equations of the Principal Reciprocal Circuit

The following is a concise review of the fundamental equations of the circuit shown in Figure

4.3 based on Kirchhoff’s laws. According to Kirchhoff’s voltage law in the two fundamental

loops of the PRC we have

q̈1 +

(
1

L1C1

+
1

L1C0

)
q1 −

(
1

L1C0

)
q0 = 0, (4.13a)

q̈0 −
(

1

L0C0

)
q1 +

1

L0C0

q0 = 0. (4.13b)

Then, the circuit vector evolution equation and the eigenvalue problem are expressed as

∂tqr = C qr, Cr =



0 0 1 0

0 0 0 1

−
(

1
L1C1

+ 1
L1C0

)
1

L1C0
0 0

1
L0C0

− 1
L0C0

0 0


, qr =


qr

∂tqr

 , qr =


q1

q0

 ,

(4.14)

which is in full agreement with circuit vector evolution equation calculated by the Euler-

Lagrange formulation in Equation (4.9).
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4.5 The Jordan Canonical Form of the Principal Re-

ciprocal Circuit

We studied the PRC composed of two loops, as shown in Figure 4.3, without putting any

constraints on the circuit parameters L1, C1, L0, and C0 except that they are all real and

non-zero. In this section, we derive the most general conditions on the circuit parameters

under which the relevant evolution matrix shows nontrivial Jordan blocks. The Lagrangian

equation for the PRC is given by Equation (4.6a), and its evolution equations are the corre-

sponding Euler-Lagrange equations:

s2q1 + (ξ1 + δ) q1 − δq0 = 0, (4.15a)

s2q0 − ξ0q1 + ξ0q0 = 0. (4.15b)

The Euler-Lagrange equations are readily recast in the below matrix form,

Ar (s) qr = 0, Ar (s) =


s2 + ξ1 + δ −δ

−ξ0 s2 + ξ0

 , (4.16)

where Ar (s) is a 2× 2 monic matrix polynomial of s of degree 2, namely,

Ar (s) =
2∑

j=0

sjAr,j = s2Ar,2 + sAr,1 +Ar,0, (4.17a)
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Ar,2 =


1 0

0 1

 , Ar,1 =


0 0

0 0

 , Ar,0 =


ξ1 + δ −δ

−ξ0 ξ0

 . (4.17b)

Then, Equation (4.16) is reduced to the standard first-order vector differential equation

sqr,s = Crqr,s, qr,s =


qr

sqr

 , Cr =



0 0 1 0

0 0 0 1

−ξ1 − δ δ 0 0

ξ0 −ξ0 0 0


, (4.18)

where Cr is the 4 × 4 companion matrix for the matrix polynomial Ar (s). The standard

eigenvalue problem is expressed as

(sI4 − Cr) qr,s = 0. (4.19)

Then, the characteristic polynomial of the matrix polynomial Ar (s) is

χr (s) = det {Ar (s)} = s4 + s2 (ξ1 + ξ0 + δ) + ξ1ξ0. (4.20)

Consequently, the characteristic polynomial χr (s) = 0 can be used to calculate the eigen-

values associated with Equation (4.19). We aim in this chapter to find all non-zero and real

values of the circuit parameters L1, C1, L0 and C0 that lead to the matrix Cr defined by

Equation (4.18) having a nontrivial Jordan canonical form.
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4.5.1 Characteristic Polynomial and Eigenvalue Degeneracy

We present here the condition for degenerate eigenvalues in the characteristic polynomial.

We rewrite the characteristic polynomial associated with the PRC matrix as

χr (h) = h2 + h (ξ1 + ξ0 + δ) + ξ1ξ0 = 0, h = s2. (4.21)

A quadratic equation in h, χr (h) = 0, has exactly two solutions, viz,

h± =
− (ξ1 + ξ0 + δ)±

√
∆r,h

2
, (4.22)

where ∆r,h = δ2 + 2δ (ξ1 + ξ0) + (ξ1 − ξ0)
2 is the discriminant of the quadratic in the char-

acteristic polynomial of Equation (4.21). The four solutions of the characteristic polynomial

χr (s) = 0, i.e., eigenvalues, are as follows:

s = ±
√
h+,±

√
h−. (4.23)

Note that the eigenvalue degeneracy condition turns into ∆r,h = 0, which is equivalently

expressed as

δ2 + 2δ (ξ1 + ξ0) + (ξ1 − ξ0)
2 = 0. (4.24)

Equation (4.24) is a quadratic equation which has exactly two solutions. We refer to solutions

of δ in Equation (4.24) as special values of degeneracy δd,±, where these two solutions are

δd,± = −ξ1 − ξ0 ± 2
√

ξ1ξ0. (4.25)
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For the two special values of degeneracy δd,± we get from Equation (4.22) the corresponding

two degenerate roots of h are given by

hd,± = −ξ1 + ξ0 + δd,±
2

= ∓
√

ξ1ξ0. (4.26)

The expression of Equation (4.25) is real-valued if and only if ξ1ξ0 > 0, or equivalently

ξ0
|ξ0|

=
ξ1
|ξ1|

= ±1. (4.27)

Equation (4.27) implies that the equality of resonance frequencies sign, sign (ξ0) = sign (ξ1),

is a necessary condition for the eigenvalue degeneracy condition ∆r,h = 0 provided that δd,±

has to be real-valued. From Equations (4.25) and (4.27), it follows that the special values of

degeneracy δd,± can be expressed as δd,± = −
(√

ξ1 ∓
√
ξ0
)2
.

Theorem 1 (Nontrivial Jordan canonical form of the companion matrix). Let’s assume that

s0 is an eigenvalue of the companion matrix Cr given in Equation (4.18) such that its algebraic

multiplicity m (s0)= 2. Then (i) s0 ̸= 0; (ii) s0 is either purely real or purely imaginary;

(iii) −s0 is also an eigenvalue of the companion matrix Cr; (iv) m (s0)= m (−s0) = 2; and

(v) the nontrivial Jordan canonical form of the companion matrix Cr is expressed as

Jr =



s0 1 0 0

0 s0 0 0

0 0 −s0 1

0 0 0 −s0


. (4.28)

It follows that the eigenvalue degeneracy for the companion matrix Cr implies that its Jordan

canonical form Jr has two Jordan blocks of size 2. A proof of this theorem can be found in
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[86].

4.5.2 Eigenvectors and the Jordan Basis

Theorem 1 states that the degeneracy of eigenvalues in the companion matrix Cr given by

Equation (4.18) implies that its Jordan canonical form consists of two Jordan blocks as in

Equation (4.28). The Jordan canonical form corresponding to the companion matrix Cr in

the non-degenerate form, ∆r,h ̸= 0, is expressed as

Jr =



is1 0 0 0

0 −is1 0 0

0 0 is2 0

0 0 0 −is2


,

s1 =

√
ξr,s+
√

∆r,h

2

s2 =

√
ξr,s−
√

∆r,h

2

, ξr,s = ξ1 + ξ0 + δ, (4.29)

where ξr,s is the sum of three resonance frequencies square defined in Equation (4.11), ∆r,h is

the discriminant of the quadratic equation and ±isi (i = 1, 2) are the corresponding eigen-

values. Following this, we write eigenvectors corresponding to the calculated non-degenerate

eigenvalues as follows:

Vr = [er,+s1|er,−s1|er,+s2|er,−s2 ] , (4.30a)
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er,±si =



∓(−s2i )
3/2

+(ξ0+δ)
√

−s2i
ξ1ξ0

∓(−s2i )
3/2

+ξr,s
√

−s2i
ξ1ξ0

1− s2i
ξ0

1


. (4.30b)

Next, we investigate two different cases with two special values of degeneracy δd,±, which

lead to degeneracy with purely imaginary or purely real degenerate eigenvalues.

Degeneracy With Purely Imaginary Eigenvalues (Purely Real Eigenfrequencies)

In the first case, if we consider δ = δd,+ = −ξ1 − ξ0 + 2
√
ξ1ξ0, the characteristic polynomial

is rewritten as

χr,+ (s) = s4 + 2s2
√

ξ1ξ0 + ξ1ξ0 =
(
s2 +

√
ξ1ξ0

)2
= 0. (4.31)

Then, the degenerate companion matrix Cr,+ for this degenerate case is given by

Cr,+ =



0 0 1 0

0 0 0 1

−ξ1 − δd,+ δd,+ 0 0

ξ0 −ξ0 0 0


, (4.32)
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and the Jordan canonical form of the degenerate companion matrix Cr,+ with purely imagi-

nary eigenvalues (purely real eigenfrequencies) is expressed as

Jr,+ =



ise 1 0 0

0 ise 0 0

0 0 −ise 1

0 0 0 −ise


, se = (ξe)

1
2 = (ξ0ξ1)

1
4 . (4.33)

As a result, the Jordan basis of the degenerate companion matrix Cr,+ is obtained as follows:

Zr,+ =



ξ0−ξe
4i
√
ξe

1
2

−ξ0+ξe
4i
√
ξe

1
2

ξ0
4i
√
ξe

0 − ξ0
4i
√
ξe

0

ξ0(ξe−ξ1)
4ξe

ξ0(ξe−3ξ1)

4iξe
√
ξe

ξ0(ξe−ξ1)
4ξe

− ξ0(ξe−3ξ1)

4iξe
√
ξe

− ξ20(2ξ1−ξe)

4ξe(ξ0−2ξe)
− ξ20(2ξ1−ξe)

4iξe
√
ξe(ξ0−2ξe)

− ξ20(2ξ1−ξe)

4ξe(ξ0−2ξe)

ξ20(2ξ1−ξe)

4iξe
√
ξe(ξ0−2ξe)


. (4.34)

Note that the columns of matrix Zr,+ form the Jordan bases of the corresponding degenerate

companion matrix Cr,+, and each column of Zr,+ are the generalized eigenvectors of the

corresponding eigenvalues.

Degeneracy With Purely Real Eigenvalues (Purely Imaginary Eigenfrequencies)

In the second case, if we consider δ = δd,− = −ξ1−ξ0−2
√
ξ1ξ0, the characteristic polynomial

is given by
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χr,− (s) = s4 − 2s2
√

ξ1ξ0 + ξ1ξ0 =
(
s2 −

√
ξ1ξ0

)2
= 0. (4.35)

The corresponding degenerate companion matrix Cr,− is expressed by

Cr,− =



0 0 1 0

0 0 0 1

−ξ1 − δd,− δd,− 0 0

ξ0 −ξ0 0 0


. (4.36)

Moreover, the Jordan canonical form of the corresponding degenerate companion matrix

Cr,− in Equation (4.36) with purely real eigenvalues (purely imaginary eigenfrequencies) is

written as

Jr,− =



se 1 0 0

0 se 0 0

0 0 −se 1

0 0 0 −se


. (4.37)

Then, the Jordan basis of the degenerate companion matrix Cr,− is expressed as
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Zr,− =



ξ0+ξe
4
√
ξe

1
2

− ξ0+ξe
4
√
ξe

1
2

ξ0
4
√
ξe

0 − ξ0
4
√
ξe

0

ξ0(ξe+ξ1)
4ξe

ξ0(ξe+3ξ1)

4ξe
√
ξe

ξ0(ξe+ξ1)
4ξe

− ξ0(ξe+3ξ1)

4ξe
√
ξe

ξ20(2ξ1+ξe)

4ξe(ξ0+2ξe)

ξ20(2ξ1+ξe)

4ξe
√
ξe(ξ0+2ξe)

ξ20(2ξ1+ξe)

4ξe(ξ0+2ξe)
− ξ20(2ξ1+ξe)

4ξe
√
ξe(ξ0+2ξe)


. (4.38)

4.6 Lagrangian and Hamiltonian Structures and Their

Relation

In this section we provide a general overview of the Lagrangian and Hamiltonian structures.

We explain the relationship between these two structures in detail. Then, we demonstrate

the Lagrangian and Hamiltonian structures for the PRC. Ultimately, readers will gain a

comprehensive understanding of these mathematical frameworks and their applicability to

studying systems like the PRC.

4.6.1 Lagrangian Structure

The Lagrangian for a linear system in the general form is a quadratic function (bilinear form)

of the circuit state vector q̌ (column vector that contains charges) and its time derivatives

∂tq̌, that is
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L = L (q̌, ∂tq̌) =
1

2


q̌

∂tq̌


T

ML


q̌

∂tq̌

 , ML =


−η θT

θ α

 , (4.39)

where α, η and θ are 2 × 2 matrices (for our two-loops circuit) with real-valued entries.

Moreover, we assume symmetric matrices, that is α = αT and η = ηT. Accordingly, we have

the Lagrangian,

L =
1

2
∂tq̌

Tα∂tq̌ + ∂tq̌
Tθq̌− 1

2
q̌Tηq̌. (4.40)

As a result of Hamilton’s principle, the system evolution can be explained by the Euler-

Lagrange equations as

d

dt

(
∂L
∂ ˙̌q

)
− ∂L

∂q̌
= 0, (4.41)

which, based on Equation (4.40), it can be written in the following form of a second-order

vector ordinary differential equation,

α∂2
t q̌ +

(
θ − θT

)
∂tq̌ + ηq̌ = 0. (4.42)

It is notable that matrix θ appears in Equation (4.42) through its skew-symmetric component(
θ − θT

)
/2 justifying as a possibility to impose the skew-symmetry assumption on θ, that

is θT = −θ. Then, under the assumption of θT = −θ, Equation (4.42) is rewritten with the

skew-symmetric θ as

α∂2
t q̌ + 2θ∂tq̌ + ηq̌ = 0. (4.43)

For the PRC that we introduced and analyzed in the previous sections, Equation (4.43) and

the required coefficients by considering q̌ = qr = [q1, q0]
T are rewritten as

αr∂
2
t qr + 2θr∂tqr + ηrqr = 0, (4.44a)
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αr =


L1 0

0 L0

 , θr =


0 0

0 0

 , ηr =


1
C1

+ 1
C0
− 1

C0

− 1
C0

1
C0

 . (4.44b)

We write the Lagrangian formulation in the below form:

Lr (qr, ∂tqr) =
1

2


qr

∂tqr


T

ML,r


qr

∂tqr

 , (4.45a)

ML,r =



− 1
C1
− 1

C0

1
C0

0 0

1
C0
− 1

C0
0 0

0 0 L1 0

0 0 0 L0


. (4.45b)

It follows from Equation (4.42) that the necessary and sufficient condition for nonreciprocity

is θ ̸= θT. Indeed, if θ = θT, the circuit will not show nonreciprocity properties. Because

in the case of θ = θT, the second term with ∂tq disappears from Equation (4.42) and all

frequencies related to Equation (4.42) will be the same as in the case of zero θ which leads

to time symmetry.

4.6.2 Hamiltonian

Alternatively, we can use the Hamilton equations associated with the Hamiltonian H instead

of the second-order vector ordinary differential equations of Equation (4.42). Let us assume
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that the circuit’s state is described by a time-dependent column vector q̌ and its dynamic is

governed by a Hamiltonian H = H (p̌, q̌), where p̌ is the column vector system momentum.

We introduce the Hamiltonian representation in order to describe the circuit information in

the compact matrix form,

H = H (p̌, q̌) = p̌T∂tq̌− L (q̌, ∂tq̌) , (4.46)

where the system momentum p̌ is given by

p̌ =
∂L
∂ ˙̌q

= α∂tq̌ + θq̌. (4.47)

According to Equation (4.47), current ∂tq̌ (i.e., velocity of charges) and momentum p̌ vectors

are related as follows:

∂tq̌ = α−1 (p̌− θq̌) . (4.48)

Consequently, the Hamiltonian H expressed in Equation (4.46) is given by

H (p̌, q̌) =
1

2

[
(p̌− θq̌)T α−1 (p̌− θq̌) + q̌Tηq̌

]
=

1

2
∂tq̌

Tα∂tq̌ +
1

2
q̌Tηq̌. (4.49)

Also, Equations (4.46), (4.47) and (4.48) imply


q̌

p̌

 =


I2 02

θ α




q̌

∂tq̌

 ,


q̌

∂tq̌

 =


I2 02

−α−1 θα−1




q̌

p̌

 , (4.50)

where I2 is the 2 × 2 identity matrix and 02 is the 2 × 2 zero matrix. We also know that

Hamiltonian H can be interpreted as the energy of the system that is a conserved quantity,

so ∂tH (p̌, q̌) = 0. The function H (p̌, q̌) defined by Equation (4.49) can be recast into the
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following form of Hamiltonian

H (p̌, q̌) =
1

2


q̌

p̌


T

MH


q̌

p̌

 , (4.51)

where the matrix MH is 4× 4 with the below block form

MH =


θTα−1θ + η −θTα−1

−α−1θ α−1

 =


I2 −θT

02 I2




η 02

02 α−1




I2 02

−θ I2

 , (4.52)

and the required parameters in this matrix for the PRC are given in Equation (4.44b). Then,

the matrix MH for the PRC is expressed as

MH,r =



1
C1

+ 1
C0
− 1

C0
0 0

− 1
C0

1
C0

0 0

0 0 1
L1

0

0 0 0 1
L0


. (4.53)

Also, the system momentum in Equation (4.47) by considering q̌ = qr = [q1, q0]
T for the

PRC is expressed by

pr =
∂Lr

∂q̇r
= αr∂tqr + θrqr = ∂tqr


L1 0

0 L0

 . (4.54)

As we observe in Equation (4.54), θr = 0 for the reciprocal case, which demonstrates the

relation between the momentum pr and the current ∂tqr (i.e., velocity of charges) does
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not depend on qr and depends only on ∂tqr. The Hamiltonian form of the Euler-Lagrange

formulation of Equation (4.41) is given by

∂t


q̌

p̌

 = JMH


q̌

p̌

 , J =


02 I2

−I2 02

 , (4.55)

where the matrix J has the properties of J = −JT = −J−1. Based on Equations (4.52) and

(4.55), we write

JMH =


−α−1θ α−1

−θTα−1θ − η θTα−1

 . (4.56)

Ultimately, the Hamiltonian matrix for the PRC is expressed as

Hr = JMH,r =



0 0 1
L1

0

0 0 0 1
L0

− 1
C1
− 1

C0

1
C0

0 0

1
C0
− 1

C0
0 0


. (4.57)

According to Equation (4.52), we know MT
H = MH and

H T = −MHJ = −J [−JMH] J = J−1 [−H ] J, (4.58)

where demonstrate that the transpose of the matrix H is similar to −H .
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4.6.3 Relationship Between the Lagrangian and Hamiltonian

By considering the assumption that α is invertible matrix, according to Equations (4.39),

(4.51) and (4.52), we have

ML =


−η θT

θ α

 , MH =


β γT

γ ρ

 =


θTα−1θ + η −θTα−1

−α−1θ α−1

 , (4.59)

implying that

ρ = α−1, γ = −α−1θ, β = θTα−1θ + η, (4.60)

or

α = ρ−1, θ = −ρ−1γ, η = β − γTρ−1γ. (4.61)

By using the transformations between coefficients described above, the coefficients of the

matrix ML, i.e, η, θ and α, can be converted into the coefficients of the matrix MH, i.e., β,

γ and ρ, and vice versa. As a result, we can construct the Hamiltonian representation from

the Lagrangian representation and vice versa.

4.7 Gyrator-Based Nonreciprocal Circuit

In this section, we review the implementation of a gyrator-based circuit to obtain the non-

trivial Jordan canonical form that was already proposed and analyzed in our previous works

[86, 87, 110, 142]. The gyrator as a basic circuit element was initially introduced by Telle-

gen [78]. In electric circuits without any nonreciprocal element such as a gyrator the n× n

impedance matrix of n-port system Z is always symmetric, i.e., Z = ZT. In contrast, the

presence of gyrators may result in an asymmetric impedance matrix, i.e, Z ̸= ZT, which can

109



Figure 4.4: The two-loop nonreciprocal circuit coupled by an ideal gyrator. For specific
combinations of values L1, C1, L2, and C2, the evolution matrix of the nonreciprocal circuit
develops a degeneracy, and its nontrivial Jordan canonical form consists of exactly two Jordan
blocks of size 2. A change in the sign of Rg is equivalent to reversing the gyration resistance
direction (indicated by the arrow below Rg) in this circuit.

be interpreted as the nonreciprocity property. The ideal gyrator is characterized as a lossless

two-port circuit element with the below relationship between the input and output voltages

(v1, v2) and currents (i1, i2) (see Figure 4.4):

v1 = −Rgi2 = −Rgq̇2, (4.62a)

v2 = Rgi1 = Rgq̇1. (4.62b)

where qj (j = 1, 2) are the charges associated with input and output currents of gyrator. The

coefficient Rg is called gyration resistance and the corresponding antisymmetric impedance

matrix of the gyrator is given by

Zg =


0 Rg

−Rg 0

 =
(
−Zg

)T
. (4.63)

The Lagrangian associated with the gyrator is given by
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Lg =
Rg (q1∂tq2 − q2∂tq1)

2
. (4.64)

The simple form of the GNC to obtain second-order degeneracy is shown in Figure 4.4 and

analyzed in the following. The circuit is composed of two LC loops coupled by a gyrator,

and we study this circuit without imposing any assumptions on the circuit parameters L1,

C1, L2, C2 and Rg except that they are all real and non-zero. The Lagrangian of the GNC

is described as

Lnr (qnr, ∂tqnr)|Θnr
=

L1 (∂tq1)
2

2
+
L2 (∂tq2)

2

2
− (q1)

2

2C1

− (q2)
2

2C2

+
Rg (q1∂tq2 − q2∂tq1)

2
, (4.65a)

qj (t) =

ˆ t

ij (t
′) dt′, j = 1, 2, (4.65b)

where the last term in Equation (4.65a) is the source of nonreciprocity in the circuit and

we will discuss it later in Subsection 4.8.1. Also, qj and ij are the charges and the currents

associated with loops of the GNC depicted in Figure 4.4, Θnr = {L1, L2, C1, C2, Rg} is the

set of circuit’s parameters and we define the vector of charges for the GNC as qnr = [q1, q2]
T.

In nonreciprocal systems, due to the breaking of time reversal symmetry, the Lagrangian

associated with the GNC leads to Lnr (qnr, ∂tqnr) ̸= Lnr (qnr,−∂tqnr). The corresponding

evolution equations after simplification, i.e., the Euler-Lagrange equations, are expressed as

L1q̈1 −Rgq̇2 +
1

C1

q1 = 0, (4.66a)

L2q̈2 +Rgq̇1 +
1

C2

q2 = 0. (4.66b)
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The second-order differential equations in Equations (4.66a) and (4.66b) are reduced to the

standard first-order vector differential equation as

∂tqnr = Cnrqnr, Cnr =



0 0 1 0

0 0 0 1

− 1
L1C1

0 0 Rg

L1

0 − 1
L2C2

−Rg

L2
0


, (4.67)

where the circuit state vector is defined as qnr = [qnr, ∂tqnr]
Tand Cnr is the 4 × 4 circuit

matrix for the GNC. A matrix representation of evolution equations is easily achieved by

recasting them as follows:

Anr (s) qnr = 0, Anr (s) =


s2 + 1

L1C1
−sRg

L1

sRg

L2
s2 + 1

L2C2

 , qnr =


q1

q2

 , (4.68)

where Anr (s) is a 2× 2 monic matrix polynomial of s of the degree 2 and it is rewritten as

Anr (s) =
2∑

j=0

sjAnr,j = s2Anr,2 + sAnr,1 +Anr,0, (4.69a)

Anr,2 =


1 0

0 1

 , Anr,1 =


0 −Rg

L1

Rg

L2
0

 , Anr,0 =


1

L1C1
0

0 1
L2C2

 . (4.69b)
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The eigenvalue problem corresponding to the Equation (4.67) is

(sI4 − Cnr) qnr,s = 0, qnr,s =


qnr

sqnr

 . (4.70)

The associated characteristic polynomial for the GNC is expressed as

χnr (s) = det {Anr (s)} = det {sI4 − Cnr} = s4+s2
(

1

L1C1

+
1

L2C2

+
R2

g

L1L2

)
+

1

L1C1L2C2

,

(4.71)

and the eigenvalues of the eigenvalue problem can be calculated from the characteristic

polynomial χnr (s) = 0. According to further analytical developments, the circuit should

include the following parameters

ξ1 =
1

L1C1

, ξ2 =
1

L2C2

. (4.72)

In Equation (4.72),
√
ξ1 is the resonance frequency of the first loop and

√
ξ2 is the resonance

frequency of the second loop. Alternatively, the circuit matrix Cnr given by Equation (4.67)

and its characteristic polynomial as in Equation (4.71) take the following forms

Cnr =



0 0 1 0

0 0 0 1

−ξ1 0 0 Rg

L1

0 −ξ2 −Rg

L2
0


, (4.73a)

χnr (h) = h2 + h

(
ξ1 + ξ2 +

R2
g

L1L2

)
+ ξ1ξ2, h = s2. (4.73b)

Considering the degenerate eigenvalues that satisfying equation χnr (h) = 0, the discriminant
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of the quadratic polynomial of Equation (4.73b) is given by

∆nr,h =
R4

g

L2
1L

2
2

+
2 (ξ1 + ξ2)R

2
g

L1L2

+ (ξ1 − ξ2)
2 , (4.74)

where the solutions of the quadratic equation of Equation (4.73b) are

h± =
−
(
ξ1 + ξ2 +

R2
g

L1L2

)
±
√
∆nr,h

2
. (4.75)

The corresponding four solutions s of the characteristic polynomial are given by

s = ±
√
h+,±

√
h−. (4.76)

In this case, the eigenvalue degeneracy condition becomes ∆nr,h = 0. It is possible to

view degeneracy condition equation as a constraint on the coefficients of χnr (h) = 0 and

consequently on the circuit components value, namely

L2
1L

2
2∆nr,h = g2 + 2 (ξ1 + ξ2) gL1L2 + (ξ1 − ξ2)

2 L2
1L

2
2 = 0, g = R2

g, (4.77)

and we refer to g as the gyration resistance square. Since Rg is real, then g = R2
g is positive

and real as well. Equation (4.77) is a quadratic equation for g, which has exactly two

solutions of

gd,± = −L1L2

(√
ξ1 ∓

√
ξ2

)2
, (4.78)

which lead to two degenerate cases. For the two special value of gyration resistance square

gd,±, we get two degenerate roots for h± as

hd,± = −
ξ1 + ξ2 +

gd,±
L1L2

2
= ∓

√
ξ1ξ2. (4.79)

Expression of gd,± shown in Equation (4.78) is real-valued if and only if ξ1ξ2 > 0, or equiva-

lently ξ1/ |ξ1| = ξ2/ |ξ2| = ±1. Also, the Jordan canonical form out of degeneracy condition,

i.e., ∆nr,h ̸= 0, is expressed as

114



Jr =



is1 0 0 0

0 −is1 0 0

0 0 is2 0

0 0 0 −is2


,

s1 =

√
ξnr,s+
√

L2
1L

2
2∆nr,h

2L1L2

s2 =

√
ξnr,s−
√

L2
1L

2
2∆nr,h

2L1L2

, ξnr,s = (ξ1 + ξ2)L1L2+R2
g,

(4.80)

where ±isi (i = 1, 2) are the non-degenerate eigenvalues of the corresponding companion ma-

trix. We write down eigenvectors corresponding to the calculated non-degenerate eigenvalues

as (when ∆nr,h ̸= 0)

Vnr = [enr,+s1|enr,−s1|enr,+s2|enr,−s2 ] , (4.81a)

enr,±si =



2R2
g+2L1L2ξ2−ξnr,s−

√
L2
1L

2
2∆nr,h

2L1Rgξ1

∓L1L2(−s2i )
3/2

+ξnr,s
√

−s2i
L1L2ξ1ξ2

±L1L2(−s2i )
3/2

+(R2
g+L1L2ξ2)

√
−s2i

L1Rgξ1

1


. (4.81b)

There were two values for the degenerate gyration resistance square as shown in Equation

(4.78), resulting in degenerate purely imaginary or purely real eigenvalues. Firstly, if we

consider g = gd,+ = −L1L2

(√
ξ1 −

√
ξ2
)2
, the degenerate characteristic polynomial is given

by
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χnr,+ (s) = s4 + 2s2
√

ξ1ξ2 + ξ1ξ2 =
(
s2 +

√
ξ1ξ2

)2
= 0. (4.82)

Then, the corresponding degenerate companion matrix Cnr,+ by substituting g = gd,+ is

rewritten as

Cnr,+ =



0 0 1 0

0 0 0 1

−ξ1 0 0
√
gd,+
L1

0 −ξ2 −
√
gd,+
L2

0


. (4.83)

The Jordan canonical form of the companion matrix Cnr,+ with purely imaginary eigenvalues

(purely real eigenfrequencies) is described by

Jnr,+ =



ise 1 0 0

0 ise 0 0

0 0 −ise 1

0 0 0 −ise


, se = (ξe)

1
2 = (ξ1ξ2)

1
4 . (4.84)

Accordingly, the Jordan basis of the companion matrix Cnr,+ is calculated as
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Znr,+ =



√
ξ1ξ2−ξ1
4i
√
ξe

1
2

−
√
ξ1ξ2−ξ1
4i
√
ξe

1
2

− ξ1
√

L1L2(2ξe−ξ1−ξ2)

4L2ξe
−i ξ1
√

L1L2(2ξe−ξ1−ξ2)

4L2ξe
√
ξe

− ξ1
√

L1L2(2ξe−ξ1−ξ2)

4L2ξe
i
ξ1
√

L1L2(2ξe−ξ1−ξ2)

4L2ξe
√
ξe

ξ1(ξ2−ξe)
4ξe

− ξ1(ξ2+ξe)

4iξe
√
ξe

ξ1(ξ2−ξe)
4ξe

ξ1(ξ2+ξe)

4iξe
√
ξe

ξ1
√

L1L2(2ξe−ξ1−ξ2)

4iL2
√
ξe

0 − ξ1
√

L1L2(2ξe−ξ1−ξ2)

4iL2
√
ξe

0


.

(4.85)

Secondly, if we consider g = gd,− = −L1L2

(
ξ1 + ξ2 + 2

√
ξ1ξ2

)
, the degenerate characteristic

polynomial is rewritten as

χnr,− (s) = s4 − 2s2
√

ξ1ξ2 + ξ1ξ2 =
(
s2 −

√
ξ1ξ2

)2
= 0. (4.86)

Then, the degenerate corresponding companion matrix Cnr,− is rewritten as

Cnr,+ =



0 0 1 0

0 0 0 1

−ξ1 0 0
√
gd,−
L1

0 −ξ2 −
√
gd,−
L2

0


. (4.87)

The Jordan canonical form of the companion matrix Cnr,− with purely real eigenvalues

(purely imaginary eigenfrequencies) is expressed by
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Jnr,− =



se 1 0 0

0 se 0 0

0 0 −se 1

0 0 0 −se


. (4.88)

Finally, the Jordan basis of the companion matrix Cnr,− is obtained as

Znr,− =



−
√
ξ1ξ2+ξ1
4
√
ξe

1
2

√
ξ1ξ2+ξ1
4
√
ξe

1
2

i
ξ1
√

L1L2(2ξe+ξ1+ξ2)

4L2ξe
−i ξ1
√

L1L2(2ξe+ξ1+ξ2)

4L2ξe
√
ξe

i
ξ1
√

L1L2(2ξe+ξ1+ξ2)

4L2ξe
i
ξ1
√

L1L2(2ξe+ξ1+ξ2)

4L2ξe
√
ξe

− ξ1(ξ2+ξe)
4ξe

ξ1(ξ2−ξe)

4ξe
√
ξe

− ξ1(ξ2+ξe)
4ξe

− ξ1(ξ2−ξe)

4ξe
√
ξe

i
ξ1
√

L1L2(2ξe+ξ1+ξ2)

4L2
√
ξe

0 −i ξ1
√

L1L2(2ξe+ξ1+ξ2)

4L2
√
ξe

0


.

(4.89)

The fundamental of Lagrangian for a linear system is explained in Subsection 4.6.1 and the

associated coefficients for the GNC are

αnr =


L1 0

0 L2

 , θnr =


0 −Rg

2

Rg

2
0

 , ηnr =


1
C1

0

0 1
C2

 . (4.90)

It follows from Equation (4.42) that the necessary and sufficient condition of the nonre-
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ciprocity is θnr ̸= θTnr. Then, the Lagrangian equation of GNC is written as follows:

Lnr (qnr, ∂tqnr) =
1

2


qnr

∂tqnr


T

ML,nr


qnr

∂tqnr

 , (4.91a)

ML,nr =



− 1
C1

0 0 Rg

2

0 − 1
C2
−Rg

2
0

0 −Rg

2
L1 0

Rg

2
0 0 L2


. (4.91b)

Moreover, the Hamiltonian formulation can also be used to show the GNC characteristics

(see Subsection 4.6.2). Then, the 4×4 matrix MH,nr required for the Hamiltonian formulation

is given by

MH,nr =



R2
g

4L2
+ 1

C1
0 0 − Rg

2L2

0
R2

g

4L1
+ 1

C2

Rg

2L1
0

0 Rg

2L1

1
L1

0

− Rg

2L2
0 0 1

L2


. (4.92)
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Ultimately, the Hamiltonian matrix for the GNC is given by

Hnr = JMH,nr =



0 Rg

2L1

1
L1

0

− Rg

2L2
0 0 1

L2

− R2
g

4L2
− 1

C1
0 0 Rg

2L2

0 − R2
g

4L1
− 1

C2
− Rg

2L1
0


. (4.93)

According to Equation (4.47), we can see that in the nonreciprocal circuit with θnr ̸= 0,

the relation between the momentum pnr and the current ∂tqnr also depends on the charge

qnr. However, it is important to point out that a circuit with gyrators does not necessarily

guarantee nonreciprocity, but it can lead to nonreciprocity.

4.8 Analysis of Reciprocity and Nonreciprocity

In this section, we analyze reciprocity properties in both reciprocal and nonreciprocal circuits.

This particular feature will be explored in the Lagrangian and eigenvectors of both PRC and

GNC.

4.8.1 Lagrangian

According to investigation provided in Section 4.4, the Lagrangian associated with the PRC

is depicted as

Lr (qr, ∂tqr)|Θr
=

L1 (∂tq1)
2

2
+

L0 (∂tq0)
2

2
− (q1)

2

2C1

− (q1 − q0)
2

2C0

. (4.94)
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An arrow of time is a concept that proposes the one-way direction or asymmetry of time. If

we change the direction of arrow of time, the Lagrangian associated with PRC is expressed

by

Lr (qr,−∂tqr)|Θr
=

L1 (∂tq1)
2

2
+

L0 (∂tq0)
2

2
− (q1)

2

2C1

− (q1 − q0)
2

2C0

. (4.95)

By comparing Equations (4.94) and (4.95) we have

Lr (qr, ∂tqr)|Θr
= Lr (qr,−∂tqr)|Θr

. (4.96)

In the above equation, we can see that there is symmetry in time, which refers to reciprocity

within the PRC (see Definition 2).

Definition 2 (Lagrangian of reciprocal and nonreciprocal systems). For a system described

by coordinates F = [fi]|ni=1 and time t, the time reversal symmetry can be formulated as

follows. For any trajectory F (t) of the system, F̃ (t) = F (−t) is also its trajectory. In

terms of the Lagrangian function L = L
(
F, Ḟ

)
, it means the invariance of Lagrangian

function under the transformation Ḟ → −Ḟ [118]:

L
(
F, Ḟ

)
= L

(
F,−Ḟ

)
. (4.97)

Also, for a system with broken time reversal symmetry we observe L
(
F, Ḟ

)
̸= L

(
F,−Ḟ

)
.

On the other hand, based on the expression given in Section 4.7, the Lagrangian associated

with GNC is expressed by

Lnr (qnr, ∂tqnr)|Θnr
=

L1 (∂tq1)
2

2
+
L2 (∂tq2)

2

2
− (q1)

2

2C1

− (q2)
2

2C2

+
Rg (q1∂tq2 − q2∂tq1)

2
. (4.98)
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Then, by inverting the direction of the time we have

Lnr (qnr,−∂tqnr)|Θnr
=

L1 (∂tq1)
2

2
+
L2 (∂tq2)

2

2
− (q1)

2

2C1

− (q2)
2

2C2

−Rg (q1∂tq2 − q2∂tq1)

2
, (4.99)

where we observe the sign of nonreciprocity in the last term of the above equation. Now,

by inverting the direction of gyration resistance (Rg → −Rg) in addition to reversing the

direction of time, we rewrite the Lagrangian associated with the new circuit by using a new

set of parameters Θ̃nr = {L1, L2, C1, C2,−Rg} as

Lnr (qnr,−∂tqnr)|Θ̃nr
=

L1 (∂tq1)
2

2
+
L2 (∂tq2)

2

2
− (q1)

2

2C1

− (q2)
2

2C2

+
Rg (q1∂tq2 − q2∂tq1)

2
. (4.100)

Finally, by comparing Equations (4.98), (4.99) and (4.100), we have

Lnr (qnr, ∂tqnr)|Θnr
= Lnr (qnr,−∂tqnr)|Θ̃nr

̸= Lnr (qnr,−∂tqnr)|Θnr
, (4.101)

which demonstrate the nonreciprocity in the GNC (see Definition 2). In spite of this, the

circuit with the same Lagrangian is achieved by simultaneously inverting the direction of the

time and gyration resistance. Alternately, by removing the source of nonreciprocity in the

circuit, i.e., the gyrator, the circuit becomes a reciprocal circuit composed of two uncoupled

LC resonators. The properties of a single LC resonator are discussed in Appendix E.

4.8.2 Eigenvectors

As explained in Subsection 4.5.2, the eigenvectors associated to the PRC in the general form

are expressed as
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er,±si =


q±si

q̇±si

 def
=



∓(−s2i )
3/2

+(ξ0+δ)
√

−s2i
ξ0ξ1

∓(−s2i )
3/2

+ξnr,s
√

−s2i
ξ0ξi

1− s2i
ξ0

1


, i = 1, 2. (4.102)

Due to reciprocity, we observe the change in the sign of charges when we inverse the sign of

si (i = 1, 2), i.e., q+si = −q−si (i = 1, 2), whereas the sign of the first derivative of charges

remains constant, i.e., q̇+si = q̇−si (i = 1, 2). The reciprocity feature of PRC is evident from

these properties.

Next, we study the GNC eigenvectors to explore a reciprocity feature. Based on the presented

expression in Section 4.7, the eigenvectors associated to the GNC are presented as

enr,±si =


q±si

q̇±si

 def
=



2R2
g+2L1L2ξ2−ξnr,s−

√
L2
1L

2
2∆nr,h

2L1Rgξ1

∓L1L2(−s2i )
3/2

+ξnr,s
√

−s2i
L1L2ξ1ξ2

±L1L2(−s2i )
3/2

+(R2
g+L1L2ξ2)

√
−s2i

L1Rgξ1

1


, i = 1, 2. (4.103)

We cannot observe the same behavior for the sign of charges and their first derivative from

the above expression for the eigenvectors of the GNC, i.e., q+si ̸= −q−si , q̇+si ̸= q̇−si(i = 1, 2).

In light of these eigenvector properties, it can be inferred that GNC is not reciprocal. Our

studies indicate that nonreciprocity is manifested in the breakdown of natural symmetries of

the set of eigenvectors rather than eigenvalues. Indeed, the Lagrangian and eigenvectors of a

circuit are capable of reflecting the reciprocity properties of the circuit. Despite this, nonre-
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ciprocity cannot be captured in the Jordan canonical form and consequently in the eigenvalues

of the circuit matrix.

We demonstrated that the Jordan canonical form of the circuit does not reflect reciprocity.

Consequently, despite the fact that reciprocal and nonreciprocal circuits differ from many

perspectives, these two circuits with different topologies can produce the same Jordan canon-

ical form and consequently the same eigenvalues under the certain conditions.

4.9 Reciprocal and Nonreciprocal Circuits Transfor-

mation

4.9.1 Equivalency Condition in Characteristic Polynomial

By comparing the characteristic polynomial of the PRC expressed in Equation (4.10) and

the characteristic polynomial of the GNC stated in Equation (4.72) we obtain the conditions

to have equivalency between the characteristic polynomials of these two circuits by equating

coefficients as


{s1} : R2

g

L1L2
+ 1

L2C2
+ 1

L1C1
= 1

L1C0
+ 1

L0C0
+ 1

L1C1

{s0} : 1
L1C1L2C2

= 1
L0C0L1C1

(4.104)

Then, we suppose that the first fundamental loop (that include series L1 and C1) in both

circuits has the same resonance frequency. So, the conditions to have the same Jordan

canonical form for both PRC and GNC are summarized as follows:
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R2
g = R2

g,eq =
L2

C0

=
L0

C2

, (4.105)

where Rg,eq is the equivalency value of gyration resistance that can be used to get the same

eigenfrequencies in PRC and GNC.

4.9.2 Equivalent Circuit Representation

By using the equivalent circuit representation that can be observed from two selected points

of a desired network, we can determine the equivalency condition between reciprocal and

nonreciprocal circuits [151, 152]. As originally described in network theory, Thévenin’s

theorem asserts that “any linear electrical network with only voltage and current sources

and impedances can be substituted at input ports by using a combination of an equivalent

impedance ZTh in a series connection with an equivalent voltage source VTh”. The equivalent

impedance ZTh is the impedance observed from the input port if all ideal current sources in

the circuit were substituted by an open circuit and all ideal voltage sources were substituted

by a short circuit. Also, the equivalent voltage VTh is the voltage calculated at the input port

of the circuit when the input port is open. In the case of a short circuit at the input port, the

current flowing from the short circuit would be ITh = VTh/ZTh and the equivalent impedance

ZTh could also be calculated as ZTh = VTh/ITh. By using Thévenin’s theorem and its dual

(i.e., Norton’s theorem), any circuit with sources and impedances can be converted to an

equivalent network; in some cases, this may be more convenient than Kirchhoff’s voltage and

current laws.

According to Figure 4.5(a), we cut the PRC into two segments and characterize the right

segment using the Thévenin’s equivalent circuit. The input impedance Zeq,r, that is identical

to the equivalent Thévenin’s impedance observed from port AB, for the PRC is calculated

by
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Figure 4.5: The equivalent circuit representation and the condition for obtaining (a) re-
ciprocal and (b) nonreciprocal circuits with the same Jordan canonical forms and conse-
quently the same eigenfrequencies by selecting the equivalency value for the gyration re-
sistance Rg,eq. The right side of both circuits can have the same equivalent impedance if

Rg,eq =
√
L2/C0 =

√
L0/C2. The left loop in both circuits includes a series resonator with

the same resonance frequency.

Zeq,r =
Vin,r

Iin,r
=

1

jωC0 +
1

jωL0

. (4.106)

By using the same approach for the GNC shown in Figure 4.5(b), we calculate equivalent

input impedance Zeq,nr as

Zeq,nr =
Vin,nr

Iin,nr
=

R2
g

jωL2 +
1

jωC2

. (4.107)

Then, if we consider the equality of input impedances Zeq,r = Zeq,nr, we write

R2
g = R2

g,eq =
ω2L2C2L0 − L0

ω2C0C2L0 − C2

=
L0 (ω

2L2C2 − 1)

C2 (ω2L0C0 − 1)
. (4.108)
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In order to have a frequency-independent value for gyration resistance Rg, we apply the

following assumption:

L2C2 = L0C0, or equivalently ξ2 = ξ0. (4.109)

Consequently, from Equations (4.108) and (4.108), the equivalency value of gyration resis-

tance is given by

R2
g,eq =

L2

C0

=
L0

C2

. (4.110)

The condition presented in Equation (4.105) is consistent with the condition derived in

Equation (4.110) by applying a different approach.

4.10 Example With Circuit Simulator Numerical Re-

sults

We present an example here to evaluate the analysis presented in the previous sections.

There are many different combinations of values that will satisfy the EPD condition for the

PRC’s elements, and here we assume the following set of values as an example: L1 = 1 µH,

L0 = −1 µH, C1 = 0.25 nF and C0 = −1 nF. The proposed circuit to realize negative element

values is explained in Appendix B. The negative inductance and capacitance in the right

resonators are necessary to satisfy the EPD condition ∆r,h = 0. These values lead to ξ0 =

1015 (rad/s)2, ξ1 = 4× 1015 (rad/s)2 and δ = −1015 (rad/s)2 which satisfy the EPD condition

presented in Equation (4.24). The results in Figure 4.6(a) illustrate the two branches of the

real and imaginary parts of perturbed eigenvalues calculated from the eigenvalue problem in
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Equation (4.9), varying C1 in the neighborhood of C1,e = 0.25 nF. In this plot we assume

that ∆L0 = ∆L1 = ∆C0 = 0 and we only perturb ∆C1 = (C1 − C1,e) /C1,e by varying C1.

The results in Figure 4.6(b) exhibit the two branches of the real and imaginary parts of

perturbed eigenvalues calculated from the eigenvalue problem in Equation (4.9), varying L1

in the proximity of L1,e = 1 µH. In this plot, we take into account that ∆L0 = ∆C0 =

∆C1 = 0 and we perturb ∆L1 = (L1 − L1,e) /L1,e by varying L1. We obtain se = iωe =

i4.47 × 107 rad/s for this example and the coalesced eigenvalues at EPD are exceedingly

sensitive to perturbations in circuit parameters, i.e., elements values. In the vicinity of the

EPD, we observe a bifurcation, which is one of the most distinctive features of the EPD

[113, 153, 154, 155]. Although the Taylor series expansion fails in the vicinity of an EPD,

the Newton-Puiseux series can nevertheless be used to conduct a perturbation analysis [156,

Chapter 2].

In order to validate the theoretical results presented in Figures 4.6(a) and (b), we use a

time-domain circuit simulator powered by Keysight ADS, the most prestigious software for

designing and analyzing circuits. We run the time-domain simulation to compute the voltages

(and consequently charges) of the capacitors and take an FFT of the calculated time-domain

results to compute the eigenfrequencies. The calculated values based on numerical simula-

tions, i.e., eigenvalues of the circuit s = iω, are illustrated in Figures 4.6(a) and (b) by black

hollow circles. It is worth noting that the results are obtained in the stable region where

the eigenvalues are purely imaginary, i.e., the real parts of the eigenvalues are zero. Further,

the eigenvalues are computed only at feasible frequencies, i.e., positive frequencies. The

results of circuit simulations are in excellent agreement with those obtained from theoretical

calculations.

As a next step, we demonstrate that PRC and GNC can have the same eigenvalues under

the conditions outlined in Section 4.9. The PRC with the required values for the elements

is shown in 4.7(a) which leads to EPD. The time-domain simulation result generated us-

128



Figure 4.6: The real (dark blue solid curve) and imaginary (dark red solid curve) parts of the
four eigenvalues of PRC as in Equation (4.10) assuming that (a) ∆L0 = ∆L1 = ∆C0 = 0,
and ∆C1 varies and (b) ∆L0 = ∆C0 = ∆C1 = 0, and ∆L1 varies. In these plots, solid curves
represent eigenvalues calculated theoretically, and black hollow circles represent eigenvalues
obtained through numerical simulation.

ing the Keysight ADS circuit simulator is shown in Figure 4.7(b), which shows the stored

charge Q0 in the capacitor with negative capacitance C0. To calculate the charge stored in

capacitor C0, we compute the capacitor voltage VC0 using Keysight ADS and calculate the

charge through an equation Q0 = C0VC0 . We put 1 mV as an initial voltage on C1 in the

time-domain simulator to establish oscillation. Figure 4.7(b) shows that the stored charge

increases linearly with time. A significant aspect of the degeneracy of eigenvalues is that it

is the result of coalescing circuit eigenvalues and eigenvectors that are also associated with a

double pole in the circuit. It is evident from the linear growth over time that a second-order

EPD exists in the circuit.

The GNC with the required values for the elements is shown in 4.7(c), in which the selected

values lead to EPD. It is convenient to consider that counterpart capacitances and induc-

tances in both circuits have the same value. So, the values of the elements in the left and

right resonators of the GNC are considered equal to the values used in the previous exam-

ple for the PRC. Also, the equivalency value of the gyration resistance Rg,eq = 31.621 Ω is
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Figure 4.7: Comparison between the time-domain simulation results of (a) the PRC and (c)
the GNC with the proposed equivalent element values. The stored charges in the capacitor
with the negative capacitance in (b) the PRC Q0 (t) and (d) the GNC Q2 (t) under the EPD
condition and by applying the equivalency conditions.

calculated based on the equivalency condition discussed in Section 4.9. The time-domain

simulation result generated using the Keysight ADS circuit simulator is displayed in Figure

4.7(d), which represents the stored charge Q2 in the capacitor with the negative capacitance

C2. We assigned 1mV as the initial voltage for C1 in the time-domain simulator. According

to Figure 4.7(d), the stored charge grows linearly with increasing time. In addition, we

observe the same behavior of linear growth (i.e., same growth rate) in Figure 4.7(b) and (d),

demonstrating the equivalency of eigenfrequencies in the PRC and GNC.

Within the model definition, the negative inductance and capacitance on the right resonator

provide energy to the system, and the positive inductance and capacitance on the left absorb

energy, when linear growth occurs. The negative capacitance and inductance are realizable

in practice using active components, as discussed in Appendix B and in [157].
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4.11 Conclusions

We have synthesized a conservative (lossless) electric circuit capable of attaining a non-

trivial Jordan canonical form for its circuit matrix and consequently exhibiting an EPD.

The circuit is composed of solely conservative reciprocal elements (capacitors and inductors)

and the shared capacitance and parallel inductance should be negative. Interestingly, we

found that the reciprocal and nonreciprocal circuits presented in our previous chapters can

produce exactly the same Jordan canonical form. We also found that the nonreciprocity is

manifested in the breakdown of certain symmetries of the set of eigenvectors as well as in the

Lagrangian. Further, we have thoroughly tested and confirmed all our significant findings

through numerical simulations using commercial circuit simulator software.
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Chapter 5

Time Modulation to Manage and

Increase the Power Harvested From

External Vibrations

We investigate how a single resonator with a time-modulated component extracts power

from an external ambient source. The collected power is largely dependent on the black

precise modulation signal frequency choice. We focus on the power absorbed from external

vibration using a mechanical resonator and how time modulation of the damper can make

a significant difference in the amount of harvested power, leading to more than 10 times

enhancement compared to an analogous system without time modulation. We also find that

a narrow band pair of peak and dip in the spectrum of the absorbed power occurs because

of the presence of an EPD. In this narrow frequency range, the delay between the damper

modulating signal and the external vibrating signal largely affects the collected power. The

high frequency-selectivity of EPD-induced power management could potentially be used in

sensing and spectrometer applications.
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5.1 Background, Motivation, and State of the Art

Energy harvesting has attracted considerable interest in electrical [160, 161] and mechani-

cal [162, 163] systems. It offers a battery-less strategy by recovering energy from ambient

sources such as vibrations, wind, etc., and transform it into another form, such as electrical

power. Applications include MEMS vibration energy harvesters [164, 165], low-power wire-

less sensors [166] and fluid energy harvesting [167]. In some of these applications, only a

small fraction of energy needs to be extracted to power isolated devices. Therefore, collected

power from a nearby ambient source can be used to power the inside isolated circuits. A

dynamic system has parametric excitation when the effect of force appears as a coefficient

of a variable in the governing equations of motion [168, 169]. The parametric excitation

leads to a class of time-varying equations, whose coefficients are explicit functions of time.

Parametric excitation can enhance the maximum response attainable in different kind of

systems [170]. Different vibration-based energy harvesting methods have been used recently

[171, 172, 173, 174, 175, 176], though more work needs to be done on utilizing paramet-

ric excitation in time-varying systems. Analogous principles could be used to manage the

absorption of vibration or filter out particular vibration frequencies in mechanical systems

[177].

Low vibration amplitudes cannot be efficiently collected, hence various approaches are de-

veloped to increase energy harvesting efficiency [178, 179]. Vibration energy harvesters have

been proposed with different nonlinear arrangements that increase their frequency range

and dynamic range, most notably using nonlinear springs and dampers [180, 181]. More-

over, semi-active strategies and nonlinear damping in the form of cubic damping [174, 175]

and nonlinear piezoelectric converters [182, 183] have been used to extend an energy har-

vester’s dynamic range. In addition, some have analyzed systems where mass changes over

time [184, 185, 186]. However, challenges remain about maximizing the amount of energy

harvested, and the ideas should be further explored.
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Figure 5.1: Time-modulated mechanical system for kinetic energy harvesting. The external
vibrational displacement of the whole system is ys (t). Two examples of time modulation of
the damper are sinusoidal and two-level piece-wise constant (used in this chapter).

In this chapter, a resonator with an LTP damper is considered for harvesting or managing en-

ergy from an outside source, focusing on a mechanical mass-spring-damper resonator subject

to external vibration [162, 187], as shown in Figure 5.1. However, the physical principle here

discussed is general and can be applied to other systems as shown in Sections 5.4 and 5.7. We

demonstrate how parametric LTP modulation can boost motion amplitude, enabling a more

efficient flow from the energy source to the harvesting system. By applying time variation

to the system, power harvesting is improved (even 10 times) in a specific frequency range

compared to the unmodulated system. We observe extremely narrow spectral features in the

harvested energy spectrum and explain it by resorting to the concept of EPD. Such degen-

eracy is a point in the parameter space of a resonating system at which multiple eigenmodes

coalesce in both their eigenvalues and eigenvectors [3, 62, 18, 114]. The concept of EPD

has been investigated in circuits with loss and/or gain under parity-time symmetry [9, 33],

and also in spatially [124, 29] and temporally [19, 92, 125] periodic structures. Moreover,

the degenerate eigenvalues of the system are exceptionally sensitive to perturbations in sys-

tem parameters [4] that can be used to achieve high sensitivity in various sensing scenarios

[33, 37, 12, 75, 110, 188].
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Figure 5.2: Time-averaged power levels after reaching steady state for: (a) P0 delivered to
the damper c0; (b) Pm provided by the time-varying damper cm (t); and (c) Ps extracted
(harvested) from the external vibration, by varying the vibration frequency in a wide range
around f0 = 1Hz. Two time-modulated cases are considered here: (i) modulation frequency
fm = 2 Hz at the center of the modulation gap (blue), and (ii) modulation frequency fm =
fm,e = 1.984 Hz (green). For comparison, powers are also shown for the case without time
modulation (red). (d)-(f) Zoomed-in analysis for frequencies near the EPD frequency fe =
fm,e/2 = 0.992Hz and with time modulation at fm = fm,e = 1.984Hz. There is a remarkable
highly varying power level around fe. (g) Collected time-average power P0 equals the sum
of Pm and Ps.

5.2 Mathematical Derivation

The kinetic energy harvesting mechanical scheme discussed here is shown in Figure 5.1.

The system consists of a mass connected to a spring and a damper with an additional

time-varying portion. It is excited by external monochromatic vibration represented by the

imposed displacement ys (t), caused by an external force that drives the mechanical resonator.

Here, m is the mass, k is the spring stiffness constant, c (t) = c0 + cm (t) is the damping

parameter that includes a constant part c0 and a time-periodic one cm (t) of period Tm and

x represents the mass displacement. The electric counterpart circuit, the possible practical

methods to realize time-modulated dampers and the realistic application of a spring-mass-
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damper model are discussed in Section 5.4. The governing equation of the time-varying

system is

mẍ+ c (t) (ẋ− ẏs) + k (x− ys) = 0. (5.1)

The constant damping coefficient c0 = cp+ ct represents the energy losses within the system

due to parasitic loss mechanisms cp (e.g., viscous friction with air), and by the intentional

mechanism of damping ct, i.e., the mechanical energy extracted by the transduction mech-

anism [189, 190, 191]. Hence, part of the mobile mass’s kinetic energy is lost in mechanical

parasitic damping and some other is turned into electricity thanks to an energy converter

(e.g., magnet/coil, piezoelectric material, variable capacitor, etc.) [192, 193, 194]. Here, we

presume that the damping force is proportional to the velocity, which can be described as

an electromechanical transducer [195, Chapter 2]. However, our study is general in nature,

and this method can be applied to any system described by the differential equation shown

in Equation (5.1). We define the relative mass displacement parameter z = x− ys, and the

governing dynamic equation is rewritten as

z̈ + 2ζ (t)ω0ż + ω2
0z = −ÿs, (5.2)

where ζ (t) = ζ0 + ζm (t) = c0/ (2mω0) + cm (t) / (2mω0) is the time-modulated damping

rate and ω0 =
√

k/m is the natural angular frequency of the unmodulated and lossless

system. Assuming a time harmonic dependence of the form z ∝ ejωt for the unmodu-

lated homogeneous system (cm = 0 and ys = 0), we obtain the complex eigenfrequencies

ω = ω0

(
±
√

1− ζ20 + jζ0

)
associated to damped oscillations. We define the state vector as

Ψ (t) ≡ [z, ż] T, where the superscript T denotes the transpose operation, leading to
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Figure 5.3: The (a) real and (b) imaginary parts of eigenfrequencies ω + qωm, where q
is an integer, of the system by varying ωm. (c) Frequency spectrum of the relative mass
displacement z (t). The largest frequency spectral component of the displacement occurs at
the fundamental harmonic q = 0, i.e., at the EPD frequency fe = fm,e/2 = 0.992 Hz.

dΨ(t)
dt

= M (t)Ψ (t) +


0

−ÿs

 , M (t) =


0 1

−ω2
0 −2ζ (t)ω0

 , (5.3)

where M (t) is the time-variant system matrix. We analyze the power transfer from an

external vibration ys (t) = y0 cos (2πfst), where y0 is its amplitude and fs is its frequency,

into the LTP spring-mass-damper system using a time-domain numerical simulator (see

Section 5.4). We determine the time-averaged power Ps delivered by the external vibration,

the time-averaged power Pm delivered by the time modulation, and the time-averaged power

P0 delivered to (or harvested by) the constant damper c0. Note that fm is the modulation

frequency of the time-varying damper. In realistic applications, particularly those on a

small scale, mechanical systems are very small, and ambient vibrations are generally low

in amplitude (0.1 − 5 m/s2) and frequency (< 100 Hz) [193]. Because of the low energy of

some external sources in realistic applications, we investigate how we can maximize both

the power Ps absorbed from the external source and the power P0 harvested by the constant

damper by using time modulation.
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5.3 EPD Condition and Example of Time-modulated

Mechanical System

An example is shown in Figure 5.2, where k = 4π2 N/m and m = 1 kg leading to f0 = 1 Hz,

and y0 = 1mm. We only consider for simplicity a two-level piece-wise constant time-periodic

damping c (t), which is c0+cm in the time interval 0 ⩽ t < Tm/2 and c0−cm in Tm/2 ⩽ t < Tm.

We assume c0 = 0.1Ns/m and cm = 0.15Ns/m. We also study the unmodulated system with

constant damper c (t) = c0, where maximum energy can be extracted when the excitation

frequency fs matches the natural frequency of the system f0. In Figure 5.2 we compare

the LTP system with the unmodulated system to show that time modulation has a strong

effect on the time-averaged powers Ps and P0. For the considered modulation frequency of

fm = 2 Hz that is equal to 2f0, Ps and P0 are largely enhanced when fs is in the neighbor

of f0. The plot in Figure 5.2(c) shows the maximum harvested power in the unmodulated

system is Ps = 19.7 mW, whereas the maximum power that the time modulated system

absorbs from the source is Ps = 198.4 mW (10 times higher).

The results in Figures 5.2(a)-(c) show also another interesting feature, i.e., the very narrow

frequency range around fs = 0.992Hz (which is half of fm,e) where the power exhibits a sharp

maximum and a local minimum when fm = fm,e, where fm,e = 1.984 Hz is a modulation

frequency that leads to the EPD. This rapid power level variation is shown better in the

zoomed-in frequency region in Figures 5.2(d)-(f). To understand the reasons for this very

sharp variations in the time averaged power values we look at the eigenvalues of the system

and their degeneracy.

We look at the eigenstates of the time-varying system without external vibration. The

evolution of the state vector in the LTP system with time periodicity Tm is given by

Ψ (t+ Tm) = Φ (t+ Tm, t)Ψ (t), where Φ (t+ Tm, t) = eM2Tm/2eM1Tm/2 is the state transi-

tion matrix, where M1 and M2 are the system matrices in the first and second time intervals
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Figure 5.4: Time-averaged powers by varying the modulation frequency fm (blue curves), for
the case of fs = fm,e/2. (a) P0; (b) Pm; and (c) Ps. The red dashed line is the time-averaged
power level of the unmodulated system. (d) Collected time-average power P0 equals the sum
of Pm and Ps.

[196, Chapter 2]. We look for eigensolutions of the system that satisfy

Ψ (t+ Tm) = ejωTmΨ (t) , (5.4)

where ω (with all the harmonics ω+2πq/Tm, where q is an integer) is the complex eigenfre-

quency. Therefore, the eigenvalue problem is

ΦΨ (t) = λΨ (t) , (5.5)

and the eigenvalues λn = ejωnTm , n = 1, 2, are obtained by solving the characteristic poly-

nomial equation det (Φ− λI) = 0. The eigensolutions Ψ (t) have Fourier harmonics with

frequencies ωn + qωm, where ωm = 2πfm is the modulation angular frequency [19]. When a

transition matrix made of real values elements describes the system, the characteristic poly-

nomial has real coefficients, so the eigenvalues are either real or complex conjugate pairs.

The transition matrix determinant is written as [196, Chapter 2]
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det (Φ) = λ1λ2 = e[tr(M1Tm/2)+tr(M2Tm/2)], (5.6)

where tr is the trace of the matrix. The determinant can be either det (Φ) = e2Im(ω1)Tm ,

when eigenvalues are complex conjugate pair, or det (Φ) = ejsπe(Im(ω1)+Im(ω2))Tm , when λ1

and λ2 are both real and s is an integer. The two eigenvalues are

λ1,2 =
tr (Φ)

2
±

√(
tr (Φ)

2

)2

− det (Φ), (5.7)

and the two associated eigenvectors are

Ψ1 =


φ12

λ1 − φ11

 , Ψ2 =


φ12

λ2 − φ11

 , (5.8)

where φ11 and φ12 are elements of the matrix Φ. The two eigenvalues are degenerate (λ1 =

λ2 = tr (Φ) /2) when

tr (Φ) = ±2
√

det (Φ). (5.9)

According to Equation (5.8), degenerate eigenvalues result in degenerate eigenvectors. A

transition matrix at an EPD is similar to a Jordan block with two degenerate eigenvalues

associated with degenerate eigenvectors. As a matter of energy analysis, in a time-periodic

system energy can be transferred into or out of the system via the time-variation mechanism.

The system’s eigenfrequency dispersion diagram is shown in Figures 5.3(a) and (b). EPDs

happen at two modulated frequencies, fm,e = 1.984Hz and fm,e = 2.015Hz. The quality factor

140



Figure 5.5: (a) Source sinusoidal signal with a period of Ts = 2Tm. (b) Piece-wise constant
time modulated damper with a period of Tm and (c) shifted by a delay τ . (d) Time-averaged
power Pm versus delay τ for three different scenarios.

of a resonating system is Q = Re (ω) / (2Im (ω)), that is higher for smaller Im (ω). In general,

a higher quality factor implies a higher power harvested by the system. A modulation gap

in the dispersion diagram of eigenfrequencies happens when the two eigenfrequencies have

two non-vanishing imaginary parts, i.e., between two closeby EPDs. When the modulation

frequency is selected in the middle of the modulation gap, i.e., fm = 2Hz, one eigenfrequency

has the smaller Im (ω), corresponding to a better quality factor compared to the two neighbor

EPDs at slightly higher and lower frequencies. Thus, we expect the largest improvement in

harvested power in the middle of the modulation gap. Also, by selecting fm,e = 1.984Hz the

system experiences harsh changes around fs = fm,e/2 = 0.992Hz due to the degeneracy of the

eigenfrequencies. The spectrum of the relative displacement z (t) when the source-free system

is modulated at fm = fm,e = 1.984 Hz and it is excited by an initial condition (see Section

5.4) is illustrated in Figure 5.3(c). The spectrum peak is observed at fe = fm,e/2 = 0.992Hz,

that is same as the one obtained from solving the eigenvalue problem shown in Figures 5.3(a)

and (b).

When fm = fm,e = 1.984 Hz, the mechanical system operates at the EPD. The frequency
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Figure 5.6: Time-averaged power levels, after reaching steady state, as in Figure 5.4, but
assuming a time delay τ = 0.51Tm in the modulation of the damper, in the case of fs = fm,e/2.

spectrum in Figure 5.3(c) shows that the first harmonic at f = fe = fm,e/2 = 0.992 Hz,

carries the maximum power. After setting fs = fe = fm,e/2 = 0.992 Hz, Figure 5.4 shows

the powers by varying the modulation frequency around its EPD value fm,e = 1.984 Hz. In

this plot, time-modulated case is in blue curve, whereas the red dashed-line reminds the

power values of the system without time-modulation. The numerical results show that the

system operating close to EPD (cyan point) harvests more power from the external source

(Ps = 20.9 mW) compared to the system without time-modulation (Ps = 10.5 mW). Thus,

time modulation leads to harvest more power from external vibration, with an improvement

of 99%. In addition, the time-modulated element delivers the power of Pm = 80.3 mW to

the system and the constant part of the damper absorbs P0 = Ps + Pm = 101.2 mW from

the system, at the EPD frequency.

The eigenfrequencies near the EPD are very sensitive to a system’s variation, like a small

change in the modulation frequency, as discussed in Section 5.6. When such a small rel-

ative perturbation δm = (fm − fm,e) /fm,e is applied, the resulting two distinct eigenfre-

quencies f1,2 (δm) are estimated using the Puiseux series power expansion f1,2 (δm) ≈ fe ∓

j (fm/2π)α1

√
δm [125], where α1 is the first-order expansion coefficient. The square root

function demonstrates that the eigenfrequencies are highly sensitive to modulation frequency

perturbations around the EPD, as shown in Figure 5.3. This is reflected by the power levels
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that change dramatically when a small change in fm is applied, as shown in Figure 5.4. To

harvest power, the modulation frequency must be chosen precisely, very close to the EPD

frequency. It could be chosen exactly either at the EPD or between the two EPD frequencies

as explained in the following.

To control the power provided by the time modulated portion of the circuit, Figure 5.5(d)

shows Pm delivered by cm (t) versus delay τ . Three combinations of modulation and source

frequencies are considered. For the two cases shown with blue and yellow curves in Figure

5.5(d), we assume that the frequency of the source is fixed to fs = fm/2, hence, the period of

the modulation signal is half of the source’s one when operating at the EPD (Tm,e = Ts/2).

In the third case (orange line), we assume that fm = fm,e, and source frequency at fs = 1Hz.

It is clear that the variation of the delay τ has a strong effect on Pm when the modulation

frequency is selected as fm = 2fs (both blue and yellow curves). However, in the case

shown by the orange curve, which is a slight modification from the other two cases, Pm is

more or less constant and the delay does not have much effect on it. When fm = fm,e, and

fs = fm/2 (blue curve), and at a specific delay τ = 0.51Tm, the power delivered by the time-

varying damper reaches the minimum and it is as small as Pm = 0.04mW. By assuming the

latter particular condition with fs = fm,e/2 and τ = 0.51Tm, the numerical results in Figure

5.6 show the source, modulation and constant damper powers by varying the modulation

frequency (compared to the results in Figure 5.4, where τ = 0). Blue curves represent the

power in the system with time modulation (note that the modulated power is near zero at the

EPD), while red curves illustrate the power levels for the case without time modulation, as

was done in Figure 5.4. At the EPD modulation frequency fm = fm,e = 1.984Hz (cyan point),

the power extracted from the source vibration is Ps = 19.38mW and the power delivered to

the constant part of the damper is P0 = 19.42 mW. Thus, time modulation improves power

harvesting by 85% compared to the case without time modulation. Note also that in this

case the power delivered by the modulation is very small (P0 ≈ Ps). However, the calculated

powers around the EPD vary dramatically when changing the modulation frequency. That
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is one of the most peculiar properties associated with an EPD, as already depicted in Figures

5.4, and 5.6. The reason is that the eigenstates at the EPD are extremely sensitive to any

perturbation, as shown in Figure 5.3, which causes large variation when interacting with

forced excitation. The system could possibly harvest even more power with a precise choice

of modulation frequency close to EPD and proper time delay. However, even without a

precise modulation frequency choice, the system harvests more power on average, over fs or

fm variation.

5.4 Dual Circuit With Time-Modulated Conductance

We show the analogous (dual) system made of a LC resonator and an LTP conductance

connected to the external source in series to the capacitor as shown in Figure 5.7. In

order to calculate the power in the dual LTP system, we consider piece-wise constant time-

periodic conductance G (t), i.e., G (t) = G0+Gm during the time interval 0 ≤ t < Tm/2, and

G (t) = G0 − Gm during the time interval Tm/2 ≤ t < Tm. Analogously to the mechanical

LTP system, we define the system state vector as Ψ (t) = [v (t) , v̇ (t)]T, where v (t) is the

voltage on the inductor and v̇ (t) is its time derivative. In general, G (t) can be either lossy

or gain (positive or negative respectively). Kirchhoff’s circuit laws apply to time-varying

circuits as follows:

G (t) v̇ +
v

L
+ C (v̈ + v̈s) = 0. (5.10)

The circuit equation is rewritten as

v̈ + 2α (t) v̇ + ω2
0v = −v̈s. (5.11)
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Figure 5.7: The dual time-varying circuit where an inductance is connected in parallel to
a time-varying conductance, with an external source vs (t) in series to the capacitor. The
conductance is designed to have a two-level piece-wise constant time-periodic conductance,
where G (t) = G0 +Gm during the time interval 0 ≤ t < Tm/2, and G (t) = G0 −Gm during
the time interval Tm/2 ≤ t < Tm.

where α (t) = α0 + αm (t) = G0/ (2C) +Gm (t) / (2C) is the time-modulated damping factor

and ω0 = 1/
√
LC is the natural frequency of the unmodulated and lossless circuit. Assuming

time harmonic dependence of the form v ∝ ejωt for the unmodulated homogeneous circuit,

we obtain the eigenfrequencies as ω = jα(1 ±
√
1− ω2

0/α
2). By writing the differential

equation in the eigenvalue problem format, the time evolution of the state vector Ψ (t) is

given by

dΨ(t)
dt

= Mc (t)Ψ (t) +


0

−v̈s

 , Mc (t) =


0 1

−ω2
0 −2α (t)

 , (5.12)

whereMc (t) is the equivalent circuit matrix. The differential equation and the circuit matrix

are dual to the time-varying mechanical system whose time-varying damper is connected to

the spring and mass. The duality transformation is k → 1/L, m → C and c (t) → G (t)

and both systems have an external excitation ÿ(t) → v̈s(t) as summarized in Table 5.1

[197]. Also, we show the duality of the characteristic equations in mechanical systems and

their dual version in electric circuits in Table 5.2. By applying the conversion between

force and current (F ←→ i) and velocity and voltage (ż ←→ v), Newton’s equations and

instantaneous mechanical power relate to the electric dual equations. We analyze the dual
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LTP circuit by using the Keysight ADS time-domain simulator to calculate the power. We

excite the circuit with a sinusoidal source at a frequency of fs and the amplitude of 10 mV.

Also, the capacitor has a 10mV as an initial condition for the case where no external source

excites the system. We numerically calculate the power using a built-in power block in the

simulator and then report the time-averaged power based on 1000 time periods after the

time domain signal saturates (i.e., for the time window from 3500 s to 4500 s).

Table 5.1: Component values in the mechanical system and their dual values in the dual
electrical circuit.

Mechanical system Dual electrical circuit Duality

k = 4π2 N/m L = 0.025 H k → 1/L

m = 1 kg C = 1 F m→ C

c0 = 0.1 Ns/m G0 = 0.1 S c0 → G0

cm = 0.15 Ns/m Gm = 0.15 S cm → Gm

c (t) =

 c0 + cm, 0 ≤ t < Tm/2

c0 − cm, Tm/2 ≤ t < Tm

G (t) =

 G0 +Gm, 0 ≤ t < Tm/2

G0 −Gm, Tm/2 ≤ t < Tm

c (t)→ G (t)

Table 5.2: Dual equations in the mechanical system and dual electrical circuit, where F is
the force and i is the current.

Mechanical system Dual electrical circuit

Spring F = kz i = (1/L)
´
v dt

′
Inductor

Mass F = mz̈ i = Cv̇ Capacitor

Damper F = cż i = Gv Conductance

Mechanical Power p = F ż p = iv Electrical Power

Duality

F ←→ i

ż ←→ v

146



5.5 Vibration Conversion

As already mentioned, c0 = cp+ ct is responsible for the energy losses within the system due

to parasitic loss mechanisms cp (e.g., viscous friction with air), and by the intentional mech-

anism of damping ct, i.e., the mechanical energy extracted by the transduction mechanism.

This model is based on the idea that converting energy from an oscillating mass to electricity

(whatever the mechanism is) can be modeled as a linear damper in a mass-spring system.

This model is quite accurate for certain types of electromechanical converters, such as those

analyzed by Williams and Yates [198]. For other types of converter, such as electrostatic

and piezoelectric, the model may be modified. However, the conversion will always result

in a loss of mechanical kinetic energy, which can be referred to as damping [199]. Despite

the fact that the current damper model does not accurately model all kinds converter types,

the present analysis can be extended to electrostatic and piezoelectric systems [199]. The

power extracted from the mechanical system via ct is due to electrically induced damping

and it is constitutes the whole time-averaged power P0 if the parasitic damping vanishes.

The instantaneous power in the constant part of the damper c0, i.e., the combination of

parasitic loss mechanisms cp and transduction mechanism ct, can be calculated as a product

of induced force c0ż and velocity ż. Thus, the absorbed instantaneous power in the constant

part of the damper is expressed by

p0(t) = c0ż
2. (5.13)

The total time-averaged power P0 is calculated by averaging the time domain expression. In

a monochromatic regime, assuming no modulation, the total time-averaged power dissipated

within the damper, i.e., the power extracted via the transduction mechanism and the power

lost by parasitic damping mechanisms, is given by [190, 195, 200]
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P0 =
mζ0ω0ω

2
s

(
ωs

ω0

)3
y20(

2ζ0
ωs

ω0

)2
+

(
1−

(
ωs

ω0

)2)2 , (5.14)

where y0 is the magnitude of the source vibration, ζ0 = ζt + ζp = c0/ (2mω0) is the constant

damping ratio. Maximum power dissipation within the generator occurs when the device

is operated at ωs = ω0, and in this case the total time-averaged power dissipated in the

constant part of the damper is given by

P0 =
mω3

0y
2
0

4ζ0
. (5.15)

5.6 Sensitivity to Perturbation

Sensitivity of a system’s observable to a particular parameter is a measure of how much a per-

turbation to that parameter affects the observable quantity of the system. The eigenvalues

of the system at EPDs are extremely sensitive to parameter changes, which is a significant

feature. Applying a perturbation to a system parameter such as the modulation frequency

δm = (fm − fm,e) /fm,e, leads to a perturbed transition matrix Φ (δm) and perturbed eigen-

values λp (δm), with p = 1, 2. Therefore, the degenerate resonance frequency occurring at the

EPD fe, splits into two distinct resonance frequencies fp (δm), due to a small perturbation δm.

We can calculate the perturbed eigenvalues near the EPD by using the convergent Puiseux

fractional power series expansion, with coefficients calculated using the explicit recursive

formulas in [91]. In the presented mechanical system with a second-order EPD, we utilize a

first-order approximation of the perturbed eigenvalues as
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Figure 5.8: (a) The cantilever beam with tip mass, (b) multilayer PZT subjected to transverse
external vibration excited at the base and (c) equivalent lumped spring-mass-damper system.

λp (δm) ≈ λe + (−1)p α1

√
δm, (5.16)

where λe is the eigenvalue at EPD and the first order coefficient is expressed by

α1 =

(
− ∂H (δm, λ) /∂δm

1
2!
∂2H (δm, λ) /∂λ2

) 1
2

∣∣∣∣∣
δm=0, λ=λe

, (5.17)

where H (δm, λ) = det (Φ (δm)− λI) and I is the 2 × 2 identity matrix. The perturbed

resonance frequencies are approximately calculated as

fp (δm) ≈ fe ± j
fm
2π

(−1)p α1

√
δm. (5.18)

This formula proves that the time-modulated system supporting the EPD is very sensitive

to variations in the modulation frequency fm. Figures 5.2, 5.4 and 5.6 demonstrate that the

harvested power is very sensitive to variations in the system’s parameters when operating at

or near an EPD.
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5.7 Realistic Applications

In general, a mechanical model based on a spring–mass system gives a meaningful description

of vibration behavior and can be used to model energy harvesting devices and inertial-based

generators. For example, the cantilever can be represented by its equivalent model, which

is composed of a mass, a spring and a damper. All these components are enclosed in a

casing and mechanically connected to the vibration source. The most common examples of

cantilever design are cantilevered balconies, walkways, and overhangs, as well as some parts of

bridge designs [201, Chapter 4], [202, Chapter 11]. In addition, our method can be extended

to piezomagnetoelastic cantilevers [192, 203], a basic bimorph piezoelectric cantilever [201,

Chapter 4], and a piezoelectric pendulum [204] in a realistic setup.

Figure 5.8(a) shows a diagram of a cantilever beam with piezoelectric plates bonded on a

substrate and a proof mass at the end; Figure 5.8(b) shows multilayer piezoelectric plates

and Figure 5.8(c) provides the equivalent lumped spring-mass with external excitation. For

piezoelectric energy harvesting devices, cantilever structures with tip masses are the most

commonly used configurations. The vibration source is shown with an arrow at the base

of the contact point. The configuration shown in Figure 5.8(c) applies to both the energy

harvesting mechanisms illustrated in Figure 5.8(a) and (b).

5.8 Realization of Time-modulated Damper

The time varying mechanisms can be implemented in realistic designs using tunable/controllable

devices. For example, a controllable damper can be realized via variable orifice dampers

with an external actuator modifying the orifice diameter, controllable fluid dampers and ad-

justable tuned liquid dampers [205, 206, 207, 174]. The variable orifice dampers have shown

relatively low response speeds. However, in recent years, magneto-rheological dampers where
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the viscosity of the magnetic fluid is controlled via tuning of the field have received consider-

able attention due to their ability to rapidly alter their properties in response to the applied

magnetic field [208]. In this configuration, variable damping control can be achieved by

varying a small electric current to the magneto-rheological dampers [209, 210, 211].

An alternative method of achieving semi-active damping is the use of electro-rheological

fluids whose viscosity can be controlled by applying an electric field. This technology has

been applied to the control of semi-active suspensions and flexible structures [212, 213, 214].

More investigation into the tunability methods and review of the recent works in this area

can be found in [208]. We can therefore realize the time-modulated damper needed for

our proposed structure by varying the damping coefficient periodically via the described

approaches.

5.9 Scale Parameter in the Mechanical System

In this chapter, we adopted practical values for system parameters. However, according to

the governing equation of the time-varying system, parameters can be scaled by a factor S

as shown in Table (5.3).

Table 5.3: Parameters in the mechanical system scalable by factor S.

Parameter Scale

Mass m→ Sm

Spring stiffness k → Sk

Damper damping c→ Sc

As a result of applying this transformation, we obtain the same governing equation with the

same eigenvalues.
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5.10 Noise in the Energy Harvesting Systems

Ambient noise may strongly influence the energy harvesters performance, therefore it is im-

portant to study energy harvesting systems to improve the performance. For developing

micropower generators applicable to noise environments, it has become important to harvest

energy utilizing different mechanisms. Even though many configurations have been devel-

oped to harvest ambient vibration energy, crucial questions remain about how to optimize

performance under different noise levels [215]. The efficiency of harvesting energy from noise

has also been explored by some researchers [216, 217, 218, 219, 220, 221, 222, 223, 224].

Borowiec et al. [225] investigated the effect of noise on energy harvester performance.

In summary, noise in an energy harvesting system has been investigated from different per-

spectives. First, noise can affect the main resonator and the relevant circuit. Nevertheless,

the resonator is isolated from the environment, which minimizes the noise effects. Secondly,

noise in the ambient source can affect energy harvesting system performance. For instance,

Liu et al. proposed a stochastic averaging method to study the response characteristics of

an energy harvesting system in the case of colored noise [220]. Also, Su et al. analyzed

the effect of Gaussian white noise intensity on the system [226]. Moreover, the influence of

ambient sinusoidal excitation and additive noise on the energy harvesting performance of

piecewise bistable energy harvesters were investigated in [227]. Considering the importance

of this topic, many other studies have studied noise’s effect on ambient sources in detail

[228, 229, 230, 231, 232, 233, 234, 235]. Furthermore, noise may be a source of energy, and

an energy harvester could be designed in such a way that it extracts the maximum power

from the statistical external noise [236, 237, 238, 239]. Finally, noise may be affected by

EPDs. Some papers have discussed the relation between noise and EPD and provided meth-

ods to analyze it [240, 241, 242, 15, 72, 243, 244, 245, 246, 17]. However, this subject is

beyond the scope of this paper and requires a separate in-depth study.
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5.11 Conclusions

As a conclusion, we have shown that a mechanical resonator with time modulation harvests

much higher power (even ten times higher) from ambient vibration than its counterpart

without time modulation. Moreover, using the concept of second-order EPDs, we also ex-

plain the existence of a very sharp spectral peak at some modulation frequencies. The power

levels vary rapidly with only a very slight variation in a parameter (like modulation fre-

quency). Indeed, using the Puiseux fractional series expansion, we have demonstrated that

the degenerated system’s eigenfrequency is highly sensitive to perturbations in the modula-

tion frequency. It would be possible to use this effect for sensing applications or very precise

spectrometers. The physics associated with an EPD in an LTP mechanical system is vital for

getting a deeper insight into different ways to improve the narrow frequency features of the

power transfer mechanism. We used a time-modulated damping factor that could be realized

in a variety of ways including magneto-rheological or electro-rheological dampers where the

damping factor can be tuned by changing fields. Specifically, the improvement in harvest-

ing power is advantageous for applications with low energy requirements and low ambient

source amplitude where direct access to the device is not possible and battery recharging or

replacement is not feasible such as wireless sensors, bio-implantable devices, wireless body

area networks, etc. Nevertheless, the capabilities of this method are not limited to low power

applications and LTP energy harvesters can be beneficial for energy harvesting in building

structures, roadways, railways, bridges, wind turbines, etc [247, 248].
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Chapter 6

Exceptional Points of Degeneracy

Directly Induced by Space-Time

Modulation of a Single Transmission

Line

We demonstrate how EPDs are induced in a single TL directly by applying periodic space-

time modulation to the per-unit-length distributed capacitance. In such STM-TL, two eigen-

modes coalesce into a single degenerate one, in their eigenvalues (wavenumbers) and eigen-

vectors (voltage-current states) when the system approaches the EPD condition. The EPD

condition is achieved by tuning a parameter in the space-time modulation, such as spatial

or temporal modulation frequency, or the modulation depth. We unequivocally demonstrate

the occurrence of the EPD by showing that the bifurcation of the wavenumber around the

EPD is described by the Puiseux fractional power series expansion. We show that the first

order expansion is sufficient to approximate well the dispersion diagram, and how this “ex-

ceptional” sensitivity of the STM-TL’s wavenumber to tiny changes of any TL or modulation
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parameter enables a possible application as a highly sensitive TL sensor when operating at

an EPD.

6.1 Background, Motivation, and State of the Art

Recent advancements in EPD concepts have attracted a surge of interests due to their poten-

tial benefits in various electromagnetic applications. An EPD is a point in parameter space

of a system at which multiple eigenmodes coalesce in both their eigenvalues and eigenvec-

tors. The concept of EPD has been studied in lossless, spatially [18, 124, 250] or temporally

[251, 19] periodic structures, and in systems with loss and/or gain under parity-time sym-

metry [66, 114, 33, 67]. Since the characterizing feature of an exceptional point is the strong

full degeneracy of at least two eigenmodes, as implied in [11], we stress the importance of

referring to it as a “degeneracy”, hence of including the D in EPD. In essence, an EPD is

obtained when the system matrix is similar to a matrix that comprises a non-trivial Jordan

block [18, 24, 252, 29], here however the formulation leads to a matrix of infinite dimensions

and therefore we assess the occurrence of the EPD by invoking the Puiseux fractional power

expansion series [4] to describe the bifurcation of the dispersion diagram at the EPD. There

are several features associated with the development of EPDs, which lead to applications,

such as active systems gain enhancement in waveguides [253, 254, 255], and enhanced sensing

[71, 12, 90, 125].

Researchers have been studying how to incorporate time-variation of parameters into electro-

magnetic systems with the goal of adding new degrees of freedom in wave manipulation. In

their pioneering work, Cassedy and Oliner studied the dispersion characteristics of wave prop-

agation in a medium with dielectric constant modulated as a traveling-wave with sinusoidal

form [256, 257]. Then, Elachi studied electromagnetic wave propagation and the wave vec-

tor diagram in general space-time periodic materials for different wave polarization [258]. In
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Figure 6.1: Schematic illustration of a single TL with space-time modulation of the dis-
tributed capacitance. We also show the equivalent TL circuit with the per-unit-length in-
ductor and modulated capacitor.

[259, 260], authors analyzed the concept of temporal photonic crystals with periodic modula-

tion of permeability and permittivity. In [261], magnetless nonreciprocity was demonstrated

in spatiotemporally modulated coupled-resonator networks. Also, Taravati et al. proposed a

mixer-duplexer-antenna leaky-wave system based on periodic space-time modulation [262].

Recently, in [263, 264], space-time modulation was employed to control phase and amplitude

tunability in a metasurface. Several other papers have been published on time/space-time

modulation to generate nonreciprocity in electromagnetic structures [265, 266, 267, 268]. In

all these works, the concept of EPD in such modulated structures was not studied.

Here we leverage on the two concepts of space-time modulation and EPD and develop a

general scheme to realize EPDs in space-time periodic single TL that could be used as a

sensor. We investigate the occurrence of EPDs when the per-unit-length capacitance is

modulated in space and time, by showing that the bifurcation of the dispersion diagram

around the EPD is well approximated by the Puiseux fractional power series expansion.

This EPD-related fractional expansion is also used to explain the extreme sensitivity of the

wavenumber to perturbation of system parameters adding a degree of freedom to TL systems

with space-only or time-only modulation.
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Figure 6.2: Dispersion diagram of the STM-TL with 2nd order EPDs. (a) Real part of the
wavenumber of first harmonics and (b) the corresponding imaginary parts, and (c) plot of
|det(U)| versus frequency. The similarity transformation matrix U contains eigenvectors,
therefore the vanishing of |det(U)| is necessary at an EPD.

6.2 Degeneracies in a Uniform Single ST-MTL

Degeneracies in wave propagation in an infinitely long TL is examined when the per-unit-

length capacitance is modulated in both space and time. We employ the formalism and

description of a linear TL shown in [40]. A schematic representation of an STM-TL is

shown in Figure 6.1, where only the per-unit-length capacitance is space-time varying, while

the per-unit-length inductance is constant throughout the TL. Without loss of generality

we assume sinusoidal space-time variation; however, EPDs can be induced also by other

forms of periodic space-time variation. The distributed per-unit-length space-time varying

capacitance is given by

C(z, t) = C0 + Cm(t) = C0(1 + δc cos(ωmt− βmz)), (6.1)

where C0 is the space-time averaged (i.e., unmodulated) per-unit-length capacitance, δc

is the modulation depth, and ωm and βm are the temporal and spatial modulation fre-

quencies, respectively. The dynamic behavior of such a TL is captured using the Telegra-

pher’s equations, that are here represented in terms of a voltage and current state vector,
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Ψ(z, t) = [V (z, t), I(z, t)]T, where the superscript T denotes the transpose operation. The

dynamic behavior of this state vector is described by the first order differential equations as

∂zΨ(z, t) = −∂t (M(z, t)Ψ(z, t)) , (6.2)

where the STM 2× 2 system matrix M is given by

M(z, t) =


0 L0

C(z, t) 0

 . (6.3)

We look for time-harmonic solutions, and because of the periodic nature of the modulation

the state vector eigensolution is cast into an infinite space-time Floquet-Bloch series as

Ψ(z, t) = ej(ωt−βz)

∞∑
q=−∞

Ψqe
jq(ωmt−βmz), (6.4)

where β and ω are the propagation wavenumber and the angular frequency, respectively, and

Ψq = [Vq, Iq]
T is the complex amplitude of the q-th harmonic of the state vector. We expand

the space-time-varying distributed capacitance in Equation (6.1) in terms of its Fourier series

C(z, t) =
1∑

s=−1

Cse
js(ωmt−βmz), (6.5)

where Cs represents the amplitude of the s-th harmonic. Substituting Equations (6.4) and

(6.5) in Equation (6.2) and taking the time and space derivatives, the equation for each q-th
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harmonics’ Ψq is obtained as

∞∑
q=−∞

(β + qβm)Ψqe
jq(ωmt−βmz) =

∞∑
q=−∞

1∑
s=−1



0 (ω + qωm)L0δs,0

(ω + (q + s)ωm)Cs

Ψqe
j(q+s)(ωmt−βmz) 0


,

(6.6)

where δs,0 is the Kronecker delta. Since the exponential functions ejq(ωmt−βmz) form a complete

orthogonal set of functions, we balance the coefficient of the exponential with the same q

index leading to

(β + qβm)Ψq =
1∑

s=−1


0 (ω + qωm)L0δs,0

(ω + qωm)Cs 0

Ψq−s. (6.7)

Isolating the term with the wavenumber, the above equation is rearranged as

βΨq =
1∑

s=−1

Nq,sΨq−s, (6.8)

where

Nq,s =


−qβmδs,0 (ω + qωm)L0δs,0

(ω + qωm)Cs −qβmδs,0

 . (6.9)
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The above equation can be cast in terms of a large block three-diagonal matrix T as

TΨ = βΨ, (6.10)

that can be sued to determine the system eigenvectors Ψ = [Ψ−Q, ...,Ψ0, ...,ΨQ]
T and

eigenvalues β. A finite number 2Q + 1 of harmonics is sufficient to determine the STM-

TL wave characteristics and the occurrence of EPDs, hence the dimension of the matrix

T is 2(2Q + 1) × 2(2Q + 1). The real and imaginary parts of the wavenumber in the β-ω

dispersion diagram are plotted in Figures 6.2(a) and (b), respectively, for the STM-TL with

parameters as follows. As specified, we have considered the sinusoidal modulation given in

Equation 6.1 where the modulation parameters are δc = 0.3, ωm = 0.05ω0, and βm = 0.8β0,

where β0 = ω0/c is the free space propagation wavenumber at ω0/(2π) = 109 s−1. Moreover,

the TL parameters are L0 = 282 nH/m and C0 = 113 pF/m. Note that the modulation

frequency does not need to be comparable to the one of the radio frequency wave. We

consider 2Q+1 = 21 harmonics to calculate the dispersion diagram (we checked that a larger

number provides the same result), but we show only the first two harmonics, i.e., the real part

of their wavenumbers and the relevant imaginary parts. It is observed form the dispersion

diagram in Figure 6.2(a) that for an STM-TL the band-gap locations form a tilted line,

which indicates non symmetric dispersion (ω(−β) ̸= ω(β)) in such a structure, as already

pointed out in [256, 269]. Furthermore, it is clear from this figure that the eigenvalues,

i.e., the propagation wavenumbers of the system, are coalescing at the band edges. To

fully characterize an EPD, we have to show that the two eigenvectors corresponding to the

two coalescing eigenvalues are also coalescing at the band edges. We define the similarity

transformation matrix asU = [U1 | · · · |U2(2Q+1)], whereUi is the eigenvector corresponding

to the i-th eigenvalue, and such matrix diagonalizes the system matrix as T = UΛU−1. At

the EPD two eigenvectors become linearly dependent, therefore we verify that |det(U)|

vanishes at each EPD as a necessary condition, as shown in Figure 6.2(c) [29]. Indeed, at

ω/ωm = 3.91 we observe that two eigenvalues as well as the two associated eigenvectors are
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equal to each other up to the 6 decimal digit. A sufficient condition to assess the occurrence

of an EPD without looking directly at the eigenvectors is explained in the next section,

by demonstrating that the dispersion diagram bifurcates at the EPD following the Puiseux

fractional power expansion [4]. It is also possible to achieve EPDs in systems with space-only

periodic modulation [29, 20], and such systems are reciprocal, or with time-only modulation

[19]. Space-time modulation adds a new degree of freedom to control the dispersion diagram’s

EPD position. Both temporal and spatial modulations are needed to obtain EPD at a desired

frequency-wavenumber pair. This may be important to design highly tunable traveling-wave

antennas since the radiation pointing angle and beamwidth depend on the wavenumber.

From the dispersion diagram in Figure 6.2(a) we observe that in an STM system, the band-

gap locations form a tilted line, hence, the EPD positions in the dispersion diagram are

nonreciprocal.

6.3 Puiseux Fractional Power Expansion and High Sen-

sitivity

Extreme sensitivity to system perturbations is an intrinsic characteristic of EPDs and this

is intrinsically related to the Puiseux series [4, 270, 91, 28] that singularly describe the EPD

occurrence. We first demonstrate how the dispersion diagram varies by changing different

system parameters, then we show the extreme sensitivity of the wavenumber to a system

perturbation when operating at an EPD that follows the description of the Puiseux fractional

power expansion. We analyze the STM-TL wavenumbers by varying one system parameter

at the time around the value used in the example. As a first parameter, we vary the unmod-

ulated per-unit-length capacitance of the TL, C0, and observe its effect on the dispersion

diagram. As shown in the Figure 6.3(a), by increasing C0, the dispersion diagram shifts

downwards and consequently the EPDs move in the same direction. In the next step, we
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Figure 6.3: Dispersion diagrams of the real part of wavenumbers by changing one single
parameter at the time. The system parameters that are changed are (a) C0, (b) δc, (c) ωm,
and (d) βm.

study the effect of the modulation depth δc perturbation on the dispersion diagram in Figure

6.3(b). By increasing the modulation depth, the band-gaps stretch out and become wider,

meaning that EPDs at both edges of one band-gap move further apart from each other in fre-

quency. As the third parameter, we explore the temporal modulation frequency ωm variation

on the location of the band-gaps and EPDs. Figure 6.3(c) exhibits a similar trend of changes

compared to those in Figure 6.3(a). Finally, we examine the variation of spatial modulation

frequency, βm, shown in Figure 6.3(d). It is seen from this figure that a different behavior

is obtained compared to varying the previous parameters. Here, by increasing the spatial

modulation frequency, band-gaps become wider and move toward higher frequency in the

dispersion diagram; thus, EPDs move to higher frequencies as well. As a realistic scenario,

we can utilize an STM-TL in high sensitivity applications. If an external substance or object
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Figure 6.4: Sensitivity of the real part of the propagation wavenumber to a parameter
perturbation (one at the time) around the EPD.

is placed near the TL (for instance, the microstrip line), the TL’s effective parameters would

be perturbed, which in turn causes a large perturbation in the wavenumber that can be, in

principle, easily detected.

The eigenvalues at EPDs are exceedingly sensitive to perturbations of parameters of a time

varying system [71, 19, 90, 125]. Here we show that the sensitivity of a system’s observable

to a specific variation of a parameter is boosted due to the degeneracy of eigenmodes. As

an example, we consider the first EPD in the first band-gap with the negative real part of

wavenumber (indicated by a gray circle in Figure 6.2) and we show how a modal wavenumber

is perturbed by small system perturbations. We define the relative system perturbation ∆

as

∆ =
Xpert −XEPD

XEPD

, (6.11)

where XEPD is the unperturbed parameter value that provides the EPD condition, and

Xpert is its perturbation. We consider variations of C0, δc, ωm, and βm, one at the time. The

calculated real part of the wavenumber near the first EPD at ω/ωm = 3.91 is shown in Figure

6.4. We conclude from the extracted results that the individual variation of the parameters of

C0, δc, and ωm, show similar sensitivity behavior, i.e., the real part of the wavenumber splits
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for ∆ < 0. In contrast, variation of βm has an opposite effect on the dispersion diagram,

i.e., the real part of the wavenumber splits for ∆ > 0. Note that the ωm perturbation shows

the highest sensitivity. Higher sensitivity is obtained when the bifurcation of the dispersion

diagram is wider. Furthermore, the βm perturbation response shows an opposite trend to

that of the other three parameters.

We explain the extreme sensitivity by resorting to the general theory of EPDs. Note that a

perturbation in ∆ value leads to a perturbed matrix T(∆). Consequently, the two degenerate

eigenvalues occurring at the EPD change considerably due to a small perturbation in ∆,

resulting in two distinct eigenvalues βp(∆), with p = 1, 2, close to the first EPD. The two

perturbed eigenvalues near an EPD are represented by a single convergent Puiseux series

(also called fractional power expansion) where the coefficients are calculated using the explicit

recursive formulas given in [91]. An approximation of βp(∆) around a second-order EPD is

given by

βp(∆) ≈ βEPD + (−1)pα1

√
∆. (6.12)

Following [270, 91, 28], we calculate α1 as

α1 =

√√√√(− ∂H
∂∆

(∆, β)
1
2!

∂2H
∂β2 (∆, β)

)
, (6.13)

evaluated at the EPD, i.e., at ∆ = 0 and β = βEPD, where H(∆, β) = det[T(∆)−βI]. Equa-

tion (6.12) indicates that for a small perturbation ∆ ≪ 1 the eigenvalues change dramati-

cally from their original degenerate value due to the square root function. As an indicative

example, we consider the single STM-TL with parameters as used in Figure 6.2. In this

example, we select the EPD indicated by the gray circle in Figure 6.2(a) with ω/ωm = 3.91,
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Figure 6.5: The Puiseux fractional power series expansion in Equation (6.12) (green dashed
lines) describes the bifurcation of the real and imaginary parts of the two wavenumbers when
a system parameter (δc in this case) is perturbed. The Puiseux series result is in excellent
agreement with the wavenumbers evaluated using Equation (6.10) (blue and red solid lines).

and βEPD = −7.49m−1 as the unperturbed EPD operation point. In this example the per-

turbation parameter is the modulation depth, ∆ = (δc − δc,EPD)/δc,EPD, and the Puiseux

series coefficients is calculated as α1 = j0.81m−1. The result in Figure 6.5 exhibits the

two branches of the exact perturbed eigenvalues β obtained from the eigenvalue problem

in Equation 6.10 when the system perturbation ∆ is applied. Moreover, this figure shows

that such perturbed eigenvalues can be estimated with very good accuracy by employing

the Puiseux series (green dashed lines) truncated at its first order. For a positive but small

value of ∆, the imaginary part of the eigenvalues experience a sharp change, while its real

part remains constant. Moreover, a very small negative value of ∆ causes a rapid variation

in the real part of the eigenvalues. This feature is actually one of the most extraordinary

physical properties associated with the EPD concept, and it can be exploited for designing

ultra-sensitive sensors [37, 38]. This kind of STM-TL with capacitance variation is feasible

within the realm of current fabrication technologies. Varactor-loaded TL could be a proper

alternative for implementing this kind of structure [271]. Recently several tunable materi-

als have been employed to conceive devices based on the spatiotemporal variation, such as

graphene [272] and liquid crystal [273].
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6.4 Conclusions

A single STM-TL supports EPDs of second order directly induced by spatiotemporal modu-

lation of the distributed (per-unit-length) capacitance. For its occurrence, an EPD does not

need the presence of time-invariant gain or loss elements, as in PT symmetry, and it does

not need two coupled TLs either. Here space and time modulation are not used to generate

nonreciprocity or to enhance EPD properties but rather as a direct way to generate EPDs.

This is in analogy to what was shown in [19] where time modulation was used to directly

induce EPDs in a single resonator, without the need to resorting to two couple resonators

with loss and gain as implied by PT-symmetry [33]. We have investigated how to perturb

an EPD condition by slightly perturbing system parameters, and how this srongly modifies

the degenerate eigenvector (i.e., the wavenumber). We have shown that small changes in a

TL constitutive parameters lead to a very strong variation of the TL wavenumber and how

this is predicted by the Puiseux fractional expansion series, suggesting a novel approach to

design extremely sensitive sensors based on waveguide propagation.
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Chapter 7

Exceptional Degeneracies in Traveling

Wave Tubes With Dispersive

Slow-Wave Structure Including

Space-Charge Effect

The interaction between a linear e-beam and a guided EM wave is studied in the contest

of EPDs supported by such an interactive system, focusing on a linear beam TWT with a

realistic helix waveguide SWS. The interaction is formulated by an analytical model that

is a generalization of the Pierce model, assuming a one-dimensional electron flow along

a dispersive single-mode guiding SWS and taking into account space-charge effects. The

augmented model using phase velocity and characteristic impedance obtained via full-wave

simulations is validated by calculating gain versus frequency and comparing it with that from

more complex e-beam simulators. This comparison also shows the accuracy of our new model

compared with respect to the non-dispersive Pierce model. EPDs are then investigated using

the augmented model, observing the coalescence of complex-valued wavenumbers and the
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system’s eigenvectors. The point in the complex dispersion diagram at which the TWT-

system starts/ceases to exhibit a convection instability, i.e., a mode starts/ceases to grow

exponentially along the TWT, is the EPD. We also demonstrate the EPD existence by

showing that the Puiseux fractional power series expansion well approximates the bifurcation

of the dispersion diagram at the EPD. This latter concept also explains the “exceptional”

sensitivity of the TWT-system to changes in the beam’s electron velocity when operating

near an EPD.

7.1 Background, Motivation, and State of the Art

High power TWT amplifiers are of high importance for telecommunications, radar ap-

plications, including atmospheric studies, precision tracking, and high-resolution imaging

[274, 275, 276]. In some occasion, metamaterials have been proposed to enhance the prop-

erties of e-beam devices [277, 278, 279, 280]. A TWT uses a SWS as a key component to

harvest energy from an e-beam into radio frequency waves efficiently over broad bandwidths

[281, 282]. In this chapter, we focus on a realistic helix TWT with dispersive SWS’s charac-

teristic parameters. The interaction with the e-beam affects the way EM waves propagate

in the so-called “hot” circuit, i.e., accounting for the beam-EM mode interaction. We refer

to the eigenmodes of the system where the e-beam interacts with the EM wave of the SWS

as “hot” modes, which are the modes that retain properties of both EM and space-charge

waves.

An EPD in a system refers to the property of the system matrix that contains at least one

nontrivial Jordan block structure, i.e., when two or more eigenvectors coalesce into a single

degenerate one [283, 284, 63, 114, 24, 252]. The concept of EPD has been studied in lossless,

spatially [18, 250], or temporally [19, 90] periodic structures, and in systems with loss and/or

gain under PT-symmetry [66, 33]. We employ the Puiseux fractional power expansion series
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Figure 7.1: Illustrative schematics showing an e-beam in the proximity of an EM-guiding
SWS. (a) Beam inside a circular waveguide with corrugations, and (b) beam near a periodic
grating.

to illustrate the bifurcation of the system’s dispersion diagram at the EPD [4]. The EPD has

been studied for its applications in sensing devices [71, 12] and oscillators [67, 40, 255, 42].

In [26], the EPD in a system of an e-beam interacting with an EM mode guided in a

non-dispersive SWS with distributed power extraction and without accounting for electrons’

debunching is used to conceive an effective oscillator. The mathematical formulation in [126]

does not include waveguide dispersion in the model, and above all, it cannot capture the

second EPD that occurs in the real TWTs at a higher frequency (See Figure 7.4). This letter

explains the fundamental physics describing the TWT operation, accounting for electrons’

debunching caused by space-charge effects and SWS frequency dispersion, and describes the

bifurcation points in the dispersion diagram using the coalescence of the system’s eigenvec-

tors. Also, the EPD-related fractional power expansion is used to explain the wavenumber’s

extreme sensitivity to perturbations to the system parameters such as operating frequency

and e-beam’s velocity and how EPDs are related to the TWT amplification bandwidth. We

calculate the characteristic parameters of the cold guiding SWS based on what Pierce pro-

posed in [285, 286, 287] and further developed for frequency-dependent TWT-systems in

analogy (but differently) to what done in [288, 289].
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7.2 How to Model TWTs

The system consists of an EM field in a guiding SWS interacting with a single e-beam

flowing in the z-direction is schematically shown in Figure 7.1. The e-beam’s electrons have

average velocity and linear charge density u0 and ρ0, respectively. The e-beam has an average

current I0 = −ρ0u0 and an equivalent kinetic non-relativistic d.c. voltage V0 = u2
0/2η, where

η = e/m = 1.758820× 1011 C/Kg is the charge-to-mass ratio of the electron with charge −e

and rest mass m. The small-signal modulation in the e-beam velocity and charge density ub

and ρb, respectively, describe the so-called “space-charge wave”. The a.c. beam current and

equivalent voltage are given by ib = ubρ0 + u0ρb and vb = ubu0/η, where we have retained

only the linear terms based on the small-signal approximation [286], as explained in Section

7.5. We implicitly assume a time dependence of exp(jωt), so the a.c. space-charge wave

modulating the e-beam is described in the phasor domain with Vb(z) and Ib(z), as

∂zVb = −jβ0Vb − aZI − j
Ib

Aε0ω
, (7.1)

∂zIb = −jgVb − jβ0Ib, (7.2)

where β0 = ω/u0 is the phase constant of the space-charge wave (when neglecting plasma

frequency effects), g = I0β0/(2V0), Z is the equivalent TL distributed series impedance, and

I(z) is the equivalent TL current, as will be explained later. Furthermore, Ez = Ew +Ep =

aZI + jIb/(Aε0ω) is the longitudinal polarization (in the z-direction) of the electric field

component that modulates the velocity and bunching of the electrons. The longitudinal

field Ez = Ew + Ep is the sum of two components. The term Ep accounts for nonuniform

charge density, and in the phasor form is given by Ep = jIb/(Aε0ω) [290, Chapter 10], where

A is the e-beam cross-sectional area, and ε0 is vacuum permittivity. The term Ep is generated
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Figure 7.2: (a) Tape helix SWS in a circular metallic waveguide with radius r3 = 1.06 mm.
An e-beam with radius rb = 560 µm flows along the axis of the helical conductor of inner
radius r1 = 744 µm, and outer radius r2 = 846 µm supported by dielectric rods. The other
geometric parameters are l = 1.04 mm, w = 520 µm, and θ = 14.2◦. (b) Schematic of the
equivalent TL coupled to the e-beam used to study the hot EM-space-charge wave modes.
(c) Equivalent TL circuit showing the per-unit-length impedance, admittance and current
generator is that represents the effect of the e-beam.

by charge distribution that also causes the so-called “debunching”, and its calculation is in

agreement with the Lagrangian model for TWT-systems in [291, Chapter 7], as explained

in Section 7.6. In addition, the term Ew = aZI is the longitudinal electric field of the EM

mode propagation in the SWS, affecting the bunching of the e-beam, according to the well-

known Pierce model [286]. Also, the term a represents a coupling strength coefficient, that

describes how the e-beam couples to the TL as already introduced in [292] and [293, 291,

Chapter 3]. More details on the fundamental equations describing the interacting system are

in Section 7.7. The well-known telegrapher’s equations describe the EM modal propagation

in the SWS, based on the equivalent TL model shown in Figures 7.2(b) and (c) where the

distributed per-unit-length series impedance Z, and shunt admittance Y relate the equivalent

TL voltage V (z) and current I(z) phasors as

∂zV = −ZI, (7.3)
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∂zI = −Y V − a∂zIb. (7.4)

The term is = −a∂zIb represents a distributed current generator [294], that accounts for the

effect of the beam’s charge wave flowing in the SWS [286, 292]. In order to construct an

accurate model that provides precise predictions for realistic structures and overcome the

simplicity of the ideal assumptions in the original Pierce model, we use frequency-dependent

waveguide parameters in the equations. In practice, we first analyze wave propagation in

the “cold” SWS (i.e., in the absence of the e-beam) using a full-wave method to get the

values of Z(ω) and Y (ω) to be used in the formulation. To recover frequency-dependent

characteristic parameters, we use the finite element method eigenmode solver in CST Studio

Suite and extract the cold circuit EM phase velocity vc(ω) = ω/βc(ω), where βc(ω) =√
−Z(ω)Y (ω) is the phase propagation constant of the cold SWS mode, and the equivalent

TL characteristic impedance Zc(ω). By using the extracted values for vc(ω) and Zc(ω),

the equivalent frequency-dependent distributed series impedance Z(ω) = jωZc(ω)/vc(ω) =

jZc(ω)βc(ω) and shunt admittance Y (ω) = jω/ (Zc(ω)vc(ω)) = jβc(ω)/Zc(ω) are calculated.

Moreover, in Equation (7.4), when a = 0 the e-beam is not coupled to the TL, and when

a = 1, the model reduces to the one developed in [286, 287]. The presence of this coupling

strength coefficient generalizes what was done in [286, 287], since the beam may be subject to

a strong longitudinal electric field that is not accurately accounted for by the simple circuit

impedance Zc of the originally Pierce model [286, 287]. For convenience, we define a state

vector Ψ(z) = [V, I, Vb, Ib]
T that describes the hot mode propagation along z, and rewrite

Equations (7.1), (7.2), (7.3), and (7.4) in matrix form as

∂zΨ(z) = −jMΨ(z), (7.5)

where M is the 4 × 4 system matrix that after replacing vc(ω) and βc(ω) in the system
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equations, reads as

M =



0 βc(ω)Zc(ω) 0 0

βc(ω)/(Zc(ω)) 0 −ag −aβ0

0 aβc(ω)Zc(ω) β0 Rp

0 0 g β0


. (7.6)

In the above system matrix, Rp is a space-charge parameter related to the debunching of

beam’s charges, and is given by [295, 253]

Rp =
1

Aε0ω
=

2V0ω
2
q

ωI0u0

, (7.7)

where ωq = Rscωp is the reduced plasma angular frequency, ωp =
√
−ρ0η/(Aε0) or ωp =√

I0u0/ (2V0Aε0) is the plasma frequency [296], and Rsc is the plasma frequency reduction

factor [297]. The term Rsc accounts for reductions in the magnitude of the axial compo-

nent of the space-charge electric field due to either finite beam radius or proximity of the

surrounding conducting walls. Fields produced by space-charges represent repulsive forces

in a dense beam of charged particles. Assuming a state vector z-dependence of the form

Ψ(z) ∝ exp(−jkz), where k is the wavenumber of a hot mode in the EM-space-charge

wave interacting system, the eigenmodes are obtained by solving the eigenvalue problem

kΨ(z) = MΨ(z). The resulting modal dispersion characteristic equation is given by
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Figure 7.3: (a) Phase velocity and Pierce impedance of the EM mode in the cold SWS,
obtained via full-wave eigenmode simulations. (b) Gain versus frequency from the theoretical
model based on the non-dispersive (cyan curve), and dispersive (blue curve) solution of
system in Equation (7.5), and simulation results using the software LATTE (black dots).

D(ω, k) = det(M− kI) = k4 − k3 (2β0) + k2
(
β2
0 − β2

q − β2
c (ω) + a2gβc(ω)Zc(ω)

)
+k (2β2

c (ω)β0)− β2
c (ω)

(
β2
0 − β2

q

)
= 0.

(7.8)

where βq = ωq/u0 =
√

Rpg is the phase constant of space-charge wave traveling with a

phase velocity u0, and at an angular frequency ωq. The solution of Equation (7.8) leads to

four modal complex-valued wavenumbers that describe the modes in the TWT interactive

system. The characteristic equation is equivalently rewritten as

(k2 − β2
c )
(
(k − β0)

2 − β2
q

)
= −a2gβc(ω)Zc(ω)k

2. (7.9)

The first parenthesis on the left side of Equation (7.9) only contains parameters related
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Figure 7.4: Dispersion diagram of the four complex-valued wavenumbers of the hot modes
versus frequency, which shows two (one) bifurcation points correspond to the EPDs in the
dispersive (non-dispersive) system, and |det(U)| whose minima indicate the occurrence of
EPDs.

to TL and the second parenthesis includes only the parameters of the e-beam. The term

on the right side represents the interaction between the EM mode in the SWS and the e-

beam, and it contains both e-beam and EM mode parameters. When the e-beam and TL

are decoupled, one has a = 0, the two equations in parenthesis become two independent

dispersion equations.

7.3 The Required Condition for an EPD

A second-order EPD occurs when two eigenmodes coalesce in their eigenvalues and eigenvec-

tors. Thus, when such degeneracy occurs, the matrixM is similar to a matrix that contains a

Jordan block of order two. A necessary condition to have a second-order EPD is to have two

repeated eigenvalues, which means that the characteristic equation should have two repeated

roots as

D(ωe, k) ∝ (k − ke)
2, (7.10)
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where ωe and ke are the degenerate angular frequency and wavenumber at the EPD. This

happens when D(ωe, ke) = 0, and∂kD(ωe, k)|k=ke
= 0. We derive the following expressions

for Z = Ze and Y = Ye, which will produce the EPD for given e-beam parameters

Ze =
j ((ke − β0)

2 −Rpg)
2

a2g (−β2
0 + keβ0 +Rpg)

, (7.11)

Ye =
ja2gk3

e (ke − β0)

((ke − β0)2 −Rpg)
2 , (7.12)

where all the parameters are calculated at ωe and ke. Assuming that the EPD conditions

for impedance and admittance in Equations (7.11) and (7.12) are satisfied, the degenerate

wavenumber ke is determined by the product of Equations (7.11) and (7.12)

ZeYe =
−k3

e (ke − β0)

(−β2
0 + keβ0 +Rpg)

. (7.13)

We know that β2
c,e = −ZeYe and β2

q = Rpg under the EPD condition, so we calculate the

wavenumber of the degenerate hot mode ke by solving

β2
c,eβ

2
q = (k3

e − β2
c,eβ0)(ke − β0). (7.14)

In order to investigate the EPD, we analytically derive the system’s eigenvector expressions

related to the four wavenumbers kn with n = 1, 2, 3, 4, that are written in the form of
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Ψn =



(kn − β0)
2 − β2

q

kn
βcZc

(
(kn − β0)

2 − β2
q

)
akn(kn − β0)

agkn


. (7.15)

In summary, the two conditions in Equations (7.11) and (7.12) represent constraints on the

TL parameters, calculated at the EPD frequency. These two conditions need to be enforced

to have a second-order EPD, where two eigenmodes of the interacting system have identical

eigenvalues k1 = k2 = ke and eigenvectors Ψ1 = Ψ2 = Ψe. Suppose we find a set of

parameters to satisfy the EPD condition; in that case, these values lead to the same two

eigenvalues and a single corresponding eigenvector according to Equation (7.15).

7.4 Example of the Realistic Helix TWT

The helix SWS features a conventional two-body (input and output) cylindrical vacuum en-

velope that contains a metallic tape helix supported by three equally spaced dielectric rods,

which are made of BeO with εr = 6.5 [298]. The SWS is illustrated in Figure 7.2(a), with

the helix’s geometric parameters shown in the caption. Because the helix TWT dispersion is

vital for pulse amplification or nonstationary problems’ response of the tube, the frequency

dependence of the cold circuit phase velocity and the interaction impedance must be in-

cluded in the model [288, 289, 299]. We have simulated the helix SWS by using the finite

element method eigenmode solver in CST Studio Suite and extracted the characteristic pa-

rameters, i.e., the cold circuit EM phase velocity vc(ω), and the equivalent TL characteristic

impedance Zc(ω); then the calculated results is illustrated in Figure 7.3(a). We demonstrate
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Figure 7.5: Dispersion diagram of the three wavenumbers of the hot modes versus u0. The
diagram shows a bifurcation point that corresponds to the EPD point, whereas frequency is
equal to the synchronization frequency fsync.

the occurrence of EPDs in the helix TWT using practical values for both the helix SWS and

e-beam. For the e-beam, we assume u0 = 0.2c, where c is the speed of light, I0 = 47 mA,

V0 = 10.5 kV, and a e-beam radius equal to rb = 560 µm. The resulting plasma frequency is

fp = ωp/(2π) = 624.6 MHz. We assume a plasma frequency reduction factor of Rsc = 0.12,

which was calculated for the SWS in Figure 7.2(a) using the software LATTE [300, 288, 301].

The maximum interaction between the space-charge wave and the EM wave occurs when

they are synchronized, i.e., by matching vc to u0, a condition that is specifically called “syn-

chronization”. We calibrate the value of the coupling strength coefficient a, which is an

essential parameter of our model, to predict the gain in the TWT; this coefficient can be

used to calculate the gain of longer TWT structures. In this example, we estimate a = 0.917,

as extracted from simulations, and the required steps are explained in Section 7.12. Then,

by solving the wavenumber dispersion equation for specific frequency values, we obtain the

real and imaginary parts of the four hot modes wavenumbers in Figure 7.4(a) and (b). More-

over, in Figure 7.4, we illustrate the non-dispersive results by using an average value of vc

and Zc in the predetermined frequency range (See Figure 7.3(a)). As we can observe, the

non-dispersive model cannot capture the second EPD at a higher frequency, which exists in

realistic structures.
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The similarity transformation matrix U = [U1,U2,U3,U4], where the column Ui is the

eigenvector corresponding to the i-th eigenvalue, diagonalizes the system matrix as M =

UΛU−1. At an EPD, at least two eigenvectors become linearly dependent, implying that

|det(U)| vanishes. In this example, we consider the EPD frequency of the dispersive model

at fe = 18.60 GHz in the shown frequency range, where β0,e = 1948.16 m−1. In Figure

7.4(a) and (b), we observe the bifurcation of the wavenumbers’ real and imaginary parts at

the EPDs. The maximum TWT gain is at fopt = 13.67 GHz, where the maximum value

of the imaginary part occurs. This frequency is close to the initial-design synchronization

frequency fsync = 12.10 GHz, where vc = u0 = 0.2c, as expected. It may be possible to

shift the maximum gain frequency by changing the frequencies of EPDs through varying

plasma frequency or other controllable parameters in the TWT-system. In order to validate

the proposed TWT model, which accounts for waveguide mode dispersion and space-charge

effect, we provide the gain versus frequency plot obtained from simulations in LATTE and

compare it to the theoretically calculated gain based on applying boundary conditions for

the charge wave and EM mode as explained in Section 7.12. The accuracy of the proposed

method is demonstrated by the good agreement between simulated and theoretical results

for the dispersive model in Figure 7.3(b). This figure shows that the non-dispersive model

cannot predict the gain correctly in the illustrated frequency range.

So far, we have analyzed the dispersion diagram by varying frequency. In the next step, we

investigate the wavenumber dispersion diagram varying the electron’s average velocity out of

synchronization and observe EPDs under these conditions. Hence, we assume the frequency

to be fixed and equal to the original synchronization frequency fsync. Then, we change u0

to explore EPDs out of synchronization, leading to the results in Figure 7.5. In this figure,

wavenumbers with a positive real part are displayed as mentioned in [302], and a second-

order EPD exists around u0,e = 0.213c. So the bifurcation is observed in the dispersion

diagram when we select u0 larger than vc. The bifurcation of the wavenumber, when u0 is

varied, is clear evidence of an EPD.
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Figure 7.6: Determinant of the similarity transformation matrix U varying f and u0. The
black curve under the white arrows denotes the location of the exceptional degeneracy.

Based on the results in Figures 7.4 and 7.5, we conclude that the TWT-system is very

sensitive to variation in frequency and u0 near an EPD. Figure 7.6 shows the log (|det(U)|)

when frequency and u0 are varied. The black curve shows the lowest values, which means the

eigenvectors coalesce at those specific values of f and u0. Thus, the black contour represents

EPDs. EPDs can be utilized to measure e-beam parameters by changing the frequency in

the TWT-system. For a practical scenario, if we have an e-beam with an unknown u0 in

the predetermined range, we can vary the operating frequency to observe EPD and find the

corresponding u0.

Here we establish that a system’s sensitivity to a specific parameter variation is boosted

by the eigenmodes’ degeneracy [303]. For instance, let us consider the EPD in Figure 7.4

at fe = 18.60 GHz. To measure the sensitivity of the wavenumber to frequency variation,

the system’s relative perturbation parameter is defined as ∆ = (f − fe)/fe. Consequently,

the perturbed system matrix M(∆) has two degenerate eigenvalues (i.e., the wavenumbers)

occurring at the EPD shift considerably due to a small perturbation in frequency, resulting

in two separate eigenvalues kn(∆), with n = 1, 2. These two perturbed eigenvalues are

estimated by using a convergent Puiseux series, where the coefficients are calculated using
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Figure 7.7: The Puiseux fractional power expansion up to the second-order approximates the
dispersion diagram variation by frequency and u0, further demonstrating that the bifurcation
point is the EPD. (a) and (b) Complex-valued wavenumbers when frequency is changed, and
the required coefficients are calculated as α1 = 126.77 m−1 and α2 = 2054.63 m−1. (c)
and (d) Complex-valued wavenumbers when u0 is changed, and the required coefficients are
calculated as α1 = 206.95 m−1 and α2 = −667.74 m−1.

the explicit formulas given in [91]. The approximation of kn(∆) around a second-order EPD

is given by

kn(∆) ≈ ke + (−1)nα1

√
∆+ α2∆. (7.16)

Following [91], α1 and α2 are calculated by
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α1 =

√√√√(− ∂H
∂∆

(∆, k)
1
2!

∂2H
∂k2

(∆, k)

)
, (7.17)

α2 = −
−(α3

1
1
3!

∂3H
∂k3

(∆, k) + α1
∂2H
∂k∂∆

(∆, k))

2α1(
1
2!

∂2H
∂k2

(∆, k))
, (7.18)

evaluated at the EPD, i.e., at ∆ = 0 and k = ke, where H(∆, k) = det[M(∆)−kI]. Equation

(7.16) indicates that for a small perturbation |∆| ≪ 1 in frequency, the eigenvalues change

dramatically from their original degenerate value due to the square root dependence. The

results in Figures 7.7(a) and (b) produce the two branches of the exact perturbed eigenvalues

kn obtained from the eigenvalue problem when the perturbation ∆ is applied. These figures

explain that such perturbed eigenvalues could be estimated with high accuracy by using the

Puiseux series truncated to its second order. Next, we analyze the sensitivity to variations

in u0 by defining ∆ = (u0 − u0,e)/u0,e and apply the same procedure to achieve a Puiseux

series coefficients. The calculated results are illustrated in Figures 7.7(c) and (d), which

demonstrate the bifurcation and high-sensitivity of the wavenumbers to perturbation near

the EPD.

7.5 Electron Beam Model

There are various approaches to analyzing an e-beam’s interaction with a traveling EM wave

on a circuit. The classical small-signal theory by J. R. Pierce is one of the approaches

that still use these days for the modeling and designing of TWT. Pierce’s model includes a

qualitative description of traveling wave interaction that is explained in [285, 286]. Many

of the parameters defined by Pierce are now part of the accepted vocabulary in traveling

wave tube research and industry. For these reasons, and because the Pierce theory provides
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considerable physical insight into TWT mechanics, the basic elements of the Pierce theory

will be described here, together with generalizations that have been adopted.

In this section, we show the fundamental equations that describe the e-beam dynamics in

both space and time. We follow the linearized equations that describe the space-charge

wave as originally presented by Pierce [286]. We assume the e-beam is made of a narrow

cylindrical pencil beam of electrons, which is subject to an axial (i.e., longitudinal) electric

field, assumed constant over the beam’s transverse cross-section; we also consider purely

longitudinal electron motion due to a strong externally applied axial magnetic field which

confines the beam. Because of this, the beam is described by a one-dimensional function,

as will be shown. The beam’s total linear charge density ρtotb (z, t), and electron velocity

utot
b (z, t) are represented as

ρtotb (z, t) = ρ0 + ρb(z, t), (7.19)

utot
b (z, t) = u0 + ub(z, t), (7.20)

where the subscripts ”0” and ”b” denote the d.c. (average value) and the a.c. (alternate

current, i.e., modulation), respectively. In the above equations, ρ0 is negative and utot
b (z, t)

is the electron speed in the z-direction. The basic equation that is governing the charges’

longitudinal motion is

dutot
b (z, t)

dt
= −ηez, (7.21)

where η = e/m = 1.758829×1011C/kg is the charge to mass ratio of an electron, the electron

charge is equal to −e, and m is the rest mass of the electron. The term ez is the total a.c.
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electric field in the z-direction, provided by the superposition of two fields as ez = ew + ep,

where ew is the z-polarization of the electric field pertaining to the EM mode guided in the

waveguide, and ep is the electric field generated by space-charge, as is discussed later in this

section. Following [286], we rewrite the total derivative on the left-hand side of Equation

(7.21) as

d(u0 + ub)

dt
=

∂ub

∂t
+ (u0 + ub)

∂ub

∂z
+

∂u0

∂t
+ (u0 + ub)

∂u0

∂z
. (7.22)

Some terms on this equation vanish because ∂u0/∂t = 0, and ∂u0/∂z = 0. Using a small-

signal approximation, we assume that the modulating velocity ub is small with respect to

u0; hence the term ub∂ub/∂z, which is a product of two a.c. small quantities, is negligible

with respect to the two other terms involving ub. Therefore, in our small-signal theory, we

neglect the term ub∂ub/∂z, as was originally done by Pierce [286]. Thus, Equation (7.21) is

rewritten as

∂ub(z, t)

∂t
+ u0

∂ub(z, t)

∂z
= −ηez. (7.23)

For convenience, we define the equivalent kinetic beam current as

itotb (z, t) = utot
b (z, t)ρtotb (z, t) = u0ρ0 + u0ρb + ubρ0 + ubρb ≈ −I0 + ib(z, t), (7.24)

Note that we assume a small-signal modulation in the beam speed and charge density, i.e.,

we consider a linear model by neglecting the term ubρb in Equation (7.24). Here, the term

ubρb is a product of two small a.c. quantities and is neglected. The a.c. and d.c. portions of

the e-beam current are
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
ib(z, t) = u0ρb + ubρ0

−I0 = u0ρ0

(7.25)

Moreover, we consider the continuity equation or conservation of charge,

∂itotb (z, t)

∂z
= −∂ρtotb (z, t)

∂t
, (7.26)

which is rewritten as follows

∂ib(z, t)

∂z
− ∂I0

∂z
= −∂ρb(z, t)

∂t
− ∂ρ0

∂t
. (7.27)

We know that I0 and ρ0 are d.c. quantities, i.e., their derivatives are vanishing, so the

continuity equation leads finally to

∂ib(z, t)

∂z
= −∂ρb(z, t)

∂t
. (7.28)

For a non-relativistic beam, it is convenient to define an equivalent kinetic beam voltage as

vtotb (z, t) =
(utot

b (z, t))
2

2η
=

u2
0 + u2

b + 2u0ub

2η
≈ V0 + vb(z, t), (7.29)

and as explained earlier, based on the small-signal approximation, we neglect the nonlinear

term u2
b , and separate the a.c. and d.c. terms as
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
vb(z, t) =

u0ub

η

V0 =
u2
0

2η

(7.30)

By combining Equations (7.28), (7.25), and (7.30) we find

∂ib(z, t)

∂z
=

ηρ0
u2
0

∂vb(z, t)

∂t
− 1

u0

∂ib(z, t)

∂t
. (7.31)

Moreover, by using Equations (7.23), and (7.30) we write

∂vb(z, t)

∂z
+

1

u0

∂vb(z, t)

∂t
= −ez. (7.32)

Equations (7.31) and (7.32) are the two equations governing the e-beam’s dynamic based on

the model adopted. In the next step, we elaborate more on the bunching and debunching

effects of the convection beam current in a traveling-wave field. As was stated previously,

the total longitudinal field ez is represented as the sum of the electric field of the EM mode

in the SWS and the a.c. space-charge field, ez = ew + ep,where ew is the z-component of

the purely vortical field ew = curlbw, where bw is a magnetic field of the EM mode in the

passive SWS; therefore, divew = 0 [290, 1]. The waveguide EM field ew is provided by [286]

ew = −a∂v
∂z

, (7.33)

where v is the voltage in the equivalent TL which describes how EM fields propagate in

the waveguide, as will be explained further in the next section. In order to model the

interaction strength between the e-beam and TL, we have generalized the coupling strength
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using the coefficient a that represents the strength of interaction between the e-beam and

the guided EM mode, as was also described in [293, 292, 291]. Physically, this coupling

strength coefficient describes how strongly the electric field of a mode in the SWS affects

electron motion.

The space-charge field ep is longitudinal, i.e., polarized along the z-direction, and it is gen-

erated by electron bunching. It is determined from the Poisson equation ∇ · ep = ρv/ε0.

The volumetric charge density ρv is assumed to be only z-dependent, and it is related to

the linear charge density by ρb = ρvA , where A is the transverse cross-sectional area of the

beam. This leads to

∂ep
∂z

=
ρb
Aε0

. (7.34)

Differentiating in time on both sides of Equation (7.34) and using Equation (7.28), the above

equation is reduced to

∂2ep
∂t∂z

= − 1

Aε0

∂ib
∂z

. (7.35)

Now, we rewrite all the equations that will be used to find the eigenmodes in the phasor do-

main assuming implicitly the exp(jωt) time dependence for monochromatic fields. Equation

(7.31) is rewritten in terms of the beam’s equivalent voltage and current phasors as

∂Ib
∂z

= −j ωI0
2V0u0

Vb − j
ω

u0

Ib, (7.36)

which represents the first of the two main equations that govern the beam dynamics. The

second equation is obtained from Equation (7.32) based on the following steps. In the phasor
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domain, Ez = Ew + Ep, and Equation (7.33) is written as Ew(ω) = −a (dV/dz). Then,

considering the well-known telegrapher’s equation in the phasor domain dV/dz = −ZI,

where Z is the series per-unit-length TL distributed impedance, and I is the current in the

equivalent TL (see next section), the longitudinal EM-guided field is found as

Ew(ω) = aZI. (7.37)

By using the phasor form, Equation (7.35) integrated in the z-domain is rewritten as

Ep(z) = j
1

Aε0ω
Ib(z) + const. (7.38)

Finally, using the obtained expression for total longitudinal field Ez = Ew + Ep, Equation

(7.32) in the phasor domain yields

∂Vb

∂z
= −aZI − j

ω

u0

Vb − j
1

Aε0ω
Ib, (7.39)

which connects the EM mode equivalent current to the e-beam kinetic voltage and current.

This is the second main equation that governs the beam’s dynamics.

So far, we have achieved two important first-order linear differential equations that describe

the dynamics of the e-beam kinetic voltage and current, Equation (7.39) and Equation (7.36),

respectively. As we observe in Equation (7.36), the e-beam current is only associated with

e-beam parameters, whereas Equation (7.39) indicates that TL parameters (in this case,

Z and I) are also required to calculate e-beam voltage. In Equation (7.39), space-charge

fields describe repulsive forces in dense beams of charged particles. These forces induce

oscillations of particles at a plasma frequency, which, in a moving medium, have the form of
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a propagating wave (i.e., the space-charge wave). The plasma frequency is given by

ωp =

√
− ρ0η

Aε0
=

√
I0u0

2V0Aε0
. (7.40)

In reality, the beam is enclosed in a metallic structure that affects the propagation of space-

charge waves. Thus, the plasma frequency of the e-beam, ωp, is effectively decreased, as

compared to its value in the case of an infinite transverse cross section, to a reduced plasma

frequency ωq [304]. Therefore, it is important to calculate the reduced plasma frequency

ωq. This is done by accounting for the reduction factor associated to the plasma frequency

Rsc = ωq/ωp that accounts for the metallic tunnel. In the specific case of a thin tape helix

TWT with a pencil e-beam, Branch and Mihran found that the helix can be approximated

with a perfectly conducting metallic cylinder of the same internal radius [304]. In this chapter

we have used a plasma frequency reduction factor equal to Rsc = 0.12, which was calculated

for the designed SWS using the software LATTE [300, 288, 301]. To better estimate a TWT

performance, one simply replaces ωp with ωq in the fundamental equations. Therefore, we

rewrite Equation (7.39) as

dVb

dz
= −aZI − j

ω

u0

Vb − j
2V0ω

2
q

ωI0u0

Ib. (7.41)

The first term on the right-hand side in Equation (7.41) shows the role of the electric field

of the waveguide EM mode in the e-beam equations.
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7.6 Space-Charge Effect

Space-charge fields represent repulsive forces in dense beams of charged particles. These

forces induce oscillations of particles at a plasma frequency, which, in a moving medium,

has the form of a propagating wave (i.e., the space-charge wave). In this chapter, we have

provided TWT-system equations which account for space-charge effects. This effect can be

modeled based on calculations provided in Section 7.5 for the Lagrangian model of the TWT-

system in [293, 291]. In the first step, we start with the extended equations represented in

Equation (7.52),



∂zV = −ZI

∂zI = −Y V + ja ωI0
2V0u0

Vb + ja ω
u0
Ib

∂zVb = −aZI − j ω
u0
Vb − j 1

ωAε0
Ib

∂zIb = −j ωI0
2V0u0

Vb − j ω
u0
Ib

(7.42)

Then, we transform the four first-order differential equations into two second-order differen-

tial equations by removing voltages, V and Vb, leading to


∂2
zI − ZY I + a∂2

zIb = 0

jag∂2
zI − Y ∂2

zIb − j2Y β0∂zIb + Y β2
0Ib − gY RpIb + ja2g∂2

zIb = 0

(7.43)

In the next step, we use the below substitutions for converting currents to charges
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
I = jωQ

Ib = jωq

(7.44)

After some mathematical manipulation, we obtain these equations


L∂2

tQ− ∂z[C
−1(∂zQ+ a∂zq)] = 0

β2
0

gω
(∂t +

ω
β0
∂z)

2q + ωRpq − a∂z[C
−1((∂zQ+ a∂zq))] = 0

(7.45)

This set of equations are equivalent to Euler-Lagrange equations, which are presented in

Equations (7.81), and (7.82). The term ωRpq is responsible for the space-charge effect. It

can also be written as

ωRpq =
1

Aε0
q. (7.46)

On the other hand, in the presented Euler-Lagrange equations, the term 4π
σB

q, accounts for

the debunching effect (See Equation (7.82)). Since the Gaussian system of units is utilized in

the Euler-Lagrange equations, we need to transform parameters to SI. After performing the

mentioned transformation, we obtain the same definition as presented in Equation (7.46).
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7.7 Electromagnetic Field in the Waveguide Repre-

sented by an Equivalent Transmission Line and In-

teraction With the Beam’s Charge Wave

In the TWT-system, the flowing electrons interact with a surrounding circuit. The convection

current in the beam causes current to be induced in the circuit. This induced current adds

to the current already presented in the circuit, causing the circuit power to increase with

distance as power is extracted from the e-beam. We model the SWS using an equivalent TL

whose equations are

dV

dz
= −ZI, (7.47)

dI

dz
= −Y V + is. (7.48)

Here, V indicates the equivalent voltage (related to the electric field), and I indicates the

equivalent current (related to the magnetic field) in the phasor domain, as explained in

[294, 305]. Furthermore, Z is the distributed series impedance per-unit-length, and Y is the

distributed shunt admittance per-unit-length. In the above equation, the term is represents

a distributed current generator [286, 292] that accounts for the effect of the electron stream

flowing in the SWS on the EM field whose expression is given by is = −a (dIb/dz). We

substitute dIb/dz in this latter equation with Equation (7.36). Then, we obtain the set of

two fundamental equations for the equivalent TL
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dV

dz
= −ZI, (7.49)

dI

dz
= −Y V + ja

ωI0
2V0u0

Vb + ja
ω

u0

Ib. (7.50)

In the case of a lossless and non-dispersive waveguide, one has Z = jωL and Y = jωC;

however, it is important to note that these equations are here generalized for realistic lossy

and dispersive waveguides by accounting for the more complex frequency dependence in Z(ω)

and Y (ω). Indeed, in realistic systems like the one discussed in this chapter, the dispersive

waveguide is described by parameters Z(ω) and Y (ω) with nonlinear frequency dependence.

This more involved frequency dispersion can be equivalently accounted for by defining a

dispersive inductance and capacitance per-unit-length as Z = jωL(ω) and Y = jωC(ω)

[288, 289, 299].

As a final step, we now summarize the system of four equations comprising the differential

equations in Equations (7.36), (7.41), (7.49), and (7.50). This system describes the full

dynamics of the linearized (small-signal) model in terms of the equivalent TL voltage and

current, I(z) and V (z), as well as the charge-wave current and kinetic voltage, Ib(z) and

Vb(z), respectively. We conveniently define a space-varying state vector composed of these

four EM-field and charge-wave variables as
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Ψ(z) =



V (z)

I (z)

Vb(z)

Ib(z)


. (7.51)

Without loss of generality, we assume that the TL is homogeneous (i.e., z-invariant), as was

originally done by Pierce [286], and we write the four fundamental equations in matrix form

as

∂zΨ(z) = −jMΨ(z), (7.52)

where M is a 4× 4 system matrix [26]

M =



0 −jZ 0 0

−jY 0 −ag −aβ0

0 −jaZ β0 Rp

0 0 g β0


. (7.53)

In the above matrix, we have defined the set of parameters as

β0 =
ω

u0

, (7.54)
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g =
1

2

I0β0

V0

, (7.55)

Rp =
1

Aε0ω
=

2V0ω
2
q

ωI0u0

, (7.56)

where β0 is beam equivalent propagation constant, and g is a parameter related to the e-beam

[26]. In this formulation, we have considered the effect of the bunching of the convection

beam current in a traveling wave field using the Rp term in the above matrix, as was done in

[295, 253]. This description in terms of a multidimensional first-order differential equation

in Equation (7.52) is ideal for exploring the occurrence of an exceptional point of degeneracy

(EPD) in the system since an EPD is a degeneracy associated with two or more coalescing

eigenmodes. In other words, EPDs occur when the system matrix M is similar to a matrix

that contains a nontrivial Jordan block. In general, there are four independent eigenmodes

and each eigenmode is described by an eigenvector Ψ.

7.8 Dispersion Equation to Find the Hot Eigenmodes

To obtain the dispersion equation or characteristic equation, we search for solutions of the

form Ψ(z) = Ψe−jkz, where k is the complex-valued wavenumber of a hot mode (With the

term ”hot” mode, we refer to a mode of the system where the e-beam interacts with the EM

wave of the SWS, and the resulting modes carry information from the two components, the

charge wave modulating the e-beam and the EM wave guided by the waveguide.). The four

wavenumbers of the hot modes are obtained by solving
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det(M− kI) = det



−k −jZ 0 0

−jY −k −ag −aβ0

0 −jaZ −k + β0 Rp

0 0 g −k + β0


= 0. (7.57)

After some mathematical calculations, the dispersion equation is expressed as

D(ω, k) = k4 − k3(2β0) + k2(β2
0 − gRp + ZY − ja2Zg)− k(2ZY β0) + ZY (β2

0 − gRp) = 0.

(7.58)

Furthermore, the dispersion equation can be rewritten in the convenient form

(k2 + ZY )
(
(k − β0)

2 −Rpg
)
= ja2gZk2, (7.59)

or we can rewrite it as [292]

(k − β0)
2 − ja2gZk2

k2 + ZY
= gRp. (7.60)

The cold circuit phase propagation constant is βc =
√
−ZY , and we also used the definition

βq = ωq/u0 =
√
Rpg which represents the phase constant of the space charge wave traveling

with a phase velocity equal to the average electron velocity and at an angular frequency

equal to ωq. So, the dispersion characteristic equation is equivalently rewritten as
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(k2 − β2
c )
(
(k − β0)

2 − β2
q

)
= ja2gZk2. (7.61)

The right-hand side describes the coupling strength between the two guiding systems: the

wavenumber dispersion in the isolated EM waveguide (i.e., without e-beam interaction)

would be described by (k2 − β2
c ) = 0, and the wavenumber dispersion in the isolated

charge wave (i.e., without interacting with the guided EM wave) would be described by(
(k − β0)

2 − β2
q

)
= 0. It is convenient to define the circuit characteristic impedance and

e-beam impedance as

Zc =
Z

jβc

=

√
Z

Y
, (7.62)

Z0 =
V0

I0
. (7.63)

Pierce defined the dimensionless gain parameter CP, and called it “gain parameter” [287],

C3
P =

Zc

4Z0

. (7.64)

Pierce’s gain parameter, CP, is a measure of the intensity of the interaction between the

e-beam and SWS. The characteristic impedance of the equivalent TL Zc, is also called the

interaction impedance or Pierce impedance since it affects the value of Pierce’s gain pa-

rameter. Consequently, the above dispersion equation is rewritten in terms of Pierce’s gain

parameter as
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(k2 − β2
c )
(
(k − β0)

2 − β2
q

)
= −2a2C3

Pβcβ0k
2. (7.65)

It may be convenient to consider a modified Pierce gain parameter to account for more

realistic EM-beam coupling factors due to the extra coupling strength coefficient we explicitly

consider in this chapter, as

C3
P,m = a2C3

P. (7.66)

By using this new modified Pierce gain parameter, the dispersion equation expressed in

Equation (7.65) reduces to

(k2 − β2
c )
(
(k − β0)

2 − β2
q

)
= −2C3

P,mβcβ0k
2. (7.67)

Note that the term C3
P,m on the right side determines the coupling strength between the

two dispersion equations of the isolated waveguide and charge-wave guiding systems. If the

wavenumber of the hot mode, k, in the above equation is solved versus angular frequency, ω,

it is worth recalling that the wavenumber of the EM wave in the cold SWS, βc, also depends

on frequency if we consider the waveguide dispersion in our calculations. Furthermore,

the Pierce gain parameter C3
P,m also depends on frequency when the cold SWS dispersion

makes the characteristic impedance frequency-dependent, aside from the obvious frequency-

dependence of β0. Furthermore, Rsc may also exhibit a slight frequency variation, though it

is assumed constant in this chapter based on its numerical estimation as described in Section

7.5.

An alternative description of the hot modes is provided in terms of their phase velocities
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v = ω/k, rather than their wavenumbers, as was done in [291]. Accordingly, the dispersion

equation takes the form of

(v − u0)
2

v2
+

ja2Zgu2
0

v2β2
c − ω2

=
ω2
q

ω2
. (7.68)

7.9 EPD Condition

The solutions of our dispersion equations lead to four modal complex-valued wavenumbers

that represent the four hot modes in the system. A second-order EPD occurs when two

of these eigenmodes coalesce in their eigenvalues and eigenvectors, which means that the

matrix M is similar to a matrix that contains a Jordan block of order two [4, 26]. In this

case, a necessary condition to have second-order EPD is to have two repeated eigenvalues,

which means that the dispersion equation should have two repeated roots as

D(ωe, k) ∝ (k − ke)
2, (7.69)

where ωe and ke are the degenerate angular frequency and wavenumber in EPD condi-

tion, respectively. The relation in Equation (7.69), which guarantees to have two coalescing

wavenumbers, is satisfied when

D(ωe, ke) = 0, (7.70)

∂D(ωe, k)

∂k

∣∣∣∣
k=ke

= 0. (7.71)
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These two conditions are rewritten, respectively, in the below forms

k4
e − k3

e (2β0) + k2
e (β

2
0 − gRp, + ZeYe − ja2Zeg)− ke(2ZeYeβ0) + ZeYe(β

2
0 − gRp) = 0,

(7.72)

4k3
e − 3k2

e (2β0) + 2ke(β
2
0 − gRp + ZeYe − ja2Zeg)− (2ZeYeβ0) = 0. (7.73)

In the above equations, subscript “e” in different parameters indicates the value at the EPD.

The TL distributed series impedance Ze, and shunt admittance Ye that provide the EPD

are determined after making some mathematical manipulations in the two above conditions.

First, we use Equation (7.72) to get Ye in terms of Ze and other system parameters as

Ye =
−k4

e + k3
e (2β0)− k2

e (β
2
0 − gRp − ja2Zeg)

Ze ((ke − β0)2 − gRp)
, (7.74)

then we substitute this relation into Equation (7.73) and solve it for Ze, which is found to

be

Ze =
j ((ke − β0)

2 −Rpg)
2

a2g(−β2
0 + keβ0 +Rpg)

. (7.75)

Finally, we substitute back the impedance value obtained from Equation (7.75) in the ad-

mittance value calculated in Equation (7.74) to find admittance

Ye =
ja2gek

3
e (ke − β0)

((ke − β0)2 −Rpg)
2 . (7.76)
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To realize an EPD, the TL series impedance Z = Ze and shunt admittance Y = Ye need to

satisfy Equations (7.75) and (7.76). Assuming that the EPD conditions in Equations (7.75)

and (7.76) are satisfied, then the degenerate wavenumber ke is determined by the product

of Equations (7.75) and (7.76)

ZeYe =
−k3

e (ke − β0)

(−β2
0 + keβ0 +Rpg)

. (7.77)

We know that β2
c,e = −ZeYe and β2

q = Rpg, so we calculate ke by solving the equation

β2
c,eβ

2
q = (k3

e − β2
c,eβ0)(ke − β0). (7.78)

Since we search for solution of the form Ψ(z) = Ψne
−jknz , the eigenvectors Ψn of the system

are determined by solving the eigenvalue problem MΨn = knΨn,or we can write it as below

(M− knI)Ψn = 0, (7.79)

where kn with n = 1, 2, 3, 4 are the wavenumbers, and they are determined from Equation

(7.79). By solving Equation (7.79), the eigenvectors are written in the form of

Ψn =



(kn − β0)
2 −Rpg

j kn
Z
((kn − β0)

2 −Rpg)

akn(kn − β0)

agkn


. (7.80)
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At the second-order EPD investigated in this chapter, two of these four eigenvectors coalesce.

7.10 Comparison to the Lagrangian Model

The Euler-Lagrange equations associated with the Lagrangian are the following system of

second-order differential equations. Without loss of generality, we rewrote these equations

in the case of a single stream e-beam and a single TL [293, 291]. All required parameters

for this model are summarized in Tables (7.1) and (7.2), and readers can found more details

about this model in [291]. The basic equations of Lagrangian model are represented as

L∂2
tQ− ∂z[C

−1(∂zQ+ b∂zq)] = 0, (7.81)

1

β
(∂t + v̊∂z)

2q +
4π

σB

q − b∂z[C−1(∂zQ+ b∂zq)] = 0. (7.82)

Table 7.1: e-beam parameters list in Lagrangian model

Name Value

e-beam steady velocity v̊

Number of electron density n̊

Stream intensity β = σB

4π
R2

scω
2
p = R2

sce
2

m
N̊

Plasma frequency ω2
p = 4πn̊se2

m

Plasma frequency reduction factor Rsc

Beam current i

Number of electron per unit of length N̊ = σBn̊

Coupling between e-beam and MTL 0 < b < 1

Beam area σB
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Table 7.2: TL parameters list in Lagrangian model

Name Value

Series inductance per-unit-length L

Shunt capacitance per-unit-length C

TL characteristic velocity w = 1√
LC

Coupling coefficient b

TL principal coefficient θ = b2

C

TWT principal parameter γ = θβ = b2

C
σB

4π
R2

scω
2
p

In the above equations, Q(z) represents the phasor of the total amount of a.c. charge

flowing through a section at a given z in the TL, and L and C are the values of inductance

and capacitance associated with the single TL. Also, q(z) represents the amount of a.c.

stream charges modulating the e-beam, at a given section z, in the second-order differential

equations. In this section, we wish to put the equations in the matrix form to solve them.

We define the state vector based on charges in the TL and charges in the e-beam as

ΨQ(z) =



Q(z)

∂zQ(z)

q(z)

∂zq(z)


. (7.83)

Next, we write the Equations (7.81) and (7.82) in the matrix form

∂zΨQ(z) = −jMQLΨQ(z), (7.84)

where MQL is a 4 × 4 is system matrix associated to the Lagrangian formulation and the
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charges-based state vector ΨQ, and reads as

MQL =



0 j 0 0

j( βb2

v̊2C
− 1)ω2LC 0 −j b

v̊2
(ω2 − 4π

σB
β) −2ω

v̊
b

0 0 0 j

−j βb
v̊2
ω2L 0 j 1

v̊2
(ω2 − 4π

σB
β) 2ω

v̊


. (7.85)

By defining Z = jωL and Y = jωC, we rewrite Equation (7.84) as

∂z



Q

∂zQ

q

∂zq


= −j



0 j 0 0

j(1− jω βb2

v̊2Y
)ZY 0 −j b

v̊2
(ω2 − 4π

σB
β) −2ω

v̊
b

0 0 0 j

−ω βb
v̊2
Z 0 j 1

v̊2
(ω2 − 4π

σB
β) 2ω

v̊





Q

∂zQ

q

∂zq


. (7.86)

Assuming that our solutions have a z-dependence Ψ(z) = ΨQe
−jkz, the eigenvalue problem

reads as,

(MQL − kI)ΨQ = 0. (7.87)

Based on Equation (7.86), the eigenvalue problem is reduced to
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(MQL−kI)ΨQ =



−k j 0 0

j(1− jω βb2

v̊2Y
)ZY −k −j b

v̊2
(ω2 − 4π

σB
β) −2ω

v̊
b

0 0 −k j

−ω βb
v̊2
Z 0 j 1

v̊2
(ω2 − 4π

σB
β) −k + 2ω

v̊


ΨQ = 0. (7.88)

After some simplification, the dispersion equation is expressed as

det(MQL − kI) = k4 − k3(2ω
v̊
) + k2( 1

v̊2
(ω2 − 4π

σB
β) + ZY − jb2Zω β

v̊2
)− k(ZY 2ω

v̊
)

+ZY 1
v̊2
(ω2 − 4π

σB
β) = 0.

(7.89)

According to the Lagrangian model, the general TWT characteristic equation for the phase

velocity v = ω/k of the hot modes turns into

v4
ZY

v̊2
(ω2− 4π

σB

β)−v3(ZY
2ω2

v̊
)+v2ω2(

1

v̊2
(ω2− 4π

σB

β)+ZY −jb2Zω
β

v̊2
)−v(

2ω4

v̊
)+ω4 = 0.

(7.90)

After some mathematical manipulation, the characteristic equation is expressed by [291,

Chapter 25]

γ

w2 − v2
+

(v − v̊)2

v2
=

1

ω̌2
, (7.91)

where ω̌ is a dimensionless (normalized) frequency [291, Chapter 25]
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ω̌ =
ω

Rscωp

. (7.92)

Finally, for convenience we provide the translation table to transform Lagrangian model

parameters used in [291] to the Pierce model parameters used in this chapter. The list of

transformations is summarized in Table (7.3).

Table 7.3: Translation from Lagrangian model parameters to the Pierce model parameters

Lagrangian model Pierce model

v̊ ω
β0

= u0

σB A

β gω
β2
0
= gu0

β0

w2 − ω2

ZY
= ω2

β2
c

γ a2

Y
jgω2

β2
0

= a2

Y
jgu2

0

In the frequency-dependent SWS model that we have introduced in this chapter, we con-

sider two frequency-dependent parameters, i.e., the cold circuit EM phase velocity vc, and the

equivalent TL characteristic impedance Zc. The same procedure can be used for the demon-

strated Lagrangian model in [291]. In the Lagrangian model, the TL principal coefficient,

θ(ω), and TL characteristic velocity, w(ω), are the two frequency-dependent parameters in

the Lagrangian equations. Equivalently, in the displayed characteristic equation in Equation

(7.91), the TWT principal parameter, γ(ω), and TL characteristic velocity, w(ω), are the

two frequency-dependent parameters in the Lagrangian model.
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7.11 An Equivalent Alternative Formulation Based on

Charge

As explained in the previous section, we defined matrix equations for the TWT-system as

expressed in Equation (7.53). In the next step, we start with the substitutions presented in

Equation (7.44) to convert currents to charges. This leads to modified set of TWT-system

equations as

∂z



V

jωQ

Vb

jωq


=



0 −Z 0 0

−Y 0 jag jaβ0

0 −aZ −jβ0 −jRp

0 0 −jg −jβ0





V

jωQ

Vb

jωq


. (7.93)

The matrix is equivalent to the four equations



∂zV = −jZωQ

jω∂zQ = −Y V + jagVb − aβ0ωq

∂zVb = −jaZωQ− jβ0Vb +Rpωq

jω∂zq = −jgVb + β0ωq

(7.94)

By combining the equations and performing some mathematical simplification, we remove

voltages (V and Vb) from equations and decrease four first-order differential equations into
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two second-order differential equations based on charge:

.


∂2
zQ = Y ZQ− ja2gZQ+ jaβ0∂zq − aβ2

0q + agRpq + jaβ0∂zq

∂2
zq = jagZQ− jβ0∂zq + β2

0q − gRpq − jβ0∂zq

(7.95)

In order to analyze the characteristics of the system like wavenumbers, we rewrite equations

in the matrix form. So, we use a state vector based on charge, as was expressed before in

Equation (7.83), and rewrite Equation (7.95) as

∂zΨQ(z) = −jMQΨQ(z), (7.96)

MQ =



0 j 0 0

jY Z + a2gZ 0 −jaβ2
0 + jagRp −2aβ0

0 0 0 j

−agZ 0 jβ2
0 − jgRp 2β0


. (7.97)

By using the same approach described before, the characteristic equation is calculated from
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det(MQ − kI) = det



−k j 0 0

jY Z + a2gZ −k −jaβ2
0 + jagRp −2sβ0

0 0 −k j

−agZ 0 jβ2
0 − jgRp −k + 2β0


= 0, (7.98)

resulting in the following dispersion equation

D(ω, k) = k4−k3(2β0)+k2(β2
0−gRp+ZY −a2jZg)−k(2ZY β0)+ZY (β2

0−gRp) = 0. (7.99)

7.12 Theoretical Gain Calculation

The frequency-dependent parameters describing EM propagation in the dispersive and lossy

waveguide in the proposed model have a vital role in the accuracy of the calculated results.

In order to test the accuracy of the proposed model, we need to compare the theoretically

calculated results with those numerically obtained from commercial software. The software

LATTE is used to calculate the gain versus frequency of the helix TWT amplifier. We use our

theoretical method to calculate the power gain versus input signal frequency. The utilized

circuit model is illustrated in Figure 7.8. The TWT-system is modeled by the system matrix

M, and we use the input state vector of Ψ1 = [V1, I1, Vb,1, Ib,1]
T , calculated at z = 0, and

an output state vector Ψ2 = [V2, I2, Vb,2, Ib,2]
T is calculated at z = d, i.e., at the end of the

SWS. Here d = Nl is the SWS length, where N indicates the number of unit-cells and l is

the SWS period in the z-direction. The output state vector is calculated as
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Figure 7.8: Circuit model that we use for gain calculation.

Ψ2 = exp(−jMd)Ψ1. (7.100)

We considered a helix SWS made of N = 80 turns, and simulated results are based on this

assumption. In our model, we use the boundary condition at z = 0 and z = d provided by

the equations



Vb1 = 0

Ib1 = 0

V1 + I1RS = VS

V2 − I2RL = 0

(7.101)

In these equations, the terminations RS (generator resistance) and RL (load) are assumed

to be equal to the frequency-dependent characteristic impedance of SWS Zc (vary with fre-

quency, to simulate matching), and VS is the voltage source. Then, we solve these equations

at each frequency and calculate the effective current and voltage at the output of the TL

(I2, V2). We calculate the output power Pout = |V2|2 /(2RL), and the available input power

Pavail = |Vs|2 /(8RS), to obtain the frequency-dependent gain G = Pout/Pavail, for the TWT-

system. As explained above and in the main body of the chapter, we have introduced the

coupling strength coefficient a, in our equations, which describes the strength of beam-EM
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mode interaction in the system. The value of a must be optimized in order to obtain good

agreement between the theoretical model and simulation results. The optimized value for

the designed helix TWT is calculated as a = 0.917. With this coupling strength coefficient,

the theoretical and simulated gain results are in agreement over the frequency range shown

in the main body of the chapter. The agreement between the theoretical and simulated gain

demonstrates the effectiveness of the theoretical model.

7.13 Conclusions

In conclusion, we have investigated the occurrence of EPDs in a system consisting of a linear

e-beam interacting with a guided EM wave. We have focused on a practical example where

the EM wave is guided by a helix-based SWS, but the same model can be applied to other

guiding geometries. We have considered realistic parameters for the e-beam’s space-charge

effect and waveguide’s dispersion of phase velocity and Pierce (interaction) impedance in the

developed model. We have discovered the necessary and required conditions to establish an

EPD in TWT-system. Then, we have discussed how the wavenumbers of the hot EM-space-

charge wave modes participating in an EPD are extremely sensitive to system perturbations.

We have shown how a bifurcation point well describes such perturbation near an EPD,

demonstrated by employing the Puiseux fractional power series expansion. The very high

sensitivity to variations can pave the way to new accurate measurement techniques of e-beam

parameters.
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Chapter 8

Parametric Modeling of Serpentine

Waveguide Traveling Wave Tubes

A simple and fast model for numerically calculating small-signal gain in SWTWTs is de-

scribed. In the framework of the Pierce model, we consider one-dimensional electron flow

along a dispersive single-mode SWS, accounting for the space-charge effect. The analytical

model accounts for the frequency-dependent phase velocity and characteristic impedance

obtained using various equivalent circuit models from the literature, validated by compari-

son with full-wave eigenmode simulation. The model includes a relation between the modal

characteristic impedance and the interaction (Pierce) impedance of the SWS, including also

an extra correction factor that accounts for the variation of the electric field distribution

and hence of the interaction impedance over the beam cross section. By applying bound-

ary conditions to our generalized Pierce model, we compute both the theoretical gain of

a TWT and all the complex-valued wavenumbers of the hot modes versus frequency and

compare our results with computationally intensive PIC simulations; the good agreement

in the comparison demonstrates the accuracy and simplicity of our generalized model. For

various examples where we vary the average e-beam phase velocity, average e-beam current,
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number of unit cells, and input RF power, we demonstrate that our model is robust in the

small-signal regime. The purpose of this chapter is not to design a TWT with performance

that competes with previous ones, but to develop an accurate and simple model to predict

TWT performance that can be used as a design tool.

8.1 Background, Motivation, and State of the Art

TWT is a type of common microwave vacuum electron tube that has been widely used for

applications such as communication, radar, and electronic countermeasures [307, 47, 308,

49]. Among the different kinds of TWTs, the SWTWT has advantages over other kinds

of millimeter wave TWTs (e.g. helix TWT, CCTWT, ring-bar TWT) due to its moderate

bandwidth with power-handling capacity at higher frequencies and its compatibility with

planar fabrication using lithography or micromachining [309, 310, 311, 312, 313]. SWS of

the SWTWT is formed by bending rectangular waveguides in the electric field plane (E-

plane). Also, a cylindrical e-beam is transported through the cylindrical beam tunnel to

interact with RF propagating wave. Although the SWSWS’s performance is limited by its

low interaction impedance and interaction efficiency, many schemes of enhancing the on-axis

interaction impedance and also enhancement of interaction efficiency have been proposed

[314, 315, 316, 317, 318, 319].

In order to analyze the e-beam and EM wave dynamics of a SWTWT, it is necessary to

examine the EM characteristics of the SWS. Various analytical models have been developed

for its characterization. In 1987, Dohler et al. proposed a simple analytical method for deter-

mining the dispersion characteristics and the interaction impedance of the EM modes in the

SW [309]. Liu suggested an analytical formulation adding the effect of bends [310]. Then,

researchers developed a closed-form algebraic dispersion relation based on an equivalent cir-

cuit model that also considered the effect of mismatch between straight and bend sections as
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Figure 8.1: Schematic illustration of an SW unit cell, constitutive segments (colored dashed
rectangles), and parametric dimensions are shown in the left and central panels. The equiv-
alent TL model for the TE10 mode in each segment is shown in the right panel for: (B)
E-plane circular bend, (J) circular bend to straight waveguide junction, (S) straight waveg-
uide section, and (H) e-beam hole.

well as an approximate model for beam holes [56, 58]. A thorough equivalent circuit analysis

of SWs by modeling the effect of beam tunnels as orthogonal stubs was developed by Booske

et al. [320] for the calculation of dispersion characteristics, following the approach of TL

cascading networks and benchmarked using 3D simulations with Ansys HFSS, MAFIA, and

CST Studio Suite. Recently, Antonsen et al. [321] developed a hybrid model consisting of a

combination of TL segments and lumped electrical elements, which is utilized to analyze SW

dispersion characteristics and interaction impedance. The model also captures the effects of

asymmetric fields and beam tunnel misalignment. Although some commercial full-wave sim-

ulation software like Ansys HFSS and CST Studio Suite are versatile and can analyze SWS

characteristics, simulation times are longer than analytical methods. Therefore, analytical

methods are preferred for quickly iterating through and optimizing various SWS designs.

To design and analyze SWTWTs, various beam-EM wave interaction models exist. PIC

simulations are widely used to characterize the beam-EM wave interaction of TWTs because

they predict amplification performance. Nevertheless, the computational burden of 3D PIC

simulators is high compared to other TWT codes. The United States Naval Research Labo-
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ratory applied the hybrid TL model to the large signal beam-EM wave interaction programs

(CHRISTINE-CC and TESLA-CC), which are used for analyzing CC-TWTs. Then, they

extended a 1D frequency-domain interaction model named CHRISTINE-FW, developed for

folded waveguide TWTs [322] and a 2D frequency-domain interaction model named TESLA-

FW [323, 324]. Also, a large signal beam-EM wave interaction code with computational

efficiency improvements was developed by Meyne et al. [325]. A 3D steady-state beam-EM

wave interaction code using a three-port network representation of the circuit and a set of

discrete ray representations of the 3D e-beam was developed by Yan et al. [326]. In addition

to previous models, a nonlinear model for the numerical simulation of terahertz SWTWT is

described in [327], in which the propagated EM wave in the SWS is represented as an infinite

set of space harmonics that interact with an e-beam. Also, an improved large-signal model

was developed in [328], which predicts beam-EM wave interaction with an analytical method.

Recently, Figotin [53] advanced a Lagrangian field theory of CC-TWTs that integrates into

it the space-charge effects; that model can also be used for SWTWTs as explained in detail

in that paper.

In this chapter, we present an analytical model for analyzing beam-EM wave interactions

in SWTWTs shown in Figure 8.1. We develop a model that can be used to obtain the

small-signal gain and the “hot eigenmodes” dispersion, accounting for nonuniform beam-

EM wave interaction. We refer to the modes of the interactive system, where the e-beam

interacts with the EM wave of the SWS, as “hot modes” or “hot eigenmodes”, which are

complex modes, with each hot eigenmode composed of both EM and space-charge waves.

First, we show various methods from the literature that can be used to calculate SWS cold

characteristics, i.e., characteristic impedance and phase velocity, based on the equivalent

circuit model presented in [320]. We calculate the interaction impedance, which is one of

the critical parameters for predicting TWT gain. Based on the fundamental equations of

the Pierce model [285, 329, 2, 286], we further develop the model to account for frequency-

dependent parameters and the space-charge effect, following the method explained in [75]
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for a helix TWT. Then, we introduce the frequency-dependent coupling strength coefficient

which shows the strength of the interaction between e-beam and EM wave and also connects

interaction impedance and characteristic impedance. We also include the small frequency-

independent factor δe that corrects for the nonuniform interaction impedance over the beam

cross section. This correction factor models the nonuniform interaction between the EM

wave and the e-beam in the interaction gap. Moreover, we model the e-beam effect on the

equivalent TL model by using the electronic beam admittance per unit length Yb, accounting

for the space-charge effect. By introducing Yb, it is possible to find out the conditions that

lead to amplification in the TWT system. Finally, we utilize the proposed theoretical method

to predict the gain versus frequency of a TWT amplifier and we compare our results to those

from computationally intensive 3D PIC simulations, showing high accuracy. In order to

show the flexibility and accuracy of our method, comparison with 3D PIC simulations for

many examples is done by varying the e-beam parameters such as the average e-beam phase

velocity, average e-beam current, number of unit cells, and input RF power.

The organization of this chapter is as follows. In Section 8.2, we highlight the main achieve-

ments of our developed model. Then, we show how to combine some analytical methods

from the literature to calculate the cold parameters of the SW in Section 8.3. An example of

a cold model characteristic calculation is presented in Section 8.5. We describe the conven-

tional method to calculate interaction impedance and introduce the extra correction factor

δe required for our model in Section 8.6. We develop a model for beam-EM wave interaction

in Section 8.8 and evaluate it by providing an example in Section 8.11, where we apply

boundary conditions to determine the TWT gain. Next, we demonstrate the accuracy and

efficiency of our model in Section 8.13 by varying TWT parameters. Finally, we conclude

the chapter in Section 8.14.
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Figure 8.2: The (a) real and (b) imaginary parts of complex-valued wavenumbers of the hot
modes, where dark blue curves indicate branches with purely real wavenumbers, dark red
curves indicate branches with complex-valued wavenumbers, and black crosses indicate the
results obtained using a hot eigenmode solver for beam-loaded SWS based on PIC simula-
tions. (I) and (II) show the real part of the complex-valued wavenumbers of the hot modes
near the two transition points (light purple circles). (c) The theoretical gain (with/without
correction factor δe) is compared with that from PIC simulation. The parameters used for
this example are provided in Sections 8.5 and 8.11.

8.2 Summary of Main Results

We present a summary of the main results calculated by our developed model and compared

to PIC simulations, leaving explanations, technical details and numerical examples in the

sections that follow. In our developed model, we introduce an additional correction factor

δe that accounts for transverse variations in the axial electric field distribution that affect

the average interaction impedance over the beam cross section. As a result of this correction

factor, we can model the nonuniform interactions between the EM wave and the e-beam

in the interaction gap. Figures 8.2(a) and (b) illustrate the real and imaginary parts of

complex-valued wavenumbers of the eigenmodes supported by the SW with the e-beam, i.e.,

of the hot modes, for the example with the parameters provided in Sections 8.5 and 8.11.

The solid lines in Figures 8.2(a) and (b) represent the calculated frequency dispersion of

the hot modes resulting from the interaction between the guided EM wave in the SWS and

the two space charge waves of the e-beam. The dark blue curves indicate “stable branches”

whose imaginary parts of the wavenumber of the hot modes are equal to zero and hence are
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not amplified. In contrast, dark red curves indicate branches whose imaginary parts of the

wavenumber are nonzero, and the positive values of the imaginary part allow for amplification

(unstable or amplification branch). In order to verify our theoretical calculations displayed by

solid curves, we calculate the real and imaginary parts of the complex-valued wavenumbers of

the hot modes at a discrete set of frequencies by using the “hot eigenmode solver” for beam-

loaded SWS based on PIC simulations developed in [330] (indicated by black crosses). This

eigenmode solver is based on accurate PIC simulations of finite-length hot structures, which

consider the precise SWS geometry, the EM properties of the materials, the cross-sectional

area of the e-beam, the confining magnetic field, and the space-charge effect. The advantage

of the hot eigenmode solver is that the use of PIC simulations allows us to find the hot

eigenmodes that fully account for all physical aspects of the problem without the need to rely

on intermediate parameters, such as the interaction impedance or plasma frequency reduction

factor used in other solvers [330]. There is excellent agreement between our theoretical

model and the PIC-based eigenmode solver of [330], both in the real and imaginary parts

of the complex wavenumber. In addition, we show the zoomed-in plot of the real part of

the complex-valued wavenumber near the two transition points (bifurcations) in Figures

8.2(I) and (II). The light purple circles indicate the transition points that separate the

stable branches with purely real wavenumbers from the unstable branches with complex-

valued wavenumbers. Some features of these critical points have been previously explored

in [75, 126]. Lastly, we calculate the gain versus frequency diagram for the TWT using the

developed theoretical model, shown by the solid orange curve in Figure 8.2(c), and compare

with results from computationally intensive 3D PIC simulations, shown by blue crosses,

demonstrating very good agreement. The camel-like hump curve on the gain diagram in

Figure 8.2(c) has the same shape as the unstable branch in Figure 8.2(b). The excellent

agreement between our developed theoretical results and PIC simulated results in Figure

8.2 demonstrates the accuracy of our method. Furthermore, to demonstrate the importance

of the extra correction factor δe in our model, we also calculated the gain versus frequency
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curve in Figure 8.2(c) without taking into account the correction factor δe (dotted light blue

curve). In the case without a correction factor δe, the calculated results are unable to predict

the gain to within approximately 1.5 dB at the high amplification frequencies around 26GHz.

8.3 Equivalent Circuit Model of Cold SWS

It is crucial to have a simple model that estimates the cold (i.e., without the e-beam) char-

acteristics of the SWS, especially for evaluating the operational bandwidth and interac-

tion efficiency of TWTs. Here, we present the cold equivalent circuit model and compare

frequency-dependent cold results, such as phase velocity, with those of full-wave eigenmode

simulations.

A schematic design of an E-plane bend SW circuit is shown in Figure 8.1. It is assumed

that only the fundamental TE mode, i.e., TE10, propagates along the waveguide with a

rectangular cross section. In practice, reflections at the junction with a bend cannot be

completely avoided (segment J), and we also need to take into account that the characteristic

impedance of the EM mode in the bend (segment B) is slightly different from that of the

EM mode in the straight segment; hence, the junction between the two segments involves

reactive fields [331, 332, Chapter 4]. Note that the U-shaped bends in SWs considered

here produce less reflection than the right angle bends commonly found in folded waveguides

[58, 57, 333]. Additionally, reactive loading from the beam hole (segment H) can affect device

performance, depending on the hole’s diameter. The effect of both of these kinds of reflections

is the creation of a stopband that may limit the TWT’s maximum operating frequency. In

addition, a band edge can also be a source of instability if an e-beam synchronizes with it

[58, 334]. Thus, one must carefully select a combination of beam tunnel radius and beam

voltages to avoid such an absolute instability at the 3π and 4π points of the dispersion

diagram, respectively.
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Figure 8.3: Equivalent voltage and current at the input and output of each unit cell and the
corresponding TE10 electric and magnetic fields in the cross section of the SW. We also show
the equivalent kinetic beam voltage and beam current pertinent to the two charge waves.

The different segments of the SW are represented in the center panel of Figure 8.1, each

with its own equivalent TL circuit in the right panel. In this case, B, J, S, and H corre-

spond to the following parts of the unit cell: E-plane circular bend, circular bend to straight

waveguide junction, straight waveguide section, and e-beam hole, respectively. By multi-

plying (cascading) the transfer matrices of the individual segments we build the equivalent

TL model corresponding to the SW’s unit cell which will be further discussed in Subsection

8.4.1. We use the equivalent representation in [331, 305] that models propagation in a rect-

angular waveguide as a TL with equivalent voltage and current. The discrete voltages and

the currents that represent the EM state in the phasor domain at different cross sections of

the waveguide are defined as Vn =
√

wb/2Ey,n and In = −
√

wb/2Hx,n, where Ey,n and Hx,n

are the transverse electric and magnetic fields of the TE10 mode calculated at the center of

the rectangular waveguide cross section as shown in Figure 8.3. The equivalent voltage and

current in the TLs are calculated at discrete locations using the transfer matrix TU as
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Ψn =


Vn

In

 , Ψn = TUΨn−1, (8.1)

where Vn−1 and In−1 are the equivalent voltage and current [331] at the input port of the

nth unit cell and Vn and In are the equivalent voltage and current at the output port of the

nth unit cell as shown in Figure 8.3.

8.3.1 Equivalent Matrix for Each Segment

Straight Waveguide (Segment S)

The straight rectangular waveguide segment of the unit cell is modeled as a uniform TL of

length l with characteristic modal impedance Z0 = η0/
√

1− (ωco/ω)
2 of the fundamental

TE10 mode, where η0 =
√

µ0/ε0 is the wave impedance of free space, ωco = πc/w is the

cutoff angular frequency, w is the width of the rectangular waveguide, and ω is the operating

angular frequency. The phase propagation constant of the TE10 mode is βg,s =
√

k2
0 − (π/w),

where k0 = 2π/λ0, and λ0 = 2πc/ω is wavelength in free space. The equivalent TL circuit

representation of the straight waveguide segment is shown in Figure 8.1 (segment S), and

the equivalent transfer matrix is

TS =


cos (βg,sl) jZ0 sin (βg,sl)

j sin (βg,sl) /Z0 cos (βg,sl)

 . (8.2)
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Circular Bend to Straight Waveguide Junction (Segment J)

The junction between the straight waveguide and the E-plane bend is represented by the

equivalent circuit in Figure 8.1 (segment J) with equivalent lumped reactance [331, Section

5.34]

X = Z0

32

π7

(
2πb

λg,s

)3(
b

R

)2 ∞∑
n=1,3,...

1

n7

√
1−

(
2b

nλg,s

)2
 , (8.3)

where R is the mean radius of the bend, and λg,s = 2π/βg,s = λ0/
√

1− (ωco/ω)
2 is the

guided wavelength. The equivalent transfer matrix for the junction is

TJ =


1 −jX

0 1

 . (8.4)

E-plane Circular Bend (Segment B)

An equivalent TL circuit for the quarter E-plane bend is given in Figure 8.1 (segment B).

Here, πR/2 is the mean length of the E-plane bend and the length of the equivalent TL.

The modified characteristic impedance for the fundamental propagating mode in the bend

is [331, Section 5.34]

Z0,b = Z0

(
1 +

1

12

(
b

R

)2
[
1

2
− 1

5

(
2πb

λg,s

)2
])

. (8.5)

In addition, the circular bend is considered as a uniform angular waveguide with a guided

wavelength of
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λg,b ≃ λg,s

(
1− 1

12

(
b

R

)2
[
−1

2
+

1

5

(
2πb

λg,s

)2

− . . .

])
, (8.6)

for the fundamental mode. As a result, in the wavelength range 2b/λg,s < 1 [331, Section

5.34], the TL matrix for the circular bend segment is

TB =


cos
(

π2R
λg,b

)
jZ0,b sin

(
π2R
λg,b

)
j sin

(
π2R
λg,b

)
/Z0,b cos

(
π2R
λg,b

)
 . (8.7)

Beam Tunnel Hole

The radius of the beam hole can slightly affect the phase velocity, dispersion and cutoff

frequency of the EM mode in the SWS [335, 336]. A wide beam tunnel will add significant

periodic reactive loading to the SWS and introduce a stopband at the 3π point of the modal

dispersion diagram, and the larger beam tunnel radius results in a larger stopband [337].

On the other hand, a wide beam tunnel permits higher beam currents since the beam radius

can be larger with the same current density, resulting in higher d.c. beam power and output

RF power at saturation [338]. However, an e-beam of a very small radius (with the same

d.c. beam current) will experience strong Coulomb repulsion between electrons, and it is

unrealistic to apply an intense magnetic field to confine an e-beam with a small radius and

high current density [337]. Also, it is desirable to have an e-beam with a lower accelerating

voltage and a higher current, resulting in a higher gain. Therefore, it is necessary to trade

off beam tunnel size, current density, and beam radius to optimize TWT properties, such as

linear gain and efficiency.

A general and accurate circuit to model the beam tunnel hole that can be used in all cases

has not been developed yet. In [56], the authors modeled the circular hole as a shunt
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reactance, where the value depends on rectangular waveguide width and height and beam

tunnel diameter. Also, in [320], a circuit model of the beam tunnel hole based on the

modification of the model for different tunnel radii in [331] was presented. The reference

structure is a circular waveguide connected orthogonally to the broad wall of a rectangular

waveguide through a small aperture. The difference between the reference structure in [331]

and the structure to be modeled is that the cylindrical tunnel is represented as a stub whose

diameter equals the aperture diameter and is below the cutoff for propagation and there are

two of these stubs present. By assuming that the hole radius is electrically small (i.e., much

smaller than the guided wavelength), we can often neglect the effect of holes and model this

section as a simple straight rectangular waveguide as described in Subsection 8.3.1. This

approximation leads to acceptable results and more investigation for a specific example is

provided in Section 8.4. In addition, several papers designed SWTWTs without considering

the effect of the beam tunnel hole, and some papers used the straight waveguide model for

it, including [56, 310, 339, 340].

In TWTs designed for millimeter waves and even higher frequencies, the e-beam tunnel is

often enlarged to achieve higher transmission rates, thereby causing a bandgap at the 3π

point. For large beam tunnel dimensions, one could obtain the S-parameters of the straight

segment with non-negligible tunnel loading via full-wave simulations. The numerically ob-

tained S-parameters can then be converted into the transmission matrix TH and used in

our model. However, if circuit models for the segment with a large beam tunnel become

available, one could also include them in the present formulation.

8.4 Longitudinal Fields in the Beam Tunnel

A number of works analyzed the effect of variation in the tunnel gap between the walls of the

waveguide and the effect of thin interaction gap (b in Figure 8.4) [314, 341, 342, 343, 317, 318].
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Figure 8.4: The on-axis z-component of electric field distribution as a function of longitudinal
position z in a one unit cell with d = 4mm, at the center of beam tunnel (i.e., r = 0) for five
beam tunnel radii rc. The calculated values are normalized to the maximum value of the
z-component of the electric field in the interaction area when rc = 0, i.e., the case without
tunnel.

In addition, the tunnel between the straight waveguide sections (p1 = d/2− b in Figure 8.4)

should be long enough to prevent the guided EM wave from directly coupling between straight

sections via the beam tunnel, which operates below the cutoff [56, 58]. The analysis of the

electric field distribution in the beam tunnel and interaction area of the cold single unit cell

is shown in Figure 8.4. The parameters used in this example are the same as those listed in

Table 8.1 and we illustrate the on-axis z-component of electric field at the center of beam

tunnel by varying beam tunnel radius rc. It should be noted that a large tunnel diameter

can reduce the effective longitudinal field at the center of such a tunnel and hence decrease

the gain (for instance, see the green curve in Figure 8.4). Hence, the beam tunnel radius

should be selected carefully.

8.4.1 Cascaded Circuit Model

The basic SWS segments shown in Figure 8.1 are represented by equivalent TL segments, each

with an equivalent transfer matrix as discussed above. The transfer matrices for the lossless

circuit segments are cascaded to arrive at the transfer matrix of the unit cell represented as
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TU =


T11 T12

T21 T22

 =
(
TU/2

)2
. (8.8)

For convenience we use the half unit cell transfer matrix defined as

TU/2 = (TBTJTSTHTSTJTB) . (8.9)

Using our unit cell transfer matrix TU, we find solutions for the state vector, Ψ = [V, I]T,

that satisfies

TUΨ = e−jβc,0dΨ, (8.10)

where d is unit cell period and βc,0 is the wavenumber of the fundamental spatial harmonic.

Solving the eigenvalue problem,

det
(
TU − e−jβc,0dI

)
= 0, (8.11)

for βc,0, yields the Bloch wavenumbers of the cold EM modes allowed in the SWS, where I is

the 2× 2 identity matrix. Then, the propagation constants for the mth spatial harmonic is

βc,m = βc,0 +
2mπ

d
, m = 0,±1,±2, . . . (8.12)

The phase velocity of the spatial harmonic of the cold mode is calculated as vc,m = ω/βc,m.

Based on the definition of the state vector at the beginning of each unit cell, the characteristic

Bloch impedance of the fundamental guided mode is calculated as
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Zc =
V

I
=

T12

e−jβc,0d − T11

=
e−jβc,0d − T22

T21

. (8.13)

Note that the characteristic Bloch impedance depends on where the section separating unit

cells is defined, and if we substitute βc,0 for βc,m, the result does not change.

8.4.2 Equivalent Uniform TL Model

Each EM mode is comprised of a fundamental Bloch wavenumber βc,0 and all its spatial

harmonics βc,m. However, the Pierce model [285, 2, 286] is based on the assumption that the

SWS can be considered as a uniform TL supporting a single mode with wavenumber βc that

is velocity-synchronized with the e-beam, which is discussed here. To highlight this view,

we impose that the cascaded matrix TU in Equation (8.8) should be equal to the transfer

matrix of an equivalent uniform single TL, as was done also in [56, 320],

TUni =


cos (βc,0d) jZc sin (βc,0d)

j sin (βc,0d) /Zc cos (βc,0d)

 . (8.14)

Then, we impose TUni = TU, where TU is calculated from the cascaded circuit equivalent

model of each segment as explained in the previous subsection, and we obtain the elements

of TUni for βc,0d, which is the effective phase shift per unit cell of the fundamental spatial

harmonic. As a result, the propagation constants for all spatial harmonics are [50, Section

4.5.1]

βc,m =
cos−1 (T11)

d
+

2mπ

d
, m = 0,±1,±2, . . . , (8.15)
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wherem denotes the harmonic number. In SWTWTs usually the first spatial harmonic (m =

1) is synchronized with the e-beam. The phase velocity corresponding to the mth spatial

harmonic is vc,m = ω/βc,m. The second and third elements in the equivalent transmission

matrix TUni are used to calculate the characteristic impedance of the equivalent uniform TL

as Zc =
√
T12/T21 [50, Section 4.5.1]. Also, by imposing TUni = TU to Equation (8.8) and

using the reciprocity property of the transfer matrix, the latter equation for characteristic

impedance will be equivalent to Equation (8.12).

8.4.3 Waveguide Projection Model (Without Considering the Junc-

tion and Bend Effect)

The guided wavenumbers βc,m can also be approximated by considering the SWS as a

straightened version of the serpentine waveguide. In this simple view, the effect of the

junction between straight and bend sections is ignored and we assume that the TE10 propa-

gation constant in the curved segments is the same as in the straight segments. The on-axis

phase shift per pitch for the mth spatial harmonics is βc,md = θ + 2mπ, where βc,m is the

effective on-axis propagation constant, θ = βg,sL is phase delay per pitch of EM wave, and

L = 2 (πR + h) is defined as the distance traveled by the wave per pitch. The phase velocity

of mth spatial harmonics is expressed by [344]

vc,m =
ω

βc,m

=
ωd

βg,sL+ 2πm
. (8.16)

The derivation of Equation (8.16) assumes that the bends do not present significant mis-

matches to the wave. In practice, both the bends and the beam holes introduce small mis-

matches that may cause stopbands where the dispersion curves of spatial harmonics cross.

These effects are ignored in this simplified model.
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Figure 8.5: Cold simulation results for the SW using theoretical and simulation methods.
(a) Modal dispersion curves for three spatial harmonics (m = 0, 1 and 2) by employing
the full-wave eigenmode solver (dashed black curves) and cascaded circuit model (solid red
curve). (b) Normalized phase velocity for the first spatial harmonic (m = 1) by using
the eigenmode solver (dashed black curves), cascaded circuit model (solid red curve) and
waveguide projection model (dashed blue curves). Also, the zoomed-in version of normalized
phase velocity in the frequency range from 26GHz to 34.5GHz is shown to demonstrate the
superior accuracy of the cascaded circuit model compared to the waveguide projection model.
(c) Characteristic Bloch impedance for the first spatial harmonic (m = 1) calculated using
the cascaded circuit model (solid red curve), compared with that from full-wave simulation
(dashed black curve).

8.5 Validation of Equivalent Circuit Model

The cold SWS characteristics for a specific design are shown via the three theoretical models

discussed in the previous section, compared with simulations performed using the CST Studio

Suite eigenmode solver. Figure 8.1 shows the model of a typical SW with a cylindrical

beam tunnel, where the geometric parameters w, b, d, h, and rc represent the dimensions

of wide side, narrow side, full period, straight waveguide wall, and radius of beam tunnel,

respectively. The parameter values for a specific design are listed in Table 8.1.
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Table 8.1: Designed structural parameters for the SWSWS.

Description Parameter Length (mm)

The width of rectangular waveguide w 6.8

The height of rectangular waveguide b 0.7

The full period length d 4

The whole straight waveguide length h 2.5

The radius of beam tunnel rc 0.5

Figure 8.5 shows the wavenumber, phase velocity and characteristic impedance of the EM

modes in the cold serpentine waveguide obtained using theoretical and simulation methods.

Figure 8.5(a) shows the wavenumber dispersion diagram of the modes in the SW, showing

three spatial harmonics, obtained by varying the phase between periodic boundaries. The

simulated results based on the CST Studio Suite eigenmode solver (dashed black curves) are

in excellent agreement with the theoretical dispersion diagram calculated by the cascaded

circuit model (solid red curves) discussed in Subsection 8.4.1. The cutoff frequency of the

designed SW is around fc = 22.15 GHz. Then, the normalized phase velocity corresponding

to the first spatial harmonic (m = 1) as a function of frequency ranging from 22.15 GHz

to 34.5 GHz is plotted in Figure 8.5(b). There is excellent agreement between the results

provided by the eigenmode solver (dashed black curve), cascaded circuit model (solid red

curve) in Subsection 8.4.1, and waveguide projection model (dashed blue curve) in Subsec-

tion 8.4.3. As a general observation, the cascaded circuit model is more accurate than the

waveguide projection model because it accounts for the mismatches due to circular bends

and junctions. The characteristic Bloch impedance of the SWSWS using the cascaded circuit

model (solid red curve) in Section 8.4.1, compared to that from full-wave simulation (dashed

black curves), is shown in Figure 8.5(c). The characteristic Bloch impedance from full-wave

simulation is calculated as Zc = −Ey/Hx = V/I, by using field monitors.

In order to demonstrate that the SW can be modeled by a single straight uniform TL
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Figure 8.6: (a) Normalized phase velocity and (b) characteristic Bloch impedance of the first
spatial harmonic (m = 1) calculated by using the cascaded circuit model (solid red curve)
described in Subsection 8.4.1 and the uniform TL model (dashed green curve) described in
Subsection 8.4.2.

(Section 8.4.2), we compare the results based on the uniform TL model with the cascaded

circuit model (Section 8.4.1). The calculated phase velocity and characteristic impedance

results for the first spatial harmonic in both cases are shown in Figure 8.6(a) and (b), and we

observe excellent agreement between these two theoretical methods. Also, previous studies,

such as [320], utilized the uniform TL model that is very similar to what is discussed in this

chapter for the cold case. In contrast, in this chapter we also develop a model for finding

the “hot eigenmodes” dispersion of the device and the TWT gain. The accurate calculation

of the characteristic parameters of the cold structure, i.e., Zc and vc, has a vital role in our

model. To reinforce this point, we note that one of the conclusions of [320] is that accurate

determination of the small-signal gain in a SWTWT amplifier requires a precise evaluation

of the phase velocity to within 0.5% and the interaction impedance within 10% of the actual

parameters found by time-consuming full-wave eigenmode simulations. The calculated gain

is very sensitive to these parameters, and requires correct phase velocity and interaction

impedance specification. Sensitivity studies in [320] indicate that variations in the phase

velocity of 0.5% can result in 8 dB of variation in the predicted small-signal gain, while a

10% variation in the interaction impedance can result in a 5 dB change in the predicted

small-signal gain of the specific design.
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8.6 Interaction Impedance

In order to predict the performance of a TWT, one needs to determine the interaction

(Pierce) impedance of the SW because amplifier gain is proportional to the cubic root of

this parameter [2]. The interaction impedance is a measure of how much the on-axis electric

field can velocity modulate electrons for a given EM power propagating along the length of

the structure [290, Chapter 10]. In the ideal case, the e-beam is assumed to be very narrow.

From Pierce theory, the interaction impedance for a thin beam is defined for a specific spatial

harmonic m as [290, Chapter 10]

ZP,m (βc,m) =
|Ez,m (βc,m)|2

2β2
c,mP

, (8.17)

where |Ez,m (βc,m)| is the magnitude of the axial electric field phasor along the center of

the cold SWS where the e-beam will be introduced, for a given phase constant and spatial

harmonic m, and P is the time-average power flux through the SWS at the given phase

propagation constant βc,m [290]. The quantity |Ez,m| is the weight of the mth Floquet-Bloch

spatial harmonics of the axial field decomposition Ez (z, βc) =
∑∞

m=−∞Ez,m (βc) e
−jβc,mz. It

is calculated by numerically obtaining the phasor of the axial electric field Ez (z, βc) of the

cold SW with beam tunnel using full-wave eigenmode simulations, followed by performing

the Fourier transform in space

Ez,m (βc) =
1

d

dˆ

0

Ez (z, βc) e
jβc,mzdz. (8.18)

In addition, the time average power flux is simply calculated as P = Wtvg/d [345], where Wt

is the total EM energy of the wave stored in a unit cell and vg = dω/dβc is the group velocity.

For an SW, the interaction impedance is typically evaluated within the first Brillouin zone

(i.e., m = 1), where the interaction occurs. Additionally, the e-beam diameter also influences
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the interaction impedance. For beam cross sections and beam tunnel diameters that are not

infinitesimally thin, the longitudinal electric field and the interaction impedance within the

beam tunnel can vary over the beam cross section area, becoming larger near the edges of

the tunnel. As a consequence, the additional correction factor (average factor) should be

considered in calculating the interaction impedance by taking into account the variation of

the electric field within the interaction area (interaction gap) [346]. Additional analysis of

the variation of the electric field distribution in the interaction area for the specific example

can be found in Section 8.7. Therefore, a modified or “effective interaction impedance”

corresponding to each spatial harmonic considering the nonuniform electric field distribution

in the interaction area is given by

ZP,e,m = (1 + δe)
2 ZP,m, (8.19)

where, δe > 0 is the correction factor. The value of the correction factor δe can be found

either by (i) averaging the EM axial field over the beam cross section, or (ii) by matching the

maximum value of the theoretical and PIC-simulated gain at the synchronization frequency.

In this chapter, to compute the interaction impedance ZP,m, we use the eigenmode solver

of CST Studio Suite to calculate Ez (z, βc) over z for different βc. Then, we transform

the electric field Ez (z, βc) by Equation (8.18) and calculate the interaction impedance by

Equation (8.17). The group velocity vg = dω/dβc is determined directly from the dispersion

diagram by using numerical differentiation. The EM energy simulated within a single unit

cell between periodic boundaries in the eigenmode solver is always 1 Joule.
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8.7 Longitudinal Fields in the Interaction Regions

The magnitude of the z-component of electric field distribution at the center of the longi-

tudinal cross section (the x = 0 plane) of a cold SW is shown in Figure 8.7(a). For better

illustration, the z-component magnitude in the beam and EM wave interaction area at var-

ious transverse cross sections of z0 = 0.7 mm, z0 = 0.85 mm and z0 = 1 mm is shown in

Figure 8.7(b). We can see that the electric field magnitude increases near the beam tunnel

perimeter. Also, the magnitude of the z-component of the electric field in a straight line

in the x direction, with y = 0, at three different z values is depicted in Figure 8.7(c). The

magnitude of the z-component of the electric field is also calculated at different radii inside

the beam tunnel as shown in Figure 8.7(d). These plots demonstrate that the minimum field

value is obtained at the center of the beam tunnel and that the magnitude of Ez increases

gradually with an increasing radius. Thus, in the interaction area, the minimum interaction

impedance is calculated at the center of the beam tunnel, i.e., at r = 0. To account for the

nonuniform distribution of the longitudinal electric field in the interaction area, the interac-

tion impedance should be multiplied by a correction factor, i.e., (1 + δe)
2. Since the electric

field magnitude is greater near the tunnel wall, the correction factor should be greater than

one (δe ≥ 0).

8.8 E-beam and EM Wave Interaction

The classical small-signal theory by J. R. Pierce is one of the most famous approaches

used for TWT modeling and design [285, 329, 2, 286]. Our implementation based on the

generalization of Pierce’s theory is summarized here following our previous work [75]. We

follow the linearized equations that describe the space-charge wave as originally presented

by Pierce.
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Figure 8.7: The on-axis z-component of electric field distribution in the beam tunnel area
in a cold SWSWS: (a) Over the longitudinal cross section, i.e., at x = 0 plane; (b) in
the interaction area at three different transverse cross section planes with z0 = 0.7 mm,
z0 = 0.85 mm and z0 = 1 mm; (c) in the x direction, with y = 0, at three different z0
coordinate; (d) at three different radii r0, along the beam tunnel.

The equivalent model for the TWT describes the EM wave traveling in an SW interacting

with an e-beam flowing in the z direction as shown schematically in Figure 8.8. The electrons

have an average velocity and linear charge density of u0 and ρ0, respectively. The e-beam

has an average current I0 = −ρ0u0 in the −z direction and an equivalent kinetic d.c. voltage

as V0 ≈ u2
0/ (2η) for non-relativistic beams (assuming that thermal initial velocity of the

electron is neglected) or V0 =
[(
1− (u0/c)

2)−1/2 − 1
]
c2/η for relativistic beams, where c is

the speed of light in a vacuum, η = e/m = 1.758820×1011C/Kg is the charge-to-mass ratio of

the electron with charge −e and rest mass m [46, Chapter 3]. The small-signal modulations

in the charge velocity ub and charge density ρb, describe the “space-charge wave”. The a.c.

equivalent beam current and kinetic voltage are given by ib = ubρ0 + u0ρb and vb = ubu0/η,

where we have kept only the linear terms based on the small-signal approximation [286]. We

implicitly assume a time dependence of exp (jωt), so the a.c. space-charge wave modulating

the e-beam is described in the phasor domain with Vb (z) and Ib (z), as
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d

dz
Vb = −jβ0Vb − aZI − j

Ib
Aε0ω

, (8.20)

d

dz
Ib = −jgVb − jβ0Ib, (8.21)

where β0 = ω/u0 is the space-charge wave equivalent phase constant (when neglecting plasma

frequency effects), g = I0β0/ (2V0), Z is the equivalent TL distributed series impedance, and

I (z) is the equivalent TL current. The term Ew = aZI is the longitudinal electric field of

the EM mode propagation in the SWS, affecting the bunching of the e-beam. In addition,

the coefficient a represents a coupling strength that describes how the e-beam couples to the

TL, already introduced in [292, 75, 347] and [293, 291, Chapter 3] and investigated in more

detail in Section 8.9. Also, the term Ep = jIb/ (Aε0ω) is the longitudinal electric field term

arising from the nonuniform charge density that causes the so-called “debunching” [290,

Chapter 10], where A is the e-beam cross sectional area, and ε0 is vacuum permittivity. This

field is responsible of the repulsive forces in a dense beam of charged particles. Therefore,

Ez = Ew+Ep is the total longitudinal z-polarized electric field component in the hot structure

(when also the e-beam is present) that modulates the velocity and bunching of the electrons.

In SWTWTs, the beam-EM wave interaction occurs in the first spatial harmonic (m = 1),

so in this section we drop the subscript harmonic index m for simplicity. The telegrapher’s

equations,

d

dz
V = −ZI, (8.22)

d

dz
I = −Y V − a

d

dz
Ib, (8.23)
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Figure 8.8: (a) Schematic of the equivalent TL coupled to the e-beam used to study the
beam-EM wave interaction in the SWTWT. (b) Equivalent TL circuit showing the per-unit-
length impedance, admittance and current generator is = −a∂zIb that represents the effect
of the e-beam on the TL.

describe the modal propagation in the SWS of the EM mode synchronizing with the e-beam

in terms of equivalent TL voltage V (z) and current I (z) phasors, based on the equivalent

TL model shown in Figure 8.8(b). Figure 8.8(b) shows the distributed per-unit-length series

impedance Z and shunt admittance Y as well as the term is = −a (dIb/dz) that represents an

equivalent distributed current generator [294, 292, 75, 347]. This current generator accounts

for the effect of the beam’s charge wave flowing in the SWS. It is well known that dependent

sources are used to describe gain in transistors and linear amplifiers, which justifies this

approach to model the e-beams effect on the TL. The frequency dependent parameters Z

and Y could be obtained using the cascaded circuit model described in Subsection 8.4.1 as

follows. We evaluate the phase velocity of the cold circuit EM modes vc (ω) = ω/βc (ω),

where βc (ω) =
√
−Z (ω)Y (ω) is the phase propagation constant harmonic of the cold SWS

mode interacting with the e-beam, and the equivalent TL characteristic impedance Zc (ω).

Then, one could obtain the equivalent frequency-dependent distributed series impedance

Z (ω) = jβc (ω)Zc (ω) and shunt admittance Y (ω) = jβc (ω) /Zc (ω).

For convenience, we define a state vector Ψ (z) = [V, I, Vb, Ib]
T (T indicates transpose oper-

ation) that describes the hot mode propagation, and rewrite Equations (8.20), (8.21), (8.22),

and (8.23) in matrix form as
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d

dz
Ψ(z) = −jMΨ(z), (8.24)

M =



0 βcZc 0 0

βc/Zc 0 −ag −aβ0

0 aβcZc β0 ζsc

0 0 g β0


, (8.25)

where M is the 4×4 system matrix. Here, we have used directly the primary TL parameters

βc (ω) and Zc (ω) instead of Z (ω) and Y (ω). In the above system matrix, ζsc is the space-

charge parameter related to the debunching of beam’s charges, and is given by [75]

ζsc =
Rsc

Aε0ω
=

2V0ω
2
q

ωI0u0

, (8.26)

where ωq = Rscωp is the reduced plasma angular frequency, ωp =
√
−ρ0η/ (Aε0) or ωp =√

I0u0/ (2V0Aε0) is the plasma frequency [296], and Rsc is the plasma frequency reduction

factor [304, 297]. The term Rsc accounts for reductions in the magnitude of the axial com-

ponent of the space-charge electric field due to either a finite beam radius or proximity to

the surrounding conducting walls of the e-beam tunnel [300] (details in Section 8.10). As

shown in Section 8.9, the coupling strength coefficient a is found by using the formula

a =

√
ZP,e

Zc

, (8.27)

and it is frequency dependent as shown later on. In summary, all the parameters of the
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presented model are found using cold simulations of the EM mode in the SWSWS to esti-

mate the performance of the hot structure. We emphasize that the calculated characteristic

impedance Zc, regardless of how it is defined, yields meaningful results in our theoretical

model, as long as one uses the effective interaction impedance ZP,e that is calculated from

full-wave eigenmode simulations as described in Section 8.6.

8.9 Coupling Strength Coefficient

The characteristic impedance of a mode guided by a cold waveguide is Zc and by using this

value, matching networks can be designed to terminate the input and output ends of the

TWT. In contrast, in the Pierce model, the characteristic impedance of the equivalent TL

that represents EM synchronization is the interaction impedance ZP. These two dispersive

impedances are related by a frequency-dependent coupling strength coefficient discussed

here. Other works have used this coupling strength coefficient introduced as an ad-hoc

parameter, including [293, 292, 253, 295, 254, 291, 75, 348, 126, 349, 53]. Considering the

modal propagation in the equivalent TL, the z-component of the a.c. electric field induced

on the cold SWS was related to the phenomenological coupling strength coefficient a as

[292, 75]

Ez = −a
dV (z)

dz
. (8.28)

The equivalent voltage on the TL is related to the per-unit length impedance and equiva-

lent current as dV (z) /dz = −ZI (z). For a lossless TL, the per-unit-length impedance is

calculated by Z = jβcZc. Then, we relate the equivalent voltage and current of the TL via

the characteristic impedance by
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dV (z)

dz
= −jβcZcI (z) . (8.29)

Substituting Equation (8.29) in Equation (8.28), we obtain the relation between the axial

electric field of the guided mode and the equivalent current of TL by

Ez = jaβcZcI (z) . (8.30)

Then, the interaction impedance ZP is calculated by Equation (8.17) for the interacting

harmonic (i.e., m = 1). Here, we derive the coupling strength coefficient in terms of Zc

and ZP. By substituting Ez from Equation (8.30) and time-average power along the TL

P = Zc |I (z)|2 /2 in Equation (8.17), the interaction impedance and characteristic impedance

of the SWS are related through the coupling strength coefficient a, as a =
√

ZP/Zc. Using

this relation between the characteristic impedance and the interaction impedance, one can

transform the TL equivalent voltage and current of the state vector and system matrix

in Equation (8.25) to be in terms of scaled state vector quantities V ′ (z) = aV (z) and

I ′ (z) = I (z) /a that maintain the average power definition P = 1
2

˜
S
Re
(
−EyH

∗
x,

)
dxdy =

Re [V I∗] /2 = Re [V ′I ′∗] /2, where ∗ is the complex conjugate operator. By making this

transformation, the system equations are expressed as

d

dz
Ψ′ (z) = jM′Ψ′ (z) , (8.31)

where the transformed state vector is defined as Ψ′ (z) = [V ′, I ′, Vb, Ib]
T and the transformed

system matrix is expressed in terms of interaction impedance rather than characteristic

impedance as
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M′ =



0 a2βcZc 0 0

βc/ (a
2Zc) 0 −g −β0

0 a2βcZc β0 ζsc

0 0 g β0


, (8.32)

or equivalently

M′ =



0 βcZP 0 0

βc/ZP 0 −g −β0

0 βcZP β0 ζsc

0 0 g β0


, (8.33)

where the coupling strength coefficient a is not present explicitly anymore. This alternative

formulation for the TWT matrix is very informative, since the interaction impedance can be

readily found for a realistic SWSWS using full-wave eigenmode simulations, i.e., by perform-

ing a simulation of only one unit cell of the cold SWS. Furthermore, to improve the accuracy

of our calculations, we consider the “effective interaction impedance ZP,e” discussed in Sec-

tion 8.6 by adding the correction factor δe that accounts for the nonuniform cross sectional

distribution of the electric field in the interaction area (see Section 8.7), given by

ZP,e = (1 + δe)
2 ZP. (8.34)

Accordingly, the definition of the coupling strength coefficient becomes a =
√

ZP,e/Zc, also
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reported in Equation (8.27). Consequently, the transformed system matrix of Equation

(8.33) is finally rewritten as

M′ =



0 βcZP,e 0 0

βc/ZP,e 0 −g −β0

0 βcZP,e β0 ζsc

0 0 g β0


. (8.35)

The coupling strength coefficient a has been eliminated through the proposed transforma-

tion, and we can use the effective interaction impedance ZP,e instead of the characteristic

impedance Zc in our derived equations. We can use this alternative definition when dealing

with power since P = Re [V I∗] /2 = Re [V ′I ′∗] /2. One could also use the impedance to

calculate the output power as Pout = |V o|2 / (2Zc) = |V o′|2 / (2ZP,e), where ZP,e = a2Zc and

V o′ = aV o , assuming the TWT is matched to the modal characteristic impedance Zc (see

Subsection 8.10.2).

8.10 Plasma Frequency Reduction Factor

As explained in [350, 304, 351], the finite cross section of the e-beam, along with the sur-

rounding metallic walls of the tunnel will make the scalar electric potential of the e-beam

nonuniform over the beam cross section. Consequently, the plasma frequency of the beam will

be reduced by the plasma frequency reduction factor. The closed-form frequency-dependent

value we use for Rsc is calculated as [351]
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R2
sc = 1− 2I1 (β0rb)

(
K1 (β0rb) +

K0 (β0rc)

I0 (β0rc)
I1 (β0rb)

)
, (8.36)

where, we assume the beam has a cylindrical cross section with radius rb and the beam tunnel

is assumed to be a metallic cylinder with a radius of rc. In addition, In and Kn are modified

Bessel functions of the first and second kind, respectively. Moreover, the analytical method

for calculating the reduced plasma frequency based on 3D PIC simulations is developed in

[352] which can be used for cylindrical-shaped e-beam flowing inside of a cylindrical tunnel.

8.10.1 Characteristic Equation and Electronic Beam Admittance

Assuming a state vector z-dependence of the form Ψ (z) ∝ exp (−jkz), where k is the

complex-valued wavenumber of a hot mode in the interactive system, leads to the eigenvalue

problem kΨ (z) = MΨ (z). The resulting modal dispersion characteristic equation is given

by

D (ω, k) = det (M− kI) = k4 − k3 (2β0) + k2
(
β2
0 − β2

q − β2
c + a2gβcZc

)
+k (2β2

cβ0)− β2
c

(
β2
0 − β2

q

)
= 0,

(8.37)

where βq = ωq/u0 =
√
gζsc is the phase constant of space-charge wave. The solution of

Equation (8.37) leads to four modal complex-valued wavenumbers of the four hot modes in

the interactive system. The characteristic equation is rewritten as follows

(
k2 − β2

c

) [
(k − β0)

2 − β2
q

]
= −a2gk2βcZc, (8.38)
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to stress that the term −a2gβcZck
2 (= −gβcZP,ek

2) indicates the coupling between the

two dispersion equations of the isolated EM waves in the cold SWS (k2 − β2
c ) = 0, and

isolated charge waves
[
(k − β0)

2 − β2
q

]
= 0. Here, only parameters obtained from cold SWS

simulations are used to find the dispersion of the four hot modes. For a given eigenmode,

the e-beam interaction with the EM wave could be completely modeled as an active TL with

a voltage-dependent current source, as shown schematically in Figure 8.8, given by [292]

is = jakIb = −YbV, (8.39)

where the electronic beam admittance per unit length Yb is

Yb = −j a2gk2[
(k − β0)

2 − β2
q

] . (8.40)

This admittance is a generalization of the one already provided in [292] since here we have

included the space charge effect β2
q = gζsc.

8.10.2 TWT Amplifier Gain

We describe the theoretical calculation to compute the gain of a TWT amplifier using the

circuit model illustrated in Figure 8.9, where a matched resistance is considered for the

source generator RS, and the output is terminated by the matched load RL. The SWTWT is

modeled by the system matrixM described earlier, input state vector ofΨ1 =
[
V i, I i, V i

b, I
i
b

]T
calculated at z = 0, and output state vector of Ψ2 = [V o, Io, V o

b , I
o
b]

T calculated at z = Nd,

i.e., at the end of the TWT, where N indicates the number of unit cells. The output state

vector is calculated as Ψ2 = TΨ1, where T = exp (−jMNd) is the TWT transfer matrix.

In the model, we use the following boundary conditions at z = 0 and z = Nd,
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Figure 8.9: Circuit model for gain calculation considering frequency-dependent resistances
for the source and load (RS and RL).


V i
b = 0, I ib = 0

V i + I iRS = VS, V
o − IoRL = 0

(8.41)

In these equations, the source resistance RS and load resistance RL are assumed to be

equal to the frequency-dependent characteristic impedance of the SW Zc, and VS is the

generator voltage source. We solve the system of equations at each frequency and calculate

the equivalent circuit current and voltage (proportional to the electric and magnetic fields)

at the TWT output port. Then, we calculate the output power Pout = |V o|2 / (2RL), and

the available input power Pav = |VS|2 / (8RS) (also denoted as incident power) to obtain the

frequency-dependent gain as G = Pout/Pav.

In order to calculate the gain, we build the linear system AX = B, where the vector

X =
[
V i, I i, V i

b, I
i
b, V

o, Io, V o
b , I

o
b

]T
contains the state vectors at the input and output of the

TWT, and the 8× 8 matrix A is defined as
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A =



[− exp (−jMNd)] [I4]

0 0 1 0

0 0 0 1

1 RS 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 −RL 0 0



, (8.42)

where I4 is the 4 × 4 identity matrix. The input vector of the system is expressed as

B = [0, 0, 0, 0, 0, 0, VS, 0]
T. Then, solving this 8 × 8 system of equations for the vector X

allows us to compute the TWT gain.

8.11 Validation of Model for Hot Structure

In order to investigate the accuracy of the presented model for the interaction, we compare

the theoretically calculated gain versus frequency results from our model with those numer-

ically obtained from the commercial PIC software CST Particle Studio. As explained in

Section 8.6, in our model we consider the effective interaction impedance, which describes

the strength of beam-EM mode interaction in the TWT. In this chapter, the correction factor

δe is calculated by matching the maximum gain value from the theoretical model with the

one obtained by only one PIC simulation that occurs at the synchronization frequency, ZP

is determined from Equation (8.17) by post-processing the data extracted from CST eigen-

mode simulations and vc is calculated by theoretical circuit models, i.e., a cascaded circuit

model.

In this study, synchronization with the first spatial harmonic of the SWS is selected for
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Figure 8.10: Cold results: (a) Dispersion curve and (b) normalized phase velocity of the
modes in the cold SWSWS in the first spatial harmonic. (c) The on-axis interaction
impedance of the serpentine waveguide SWS at the center of the beam tunnel with (solid
blue) and without (dashed green) considering the correction factor δe. (d) The frequency-
dependent value of the coupling strength coefficient a with (solid blue) and without (dashed
green) correction factor δe.

low beam voltage operation. However, for simplicity of notation, we drop the harmonic

index number and we will call the circuit modal wavenumber and phase velocity belonging

to the m = 1 spatial harmonic simply as βc and vc. We consider a SWSWS with the

geometry parameters listed in Table 8.1. The e-beam has I0 = 10 mA and a radius rb =

0.35 mm and we end up with a tunnel filling factor of (rb/rc)
2 = 0.5. For the e-beam, the

normalized phase velocity u0/c is set to be 0.230. This value corresponds to an average

kinetic voltage of V0 = 14.077 kV for the e-beam. Additionally, a uniform longitudinal

magnetic field of 0.8 T was applied to confine the e-beam. The cold dispersion diagram

and beam line are illustrated in Figure 8.10(a) where the beam line with normalized phase

velocity of u0/c = 0.230 is superimposed to the wavenumber of the EM mode, in the SWS

on both left and right of the 3π point. Additionally, the beam line may synchronize with

the EM backward mode near 3π at the intersection frequency which may result in parasitic

oscillations and instability [337, 334]. So, in the design of a long SWTWT, attenuators

can be used to mitigate oscillation risk. However, this issue is not discussed here, and

how the presented model can be adapted to cases with attenuators will be studied in our

future work. The frequency-dependent interaction impedance calculated at the beam center

for the first spatial harmonic by using Equation (8.17) is shown in Figure 8.10(c). In this
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example, the interaction impedance correction factor is considered to be δe = 0.11, which

is a relatively small factor. We show both the calculated interaction impedance without

correction factor ZP (see Equation (8.17)) and effective interaction impedance with correction

factor ZP,e (see Equation (8.19)) in Figure 8.10(c) by using dashed green and solid blue

curves respectively. The on-axis interaction impedance approaches very high values near the

waveguide cutoff frequency at fc = 22.15 GHz and gradually drops as the frequency grows

further away from the cutoff frequency. The frequency-dependent value of the coupling

strength coefficient without considering correction factor, a =
√

ZP/Zc, and with correction

factor, a =
√

ZP,e/Zc = (1 + δe)
√

ZP/Zc, are shown in Figure 8.10(d).

According to the intersection of the cold EM mode phase velocity curve vc and the beam

line in Figure 8.10(b), we observe beam-EM wave full synchronization at 25.73 GHz and

33.52 GHz, where high amplification is expected to occur. The real and imaginary parts of

the complex-valued wavenumber of the hot modes (i.e., accounting for the beam-EM wave

interaction) are calculated by Equation (8.38) and shown in Figures 8.11(a) and (b). The

amplification regime is obtained when there is a hot mode with Im (k) > 0. The numerical

gain versus frequency diagram is theoretically calculated by the method described in Sub-

section 8.10.2 for the serpentine waveguide TWT with N = 40 unit cells (160mm in length)

and input power of Pin = 0 dBm. It is compared with the one obtained by computationally

intensive 3D PIC simulations, resulting in excellent agreement. The comparison also vali-

dated the value of the interaction impedance correction factor δe = 0.11. Since the analysis

is in the linear regime, instead of using N = 40 unit cells, a quick simulation to estimate the

correction factor δe was done based on only N = 10 unit cells. However, as a check we also

verified that we obtained the same value when considering N = 40 unit cells.

The theoretical and PIC simulated gain versus frequency are illustrated in Figure 8.11(c) by

solid pink and dashed blue curves, respectively. The agreement is excellent, indicating the

accuracy of the model. Additionally, as predicted, maximum gains are obtained around syn-
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Figure 8.11: Hot results: The (a) real and (b) imaginary parts of complex-valued wavenum-
bers of hot modes by varying frequency. (c) TWT gain versus frequency predicted by the
proposed theoretical model (solid pink), compared to 3D PIC simulations (dashed blue).

chronization frequencies. The total number of mesh cells in the simulation is approximately

2.6 million and a steady state output signal is seen after a transient time of 10ns elapses. We

use a sinusoidal signal as an excitation signal in the PIC simulation and a frequency sweep is

performed to calculate output power in the selected frequency band. The required time for

simulation and specification of the employed server is provided in Section 8.12. As shown in

Figure 8.11(c), the 3-dB bandwidth is 9.37% covering from 25.21 GHz to 27.65 GHz. Also,

the maximum amplifier gain of 12.27 dB is obtained at 26.04 GHz. We also investigated

another example with a wider e-beam with tunnel filling factor of (rb/rc)
2 = 0.95. In this

case, the correction factor is δe = 0.18. This value is explainable since according to Figure

8.7(c) and (d) we observe bigger values of electric fields near the beam tunnel wall which

leads to stronger beam-EM wave interaction. Note that the purpose of this chapter is not to

design a TWT that can compete with conventional designs, but to showcase a simple and

accurate model to predict TWT performance.
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8.12 Computational Burden and Simulation Time

For PIC simulations, we used a Dell Server PER740XD with 2 processors of Intel(R) Xeon(R)

Gold 6244 central processing unit (CPU) (24.75M Cache, 3.60 GHz) and installed 96 GB

of RAM. Furthermore, the system is equipped with a powerful graphics card, the NVIDIA

Tesla V100 Volta graphics processing unit (GPU) accelerator (with a RAM size of 32GB). In

order to provide the PIC gain results, for the example provided in Figure 8.11(c), the total

number of mesh cells in the simulation is around 2.6 million and a steady state output signal

is obtained after a transient time of 10ns elapses, and we swept the input RF frequency from

23 GHz and 34 GHz with frequency steps of 0.1 GHz. It took around 21 hours to obtain the

PIC gain results over the desired frequency range using such powerful GPU acceleration in

CST Studio Suite. In contrast, once the required primary data for our model (such as the

interaction impedance and correction factor) is obtained with full-wave simulation of just a

unit cell of the cold SWS (which are not very computationally demanding), the theoretical

output gain using our model is calculated in a few seconds. This is done by using the

implemented code of our developed model in Mathwork Matlab R2023a.

8.13 Parameter Study

To validate the presented model, a variety of simulation runs and comparisons have been

carried out. We will apply the same correction factor δe = 0.11 obtained in the previous

section to all the following examples. In fact, the effective interaction impedance and cor-

rection factor δe are identical for all examples, even when changing the e-beam parameters,

number of unit cells and input power in the linear regime. First, we vary u0 to change the

synchronization frequency but leave all other parameters unchanged, which are equal to the

parameters used in Section 8.11. In Figure 8.12(a), we select u0 = 0.228c, which is 0.002c
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Figure 8.12: Comparison of gain versus frequency for a SWTWT calculated using our the-
oretical model and PIC simulations. In the first row, we show gain diagram by varying
e-beam average phase velocity as (a) u0 = 0.228c and (b) u0 = 0.231c. In the second row,
we illustrate gain diagram by varying e-beam average current as (c) I0 = 7 mA and (d)
I0 = 15 mA. The solid curves in these plots show the results obtained via PIC simulation
whereas dashed curves are obtained based on the proposed theoretical model.

slower than the value used in the previous example. In this case, the forward branch of the

modal dispersion diagram is approximately linear in the vicinity of the optimum frequency

(i.e., the phase velocity remains almost constant). Here, the 3-dB bandwidth is 15.87% of the

center frequency covering from 26.27 GHz to 30.70 GHz and the maximum amplifier gain of

10.82dB is predicted at 27.93GHz. Consequently, by establishing optimum synchronization,

we can dramatically increase bandwidth. Next, in Figure 8.12(b) we increase the e-beam

phase velocity to u0 = 0.231c, which leads to synchronization around fsync = 25.5 GHz and

fsync = 34.26 GHz, and calculate the gain. In these two plots, we also illustrate the theoret-

ically calculated gain based on the proposed theoretical method, and we observe excellent

agreement between theoretical (solid curves) and PIC simulation (dashed curves) results. We
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stress that we did not have to recalculate the correction factor δe that was already calculated

in the example in the previous section.

In the next step, the gain diagrams are calculated for the e-beam average currents of I0 =

7 mA and I0 = 15 mA, shown in Figures 8.12(c) and (d). All the other parameters are as

described in the previous section. The maximum gain in both cases occurs approximately at

the same frequency since the e-beam phase velocity is equal in both examples. On the other

hand, the maximum gain for the current value of I0 = 15 mA is much bigger than the gain

value for I0 = 7mA. Hence, it is critical to choose the proper value for the e-beam current to

avoid saturation. The solid curves obtained based on the proposed theoretical model show

good agreement with the dashed curves calculated using PIC simulation. It is important to

note that the correction factor δe = 0.11 that was calculated in the previous section did not

need to be adjusted or recalculated.

Our next step is to demonstrate how selecting the number of unit cells affects the gain

and how this gain can be calculated accurately by the proposed model, still retaining the

same correction factor δe = 0.11 that was already calculated in the example in the previous

section. The gain diagrams by varying the number of unit cells as N = 30 and N = 50

are calculated and shown in Figures 8.13(a) and (b). In both cases, the e-beam has the

same phase velocity, so maximum gain occurs roughly at the same frequency. The solid

curves calculated by the theoretical model show excellent agreement with the dashed curves

obtained by numerically intensive PIC simulations. Increasing the number of interaction

unit cells too much will eventually result in undesirable oscillations when the small-signal

gain becomes too high (e.g. above the practical limit of 30 dB for a single-stage TWT).

Therefore, it is critical to consider the proper number of unit cells to prevent oscillations.

As a result of using the longer device for higher gain extraction, we should use sever in the

design which will be investigated in detail in our future work.

Next, we show the effect of input power variation on the gain diagram, but still retaining the
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Figure 8.13: Comparison of gain versus frequency for a SWTWT calculated using our the-
oretical model and PIC simulations. In the first row, we show gain diagram by varying
number of unit cells as (a) N = 30 and (b) N = 50. In the second row, we illustrate gain
diagram by varying input power as (c) Pin = 5 dBm and (d) Pin = 15 dBm. The solid
curves in these plots show the results obtained via PIC simulation whereas dashed curves
are obtained based on the proposed theoretical model.

same correction factor δe = 0.11 that was already calculated in the example in the previous

section. Since our method is based on small-signal approximation, we neglected the effect

of nonlinear terms in our model. We provide two different examples with Pin = 5 dBm

and Pin = 15 dBm and the calculated results are presented in Figures 8.13(c) and (d).

In comparison to the dashed curves obtained by PIC simulations, the theoretical results

represented by solid curves exhibit good agreement.

As a last analysis, we calculate the gain at the synchronization frequency of fsync = 26 GHz

by assuming the parameters used in Section 8.11. The gain diagram by varying the e-beam

average current is shown in Figure 8.14(a). In this plot, the theoretical gain is shown by a

solid curve and the cross sign shows the corresponding simulation gain obtained from PIC
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Figure 8.14: Comparison of gain versus frequency for a SWTWT calculated using our devel-
oped theoretical model (solid curves) and PIC simulations (dashed curves). In these plots,
we change (a) e-beam average current, (b) number of unit cells, and (c) input power to show
the accuracy of our theoretical calculation in the linear regime.

simulation at sampled currents. When the e-beam current is increased, saturation occurs,

so designers should choose the proper current value carefully. The analogous analysis is

provided by varying the number of unit cells and the calculated gain at the synchronization

frequency by both theoretical and PIC simulation is shown in Figure 8.14(b). The simulation

results confirm the calculated gain value when the number of unit cells is lower than 90

elements. It is significant to note that we did not use sever in the design of TWTs and

all the simulations are provided for single-stage TWT. Finally, Figure 8.14(c) shows the

linear and saturation regions of the TWT by varying the incident RF power at the TWT

input port (at the cathode end). The analysis shows that by increasing the input power,

we move into a nonlinear regime, where the calculated gain by using the theoretical model

and PIC simulation disagree by more than 3 dB. In the large signal regime, the calculated

results based on linear approximation will not reliably reproduce the TWT behavior near

saturation. Our developed model is reliable for the small-signal regime and accurate results

in the large-signal regime should be calculated using other specialized large-signal codes or

PIC simulations. Again, it should be noted that the correction factor value in these plots

has not changed from previous examples.
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8.14 Conclusions

We have presented an extended analytical model for studying beam-EM wave interaction

in a SWTWT that considers space-charge effects and dispersive waveguide parameters to

predict gain in TWT amplifiers. Our goal is not to present a novel design method but rather

to construct an accurate and robust small-signal model to predict TWT performance that

could also be used for design. The method is simple because it uses an equivalent circuit

model to calculate the SWS cold (i) modal wavenumber, (ii) characteristic impedance, and

(iii) the interaction impedance, which are all frequency dependent. We added a frequency-

independent correction factor δe to the interaction impedance, to model the nonuniform

beam-EM wave interaction in the overlapping region of the e-beam and SWS longitudi-

nal electric field. A theoretical method is used to predict the gain versus frequency and

complex-valued wavenumber of the hot modes, and the results are compared with numer-

ically intensive PIC simulations. The proposed method has been found always in good

agreement with PIC simulations and much faster and flexible. For example, the flexibility

of our method has been shown by changing the e-beam parameters, number of unit cells,

and input power and by comparing the theoretical gain results with numerical gain results

based on PIC simulations. The results consistently showed that our model is accurate and

efficient at predicting SWTWT amplification characteristics.
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Chapter 9

Small-Signal 1D Model of Multi-Stage

Serpentine Waveguide Traveling Wave

Tubes With Severs

We present a model for calculating the small-signal gain of a multi-stage SWTWT with one

or more severs. To mitigate the occurrence of self oscillations, the TWT stages are separated

by a sever to stop RF wave propagation while the modulated e-beam is free to pass and is

modeled by the electrons’ motion equations. Our small-signal model is an advancement of

the Pierce model, assuming 1D electron flow along a SWS, accounting for SWS dispersion,

the space-charge effect, and a frequency dependent coupling strength coefficient relating the

characteristic impedance to the interaction impedance. We compute the theoretical gain

versus frequency for the multi-stage TWT and compare our results with PIC simulations.

The good agreement demonstrates the accuracy of our analytical model for the multi-stage

SWTWT with one or more severs. Here, we focus on showing the performance of our model

as an effective tool for designers rather than proposing an optimal design strategy.
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9.1 Background, Motivation, and State of the Art

In the design of high-gain and high-power TWT amplifiers, stability is critical. Reflections at

discontinuities in the TWT often are a source of instability, and can be mitigated by optimiz-

ing the beam tunnel radius, SWS dimensions, and terminations at the input and output RF

ports of the TWT. However, these considerations are not always sufficient to prevent oscil-

lations in high-gain single-stage TWTs. A common strategy for ensuring stability when the

gain is high is to design TWTs with multiple stages. Typically, these stages are electrically

isolated by attenuators (the region separating the TWT stages) to eliminate regenerative

oscillations caused by mismatches in the RF circuit [46, 354], as illustrated in Figure 9.1(a).

The amplitude of the growing forward EM wave decays abruptly at the sever location and

its power decreases to zero with minimal reflections while the velocity-modulated electrons

are free to pass. The EM wave resumes growing after the sever, due to the interaction with

the velocity-modulated electrons in the e-beam. The presence of the sever does not degrade

TWT’s performance significantly; instead, it helps to stabilize TWTs while keeping gain at

a sufficiently high level.

Typically the gain of commercial TWTs is approximately 20 dB to 50 dB in most applica-

tions. However, a typical rule-of-thumb for TWT design is to have a gain of no more than

20 dB per stage to avoid oscillations and issues with nonlinear behavior [46, Chapter 12]. It

is therefore necessary to divide the TWT into stages separated by severs in order to achieve

a higher gain. The design of sever is often not straightforward, but a sever can still be de-

signed inefficiently by brute-force parameter optimization in full-wave PIC simulations. To

design and implement a sever in realistic TWTs, various methods have been developed. In

[355], a MEMS compatible distributed loss type sever design was reported for a double vane

staggered TWT amplifier. The same method was implemented in [356] for a W-band TWT

using carburized porous beryllium oxide as an attenuator material, which has a high loss tan-

gent. Alternatively, metamaterial absorbers have been proposed to absorb EM waves at the
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Figure 9.1: (a) Schematic of the multi-stage TWT and the interaction zone based on a
SWSWS with RF input and output and an ideal sever embedded in the middle. (b) Circuit
model used for gain calculation in the two-stage TWT.

sever terminations of TWTs [357, 358]. Most commonly, SWTWTs employ a wedge-shaped

lossy dielectric (inside the straight rectangular waveguide or horseshoe-shaped waveguide)

to absorb the wave by gradually filling the waveguide with a lossy dielectric along its length

to minimize reflections [359, 360, 361, 362, 363].

In early works, Pierce analyzed TWTs with an ideal severed helix with a zero-length sever

using 3-wave theory in [2, Section 9.6]. He also analyzed the actual severed helix with drift

space using only two modes in the drift region in [2, Section 9.7]. In more recent studies,

Chernin et al. considered a sever model in their developed 1D large-signal model of SWTWT

[322], Yan et al. implemented a simple sever model in their constructed 3D large-signal model

[326] and Zhang et al. developed the large-signal beam-wave interaction model using active

matrix and used e-beam motion equation in the sever gap (drift region) [328].

In this chapter, we propose a simple and computationally efficient method for modeling multi-

stage TWTs. The described model is an extension of the Pierce theory in [285, 2, 286] that

considers the dispersive characteristics of a SWSWS and the space charge effect. The original

Pierce model was developed for helix TWT with continuous beam–EM wave interaction

whereas our model is developed for folded waveguide TWT with discrete interaction at

interaction gaps. As a result, unlike the original model where interaction impedance is
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considered as used impedance, we use a small coupling coefficient to relate the characteristic

impedance of the SWS to the interaction impedance, as in [353, 364]. The model also

considers variations in the nonuniform electric field distribution in the interaction gap (Ez)

over the beam cross section as explained in [353]. We highlight that the proposed model

is easy to use due to its transfer matrix description and due to the way the TWT gain is

evaluated under the boundary conditions illustrated in Figure 9.1. We briefly explain the

primary model for SWTWT according to [353]; next, we present the proposed equivalent

model for the sever by considering the length of the drift region and integrate it into the

primary TWTmodel. A detailed analysis of the different examples is presented in subsequent

sections, as well as a comparison of our model with PIC simulation results. We show that

the calculated results (i.e., gain versus frequency and gain versus position) based on our

theoretical model are in agreement with PIC simulations and reveal that: (i) the sever

model by considering the variation of electric field distribution over the beam cross section

shown in this chapter is accurate; (ii) the presented model is an effective tool for designing

high-gain multi-stage TWTs with severs. The use of the model allows engineers to design

practical multi-stage TWTs with high gain without dealing with high computation burden of

PIC simulations. However, this chapter focuses on showing the performance of our developed

model rather than proposing a design strategy for severs or specific high-gain TWT designs.

9.2 E-beam and EM Wave Interaction

We summarize the foundation of the model used in this chapter that has been detailed in

[353]. It is based on the linearized and non-relativistic equations for the small-signal regime

that describe the four modes that result from the interaction of the e-beam, assuming 1D

electron flow along an SWS, and the EM waves in a TWT system, as originally presented by

Pierce [285, 2, 286]. The e-beam has an average current I0, and an average kinetic dc voltage
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V0, which is related to the average axial velocity of electrons in the beam u0. The relation

between the electron velocity and the kinetic voltage is V0 ≈ u2
0/ (2η) in our model (valid for

non-relativistic electron velocities), where η = e/m = 1.758820 × 1011 C/Kg is the charge-

to-mass ratio of the electron with charge −e and rest mass m. The EM wave supported

by the SWS is represented using an equivalent voltage V and current I in an equivalent

TL as defined in [353]. We define a state vector in the phasor domain at z = (n− 1) d,

as Ψn = [Vn, In, Vb,n, Ib,n]
T (T indicates transpose operation), which describes the small

signal in the interactive zone of the TWT where the EM waves and e-beam interact. The

elements of the state vector are defined in each unit cell at the location indicated by the

yellow asterisk in Figure 9.1(a). The quantities Vn and In are the TL equivalent voltage

and current, whereas Vb,n and Ib,n are the equivalent kinetic voltage and the current of the

modulated e-beam, respectively. All quantities are assumed to be monochromatic and defined

in [353]. The longitudinal propagation of the state vector across a unit cell is described by

Ψn+1 = TUCΨn, where Ψn and Ψn+1 are the state vectors at the input and output of the

n-th unit cell (n = 1, . . . , N), TUC = exp (−jMd) is the unit cell transfer matrix, d is the

unit cell period, and M is the TWT system matrix. According to the model we presented

in [75] for the helix TWTs and then developed in [353] for the SWTWTs, the TWT system

matrix is given by

M =



0 βcZc 0 0

βc/Zc 0 −ag −aβ0

0 aβcZc β0 ζsc

0 0 g β0


. (9.1)
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Here, βc is the phase propagation constant of the EM mode in the cold SWS, Zc is the

frequency-dependent characteristic impedance of the SWS, g = I0β0/ (2V0), and β0 = ω/u0

is the phase constant of the space-charge wave (when neglecting plasma frequency effects)

[353]. Also, ζsc is a space-charge parameter accounting of the debunching of beam’s charges

and is given by ζsc = Rsc/ (Aε0ω) =
(
2V0ω

2
q

)
/ (ωI0u0), where A is the e-beam cross sectional

area, ε0 is vacuum permittivity, ωq = Rscωp is the reduced plasma angular frequency, ωp =√
I0u0/ (2V0Aε0) is the plasma frequency, and Rsc is the plasma frequency reduction factor

[304, 297]. The term a is the frequency-dependent coupling strength coefficient which shows

the strength of the interaction between the e-beam and the EM wave, and it found by

the ratio of the effective interaction (Pierce) impedance and characteristic impedance, a =√
ZP,e/Zc [353]. Here, ZP,e = (1 + δe)

2 ZP is the effective interaction impedance calculated

by adding the constant correction factor δe which is considered to account for the nonuniform

transverse distribution of the electric field over the cross section of the e-beam and ZP is the

interaction impedance calculated at the center of the beam tunnel, as explained in [353]. For

simplicity, in this chapter we assume a constant value for the correction factor δe evaluated

at the synchronization frequency; more information regarding this assumption is in Section

9.3.

9.3 Constant Correction Factor

In most practical applications, accurate prediction of gain near the synchronization frequency

is critical. Furthermore, we assume a 1D e-beam for simplicity, which is a reasonable as-

sumption. Figure (9.2) shows the z-component of the modal electric field at z = 0 mm,

and y = 0, of the cold SWS. It demonstrates that the electric-field distribution is similar

but not the same at three different frequencies. To increase our prediction accuracy at non-

synchronization frequencies, we could consider a frequency-dependent correction factor δe,

265



that however would make our model more complicated. In this chapter we hence assumed

a frequency-independent correction factor δe because it provides already a good degree of

accuracy, especially at the synchronization frequency at which the correction factor was

evaluated.

9.4 Multi-Stage Amplifier With Ideal Sever

Severs consist of lossy materials that gradually dissipate RF power over their length, but we

will demonstrate that realistic terminations for severs in the SWTWT (with lossy dielectric

wedges or other means) are often not required for accurate PIC simulations, provided that

they can attenuate reflected waves to very small levels. The structure of the ideal sever in two-

stage TWTs, embedded between the two stages of the SWTWT, is shown in Figure 9.1(a).

The ideal sever is modeled in the following way: (i) first, the bending waveguide is removed

at the sever position, and the two straight waveguides are lengthened outward, (ii) then

the matched boundary condition is applied to the end of straight waveguides so that both

forward and backward EM waves are perfectly absorbed with no reflections [365, 366, 317].

We propose a circuit model for calculating the gain of the SWTWT that is divided into

two stages as shown in Figure 9.1(b), where Nid is the i-th stage length (i = 1, 2 for the

bunching and amplification stages, respectively), with Ni the number of unit cells in the i-th

stage, and dg is the sever gap length (i.e., drift length) where only space-charge waves can

propagate. We use the input and output state vectors of the two stages as below
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Ψ
i/o
s1 =



V
i/o
1

I
i/o
1

V
i/o
b1

I
i/o
b1


, Ψ

i/o
s2 =



V
i/o
2

I
i/o
2

V
i/o
b2

I
i/o
b2


. (9.2)

Here,Ψi
s1is the state vector at the input of stage 1, calculated at z = 0,Ψo

s1 is the output state

vector of stage 1 calculated at z = N1d, Ψ
i
s2 is the input state vector of stage 2 calculated

at z = N1d+ dg, Ψ
o
s2 is the output state vector of stage 2 calculated at z = N1d+ dg +N2d,

i.e., at the end of the SWTWT. Each homogeneous TWT stage is modeled by the transfer

matrix Ti = exp (−jMiNid), where Mi is the TWT system matrix for the corresponding

stage that is shown in Equation (9.1). Therefore, in reference to Figure 9.1(b), one has

Ψo
s1 = T1Ψ

i
s1, Ψ

o
s2 = T2Ψ

i
s2. (9.3)

The following equations describe the boundary conditions at the input (cathode end) and

output (collector end) ports of the TWTs

V i
b1 = 0, I ib1 = 0, (9.4a)

V i
1 + I i1RS = VS, V

o
2 − Io2RL = 0. (9.4b)

In the boundary condition equations, the source resistance RS and load resistance RL are

assumed to be equal to the frequency-dependent characteristic impedance of the SW for
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TE10 Zc and VS is the generator voltage source. The sever effect is taken into account by

the equations

V o
1 = RTI

o
1 , V

i
2 = −RTI

i
2, (9.5a)


V i
b2

I ib2

 = Tg


V o
b1

Iob1

 , (9.5b)

where the matched termination load RT is equal to the frequency-dependent characteristic

impedance of the SW for TE10 Zc. Furthermore, Tg = exp
(
−jMgdg

)
is the 2× 2 transfer

matrix for modeling the e-beam’s equivalent ac voltage and current through the drift region

in the sever gap, where Mg is the gap matrix derived from the e-beam equations without

coupling with the guided EM field (i.e., a = 0),

Mg =


β0 ζsc

g β0

 . (9.6)

Finally, we solve the equations, at each frequency of interest, and calculate the output current

and voltage of the second stage in the circuit model (Io2 and V o
2 ). We calculate the output RF

power Pout = |V o
2 |

2 / (2RL), and the available input RF power Pav = |VS|2 / (8RS), to obtain

the frequency-dependent transducer power gain, G = Pout/Pav, of the two-stage SWTWT.

Note that when the input and output load impedances are not matched to the characteristic

impedance of the SWS, the resulting gain ripple is cached by the generalized Pierce model,

as demonstrated in [364] for a helix-based TWT. A detailed explanation of how the gain is

computed is provided in Section 9.5.

268



9.5 Two-Stage Gain Calculation

The vector that contains the voltage and current values at the input and output of the first

stage is found by solving the equation A1X1 = B1, where the vectors and matrices are given

by

A1 =



[−T1]
[
I4×4

]

[
02×2

] [
I2×2

]

[CS]
[
02×2

]

[
02×2

] [
02×2

]

[CT1]
[
02×2

]



, (9.7a)

CS =


1 RS

0 0

 , (9.7b)

CT1 =


0 0

1 −RT

 , (9.7c)

X1 =


Ψi

s1

Ψo
s1

 , (9.7d)
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Figure 9.2: z-component of electric field at z = 0 mm cross-section and y = 0 curve of cold
SWS for three different frequencies. It shows that field distribution is a function of frequency
and δe vary by frequency.

B1 = [0, 0, 0, 0, 0, 0, VS, 0]
T . (9.7e)

Here, Im×m is m×m identity matrix and 0m×m is m×m zero matrix. Then. the quantities

V i
b2 and I ib2 are found by multiplying the output ac beam voltage and current of the first

stage (V o
b1 and Iob1 obtained from vector X1) by the sever gap transfer matrix Ψi

s2 = AgΨ
o
s1,

where

Ag =



[
02×2

] [
02×2

]

[
02×2

] [
Tg

]


. (9.8)

We assume no TL voltage and current signals are transmitted from the output of the first

stage to the input of the second stage (the EM waves in each stage are perfectly isolated

from each other). Next, we solve another linear system to find the vector which contains the
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input and output state vectors of the second stage, A2X2 = B2, where

A2 =



[−T2]
[
I4×4

]

[
02×2

] [
I2×2

]

[CT2]
[
02×2

]

[
02×2

] [
02×2

]

[CL]
[
02×2

]



, (9.9a)

CT2 =


1 RT

0 0

 , (9.9b)

CL =


0 0

1 −RL

 , (9.9c)

X2 =


Ψi

s2

Ψo
s2

 , (9.9d)

B2 =
[
0, 0, 0, 0, V i

b2, I
i
b2, 0, 0

]T
. (9.9e)

One can solve for X2 and calculate the output power by using V o
2 and Io2 .
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Figure 9.3: Results for the multi-stage SWTWTs. (a) Normalized phase velocity of the EM
mode in the cold SWS, in the first spatial harmonic, with beam line (dashed gray for the two-
stage, and dashed pink for the three-stage). The orange curve indicates the result obtained
from the theoretical equivalent circuit model, while the blue crosses indicate the full-wave
eigenmode solver result. Gain results: theoretical (solid green) and PIC simulation (red
dots) TWT gains versus frequency for (b) two-stage and (c) three-stage TWTs, accounting
for the presence of one or two ideal severs, respectively.

9.5.1 Examples of Ideal Sever for Two-Stage and Three-Stage

TWTs

As a first example, we use the unit cell geometry and dimensions for the lossless SWSWS

from [353]. The e-beam has a dc current of I0 = 10 mA and radius of rb = 0.35 mm. The

beam tunnel has a radius of rc = 0.5mm corresponds to filling factor of (rb/rc)
2 ≃ 0.5. The

normalized dc electron velocity is set to be u0/c = 0.230, where c is the light speed. The

selected phase velocity value corresponds to an average kinetic voltage of V0 = 13.52 kV for

the e-beam. Also, we use an RF input power of Pin = 0dBm and a uniform on-axis magnetic

field with an amplitude of B = 0.4 T to confine the e-beam. The on-axis magnetic flux

density field used in PIC simulations to focus the beam is much larger than the Brillouin

limit [290, Chapter 3][367, Chapter 7][354, Chapter 7][368, Chapter 1] that, for our specific

example, is BBr = 0.022 T (the Brillouin limit is the minimum magnetic field required to

counter the space-charge expansion forces and confine the electron beam [308, Chapter 9]).

It is important that the sever be placed somewhere along the length of the TWT so that the
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interaction between the e-beam and EM wave has begun to amplify a growing wave before

reaching the sever; this can be verified by monitoring the growth of the state vector along

the length of the TWT. However, the sever position should not be very distant from the

electron emission location either as this could result in a considerable reduction in gain at

the sever that cannot be compensated for in the remainder of the tube length (i.e., the wave

cannot grow to a higher power with distance after the sever before being extracted at the

output port). Furthermore, the amount of e-beam debunching that occurs in the drift region

depends on the intensity of the beam bunching produced in the first stage and the dc current

of the e-beam. As the stronger beam bunching forms before the sever, the more velocity

spread occurs in the bunches, leading to reduced gain. Therefore, the bunching stage gain

should be relatively small to achieve optimum performance. However, our objective is not

to find the most efficient design approach for the sever or optimal TWT performance, but

rather to show an effective and simple model for multi-stage TWTs. We assume the TWT

has Ntotal = N1 +N2 = 80 unit cells with N1 = 30 unit cells in the bunching stage (stage 1

in Figure 9.1(a)) and N2 = 50 unit cells in the amplification stage (stage 2 in Figure 9.1(a)),

isolated from each other by a sever with the drift length of dg = d/2.

The phase velocity of the EM mode in the cold SWS calculated by using the theoretical

equivalent circuit model (orange) from [353, Section III] and the CST eigenmode solver

(blue crosses), in addition to the beam line (horizontal dashed gray), are illustrated in Fig-

ure 9.3(a). According to the intersection of the phase velocity of the EM mode in the

cold SWS and beam line in Figure 9.3(a), we observe the beam-EM wave full synchro-

nization at 25.73 GHz and 33.52 GHz, and the greatest amplification is expected to occur

around these two frequencies where the beam and guided mode phase velocities intersect.

The frequency-dependent interaction impedance ZP and the effective interaction impedance

ZP,e = (1 + δe)
2 ZP for the first spatial harmonic in the SWS are calculated in [353, Section

V] (see Figure 8(c) of [353]). The calculated values lead to the correction factor δe = 0.11 to

be used in the TWT model. Also, the frequency-dependent characteristic impedance Zc is
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evaluated using both the theoretical and full-wave eigenmode solver in [353, Sections III and

IV] (see Figure 4(c) of [353]). Then, the frequency-dependent value of the coupling strength

coefficient a to be used in Equation (9.1) is obtained as a =
√
ZP,e/Zc (see Figure 8(d) of

[353]).

Both the theoretical gain using our model and the PIC-simulated gain, are plotted versus

frequency in Figure 9.3(b) by solid green curve and red dots, respectively. There is good

agreement between the theoretical and PIC simulated gains, especially near the synchro-

nization frequency, indicating that the sever model is accurate over the frequency range of

interest. Also, we provide a comparison with the Pierce’s 3-wave theory in Section 9.6. We

use CST Particle Studio 2019 for the PIC simulation where for this example it uses approx-

imately 6.5 million mesh cells and a steady state output is seen after a transient time of 9 ns

elapses. The PIC simulation gain results (red dots) are obtained in the frequency range of

23GHz to 34GHz with a frequency step of 0.2GHz. The maximum gains are obtained at the

mentioned synchronization frequencies, as expected. As shown in Figure 9.3(b), the 3-dB

bandwidth is 5.76% of the center frequency, covering the range from 25.31GHz to 26.83GHz.

The maximum amplifier gain of 25.76 dB is obtained at 25.90 GHz. It should be noted that

in this example, we were not concerned with implementing the most efficient TWT with the

highest gain or bandwidth; instead, we wanted to evaluate the proposed theoretical model

accounting for sever in a two-stage TWT.

Next, we analyze another example with three stages and two severs, with N1 = N2 = 25

unit cells in the first two stages and N3 = 65 unit cells in the last stage to enhance the gain.

In both severs, the drift length is dg = d/2. In a three-stage TWT, the placement of the

severs also has a significant impact on the peak gain value and uniformity of gain over the

operational frequency band. It should be noted that several other papers have used more

than two stages in their structure, such as [361, 369]. We assume a dc beam current of

I0 = 15mA, while the e-beam and tunnel radii are the same as in the previous example. The
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normalized e-beam velocity is u0/c = 0.228 (horizontal dashed pink line in Figure 9.3(a))

corresponding to an average kinetic voltage of V0 = 13.28 kV and we assume the input RF

power is Pin = 0 dBm. Additionally, the magnetic field we use here is the same as in the

two-stage example, which is much larger than the Brillouin limit BBr. The PIC simulation

gain results are obtained in the frequency range of 23GHz to 34GHz with a frequency step of

0.2GHz. The calculated gain versus frequency for a three-stage SWTWT with more than 8.5

million mesh cells, after a transient time of 10ns in PIC simulation, is shown in Figure 9.3(c).

The maximum gain is approximately 40 dB at the synchronization frequency of 27.32 GHz.

The good agreement between PIC simulation (red dots) and theoretical (solid green) gain

results, particularly near the synchronization frequency, shows the reliability of the model for

the three-stage TWT design. Additionally, the maximum gain value and flatness of the gain

diagram can be controlled by selecting the proper e-beam current and voltage; however, this

study is intended to showcase a tool for modeling multi-stage TWTs, rather than designing

an amplifier with given specifications.

9.6 Comparison With Pierce 3-Wave Model

We compare our developed model with the Pierce 3-wave model for both single-stage and

two-stage TWTs. The following derivation is based on the equations in [1, Section 8.5] and

our original model [353]. The 4-wave dispersion equation shown in [353] is

(
k2 − β2

c

) [
(k − β0)

2 − β2
q

]
= −gk2βcZP, (9.10)

where βq = ωq/u0 = (gζsc)
1/2 is the phase constant of the space-charge wave. It is a

fourth-degree polynomial with four complex roots kn (n = 1, . . . , 4) that are the four “hot”

propagation wavenumbers as a function of frequency and other parameters of the system.
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The total field in the TWT is a superposition of the four eigenwaves determined by these

roots. Also, Pierce defined the dimensionless parameter CP and called it the gain parameter

[2, Chapter 2][1, Section 8.5.4],

C3
P =

I0ZP

4V0

. (9.11)

By using Pierce gain parameter, we rewrite the dispersion equation as

(
k2 − β2

c

) (
(k − β0)

2 − β2
q

)
= −2C3

Pk
2βcβ0. (9.12)

Typically, one hot wave has negative Re(k), associated to the cold wavenumber of the back-

ward wave k ≈ −βc, and it does not affect the transfer of energy from the e-beam to the EM

wave. Near synchronization, βc is close to β0, and the transfer of energy happens for k close

βc. Therefore, we approximate k2 − β2
c ≈ 2βc (k − βc), and we obtain the 3-wave dispersion

equation:

(k − βc)
(
(k − β0)

2 − β2
q

)
= −C3

Pβ
2
cβ0, (9.13)

that is reduced to a third-degree equation. A reflected wave (i.e., the backward wave with

negative Re(k)) is in fact ignored in this approximation.

Further, we use the following dimensionless parameters introduced by Pierce [2][1, Section

8.5.5]. The parameter of nonsynchronism is expressed as

b =
βc − β0

β0CP

=
u0 − vc
vcCP

, (9.14)

and the space-charge parameter Q is given by [2, Chapter 7][290, Chapter 10]
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Q =
ω2
q

4C3
Pω

2
. (9.15)

For simplicity in later calculations, we define parameter q as [1, Section 8.5.5]

q = 4QCP =
ω2
q

ω2C2
P

=
R2

scω
2
p

ω2C2
P

=
β2
q

β2
0C

2
P

. (9.16)

Then, analogously to what was done in [2][290, Chapter 10][1, Section 8.5.5], we define the

incremental propagation constant

δn = −ikn − β0

β0CP

, n = 1, 2, 3. (9.17)

Finally, by following the descriptions in [1, Section 8.5.5], a general solutions of the field,

charge wave current, and charge velocity in the TWT based on the three hot eigenmodes are

E (z) =
3∑

k=1

AkEk (z) ,

ib (z) =
3∑

k=1

Akib,k (z) = i
I0

2V0β0C2
P

3∑
k=1

1

δ2k + q
AkEk (z) , (9.18a)

ub (z) =
3∑

k=1

Akub,k (z) =
η

u0β0CP

3∑
k=1

δk
δ2k + q

AkEk (z) . (9.18b)

Here, A1, A2, and A3 are coefficients which are found from boundary conditions, and

Ek (z) = E e−ikkz = E e−iβ0zeβ0CPδkz are the longitudinal electric field components of the

three eigenmodes, all assumed to have a magnitude of E = 1 V/m. Using the Cramer rule,
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we find the following complex coefficients for the electric field [1, Section 8.5.5]

Ak =
δ2k+q

(δk−δl)(δk−δm)
{E (z = 0)

+2β0CPV0

[
ub(z=0)

u0
(δl + δm)− iCP

ib(z=0)
I0

(δlδm − q)
]}

,

(9.19)

where E (z = 0) is the longitudinal component of the total electric field at the input of TWT.

However, if the charge velocity and beam current modulation at the input are absent (i.e.,

ub (z = 0) = ib (z = 0) = 0), we have [1, Section 8.5.5]

Ak =
δ2k + q

(δk − δl) (δk − δm)
E (z = 0) , (9.20)

where l and m equal 1, 2, 3 and l ̸= m ̸= k. The voltage gain is calculated by

GE =
E (z = Nd)

E (z = 0)
=

1

E (z = 0)

3∑
k=1

AkEk (z = Nd) = e−iβ0Nd

3∑
k=1

δ2k + q

(δk − δl) (δk − δm)
eδkβ0CPNd,

(9.21)

where Nd is the stage length. Finally, the power gain is calculated by

G = 10 log |GE|2 = 20 log

∣∣∣∣∣
3∑

k=1

δ2k + q

(δk − δl) (δk − δm)
eδkβ0CPNd

∣∣∣∣∣ dB. (9.22)

Now, we consider a SWSWS with the geometry parameters already mentioned and compare

two versions of the 3-wave model with our model and PIC simulations. The e-beam has

I0 = 10 mA and a radius rb = 0.35 mm. For the e-beam, the normalized phase velocity is

set to be u0/c = 0.230, which corresponds to an average kinetic voltage of V0 = 14.077kV.

Additionally, a uniform longitudinal magnetic field of 0.8 T was applied to confine the
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Figure 9.4: Gain versus frequency for a single-stage TWT predicted by our theoretical model
(solid pink), compared with 3D PIC simulations (dotted blue). Also, this plot shows the
results using the Pierce 3-wave model with (dashed green) and without (dashed dark red)
correction factor δe.

e-beam. The numerical gain versus frequency diagram is theoretically calculated for the

single-stage SWTWT with N = 40 unit cells (Nd = 160 mm in length) and input power of

Pin = 0dBm. The gain using the theoretical (our model) and PIC simulations is illustrated in

Figure 9.4 by solid pink and dashed blue curves, respectively. Also, the gain results using the

described Pierce 3-wave model with (dashed green) and without (dashed dark red) correction

factor δe (described in this chapter and in [353]) are shown in the same plot. We use the

coefficients given in Equation (9.20) to calculate the solutions. The calculated results show

good agreement between our developed model and the 3-wave model when considering the

correction factor δe. This plot clearly shows the importance of our proposed correction factor

which is considered to account for the nonuniform transverse distribution of the electric field

over the e-beam cross section.

In the next step, we provide a comparison for the two-stage TWT shown in Section 9.4.

To calculate the output results, we must obtain the required e-beam parameters before the

server gap (i.e., ub (z = N1d) and ib (z = N1d)), as we did for the single stage examples.

Then, using Equation (9.19), we substitute such e-beam parameters (obtained at the end

of the first stage) as initial values for the modulated e-beam at the beginning of the second

stage. Also, at the beginning of the second stage, in the 3-wave model the longitudinal
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Figure 9.5: Gain versus frequency for the two-stage TWT with ideal sever predicted by
our theoretical model (solid pink), compared to the results using Pierce 3-wave model with
correction factor δe, with space-charge effect [1, Chapter 8] (dashed green) and without
space-charge effect [2, Chapter 9] (dashed blue).

component of the electric field is set to zero in Equation (9.19), due to the termination

caused by the sever [2, Chapter 9]. The theoretical gain versus frequency using our model

is illustrated in Figure 9.5 in solid pink. Then, we calculate the gain versus frequency by

using the described Pierce 3-wave model with correction factor δe. The results are shown in

dashed green when we consider the space-charge effect as in the earlier formulas, following [1,

Chapter 8]. The result is not in good agreement with our model (which is in agreement with

PIC simulations, see Figure 9.3(b)). We also calculated the gain results using the 3-wave

theory without considering the space-charge effect, i.e. q = 0, as was done in the original

Pierce model [2, Chapter 9]. The calculated result is shown in dashed blue in Figure 9.5.

Interestingly, in the case of the two-stage TWT, the results of Pierce’s three-wave theory

agree better with our model when the space charge parameter is neglected.
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9.7 Two-Stage TWTWith Realistic Sever UsingWedge-

Shaped Absorbers

In order to demonstrate the effectiveness of the proposed model, a third example is provided

here with a two-stage TWT. The differences with respect to the previous case are that the

second stage is longer and the beam current is higher than in the previous case, and the sever

is made of a long waveguide with a wedge-shaped absorber. In previous research such as

[370], a design strategy for a wedge-shaped absorber in multi-stage SWTWTs with a three-

dimensional structure was shown. Here, we implement a realistic design based on a wedge-

shaped lossy dielectric embedded in a rectangular waveguide, integrated into SWTWT stages

as depicted in Figure 9.6(a), to achieve small-signal gain exceeding 35 dB. After the last unit

cell of the SWS in the first stage, a smooth E-plane bend in the opposite direction guides

the signal into the wedge-shaped lossy material of the sever. The same bend configuration is

used in the first unit cell of the second stage. The number of periods in the first and second

stages are N1 = 30 and N2 = 70, respectively, and the drift length is dg = d/2.

The values of the geometrical parameters of the sever shown in Figure 9.6(a) are optimized

to obtain an input reflection coefficient below −10 dB over the desired operating band,

leading to L1 = 4.25 mm, L2 = 5d = 20 mm and b2 = 0.875 mm. The attenuator length

(L2) should be long enough to attenuate incident and reflected RF waves to sufficiently

low levels. Conversely, the drift length of sever (dg) should also be as short as possible to

minimize velocity spread in the electron bunches. For the attenuator, we use a material with

relative permittivity of εr = 10.5 and loss tangent of tan δ = 0.2 in PIC simulations [360].

The reflection coefficient of the wedge-shaped sever is shown in Figure 9.6(b), indicating

good matching performance and high enough attenuation, below −10 dB, in the operating

frequency range.

In this example, we assume a dc beam current of I0 = 15 mA, while the e-beam and tunnel

281



Figure 9.6: (a) Wedge-shaped sever with lossy dielectric and corresponding geometrical
parameters. (b) Simulated reflection at the input of the first stage, for the wedge-shaped
sever, over the frequency range from 22.5 GHz to 34 GHz. (c) Gain versus frequency for
the two-stage TWT amplifier: theoretical calculation (solid green), PIC simulation using
the ideal sever (blue dots), and PIC simulation using the realistic wedge-shaped sever (red
dots).

radii are as in the previous examples. The normalized dc electron velocity is u0/c = 0.229,

which corresponds to an average kinetic voltage of V0 = 13.40 kV. We assume the input

RF power is Pin = 0 dBm and the magnetic flux density is B = 0.4 T. The calculated gain

for a two-stage SWTWT with wedge-shaped sever, using more than 27 million mesh cells

in PIC simulations, is displayed in Figure 9.6(c) by the red dots and achieves a maximum

gain of more than 37 dB at 27 GHz. We employ CST Particle Studio for PIC simulations,

and the gain is calculated in the frequency range of 23.2 GHz to 34 GHz with a frequency

step of 0.4 GHz. In addition, the blue dots represent the gain based on PIC simulations,

but assuming an ideal sever. The theoretically calculated TWT gain based on the proposed

method is illustrated by the solid green curve, in good agreement with the PIC simulation
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Figure 9.7: Amplification of RF wave during propagation in the SWTWT at f = 28 GHz
along the two TWT stages. The plot shows the normalized electric field at each unit cell by
using the theoretical model (solid green) and PIC simulation (red dots), in good agreement.

results. Therefore, the theoretical model is accurate for this multi-stage design with bigger

length and higher gain than in the two-stage example provided in the previous section, also

when compared against the case with a realistic sever with a wedge-shaped absorber.

Next, we compute the RF wave’s growth as it propagates through the length of the TWT

and interacts with the e-beam. The electric field at f = 28GHz is monitored along the gray

dashed line in the schematic of the SWTWT depicted in Figure 9.7. We added the electric

field monitor to the CST PIC simulation at f = 28GHz . Then we normalized the calculated

z-component of the electric field to the one obtained at the input of the first unit cell. In

Figure 9.7, red dots represent the normalized electric field magnitude |En| /
∣∣Ei

1

∣∣ from the

full-wave PIC simulation. As an alternative, in a much faster way, we also calculate the

equivalent TL voltage along the TWT by using our theoretical model to track the evolution

of the state vector as it propagates through each unit cell. We normalize the calculated

voltage at the beginning of each unit cell by the amplitude of the voltage at the input of the

first unit cell, |Vn| /
∣∣V i

1

∣∣. The calculated theoretical result is represented by a solid green

curve in Figure 9.7. As explained in [353, Section III], the normalized values of the electric
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field in the SWS and voltage in the equivalent TL can be compared due to the direct relation

between the electric field and equivalent TL voltage (|En| /
∣∣Ei

1

∣∣ = |Vn| /
∣∣V i

1

∣∣). However, the
calculated voltages are obtained at the center of the bottom bends, related to the beginning

of the unit cell, while the PIC-simulated electric field is calculated at the end of the same

quarter bends (for instance, see yellow and red asterisk points in the 30-th unit cell), without

compromising the observed trends. According to Figure 9.7, the RF wave amplifies in the

first stage, but drops abruptly at the sever. Then, we observe strong exponential growth

in the second stage due to synchronization with the modulated e-beam. The results shown

in Figure 9.7, which compare the theoretical model with the PIC simulation, demonstrate

the high accuracy of our developed theoretical model. We stress that a result like this is

obtained in a very fast way using our proposed model in contrast to PIC simulations with a

high computational burden.

9.8 Conclusions

We have developed a model for analyzing the small-signal gain of multi-stage SWTWTs with

the incorporation of one or more severs as attenuating elements. A sever is used to cut off

the RF path between the input and output RF ports of the SWS to effectively attenuate the

EM waves in both directions to mitigate the possibility of unwanted oscillations. We have

demonstrated that the proposed sever model is accurate and simple to use for predicting the

performance of multi-stage TWTs, thereby eliminating the computational burden associated

with PIC simulations. The results obtained from our theoretical model align closely with

PIC simulation results, confirming its accuracy. It provides engineers with a valuable tool

for developing high-gain multi-stage TWTs efficiently.
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Chapter 10

Super-Exponential Amplification of

Wavepacket Propagation in Traveling

Wave Tubes

We analyze wavepacket propagation in TWTs analytically and numerically. TWT design

in a nutshell comprises a pencil-like electron beam in vacuum interacting with an elec-

tromagnetic wave guided by a SWS. In our study, the electron beam is represented by

one-dimensional electron flow and the SWS is represented by a transmission line. The

analytical considerations are based on the Lagrangian field theory for TWTs. Mathemat-

ical analysis of wavepacket propagation in one-dimensional space is based on the relevant

Euler-Lagrange equations which are second-order differential equations in time and space.

Wavepacket propagation analysis is not simple and we develop a numerically efficient algo-

rithm to do that. In particular, if the initial pulse has a Gaussian shape at the input port, it

acquires non-Gaussian features as it propagates through the TWT. These features include:

(i) super-exponential (faster than exponential) amplification, (ii) shift of the pulse frequency

spectrum toward higher frequencies and (iii) change in the shape of the pulse that becomes
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particularly pronounced when the pulse frequency band contains a transitional point from

stability to instability.

10.1 Background, Motivation, and State of the Art

TWTs are devices widely used for telecommunications, radar, and high-resolution imaging

[372, 373, 60, 47]. These devices utilize the kinetic energy of a flow of electrons in vacuum

to amplify RF signals [1, 51]. J. R. Pierce introduced a simple and effective model that

accounts for (i) transfer of energy from an electron beam to an electromagnetic wave, and

(ii) signal amplification as it propagates through a TWT [285, 374, 375, 286]. The Pierce

model was extensively studied and extended by many authors [376, 377, 378, 292]. Also,

in [293, 291], the analytical Lagrangian field theory for TWT was constructed to generalize

the original Pierce model. In this model, a multi-transmission line can be coupled to the

multi-stream electron beam. Moreover, the original Pierce theory without considering the

space charge effect [285] can be viewed as a high-frequency approximation of the Lagrangian

field theory [291, Chapter 29]; however, when considering the space charge effect as in [375],

Pierce theory leads to the same results of the Lagrangian field theory, as demonstrated in

the Appendix of [75].

The subject of pulse amplification is an important topic in numerous applications such as

wideband RF communications, impulse radar, remote sensing, imaging, spectroscopy, and

time domain characterization of devices. In particular, TWTs were used for generating

nanosecond carrier pulses in [379, 380, 381] which can be used for radar applications. Also,

in [382], the authors show that pulse radars have greater spectral efficiency than conventional

narrow-band radars. In [383], a technique for the simulation of wideband pulses excited in

a regular dispersive delay line by an electron beam is proposed. Chernin et al. developed a

three-dimensional multi-frequency large signal model of the beam-electromagnetic wave in-
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teraction in a helix TWT, in which both forward and backward synchronous space harmonics

are included [384]. Also, Converse et al., proposed a new one-dimensional time domain model

to be used in the analysis of the pulse response of the helix TWT [385, 386]. That model

incorporates waveguide dispersion, and a nonlinear time-domain method was employed to

examine the response of a wideband helix TWT to an input Gaussian pulse. Subsequently,

Setayesh and Abrishamian developed a variation of the Converse et al. model [299, 387],

extending their pseudo-spectral method to an arbitrary order of accuracy in time and space

derivatives. Recently, Aliane et al. analyzed short-pulse amplification in TWTs using the

Hamiltonian discrete model [388]. Aside from technological uses, short pulses can be used

for probing the TWT dispersion relation and gain.

In this chapter, we study pulse propagation and amplification in TWTs and develop a nu-

merically efficient algorithm to analyze pulse propagation and detect its nontrivial features.

In a nutshell, we apply the Lagrangian field theory for TWTs developed in [293, 291] to

analyze pulse propagation. We conduct our studies initially in the frequency domain and

demonstrate the efficiency of our method through numerical simulations. According to the

results, the propagating wave is amplified, and the frequency content of the wavepacket is

shifted to higher frequencies when the wavepacket bandwidth is in the frequency range where

the complex-valued wavenumber of the amplifying hot mode is more or less dispersionless.

In addition to that, the number of local peaks in the wavepacket spectrum increases when

the wavepacket moves away from the input port. An example of these two phenomena is

illustrated in Figures 10.1(b)-(d). It will be demonstrated that as long as the operation

frequency is in the dispersionless region, the computed results using our developed “exact

method” and “approximate method” show good agreement (see Section 10.4). In the ap-

proximate method, we consider constant complex velocity for the “hot modes” , using it

as a benchmark (“hot modes” or “TWT modes” are those modes that account for the in-

teraction of the electromagnetic wave and the charge waves, and complex velocity refers to

the complex-valued analytic continuation of the phase velocity of the hot mode u = ω/k).
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Figure 10.1: The plot illustrates wavepacket propagation in a TWT. The initial Gaussian
pulse enters the RF input port on the left (z = zin), and the amplified output pulse is
extracted from the RF output port on the right (z = zout). (a)-(d) show wavepacket propa-
gation when its frequency band is in the constant hot mode complex velocity region (far from
the point of transition between stability and instability). Instead, (e)-(h) show wavepacket
propagation when its frequency band is close to or covers the transition point. (i) The real
part of the complex-valued wavenumbers of the hot modes which pink dots in the magnified
plot show the transition points. When the operating frequency is in the region where the
complex velocity of the hot modes is more or less constant (i.e., the dispersionless region),
we notice interesting phenomena during propagation in space such as (i) super-exponential
amplification, (ii) shifts in the center frequency and (iii) an increase in the number of lo-
cal peaks in the wavepacket spectrum within the wavepacket bandwidth. However, if the
wavepacket frequency bandwidth contains a transition point, the wavepacket shape is signif-
icantly altered as it propagates.
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The approximate method fails to provide credible results when the wavepacket frequency

spectrum composition includes transition points. It happens due to an abrupt change in

the complex velocity of the hot modes at transition points and the wavepacket shape and

frequency content are altered during propagation as shown in Figures 10.1(f)-(h). Therefore,

when the hot mode complex velocity is not constant with respect to frequency changes, like

when the pulse bandwidth contains a transition point, the exact method we propose is the

only alternative. Our developed method and numerical implementation provide insights into

pulse propagation and amplification in TWTs that can be used to design TWTs that operate

with pulses as an RF input signal.

This chapter is organized as follows. Section 10.2 highlights concisely the significant results

and nontrivial phenomena during wavepacket propagation in TWTs. In Section 10.3, we

briefly review the Lagrangian field theory used to analyze TWTs. Section 10.4 discusses

the analytical method and relevant approximations of wavepacket propagation in TWTs.

Then, in Section 10.5, we show the effectiveness of the developed analytical method and its

approximation using several examples including a realistic TWT design. Finally, we conclude

the chapter in Section 10.6.

10.2 Statement of the Main Results

We use an analytical model to study different aspects of wavepacket propagation in TWTs.

We find that if the pulse frequency composition involves exponentially growing modes, the

pulse shape and frequency content change significantly as it propagates through the TWT.

Here, we briefly highlight our main results and achievements, leaving explanations, technical

details and numerical examples for the following sections.

Our main statements regarding pulse propagation in a typical TWT can be summarized as
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follows:

1. Detectable super-exponential amplification (see Remark 10.4.1) of the wavepacket as

it propagates through the TWT (see Figures 10.1(b)-(d));

2. Noticeable shift of the pulse frequency band toward higher frequencies (see Figures

10.1(c) and (d));

3. Noticeable increase in the number of local peaks in the wavepacket spectrum in the

pulse bandwidth as it propagates through the TWT (see Figures 10.1(c) and (d));

4. Significant distortion in the pulse shape occurs when the pulse frequency bandwidth

contains the frequency of a transition point separating stability from instability (see

Figures 10.1(f)-(h)).

The above-mentioned results are illustrated in Figure 10.1. In the first row, the center fre-

quency of the input pulse is located far away from the transition frequency of the TWT

dispersion diagram (see Figures 10.1(a) and (b)). The hot mode phase velocity is constant

in this region, and the propagated wavepacket can also be calculated via the approximate

method presented in [291, Chapter 16]. In this case, the wavepacket center frequency is

shifted as the pulse propagates through the TWT (see Figures 10.1(c) and (d)). In addition,

the number of local peaks in the wavepacket spectrum in the pulse bandwidth is gradu-

ally increased while the wavepacket travels toward the output port. Also, the wavepacket

amplitude is amplified rapidly, representing the most significant feature of TWTs in the

amplification regime. In the second row of Figure 10.1, the Gaussian pulse with the low

center frequency enters the input port of the TWT (see Figures 10.1(e) and (f)). The cen-

ter frequency of the input pulse is located near the transition point, i.e., the bifurcation

point in the dispersion diagram. The complex-valued analytic continuation of the hot mode

phase velocity near transition points is strongly dependent on frequency. So, every spectral
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component of the pulse is amplified with a different amplitude and phase, leading to dis-

tortion in the propagated wavepacket. As a result, the extracted wavepacket shapes at the

middle of TWT and at the output port do not resemble the original Gaussian pulse shape

(see Figures 10.1(g) and (h)). Consequently, when the wavepacket frequency bandwidth

contains the transition point frequency, we observe significant alterations in the wavepacket

envelope. Detailed analysis of these nontrivial effects and phenomena requires more accurate

investigation, which is available in Section 10.4 with different examples in Section 10.5.

10.3 Review of the Lagrangian Field Theory for TWT

We briefly review the analytical model used in this chapter for studying TWTs. As a

pioneer in TWT modeling, Pierce developed a mathematical model [375]. This model can be

considered the simplest one that accounts for electromagnetic wave amplification in the TWT

[1, 51]. The Pierce model, also known as the 4-wave theory of a TWT, is a one-dimensional

linear theory in which the slow wave structure (SWS) is represented by a transmission line

assumed to be homogeneous [285, 375]. Also, the 3-wave small-signal theory, which laid the

foundation for TWT design, can be viewed as an approximation of the 4-wave theory [375].

In this chapter, we use an analytical model based on the Lagrangian field framework devel-

oped in [293, 291]. The Lagrangian field theory also allows for modeling more complex SWSs

than Pierce’s simple one by involving more than one guided electromagnetic wave and the

multi-stream beam [293, 291]. As shown in [75], the equivalent transmission line equations

that one would get directly from generalizing the Pierce model agree with the analytical

Lagrangian field theory.
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10.3.1 Fundamental Equations

We assume the electron stream to be confined by an external static magnetic field to an

infinitely long cylinder along the z direction [389]. The area of the cross-section σB of the

electron stream is supposed to be small enough to ignore transverse variations in relevant

physical quantities. The plasma frequency of the corresponding electron stream is given by

[390, 391]

ω2
p =

4πn̊e2

m
, (10.1)

where n̊ denotes electron density, −e is the electron charge, and m is the electron rest mass.

The electron stream steady velocity is denoted by v̊, and another key parameter related to

the electron stream is the stream intensity, which is defined as

β =
σB

4π
R2

scω
2
p, (10.2)

where Rsc is the so-called plasma frequency reduction factor that accounts phenomenologi-

cally for the finite dimensions of the electron stream cylinder and geometric features of the

SWS [304]. The physical dimension of the electron stream intensity is the square of velocity.

A larger stream intensity value is associated with a larger value of electron density or a

larger electron stream cross-sectional area. The electron stream steady velocity v̊, and elec-

tron stream intensity β, play a significant role in defining TWT properties, so we combine

them into a set of electron stream significant parameters as in [291]. We use the stream charge

to build up the electron stream interaction with the electromagnetic wave, defined as the

time integral of the corresponding electron stream current i (t, z), as q (t, z) =
´ t

t0
i (t′, z) dt′.

The variable q (t, z) represents the amount of charge that has traversed the electron stream

cross-section, at point z, from the initial time of t0 to time t. Electromagnetic propaga-
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Figure 10.2: Equivalent transmission line representation of the SWS where the equivalent
transmission line is represented conceptually as a circuit, with C and L being the per-unit-
length capacitance and inductance, respectively, and b represents the coupling strength with
the charge waves.

tion in the SWS is modeled as a single equivalent transmission line, which describes the

electromagnetic modal propagation in the SWS, based on the equivalent transmission line

model shown in Figure 10.2. Here, the distributed per-unit-length series inductance L and

shunt capacitance C are used to describe the electromagnetic properties of the equivalent

transmission line [392, 393, 394, 395]. In the well-known definition of equivalent transmission

line characteristics, we use voltage V (t, z) and current I(t, z), alongside the charge definition

Q (t, z) =
´ t
t0
I (t′, z) dt′. This value is a primary parameter for describing the equivalent

transmission line, which indicates the amount of charge that has crossed the cross-section

of the equivalent transmission line from the initial time of t0 to time t. Note that q (t, z)

and Q (t, z) are purely real in the Lagrangian equations. Also, cutoff conditions could be

modeled by resonant series and shunt reactive elements in the transmission line equivalent

circuit model [396, 397, 398]. However, for simplicity, in this chapter we assume we work not

close to a waveguide cutoff frequency and hence we ignore this feature. Accordingly, using

the transmission line formalism, the phase velocity of the electromagnetic wave is calculated

as w = 1/
√
LC. The coupling strength between the electron stream and the electromagnetic

guided wave in the SWS is represented by the parameter b (denoted by a in [292, 75, 353]).

The term b describes how the electron stream couples to the electromagnetic wave where the

representation of the coupling between an electron stream and electromagnetic wave guided

by SWS goes back to Ramo [399]. The value of b = 0 indicates that the electron stream is

not coupled to the guided electromagnetic wave.
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Then, following [293, 291], we introduce the TWT system Lagrangian LTB as

LTB = LTb + LB, (10.3)

where the Lagrangian components LTb and LB are associated with the electromagnetic wave

and the electron stream respectively and are defined as follows [293, 291]

LTb =
L

2
(∂tQ)2 − 1

2C
(∂zQ+ b∂zq)

2 , (10.4)

LB =
1

2β
(∂tq + v̊∂zq)

2 − 2π

σB

q2. (10.5)

The symbols ∂t and ∂z represent the partial derivative with respect to time t and space z,

respectively. Also, the space-charge debunching effects are considered by the term 2πq2/σB

in the above equation. For the TWT system, we find the following Euler-Lagrange equations

associated with the Lagrangian [293, 291]

L∂2
tQ− ∂z

[
C−1 (∂zQ+ b∂zq)

]
= 0, (10.6)

1

β
(∂t + v̊∂z)

2 q +
4π

σB

q − b∂z
[
C−1 (∂zQ+ b∂zq)

]
= 0. (10.7)

In the following, we look at the spectrum content of Q and q, and we use the standard

complex-signal notation by assuming that all the quantities are proportional to exp (iωt);

therefore; the time derivative leads to multiplying by iω for every spectrum component. We
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introduce the TWT principal parameter γ, which is assumed to be frequency-independent

γ =
b2

C
β. (10.8)

According to this definition, we have a larger value for the TWT principal parameter γ when

a higher coupling strength coefficient b or a stream intensity β (i.e., larger electron density)

are considered. In addition, if we select the smaller shunt capacitance per-unit-length C,

we obtain a larger value of the TWT principal parameter γ. To obtain additional physical

insights, we use the convenient dimensionless version of the TWT principal parameter γ̌,

defined as

γ̌ =
γ

v̊2
. (10.9)

Then, we define the system’s state vector as Ψ (z) ≡ [Q, ∂zQ, q, ∂zq]
T, where T indicates

transpose operator. The state vector consists of a combination of charge in the electron

stream, charge in the equivalent transmission line and their first-order spatial derivatives.

Finally, the system evolution along the z direction is described by the differential equation,

∂zΨ (z) = −iMΨ (z) , (10.10)

where M is a 4× 4 TWT matrix and is given by
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M =



0 i 0 0

i (γ̌ − 1) ω2

w2 0 i b
v̊2

(
R2

scω
2
p − ω2

)
−2ω

v̊
b

0 0 0 i

−iγ̌ 1
b
ω2

w2 0 −i 1
v̊2

(
R2

scω
2
p − ω2

)
2ω
v̊


. (10.11)

Note that here, we assume the equivalent transmission line to be uniform, i.e., z invariant;

therefore, M is invariant in the z direction, but a further generalization to treat nonuniform

SWSs is also possible.

10.3.2 Modal Dispersion Relation

We assume a state vector z-dependence of the form Ψ (z) ∝ exp (iωt− ikz), where k is the

complex-valued wavenumber of a hot mode that accounts for the interaction of the electro-

magnetic wave in the SWS with the beam’s charge waves. Then, the four hot eigenmodes

are obtained by solving the eigenvalue problem kΨ (z) = MΨ (z). The modal dispersion

relation or characteristic equation is given by

D (ω, k) = det (M− kI) = 0. (10.12)

After some mathematical calculation and by using the system matrix in Equation (10.11),

the dispersion relation is expressed by

D (ω, k) ≡ k4−2k3ω

v̊
+k2

(
ω2

v̊2
− ω2

w2
+

γ̌ω2

w2
−

R2
scω

2
p

v̊2

)
+2k

ω3

w2v̊
+ω2

R2
scω

2
p − ω2

w2v̊2
= 0. (10.13)
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The solution of the dispersion relation leads to four complex modal wavenumbers that de-

scribe the four hot modes in the electromagnetic and electron stream interactive system.

Since all coefficients in the characteristic equation are purely real, modal wavenumber so-

lutions are either purely real or complex conjugates. If we simplify the dispersion relation

by using the complex-valued analytic continuation of the phase velocity of the hot mode

u = ω/k (in the following simply referred to as complex velocity), we obtain a simplified

form of the TWT characteristic equation [291]

γ

w2 − u2
+

(u− v̊)2

u2
=

1

ω̌2
, ω̌ =

ω

Rscωp

, (10.14)

where ω̌ is the normalized (dimensionless) frequency which is real-valued in our analysis. We

have concisely written the dispersion equation as a function of the three main physical pa-

rameters: (i) the electron stream steady velocity v̊; (ii) the cold electromagnetic wave modal

phase velocity w; and (iii) the TWT principal parameter γ. A convenient dimensionless form

of the same dispersion relation is expressed by

γ̌

w̌2 − ǔ2
+

(ǔ− 1)2

ǔ2
=

1

ω̌2
, ǔ =

u

v̊
, w̌ =

w

v̊
, (10.15)

where ǔ and w̌ are dimensionless parameters. The Euler-Lagrange relations in Equations

(10.6) and (10.7) and the system of first-order differential equation in Equation (10.10)

are written in the centimeter-gram-second system (CGS-Gaussian system). However, the

dispersion relation is written using dimensionless parameters and therefore SI units could

also be used. The table for CGS to SI transformation is provided in Appendix F. The

formalism translation between the Lagrangian model parameters used in this framework

and the parameters used in the Pierce model is listed in Appendix G, and more details are

in [75].
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10.4 Wavepacket Propagation in TWT

An analytical approach to studying wavepacket propagation in TWTs is presented in this

section. We focus on Gaussian pulse propagation in TWTs but the analysis can be extended

to other forms of wavepackets. We use analytical formulas based on the Lagrangian field

theory explained in Section 10.3 to describe wavepacket propagation. Then, we calculate the

approximate propagated wavepacket under specific assumptions. The results are compared

to those using the transfer matrix approach that takes into account all the four hot modes

in the TWT.

10.4.1 Wavepacket Propagation and Amplification Under the As-

sumption That u Is Constant (Approximate Method)

Any wavepacket propagating in a dispersive medium can be represented as a linear compo-

sition of its spectral constituents of different frequencies. Ideally, a wavepacket propagates

through a medium without distortions if the relevant modal dispersion relation is linear,

i.e., the complex velocity of each hot mode u = ω/k is constant and does not depend on

frequency. In this subsection, we consider only the growing hot mode that amplifies the

wavepacket and neglect the frequency variation of its phase velocity in the frequency domain

of interest. We assume that for this single dispersionless growing hot mode u (ω) = u, where

u is constant with imaginary part ℑ{u} < 0 that leads to amplification (see Figure 10.3(e)

and (f)). The dispersionless assumption for this mode is valid only when the operating

frequency is far enough from a transition point in the wavenumber dispersion diagram (see

wavenumber dispersion diagram in Figures 10.1(i) and 10.3(e)).

A Gaussian wavepacket that represents the forward electromagnetic wave in the TWT is

described by the complex charge representation,
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Q (t, z) =
A

2π
exp

(
iω0

(
t− z

u

)
− 1

τ 2w

(
t− z

u

)2)
, (10.16)

where A is the pulse amplitude (in unit of charge), ω0 indicates the pulse center angular fre-

quency, τw show the pulse time constant. The wavepacket frequency information is obtained

by applying the Fourier transform as defined in [400, Chapter 4], leading to

Q̃ (ω, z) =
Aτw
2
√
π
exp

(
−τ 2w (ω − ω0)

2

4
− iω

z

u

)
. (10.17)

The complex velocity of the growing hot mode is calculated in terms of the power gain factor

α0 < 0 that is defined as [291, Chapter 6.1]

α0 = −
ℑ{k}
ℜ {k}

=
ℑ{u}
ℜ {u}

. (10.18)

In the above equation, ℑ{u} shows the imaginary part and ℜ{u} shows the real part

of the growing hot mode complex velocity. Therefore, we conveniently rewrite the single

dispersionless growing hot mode complex velocity as [291, Chapter 16.2]

u = ℜ{u} (1 + iα0) . (10.19)

It is convenient to define another parameter, related to wave energy velocity [291, Chapter

16.2],

uen = ℜ{u}
(
1 + α2

0

)
, (10.20)

which is called the pseudo-real part of u, defined as 1/uen= ℜ{1/u}. Notice that the wave

energy velocity uen is larger than the real part of the hot mode complex velocity ℜ{u} when
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ℑ{u} ≠ 0. The wave energy velocity uen can be significantly larger than ℜ{u} if ℑ{u}, and

consequently the power gain factor α0, is sufficiently large [291, Chapter 16.2]. Then, the

exponent of Q̃ (ω, z) is given by

ln
(
Q̃ (ω, z)

)
= ln

(
Aτw
2
√
π

)
− τ 2w (ω − ω0)

2

4
− iω

z

u
. (10.21)

We obtain the following expressions for the real and imaginary parts [291, Chapter 16.2],

ℜ
{
ln
(
Q̃ (ω, z)

)}
= ln

(
Aτw
2
√
π

)
− τ 2w (ω − ω0)

2

4
− ωα0

uen

z, (10.22)

ℑ
{
ln
(
Q̃ (ω, z)

)}
= − ω

uen

z. (10.23)

Next, the real part is rewritten as

ℜ
{
ln
(
Q̃ (ω, z)

)}
= ln

(
Aτw
2
√
π

)
− τ 2w (ω − ωw (z))2

4
+

τ 2w (ω2
w (z)− ω2

0)

4
(10.24)

= ln

(
Aτw
2
√
π

)
− τ 2w (ω − ωw (z))2

4
+

τ 2wω
2
0δw (z) (2 + δw (z))

4
,

where

ωw (z) = ω0 (1 + δw (z)) , (10.25)

δw (z) =
ωw (z)− ω0

ω0

= − 2α0

uenω0τ 2w
z. (10.26)
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These two equations define ωw (z) as the wavepacket shifted angular frequency, and δw (z) as

the wavepacket relative frequency shift. These new quantities demonstrate that the complex

velocity of the hot mode u causes the shift of the wavepacket center angular frequency from ω0

to ωw (z) and the angular frequency shift is calculated by ω0δw (z). Note that the frequency

shift is directly associated to the presence of the imaginary part of u. As we observe in

Equations (10.25) and (10.26), ωw (z) and δw (z) are position-dependent. Equation (10.26)

implies that the relative frequency deviation from the center frequency increases linearly

when the exponentially growing wavepacket travels inside the TWT (increasing z). The field

amplification exponent or amplification factor appears in ℜ
{
ln
(
Q̃ (ω, z)

)}
, and it accounts

for the wavepacket amplification [291, Chapter 16.2]. Therefore, the signal amplification is

defined as

Samp (z) = ln

(
Q̃ (ωw (z) , z)

Q̃ (ω0, 0)

)
= ln

(
Q̃ (ωw (z) , z)

Aτw/ (2
√
π)

)
. (10.27)

and, according to Equation (10.24), it is equal to

Samp (z) =
τ 2w (ω2

w (z)− ω2
0)

4
=

τ 2wω
2
0δw (z) (2 + δw (z))

4
, (10.28)

This parameter shows the ratio between the maximum value of the amplified wavepacket at

the shifted center frequency and the maximum value of the input Gaussian pulse by assuming

the excitation of single dispersionless growing hot mode. It is clear that the maximum value

of the propagated wavepacket occurs when the second term in Equation (10.24) vanishes since

it has a negative value. Thus, the maximum value is obtained at ω = ωw (z), which is the

center frequency of the traveled wavepacket. According to Equation (10.28), an amplification

factor is position-dependent because it is related to the relative frequency shift along z. As

already mentioned, in this subsection, we used the charge Q̃ (ω, z) to describe the propagated

wavepacket; however, this method can be applied to other quantities of the wavepacket such
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as current, electric fields, etc.

Remark (Super-exponential amplification). Generally speaking, super-exponential means

more than exponential, so a function is super-exponential if it grows faster than any ex-

ponential function. According to Equation (10.28), the amplification factor can be written

as

Samp (z) = C1δw (z) + C2δ
2
w (z) , (10.29)

where C1 and C2 are constant, system dependent, coefficients. On the other hand, the

wavepacket shifted relative frequency is a linear function of z, i.e., δw (z) ∝ z (see Equation

(10.26)). As a result, the amplification occurs super-exponentially or faster than exponential

by propagating through the TWT (increasing z) due to the presence of a quadratic term at

the exponent, which results in super-exponential growth.

10.4.2 GaussianWavepacket as an Excitation Pulse (Exact Method)

In the frequency domain, the initial boundary condition state vector at z = 0+ is

Ψ (z0) =



Q̃ (ω, z)
∣∣∣
z=0+

∂Q̃ (ω, z) /∂z
∣∣∣
z=0+

0

0


. (10.30)

If we assume the field is excited by a Gaussian pulse at the beginning of the TWT, the field

initial conditions are
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
Q̃ (ω, z)

∣∣∣
z=0+

= Aτw
2
√
π
exp

(
− τ2w(ω−ω0)

2

4

)
∂Q̃ (ω, z) /∂z

∣∣∣
z=0+

= − iω
u
Q̃ (ω, z)

∣∣∣
z=0+

(10.31)

In the second of the latter equations, we have assumed that the initial velocity is the one of

the hot mode u. In the frequency domain, the propagated wavepacket is represented by the

state vector at any arbitrary coordinate z = z1 via

Ψ (z1) = T (z1, z0)Ψ (z0) , (10.32)

where T (z1, z0) = exp (−iM (z1 − z0)) is the TWT transfer matrix, which transfers the state

vectorΨ (z) between the two points of z0 and z1 in the TWT. It is assumed in this calculation

that the TWT is fully matched in the output and there is no reflection from that port.

10.5 Results and Discussion

According to the discussion in Section 10.3, we need two sets of parameters to analyze

wavepacket propagation. Firstly, we need the fundamental TWT parameters, and secondly,

we should express the initial pulse at an arbitrary position in the TWT, i.e., at the RF input

port. In Subsections 10.5.1-10.5.3, we provide examples that are designed in a special way

to highlight some nontrivial features of pulse propagation in TWTs. Then, in Subsection

10.5.4, we use some realistic parameters for a design in the microwave regime.

In Examples (1)-(3) provided in Subsections 10.5.1-10.5.3, we examine our developed method

where the electron stream parameters are σ̌B = 5.524 × 10−21, Rsc = 1, ω̌p = 1, and v̆ = 1.

We use dimensionless variables (with inverted hat sign) and the normalization factor for

each physical quantity is described in Appendix H. We consider the equivalent transmission
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line parameters as C = 16.667 (= 1.854 nF/m) and L = 1.5× 10−2 s2/cm2 (= 1.348 TH/m)

and we assume that the electron stream and electromagnetic wave are in strong coupling

by considering b = 1. Then, the normalized TWT principal parameter is calculated as

γ̌ = 0.234. In general, the interaction between the electromagnetic wave and the charge

wave occurs when they are synchronized, i.e., when the cold electromagnetic wave phase

velocity w = 1/
√
LC and the average velocity of the electrons v̊ are matched. In the

specified frequency range, the cold electromagnetic wave phase velocity w is assumed to

be dispersionless due to the dispersionless per-unit-length series inductance L and shunt

capacitance C. The modal dispersion diagram of the hot modes in the presented TWT is

shown in Figures 10.3(a)-(d) by using the previously mentioned parameters for TWT and

substituting them in Equation (10.15).

Due to the centrosymmetry of the set of modes in the TWT system (with respect to ω = 0),

we only show positive frequencies. This is because the modes of negative frequencies can

be easily recovered from the centrosymmetry transformation. Centrosymmetry is a prop-

erty where for every point in the plot, there exists another point directly opposite to it

through zero-frequency. In other words, if a point is on the plot, the same point reflected

through the center will also be on the plot. The conventional dispersion relation of the hot

modes is defined as the relation between real-valued angular frequency ω and complex-valued

wavenumber k. The dispersion plots integrate the dispersion relations of TWT system modal

branches and provide partial information on TWT system instabilities. The complete infor-

mation on the TWT system dispersion relation is encoded in the characteristic equations for

the complex-valued phase velocity of the hot modes (see Equation (10.13)). The character-

istic equation has exactly four complex-valued k solutions for every ω, taking into account

their algebraic multiplicity. Moreover, every hot mode in the TWT system is determined by

its frequency and wavenumber, that is, by the pair (ω, k (ω)) with complex-valued k (ω).

In order to represent the convective (i.e., in space) unstable and stable (oscillatory) modes of
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Figure 10.3: Normalized wavenumber k of the hot modes as a function of normalized angular
frequency for the data in Examples (1)-(3) that are provided in Subsections 10.5.1-10.5.3:
(a) and (c), real part; (b) and (d), imaginary part. The bottom plots (c) and (d) are
magnified fragments of the dispersion relation in (a) and (b) showing more details around
the transition points. The green dots show the transition points separating stability from
instability. (e) and (f) show the real and imaginary parts of the complex velocity of the hot
mode u = ω/k which are approximately frequency-independent at the high frequency. (g)
Power gain factor α0 which is negative for the growing mode. In these plots, the modes with
purely real wavenumber are shown in black, the growing modes with ℑ (k) > 0 are shown in
red and the decaying modes with ℑ (k) < 0 are shown in blue.
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the TWT system, we proceed as follows. Our first step is to parameterize every mode in the

TWT system uniquely using the pair (ω, k (ω)). If k (ω) is degenerate, it is counted a relevant

number of times according to its multiplicity. Because of the importance of mode instability,

that is when ℑ{k (ω)} ≠ 0, we divide all the TWT system modes represented by pairs

(ω, k (ω)) into two distinct classes of unstable and stable (oscillatory) modes, based on the

complex velocity of hot modes u (ω) .When the wavenumber of the hot mode k (ω) = ω/u (ω)

is purely real or complex-valued with negative imaginary part, we can consider the associated

mode as a stable (oscillatory) mode. Oppositely, we refer to the TWT system mode as a

convective unstable mode if the wavenumber of hot mode k (ω) is complex-valued with a

positive imaginary part. Notice that every point (ω,ℜ{k (ω)}) in the convective unstable

mode is associated with two complex conjugate TWT system modes with ±ℑ{k (ω)}, which

only one of them with positive value leads to amplification and the another mode with

negative value will decay. There are two regions of operation in an interactive system based

on four hot eigenmodes: (i) Amplification region: in this region the four modes are divided

into two sets of modes: the first set consists of two exponentially growing and decaying

oscillatory modes (amplifying/decaying, ℑ (k) ̸= 0) such that two modes wavenumbers are

complex conjugate to each other (i.e., k1 = k∗
2); the second set consists of two convectively

stable (oscillatory) modes (unamplifying/undecaying, ℑ (k) = 0) that vary harmonically in

time and are bounded in the entire space by a constant; (ii) Non-amplified region: in this

region the four modes are convectively stable (oscillatory) with real-valued wavenumbers

(i.e., ℑ (k) = 0).

We define a critical transition point separating stability from instability in the modal disper-

sion diagram. A transition point is a point (ωc, kc) in the ω−k plane that marks a transitional

point from stability (oscillation) to instability (exponential growth) region. Transition points

are the points at which dispersion relations develop second-order degeneracy. We refer to

ωc as nodal frequencies (transition frequencies) and kc as nodal wavenumbers (transition

wavenumbers), which are indicated by green dots in Figure 10.3(a)-(d). The amplification
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regime starts or stops at this frequencies, and a deeper investigation into the features of

these critical points (they are exceptional points of degeneracy) is provided in [75, 126]. The

complex velocity changes dramatically at this critical point, which is one of the distinctive

features of the transition point (or exceptional point). The real and imaginary parts of the

complex velocity of the hot mode u = ω/k with approximately frequency-independent value

at the high frequency are shown in Figure 10.3(e)-(f). Also, the power gain factor α0 is

illustrated in Figure 10.3(g). In these plots, the black curves show the modes with purely

real wavenumber, the red curves show the growing modes with ℑ (k) > 0 and the blue curves

show the decaying modes with ℑ (k) < 0.

In particular, in Subsection 10.4.2, we investigated pulse propagation along the TWT by

using the ”exact method” and we will employ this method in Examples (1)-(4) below. In

addition, in Subsection 10.4.1, we studied pulse propagation along the TWT by using the

”approximate method” (under constant u assumption) and we will apply this method in

Examples (1) and (2) as a benchmark. We also compare the results obtained by the exact

and approximate method in Examples (1) and (2) and discuss when the approximate method

provides reasonable accuracy.

10.5.1 Example (1) - Wavepacket Frequency Band Is Far From

the Transition Points

In this example, we study wavepacket propagation when the operating frequency and the

pulse bandwidth are far from the transition points. We show how under this condition the

approximate method can calculate the propagated wavepacket with acceptable accuracy.

The input pulse parameters are set as A = 1 StatC, τ̆w = 0.279 and ω̌0 = 17.143 for this

example. We use dimensionless variables, and the normalization factor for each quantity

is described in Appendix H; for this example the length, time and frequency normalization
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factors are λp = 2.691 × 1010 cm, Tp = 0.898 s and ωp = 7 rad/s, respectively. Based on

the selected data, we calculate the propagated wavepacket in the SWS at certain positions

using the method described in Subsection 10.3.1. Then we compare the exact calculated

wavepacket with the results obtained under the constant u assumption. We start from the

input port and show the results for the propagated wavepacket at different positions in Figure

10.4. The solid blue curves show the real part, the solid red curves depict the imaginary

part, and the black dashed curves show the absolute value or envelope of the propagating

wavepacket at different positions. Then, we move along the TWT and increase z̆ = 0 to

z̆ = z̆0, where z̆0 = 3 × 10−11. Calculated results in Figures 10.4(e) and (f) show that the

center angular frequency is increased by ω̌0 × δexw (z̆0) = 0.98, and according to Equation

(10.26) the angular frequency shift is obtained as ω̌0 × δappw (z̆0) = 0.974. At this point, we

obtain the amplification factor Sex
amp (z) as a natural logarithm of the maximum amplitude of

the propagated wavepacket that is obtained at the shifted center frequency. Figure 10.4(e)

shows that the amplification factor is Sex
amp (z̆0) = 25.482, and theoretical approximation

based on Equation (10.28) demonstrates that Sapp
amp (z̆0) = 26.3. In order to compare the

results extracted from exact method and the approximate method under the constant u

assumption, the real and imaginary parts of the propagated wavepacket at z̆ = z̆0 under the

constant u assumption are calculated and shown in Figures 10.4(g) and (h).

Next, we increase z̆ to 2z̆0 to analyze the propagated pulse at the farther point. The prop-

agated wavepacket obtained by using the exact method are represented in Figures 10.4(i)

and (j). We find that the center frequency has been increased and the amplitude of the

wavepacket has been significantly boosted. The calculated result demonstrates that the

center angular frequency is increased by ω̌0δ
ex
w (2z̆0) = 1.96 and theoretical approximation

under constant u assumption predicts ω̌0δ
app
w (2z̆0) = 1.948. Also, we found that the ampli-

fication factor at this point is Sex
amp (2z̆0) = 53.237, and approximate calculations result in

Sapp
amp (2z̆0) = 54.053. The number of local peaks in the frequency domain increases at further

distances from the input, compared to the results obtained for the points near the input.
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Figure 10.4: Pulse propagation when the operating frequency is far from the transition points
frequency. Plots (a)-(l) display the propagating wavepackets of Example (1) in Subsection
10.5.1 at different z−positions inside the TWT. These plots show the real (blue/cyan) and
imaginary (red/orange) parts at: (1) z̆ = 0 - first row from the top; (2) z̆ = z̆0 - second
row from the top; (3) z̆ = 2z̆0 - third row from the top. The first and second columns
show the real and imaginary parts of the propagated wavepacket calculated using the exact
method. The third and fourth columns display the real and imaginary parts of the prop-
agated wavepacket calculated under the constant u assumption. We observe amplification,
shift in center frequency, and increase in the number of local peaks in the wavepacket spec-
trum within the pulse bandwidth as the pulse propagates through TWT.
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Table 10.1: Comparison between calculated results for Gaussian pulse propagation under
the constant u assumption (indicated by app) versus the exact results obtained by using
Equation (10.10) (indicated by ex) in the Example (1) in Subsection 10.5.1.

ω̌ex
w (z) ω̌app

w (z) Sex
amp (z) Sapp

amp (z) Er (ωw (z)) Er (Samp (z))

z̆ = 0 17.143 17.143 0 0 0% 0%

z̆ = 3× 10−11 18.123 18.117 25.482 26.3 0.034% 3.211%

z̆ = 6× 10−11 19.103 19.091 53.237 54.053 0.06% 1.533%

In order to evaluate the error in comparison of exact and approximate methods, the error

function is defined as

Er (X) =

∣∣∣∣Xapp −Xex

Xex

∣∣∣∣ , (10.33)

where X can be ωw (z) or Samp (z), and superscript “app” shows the approximate value under

constant u assumption and superscript “ex” indicates the exact value based on analytical

exact method. Finally, the calculated results are summarized in Table 10.1. It demonstrates

that the exact calculation and the prediction under the assumption of a constant u are in

very close agreement. This is because the center frequency of the input pulse is chosen in

the dispersionless region with approximately constant hot mode complex velocity u.

10.5.2 Example (2) - Wavepacket Frequency Band Is Near the

Transition Points

In Example (1) in Subsection 10.5.1, we assumed that the wavepacket center frequency was

far enough from the transition points. Consequently, the constant value assumption for hot

mode complex velocity was valid in our computations. But the question is, does this assump-

tion work in other cases as well? In order to answer the question, we study another example

where the pulse bandwidth contains the transition frequency. Let us assume ω̌0 = ω̌c,3 = 1.25
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Table 10.2: Comparison between calculated results for Gaussian pulse propagation under
the constant u assumption (indicated by app) versus the exact results obtained by using
Equation (10.10) (indicated by ex) in the Example (2) in Subsection 10.5.2.

ω̌ex
w (z) ω̌app

w (z) Sex
amp (z) Sapp

amp (z) Er (ωw (z)) Er (Samp (z))

z̆ = 0 1.25 1.25 0 0 0% 0%

z̆ = 3× 10−11 2.327 2.224 1.357 2.591 4.436% 90.922%

z̆ = 6× 10−11 3.346 3.198 4.957 6.636 4.416% 33.876%

where ω̌c,3 is the frequency of the third transition point, as shown in Figure 10.3. The calcu-

lated propagated wavepacket by using the mentioned pulse center frequency are illustrated in

Figure 10.5, and significant outcomes are summarized in Table 10.2. The calculated results

in Figure 10.5 show that both center frequency and field amplitude exponent are increased

by moving throughout the TWT in a forward direction. In addition, the number of local

peaks in the wavepacket spectrum within the pulse bandwidth is increased gradually. The

real and imaginary parts of the propagated wavepacket using an approximate method are

shown in the third and fourth columns of Figure 10.5. According to the calculated error

in Table 10.2, we observe a significant deviation in the approximate results compared to

the exact calculation. The presented example demonstrates that the approximate method

under constant u assumption cannot deliver precise results if the center frequency is near

transition points or if the pulse bandwidth contains a transition point. Thus, we must be

sure that ω̌0 >> ω̌c to use the advantages of approximate method for calculating the prop-

agated wavepacket. However, the approximate method was only used as a benchmark and

the developed exact method is efficient and fast enough to use in practical applications.

There is distortion in the envelope of the propagated wavepacket in the second row of Figure

10.5 due to nontrivial phenomena of non-Gaussian pulses in the system. The exact result

is distorted at lower frequencies, but the approximate result is not. This is due to the

proximity of the wavepacket bandwidth to the transition point. This phenomenon can be

better understood by looking at the following example.

312



Figure 10.5: As in Figure 10.4, but for the case when the pulse bandwidth contains the
transition point. Pulses in the second row are significantly distorted compared to those in
the first row due to the pulse spectrum proximity to the third transition point (plots (e) and
(f)). The approximate results under the constant u assumption (plots (g) and (h)) cannot
predict the propagated pulse shape and amplitude correctly.

10.5.3 Example (3) - Variation In the Center Frequency of the

Wavepacket

The purpose of this example is to examine the effect of changing the center frequency of

the input pulse on the shape of the pulse envelope after it travels along the TWT. As

we discussed in Examples (1) and (2) in Subsections 10.5.1 and 10.5.2, we should select

the proper operating frequency to avoid distortion in the wavepacket. Let us consider a

TWT with the parameters used in previous examples and the same parameters for the

Gaussian input pulse. Then, we vary the center frequency of the wavepacket and calculate

the propagated wavepacket at z̆ = 4 × 10−11. We select five different center frequencies

for the input wavepacket, indicated by different colors in the dispersion diagram in Figure

10.6(a). The first input frequency is chosen at the first transition point, where the center

angular frequency is ω̌0 = ω̌c,1 = 0.423. Then the second input frequency is chosen at
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the second transition point, which is ω̌0 = ω̌c,2 = 0.594. The results for these two center

frequencies at z̆ = 4×10−11 are shown in Figures 10.6(b) and (c). The propagated wavepacket

exhibits significant distortion since the pulse bandwidth contains the transition point. Next,

we increase the center angular frequency to ω̌0 = 1 and ω̌0 = ω̌c,3 = 1.253. The calculated

results for these two cases are shown in Figures 10.6(d) and (e), where a small distortion in the

shape of the propagated wavepacket can be recognized. In the case shown in Figure 10.6(e),

the lower frequencies of the pulse bandwidth are distorted since it contains a transition

point. In contrast, the higher frequencies of the pulse bandwidth are amplified without any

distortion since they are located in the dispersionless region with a constant value of hot

mode complex velocity. Finally, we select the center frequency of the input pulse in the

dispersionless region, which is far from the transition points. In this case, ω̌0 = 2.9 and the

input pulse is amplified without distortion as illustrated in Figure 10.6(f).

Figure 10.6: Pulse propagation in different frequency regimes. Plot (a) shows the real part
of the hot mode eigenvalues in the Example (3) in Subsection 10.5.3, and it also indicates
the selected center frequencies of the input pulse for five cases. Plots (b)-(f) display the
calculated results for distinct center frequencies of the input Gaussian pulse, namely the real
parts of pulse for an observer located at z̆ = 4× 10−11 in the various center frequency of (b)
ω̌0 = 0.423, (c) ω̌0 = 0.594, (d) ω̌0 = 1, (e) ω̌0 = 1.253, and (f) ω̌0 = 2.9. The propagated
wavepacket is distorted when the center frequency of the input pulse is near a transition
point (Cases I, II, III and IV). The propagated pulse completely maintains its Gaussian
shape when the center frequency of the input pulse is far enough away from the transition
point (dispersionless region) since the hot mode complex velocity is constant (Case V).
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10.5.4 Example (4) - Realistic Helix TWT

In order to evaluate the presented analysis for a specific design in the microwave regime, we

use the characteristic parameters of a helix TWT with realistic settings in this example. The

helix TWT is illustrated in Figure 10.7(a), which was already designed and utilized in [75] and

[401]. In a helix-based SWS, a metallic tape-helix is surrounded by a metallic waveguide [402].

The helix SWS utilizes a conventional two-body cylindrical vacuum envelope that contains

a metallic tape helix supported by three dielectric BeO rods [298]. An electron stream flows

along the axis of the helical conductor with inner radius r1 = 7.44×10−2cm, and outer radius

r2 = 8.46×10−2 cm. The metallic circular waveguide has a radius of r3 = 1.06×10−1 cm and

the three equally spaced dielectric rods support that physically hold the helix are made of

BeO with a relative dielectric constant of εr = 6.5. Moreover, the other geometric parameters

are l = 1.04× 10−1 cm, d = 5.2× 10−2 cm, and φ = 14.2◦. The input and output RF pulses

of the structure are defined as RF input port and RF output port as shown in Figure 10.1.

A finite-element eigenmode solver in CST Studio Suite by DS SIMULIA is used to simulate

the helix SWS. The eigenmode solver enforces a phase shift across the structure period in

the longitudinal direction of propagation and solves for the real-valued eigenfrequencies in

the absence of electron stream. The simulation is repeated for each phase shift to extract

the characteristic parameters, i.e., the cold electromagnetic wave phase velocity and the

equivalent transmission line characteristic impedance. Then, the calculated parameters for

the mentioned geometry are illustrated in Figure 10.7(b). For the sake of simplicity, we

assume constant values for the cold electromagnetic wave phase velocity and characteristic

impedance. In this example, we use values around the synchronization point, which is

fsync = 12 GHz. The maximum interaction between the electromagnetic and the space-

charge wave occurs when they are synchronized, i.e., by matching w and v̊. The selected

values for this example are chosen as w/c = 0.2c and Zc = 43 Ω. By using the extracted

values for w and Zc at the synchronization point, the equivalent distributed series inductance
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Figure 10.7: (a) Schematic of the tape helix SWS in a circular metallic waveguide. (b) Cold
electromagnetic wave phase velocity and characteristic impedance of the first forward mode
of the helix SWS obtained from cold full-wave simulations in the absence of the electron
stream, using the finite-element method eigenmode solver.

L = Zc/w and shunt capacitance C = 1/ (Zcw) are calculated. For this case, we obtain

L = 717.162 nH/m (= 7.980× 10−21 s2/cm2) and C = 387.865 pF/m (= 3.486). Such TWT

amplifier uses a solid linear electron stream with a radius of rb = 5.6×10−2 cm. The electron

stream phase velocity is 0.2 times the speed of light (̊v = 0.2c) to have synchronization around

fsync = 12GHz. The value of the emitted current was set to I0 = 47mA (= 1.41× 108 StatA)

and the corresponding plasma angular frequency is ωp = 2π × 624.6 × 106 rad/s. We use a

plasma frequency reduction factor of Rsc = 0.12, which was calculated and used in [75] and

[401]. According to the calibration used in [75], the value of the coupling strength factor b,

which is an essential parameter in the Lagrangian model, is estimated as b = 0.92. By using

the introduced parameters, we calculate the required parameters of the Lagrangian model as

β = 1.739×1014 cm2/s2 and γ = 4.194×1013 cm2/s2. Additionally, the dimensionless version

of parameters required for the dimensionless form of the dispersion equation in Equation

(10.15) are expressed as w̌ = 1 and γ̌ = 1.167× 10−6.

Next, we study the nontrivial phenomena during the Gaussian pulse propagation for this

specific design. The real and imaginary parts of the complex-valued wavenumber of hot

modes are shown in Figures 10.8(a) and (b). In the proposed example, parameters of the
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Figure 10.8: (a) Real and (b) imaginary parts of the complex-valued wavenumber for the
Example (4) in Subsection 10.8. Plots (c)-(h) display the real and imaginary part of the
spectrum of the propagated wavepacket at different positions along the TWT at: (c) and
(d) z̆ = 0; (e) and (f) z̆ = 0.2; (g) and (h) z̆ = 0.4. The calculated results are obtained
by using Equation (10.10). Plots (i) and (j) show the enlarged version of the real parts of
the spectrum of the propagated wavepacket at z̆ = 0.2 and z̆ = 0.4 in the frequency range
of ω̌ = 248 to ω̌ = 263 (∆ω̌ = 15) and ω̌ = 340 to ω̌ = 355 (∆ω̌ = 15). These two plots
demonstrate that the number of local peaks in the wavepacket spectrum is increased in the
same bandwidth by moving along the TWT.

RF input pulse are set as A = 104 C (= 2.998 × 1013 Fr), τ̆w = 5 × 10−3 and ω̌0 = 160.103.

Since the center frequency of the RF input signal is sufficiently far from transition points,

we can consider the constant value for the hot mode complex velocity u. The normalization

factors used for length, time and frequency in this example are λp = 4.000m, Tp = 13.342ns

and ωp = 2π×624.6×106 rad/s respectively. Then, we calculate the propagated wavepacket

in the SWS at certain positions using the analytical method described in Section 10.3.1.

We start from the initial point, i.e., input port at z̆ = 0, and show the extracted calculated

results in Figures 10.8 (c) and (d). The solid blue curves depict the real part, solid red curves

depict the imaginary part, and black dashed curves indicate the absolute value or envelope of

the RF input wavepacket. Then, we move further in the TWT and increase z̆ = 0 to z̆ = 0.2.

Calculated results in Figures 10.8(e) and (f) show that the center frequency is increased and
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the wavepacket is amplified dramatically. The huge amplification in the wavepacket occurred

due to imaginary parts of the dispersion diagram in the operating frequencies. Next, we

move further in the SWS and calculate the propagated wavepacket at z̆ = 0.4. The real

and imaginary part of propagated wavepacket are presented in Figures 10.8(g) and (h). By

comparing the calculated results at two selected points we observe that the center frequency

of the pulse is increased by traveling in the SWS. Moreover, the magnified version of the real

part of the wavepacket in the same frequency range in Figures 10.8(i) and (j) shows that

the number of local peaks in the wavepacket spectrum is increasing. This example explains

nontrivial phenomena that can happen during pulse propagation in a structure with realistic

parameters.

10.6 Conclusions

We have introduced an efficient method for wavepacket propagation analysis in TWTs based

on the Lagrangian field theory. The corresponding Euler-Lagrange equations are second order

differential equations in time and space. For simplicity, we assume the RF input pulse has

a Gaussian waveform but the algorithm works for any arbitrary input pulse. In the case of

wave packets with spectral contents located in a linear region of the dispersion diagram, the

analytical method can provide accurate results.

The proposed method provides useful insights into wavepacket propagation in TWTs. In

particular, we observe a number of phenomena such as super amplification, shift in center

frequency and increase in the number of local peaks in the wavepacket spectrum as the pulse

propagates along the TWT. We apply our model to an example with realistic parameters

and most of the claimed phenomena are observable in TWTs with realistic data.
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Appendix A

Gyrator Implementation

A gyrator is a nonreciprocal component, so any gyrator network should include at least one

nonreciprocal component [403]. The gyrator network can be realized using a medium con-

sisting of particles carrying permanent electric and permanent magnetic dipoles or through

a gyromagnetic effect of a ferromagnetic medium [78]. There is an apparent need to develop

a gyrator circuit that is antireciprocal with extremely low input and output impedances [78].

Various methods of realization are suggested for the gyrator, such as the Hall-effect gyra-

tor, but the most practical are those based on transistors or other electronic active devices

designed to operate as amplifiers.

Nowadays, the well-known nonreciprocal component is a transistor or a combination of

transistors as integrated opamps. These components are found in almost all suitable gyrator

circuits [403]. Also, it is not possible to implement an efficient gyrator with only one amplifier

[403]. Many published transistor-based gyrator circuits can be integrated [89, 80, 81, 128,

129, 130, 131, 132], but because a special-purpose integrated circuit must be manufactured,

the cost per device is expected to be significant. However, integrated-circuit opamps are

commonly available as off-the-shelf components, and they are inexpensive, so they can be
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used to design practical gyrators [82, 84, 133, 134, 135, 136, 137, 138]. As a result, they may

be used to make low-cost hybrid gyrator circuits.

The ideal gyrator’s admittance matrix may be divided up to realize a gyrator as [128, 131]


0 Gg

−Gg 0

 =


0 Gg

0 0

+


0 0

−Gg 0

 . (A.1)

Voltage-controlled current sources can be used to make the two independent off-diagonal

transconductances. This can be achieved by connecting two amplifiers to make a closed

loop. In this circuit, the first amplifier has a phase change from input to the output of zero,

while the second has π. Moreover, the input and output impedances of each amplifier are

both high. The main diagonal terms on the gyrator matrix are kept to small magnitudes by

high impedances [128]. In [128], a gyrator in an integration ready form has been built. The

proposed gyrator could make inductances with Q-factors of 500 produced by capacitors, and

the circuit is highly stable. By providing an active feedback path, Shenoi has developed a

gyrator circuit with only three transistors [89]. The circuit operates as a two-way feedback

system with transfer admittance parameters equal in magnitude and opposite in phase [89].

Sheahan et al. also created a high-quality gyrator that can operate at frequencies up to

100 kHz [80]. This circuit allows temperature-independent and high Q-factor inductance

generation from a low-loss, integratable capacitor [80]. In [131], the design of a new inte-

gratable high-performance direct-coupled gyrator circuit is explained, as well as other design

features. Simulated inductances of up to 200 H are reached in the proposed design, with

stable Q-factors of several thousand. Yanagisawa et al. propose a straightforward way for

constructing an active gyrator based on two controlled current sources [129]. A simplified

experiment features inherent negative input and output resistances in this work, leading to
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optimal impedance-inverting properties. Moreover, in [130], an integrated gyrator circuit

uses one diode, 12 resistors, and nine transistors (two of them are lateral PNP). The gyra-

tion resistance, input impedance, and resonant-circuit Q-factor obtained from experimental

data show outstanding agreement with theory [130].

Because of the current state of technology, opamp-based gyrators are the most feasible design

method for gyrators. For instance, Antoniou designed an ideal negative-impedance invertor

using a voltage-controlled voltage source [84]. A practical circuit based on an opamp is used

to demonstrate the suggested technique. To develop new gyrator circuits, it is used with

negative-impedance convenors [84]. In [135], negative-impedance convertors and negative-

impedance invertors are used to make equivalent circuits for gyrators. This paper presents a

stability analysis of gyrator circuits, as well as a proof of a relevant passivity theorem [135].

Finally, one of the most practical and straightforward circuits to realize an ideal gyrator using

opamp is proposed in [136]. A capacitively terminated opamp-based gyrator circuit model is

derived using a typical range of amplifier specifications. Also, amplifier imperfections such

as finite input and output resistances, as well as finite frequency-dependent amplification,

are also taken into account in this model [136]. Experimentation and an exact computer-

based analysis are used to confirm the model’s validity. The model demonstrates how each

amplifier imperfection affects the gyrator circuit’s performance. By using ideal amplifiers,

the Y -parameters of the gyrator circuit are obtained as [136]

Y =


0 R4

R1R2

− 1
R3

0

 , (A.2)

which Rn(n = 1, . . . , 4) are the resistors used in the proposed circuit [136]. All that is

required to fabricate the circuit is a thin-film or thick-film substrate with four resistors and
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a chip dual. The amplifier and substrate are affordable, resulting in a low-cost gyrator

circuit. Furthermore, the presented results in [136] show that only one of the four resistors

can be trimmed to change the gyration resistance.

The gyrator can also be realized at higher frequencies. The nonreciprocal property of the

Faraday effect is indeed used to realize a microwave circuit element analogous to Tellegen’s

gyrator [404], using a combination of ferrite material and twisted waveguide. Gyrators could

be realized by also using magnetless nonreciprocal metamaterial [405, 406].
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Appendix B

Negative Impedance Converter

Our circuits require negative capacitances and inductances, which can be provided by a

number of physical devices. [407, Chapter 29]. Figure B.1 shows suggested circuits that use

opamps in order to obtain negative impedance, capacitance and inductance [408, Chapter

10]. The voltage and current relation and input impedance for the opamp-based circuits

shown in Figure B.1 are respectively as follows:

(i) for the negative impedance converter (Figure B.1(a)):

I1 = I2 =
Vin

R
, Vo = 2Vin ⇒ Zin =

Vin

Iin
= −Z; (B.1)

(ii) for the negative capacitance converter(Figure B.1(b)):

I1 = I2 =
Vin

R
, Vo = 2Vin ⇒ Zin =

Vin

Iin
= − 1

iωC
; (B.2)

(iii) for the negative inductance converter (Figure B.1(c)):
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Figure B.1: Opamp-based (a) negative impedance converter, (b) negative capacitance con-
verter and (c) negative inductance converter.

I1 = I2 =
Vin

R
, Vo = Vin

(
1 +

1

iωRC

)
⇒ Zin =

Vin

Iin
= −iω

(
R2C

)
. (B.3)

There are limitations associated with any physical realization of an opamp due to deviations

from ideal assumptions. Most opamps deviate from ideal conditions as a result of their

limited frequency band and frequency dependence. By tuning the circuit elements properly,

the EPD property can be restored at a single frequency. It is important to note that the

opamp-based circuits of impedance converters shown in Figure B.1 are only examples; there

are many other implementations with different features available.

At a single frequency, negative inductance and positive capacitance can be made to have the

same negative imaginary impedance and be equivalent, but they would differ when varying

frequency. For example, when frequency increases, the reactance of a negative inductance

decreases as ωL, whereas the reactance of a capacitance decreases as −1/(ωC).
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Appendix C

Asymmetric Gyrator

Although the gyrator is described by its gyration resistance value with the unit of ohm, it

is a lossless component. The instantaneous power of the gyrator is calculated as

p(t) = v1i1 + v2i2 = (−Rgi2) i1 + (Rgi1) i2 = 0. (C.1)

The gyrator can be generalized to an asymmetric form, in which the forward and backward

gyration resistances are different. The asymmetric gyrator impedance matrix is defined as

Z =


0 −Rgf

Rgb 0

 , (C.2)

where Rgf is forward gyration resistance and Rgb is backward gyration resistance. Devices

for the condition that Rgf does not equal Rgb are referred to as active gyrators. Indeed, this

is no longer a passive circuit component since the net instantaneous power is different from
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zero,

p(t) = v1i1 + v2i2 = (−Rgfi2) i1 + (Rgbi1) i2 = i1i2 (Rgb −Rgf) ̸= 0. (C.3)

This asymmetric network can be realized by the circuit proposed in [136]. In order to realize

asymmetric gyrator, we should consider proper value for resistors, so we have [136]


Rgf = R3

Rgb = R1R2

R4

(C.4)

where Rn(n = 1, . . . , 4) are the resistors used in the proposed circuit for the gyrator [136].
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Appendix D

Basics of Electric Networks

As a matter of self-consistency, we summarize here an overview of the basic concepts and

notations of electrical network theory. Graph theory concepts of branches (edges), nodes

(vertices) and their incidences are used in the construction of electrical network theory. The

Kirchhoff current and voltage laws can be used in this approach, which is effective in loop

analysis and selecting independent variables. Specifically, we are interested in conservative

electrical networks, which are composed of three types of electric elements: capacitors, in-

ductors, and gyrators [409]. Inductors and capacitors are two-terminal electric elements,

while gyrators are four-terminal electric elements.

In this case, a capacitor, an inductor, a resistor, and a gyrator are the elements of the basic

electric circuit. These elements are characterized by current-voltage relationships as follows

[410, 411, 412, 413]:

ic = C∂tvc, vi = L∂til, vr = Rir, (D.1)

where ic, il and ir are currents and vc, vi and vr are voltages, and real C, L and R are called

respectively the capacitance, the inductance and the resistance as shown in Figure D.1.
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Figure D.1: Capacitance, inductance and resistance symbols and the relevant parameters in
the electric circuits.

In addition to the current and voltage we introduce the charge q and the momentum p as

q (t) =

ˆ
i (t) dt, i (t) = ∂tq, (D.2a)

p (t) =

ˆ
v (t) dt, v (t) = ∂tp. (D.2b)

Also, we describe the stored energy parameter w for the elements. Then, the current-voltage-

charge relations, the stored energy and the Lagrangians associated with the circuit elements

are represented as [414, Chapter 3]

Capacitor: vc =
qc
C
, ic = ∂tqc = C∂tvc, qc = Cvc = C∂tpc, (D.3a)

wc =
1

2
qcvc =

1

2

q2c
C

=
1

2
Cv2c =

1

2
C (∂tpc)

2 , (D.3b)

Lc =
q2c
2C

. (D.3c)

Inductor: vi = L∂tii, pi = Lii = L∂tqi, ∂tqi =
pi
L
, (D.3d)
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wi =
1

2
piii =

1

2
Li2i =

1

2
L (∂tqi)

2 =
1

2

p2i
L
, (D.3e)

Li =
L (∂tqi)

2

2
. (D.3f)

Resistor: vr = Rir, pr = Rqr. (D.3g)
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Appendix E

Single LC Circuit Analysis

The circuit matrix of the single LC resonator is given by

CLC =


0 −1

ω2
0 0

 , ω0 =
1√
LC

, (E.1)

where ω0 is the resonance frequency of the single LC resonator. Then, the eigenvalues are

expressed as s1,2 = ±iω0 and the corresponding eigenvectors by assuming state vector as the

stored charge in the capacitance q and its first derivative, ΨLC = [q, q̇], are obtained as

VLC =


1
2

1
2

iω0

2
−iω0

2

 . (E.2)

We define impedance as a ratio between voltage (v) and current (i). Also, by using the

definition of charge in the state vector which is defined based on the stored charge in the

capacitance q, we calculate resonator impedance as a ratio between capacitor voltage (q/C)

363



and capacitor current (q̇) as

Z1,2 = ±
1

iω0C
, |Z1,2| =

√
L

C
, (E.3)

which is defined as an impedance of single resonator.
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Appendix F

CGS to SI Conversion

Table F.1 relates quantities in SI or CGS units [415]. All factors of 3 could be replaced by

2.99792458 for more precise calculations, arising from the accurate light velocity value.

Table F.1: Conversion table for given amounts of a physical quantity.

Physical Quantity SI CGS (Gaussian)

Length (l) 1 meter (m) 102 centimeters (cm)

Time (t) 1 second (s) 1 second (s)

Frequency (f) 1 hertz (Hz) 1 hertz (Hz)

Charge (q) 1 coulomb (C) cG × 10−1 statcoulombs (FR)

Current (I) 1 ampere (A) cG × 10−1 statamperes (FR/s)

Voltage (V ) 1 volt (V) c−1
G × 108 statvolt (statV)

Capacitance (C) 1 farad (F) c2G × 10−9 cm

Inductance (L) 1 henry (H) c−2
G × 109 s2/cm

cSI = 3× 108 m/s

cG = 3× 1010 cm/s

Moreover, the parameters in the two systems of units can be converted and the conversion

of equations between SI units and CGS units is provided in Table F.2.
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Table F.2: Conversion table for symbols and formulas.

Quantity Symb. SI unit Gaussian unit Conversion factor

Electric charge q C Fr
(
cm3/2g1/2s−1

)
qG
qSI

= 1√
4πε0

= 3×109 Fr
1 C

Electric current I A Fr/s
(
cm3/2g1/2s−2

)
IG
ISI

= 1√
4πε0

= 3×109 Fr/s
1 A

Electric voltage V V StatV
(
cm3/2g1/2s−1

)
VG

VSI
=
√
4πε0 =

1 StatV
3×102 V

Electric field E V/m StatV/cm
(
cm−1/2g1/2s−1

)
EG

ESI
=
√
4πε0 =

1 StatV/cm
3×104 V/m

Magnetic field H A/m Oe
(
cm−1/2g1/2s−1

)
HG

HSI
=
√
4πε0 =

4π×10−3 Oe
1 A/m

Resistance R Ω s/cm RG

RSI
= 4πε0 =

1 s/cm
32×1011 Ω

Capacitance C F cm CG

CSI
= 1

4πε0
= 32×1011 cm

1 F

Inductance L H s2/cm LG

LSI
= 4πε0 =

1 s2/cm
32×1011 H

Cap. (p.u.l) C F/m dim− less CG

CSI
= 1

4πε0
= 32×109

1 F/m

Induc. (p.u.l) L H/m s2/cm2 LG

LSI
= 4πε0 =

1 s2/cm2

32×1013 H/m

ε0 = 8.8541878× 10−12 F/m

µ0 = 1.2566370× 10−6 H/m

* p.u.l: per unit length
* dim-less: dimensionless
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Appendix G

Translation Between the Lagrangian

Model and Pierce Model Parameters

For convenience, we provide the conversion table to transform the Lagrangian model param-

eters to the Pierce model parameters. The list of transformations is in Table G.1.

Table G.1: Translation from Lagrangian model parameters to the Pierce model parameters.

Parameter Lagrangian model Pierce model

electron stream velocity v̊ u0

electron stream cross-section area σB A

Stream intensity β I0u0

2V0

Characteristic phase velocity of cold EM modes w
√
− ω2

ZY

TWT principal parameter γ jω a2

Y
I0
2V0

u0
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Appendix H

Dimensionless Variables for the

Lagrangian Model

We use dimensionless variables for the Lagrangian model, and the normalization factor for

each parameter is defined in Table H.1.

Table H.1: List of dimensionless variables with the corresponding normalization factor.

Dimension Normalization factor Normalized parameters

Time Tp = (2π) / (Rscωp) τ̆w = τw/Tp

Length λp = (2πc) / (Rscωp) z̆ = z/λp, σ̆B = σB/λ
2
p

Frequency Rscωp = Rsc

√
4πn̊e2/m ω̌ = ω/ (Rscωp), ω̌0 = ω0/ (Rscωp)

Velocity v̊ w̌ = w/̊v, ǔ = u/̊v, γ̌ = γ/̊v2, β̆ = β/̊v2

Wavenumber kp = 2π/λp = Rscωp/c k̆ = k/kp

Charge Q0 (ω = ω0) = Aτw/ (2
√
π) Q̆ = Q/Q0 (ω = ω0)
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