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and FitzHugh–Nagumo models. . . . . . . . . . . . . . . . . . . . . . . 25

Figure 2.4: Comparison with other methods on FitzHugh–Nagumo model. We
create initializations by adding Gaussian noise of variance σ2θ to the
true parameters. We create 10 sets of observations and initializations
per each σ2θ and report the errors. Each error bar corresponds to the
error in one of the experiments. . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.5: Comparison with other methods on Rössler attractor. The settings are
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ABSTRACT OF THE DISSERTATION

Block Coordinate Descent Proximal Method

for ODE Estimation and Discovery

by

Ramin Raziperchikolaei

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California Merced, 2019

Professor Paul P. Maglio, Chair

Ordinary differential equations (ODE) are used extensively in science and engineering to

model dynamical systems. In this dissertation, we use noisy observations to address two

learning tasks regarding dynamical systems. The first one is called ODE parameter es-

timation, where the shape of the ODEs are known, and we try to learn (estimate) the

parameters. The second task is called learning the governing equations, where we learn

both the shape and the parameters of the ODEs.

In the first part of this dissertation, we address the ODE parameter estimation

problem. We propose and analyze a block coordinate descent proximal algorithm (BCD-

prox) for simultaneous filtering and parameter estimation of ODE models. The main idea

is to learn the states and the parameters in an alternation, where the states are restricted

to change slowly from one iteration to the next. As we show on ODE systems with up to

d = 40 dimensions, as compared to state-of-the-art methods, BCD-prox exhibits increased

robustness (to noise, parameter initialization, and hyperparameters), decreased training

times, and improved accuracy of both filtered states and estimated parameters. We show

how BCD-prox can be used with multistep numerical discretizations, and we establish

convergence of BCD-prox under hypotheses that include real systems of interest.

xi



In the second part of this dissertation, we address the problem of learning the

governing equations given the noisy observations. While we use powerful neural networks

to learn the ODEs, we propose a novel structure that makes our network interpretable. The

idea is to use the neural network to learn a set of one-dimensional and multi-dimensional

shape functions, whose linear combinations give use the equations. To make our method

robust to the noise in the observations, we learn the clean states and the parameters of

the network simultaneously using the block coordinate descent proximal algorithm (BCD-

prox). As we show in our experiments, our method is robust to its hyperparameter, robust

to the noise, and outperforms the state-of-the-art methods by achieving more accurate

state predictions.
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Chapter 1

Introduction

Finite-dimensional dynamical systems form a cornerstone of mathematical mod-

eling in the sciences and engineering. Usually, these systems take the form of systems of

ordinary differential equations (ODEs). ODEs help us to understand, describe, and predict

the behavior and evolution of a given process, and the way the current states of the system

affect the future states. The dynamical systems and their differential equations have been

used widely in different areas, such as biology, chemistry, ecology, genetics, etc.

In some cases, it might be possible to derive the ODEs from the first principles

using the data and some knowledge of the system. In these cases, it is extremely common to

set the parameters of the ODEs using the observed data. Our first goal in this dissertation

is to solve this ODE parameter estimation problem, which means learning the parameters

given the noisy observations.

In other cases, the system is so complex that it is impossible to use the first

principles to come up with the ODEs. The second goal of this dissertation is to learn

interpretable functions to accurately model the complex dynamical systems using noisy

observations.

We first define some notations and then get into the details of each of the two

problems in the next subsections. Let us consider a dynamical system in Rd with state
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Figure 1.1: An example of ODE parameter estimation problem. Left: the number of
predators (lynx) and prey (snowshoe hare) over 90 years. Right: the number of predators
and prey by simulation of the Lotka–Volterra model in (1.2).

x(t) at time t. The time-evolution of the state is given by

ẋ(t) =
dx(t)

dt
= f(x(t);θ). (1.1)

where f : Rd → Rd is a vector field with parameters θ ∈ Rp. At T distinct times {ti}Ti=1,

we are given the noisy observations y(ti) ∈ Rd. Note that we do not have access to the

clean data.

1.1 ODE Parameter Estimation

As mentioned before, in some cases, it is possible to derive the ODEs from the

first principles, where the parameters have to be estimated from the data. We explain this

problem using the predator-prey example. Assume there are only two types of animals in a

closed eco-system: predator and prey. Obviously, there is a relation between the number of

predators and prey at a specific time with their numbers at a later time. One of the classic

studies of predator-prey interaction is the 90-year dataset of snowshoe hare and lynx pelts

purchased by the Hudson’s Bay Company of Canada [16]. The left plot of Fig. 1.1 shows

the number of predators (blue) and prey (red) over 90 years, which have been reported in

this dataset.
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Several differential equations have been proposed to describe this dynamical sys-

tem. One of the popular ones is the Lotka–Volterra [30] equations. Assume x1 represents

the number of predators and x0 represents the number of prey. The Lotka–Volterra model

contains the following two nonlinear equations:

dx0
dt

= θ0x0 − θ1x0x1
dx1
dt

= θ2x0x1 − θ3x1. (1.2)

Note that the four parameters θ0, . . . , θ3 are unknown and one needs to estimate them using

the noisy observations. That is why we call this the ODE parameter estimation problem.

To see why the Lotka–Volterra model in (1.2) is a reasonable ODE for this prob-

lem, we run the simulation and generate the number of predators and prey using the ODEs

in (1.2). We set the parameters to θ0 = 2, θ1 = 1, θ2 = 4, and θ3 = 1 and start from x0 = 1.5

and x1 = 6. We show the results in the right curve of Fig. 1.1. As we can see, the generated

(simulated) data looks similar to the real data (look at the oscillations of the curves and

the lag of the predator curve).

The final goal here is to set the parameters θ such that the simulated data from

the ODEs becomes as close as possible to the clean data. This problem is challenging for

two main reasons: (1) the data is noisy (no access to the clean data), and (2) most ODEs

do not have an analytical solution. Without these two challenges, the parameters could be

estimated by solving a simple regression problem.

Literature review. There have been several different approaches to estimate ODE pa-

rameters. Nonlinear least squares methods start with an initial guess for the parame-

ters that is iteratively updated to bring the model’s predictions close to measurements

[4, 5, 22, 23]. These methods are slow and have convergence issues when the initial param-

eters are far from the true parameters.

Varah [54] first suggested to fit splines to the noisy observations, and then consider

these splines as the clean states. Since the derivatives of the splines can be found easily,

the parameters are estimated by solving a regression problem. The idea of fitting splines

and other smooth functions to the observations has been used extensively in the literature

[9, 10, 14, 20, 28, 38, 43].
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The idea of learning the splines and parameters jointly, leading to better results,

has been explored [38, 43]. Spline-based methods have many hyperparameters that require

careful tuning (such as the smoothing parameter, the number of knots, the positions of the

knots, etc.), and are also sensitive to initialization.

Bayesian approaches have also been very popular recently [8, 15, 18, 19]. Such

approaches typically have large training times and depend sensitively on a large number

of hyperparameters (priors, noise variances, etc.). Another disadvantage of these methods,

as has been mentioned in [19], is that they cannot simultaneously learn clean states and

parameters. In [19], a variational inference approach has been used to overcome this

problem, but the method is not applicable to all ODEs. Often, Bayesian methods make

multiple assumptions about the distribution of the data and noise.

Finally, let us mention that the problem we solve here is that of simultaneous

filtering (recovering clean states from noisy observations) and parameter estimation. Many

well-known nonlinear ODE filtering methods, including extended and ensemble Kalman

filters as well as particle filters, are online methods that make Gaussian assumptions.

Summary of our work. Motivated by recent advances in alternating minimization

[11, 27, 57], block coordinate descent (BCD) [56], and proximal methods [37, 52], we study

a BCD proximal algorithm (BCD-prox) to solve the simultaneous filtering and parameter

estimation problem. Here filtering means recovering clean ODE states from noisy observa-

tions. BCD-prox works by minimizing a unified objective function that directly measures

how well the states and parameters satisfy the ODE system, in contrast to other methods

that use separate objectives. BCD-prox learns the states directly in the original space,

instead of learning them indirectly by fitting a smoothed function to the observations. Un-

der hypotheses that include systems of real interest, BCD-prox is provably convergent. In

comparison with other methods, BCD-prox is more robust with respect to noise, parameter

initialization, and hyperparameters. BCD-prox is also easy to implement and runs quickly.

BCD-prox learns parameters and states jointly, but it does not fit a smooth func-

tion to the observations. Via this approach, BCD-prox reduces the number of hyperpa-

rameters to one. BCD-prox avoids assumptions (i.e., spline or other smooth estimator)
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Figure 1.2: An example of a highly nonlinear dynamical system, where we need to learn
governing equations. This figure shows the trajectory of a fruit fly in a wind tunnel which
contains an attractive food odor.

regarding the shape of the filtered states. Furthermore, both the BCD and proximal

components of the algorithm enable it to step slowly away from a poor initial choice of

parameters. In this way, BCD-prox remedies the problems of other methods.

1.2 Learning Governing Equations

In many cases, it is impossible to use first principals to come up with the ODEs

of the complicated dynamical systems. We have shown one example of such systems in

Fig. 1.2 [36]. This figure shows the trajectory of a real fruit fly in a wind tunnel which

contains an attractive food odor [36]. The goal is to find out how the fruit flies behave

and make decisions in the presence of the odors. Fig. 1.2 shows the (x, y, z) position of a

fruit flight over time. This is a complicated and highly nonlinear dynamical system. The

goal is to use machine learning techniques to learn the governing equations given the noisy

observations.

Literature review. The problem of automatically generating ODE models from time

series has attracted significant recent interest [7, 12, 39, 40, 48–50, 53]. Several methods

try to learn interpretable models [6, 21, 31, 32, 45, 47, 55]. The most popular work in this

category is called SINDy and proposed by Brunton et al. [6]. The idea is to first create a

large library of candidate nonlinear functions of the observations. This library may contain

constant, polynomial, trigonometric, etc., functions. Then, they set up a sparse regression



6

problem to select the functions. The main issue with this approach is that since the library

is pre-determined it cannot learn complicated models. Another issue is how to choose the

functions in the library.

The non-interpretable methods use black-box machine learning techniques to

model the complex systems [41, 42, 46]. These methods have, like our method, employed

neural networks. Raissi et al. [42] first applies multi-step methods to discretize the ODE

(1.1) in time. Then, it replaces the vector field f by a neural network and learns its pa-

rameters by minimizing the distance between the two sides of the time-discretized version

of the ODE formulation in (1.1). Rudy et al. [46] uses the same objective function as [42].

The only difference is that to make it more robust to the noise, they optimize the objective

over both the parameters of the network and the states, and add a regularization term to

keep the states close to the noisy observations. However, both methods work well primarily

when used with time series with zero to low levels of noise.

Summary of our work. We develop a method to automatically construct ODE models

from noisy time series. Though we employ neural networks to parameterize the ODE’s

right-hand side (or vector field), we constrain the networks’ architecture in such a way that

the resulting model is interpretable. Essentially, the network uses training data to learn

an appropriate family of one-dimensional shape functions whose tensor products can be

combined linearly to accurately represent the vector field. These learned one-dimensional

shape functions can be visualized and understood in the same way that we understand,

e.g., Bessel, Hermite, and other special functions that arise naturally in scientific contexts.

We define our objective function based on the time-discretized formulation of the

ODEs in (1.1). We optimize the objective function over the states and the parameters of the

neural network alternatively. We have built into our alternating minimization algorithm

a proximal step that enables accurate modeling for moderate to highly noisy time series.

Over the course of many proximal steps, the algorithm filters its input (noisy time series),

producing as output both a reconstruction of the system’s clean states together with the

system’s vector field. Reproducible numerical experiments clearly show that our method

outperforms three competing methods [7, 41, 42, 46].
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1.3 Outline

The dissertation is structured in the following way. In chapter 2, we focus on the

ODE parameter estimation problem. In section 2.1, we define the problem mathematically

and define the notations that we use throughout the chapter. In section 2.2 we give the

issues of the one the most important previous works, which is called iteratively Refined

Principal Differential Analysis (iPDA). In section 2.3, we motivate our solution, define

the objective function, propose a new way to optimize it, mention the advantages of our

method over the iPDA approach, and explain how to apply our algorithm using higher-

order discretizations. In section 2.4, we discuss the convergence of our algorithm from

the practical and theoretical point of views. In section 2.5, we introduce several ODEs,

define the evaluation metrics, run several experiments to investigate the robustness of our

algorithm to the amount of noise and the hyperparameters, and compare our method with

the state-of-the-art methods.

In chapter 3, we focus on learning the governing equations. In section 3.1, we

define the problem mathematically and define the notations that we use throughout the

chapter. In section 3.2 we explain how to parameterize the vector field in an interpretable

manner, we show how to model the parameterized vector field using the neural networks,

we give the details of the objective function and the optimization steps, and we discuss how

to use higher-order discretizations in our algorithm. In section 3.3, we introduce several

ODEs, define the evaluation metrics, run several experiments to investigate the robustness

of our algorithm to the amount of noise and the hyperparameters, and compare our method

with the state-of-the-art methods. At the end of this section, we visualize some of the shape

functions learned by our network to confirm its interpretability.



Chapter 2

BCD Proximal Method for

Simultaneous Filtering and

Parameter Estimation

2.1 Problem Definition: ODE Parameter Estimation

Consider a dynamical system in Rd with state x(t) at time t. We assume the

system depends on a parameter θ ∈ Rp, in which case the time-evolution of the state is

given by

ẋ(t) =
dx(t)

dt
= f(x(t);θ). (2.1)

At T distinct times {ti}Ti=1, we have noisy observations y(ti) ∈ Rd:

y(ti) = x(ti) + z(ti), i = 1, . . . , T (2.2)

where z(ti) ∈ Rd is the noise of the observation at time ti. We represent the set of T

d-dimensional states, noises, and observations by X,Z, and Y ∈ Rd×T , respectively. For

concision, in what follows, we write the time ti as a subscript, i.e., x(ti) instead of x(ti).

In this chapter, we assume that the form of the vector field f(·) is known. The

goal is to use Y to estimate θ and X (or equivalently Z).

8
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2.2 Iteratively Refined Principal Differential Analysis (iPDA)

One of the most successful approaches in learning ODE parameters is iPDA [38,

43]. Since this approach is relevant to what we are proposing, we explain iPDA and its

issues here.

The main idea of iPDA is to learn the states X and the parameters θ jointly. It

has the following objective function:

min
x(t),θ

∫ ∥∥∥∥dx(t)

dt
− f(x(t);θ)

∥∥∥∥2 dt+ λ
∑
i

∥∥x(ti) − y(ti)

∥∥2, (2.3)

where x(t) is a smooth spline, which is initialized by fitting the spline to the set of obser-

vations. The left term of the objective function is the parameter estimation term, and the

right term is the regularization term. The objective function in (2.3) is minimized in the

following two steps, iteratively:

1. Optimize over x(t) given the parameters θ. This will be achieved by learning a smooth

spline.

2. Optimize over θ by fixing x(t). Note that the optimization only includes the param-

eter estimation term since the regularization term does not depend on θ.

The main issue with the objective function in (2.3) is the regularization term.

This term determines how far the clean states are going to be from noisy observations. If

we set λ to a large value, then x(t) remains close to the y(t), and this could introduce a large

error for the estimation term. If we set λ to a small value, then x(t) can find a better local

optima for the estimation term, but it could get far away from the noisy observation. It is

a challenging task to set λ to the right value for two reasons: 1) this value should change

every time the amount of noise or the type of ODE changes, and 2) in ODE parameter

estimation, we do not have access to the clean data (all we have is the noisy observations),

so we cannot find the right λ by cross validation. We get to this point later when we

explain our proposed approach.

Another (less significant) problem with iPDA is that (similar to all spline-based

methods) it needs to set a lot of hyperparameters carefully to achieve reasonable results.
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2.3 Our BCD-prox Approach

In this chapter, we propose a method to address both issues of the iPDA approach.

The first step of our approach is to discretize the ODE (2.1) in time using multistep

methods. In this section, we focus on the explicit Euler method (which is a one-step

method) because it is intuitive, makes our formulation simple, and helps the reader to

focus purely on our novel approach. Later, we explain how higher-order multistep methods

can be used in our formulation. We also compare multistep methods with different orders

in our experimental results section.

The explicit Euler method discretizes the ODE (2.1) for the T time points as

follows:

x(ti+1) − x(ti) = f(x(ti);θ)∆i, i = 1, ..., T − 1 (2.4)

where ∆i = ti+1 − ti. In (2.4), both states X and parameters θ are unknown; we are

given only the noisy observations Y. With this discretization, we formulate our objective

function:

E(X,θ) =
∑T−1

i=1

∥∥x(ti+1) − x(ti) − f(x(ti);θ)∆i

∥∥2 (2.5)

Before continuing, it is worth analyzing our objective function E. Let us define fidelity

as the degree to which the estimated states X and parameters θ actually satisfy the

ODE. Our objective function directly measures time-discretized fidelity; if E = 0, then

we have a solution to the time-discretized ODE. Note that the observations Y do not

appear explicitly—we use Y to initialize Alg. (2.1).

In contrast, most prior work maximizes the likelihood function that stems from

assuming the noise Z in (2.2) is Gaussian with mean zero and covariance matrix Σ. In such

approaches, fidelity (as defined above) is treated as a secondary term, e.g., using a penalty

term [43] or using a probabilistic model that accounts for temporal discretization errors

[2, 3]. In the present work, we seek to show that making fidelity the primary objective

yields better estimates of X and θ.
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Theorem 2.1. The objective function E in (2.5) has an infinite number of optimal solu-

tions, each of which makes the objective value 0.

Proof. Assign arbitrary real vectors to θ and x(t1). Then we use the following equation

sequentially with i = 1, 2, . . . , T − 1:

x(ti+1) = x(ti) + f(x(ti);θ)∆i. (2.6)

By computing the states x(t2), . . . ,x(tT ) in this way, we ensure that each term in the

objective function E(X,θ)—see (2.5)—is zero. Since the objective function in (2.5) is

always greater than or equal to zero, we achieve a global minimum. Because θ and x(t1)

are arbitrary, an infinite number of solutions exist.

It is easy to see that Theorem 2.1 generalizes to the case where we replace the

Euler method—in the definition of E(X,θ)—by a higher-order, explicit ODE solver.

Additionally, suppose we fix θ and consider E to be a function of X alone. Then,

if we also fix the value of x(t1), we see that there is a unique global minimizer. We return

to this point below when we discuss minimizing over X.

Now the question is how to optimize (2.5) to end up in a global or local optimum

which gives us a good estimate of the true parameters and states. We propose to optimize

(2.5) iteratively and let the states change slowly from one iteration to the next. Specifically,

we define the following Euler BCD-proximal objective function:

X∗(n),θ∗(n) = argmin
θ,X

{
E(X,θ) + λ

∥∥∥X−X∗(n−1)
∥∥∥2} , X∗(0) = Y, (2.7)

where we represent the states and parameters learned at iteration n by X∗(n) and θ∗(n).

We use a one-step alternating optimization to learn the states and parameters at each

iteration n. To be more specific, we repeat the following until convergence:

learning: θ∗(n) = argmin
θ

{
E(X∗(n−1),θ)

}
(2.8a)

filtering: X∗(n) = argmin
X

{
E(X,θ∗(n)) + λ

∥∥∥X−X∗(n−1)
∥∥∥2} . (2.8b)

Now we can explain why we call our approach BCD-prox. Repeating the two steps in

(2.8) is the same as applying Block Coordinate Descent (BCD) of Gauss–Seidel type to
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our original objective function in (2.5), with the proximal update over the states. The

pseudocode of our method can be found in Algorithm 2.1.

Before we get into the details of optimization, let us take another look at our

BCD-prox approach and compare it with the iPDA. In BCD-prox, we use the data Y

to initialize the algorithm; subsequently, the algorithm may take many proximal steps to

reach a desired optimum. If the data Y is heavily contaminated with noise, it may be

wise to move far away from Y as we iterate. In contrast, iPDA’s regularization term is

λ‖X−Y‖2. Roughly speaking, iPDA searches for X in a neighborhood of Y; the diameter

of this neighborhood is inversely related to λ. When the magnitude of the noise Z is small,

searching for X in a small neighborhood of Y is reasonable. For real data problems in

which the magnitude of Z is unknown, however, choosing λ a priori becomes difficult.

2.3.1 Optimization over the ODE parameters

At iteration n, we fix X to equal the learned states from the previous iteration:

X = X∗(n−1), and then minimize the objective function (2.5) over θ only:

θ∗(n) = argmin
θ

E(X∗(n−1),θ) = argmin
θ

∑T−1
i=1

∥∥∥x∗(n−1)(ti+1)
− x

∗(n−1)
(ti)

− f(x
∗(n−1)
(ti)

;θ)∆i

∥∥∥2 (2.9)

This is a d-dimensional regression problem where the ith input and output are x
∗(n−1)
(ti)

and (x
∗(n−1)
(ti+1)

− x
∗(n−1)
(ti)

)/∆i, respectively. We optimize this objective using the LBFGS

algorithm, implemented in Python via the scipy.optimize.minimize function. Throughout

this work, when using LBFGS, we use automatic differentiation to supply the optimizer

with gradients of the objective function.

2.3.2 Optimization over the states X

At iteration n, we fix θ to equal the parameters learned in the previous step:

θ = θ∗(n). By Theorem 2.1, directly minimizing E(X,θ∗(n)) will yield a global minimizer

such that E = 0, terminating the optimization procedure. To avoid this fate, we use

proximal updates in learning the states:

X∗(n) = argmin
X

{
E(X,θ∗(n)) + λ

∥∥∥X−X∗(n−1)
∥∥∥2} , (2.10)
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where E(X,θ) has been defined in (2.5). For λ > 0, the penalty term encourages X∗(n)

to remain close to X∗(n−1). As we increase λ, we tighten this closeness. To optimize this

objective function, we again use the LBFGS algorithm, as in the first step.

Here, we motivate (2.10) using the notion of proximal operators [37]. Let us fix

θ = θ∗(n). When the ∆i are all identically zero, the objective function E reduces to a

quadratic form:
T−1∑
i=1

‖x(ti+1) − x(ti)‖2.

If we now fix x(t1), the Hessian with respect to the remaining variables X2: = {x(ti)}Ti=2 has

strictly positive eigenvalues. The eigenvalues of the Hessian of E are continuous functions

of the parameters ∆i; hence there exists ε > 0 such that if 0 ≤ ∆i < ε, the Hessian remains

positive definite. The upshot is that, under these conditions, Ẽ(X2:) = E(x(t1),X2:,θ
∗(n))

is a strictly convex function of X2:. This is why it has a unique global minimizer X̂(n), as

mentioned above.

Additionally, because Ẽ is convex, we can form the proximal operator

prox
µẼ

(X∗(n−1)) = argmin
X2:

{
Ẽ(X2:) + (2µ)−1‖X2: −X

∗(n−1)
2: ‖2

}
(2.11)

We see that when µ → +∞, the proximal step returns X̂(n). For µ > 0 sufficiently small,

as shown in [37], this proximal step is approximately equal to a gradient descent step:

prox
µẼ

(X∗(n−1)) = X
∗(n−1)
2: − µ∇Ẽ(X

∗(n−1)
2: ) + o(µ) (2.12)

One can see that our λ in (2.10) plays the role of (2µ)−1 in (2.11). Hence large values of

λ correspond to small gradient descent step sizes, and vice versa.

Though E in (2.10) is non-convex, we can view it as a set-valued proximal operator

[26]; still, the analogy with convex proximal operators gives valuable intuition. When λ = 0,

we see that (2.10) ignores X∗(n−1) and directly outputs X̂(n) with x(t1) arbitrary. As λ

increases, (2.10) approximates a small step that starts from X∗(n−1) and proceeds in the

direction of the minimizer X̂(n).
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Algorithm 2.1 Pseudo-code of our proposed method for ODE parameter estimation

Input: A set of T noisy observations Y = [y(t1), . . . ,y(tT )] ∈ Rd×T , the time differences

{∆i = ti+1 − ti}T−1i=1 , the shape of function f(·) in (2.1), the value of the hyperparameter

λ, and the initial guess of the parameters θ∗(0).

1: X∗(0) = Y

2: n = 0

3: repeat

4: n = n+ 1

5: • Compute θ∗(n) given X∗(n−1) via (2.8a) [Euler] or (2.15a) [multistep].

6: • Compute X∗(n) given θ∗(n) via (2.8b) [Euler] or (2.15b) [multistep].

7: until convergence

8: Compute the predicted states X̂ by repeatedly applying (2.6) [Euler] or (2.13) [multi-

step], where θ = θ∗(n) and x(t1) = x
∗(n)
(t1)

.

9: return θ∗(n) and X̂ as the estimated parameters and predicted states.

2.3.3 Higher-Order discretization

As we mentioned before, our approach is not limited to the Euler discretization.

Here, we show that it is straightforward to use higher-order discretization methods.

The idea of multistep (m-step) methods is to use the previous m states to predict

the next state. Let us consider the general formulation of the explicit linear m-step method

to discretize the ODE (2.1):

x(ti+1) =
m−1∑
j=0

ajx(ti−j) + ∆i

m−1∑
j=0

bjf(x(i−j);θ), (2.13)

where ∆i is the time step. There are several strategies to determine the coefficients {aj}m−1j=0

and {bj}m−1j=0 . Each strategy leads to a specific family of multistep methods. For example,

the Adams-Bashforth method approximates f(·) with a polynomial of order m to find the

coefficients and predict the next state. Further information regarding different strategies

can be found in [24, 35]. Note that to use m-step methods to predict the state at time
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i, we need its previous m states. To predict the states {xi}mi=2 (the first few states), the

maximum order we can use is i− 1, because there are only i− 1 states before the state xi.

In general, to predict xi we use a multistep method of order min(i− 1,m).

When using a general m-step discretization method, we define our objective func-

tion as follows:

Em-step(X,θ) =
∑T−1

i=1

∥∥∥x(ti+1) −
∑k−1

j=0 ajx(ti−j) −∆i
∑k−1

j=0 bjf(x(i−j);θ)
∥∥∥2, (2.14)

where k = min(i − 1,m) is the order of the discretization method to predict the state xi.

Now, we repeat the following steps until convergence:

θ∗(n) = argmin
θ

Em-step(X∗(n−1),θ) (2.15a)

X∗(n) = argmin
X

{
Em-step(X,θ(∗n)) + λ‖X−X∗(n−1)‖2

}
(2.15b)

For both steps, we use LBFGS, initialized with θ∗(n−1) and X∗(n), respectively.

2.4 Convergence

There are two notions of convergence that we will discuss briefly here: practical

and theoretical.

Practice. We implement the argmin steps in Alg.2.1 using the LBFGS algorithm, imple-

mented in Python via the scipy.optimize.minimize function. Throughout this work, when

using LBFGS, we use automatic differentiation to supply the optimizer with gradients of

the objective function. We stop Alg.2.1 when the error E changes less than 10−8 from one

iteration to the next.

To see when this happens, we take another look at the optimization over the states

X in (2.10) at iteration n. This objective function has two parts. The optimal solution

of the first part (E) is the predicted states X̂(n). The optimal solution of the proximal

part is X∗(n−1). When we optimize this objective function to find X∗(n), there are three

cases: 1) X∗(n) = X̂(n), 2) X∗(n) = X∗(n−1), and 3) X∗(n) is neither X̂(n) nor X∗(n−1). Our

algorithm stops when we are in case 1 or 2 since further optimization over θ and X does
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not change anything. In case 3, the algorithm continues, leading to further optimization

steps to decrease error.

Indeed, let us note that steps 5 and 6 in Alg. 2.1 together imply

E(X∗(n),θ∗(n)) ≤ E(X∗(n−1),θ∗(n−1)). (2.16)

The function E, bounded below by 0, is non-increasing along the trajectory {(X∗(n),θ∗(n))}n≥1.
Hence {E(X∗(n),θ∗(n))}n≥1 must converge to some E∗ ≥ 0.

Theory. Here we will offer a convergence theory for the Euler version of BCD-prox. We

believe this theory can also be established for the general m-step version of BCD-prox;

however, the calculations will be lengthier. In this subsection, we let xi = x(ti). For T

even, set

x+ = {x1,x2, . . . ,xT/2}

x− = {xT/2+1, . . . ,xT }

For T odd, replace T/2 by (T − 1)/2 in the above definitions. In words, x+ is the first half

of the state series while x− is the second half of the state series. Note that X = (x+,x−).

Suppose for the moment that all ∆i are zero. Then (2.5) reduces to

E(X,θ; ∆i = 0) =

T−1∑
i=1

‖xi+1 − xi‖2.

This is a quadratic form written as a sum of squares of linear terms; hence it is positive

semidefinite. In general, we have for 2 ≤ j ≤ T − 1,

∇xjE(X,θ; ∆i = 0) = −2xj−1 + 4xj − 2xj+1.

For the edge cases, we have

∇x1E(X,θ; ∆i = 0) = −2x2 + 2x1,

∇xTE(X,θ; ∆i = 0) = 2xT − 2xT−1.
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Now suppose we hold x− fixed and only take the Hessian with respect to x+. We will

obtain

A =



2I −2I

−2I 4I −2I

−2I 4I
. . .

. . .
. . . −2I

−2I 4I


Here each I is a d × d identity block; the d is such that xi ∈ Rd. The overall size of

the matrix is therefore d(T/2) × d(T/2). The positive semidefiniteness established above

implies that all eigenvalues of A are nonnegative. A simple induction argument then shows

that detA > 0, implying that there is no zero eigenvalue. Hence A has strictly positive

spectrum, and so E(X,θ; ∆i = 0) restricted to x+ (with x− held fixed) is strictly convex.

In a completely analogous way, we can show that E(X,θ; ∆i = 0) restricted to x− (with

x+ held fixed) is strictly convex. Now both of these properties hold at ∆i = 0. Because the

eigenvalues of both restrictions are continuous functions of ∆i, there exists δ > 0 such that

for ∆i ∈ (0, δ), the eigenvalues in question remain strictly positive. Henceforth assume

that all ∆i satisfy this criterion. Then E(X,θ) is strictly convex in x+ (with x− and θ

held fixed) and strictly convex in x− (with x+ and θ held fixed).

Next, assume that f is at most linear in θ, so that

f(x;θ) = f0(x) + f1(x)θ.

Here f0 : Rd → Rd. Because θ ∈ Rp, we have f1 : Rd → Rd×p. That is, f1(x) is a d × p
matrix, which when multiplied by θ, gives a vector in Rd. We assume that f1(x) has full

column rank. Then we have

E(X,θ) =
T−1∑
i=1

‖xi+1 − xi − f0(xi)∆i + f1(xi)θ∆i‖2.

Now we compute the p× p Hessian

∇θ∇θE = 2
T−1∑
i=1

(f1(xi))
T f1(xi)∆

2
i .
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Since f1 has full column rank, the Hessian is positive definite; E(X,θ) is strongly convex

in θ with X held fixed.

Now initialize X0 = Y and proceed sequentially with the following steps for n ≥ 1:

θn = argmin
θ

E(Xn−1,θ) (2.17a)

(x−)n = argmin
x−

E((x+)n−1,x−,θn) + λ
∥∥(x)− − (x−)n−1

∥∥2 (2.17b)

(x+)n = argmin
x+

E(x+, (x−)n,θn) + λ
∥∥(x)+ − (x+)n−1

∥∥2 (2.17c)

Xn = ((x+)n, (x−)n) (2.17d)

Then we have the following first convergence result.

Theorem 2.2. Suppose all ∆i ∈ (0, δ) for the δ established above. Suppose f is linear in θ

with the full-rank condition described above. Then there exists an interval of λ values for

which the algorithm (2.17) converges to a Nash equilibrium (X,θ) of the objective function

E defined in (2.5).

Proof. The result follows directly from Theorem 2.3 from [56]; we have verified all hypothe-

ses.

Let us further assume that f satisfies the Kurdyka-Lojasiewicz (KL) property

described in Section 2.2 of [56]. In particular, if each component of f is real analytic, the

KL property will be satisfied. Together with linearity of f in θ, this includes numerous

vector fields of interest, including all ODE in our experimental results. (For FitzHugh–

Nagumo, a change of variables renders the system linear in the parameters.) Then we have

a second convergence result.

Theorem 2.3. Suppose in addition to the hypotheses of Theorem 2.2, f is smooth and

satisfies the KL property. Then assuming the algorithm defined by (2.17) begins sufficiently

close to a global minimizer, it will converge to a global minimizer of E defined in (2.5).

Proof. The result follows directly from Corollary 2.7 and Theorem 2.8 of [56]; we have

verified all hypotheses.



19

2.5 Experiments

In this section, we first introduce four benchmark datasets. Then we show how

our method works under different kinds of noise and initializations on these datasets. We

finally show that our method performs well compared to other state-of-the-art methods.

In the following, we create clean states using a Runge-Kutta method of order 5. In all of

our experiments, unless otherwise stated, we use the three-step Adams-Bashforth method

to discretize the ODE.

Lotka–Volterra model. This model is used to study the interaction between predator

(variable x0) and prey (variable x1) in biology [30]. The model contains two nonlinear

equations as follows:

dx0
dt

= θ0x0 − θ1x0x1
dx1
dt

= θ2x0x1 − θ3x1. (2.18)

The state is two-dimensional and there are four unknown parameters. We use the same

settings as in [15]. We set the parameters to θ0 = 2, θ1 = 1, θ2 = 4 and θ3 = 1. With

initial condition x(1) = [5, 3], we generate clean states in the time range of [0, 2] with a

spacing of ∆t = 0.1.

FitzHugh–Nagumo model. This model describes spike generation in squid giant axons

[17, 33]. It also has two nonlinear equations:

dx0
dt

= θ2(x0 −
(x0)

3

3
+ x1)

dx1
dt

= − 1

θ2
(x0 − θ0 + θ1x1), (2.19)

where x0 is the voltage across an axon and x1 is the outward current. In this model, the

states are two-dimensional and there are three unknown parameters. We use the same

settings as in [43]. We set the parameters as θ0 = 0.5, θ1 = 0.2, and θ3 = 3. With initial

condition x(1) = [−1, 1], we generate clean states in the time range of [0, 20] with a spacing

of ∆t = 0.05.

Rössler attractor. This three-dimensional nonlinear system has a chaotic attractor [44]:

dx0
dt

= −x1 − x2
dx1
dt

= x0 + θ0x1
dx2
dt

= θ1 + x2(x0 − θ2). (2.20)
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The states are three-dimensional and there are three unknown parameters. We use the

same settings as in [43]. We set the parameters as θ0 = 0.2, θ1 = 0.2, and θ3 = 3. With

the initial condition x(1) = [1.13,−1.74, 0.02], we generate clean states in the time range

of [0, 20], with a spacing of ∆t = 0.05.

Lorenz-96 model. The goal of this model is to study weather predictability [29]. The

kth differential equation has the following form:

dxk
dt

= (xk+1 − xk−2)(xk−1)− xk + θ0, k = 0, . . . , d− 1 (2.21)

The model has one parameter θ0 and d states, where d can be set by the user. This gives us

the opportunity to test our method on larger ODEs. Note that to make (2.21) meaningful,

we have x−1 = xd−1, x−2 = xd−2, and xd = x0. As suggested in [29], we set d = 40 and

θ0 = 8. The clean states are generated in the time range [0, 4] with a spacing of ∆i = 0.01.

The initial state is generated randomly from a Gaussian distribution with mean 0 and

variance 1.

Evaluation metrics. Let θ and X denote the true parameters and the clean states,

respectively. Let θ∗ and X̂ denote the estimated parameters and the predicted states. We

report the Frobenius norm of X− X̂ as the prediction error. We also consider |θl − θ∗l | as

the lth parameter error. Recall that predicted states are achieved by considering θ∗ as the

parameter and x∗(t0) as the initial state, and then repeatedly applying (2.6) or its multistep

analogue (2.13).

Advantages of our approach. Our method is robust with respect to its only hyper-

parameter λ. We will show in our experimental results later that for a broad range of λ

values, our method works well. We fix it to λ = 1 in our later experiments. As explained

before, previous methods have a large number of hyperparameters, which are difficult to

set.

Our method can be trained quickly. On a standard laptop, it takes around 20

seconds for our method to learn the parameters and states jointly on ODE problems with
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400 states. The spline-based methods take a few minutes and Bayesian methods take a

few hours to converge on the same problem.

Because our method, unlike Bayesian methods, does not make assumptions about

the type of the noise or distribution of the states, it performs well under different noise and

state distributions. In particular, as the magnitude of noise in the observations increases,

our method clearly outperforms the extended Kalman filter.

As our experiments confirm, both spline-based and Bayesian approaches are very

sensitive to the initialization of the ODE parameters. If we initialize them far away from the

true values, they do not converge. Our method is much more robust. This robustness stems

from simultaneously learning states and parameters. Even if the estimated parameters are

far from the true parameters at some iteration, they can improve later, as the estimated

states converge to the clean states.

Optimization of our objective function leads to a better estimation. We first

focus only on our objective function in (2.5). At each iteration n of our optimization,

we compute the predicted states X̂(n) and report the prediction error. Fig. 2.1 shows the

results.

In Fig. 2.1, we consider two kinds of discretization: 1) one-step Euler method,

and 2) three-step Adams-Bashforth method. Note that as we increase the order, we expect

to see more accurate results.

We added Gaussian noise with mean 0 and variance σ2 to each of the clean states,

where σ2 = 0.5 in the first column and σ2 = 1 in the second column. Fig. 2.1 shows that at

the first iteration the error is significant in all models. The error is ∼ 1 000 for FitzHugh–

Nagumo and Rössler, and ∼ 1.5× 105 for Lorenz-96 model.

After several iterations of our algorithm, the error decreases significantly, no mat-

ter what kind of discretization we use. But, as expected, three-step Adams-Bashforth

performs better than Euler in general: it converges faster and achieves a smaller error

at the end. This is more clear for the Lorenz-96 model, where the error becomes almost

zero when we use the three-step Adams-Bashforth, while the error becomes around 104 for

Euler.
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Figure 2.1: Prediction error at different iterations of our algorithm. Noisy observations are
achieved by adding Gaussian noise with variance σ2 to the clean observations. We consider
the FitzHugh–Nagumo (first row), Rössler (second row), and Lorenz-96 (third row) models.
Our learning strategy decreases the error in all cases.

The last point about Fig. 2.1 is that, as expected, sometimes the prediction error

increases; the error does not decrease monotonically. This mainly happens at the first

few iterations. The main reason for this behavior is that our objective function in (2.5)

is different from the prediction error. We cannot directly optimize the prediction error
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Figure 2.2: Robustness to the hyperparameter λ in FitzHugh–Nagumo (first row) and
Lotka–Volterra (second row) models. The true parameters are θ0 = .5, θ1 = .3, and θ2 = 3
in the FitzHugh–Nagumo and θ0 = 2, θ1 = 1, θ2 = 4, and θ3 = 1 in the Lotka–Volterra.
For each λ, we report the mean error and parameter value in 10 experiments.

because we do not have access to the clean states. Still, the fact that our algorithm

eventually brings the prediction error close to zero suggests that minimizing the objective

in (2.5) has the same effect as minimizing the prediction error.

Robustness to the hyperparameter λ. The only hyperparameter in our algorithm is

λ. In Fig. 2.2, we set λ in turn to a set of values from 0 to 20, run our algorithm, and

report the results after convergence. In both models, we generate observations by adding

Gaussian noise with variance 0.5 to the clean states. Because of randomness included in

creating noisy observations, we create 10 sets of observations, run our algorithm once for

each of them, and report the mean in Fig. 2.2. We also show the standard deviation in

prediction errors, but not in parameter values (to avoid clutter).
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In Fig. 2.2 we report the prediction error and the estimated parameters for each

value of λ. The true values for the FitzHugh–Nagumo are θ0 = .5, θ1 = .3, and θ2 = 3. For

the Lotka–Volterra model, the true values are θ0 = 2, θ1 = 1, θ2 = 4, and θ3 = 1.

We see in Fig. 2.2 that for λ > 0, our method correctly finds the parameters

and brings the error close to zero. Also, in the range of λ = 1 to 20, the errors and the

estimated parameters remain almost the same. We actually increased λ to 1 000 and found

that it works like the previous values of λ > 0. The only disadvantage of increasing λ to a

large value is that training time increases—as explained above, increasing λ is analogous

to decreasing the step size in a gradient descent method. Large λ implies that states can

change very little from one iteration to another, forcing the algorithm to run longer for

convergence. As explained in detail above, when λ = 0, the algorithm stops after a single

iteration, with the predicted states far from the clean states.

Different types and amounts of noise in the observations. Our method does

not assume anything about the type of noise. In reality, the noise could be from any

distribution. In Fig. 2.3, we investigate the effect of the type of noise on the outcome

of our algorithm. The red (blue) curves correspond to the case when we add Gaussian

(Laplacian) noise to the observations. We set the mean to 0, change the variance of the

noise, and report the prediction and parameter errors. Note that for each noise variance,

we repeat the experiment 10 times and report the mean and standard deviation of the

error.

In general, increasing the noise variance increases the error. We can see this in

almost all plots. In both models, the error does not change much by changing the variance

from 0 to 0.5. We can also see that the method performs almost as well for observations

corrupted by Laplacian noise as in the Gaussian noise case. Note that the Laplacian noise

has a heavier-than-Gaussian tail.
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Figure 2.3: Robustness to different types and amounts of noise in the observations. We
report the prediction and parameter errors on the Rössler and FitzHugh–Nagumo models.
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Comparison with other methods (robustness to the initialization). As the first

experiment, we compare our method with three other methods, each of them from a dif-

ferent category. Among the spline-based methods, we use the online MATLAB code corre-

sponding to [43], denoted by “splines” in our experiments. Among the Bayesian approaches,

we use the online R code corresponding to [15], denoted “Bayes” in our experiments. We

also implement a method that uses the iterative least square approach, denoted “lsq” in

our experiments. This method considers the parameters and the initial state as the un-

known variables. To implement lsq, we use the Python LMFIT package [34]. We use the

FitzHugh–Nagumo and Rössler models, creating noisy observations by adding Gaussian

noise with mean 0 and variance 0.5 to the clean states.

All methods including ours need an initial guess for the unknown parameters. We

add Gaussian noise with mean 0 and variance σ2θ to the true parameter and use the result

to initialize the methods. Fig.2.4 and Fig. 2.5 show the results on FitzHugh–Nagumo

and Rössler attractor, where we change the variance from σ2θ = 1 to 20. Since there is

randomness in both initialization and observation, we repeat the experiment 10 times.

Note that the comparisons are fair, with the same observations and initializations used

across all methods.

In these figures, each of the bars corresponds to the prediction or parameter error

for one of the methods in one of the experiments. Hence there are 10 error bars for each

of the methods in each plot. We set λ = 1 in our method for all the experiments. For

the other methods, we chose the best hyperparameters we could determine after careful

experimentation.

The first point regarding these experiments is that our method is robust with

respect to the initialization, while the other methods are not. The total number of exper-

iments per method is 80 (on the two models). The prediction error of our method exceeds

100 in 4 experiments. The prediction error of splines (the second best method after ours)

exceeds 100 in 39 experiments (nearly half the experiments). For the other methods, the

error only increases.

We can see in the figures that almost all the methods work well when the initial-

ization is close to the true parameters (small noise). But, in reality, we do not know what



27

σ2θ = 1 σ2θ = 5 σ2θ = 10 σ2θ = 20
..

..
..

..
..

..
..

.
F

it
zH

u
gh

–
N

a
g
u

m
o

..
..

..
..

..
..

..
..

.

p
re

d
.

er
ro

r

ours splines lsq Bayes0

20

40

60

80

100

ours splines lsq Bayes0

20

40

60

80

100

ours splines lsq Bayes0

20

40

60

80

100

ours splines lsq Bayes0

20

40

60

80

100
θ 0

er
ro

r

ours splines lsq Bayes0

1

2

ours splines lsq Bayes0

1

2

ours splines lsq Bayes0

1

2

ours splines lsq Bayes0

1

2

θ 1
er

ro
r

ours splines lsq Bayes0

1

2

ours splines lsq Bayes0

1

2

ours splines lsq Bayes0

1

2

ours splines lsq Bayes0

1

2

θ 2
er

ro
r

ours splines lsq Bayes0

1

2

ours splines lsq Bayes0

1

2

ours splines lsq Bayes0

1

2

ours splines lsq Bayes0

1

2

Figure 2.4: Comparison with other methods on FitzHugh–Nagumo model. We create
initializations by adding Gaussian noise of variance σ2θ to the true parameters. We create
10 sets of observations and initializations per each σ2θ and report the errors. Each error
bar corresponds to the error in one of the experiments.

the real parameters are. So it is reasonable to say that the last column of Fig. 2.4 and

Fig. 2.5 (initialization with the largest noise) determines which method performs better

in real-world applications. As we can see, our method outperforms the other methods in

both prediction and parameter error.

In our second experiment, we compare our method with the mean-field method

(also a Bayesian method) [19] on the Lotka–Volterra model. The mean-field method is

only applicable to the differential equations with a specific form (see Eq. (10) in [19]).

While we cannot apply it to FitzHugh–Nagumo and Rössler models, we can apply it to the



28

σ2θ = 1 σ2θ = 5 σ2θ = 10 σ2θ = 20
..

..
..

..
..

..
..

..
R

ö
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Figure 2.5: Comparison with other methods on Rössler attractor. The settings are the
same as the Fig. 2.4

Lotka–Volterra model. In Fig. 2.6, we compare the methods by reporting the prediction

and the parameter errors. We create noisy observations by starting with the clean states

and adding Gaussian noise with variance σ2. We show the results for different variances

at different columns of Fig. 2.6. Similar to our previous experiments, we generate 10 sets

of noisy observations. Each of the bars in Fig. 2.6 corresponds to the error for one of the

methods in one of the experiments.

Fig. 2.6 shows that the average error of our method is less than the mean-field

method in almost all cases [19]. As we increase the noise in the observations, the error of

both methods increases. But, we can also see that our method is more robust than the

mean-field method when it comes to observation noise. Consider the case where σ2 = 1
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Figure 2.6: Comparison with the mean-field method [19] on Lotka–Volterra model. We
add Gaussian noise with variance σ2 to the clean states to create noisy observations. Each
error bar corresponds to the error in one of the experiments.

(second column). In this case, the average parameter error of the mean-field method for

θ0 and θ1 becomes around 3 and 8, respectively, but the average error of our method for

both parameters remains less than 1.
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Comparison with the extended Kalman filter (EKF). We follow [51] in applying

the Kalman filter to our problem of estimating the parameters and states. We first need to

write an equation that recursively finds the state x(ti+1) in terms of x(ti). As suggested in

[51], this can be achieved by discretizing the ODE in (2.1) using the Euler discretization:

x(ti+1) = x(ti) + f(x(ti);θ)∆i. (2.22)

Let us define θ(ti) as the parameter estimated at time ti by the Kalman filter. We define a

joint state variable ξ(ti), which merges the states x(ti) and the parameters θ(ti) as follows:

ξ(ti) =

x(ti)

θ(ti)

 , ξ(ti) ∈ Rd+p. (2.23)

The process model to predict the next state variable can be written as:

ξ(ti+1) =

x(ti+1)

θ(ti+1)

 =

x(ti) + f(x(ti);θ)∆i

θ(ti)

 . (2.24)

We define the observation model as follows:

y(ti) = Hξ(ti), H =
(
I 0

)
d×(d+p)

, (2.25)

where H is a d× (d+ p) matrix, I is a d× d identity matrix, and 0 is a d× p matrix where

all elements are 0.

In most cases, the function f(·) is nonlinear, which makes the process model

nonlinear. For this reason, we use the extended Kalman filter (EKF), which linearizes the

model.

We compare our method with the EKF in Fig. 2.7 on the Lotka–Volterra model.

We compare the methods in different settings by changing the amount of noise and the

number of samples. To create noisy observations, we add Gaussian noise with the variances

σ2 = 0.1 and σ2 = 1.5 to the clean states. We set the number of samples to T = 20 (time

range [0, 2]) and T = 10 000 (time range [0, 1 000]).

We use an open-source Python code [25] to implement the EKF. We set the state

covariance (noise covariance) to a diagonal matrix with elements equal to 1 000 (0.1). We
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set the process covariance using the function Q discrete white noise() provided in [25],

where the variance is set to 1. Note that these parameters must be carefully tuned to

obtain reasonable results; changing the state or noise covariance yields significantly worse

results.

In Fig. 2.7 we report the average estimation error instead of the prediction error.

Estimation error is defined as the difference between the clean states and the estimated

states X∗. We report the estimation error because the prediction error of the EKF goes to

infinity. To see why this happens, note that to obtain reasonable predictions we need good

estimations of the parameters and the initial state. Since the EKF is an online method,

it never updates the initial state. Given that the initial state is noisy, no matter how well

parameters are estimated, the prediction error becomes very large. Our method updates

the initial state, yielding small prediction error.

As we can see in Fig. 2.7, the only setting in which the EKF performs comparably

to our method is the case of T = 10 000 and σ2 = 0.1. In other words, EKF works fine

when we have long time series with low noise. In more realistic settings, our method

significantly outperforms the EKF. A key difference between the two methods is that the

EKF is an online method while ours is a batch method, iterating over the entire dataset

repeatedly. Consequently, our method updates parameters based on information in all

the states, leading to more robust updates than is possible with the EKF, which updates

parameters based on a single observation.

We can also see in Fig. 2.7 that the error of both methods becomes smaller as

we increase the number of samples T . This is expected to happen because increasing T

is equivalent to giving more information about the model to the methods. The average

estimation error of our method becomes almost 0 for large T .
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Figure 2.7: Comparison with the extended Kalman filter (EKF) on the Lotka–Volterra
model. We add Gaussian noise with variance σ2 = 0.1 and σ2 = 1.5 to the clean states to
create noisy observations. We set the number of observation to T = 20 (left panel) and
T = 10 000 (right panel). For each value of T , we generate 10 sets of observations and
report the average estimation and parameter errors. Each error bar corresponds to the
error in one of the experiments. We have put the average error of each method for the 10
experiments below each plot.
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2.6 Conclusion

ODE parameter estimation is an important problem, made difficult due to noisy

data and lack of analytical ODE solutions. Previous approaches make several assumptions

about the states and the noise, leading to issues regarding the number of hyperparameters

and robustness to the noise. In this chapter, we have shown that these assumptions are

unnecessary. Our BCD-prox algorithm addresses issues of previous approaches to simulta-

neous parameter estimation and filtering, achieving fast training and robustness to noise,

initialization, and hyperparameter tuning. Additional features of BCD-prox include its

connection to BCD and proximal methods, its unified objective function, and a conver-

gence theory resulting from blockwise strict convexity.



Chapter 3

Interpretable Equation Discovery

with Neural Networks

3.1 Problem Definition

Consider a dynamical system in Rd with state x(t) at time t. The time-evolution

of the state is given by

ẋ(t) =
dx(t)

dt
= f(x(t);θ). (3.1)

where f : Rd → Rd is an unknown vector field, whose components can be written as

f(x) = (f1(x), f2(x), . . . , fd(x)), and θ is a vector containing all parameters of f . At T

distinct times {ti}Ti=1, we have noisy observations y(ti) ∈ Rd:

y(ti) = x(ti) + z(ti), i = 1, . . . , T (3.2)

where z(ti) ∈ Rd is the noise of the observation at time ti. We represent the set of T

d-dimensional states, noises, and observations by X,Z, and Y ∈ Rd×T , respectively. For

concision, in what follows, we write the time ti as a subscript, i.e., x(ti) instead of x(ti).

In this chapter, we seek to model an unknown vector field f : Rd → Rd using a

neural network.

34
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3.2 Our Proposed Method

In this section, we first focus on the scalar-valued function fj : Rd → R, which

is the jth component of f , and show how we model this using a neural network. We then

extend the idea to all of f dimensions.

3.2.1 Parameterization of the fj

We start the process by assuming that we have access to a set ofB one-dimensional

(1-dim) shape functions which accurately approximate the underlying function fj . Later,

we will show how to learn these functions. Let us call these scalar-valued shape functions

hb : R→ R, b = 1, . . . , B.

We create multi-dimensional (multi-dim) shape functions via tensor products of

the 1-dim shape functions. For a given multi-index α = (α1, . . . , αd) ∈ Zd+, we define

Hα(x) =
d∏

k=1

hαk
(xk). (3.3)

where αk ∈ {0, 1, . . . , B}, h0(·) = 1 is a constant function, and h1(x), . . . , hB(x) are the B

1-dim shape functions. For instance, if d = 4, then α = (1, 2, 0, 1) will correspond to

Hα(x) = h1(x1)h2(x2)h0(x3)h1(x4) = h1(x1)h2(x2)h1(x4). (3.4)

Note that the same scalar shape function is being applied to x1 and x4. We define ‖α‖0 as

the number of nonzero elements in α. In the previous example, we have ‖α‖0 = 3. There

are several other Hα functions with ‖α‖0 = 3. Since ‖α‖0 determines the number of 1-dim

shape functions involved in creating Hα, we call ‖α‖0 the complexity of Hα.

Given the definition of Hα, we can now expand to parameterize fj as follows:

fj(x;θ) =

M∑
m=0

∑
‖α‖0=m

βjαHα(x), (3.5)

where θ includes all the parameters of the fj . We will get back to this point later when we

define the structure of our neural network to model fj . The equation (3.5) parameterizes
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fj by 1) computing the weighted sum of the multi-dim shape functions with the same

complexity and 2) computing the sum over the shape functions with different complexities.

Let us consider a few cases of (3.5). If we set M = 0, then all elements of α have

to be 0. This gives us Hα = 1, which is a constant function. If we set M = 1, we obtain an

additive model with no interactions: fj(x;θ) = βj0 +
∑B

b=1

∑d
k=1 β

j
b,khb(xk). When M = 2,

we obtain pairwise interactions between variables, etc. In general, as we increase M, we

obtain more complex combinations of the shape functions hb.

If we consider a set A that contains all multi-indices in the double sum above,

i.e., A = {α | 0 ≤ ‖α‖0 ≤M}, we can equivalently write (3.5) as:

fj(x;θ) =
∑
α∈A

βjαHα(x). (3.6)

This equation will be helpful when we explain the structure of the output layer of our

neural network in the next subsection.

This way of parameterizing fj gives us two important advantages. First, our model

remains interpretable, no matter how we learn the 1-dim shape functions, the weights βjα,

and the multi-indices α. We can always graph the 1-dim shape functions hb(x)—they are

scalar functions of x. This approach contrasts directly with black-box modeling of vector

fields via neural networks [41, 42].

Second, we gain direct control over the complexity of the model through M and

multi-indices. If we makeM smaller, then we will use less complex functions to approximate

fj . Also, in (3.5), we can further simplify the model by summing over a subset of multi-

indices with ‖α‖0 = m (instead of using all of them). In short, we limit the complexity of

the model in the beginning, rather than using numerous shape functions and then relying

on sparsity-promoting regularization to select only a few of them [7, 46].

3.2.2 Architecture of the neural network

We use a neural network to model the parameterized fj in (3.5). Here, we explain

the layers of the neural network in detail. The architecture has been visualized in Fig. 3.1.



37

The 1-dim shape functions {hb}Bb=1. The first D hidden layers of the network create

the 1-dim shape functions. Each hidden layer is characterized by a weight matrix Wi and

a bias vector wi. Let φ : R→ R denote the activation function. We follow the convention

that when φ is applied to a vector v ∈ Rm, the result is the component-wise application

(φ(v1), φ(v2), . . . , φ(vm)).

Let us detail each layer:

• The first layer takes as input the scalar xk, the kth component of x. Hence, the first

weight matrix W1 must have one column. The number of rows of W1 is the number

of neurons or units in the first hidden layer. Then the output of this layer can be

written as: h1 = φ(W1xk + w1). We choose φ(x) = tanh(x).

• The intermediate weight matrices W2, . . . ,WD must have dimensions that match.

For instance, the number of columns of Wi+1 must equal the dimension of hi, i.e.,

the number of neurons/units in layer i. Likewise the number of rows of Wi+1 must

be the number of neurons/units in layer i + 1. To obtain B shape functions, WD

must have B rows. Then we can write: hi+1 = φ(Wi+1h
i+wi), i = 1, . . . , D−1. For

i = 2, . . . , D− 1 we choose φ = tanh, and for the last layer (i = D), we set φ(x) = x,

the identity.

Note that the output of the Dth hidden layer depends on the input xk through a chain of

compositions:

hD = φ(WDφ(WD−1 · · ·φ(W1xk + w1) · · ·+ wD−1) + wD)

This same output, hD, is a B-dimensional vector; each component of this vector is a 1-dim

shape function:

hD = [h1(xk), . . . , hB(xk)] ∈ RB.

Note that {hb(xk)}Bb=1 corresponds to the 1-dim functions defined in the previous subsec-

tion. We can now extend this idea to the full input x. By applying hD to each xk for

k = 1, . . . , d, we obtain dB outputs.
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Multi-dim shape functions. To model Hα(x) defined in (3.3), we define a multiplica-

tion neuron. This neuron takes as input v ∈ Rd and produces as output
∏d
i=1 vi ∈ R, the

product of all its components.

To compute Hα(x), we use the nonzero indices in α to select a subset of the

1-dim shape functions from the Dth layer. We feed this subset of shape functions to the

multiplication neuron, and the output is Hα(x). The number of multiplication neurons

is the same as the number of muti-indices, i.e., size of the set A from (3.6). We collect

these multiplication neurons into a multiplication layer, which gives us multi-dim shape

functions Hα(x) as defined in (3.3).

Output layer. The last layer of our network is a linear layer that combines the |A|
multi-dimensional shape outputs of the previous layer to generate fj . This layer contains a

weight matrix B ∈ R1×|A|, where the values in B correspond to the coefficients βjα in (3.6).

3.2.3 Extending the idea to the d dimensions of f

Thus far we have described our model for fj . We now extend this to a full model

for the vector field f . We keep the parameterization described above for the 1-dim and

multi-dim shape functions. Given Hα, we parameterize f as :

f(x;θ) =

[∑
α∈A

β1αHα(x),
∑
α∈A

β2αHα(x), . . . ,
∑
α∈A

βdαHα(x)

]
. (3.7)

In other words, each output is achieved by a weighted combination of the fixed multi-dim

shape functions. There are |A| coefficients β for each dimension, which gives us a total of

|A|d coefficients.

We achieve this extension with only a small change to the neural network archi-

tecture. Since the 1-dim and multi-dim shape functions are shared across all fj , we need

only change the output layer. The output layer must now have d outputs instead of 1.

Hence the weight matrix B must be d × |A|. The jth row of B contains the coefficients

that determine fj , the jth component of f .

As we mentioned before, θ is a vector containing all the parameters of the f . Since

we model f using a neural network, θ contains all the parameters of the network.
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Figure 3.1: Architecture of our neural network. The first layer takes as input the scalar
xk, the kth component of x. The output of the Dth shared (hidden) layer is B 1-dim
shape functions for each dimension (a total of Bd outputs). The multiplication layer only
contains multiplication neurons. It takes the Bd inputs and generates multi-dim shape
functions. The last layer has d neurons with identity activation functions. Each neuron
corresponds to one of the dimensions.
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3.2.4 Objective function and optimization

To learn all neural network’s parameters (denoted by θ), we must define an ob-

jective function and corresponding optimization problem. One possibility is to minimize

the difference between the two sides of the ODE in (3.1). However, we do not have access

to the clean states X—we are given Y, noisy observations at discrete times. Our goal is to

simultaneously filter these noisy observations while learning the neural network’s param-

eters. In what follows, we detail an alternating minimization algorithm that accomplishes

this goal. This algorithm alternates between two kinds of steps: (i) a learning step in

which we fix X and minimize over the neural network’s parameters θ; (ii) a filtering step

in which we fix θ and minimize over the clean states X.

We begin by discretizing the ODE. While we will explain later how to use higher-

order discretizations, we focus on the first-order explicit Euler discretization for the mo-

ment:

x(ti+1) − x(ti) = f(x(ti);θ)∆i, i = 1, ..., T − 1 (3.8)

Our objective function measures the L2-norm mismatch between the left- and right-hand

sides of (3.8):

E(X,θ) =
∑T−1

i=1

∥∥(x(ti+1) − x(ti))/∆i − f(x(ti);θ)
∥∥2. (3.9)

Similar to our approach in chapter 2, we iteratively optimize the following Euler BCD-

proximal objective function:

X∗(n),θ∗(n) = argmin
θ,X

{
E(X,θ) + λ

∥∥∥X−X∗(n−1)
∥∥∥2} , X∗(0) = Y, (3.10)

where we represent the states and parameters learned at iteration n by X∗(n) and θ∗(n).

Note that we initialize with X∗(0) = Y, i.e., for our first iteration, we treat the observations

as the clean states. We then repeat the following steps until convergence.

learning: θ∗(n) = argmin
θ

{
E(X∗(n−1),θ)

}
(3.11a)

filtering: X∗(n) = argmin
X

{
E(X,θ∗(n)) + λ

∥∥∥X−X∗(n−1)
∥∥∥2} (3.11b)

Note that the data Y is only used when n = 0. In subsequent iterations n > 0, the

λ
∥∥X−X∗(n−1)

∥∥2
F

term in (3.11b) constrains X to be near X∗(n−1). As the iteration
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number n increases, the learned states are allowed to slowly step away from Y. This

enables the algorithm to handle situations in which Y is heavily contaminated with noise.

We can interpret (3.11b) naturally using the notion of proximal operators [37],

as we explained in chapter 2. The conclusion is that this proximal step approximates a

gradient descent step of the following form

X∗(n) = X∗(n−1) − (2λ)−1∇XE(X∗(n−1),θ∗(n)) + o((2λ)−1). (3.12)

It is now clear that λ plays the role of an inverse step size. With this in mind, we can now

contrast our method with the regularization described by [46]. We initialize our algorithm

with the data Y; subsequently, the algorithm may take many proximal steps of the form

(3.12) to reach a desired optimum. If the data Y is heavily contaminated with noise, it

may be wise to move far away from Y as we iterate.

In contrast, [46] uses the regularization term λ‖X −Y‖2. This will constrain X

to be in a neighborhood of Y; the diameter of this neighborhood is inversely related to λ.

When the magnitude of the noise Z is small, searching for X in a small neighborhood of Y

is reasonable. For real data problems in which the magnitude of Z is unknown, however,

choosing λ a priori becomes difficult.

By X∗ and θ∗, we denote the learned states and learned parameters of our algo-

rithm at the time of convergence. We use X̂ to denote our algorithm’s predicted states. We

compute X̂ by iteratively applying the following scheme, initialized with x̂(t1) = x∗(t1):

x̂(ti+1) = x̂(ti) + f(x̂(ti);θ)∆i, i = 2, . . . , T1. (3.13)

Note that the predicted state is initialized to be the learned state x∗(t1) and not the raw

observation y(t1), since we believe x∗(t1) is closer to the clean state. We confirm this later

in our experiments. Also note that, by construction, the predicted states will yield a zero

of the mismatch function E defined in (3.9).

The pseudocode of our method can be found in Algorithm 3.1.
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Algorithm 3.1 Pseudo-code of our proposed method for learning governing equations

Input: A set of T noisy observations Y = [y(t1), . . . ,y(tT )] ∈ Rd×T , the time differences

{∆i = ti+1 − ti}T−1i=1 , structure of the neural network (number of hidden layers, number of

neurons per layer, and number of 1-dim shape functionsB), the value of the hyperparameter

λ, and the initialization of the neural network’s weights θ∗(0).

1: X∗(0) = Y

2: n = 0

3: repeat

4: n = n+ 1

5: • Learning step (training the neural network): Compute θ∗(n) given X∗(n−1) via

(3.11a) [Euler] or (3.18a) [multistep].

6: • Filtering step (learning the states): Compute X∗(n) given θ∗(n) via (3.11b) [Euler]

or (3.18b) [multistep].

7: until convergence

8: Compute the predicted states X̂ by repeatedly applying (3.13) [Euler] or (3.16) [mul-

tistep], where θ = θ∗(n) and x(t1) = x
∗(n)
(t1)

.

9: return θ∗(n) and X̂ as the estimated neural network’s parameters and predicted states.

Traning the neural network: solving the subproblem (3.11a)

In subproblem (3.11a) of our algorithm, we fix the states to X = X∗(n−1) and

learn the parameters θ by minimizing the following:

min
θ

∑T−1
i=1

∥∥∥(x
∗(n−1)
(ti+1)

− x
∗(n−1)
(ti)

)/∆i − f(x
∗(n−1)
(ti)

;θ)
∥∥∥2, (3.14)

where f is our neural network and θ is the set of all its parameters (weights of the layers).

Note that this is a regression problem, where the input is x
∗(n−1)
(ti)

and the corresponding

target is (x
∗(n−1)
(ti+1)

− x
∗(n−1)
(ti)

)/∆i, for i = 1. . . . , T − 1. In other words, optimizing the

subproblem (3.11a) is equivalent to training a neural network to solve a regression problem.

Initializing the weights of the neural network before training is an important

matter because different initializations will lead to converging to different places. Since the

states change slowly at each iteration, it is reasonable to believe that the optimal parameters
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at iteration n should be close to the learned parameters of the previous iteration. So we

initialize the parameters at iteration n by θ∗(n−1).

Learning the states: solving the subproblem (3.11b)

In subproblem (3.11b) of our algorithm, we fix the network’s parameters to θ =

θ∗(n) and learn the states by minimizing the following:

min
X

∑T−1
i=1

∥∥(x(ti+1) − x(ti))/∆i − f(x(ti);θ
∗(n))

∥∥2 + λ
∥∥X−X∗(n−1)

∥∥2. (3.15)

The states X appear as the input of the network, as a part of the target of the network,

and also in the regularization term. We use the gradient descent algorithm to optimize the

objective function and learn the states. We initialize the optimization at iteration n from

the learned states of the previous iteration X∗(n−1).

3.2.5 Overfitting in learning f and how to avoid it

Subproblem (3.11a) of our algorithm is to fit a neural network to the current

learned observations. Considering that filtering is never perfect, X∗(n) will always contain

some noise. In this context, how much should we train the neural network—specifically,

how many epochs?

If we overtrain the network, it will learn the noise of the target. Note that the

target for f(x(ti);θ) is (x(ti+1)−x(ti))/∆t. Hence overfitting in our problem does not mean

that f will be able to predict the noisy observations instead of the clean states; it means

that the f that we learn is wrong and cannot be used for the prediction later. So it is

crucial to avoid overfitting.

Let us assume we are at iteration n of our algorithm working on the learning

subproblem (3.11a). Suppose we have trained the neural network for e epochs. Let X̂
(n)
e

and X∗(n−1) denote, respectively, the current predicted and learned states. We call the

distance between X̂
(n)
e and X∗(n−1) the current prediction error, and we use this distance

to detect overfitting. If we find that this distance increases as we train the network for more

epochs, we stop training, i.e., we declare ourselves done with (3.11a). We then set θ∗(n)
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to be the network’s parameters that result in minimum prediction error, and we proceed

with the filtering subproblem (3.11b).

3.2.6 Higher-order discretization

Extending the idea from the Euler method to the higher-order discretization is

similar to the section 2.3.3 in the ODE parameter estimation problem. Here, we give a

short summary.

The Euler method is a first-order method. If we seek a more accurate discretiza-

tion, we can apply a multistep (m-step) method, where the idea is to use the previous m

states to compute the next state. In general, an explicit linear m-step method to discretize

(3.1) can be formulated as

x(ti+1) =

m−1∑
j=0

ajx(ti−j) + ∆i

m−1∑
j=0

bjf(x(i−j);θ), (3.16)

where ∆i is the time step. There are several strategies to determine the coefficients {aj}m−1j=0

and {bj}m−1j=0 . Further information regarding different strategies can be found in [24, 35].

When using a general m-step discretization method, we define our objective func-

tion as follows:

Em(X,θ) =
T−1∑
i=1

∥∥x(ti+1) −
∑k−1

j=0 ajx(ti−j) −∆i
∑k−1

j=0 bjf(x(i−j);θ)
∥∥2, (3.17)

where k = min(i − 1,m) is the order of the discretization method to predict the state xi.

Now, we repeat the following steps until convergence:

learning: θ∗(n) = argmin
θ

Em(X∗(n−1),θ) (3.18a)

filtering: X∗(n) = argmin
X

{
Em(X,θ(∗n)) + λ‖X−X∗(n−1)‖2

}
(3.18b)

3.3 Experiments

In this section, we introduce the ODEs in our experiments, give the details of our

implementations, show how robust our method is with respect to the hyperparameter λ,

and finally compare our method with several state-of-the-art methods.
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Rössler attractor. This three-dimensional nonlinear system has a chaotic attractor [44]:

dx0
dt

= −x1 − x2
dx1
dt

= x0 + ax1
dx2
dt

= b+ x2(x0 − c). (3.19)

The states are three-dimensional. We use the same settings as in [43]. We set the parame-

ters as a = 0.2, b = 0.2, and c = 3. With the initial condition x(1) = [1.13,−1.74, 0.02], we

generate clean states in the time range of [0, 20], with a spacing of ∆t = 0.05.

FitzHugh–Nagumo model. This model describes spike generation in squid giant axons

[17, 33]. It has two nonlinear equations:

dx0
dt

= c(x0 −
(x0)

3

3
+ x1)

dx1
dt

= −1

c
(x0 − a+ bx1), (3.20)

where x0 is the voltage across an axon and x1 is the outward current. In this model, the

states are two-dimensional. We use the same settings as in [43]. We set the parameters as

a = 0.5, b = 0.2, and c = 3. With initial condition x(1) = [−1, 1], we generate clean states

in the time range of [0, 20] with a spacing of ∆t = 0.05.

Double pendulum. The double pendulum is a classic mechanical system exhibiting

chaos with challenging dynamics. The double pendulum may be modeled by the following

equations of motion[46]:

dx0
dt

=
l2x2 − l1x3 cos(x0 − x1)

l21l2(m1 +m2 sin2(x0 − x1))
dx1
dt

=
−m2l2x2 cos(x0 − x1) + (m1 +m2)l1x3

m2l1l22(m1 +m2 sin2(x0 − x1))
dx2
dt

= −(m1 +m2)gl1 sin(x0)− C1 + C2 sin(2(x0 − x1))
dx3
dt

= −m2gl2 sin(x1) + C1 − C2 sin(2(x0 − x1)),

where:

C1 =
x2x3 sin(x0 − x1)

l1l2(m1 +m2 sin2(x0 − x1))

C2 =
m2l

2
2x

2
2 + (m1 +m2)l

2
1x

2
3 − 2m2l1l2x2x3 cos(x0 − x1)

2l21l
2
2(m1 +m2 sin2(x0 − x1))2



46

In this model, x0 and x1 represent the respective angle of pendula from the vertical

axis and x2 and x3 represent their conjugate momenta. As suggested in [46], we set the

parameters l1 = l2 = 1,m1 = m2 = 1, and g = 10. With initial condition x(1) = [1, 0, 0, 0],

we generate clean states in the time range of [0, 10] with a spacing of ∆t = 0.01.

Evaluation metrics. Let X denote the clean states and X̂ denote the predicted states.

We report the Frobenius norm of X − X̂ as the prediction error. Recall that predicted

states are achieved by considering θ∗ as the parameter and x∗(t0) as the initial state, and

then repeatedly applying (3.13) or its multistep analogue (3.16).

Implementation details: structure of the network, optimization algorithm, etc.

In all experiments, we use two hidden layers with 256 neurons, we set the maximum

complexity to M = d, and we use all the 1-dim shape functions for the complexity m = 1.

In FitzHugh–Nagumo model and Rössler attractor, we use B = 10 1-dim shape

functions and we generate 10 random multi-indices for each complexity value m > 1. In

the double pendulum, we use B = 200 1-dim shape functions and we generate 500 random

multi-indices for each complexity m > 1.

The activation function of all the hidden layers (all layers before the multiplication

layer) is tanh, and the activation function of the last layer is the identity. We implement

our method using the Keras[13] with TensorFlow backend [1]. To optimize the neural

network, we use Adam optimizer with the parameters α = .001, β1 = 0.9, and β2 = 0.999.

We use the gradient descent optimizer of TensorFlow[1], with the learning rate of 0.01, to

optimize the states X given the parameters.

To generate the observations with p% noise, we follow [46]. First, we generate

the clean data, and then we add Gaussian noise with mean 0 to each dimension separately.

The standard deviation of the Gaussian noise for the ith dimension is stdi×p
100 , where stdi is

the standard deviation of the ith dimension of the clean data.

Avoiding overfitting and underfitting. One of the steps of our algorithm is to fit a

neural network to the current learned observations. in Fig. 3.2 we explore the impact of
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Figure 3.2: Impact of the number of epochs on the overall performance of state prediction.
We train the neural network for 10, 500, and 1000 epochs, before switching to the step
over learning the states. We report the error as the total number of epochs increases on
FitzHugh–Nagumo and Rössler attractor models with 5% noise.

the number of epochs in training the network on the overall performance of our prediction.

We show the prediction error as a function of the total number of epochs. We switch

between training the network and learning the states after 10/500/1000 epochs in columns

one/two/three of the Fig. 3.2. For 10 epochs in the Rössler attractor (underfitting) and

for 1000 epochs in both models (overfitting), the prediction error becomes large. The error

goes down smoothly when we set the number of epochs to 500.

While setting the number of epochs to 500 seems to work well in these two models,

this is not necessarily the best choice for all the ODEs and for different noisy observations.

In our implementation, we do not fix the number of epochs. Instead, as we train the network

and after each 100 epochs, we compute the distance between the current predicted states

and the noisy observations. We stop training when we find that this distance increases

as we train the network for more epochs. We show the results of this implementation
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Figure 3.3: Avoiding the overfitting and underfitting without fixing the number of epochs.
We let the neural network’s training continue, as long as the current predicted states get
closer to the noisy observations. We report the error as the total number of epochs increases
on FitzHugh–Nagumo and Rössler attractor models with 5% noise.

in Fig. 3.3. As we can see, in both cases, the error goes down to 0 without any sign of

overfitting or underfitting.

Higher order discretization. In Fig. 3.3, we compare the difference between the Euler

and the Adam-Bashforth discretization of order three on Rössler and FitzHugh–Nagumo

models with 5% noise. As we can see, the error is large at the beginning, but it gets smaller

as we train the network’s parameters and the states.

Robustness to the hyperparameter λ. In Fig. 3.4, we investigate the robustness of

our algorithm to the hyperparameter λ in the FitzHugh–Nagumo and Rössler models, with

the 1%, 5%, and 10% noisy observations. We generate 10 sets of noisy observations for

each percentage of noise, run our algorithm with a specific value of λ on each of the sets

of observations, and report the prediction error (each error bar in this figure corresponds

to the prediction error on one set of observations).

As we see in Fig. 3.4, the errors are almost the same for different values of λ in

the FitzHugh–Nagumo. In the Rössler model, we get nearly the same error with different

λ values for 5% and 10% noisy observations. We get slightly better results with λ = 0.01
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Figure 3.4: Robustness to the hyperparameter λ. We create 10 sets of observations, each
with 1%, 5%, and 10% noise. We run our algorithm with λ = 0.01, 0.1, and 1 on each set
separately and report the error (each bar shows the error for one of the experiments).

when we have 1% noise. This makes sense since for 1% noise, the data is almost clean,

so we do not need to move X too much from its initializations (noisy observations). In

general, we see that our algorithm is robust with respect to the value of λ.

Importance of learning the clean states X. In Fig. 3.5, we investigate how important

it is to learn the states. In this figure, learn states is our approach, where we learn the

network’s parameters and the states in an alternation by minimizing (3.9), and fixed states

is a method that fixes the states to the observations X = Y and optimizes (3.9) only on the

parameters of the network. The neural network structure is the same for both methods.

The left column of the Fig. 3.5 compares the prediction error of the two methods.

The red curve (our approach) achieves much better errors than the other method.

The right column of this figure shows why we get a better error. We define the

X err as the squared distance between the current states and the clean states. Note that

this value is fixed for the method fixed states and is equal to ‖Y −X‖2. But for our
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Figure 3.5: Importance of learning the clean states. Learning the states significantly
improves the results. ”learn states” is our approach, while ”fix states” fixes the states to
the observations and fits the network. We run the experiments on the two models with 5%
noisy observations. Left panel: prediction error at different epochs of the methods. Right
panel: The Euclidean distance between the current learned states and the clean states,
during the alternating optimization.

method, this error changes every time we learn the states. As we can see, the error of the

red curve decreases massively as we iterate over the states and the network’s parameters.

This makes our learned states closer to the clean states and that is why we get a better

prediction error.
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Figure 3.6: Comparison with other methods. We compare our method with Raissi et al.
[41], Rudy et al. [46], and Brunton et al. [6] on three models with different amounts of
noise in the observations. For each value of the noise percentage, we create 10 sets of
observations, run the methods on each set separately, and report the prediction error.
Each error bar shows the error in one experiment.

Comparison with other methods We compared our method with three recent works

[6, 41, 46] in Fig. 3.6 on the FitzHugh–Nagumo, Rössler attractor, and double pendulum

models. Noisy observations are generated in the time interval [0, T ], where T = 20, 20

and 10 seconds in the FitzHugh–Nagumo, Rössler attractor, and double pendulum models,

respectively.

Both Rudy et al. [46] and Raissi et al. [41] train regular non-interpretable neural

networks to learn the vector field f . Brunton et al. [6] (SINDy) combines a set of prede-

termined (interpretable) shape functions to approximate the vector field f . The results of

SINDy [6] is worse than the other three methods since it uses fixed shape functions.
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Raissi et al. [41] trains a network without any regularization and allows the net-

work to overfit to the noise. We see in Fig. 3.6 that it works well on the FitzHugh–Nagumo

and Rössler attractor when we have a small amount of noise (1%). But, for a larger amount

of noise or a more complicated model it has a large prediction error.

Rudy et al. [46] learns both the states and the network’s parameters while it tries

to keep the states close to the observations. As we can see in the figure, this method is

more robust to the noise than Raissi et al. [41] and Brunton et al. [6].

Finally, our method is clearly the best one, no matter what ODE we use and how

much noise we add to the dataset.

Visualization of the predicted states and the shape functions We run our algo-

rithm on the noisy observations (with 5% noise) generated from the Rössler, FitzHugh–

Nagumo, and double pendulum ODEs, and visualize the predicted states and the shape

functions on Fig. 3.7, Fig.3.8, and Fig. 3.9, respectively.

The first panel in each figure shows both the clean states and our predicted states

over time. For better and more consistent visualization, we preprocess the data of each

curve of the first panel before plotting. For all the data in a curve, we first subtract the

minimum from the points, then divide them by the maximum. This makes the points of

each curve between 0 and 1. For the Rössler and the double pendulum, we also multiply

all the values by 5 and make them between 0 and 5. Note that we do this only for the

visualization purpose. In training, we use the original values of the points.

We can see from the first panel that the predicted states and the clean states are

very close, which means that our network does a good job in approximating the function f .

Note that if we train the network on clean states, then the clean and the predicted states

are going to be right on top of each other (we get zero error).

The second panel shows six 1-dim shape functions that have been used in each

case, and the third panel visualizes three of the multi-dim shape functions Hα(x).
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3.4 Conclusion

Learning governing equations given the noisy observations is an important task

when the dynamical systems are complicated. Previous approaches either use fixed libraries

of the interpretable shape functions or non-interpretable (black-box) powerful neural net-

works to learn the equations. Both approaches only work when there is a low amount of

noise in observations. In this chapter, we first parameterized the vector field using the

multiplication of the 1-dim shape functions. Then, we introduced a neural network with

an interpretable structure to model the parameterization. By learning the clean states and

parameters of the network in an alternation, we achieved an interpretable neural network

which is highly robust to the noise.
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Figure 3.7: Visualization of the predicted states and the shape functions on Rössler ODE.
We generate observations with 5% noise. First panel: the clean states and our predicted
states over time. Second panel: visualization of the 1-dim shape functions. Third panel:
visualization of the multi-dim shape functions.
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Figure 3.8: Visualization of the predicted states and the shape functions on FitzHugh–
Nagumo ODE. The panels are the same as Fig. 3.7
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Figure 3.9: Visualization of the predicted states and the shape functions on double pen-
dulum ODE. The panels are the same as Fig. 3.7
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