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Genetic variants associated with psychiatric
disorders are enriched at epigenetically
active sites in lymphoid cells

Mary-Ellen Lynall 1,2,3,4 , Blagoje Soskic 5,6,7, James Hayhurst6,
Jeremy Schwartzentruber5, Daniel F. Levey 8,9, Gita A. Pathak8,9,
Renato Polimanti 8,9, Joel Gelernter 8,9,10, Murray B. Stein 11,12,
Gosia Trynka 5,6, Menna R. Clatworthy3,4 & Ed Bullmore1,2

Multiple psychiatric disorders have been associated with abnormalities in
both the innate and adaptive immune systems. The role of these abnormal-
ities in pathogenesis, and whether they are driven by psychiatric risk variants,
remains unclear. We test for enrichment of GWAS variants associated with
multiple psychiatric disorders (cross-disorder or trans-diagnostic risk), or
5 specific disorders (cis-diagnostic risk), in regulatory elements in immune
cells. We use three independent epigenetic datasets representing multiple
organ systems and immune cell subsets. Trans-diagnostic and cis-diagnostic
risk variants (for schizophrenia anddepression) are enriched at epigenetically
active sites in brain tissues and in lymphoid cells, especially stimulated CD4+

T cells. There is no evidence for enrichment of either trans-risk or cis-risk
variants for schizophrenia or depression in myeloid cells. This suggests a
possible model where environmental stimuli activate T cells to unmask the
effects of psychiatric risk variants, contributing to the pathogenesis ofmental
health disorders.

Diagnostic systems for mental health disorders are comprised of
multiple, categorically distinct clinical syndromes such as schizo-
phrenia, major depressive disorder (MDD), and bipolar disorder.
However, symptoms overlap between some different psychiatric
diagnoses, and comparative investigations of psychiatric disorders
have revealed both shared and specific genetic1–3 and environmental
risk factors4,5, and brain transcriptomic profiles6. These and other
data support a general predisposition to psychopathology or ‘p fac-
tor’ which captures an individual’s likelihood of developing any
psychiatric disorder7. Thus, some genetic and environmental risks

operate trans-diagnostically across multiple psychiatric syndromes,
rather than being cis-diagnostically aligned to a specific syndrome, as
would be expected if each disorder was a biologically discrete dis-
ease entity.

Immune system abnormalities have been observed in case-control
studies of many psychiatric disorders, including schizophrenia8,9,
MDD10, bipolar disorder11, autism spectrum disorder (ASD)12, and
attention deficit hyperactivity disorder (ADHD)13. Among the most
consistently reported findings, across multiple disorders, are increased
C-reactive protein (CRP)14, increased pro-inflammatory cytokines14,15,
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increased white blood cell counts in both myeloid and lymphoid
lineages16–22, and inflammasome activation23–25. Moreover, environ-
mental exposures that elicit an immune response are risk factors for
multiple psychiatric disorders, including in utero or parental
infections26,27, childhood and adult infections28–31, childhood adversity32,
and acute or chronic stress33. On this basis, it is conceivable that the
immune system could be implicated in the pathogenesis of psychiatric
disorders; but the direct evidence for a causal role of immune
mechanisms is limited. Longitudinal studies have shown that immune
dysregulation can be detected prior to onset of psychiatric disorder34;
but this could reflect the coincident effects of risk factors forpsychiatric
disorder, such as high body mass index (BMI), on both the immune
system and the brain. Since germline genetic variants cannot be the
consequence of disease, sequence variation associated with a disorder
(or disorders) could shed light on the immune processes or cells
likely to cause mental health symptoms. There is already some genetic
evidence that psychiatric risk is mediated by the immune system.
Polygenic risk scores (PRS) for depression, bipolar disorder and schi-
zophrenia are associated with increased lymphocyte counts35. Immune
and psychiatric disorders are genetically correlated36,37. Pathway analy-
sis of genes trans-diagnostically associated with schizophrenia, bipolar
disorder and MDD implicated neuronal, histone and immune
pathways38; although a larger trans-diagnostic analysis did not implicate
immune cells or pathways1.

Most genetic variants associated with psychiatric risk are in non-
coding regions of the genome, likely exerting their effects by altering
the activity of regulatory elements39 such as promoters or enhancers;
and enhancers can be linearly distant (>10 kilobases) from the genes
they regulate40. Some regulatory elements control gene expression in
multiple tissues, but others are specific to particular tissues, or parti-
cular cell states. For example, some enhancers are active in stimulated
but not resting immune cells41–43. The locations and activity status of
putative enhancers and promoters in a given tissue can be identified
through characteristic epigenetic modifications, such as histone
modifications.

Epigeneticmechanismshave longbeen thought to be important in
psychiatry, especially in mediating gene-environment interactions44,45.
Epigenetic data from brain tissues have been extensively used to
investigate the brain cell types and regions implicated by psychiatric
risk variants46–48, by testing whether risk variants tend to be con-
centrated, or “enriched”, in regions of the genome that are active in a
given tissue. However, the enrichment of psychiatric risk variants in
immune cell subsets has not been extensively explored. Studies to date
have tended to use functional information from whole blood or
immune organs, which obscures and dilutes possible effects in the
myeloid and lymphoid immune cell subsets comprising these samples.
There is some evidence of enrichment of risk variants for bipolar dis-
order in genes characteristic of neutrophils, T cells and haematopoietic
stem cells; and for schizophrenia at genes in T cells and chromatin
marks in T and B cells49. To our knowledge, no studies have demon-
strated enrichment of trans-diagnostic risk, or of cis-risk for MDD or
ASD, in any immune cell type1,50–52, or tested if immune cell enrichment
is independent of brain tissue enrichment (rather than simply due to
coincidental overlap of active genomic regions in brain and immune
system cells).

We hypothesized that some genetic risk variants for psychiatric
disorders act via their effects on regulatory elements in specific
immune cell subsets, thus potentiallymodulating the response of these
cells to infections and other environmental stimuli. We further hypo-
thesized that some of these immunogenetic mechanisms may repre-
sent a common pathogenic pathway to multiple psychiatric disorders.
To test these hypotheses, we integrated data on common genetic
variants associated with trans- and cis-diagnostic risks for psychiatric
disorder(s) with data on epigenetically active genomic regions in mul-
tiple human cell and tissue types. More formally, we tested the null

hypothesis that a given set of risk variants was not co-located with
tissue-specific marks of epigenetic activation more frequently than
expectedby chance in eachofmultiple tissues (Roadmap/ENCODE53,54),
in 19 sorted immune cell subsets (BLUEPRINT55), and in ex vivo stimu-
lated naïve and memory CD4+ T cells and macrophages (Soskic
dataset42). To contextualise our results, we conducted parallel analyses
of three “positive control” disorders: Alzheimer’s disease, a brain dis-
order for which genetic risk has been associated with myeloid immune
cells56; rheumatoid arthritis, a canonical adaptive autoimmune
disorder; and body mass index (BMI), a common comorbidity which
may contribute to observed immune abnormalities in psychiatric
disorders57. To our knowledge, this is the first in-depth investigation of
the immunological implications of GWAS variants conferring risk for
psychiatric disorders.

In this work, we show that trans-diagnostic genetic risk variants
for psychiatric disorders, as well as cis-diagnostic risk variants for
schizophrenia and depression, are enriched at epigenetically active
sites in brain tissues and in lymphoid cells, especially stimulated helper
T cells. In contrast, we do not find enrichment of these risk variants in
myeloid cells.

Results
Trans-diagnostic psychiatric risk is enriched at active chromatin
states in T cells
For trans-diagnostic risk of having any one of 8 major psychiatric
disorders, we tested for enrichment of genetic risk at active regulatory
elements in 88 cells or tissues from the Roadmap consortium, using
stratified linkage disequilibrium score regression (s-LDSC). S-LDSC is
used to test whether SNP-heritability for a disorder is concentrated or
enriched in a genomic annotation58. To generate a single binary
annotation of active regulatory elements for each tissue, we combined
annotations for active promoters and enhancers based on histone
marks (see Methods). We found that three main tissue classes were
significantly enriched for trans-diagnostic risk variants at regulatory
elements, following correction for multiple comparisons: multiple
adult and fetal brain regions; T cells; and pancreatic islets (Fig. 1a,
Supplementary Fig. 1, Supplementary Data 1).

In the central nervous system (CNS), trans-risk variants weremost
strongly enriched at regulatory elements in fetal brain tissue samples.
Therewas also significant enrichment (FDR <0.05) at active regulatory
elements in brain structures previously reported as abnormal in neu-
roimaging studies of psychiatric disorders: dorsolateral prefrontal
cortex, angular gyrus, inferior temporal lobe, anterior caudate, cin-
gulate gyrus, hippocampus and substantia nigra.

In the immune system, trans-risk variants were significantly enri-
ched (FDR < 0.05) at epigenetically active genomic sites in multiple T
cell subsets, including cytotoxic, helper and regulatory T cells in adult
blood and T cells in cord blood. Conversely, there was no enrichment
(P > 0.05) of trans-risk in myeloid cells (monocytes, neutrophils). We
here use Benjamini-Hochberg correction for multiple testing, as the
epigenomic profiles of different cell types are correlated rather than
independent.

Many regulatory elements are common to multiple tissues, so we
reasoned that this pattern of CNS and immune system enrichment for
trans-risk variants could be driven by coincidental overlap of brain and
T cell active elements. In this case, the genetic risk would be theore-
tically expected to have pathogenic effect primarily by its modulation
of epigenetically active sites in the brain, with no clearly independent
pathogenic rolemediatedbyT cells.We therefore repeated the s-LDSC
analysis but included the active annotations for all 10 significantly
enriched brain regions as extra terms in the s-LDSC models for every
other cell type. In this brain-conditioned analysis, both helper and
cytotoxic T cells remained strongly enriched for trans-diagnostic
genetic risk (Fig. 1c), while pancreatic islets did not (Supplementary
Fig. 2). For enriched immune tissues in the original analysis (at FDR <
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0.05), none showed significantly decreased enrichment following
brain-conditioned analysis (one-sided two-sample Z-test, P >0.05).
Conversely, including the annotation for male fetal brain (the brain
tissue showing strongest enrichment) as an extra term in s-LDSC
models significantly reduced trans-risk enrichment in all other brain
regions (Z-test P < 0.05) except the substantia nigra (P =0.09) and
hippocampus (P =0.07), reflecting some overlap of active elements
between different brain regions at different developmental phases,
and validating our statistical approach (Fig. 1b, Supplementary
Table 3). We showed the same effect for female fetal brain, the second

most strongly enriched brain tissue (Fig. 1b), excluding a potential
effect of sex differences in brain development.

The global active annotation used as a binarymarker of epigenetic
activation combines trans-risk enrichment at three different classes of
regulatory elements: active promoters, genic enhancers (enhancers
found in gene bodies), and non-genic enhancers. To identify which
classes were most enriched for trans-risk, we tested each class sepa-
rately and found that the enrichment of trans-risk observed in terms of
the global active annotation inT cells wasnot driven by a single classof
regulatory element: there was enrichment of trans-risk at both active
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promoters (FDR <0.05) and enhancers (FDR < 0.05 for genic enhan-
cers) (Fig. 1c).

Cis-diagnostic risk is enriched at active chromatin states in
T cells
Using data from the Roadmap Epigenomics Consortium, we next
investigated the enrichment of cis-diagnostic risk variants at epigen-
etically active sites in brain tissues and immune cells for each of 5
mental health or neurodevelopmental disorders (schizophrenia,
bipolar disorder, MDD, autism and ADHD) and each of 3 positive
control disorders (Alzheimer’s disease, obesity [BMI], and rheumatoid
arthritis).

In the CNS, cis-risks for adult-onset mental health disorders
(schizophrenia, bipolar disorder, MDD) were enriched inmultiple fetal
and adult brain tissues, and cis-risks for child mental health or neu-
rodevelopmental disorders (autism, ADHD) were enriched more
selectively in fetal brain tissue. Cis-risk for obesity (BMI) was also
enriched for active sites across multiple fetal and adult brain tissues;
but cis-risk for Alzheimer’s disease was only (nominally) significantly
enriched in hippocampus; and cis-risk for rheumatoid arthritis was not
enriched in any brain tissue (Fig. 2a, Supplementary Data 1).

In the immune system, similarly to trans-risk, cis-risks for schizo-
phrenia, bipolar disorder, MDD and autism were enriched at globally
activated sites in one or more T cell subsets (but with mainly nominal
significance P <0.05; Fig. 2b, Supplementary Fig. 3, Supplementary
Data 1), with signal driven by both enhancers and promoters (Sup-
plementary Fig. 4a). Cis-risk for rheumatoid arthritis was strongly
enriched at globally active sites in multiple immune cell subsets; cis-
risk for Alzheimer’s disease was significantly enriched in myeloid cells
and B cells56,59; and cis-risk for BMI was only enriched in one T cell class
at P <0.05 (Fig. 2b).

The statistical significance of enrichment results depends partly
on the sample size of the underlying GWAS and the heritability and
polygenicity of the disorder (factors influencing power, and captured
by the SNP-based heritability Z-score)58; but also on the strength of
functional enrichment of the phenotype in that annotation. We
hypothesized that, for immune enrichment in psychiatric disorders,
the relationship between GWASpower and enrichmentmight not hold
because (a) psychiatric disorders could differ in the degree to which
genetic immune factors contribute and (b) immune-relevant genetic
risk factorsmight only be important in a subgroup of patients, and the
proportion of the subgroup of total cases would thus affect the
immune enrichment detected. Therefore, for the two most enriched
immune andbrain annotations (naïve cytotoxic andhelper T cells; fetal
male and female brain), we tested the correlation between heritability
Z-score and functional enrichment Z-score across the 9 disorders
included in this study. Strikingly, we found a strong relationship
between disorder heritability Z-score and detected brain enrichment

(fetal male brain: Spearman’s correlation S(7) = 16, P =0.005, ρ =0.87,
95% CI 0.35–1; fetal female brain: S(7) = 16, P =0.005, ρ =0.87, 95% CI
0.35–1), but no correlation between heritability Z-score and immune
enrichment (cytotoxic T cells: Spearman’s correlation S(7) = 120, P = 1,
ρ = 0, 95%CI -0.7–0.7, helper T cells: S(7) = 116, P =0.9, ρ =0.03, 95% CI
-0.9–0.8) (see Supplementary Fig. 4b). This suggests thatdifferences in
GWAS power are not the primary driver of the different strengths of
immune enrichment we observed for different disorders. Differences
between disorders in the extent to which immunopathology con-
tributes to symptoms, or the size of the patient subgroup with an
immune pathogenesis, may be more important.

Trans- and cis-risk variants are enriched at active enhancers/
promoters in lymphoid cells: BLUEPRINT data
To assess the generalizability of these results in an independent
dataset, we tested for enrichment of trans- and cis-risk variants at
active enhancer/promoter marks (H3K27ac) in sorted immune cell
subsets from the BLUEPRINT consortium55, using the CHEERS
algorithm42. TheCHEERS algorithmassesses enrichmentof genetic risk
variants at cell subset-specific epigenetic marks by calculating peak
specificity scores, which indicate how specific an epigenetic peak is to
that cell type relative to other cell types (see Methods). Cell-type
enrichment is calculated as the specificity-weighted sumof overlaps of
disease risk variants with these peaks, allowing effects in epigenetically
similar cell types to be distinguished. These peak specificity scores are
necessarily less correlated across cell subsets than the underlying
epigenetic marks, so we here use Bonferroni correction to correct for
multiple comparisons, as previously42. We replicated our prior key
finding from the Roadmap data, i.e., trans-risk was significantly enri-
ched at epigenetically active sites in lymphoid cells; but not myeloid
cells (Fig. 3a). We also showed that cis-risk for schizophrenia and
depression was significantly enriched after controlling for multiple
comparisons (PBonf < 0.05) in lymphoid but not myeloid cells (con-
firming in this dataset the convergent, nominally significant results for
these disorders in the Roadmap dataset). The lack of myeloid enrich-
ment was not due to problems with the myeloid data, as we detected
the expected enrichment of Alzheimer’s Disease risk variants in mac-
rophages (Fig. 3a). As well as T cell enrichment, we also find enrich-
ment of trans-risk and cis-risk for schizophrenia and (especially)
depression in B cells, as well as enrichment of trans-risk and cis-risk for
schizophrenia in NK cells. For ADHD and bipolar disorder (less well-
powered GWAS studies with fewer independent significant loci avail-
able for analysis, see Supplementary Table 1), no cell types were enri-
ched at PBonf < 0.05 (Supplementary Fig. 5a). Despite both
schizophrenia and depression showing strong lymphoid enrichment,
the specific histone peaks overlapped by risk variants for these dis-
orders were not generally shared between them (Fig. 3b, Supplemen-
tary Fig. 4b). This indicates that cis-risks for these two disorders were

Fig. 1 | Trans-diagnostic risk enrichment at epigenetically active sites in brain
tissue and, independently, in T cells. a Enrichment of trans-diagnostic risk at
active regulatory elements in 88 tissues from the Roadmap epigenomics con-
sortium. P-values estimated by stratified linkage disequilibrium score regression
(LDSC) analysis (see Methods) were used to test the null hypotheses (one-sided
tests) that risk variants were not co-locatedwith epigenetically activated sitesmore
frequently than expected by chance, using the false discovery rate (FDR <0.05;
orange) to correct for multiple tests across N = 88 tissues. Tissues with nominally
significant enrichment (P <0.05, blue) are also shown for context. For results in all
other tissues see Supplementary Fig. 1. b Validation of brain-conditioned LDSC
modelling. As expected,when the LDSCmodel for enrichment of adult brain tissues
was conditioned on the active regulatory annotations for fetal brain tissue (male
and female), there was significant reduction in enrichment across all adult brain
tissues (asterisks indicate one-sided two-sample Z-tests with P <0.05). c Brain-
conditioned analysis of enrichment of trans-diagnostic risk variants at active reg-
ulatory annotations in immune tissues. Probability of enrichment (log P scale) was

estimated by both unconditioned LDSC modelling (left panel of bar chart; same
data as in Fig. 1a but on a different x-axis range of log probabilities); and brain-
conditioned LDSC modelling (right panel of bar chart), one-sided tests. Con-
ditioning enrichment of immune cells on active regulatory annotations in all brain
tissues did not significantly reduce enrichment for any immune tissue (all two-
sample Z-tests had P >0.05); but some T cell subsets were no longer significantly
enriched at FDR= 5%; see Supplementary Fig. 2 for comparable results in all other
tissues. d Enrichment of trans-diagnostic risk in enhancers, genic enhancers and
active promoters in all immune subsets (LDSC, one-sided tests). Large tiles show
results significant at FDR <0.05, to correct for the 78 annotations tested;mid-sized
tiles show results significant at P <0.05. Tile fill indicates the P-value rank within
each annotation across cell types. There was enrichment of trans-risk at both
enhancers and promoters in multiple adaptive immune cell subsets. See Supple-
mentary Data 1 for full statistics. PFC prefrontal cortex, HSC hematopoietic stem
cell, PMA-I phorbol-myristate-acetate and ionomycin.
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convergently enriched at a cellular level but distinct at the level of
specific regulatory elements. It was also notable that cis-risk variants
for obesity overlapped with a set of H3K27ac sites that was largely
disjoint with the sets of regulatory elements overlapping with cis-risk
variants for psychiatric disorders (Fig. 3b).

Trans- and cis-diagnostic risk variants are enriched at histone-
acetylated sites in stimulatedT cells: Soskic immune stimulation
dataset
Given that risk of mental health disorders is affected by both genetic
variation and environmental factors, we reasoned that trans- and cis-
risk variants could be most significantly enriched at sites that were
epigenetically activated in immune cells stimulated by cytokines
(mimicking environmental insults) towards different activated cell
fates. To investigate this hypothesis, and to assess the robustness of
our principal findings in a third independent dataset, we used CHEERS
to test whether trans- and cis-risks were enriched at cell subset-specific
regulatory elements (H3K27ac marks) active during immune cell acti-
vation, using a dataset of human naïve and memory CD4+ T (helper)
cells and macrophages stimulated ex vivo in the presence of 13 cyto-
kine combinations. The chromatin activity was assessed at early and
late timepoints after exposure to cytokine stimulations (16 h and

5 days for T cells and 6 h and 24 h for macrophages), as well as in
unstimulated cells42. Both trans-diagnostic risk variants, and cis-risk
variants forMDDweremost significantly enriched inmemory T helper
cells at day 5 following T cell stimulation with anti-CD3/anti-CD28
beads that mimic activation occurring with T cell receptor-cross-
linking; trans-risk variants and cis-risk variants for schizophrenia were
also significantly enriched inmemory T helper cells at 16 h and in naïve
T helper cells at day 5 only (Fig. 4a). The histone acetylation peaks that
overlapped with cis-risk variants for MDD in late-activated memory
T cells were almost completely disjoint with the peaks that overlapped
with cis-risk variants for schizophrenia in late-activatedmemory T cells
(Supplementary Fig. 7a), again demonstrating convergence of enrich-
ment at the immune cell subset level, but divergence at the molecular
level of specific regulatory elements. Similarly, although trans-risk and
cis-risk for schizophrenia showed the most similar pattern of immune
cell enrichment,most of the variant-peakoverlaps driving these results
were not shared (Supplementary Fig. 7a), implying that trans-
risk immune enrichment is not purely being driven by schizophrenia
cis-risk variants. Trans-risk enrichment was generally greater for sti-
mulated than unstimulated T cells, with smaller differences in
the magnitude of enrichment between different cytokine stimulation
conditions (Fig. 4a). For 9 of the 10 cytokine conditions (all except
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Fig. 2 | Cis-diagnostic risk enrichment at epigenetically activated sites in adult
and fetal brain tissue and immune cells for 8 specific disorders. For each of 5
mental health disorders (schizophrenia, bipolar disorder, major depressive dis-
order [MDD], autism, and attention deficit-hyperactivity disorder [ADHD]), and for
each of 3 positive control disorders (obesity, Alzheimer’s disease and rheumatoid
arthritis), enrichment of cis-risk variants at active regulatory elements (active
promoters and enhancers) was tested in a 10 brain tissue samples (3 fetal) and b 26
immune cell subsets and tissues (3 fetal)54. P-values are shown for the results of
stratified linkage disequilibrium score regression (s-LDSC) analysis (one-sided

tests), taking the union of active elements in a given cell type as the annotation of
interest. Tile size, from large to small, indicates P-value thresholds from FDR<0.05
(significant after Benjamini-Hochberg correction for all 88 tissues tested, including
those not shown here), through P <0.05 (nominally significant), to P ≥0.05 (not
significant). Tile fill indicates the P-value rank within each disorder across all cells/
tissues to facilitate comparisons across results from differently-powered genetic
association studies. See Supplementary Fig. 3 and Supplementary Data 1 for full
statistics. HSC hematopoietic stem cell, PMA-I phorbol-myristate-acetate and
ionomycin, ADHD attention deficit hyperactivity disorder, BMI body mass index.
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Th17-cytokine polarizing condition), trans-risk enrichment was sig-
nificantly greater (Z-test, P <0.05) in stimulated compared to unsti-
mulated late-activated memory T cells.

As in the two prior independent datasets, there was no enrich-
ment for trans- or cis-risk of psychiatric disorders at epigenetically
activated sites inmyeloid cells, either stimulated or unstimulated, with
the exception of enrichment of bipolar disorder risk in IL26-stimulated
macrophages (Supplementary Fig. 6). Cis-risk variants for obesity were
enriched in unstimulated and stimulated T cell states (Fig. 4), but only
9 of the 108 depression-associated H3K27ac peaks also overlapped
with BMI risk variants (Fig. 4c, Supplementary Fig. 7b), indicating that
cis-risks for obesity and depression were enriched at distinct reg-
ulatory elements in the same cell subsets.

For disorders showing enrichment in T cells, we performed
pathway analysis (overrepresentation analysis) for those genes over-
lapping or with transcription start sites nearest to the T-cell specific
histone acetylation peaks overlapped by risk variants (although we
note that distance-based measures are limited in their ability to link
epigenetic peaks with the genes to which they are functionally linked).
Trans-risk and cis-risk for schizophrenia showed enrichment of path-
ways including epigenetic regulation, pre-notch processing, and
estrogen-dependent gene expression in T cells, in large part driven by
histones and histone-related genes (Fig. 4d and Supplementary Fig. 8).
Cis-risk for depression showed enrichment in negative regulation of
cold-induced thermogenesis and in dendrite development in T cells. In
contrast, rheumatoid arthritis showed enrichment of lymphoid cell
differentiation, activation, and response to antigenic stimulus (Sup-
plementary Fig. 8). Notably,most of the T cell genes highlighted by the
epigenetic analysis of trans-risk, or cis-risks for schizophrenia and
depression (see SupplementaryData 2), didnot feature in any enriched
pathways, perhaps because the immunobiology relevant to psychiatric
disorders has not yet been captured in pathway databases.

We note thatmany of the T-cell specific histone acetylation peaks
in the Blueprint data which were co-located with risk variants were not
also overlapped by T-cell specific peaks in the Soskic dataset co-
located with risk variants (55% for MDD and 54% for schizophrenia).

Likewise, many of the Soskic T-cell peaks co-located with risk variants
were not also overlapped by any of the Blueprint T-cell peaks co-
located with risk variants (36% for MDD and 29% for schizophrenia).
This suggests that the replicable T cell enrichment observed was not
driven exclusively by similarities between the specific peaks detected
in the different datasets.

Enrichment of risk for MDD and schizophrenia at active reg-
ulatory elements in T cells shows convergence at the cellular
scale, but with limited convergence at the molecular scale
For both the Blueprint and Soskic datasets, both MDD and schizo-
phrenia risk variants were enriched in T cells at H3K27ac histone
acetylation marks. There were no significant differences between dis-
orders in terms of the classes of regulatory elements involved (the
proportions of promoters, genic enhancers and non-genic enhancers
at the implicated peaks), or in terms of the genomic distance between
each implicated acetylation peak and the nearest transcriptional start
site (see Supplementary Table 4). However, this convergence between
disorders at a cellular scale was not representative of convergence at
the molecular scale of the acetylation peaks overlapped by cis-
diagnostic risk variants, which were not generally shared between
disorders. For example, there were only two (of 211 total) T cell acet-
ylation peaks implicated in common betweenMDD and schizophrenia
in the Blueprint dataset, and three (of 214 total) in the Soskic dataset.
The genes implicated by cis-diagnostic variant-peak overlap in T cells
were also largely discordant between disorders. Only 5 genes were
consistently implicated in both MDD and schizophrenia: in both the
Blueprint and Soskic datasets, COA8/APOPT1 (a proapoptotic mito-
chondrial protein) and MAD1L1 (a checkpoint protein); and in the
Soskic dataset only, FURIN (a protease), SNORD18 (a non-coding RNA),
and RP11-73M18.2 (a kinesin light chain). We also compared the cis-
diagnostic GWAS statistics independently estimated for MDD and
schizophrenia at each variant that was co-located with MDD-
schizophrenia discordant acetylation peaks (peaks implicated in one
but not both disorders). This analysis demonstrated that discordance
of acetylation peaks was not simply reflective of sub-genome wide
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Fig. 3 | Trans- and cis-diagnostic risk variant enrichment at histone-acetylated
marks on adult immune cells in the BLUEPRINT dataset. a Bar plots show
enrichment of genetic risk for each disorder at active promoters/enhancers
(H3K27acmarks) in unstimulated, sorted immune cells. CHEERSwas used to detect
enrichment of risk loci at cell-type specific H3K27ac peaks (see Methods). P-values
are reported from a discrete uniform distribution (one-sided tests). The dotted
black line marks the nominal significance threshold, P <0.05; the solid black line

marks the Bonferroni-corrected significance threshold, PBonf < 0.05. Note differing
x-axis scales. See Supplementary Fig. 5A for ADHD and bipolar disorder results
(non-significant after Bonferroni correction). b Venn diagram shows counts of
variant-peak overlaps shared between disorders and unique to each disorder (each
peak is only counted once even if overlapping multiple variants). For an upset plot
of peak overlaps across all disorders, see Supplementary Fig. 5B. TD terminally
differentiated, NK natural killer, BMI body mass index.
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significance of association signals in the disorder where variant-peak
overlap was not detected. In fact, as shown in Supplementary Fig. 9,
many of the variants that were co-located with discordant acetylation
peaks had different signs (negative vs. positive) or strengths of asso-
ciation with the two disorders.

Discussion
We examined the enrichment of genetic risk variants for psychiatric
disorders at epigenetically activated regulatory sites across multiple
tissues. As expected, trans-diagnostic risk variants, commonly asso-
ciatedwithmultiplemental health andneurodevelopmental disorders,

were significantly enriched at active regulatory sites in several adult
and fetal brain tissue samples. Strikingly, we also found that trans-
diagnostic risk variants were significantly enriched at an independent
set of regulatory elements in peripheral blood lymphoid cells (but
were not enriched in myeloid cells). Our key results—enrichment of
trans-risk in T cells and lack of enrichment in myeloid cells—were sta-
tistically robust to multiple comparisons and replicated in three
independent datasets, suggesting a previously unknown effect of
trans-diagnostic genetic risk onT cells.Other lymphoid cells (forwhich
fewer datasets were available) are likely also implicated in pathogen-
esis, as we also found enrichment of trans-risk in B cells and NK cells.
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Further investigation of cis-diagnostic risk variants, specifically
associated with one of 5 mental health or neurodevelopmental dis-
orders, confirmed significant enrichment of genetic risks for schizo-
phrenia and major depressive disorder at active promoters and
enhancers in peripheral lymphoid cells (but not myeloid cells). Epi-
genetically activated sites in T cells, especially cytokine-stimulated
CD4+ T cells, were most consistently and significantly enriched for cis-
diagnostic variants associated with either schizophrenia or MDD.
However, at a molecular scale, the active regulatory elements co-
located with these cis-diagnostic variants were largely specific to each
disorder. Many of the variants driving T cell enrichment in one dis-
order were not associated with the other disorder, even at a nominal
significance threshold. This suggests convergence of risk for schizo-
phrenia and depression at a cellular level in the immune system, i.e.,
activated T cells, and raises questions about how epigenetic activation
at disorder-specific risk variants might relate to the different clinical
phenotypes or pathogenic pathways of schizophrenia and depression.
We also found strong enrichment of risk for depression in both naïve
and memory B cells. To our knowledge, this is the first demonstration
of enrichment of genetic risk for MDD at epigenetically active sites in
lymphoid cells (or indeed any immune cell type). Notably, in all three
datasets, immune enrichment of schizophrenia risk variants wasmuch
greater than for depression risk variants, despite the larger size of the
depression GWAS dataset.

The cis-diagnostic enrichment results for schizophrenia andMDD
were statistically robust to multiple comparisons and in clear contrast
to the comparable results for 3 positive control disorders. Cis-risks for
Alzheimer’s disease were significantly enriched at epigenetically acti-
vated sites in myeloid cells (but not lymphoid cells); cis-risks for
rheumatoid arthritis were enriched at active sites in myeloid and
lymphoid cells (but not brain tissue); and cis-risks for obesity (BMI)
were enriched at active sites in brain tissue and (in some analyses) in
immune cells, but with effects on regulatory elements distinct from
those implicated by psychiatric disorders.

On this basis, we propose that genetic variants associated with
increased risk for psychiatric disorders are likely to interact with epi-
genetic activation of specific and distinct regulatory elements in both
the central nervous system and the adaptive immune system. This
hypothesis-generating work immediately raises three key questions.
What environmental exposures cause epigenetic modification at risk-
enriched sites in T cells? How could atypical T cell phenotypes cause
changes in the CNS that are ultimately manifest as mental health or
neurodevelopmental disorders? What are the antigen presenting cells
(our data suggest they may be B cells) which activate atypical CD4+

T cells?
Infection is the most likely environmental stimulus to induce

epigenetic activation in the immune system. There is also increasing
evidence that psychosocial stress, especially in early life, can cause
epigenetic activation of glucocorticoid receptor-related genes in

animal models; and early life adversity has been associated with long-
term changes in blood immune biomarkers in human longitudinal
studies45. However, here we focus on the abundant epidemiological
evidence that fetal and post-natal infections increase the risk for mul-
tiple psychiatric disorders26,27,30,31. The immune mechanisms by which
early-life infection predisposes to later psychiatric symptoms are not
known. But we do know that fetal or childhood infections can cause
long-term changes in adaptive immune cell phenotypes, including T
cell memory of antigens and B cell production of antibodies, that are
crucial to development of adult immunity60. Thus, it is conceivable that
the epigenetically activated sites enriched for trans- and cis-risks in
T cells andmemory B cells in these data were “marked” by exposure to
infection or inflammation; and that genetic risk variants modulate the
infection-induced activation of regulatory elements, leading to atypical
T or B cell phenotypes following infection in people at genetic risk of
psychiatric disorder. There is already some epidemiological evidence
for gene-by-environment interactions between infection and risk var-
iants for schizophrenia61–63 and MDD64. Many aspects of our data are
compatible with this concept. For example, our finding that trans- and
cis-diagnostic risk variants were enriched at sites epigenetically acti-
vated by delayed T cell responses to a wide range of pro-inflammatory
cytokine stimuli seems consistentwith the epidemiologicalfinding that
increased risk of multiple psychiatric disorders is found following a
wide range of different infections12,28,29,65,66.

Atypical T cell phenotypes could conceivably have effects on the
brain by at least two broad routes: via stimulus-driven T cell activation
and via developmental pathways (Fig. 5). Atypical T cells may impact
on neuronal function via soluble inflammatory mediators67,68; via
contact-dependent mechanisms69; or via their effects on other
immune or non-immune cells which in turn affect neurons69. Devel-
opmentally, T cells have an important physiological role in controlling
microglial phagocytosis of synaptic terminals and neurites as part of
normal childhood and adolescent neurodevelopmental programs of
synaptic pruning70. Thus atypical T cells in themeninges or brain could
lead, via atypical synaptic pruning70,71, to the disrupted brain con-
nectivity seen in schizophrenia and other psychiatric disorders72.

In contrast with autoimmune diseases, which tend to show great-
est enrichment in early T cell activation states42, the strongest enrich-
ment for psychiatric risk variants was in T cells, especially late-activated
memory CD4+ T cells, and memory B cells. This may reflect abnorm-
alities in the resolution (rather than onset) of immune responses to
infection or social stress, potentially leading to chronic, low-grade
peripheral inflammation seen in many psychiatric disorders14,15.

Surprisingly, given the prior focus on innate immune abnormal-
ities associatedwith psychiatric disorders, epigenetically active sites in
myeloid cells were not significantly enriched for trans-risk variants or
for cis-risk variants for schizophrenia orMDD.What does thismean for
the pathogenic role of myeloid cells in these disorders? It may be that
genetic risk variants are indeed enriched at epigenetically active sites

Fig. 4 | Trans- and cis-risk variant enrichment at histone-acetylated marks on
experimentally stimulated immune cells in the Soskic immune stimulation
dataset. a Bar plots show enrichment of genetic risk for each condition at active
promoters/enhancers (H3K27ac marks) in sorted and unstimulated or ex vivo sti-
mulated immune cell subsets: macrophages, naïve CD4+ (helper) T cells and
memory CD4+ T cells, assayed at both early and late timepoints after stimulation
with one of several different cytokine cocktails promoting differentiation to dif-
ferent T cell states (as shown in row labels). CHEERSwas used to detect enrichment
of risk loci at cell-type specific H3K27ac peaks (seeMethods). P-values are reported
from a discrete uniform distribution (one-sided tests). The dotted black line marks
the nominal significance threshold, P <0.05; the solid black line marks the
Bonferroni-corrected significance threshold, PBonferroni < 0.05. Note differing x-axis
scales. Results for other disorders are shown in Supplementary Fig. 6. b Venn
diagrams show counts of variant-peak overlaps shared between disorders and
unique to each disorder. For an upset plot of peak overlaps across all disorders, see

Supplementary Fig. 7b. c All Soskic immune stimulation dataset peaks overlapped
by risk variants for major depressive disorder (MDD). Each row corresponds to an
H3K27ac peak overlapping a risk variant for MDD; each column corresponds to a
different cytokine-induced cell state, ordered and colored as in Fig. 4a (see legend).
The blue fill shade represents how specific each peak is to each cell state (specificity
rankof eachpeaknormalized to themeanspecificity rankof all peaks). Only9of the
108 MDD-associated H3K27ac immune peaks also overlap BMI risk variants. d For
peaks which were both highly specific to T cells (including both unstimulated and
stimulated cells) and overlapped by trans-risk variants, nearest genes were identi-
fied and tested for enrichment for curated biological pathways (GO and Reactome)
using a one-sided hypergeometric test. Only the 10 most significant pathways are
shown (all FDR<0.05). Fill colour indicates gene ratio (number of test genes in the
pathway/total number of test genes). See Supplementary Fig. 8 for results for cis-
diagnostic risks. GO gene ontology, BMI body mass index.
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in myeloid cells, but only under stimulation conditions not repre-
sented in the three datasets we analysed. Alternatively, it could be that
myeloid abnormalities seen in psychiatricdisorders are downstreamof
epigenetically activated risk variants in lymphoid cells, or are driven by
entirely environmental factors, rather than by genetic factors or gene-
by-environment interactions.

The statistical significance of results for risk variant enrichment at
epigenetically active regions reflects in part the sample size of the
GWAS datasets used and the heritability and polygenicity of the dis-
orders. However, in contrast to our results for brain enrichment, we
did not find any correlation between GWAS statistical power and
immune enrichment. This suggests thatwhileGWASpower canexplain
some differences between disorders in the significance of functional
enrichment (as in the brain), differences in immune cell enrichment
may inpart reflect how frequently immunemechanisms are implicated
in individual patients clinically diagnosedwith a specificdisorder. Thus
differences between disorders in the strength of immune enrichment
seen here may be more indicative of between-disorder differences in
how strongly immune mechanisms contribute to pathogenesis in
general, or what proportion of cases have an immune pathogenesis.
The immune enrichments we detected were significantly weaker than
enrichments in brain tissues—this may reflect a weaker pathogenic
contribution of epigenetically activated risk variants in the immune
system (compared to the brain); or it may be that genetic immune
mechanisms can have a larger effect but only in a subgroupof patients.
The genetic architecture of psychiatric disorders is currently incom-
plete. As more risk variants are identified in future, the number of
epigenetically active loci implicated in adaptive immune cellswill likely
increase, and understanding of their functional implications will be
further refined. However, analyses based on alternative European
GWAS datasets are unlikely to alter our major findings, which focus
mainly on patterns of enrichment across different cellular subsets for
risk variants that have already been significantly associatedwith one or
more psychiatric disorders. In short, we expect our current results to

represent a robust core set of acetylated regions inT cells whichwill be
enhanced rather than undermined by future increase in the scale and
dimensionality of GWAS studies in psychiatry.

We focused here on European ancestry genetic results, as the
currently available datasets are from European participants, but the
immunogenetics of psychiatric risk should be examined in other
ancestries. In addition, the epigenetic datasets used here are pre-
dominantly adult: given the role of developmental insults in psychia-
tric risk, it will be important to investigate genetic enrichment in
immune cells sampled at different developmental stages, including
adolescence. Likewise the immune cell states considered in this ana-
lysis are the canonical states associated with infection and auto-
immunity. It will also be important to explore whether genetic risk
variants modulate immune cell phenotypes induced by exposure to
non-infectious environmental stimuli e.g. stress, especially given that
childhood adversity and other social stressors are known to pro-
foundly increase risk formultiple psychiatric disorders73.We alsoknow
that many psychiatric conditions show sex differences in prevalence,
and we presented enrichment results separately for male and female
fetal brains; but most tissue classes included in the multi-tissue epi-
genetic datasets we analysed were not represented by sex-stratified
data. In particular, appropriate sex-stratified epigenetic data on
immune cells were not openly available, although such data would
likely be informative in further analysis of risks for neuropsychiatric
disorders.

In psychiatry, T cell phenotypes have been most investigated in
schizophrenia74, with some evidence of decreased proliferative
responses to stimulation75. Our findingsmotivate further investigation
of T cell and B cell phenotypes across multiple psychiatric conditions,
with a focus on how trans-risk affects activated T cells (e.g., stimulated
ex-vivo). Functional genomic analysis of T cell subsets from patient
cohorts will be particularly important to directly test for disease-
associated alterations in DNA accessibility, histone modifications,
enhancer-promoter interactions and gene expression.We hypothesize

Fig. 5 | Schematic of potential pathogenic pathways by which genetic risk
variants enriched at epigenetically active sites in T cells could lead to neuronal
changes and ultimately psychiatric disorders. Infection or other stressors may
induce activation of regulatory elements inT cells that are enriched for trans- or cis-
diagnostic risk variants, potentially leading to atypical T cell phenotypes and
downstream activation of innate immune (myeloid) cells in the periphery and CNS
(light blue boxes). Atypical activation of T cells resident in the CNS, or trafficking
into the meninges and brain from the periphery, could adversely affect neuronal

function. Developmentally (light greenbox), T cells are known to controlmicroglial
pruning of neuronal synapses as part of normative brain developmental programs
in childhood and adolescence. Atypical T cells, in genetically-at-risk individuals,
could promote atypical microglial pruning of synapses, contributing to the for-
mation of disconnected networks or circuits in the adult brain. CNS, central ner-
vous system. Parts of the figure were drawn by using pictures from Servier Medical
Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribu-
tion 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).
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that these alterations will be found at those T cell peaks identified in
our analysis as overlapping risk variants. However, there may be
broader epigenetic consequences of risk variants, especially given that
pathway analysis implicated epigenetic regulation processes, which
may occur at sites distant from the risk variants.

In conclusion, genetic risk variants for psychiatric disorders were
significantly enriched at epigenetically active enhancers/promoters in
adaptive immune cells, especially stimulated T cells. This suggests a
mechanistic role for T cells in the pathogenesis of multiple psychiatric
disorders, hypothetically by mediating the interaction between envir-
onmental exposures to biological or social threats and genetic risk
variants.

Methods
Trans- and cis-diagnostic genetic risk variants for psychiatric
disorders
The primary GWAS datasets used for the identification of trans- and
cis-risk genes are listed in Supplementary Table 1. We used summary
statistics from a meta-analysis of trans-diagnostic risk across 8 mental
health or neurodevelopmental disorders1: ASD, bipolar disorder,MDD,
obsessive-compulsive disorder, schizophrenia, anorexia nervosa,
ADHD, and Tourette syndrome. For analysis of cis-risk, i.e. risk of a
specific psychiatric disorder, we separately tested 5 large primary
genome-wide association studies (GWAS) ofMDD76, bipolar disorder52,
schizophrenia77, autism78, and ADHD79. For comparative purposes, we
analysed GWAS results for BMI80, Alzheimer’s disease81, and rheuma-
toid arthritis82. For all disorders except MDD, we selected the largest
publicly available, predominantly-European GWAS dataset; for MDD,
we used a larger recent European GWAS76.

Testing for enrichment of genome-wide genetic risk at reg-
ulatory elements (ROADMAP data)
Stratified linkage disequilibrium score regression (abbreviated as
LDSC throughout this paper) can be used to testwhether genetic risk is
concentrated or enriched in a genomic annotation, e.g., a set of active
regulatory elements in a specific cell type58. S-LDSC hinges on the fact
that the disease association statistic for a given genetic variant
depends on whether that variant is linked to the disease, but also
whether variants in linkage disequilibrium (LD) with that variant are
linked to the disease. By testing whether variants in LD with the
annotation of interest tend to have higher association scores than
variants elsewhere, we can calculate anenrichment score capturing the
tendency of SNP-based heritability for that disease to be co-located
with that annotation58. We used this method to test for enrichment of
psychiatric risk variants at active regulatory elements in 88 cell or
tissue types.

For a given tissue, CHiP-seq data assaying multiple histone marks
can be integrated to segment the genome into annotations repre-
senting different functional epigenetic states, e.g., enhancers, pro-
moters, repressed regions54. The IDEAS algorithm83 leverages shared
features across cell types to improve this segmentation. Lacking a
strong prior hypothesis about which particular regulatory elements in
immune cells would be implicated by psychiatric risk, we generated a
simple functional annotation of active states for each tissue in the
RoadmapEpigenomics Dataset, which includes samples from all major
organ systems including brain, heart, muscle, gut, adipose, skin,
reproductive and immune tissues54. Data for a given tissue or cell type
sometimes come from multiple donors—as is the case for most of the
brain and immune samples—and sometimes from single donors (see
https://egg2.wustl.edu/roadmap/web_portal/meta.html for metadata).
Immune cell subsets were magnetically sorted from live donor blood
samples; brain tissues were homogenized post-mortem samples. For
each Roadmap tissue/cell type, we generated a whole genome binary
annotation of active regulatory elements (Fig. 1a, Supplementary Fig. 1)
from IDEAS annotations based on 5 epigenetic histone marks

(H3K4me3, H3K4me1, H3K36me3, H3K27me3 and H3K9me3). We
combined the 6 IDEAS annotations representing active promoters and
enhancers to generate a single binary annotation of active regulatory
elements for each tissue. More exactly, we merged the IDEAS anno-
tations for active transcription start sites (10_TssA); regions flanking
active TSS (8_TssAFlnk); weak TSS (14_TssWk); enhancers (4_Enh);
genic enhancers (6_EnhG); and genic enhancers associated with tran-
scription (17_EnhGA), following a previous definition of active states84.
We generated partitioned linkage disequilibrium (LD) scores for each
tissue as recommended, using HapMap3 SNPs58.

We then used s-LDSC to test the enrichment of psychiatric risk
variants in each cell type, using a separate model for each cell type, as
is standard. Summary statistics were preprocessed using the LDSC
recommended script munge_sumstats.py and we performed s-LDSC
for each tissue in the Roadmap dataset, using recommended settings,
excluding the extended MHC region (GRCh37 chr6:25-34Mb). The P-
values for s-LDSC are one-sided tests that the regression coefficient
corresponding to the cell type specific annotation of interest is greater
than zero. The regression coefficient corresponds to the change in per-
SNP heritability due to a given annotation beyond that explained by
the baseline model and other annotations and can be interpreted as
the effect size for that annotation. P-valueswere corrected formultiple
comparisons across tissues using Benjamini-Hochberg false discovery
rate. We coloured heatmaps by P-value rank to aid comparison across
disorders or annotations which are differently powered.

We ran the analyses for male and female fetal brain separately as
these sex-stratified datasets were provided separately by the Roadmap
Epigenomics Consortium (Roadmap Epigenomics Consortium et al.
2015 Nature) and our analysis of sex-stratified data was compatible
with prior multi-tissue analyses of Roadmap data49,83. All analyses were
thus conducted and reported using tissue classes, sex-stratified for
somebut not all tissues, as definedbyRoadmap (the full list is shown in
Supplementary Fig. 1).

To further dissect the s-LDSC results for the active annotations,
we also performed s-LDSC for the 3 types of genomic element com-
prising the active annotation: promoters, enhancers, and genic
enhancers. We generated partitioned LD scores for the promoters
(10_TssA, 8_TssAFlnk and 14_TssWk), enhancers (4_Enh) and genic
enhancers (6_EnhG and 17_EnhGA) (Fig. 1d, Supplementary Fig. 4a)
then performed s-LDSC using default settings for each of these
annotations in the Roadmap immune tissues.

To account for the possible confounding effect of shared reg-
ulatory elements between brain and immune tissues, we also per-
formed brain-conditioned enrichment analyses: for each tissue’s
s-LDSC model, we added terms for the active regulatory annotations
for possibly confounding brain regions. In the LDSC model, the coef-
ficient τ (which captures the contribution to SNP-heritability) for a
given genomic category/annotation (C) is estimated by regressing χ2

(the SNP association statistics) against lð j,CÞ (the linkage dis-
quilibrium score for SNP j with respect to category/annotation C):

E χ2
� �

~
Xn

C = 1

τCl j,Cð Þ ð1Þ

For the original s-LDSC models, the annotations (C) included in
each multiple regression were the cell specific annotation of interest
plus the standard non-cell type specific annotations (baseline v1.2, see
https://storage.googleapis.com/broad-alkesgroup-public/LDSCORE/
readme_baseline_versions). For the brain-conditioned models, the
categories in each regression additionally included the annotations for
the potentially-confounding brain regions: e.g., in Fig. 1c, the 10 sig-
nificantly enriched brain annotations from Fig. 1a were also included in
the s-LDSC model for each immune annotation.

SNP heritability Z-scores (heritability / standard error) and s-LDSC
Z-scores (enrichment coefficient / standard error) were estimated
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using LDSC. Confidence intervals for Spearman correlations were
generated by bootstrapping (10,000 replicates). To compare the
results of the original and brain-conditioned analyses, we used a one-
sided two-sample Z-test as follows, where β1 is the coefficient for the
annotation in the original analysis and β2 is the coefficient in the brain-
conditionedal analysis. SE is the standard error of the coefficient for
theoriginal (SE1) or conditional (SE2) analysis.Z-scoreswereconverted
to P-values.

Z =
β1 � β2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðSE1Þ2 + ðSE2Þ2
q ð2Þ

Testing for enrichment of genetic risk variants in cell-type spe-
cific active promoters/enhancers
To compare enrichment of genetic risk at regulatory marks in dif-
ferent immune cell subsets, and immune cells stimulated under dif-
ferent conditions, we used the CHEERS algorithm42. CHEERS
quantifies the overlap of lead (independently significant) genetic risk
variants with cell-specific epigenetic peaks. Crucially, CHEERS facil-
itates the comparison of similar cell types or conditions, which tend
to have similar epigenetic profiles, by calculating peak specificity
scores, indicating how specific a peak is to that cell type relative to
other cell types, then quantifying cell-type enrichment as the
specificity-weighted sum of overlaps of disease risk variants with
these peaks. While s-LDSC leverages genome wide-information,
CHEERS focuses on risk loci whichmeet genome-wide significance. In
brief, CHEERS identifies histone acetylation peaks (or other genomic
annotations) which overlap lead variants or variants in strong LD
(r2 > 0.8) with lead variants; then calculates the mean cell type spe-
cificity score (in that cell type) of those peaks, which captures the
degree of enrichment of that cell type for a given disorder. Seeking
overlap between regulatory elements and any variant in the LD block
of a given lead variant ensures that the CHEERS method is not sen-
sitive to subtle differences in tag variants between different asso-
ciation studies. One-sided P-values were reported from a discrete
uniform distribution (reflecting the ranking of specificity scores
within each cell type) and corrected for multiple comparisons across
tissues using a Bonferroni correction. To identify lead disease risk
loci, all summary statistics were processed consistently: liftover to
hg38, harmonization, removal of MHC region, and distance-based
clumping (see below for more detail). We applied CHEERS using two
human H3K27ac ChIP-seq datasets: (i) BLUEPRINT consortium data
from 19 sorted unstimulated immune cells subsets (see Fig. 3a)55 and
(ii) the Soskic immune stimulation data from sorted and ex vivo sti-
mulated immune cells42. H3K27ac marks active (rather than inactive
or poised) enhancer and promoter regions53,85. In the Soskic immune
stimulation experiment, macrophages, naïve CD4+ T cells and
memory CD4+ T cells were stimulated using different cytokine
cocktails associated with autoimmunity or known to promote dif-
ferent cell fates (see Fig. 4a). In addition, generic T cell receptor and
CD28 co-stimulation signals were provided in all stimulated T cell
conditions using beads coated with anti-CD3 and anti-CD28 anti-
bodies. H3K27ac data were processed42 to obtain cell-type specificity
scores for H3K27ac peaks in each cell type or state. Here, we ran
CHEERS using r2 linkage disequilibrium values taken from unrelated
European individuals from the 1000 genomes dataset86, calculated
using PLINK87.

To compare the enrichment between stimulated and unstimu-
lated cell subsets, we used a one-sided, two-sample Z-test as follows,
where x1 is the mean specificity rank for the stimulated cell subset and
x2 is the mean specificity rank for the corresponding unstimulated cell
subset. SE is the standard error of the mean and depends on the
number of variants overlapping peaks. For a given disorder, SE is the

same across different annotations, as peaks are called across the
dataset as a whole. Z-scores were converted to P-values.

Z =
x1 � x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðSEÞ2

q ð3Þ

The three epigenetic datasets we used have some overlap in the
immune cell subsets represented. For example, CD4+ T cells were
represented in all three datasets; monocytes and B cells were repre-
sented in both the Roadmap and Blueprint datasets; andmacrophages
were represented in both the Roadmap and Soskic datasets. However,
the annotations used for the Roadmap analysis (“active states”, com-
prising enhancers and promoters defined using multiple histone
marks) are different from the annotations used for the Blueprint and
Soskic analyses (cell subtype-specific H3K27ac marks).

Identification of independent risk loci
To identify independently significant loci for each disorder, we
reprocessed all summary statistics consistently. Given the lack of well-
matched linkage disequilibrium data for the populations underlying
these studies, we aimed to conservatively identify independent lead
variants without using LD information or conditional analysis within
loci. We first lifted over the summary statistics (autosomal chromo-
somes only) and harmonized variants to the reference strand using the
EBI summary statistics snakemake pipeline (https://github.com/
EBISPOT/gwas-sumstats-harmoniser). Alleles with a minor allele
count <10 were filtered out; where minor allele counts were not
available, these were imputed from GnomAD v2.1.188 European fre-
quencies lifted over to GRCh38.We then filtered all summary statistics
to those variants also present at minor allele frequency >0.01 in 1000
genomes phase 3 (unrelated European participants) called against
GRCh3886. To find independently significant lead loci, we used the
Open Targets genetics finemapping pipeline (https://github.com/
opentargets/genetics-finemapping) to filter summary statistics to
variants with P < 5 × 10−8 (excluding MHC region chr6:28510120-
33480577) and performed distance-based clumping of significant
variants with a clumping distance of ±500 kb. The number of lead
variants identified for each disorder is shown in Supplementary
Table 1. ASD was excluded from downstream CHEERS analysis as only
two significant loci were detected.

MDD-schizophrenia discordant T cell acetylation peaks
For the Blueprint and Soskic datasets, MDD-schizophrenia discordant
T cell acetylation peaks were defined as those T cell-specific peaks of
histone acetylation that were co-located with cis-diagnostic variants
defined by the GWAS meta-analysis of MDD but not schizophrenia (or
by the GWAS meta-analysis of schizophrenia but not MDD). In each
dataset, T cell-specific peaks were consistently defined as those peaks
with CHEERS specificity rank >0.9 for any T cell subset. To investigate
the properties of these discordant H3K27acmarks,we annotated them
by the type of regulatory element (promoter, genic enhancer, or non-
genic enhancer), as defined by the Roadmap dataset. For the analysis
of discordant T cell peaks in unstimulated cells from the Blueprint
dataset, we used regulatory elements defined in unstimulated per-
ipheral blood T cells from the Roadmap dataset; for the analysis of
discordant T cell peaks in stimulated CD4+ T cells from the Soskic
dataset, we used regulatory elements defined in PMA-stimulated CD4+

T cells in the Roadmap dataset. Overlaps were counted as co-location
of one or more base pairs of the H3K27ac peak with the relevant reg-
ulatory element.

We also examinedwhether theMDD-schizophrenia discordant T
cell histone acetylation peaks were truly discordant between dis-
orders, or whether their apparent discordance simply reflected
thresholding of association statistics, and hence loss of information
about subgenome-wide significant associations overlapping the
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acetylation peak in the non-implicated disorder. To investigate this
further, at each site of co-location of MDD or schizophrenia
risk variants with T cell acetylation peaks (“variant-peak overlaps”),
we compared the GWAS association statistics for MDD and
schizophrenia.

Over-representation analysis
Following CHEERS analysis, to test which biological pathways were
implicated in T cells, we identified those T cell-specific peaks over-
lapped by disease risk variants, selected the genes overlapping those
peaks or with transcription start sites nearest to those peaks, then
performed pathway analysis on those genes. More specifically, to
defineT cell specific peaks, we selected (for a givendisorder) the union
of peaks highly specific (CHEERS specificity rank >0.9) to any T cell
subset in the Soskic immune stimulation dataset which were also
overlapped by risk variants for that disorder. For each peak, we used
the ChIPseeker seq2gene function89 to identify the union of those
genes overlapping the peak and those genes with a promoter region
overlapping the peak, or (if no promoter overlapped the peak) the
gene with the nearest transcription start site (up to a maximum of 10
kilobases away). The selected genes were tested for enrichment of GO
biological processes and Reactome pathways using a one-sided
hypergeometric test via the clusterProfiler enricher function, with
Benjamini-Hochberg correction for multiple testing90.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All datasets used for this analysis are publicly available (see Supple-
mentary Table 2). The partitioned LD scores for active regulatory ele-
ments in Roadmap tissues generated in this study have beendeposited
at Zenodo under accession code 515366191.

Code availability
All code used for this analysis is publicly available. Custom code is
provided at https://github.com/maryellenlynall/psychimmgen2021
and archived at Zenodo under accession code 7125660 [https://doi.
org/10.5281/zenodo.7125661]92. For other code used see Supplemen-
tary Table 2.
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