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1. Introduction

Signaling models typically assume that observable, costly actions are the only channels that

can convey information about the sender. These models implicity overlook the existence

of grades.2 A grade refers to any imperfect public message about the sender’s type (e.g.,

test scores, analyst ratings, product reviews). Grades are prevalent in many environments

that have been modeled as signaling games, such as education [38], financial markets [27],

advertising [22], and warranties [14].

In this paper, we study how strategic agents behave when both channels are available

for information transmission. Specifically, we consider a signaling environment in which

receivers observe a stochastic grade in addition to a costly action chosen by the sender. The

likelihood of each grade depends on the sender’s privately-known type and (potentially) on

his chosen action. After observing the chosen action and the realized grade, receivers take

actions in response. The purpose of this exercise is to understand how the presence of grades

affects equilibrium behavior in signaling games as well as the implications for policy and

applied work.

To fix ideas, consider an amended version of Spence’s job-market signaling model: a

worker, who is privately informed whether his productivity is high or low, chooses an ed-

ucation level (his action); potential employers observe the worker’s education level and, in

addition, his performance on a test (his grade) prior to making offers.3 Our first insight is

that, in the presence of an informative test, some degree of pooling on the education level

is more plausible than the widely adopted prediction of separation.4 The economic intu-

ition for this result is that if the worker were to choose the separating level of education,

attempting to convince the market that he is the high type, employers would infer that he

is eager to de-emphasize the results of the test. The low type has more incentive to do this

since he expects a worse outcome on the test. Choosing a very high level of education would

therefore backfire, leading employers to infer that the worker is more likely to be the low

type. Clearly, then, the worker will not choose the separating level of education.

Instead, the high type must resolve the tradeoff between how much to exploit his cost

advantage (i.e., that education is less costly to him) and how much to rely on his expected

grade advantage (i.e., the test). The more informative the test, the stronger is the high

2See Riley [36] for an extensive survey. Exceptions include Weiss [43], Fang [11], Feltovich et al. [12],
Kremer and Skrzypacz [24], [2], [3], Alos-Ferrer and Prat [1], and Daley and Green [9], see Section 2 for
further discussion.

3More generally, employers may observe the worker’s entire transcript and any other academic distinctions.
4Without grades, the least cost separating equilibrium is the unique stable outcome in this model and its

well-known generalizations [7, 8, 35].
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type’s grade advantage. We derive a condition (RC-Informativeness) that states precisely

when the test is informative enough relative to the cost advantage to induce some reliance

on it. More specifically, we show that separating equilibria do not survive stability-based

refinements when the test is RC-Informative. In addition, the presence of grades changes

the relative payoffs in pooling equilibria. When types pool on the costly action, the grade

contains additional information about the worker’s ability. Therefore, in contrast to pooling

equilibria in the model without grades, a high type expects to earn a higher wage than a low

type who obtains the same level of education.

Our second key insight is that the addition of grades can resolve the discontinuity of the

equilibrium prediction as the prior converges to degeneracy. Regardless of whether grades are

available, in the complete-information game where the worker’s type is common knowledge,

the unique equilibrium outcome involves no education. However, by introducing even the

slightest possibility that the worker is a lower type, the unique stable outcome of the gradeless

model involves the high-type worker choosing a non-trivial level of education to distinguish

himself from this unlikely possibility. This implies that both the high type’s strategy and

payoff are discontinuous in the receivers’ prior belief; a prediction that has been a source

of criticism for signaling models. In the presence of an RC-Informative test, the model is

not susceptible to the same criticism; as the prior becomes degenerate, all stable equilibria

converge to the complete-information outcome.

The presence of an RC-Informative test also has implications for Pareto efficiency; we

characterize the set of perfect bayesian equilibria (PBE) payoffs and find that all Pareto

efficient equilibria involve some degree of pooling (and therefore reliance on grades) when

the test is RC-Informative. Generically, there is a unique PBE satisfying the D1 refinement

[7, 4], which depends both on the informativeness of the test as well as on the market’s

prior belief about the worker. With an RC-Informative test, the equilibrium involves partial

pooling when the prior assigns a low probability to the high type: the high type chooses an

education level that is less costly than the least cost separating equilibrium (LCSE) level,

while the low type mixes between revealing himself by forgoing education and imitating the

high type. Both the education level and the grade convey information. As the prior puts

more weight on the high type, the equilibrium shifts from partial pooling to full pooling at

an education level that is lower still. As a result, the expected utility of both types increases

as the prior belief about the sender becomes more favorable.

Focusing on the equilibrium satisfying D1, we explore the welfare implications of grades.

The more informative the test, the more the high type relies on his grade to convey informa-

tion to employers and the less he relies on costly education. The high type’s welfare increases

with test informativeness while the low type can be made better or worse off. Overall, as the
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test becomes more informative, the amount of resources devoted to costly (and inefficient)

signaling activities decreases and efficiency improves.

We generalize our main results by extending our analysis to a more general class of pref-

erences and by allowing the accuracy of the test to vary with the action—encapsulating a

broad range of applications, including those mentioned at the outset. In this environment,

the sender decides how informative a test to subject himself to, knowing receivers will ob-

serve how accurate a test he chose as well as its result. This serves not only as a robustness

check, but also to separate the key forces behind the results from mere artifacts of a par-

ticular application. We also provide evidence consistent with our findings and discuss the

implications of our results for empirical work. In a supplementary appendix, we consider a

model with N types and obtain similar results; the presence of an informative test leads to

reliance on the grade as well as convergence to the complete-information outcome.

The remainder of the paper is organized as follows. In Section 2, we review the related

literature. In Section 3, we introduce grades to the job-market signaling model and present

the main findings. We generalize the model and our results in Section 4. Section 5 discusses

additional applications, implications and extensions. Section 6 concludes. Proofs are located

in Appendix Appendix A.

2. Related Literature

Noisy Signaling

It is important to distinguish our approach from the literature on “noisy signaling” [32, 6].

In a noisy signaling model, receivers do not perfectly observe the sender’s action, but rather

a noisy signal whose distribution depends on it (for example, a random shock is added to

the sender’s action choice). This specification is well-suited to environments where receivers

cannot observe the sender’s decision and must make inferences based on resultant data—for

example, in Matthews and Mirman [32] a potential entrant firm observes only a market

price which depends on both the incumbent’s decision and a stochastic market demand. In

other economic settings, especially those highlighted above, the model with grades is a more

accurate description of the strategic situation: employers observe both years of schooling

and grades on transcripts, rather than a single observation encompassing both aspects.

Inherently absent in a noisy signaling model, our work illustrates the trade-off between these

two channels and explains the importance of both in delivering our predictions.

Some settings may be accurately modeled by combining elements of both our model and

noisy signaling models. Senders decide both how costly an observable action to undertake

and how much to invest, unobservably, toward influencing the stochastic measure (i.e., the

grade). We discuss this extension in Section 5.3.
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Signaling and Grades

Ours is not the first paper to introduce additional information in a signaling framework.

Weiss [43] considers a model of education in which students are tested. Unlike our model, he

assumes that passing grades are productive in themselves: if two students of the same type

receive different grades, they have different values to employers. The test reveals something

that the sender did not already know about himself. Weiss argues that only separating

equilibria and full-pooling equilibria at the cheapest action are reasonable (in a specific formal

sense). Fang [11] demonstrates that in the presence of noisy information, signaling through

a seemingly irrelevant activity can be supported in equilibrium. He interprets this activity

as “social culture.” In other related work, [2, 3] study signaling through policy interventions

in a global games setting with exogenous information revelation. One key difference in their

model is that each receiver privately observes a different piece of information about the

sender’s type, whereas the information in our model (i.e., the grade) is publicly observed.

Feltovich et al. [12] examine a three-type signaling model in which the market observes

additional information correlated with the sender’s type. The authors identify conditions

for “countersignaling” equilibria to exist. In a countersignaling equilibrium, the high type

pools with the low type at the least costly action level, while the medium type perfectly

separates by incurring strictly positive signaling costs. In Section 5.2, we discuss how our

results provide an alternative explanation for some of the peculiarities that countersignaling

seeks to explain. Alos-Ferrer and Prat [1] amend the canonical two-type job-market signaling

model to one in which after being hired, the sender’s type is gradually revealed via on-the-job

employer learning. Market forces raise or lower the sender’s wage as the belief evolves. They

show that equilibria involving pooling can survive the Intuitive Criterion when on-the-job

revelation of type is fast enough. The assumption that information and wages gradually

evolve after the sender has been hired can be mapped into our model by considering: i) each

realized path of the gradual process as a grade, and ii) the present value of the sender’s wage

stream as the response from receivers in our model.

In contrast to these two papers, we fully characterize the set of equilibria in a two-type

model and show that the main economic insights extend to a model with more types. We

also consider a more general structure for the external information, including allowing the

quality of information to vary with the sender’s costly action. Finally, on the more technical

side, we show that the double-crossing property [31] arises naturally in our model for the

relevant indifference curves and facilitates a tractable equilibrium analysis.
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3. Job-Market Signaling with Grades

In this section, we illustrate the role of grades and the main insights of the paper within the

canonical signaling example of Spence (1973). There is a worker (the sender) and multiple

competing firms (receivers or the market). The worker is privately informed about his ability

(type) and chooses a level of education (action). Firms observe both the worker’s level of

education and his GPA (grade), then compete in Bertrand fashion to hire the worker.

Let t ∈ {L,H} denote the sender’s type and x ∈ R+ denote his action. A strategy for

each type of sender is a probability distribution, denoted Υt, with support St ⊆ R+. If the

strategy of the type-t sender contains mass points, we use σt(x) to denote the probability

assigned to x ∈ St. After the sender chooses an action, the grade g ∈ R is then realized. The

action, x, and the grade, g, are both publicly observed. Next, each receiver i simultaneously

makes an offer Wi(x, g) to the sender, who then decides which offer to accept, if any.

If a type-t sender chooses an action x and accepts an offer of W , his utility is W − Ctx,

where 0 < CH < CL (i.e., the single-crossing property holds). If he rejects all offers, his

utility is −Ctx. The utility of receiver i is zero if her offer is rejected and is Vt −Wi if her

offer is accepted, where 0 < VL < VH .

3.1. Grades and Tests

Given t ∈ {L,H}, the grade is a real-valued random variable, G, with density function ft. We

refer to the pair of probability density functions {fL, fH} as a test. Let R(g) ≡ fL(g)/fH(g).5

Note that R(g) measures the informativeness of the grade g. If R(g) = 1, then the grade

offers no information about the sender’s type. Alternatively, if R(g) > 1 (< 1), then the

grade causes a Bayesian to decrease (increase) the probability assigned to the high type. A

test is statistically informative if there exists a measurable set of grades G ⊆ R, such that

R(g) 6= 1 for all g ∈ G and
∫
G ft(g)dg > 0 for t ∈ {L,H}. Because our primary interest is to

study an environment in which grades have the potential to reveal information, we focus on

statistically informative tests and henceforth use gradeless model in reference to the model

with a test that is not statistically informative (or equivalently, the model in which g is

not observed). For technical convenience, we will require the test to satisfy the following

conditions.

T.1 For both types t, ft is continuous almost everywhere.

T.2 Grades are boundedly-informative: infg R(g) > 0 and supg R(g) <∞.

T.3 The Monotone Likelihood Ratio Property (MLRP) holds with R weakly decreasing

5If fH(g) = fL(g) = 0, we adopt the convention that R(g) = 1.
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over the common support of fL and fH .

Remark 3.1. For many tests, the set of grades is finite: pass/fail, letter grades A to F, etc.

This can easily be accommodated.6 For expositional purposes, we will often use a symmetric

binary test, in which there are two outcomes, {pass, fail}, with p = Pr(pass|t=H) =

Pr(fail|t=L) ∈ (1
2
, 1).

3.1.1. RC-Informative Tests

While R(g) measures the informativeness of a grade, we are also interested in measuring the

informativeness of tests. Blackwell [5] and Lehmann [26] provide the two predominant notions

for what it means for one test to be more informative than another. The crucial notion of

informativeness in our analysis is the low type’s expected likelihood ratio, E[R(g)|t=L]. The

higher is E[R(g)|L], the more informative the test. This measure is consistent with the

notions of Blackwell and Lehmann in the following sense.7

Fact 3.2. If the test {fL, fH} is more informative than the test {f̂L, f̂H} in the sense of

either Blackwell or Lehmann, then E[R(g)|L] ≥ E[R̂(g)|L].

Intuitively, what matters for equilibrium analysis is not just the test informativeness,

but rather the test informativeness relative to the high type’s advantage in taking the costly

action. Specifically, we will show that it is the following condition that is both necessary

and sufficient for substantively affecting the equilibrium predictions.

Definition 3.3. The test is RC-Informative if and only if E[R(g)|L] > CL

CH
.

While E[R(g)|L] measures the informativeness of the test, CL

CH
is a measure of the high type’s

cost advantage. Hence, RC-Informativeness is simply that the test is informative enough

relative to the cost advantage.

Example 3.4. A symmetric binary test is RC-Informative if and only if:

p >
1

2

1 +

√(
CL

CH

)2

+ 2 CL

CH
− 3

CL

CH
+ 3

 ,

where the right-hand side is increasing in the cost advantage. For instance, if the cost

advantage is CL

CH
= 3

2
, then the test is RC-Informative if and only if p > 2

3
.

6To encompasses a situation with a countable set of grades {y1, y2, . . . }, with probabilities pt(yn), let
ft(g) = pt(yn) for g ∈ [n, n+ 1) and ft(g) = 0 for all other g.

7Unlike the partial orderings endowed by Blackwell and Lehman, the notion used here endows a complete
ordering of all tests.
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Remark 3.5. Our assumption that CL > CH corresponds to the standard single-crossing

property, facilitating comparison to the standard gradeless model. However, our analysis

does not rely on this assumption. When CL = CH , any statistically informative test is

RC-Informative, and all of our results under RC-Informativeness hold in this environment.

3.2. Solution Concept and Preliminary Analysis

We use perfect bayesian equilibrium (PBE) as our solution concept.8 After observing x and

g, receivers update to some final belief µf (x, g) ≡ Pr(t = H|x, g). Receivers’ updating can be

decomposed into a first update based on x and a second update based on g. The first update

results in an interim belief. Let µ denote an arbitrary interim belief and µ(x) be the interim

belief as a function of the observed action. Along the equilibrium path, the interim belief is

pinned down by ΥL, ΥH , and the belief consistency requirement of PBE. The second update

is purely statistical—receivers update from their interim belief based on the observation of

the grade via Bayes rule as given by (1).

µf (x, g) =
µ(x)

µ(x) + (1− µ(x))R(g)
(1)

Let W (x, g) be the highest offer from the receivers after observing x and g. Since receivers

compete in Bertrand fashion, in any PBE, W (x, g) must be equal to the expected value of

Vt given the receivers’ final belief.

W (x, g) = µf (x, g)VH + (1− µf (x, g))VL.

Therefore, the interim belief is sufficient to compute type t’s (highest) expected offer:

wt(µ) ≡
∫
µVH + (1− µ)VL
µ+ (1− µ)R(g)

ft(g)dg. (2)

Thus, the expected utility of a type-t worker depends only on his chosen action and the

resultant interim belief: ut(x, µ) = wt(µ) − Ctx. Given a schedule of interim beliefs, µ(x),

an action, x0, is optimal for a type-t sender if and only if it satisfies:

x0 ∈ arg max
x

ut(x, µ(x)).

8The notion of PBE that we employ requires that receivers hold identical beliefs off the equilibrium path
and that these beliefs are updated using Bayes rule after any history for which it is possible to do so. Both
of these requirements are analogous to ones in Fudenberg and Tirole [13, pp. 331-333].
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3.3. Belief Indifference Curves

Without grades, the indifference curves of interest are those over the space of actions and

offers (or, equivalently, actions and final beliefs). With grades, based on the analysis con-

ducted in Section 3.2, it is indifference curves over the space of actions and interim beliefs

that are crucial for analysis. We refer to these as Belief Indifference Curves (BICs). It

will be useful to think of BICs as functions from actions to interim beliefs parameterized

by utility levels. Provided such a belief exists, let bt(x|û) be the interim belief such that

ut(x, bt(x|û)) = û.

A comparison to the gradeless model may be helpful. In the gradeless model, there is no

distinction between final and interim beliefs, meaning BICs align with standard indifference

curves. Figure 1 illustrates the BICs for the LCSE utility levels in both settings. Throughout

the paper xLCSE denotes the high type’s LCSE action.
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Low type

High type

direction of
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utilility

(a) The Gradeless Model
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t
e
r
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B
e
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Low type
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direction of
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(b) The Model with Grades

Figure 1 – BICs for the LCSE payoffs

Without the test, the low type’s curve is steeper than and below the high type’s for all

x < xLCSE; the difference in the slope of the two types’ curves derives only from their differing

costs. With the test, BICs acquire curvature according to each type’s expectation regarding

his grade on the test. The crucial observation is that because the input is interim belief, the

shapes of the indifference curves for the two types are different. Because the low type is more

likely to receive a lower grade, his indifference curve in the interior lies everywhere above

where it did in the gradeless model. To maintain the same expected utility when grades are

available, the low type needs more favorable beliefs to offset the outcome he expects on the

test. The opposite is true for the high type.

BICs have a useful feature, termed the monotone relative slope property (MRSP), that

is highlighted in Figure 2. Specifically, there exists a unique µ∗ ∈ (0, 1] such that the slope

of the high type’s BICs is less than the low type’s for all µ < µ∗, and the slope of the high
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type’s BICs is greater than the low type’s for all µ > µ∗. Notice that as a special case of

MRSP, BICs satisfy the single-crossing property if and only if µ∗ = 1.

0
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 B
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f µ

∗

xLCSEx∗

Low type

High type

Figure 2 – Illustration of the monotone relative slope property

Intuitively, the high type has two advantages over the low type; a cost advantage and

a grade advantage. The cost advantage is independent of the interim belief and can be

measured by CL/CH . The grade advantage, on the other hand, depends on receivers’ interim

belief. Starting from µ close to zero, an increase in µ makes the test more important; receivers

rely more on the grade when their prior is intermediate and therefore, offers are more sensitive

to grades. This benefits the high type relatively more than the low type (since the high type

expects to get a higher grade) and hence the high type’s grade advantage is increasing in this

region. In contrast, for sufficiently large µ, further increases in µ decrease the importance

of the test and benefit the low type more than the high type. Since the relative slopes of

the BICs tell us which type needs more compensation in interim belief to incur a marginally

more expensive action, MRSP results from this relationship between interim belief and test

importance.

The relevance of RC-Informativeness (Definition 3.3) will now become apparent.

Lemma 3.6. The following statements are equivalent.

1. The test is RC-Informative.

2. At µ = 1, the high type’s BIC is steeper than the low type’s BIC.

3. µ∗ < 1.

That statements 1 and 2 are equivalent is a direct calculation. The equivalence of 2 and

3 follows immediately from MRSP. (All formal proofs are found in Appendix Appendix A.)

One interpretation of the lemma is as follows. In the absence of grades, there is no difference

between interim and final belief, so BICs inherit the single-crossing property. Further, the
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addition of a test that is not RC-Informative alters the BICs, but not substantially enough

to overturn single-crossing. Only when the test is RC-Informative, is µ∗ < 1 and do BICs

no longer satisfy single-crossing.

3.4. The Set of PBE

There are many perfect bayesian equilibria of the game. As in the gradeless model, there

exist separating, full pooling, and partial pooling equilibria. In addition, there exists a new

form of equilibria we designate common support equilibria. In a common support equilibrium

SL = SH , but ΥL 6= ΥH . Common support equilibria differ from separating or partial pooling

equilibria in that no on-path action perfectly identifies the sender’s type, and differ from full

pooling equilibria in that multiple actions are on the equilibrium path, each leading to a

different interim belief, which also differs from the prior. MRSP implies that in any common

support equilibrium SL = SH = {x1, x2}, where x1 < x2 and µ(x1) < µ0 < µ(x2). Figure 3

depicts BICs for payoffs which can be supported by a common support equilibrium given

any µ0 ∈ (µ1, µ2) as labeled.

0

1

Signal

I
n
t
e
r
im

B
e
le
if

x1

µ1

µ2

x2 xLCSE

Low type
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Figure 3 – BICs for a common support equilibrium

The set of PBE depends on the prior. Describing the set of equilibria for every prior is

a straightforward but tedious exercise. Instead, we turn to characterizing the set of PBE

payoffs when the test is RC-Informative and illustrate how the set changes with the prior.9

Since each receiver’s expected utility is zero in all equilibria, it suffices to characterize the

set for the sender. The results are depicted in Figure 4. Two belief levels play a key role.

The first is µ∗. Let x∗ be the unique action satisfying uL(x∗, µ∗) = VL. The second key belief

level is µ ≡ bH(0|uH(x∗, µ∗)): the belief µ such that the high type is indifferent between

9Characterizing the set when the test is not RC-Informative produces little insight beyond that obtained
in the gradeless model. Further, it is straightforward to extend the analysis here to the general model studied
in Section 4.
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(0, µ) and (x∗, µ∗). Note that µ < µ∗.

LCSE

Partial Pooling
at x∗ with
µ∗(x∗) = µ∗

Full Pooling at x = 0

Low type payoff
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(a) For µ0 < µ

LCSE

Partial Pooling
at x∗ with
µ∗(x∗) = µ∗

Full Pooling at x = 0

Low type payoff

(b) For µ0 ∈ (µ, µ∗)

LCSE

Full Pooling at x = 0

Low type payoff

(c) For µ0 > µ∗

Figure 4 – The set of PBE payoffs for various priors. In all panels, the dotted black line indicates the
45-degree line. Payoffs produced by separating equilibria are located on the vertical axis between the origin
and the LCSE payoffs. The remainder of the feasible payoffs on the vertical axis can be achieved by partial
pooling equilibria in which 0 ∈ SL, /∈ SH . The upper linear boundary of the shaded area has slope CH

CL
and

corresponds to full-pooling equilibria.

From Figure 4, it is clear that there are only two candidates for Pareto efficient equilib-

ria.10 The first is full pooling at x = 0. For any prior, this is the payoff-maximal equilibrium

for the low type, and hence is always Pareto efficient. The second is partial pooling at x∗

in which the high type chooses x∗ with probability one and the low type mixes between 0

and x∗ such that µ(x∗) = µ∗. This equilibrium exists if and only if µ0 ≤ µ∗ and is Pareto

efficient if and only if uH(x∗, µ∗) ≥ uH(0, µ0), which is equivalent to µ0 ≤ µ. Grades convey

information in equilibrium if and only if types do not separate by choice of action. Hence,

when the test is RC-Informative, there is always a way to utilize it that Pareto dominates

separating outcomes.

Proposition 3.7. For any µ0, if the test is RC-Informative, then grades convey payoff-

relevant information in every Pareto efficient equilibrium. If the test is not RC-Informative,

then the LCSE is a Pareto efficient equilibrium if and only if µ0 ≤ µ.

Along with the results in Sections 3.5 and 3.6, this indicates that RC-Informativeness is

precisely the condition that characterizes when the presence of grades substantively alters

our findings compared to those in the gradeless model.

10Again, receivers are indifferent between all equilibria. Our notion of Pareto efficiency is ex interim in
that one equilibrium Pareto dominates another if and only if it is weakly better for both types of the sender
and strictly greater for at least one of them, as in [36]. This usage is sometimes motivated by noting that it
is equivalent to model the environment with a continuum of senders, a fraction µ0 of which are high types,
all participating in the market simultaneously.
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3.5. Equilibrium under D1: Senders Rely on Informative Tests

As in most signaling models, the set of PBE is large because of the flexibility afforded to

off-equilibrium-path beliefs. In order to produce further insights and predictions, the set of

equilibria must be refined. We focus our attention on PBE satisfying the D1 refinement [4, 7].

Using D1 leads to sharp predictions and also has the advantage of facilitating comparison

with the gradeless model where it uniquely selects the LCSE [7, 8, 35].11

In our model, the D1 refinement can be stated as follows.12 Fix an equilibrium endowing

expected utilities {u∗L, u∗H}. Consider an action x that is not in the support of either type’s

strategy. Define Bt(x, u
∗
t ) ≡ {µ : ut(x, µ) > u∗t}. If BL(x, u∗L) ⊂ BH(x, u∗H), then D1 requires

that µ(x) = 1 (where ⊂ denotes strict inclusion). If BH(x, u∗H) ⊂ BL(x, u∗L), then D1 requires

that µ(x) = 0.

The refinement can be interpreted as follows. Suppose that x is not in the support

of either type’s equilibrium strategy, but it is observed nonetheless. A receiver uses the

following reasoning,“The sender must have misunderstood my beliefs, otherwise he would

not have chosen this deviation. Of all the possible beliefs that he could (mistakenly) think

I will have after seeing x, for which subset of these beliefs would the low type prefer this

deviation? For which subset would the high type prefer this deviation? If there are beliefs

such that the high type would prefer this deviation and the low type would not, and there

are no beliefs such that the low type would prefer the deviation and the high type would not

(that is, if BL(x, u∗L) ⊂ BH(x∗, uH)), then given the deviation to x, I should believe that the

sender is of type H.”

The following proposition demonstrates that, generically, there is a unique D1 equilibrium

and describes how it varies with the prior. Recall that uL(x∗, µ∗) = VL.

Proposition 3.8. If the test is RC-Informative, then

• if µ0 > µ∗, the unique D1 equilibrium is full pooling at x = 0.

• if µ0 < µ∗, the unique D1 equilibrium is partial pooling. The high type chooses x∗ with

probability 1, and the low type mixes over x = 0 and x∗ such that µ(x∗) = µ∗ (i.e.,

σ∗L(x∗) = µ0
1−µ0

1−µ∗
µ∗

and σ∗L(0) = 1− σ∗L(x∗)).

• if µ0 = µ∗, all D1 equilibria are full pooling and can be supported at x iff x ∈ [0, x∗].

If the test is not RC-Informative, then for all priors the unique D1 equilibrium is the LCSE.

11While the set of equilibria is often larger, the main economic insights produced by our model hold under
the more mild Divinity refinement [4]. Results available upon request.

12In Appendix Appendix A, we explain the equivalence, in our model, between this definition and D1’s
original definition [4, 7].
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This result says that if the test is too weak (or the cost advantage is too great), the

predictions match those of the gradeless model. In fact, the underlying analysis matches

as well—when the test is not RC-Informative, µ∗ = 1 (Lemma 3.6) and BICs satisfy the

single-crossing property, just as in the gradeless model. More importantly, Proposition 3.8

says that for more informative tests (or lesser cost advantages), the predictions change—at

least some degree of reliance on the test (because types no longer separate on x) will take

place at all priors, and full reliance on the test occurs for sufficiently high priors.

To see why some degree of pooling must occur when the test is RC-Informative, consider

the LCSE and suppose receivers observe an off-path action of xLCSE−ε. Clearly, µ(xLCSE−ε)
must be close to one in order for this to be a profitable deviation for either type. Recall

that MRSP implies the high type’s BIC is steeper at all µ > µ∗. In words, when µ is near

one, a marginal decrease in the interim belief is relatively less costly to the high type than

to the low because it increases the importance of the test. Therefore, unlike in the gradeless

model, receivers do not interpret this deviation as a negative signal because it indicates a

willingness to put more emphasis on the test. In accordance with D1, receivers will assign

probability one to t = H after observing the deviation, making it profitable for both types,

and breaking the candidate separating equilibrium.

In the D1 equilibrium, the high type uses the costly action to influence the receivers’

interim belief only as long as he has a relative advantage in doing so (i.e., as long as his BIC

is flatter than the low type’s). When the test is RC-Informative, µ∗ < 1 (Lemma 3.6) and

therefore the high type does not fully separate through the costly action. Instead, when the

prior is below µ∗, he uses the costly action to the point where the interim belief reaches µ∗.

When the prior is above µ∗, any attempt to influence the interim belief through the costly

action is viewed as an attempt to de-emphasize the test. Neither type wants to incur costs

if it will decrease the receivers’ interim belief, and hence both types fully pool on the costly

action at x = 0.

3.6. Equilibrium Convergence

Consider the complete-information game where t = H is common knowledge; the unique

equilibrium outcome involves the sender choosing x = 0 and obtaining an offer (and utility)

of VH . By introducing even the slightest probability that the sender is the low type, the

stable equilibrium of the gradeless model predicts that the high type will fully separate by

choosing xLCSE. This prediction has been a source of criticism for the gradeless model. One

key insight of this paper is that the availability of other sources of information (i.e., grades)

can resolve this discontinuity. Within the job-market signaling setting, it is clear from

Proposition 3.8 that an RC-Informative test is both necessary and sufficient for convergence

13



of the D1 equilibrium to the full-information outcome as µ0 → 1. In Section 4, we generalize

this result by providing necessary and sufficient conditions for this same result to obtain in

a richer environment.

To formalize these ideas, we will need to delve a bit deeper into the notion of convergence.

We introduce the following two notions of convergence.

Definition 3.9. Let {µn0} be a sequence of priors converging to µ0, and {Υn
L,Υ

n
H} be any

sequence of strategy profiles such that Υn
L,Υ

n
H is an equilibrium when the prior is µn0 .

• The set of equilibrium strategy profiles converges type-by-type to a distribution Υ

if for every sequence {Υn
L,Υ

n
H}, Υn

t converges in distribution to Υ for all t.

• The set of equilibrium strategy profiles converges in total mass to a distribution Υ

if for every sequence {Υn
L,Υ

n
H}, µn0 ·Υn

H + (1− µn0 ) ·Υn
L converges in distribution to Υ.

Clearly, equilibrium convergence type-by-type implies convergence in total mass. The

LCSE of the gradeless model does not converge to the complete-information outcome as

µ0 → 1 by either metric.13 We can now formalize the convergence result within this canonical

setting.

Corollary 3.10. As µ0 → 1, by either notion of convergence (type-by-type or in total mass),

the D1 equilibrium converges to the complete-information outcome if and only if the test is

RC-Informative.

As mentioned earlier, RC-Informativeness is the precise condition under which both (i)

the predictions of the gradeless model change and (ii) convergence to the full-information

outcome is obtained.14

3.7. Comparative Statics and Welfare

In this section we investigate comparative statics of the D1 equilibrium by varying the test

informativeness and the cost advantage. To do so, we use symmetric binary tests (see Remark

3.1), parameterized by p ∈ (1
2
, 1), where higher p corresponds to a more informative test. In

addition, we fix CL (and therefore xLCSE) and vary the cost advantage by changing CH ; we

13When µ0 → 1 (µ0 → 0), convergence in total mass to Υ is equivalent to convergence of ΥH (ΥL) to Υ.
Looking at convergence in total mass, however, guarantees that from an uninformed party’s perspective (i.e.,
that of a modeler, econometrician, or even a receiver) the distribution of x limits to the desired distribution
as the prior tends to its limit.

14Notice that because the high type chooses x∗ with probability one for all µ0 < µ∗, the D1 equilibrium
of the model with grades converges to the complete-information outcome only in total mass as µ0 → 0.
Convergence in total mass to the complete-information outcomes as the prior moves all of its weight to the
lowest type is a straightforward result for all PBE, independent of the informativeness of grades and the
number of types. We therefore do not repeat the result when examining convergence in future sections.
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include the case of CH = CL (see Remark 3.5). Below, we classify the main findings into

three categories.

Reliance on the Test: As the informativeness of the test increases, the high type relies

more on it, and less on the costly action. Analogously, as the high type’s cost advantage

increases, he relies more on the costly action, and less on the test.

The claims are easiest to see in the case of low priors, where (from Proposition 3.8) the

high type’s reliance on the costly action is captured by x∗ (the action he chooses), and his

reliance on the test is decreasing in µ∗ (the resultant interim belief).15 Figure 5 illustrates

how x∗ and µ∗ vary with p for several different cost advantages. Modulo boundary solutions,

as p increases, x∗ decreases and µ∗ strictly (weakly) decreases if the cost advantage is strict

(weak). As p → 1, x∗ → 0. That is, as the test becomes completely informative, the high

type relies only on the test. As p→ 1
2
, whether or not the high type has a cost advantage, no

matter how slight, makes a difference. When CH < CL, (x∗, µ∗) limits to (xLCSE, 1). This is

simply the recovery of the result in the gradeless model: when there is a cost advantage and

no meaningful test, the unique D1 equilibrium is the LCSE. On the other hand, if CH = CL,

µ∗ = 1
2

for all p and x∗ → 1
2
xLCSE. No matter how weak the test is, the high type relies on

it as heavily as possible since he has no cost advantage. Finally, for any fixed p, both x∗ and

µ∗ are increasing in the cost advantage.
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Figure 5 – Comparative statics for x∗ and µ∗ with symmetric binary tests.

15To see that his reliance on the test is decreasing in µ∗, recall that the importance of the test depends
on the market’s interim belief. Test importance is highest when the belief is intermediate, and decreases as
the belief increases from there. Since the high type has a cost advantage, µ∗ is always at least as large as
the level that maximizes test importance [see 10, pg. 14]. Additionally, an increase in µ∗ enlarges the set of
priors for which the D1 equilibrium is partial pooling, which features more reliance on the costly action and
less reliance on the test than do full pooling equilibria.
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Payoffs: The high type’s welfare increases with the test informativeness, but may increase

or decrease with his cost advantage. The low type’s welfare decreases with the cost advantage,

but may increase or decrease with the test informativeness.

For a fixed cost advantage, Figure 6(a,b) plots the sender’s type-dependent expected

payoffs, u∗t . The key difference between the two panels is that in (a) µ0 = 1
4
< µ∗ for all

p ∈ (1
2
, 1), meaning the D1 equilibrium is either separating or partial pooling, whereas in (b)

because µ0 = 3
4

the D1 equilibrium switches from partial to full pooling when p crosses 0.61.

In both cases, the high type’s payoff is increasing in p. Notice from (b) that, despite enjoying

the benefit of decreased signaling costs for p > 0.61, the low type’s welfare decreases as the

test continues to get better at identifying his type.

Not surprisingly, the low type’s payoff is decreasing in the cost advantage. To see that

the high type can also be worse off with a larger cost advantage, consider a game where

µ∗ < 1 and µ0 is just above µ∗, so the D1 equilibrium is full pooling at x = 0. As CH

decreases, µ∗ increases above µ0. The high type’s cost advantage is now too great to sustain

full pooling, shifting the D1 equilibrium to partial pooling at x∗. This carries a discrete

increase in signaling costs, but an arbitrarily small change in the high type’s expected offer.

Efficiency: Efficiency increases with the test informativeness, but in a way that depends

on the prior. If the prior is low, efficiency increases continuously with test informativeness

and approaches first-best only as the test becomes perfect. If the prior is high, the first-best

outcome can be achieved with an imperfect test.

Recall that the market is competitive, so the sender captures all the surplus. In Figure

6(c), efficiency is measured by the percentage of the potential surplus the sender attains:

E[u∗t |µ0]/E[Vt|µ0].16 Not surprisingly, efficiency increases with p and the full surplus is re-

alized as p → 1. However, the two priors illustrate two different avenues by which this is

achieved. For µ0 = 3
4
, the D1 equilibrium is fully efficient for all p > 0.61, since the equilib-

rium is full pooling at x = 0. For µ0 = 1
4
, the D1 equilibrium involves inefficient expenditure

on the costly action for every p < 1. Only as p → 1 does this expenditure decrease to zero

(see Figure 5(a)).

4. Generalized Preferences and Testing Technologies

In this section we generalize both the set of allowable sender utility functions and the relation-

ship between the costly action and the test. In addition to demonstrating their robustness,

16The denominator also corresponds to the surplus attained in the complete-information outcome. Using
a percentage measure for efficiency allows us to meaningfully compare efficiency for different priors, even
though the potential surplus, E[Vt|µ0], varies with the prior.

16



0.5 1p

E
x
p

e
c
te

d
 U

ti
lit

y

 

 

V
L

V
H High Type

Low Type

(a) Sender payoff given µ0 = 1/4

0.5 0.61 1p

E
x
p

e
c
te

d
 U

ti
lit

y

 

 

V
L

V
H High Type

Low Type

(b) Sender payoff given µ0 = 3/4

0.5 0.61 1

0

1

p

E
ff
ic

ie
n
c
y

 

 

µ
0
=3/4

µ
0
=1/4

(c) Efficiency

Figure 6 – Sender welfare (a,b) and efficiency (c) as they depend on the informativeness of the symmetric
binary test for two different priors. All panels use CL/CH = 1.1.

this broadens the scope of our results to a variety of other applications (see Section 5.1 for

examples). Further, it allows the statistical informativeness of the test to be determined

endogenously by the sender’s action. To do so, it is convenient to model the response from

receivers in reduced form, as in [29]. As before, receivers observe the sender’s costly action,

x, and realized grade, g, and update their (common) belief about the sender’s type to a final

belief µf (x, g). The payoff of a type-t sender is now Ut(x, µf ).
17

We assume that Ut is differentiable in both arguments, with Ut,2 > 0, where Ut,i denotes

the partial derivative of Ut with respect to its ith argument. In addition, we put the following

structure on the sender’s preferences.

A.1 −UH,1/UH,2 ≤ −UL,1/UL,2 for all (x, µf ).

A.2 Ut(x, µt′) is strictly quasiconcave in x for all t, t′, where µt denotes the degenerate belief

that places probability one on type t.

A.3 There exists an x̂ ≥ 0 and d > 0 such that Ut,1(x, µf ) < −d for all t, µf and x ≥ x̂.

A.1 is a weak version of the Spence-Mirrlees condition. A.3 states that a higher action is even-

tually costly for the sender. Combined with A.2, it ensures that the complete-information

outcome is both well-defined and unique. Let x∗t ≡ arg maxx Ut(x, µt) denote the action

chosen by the sender in the complete-information setting. A.2 and A.3 also imply that there

exists a unique xLCSE > x∗L, such that UL(x∗L, 0) = UL(xLCSE, 1). Finally, we assume that

17This is a reduced-form representation of an environment in which following the observation of (x, g),
the sender and the receivers participate in a continuation game with the key feature that, given (x, µf ),
all equilibria yield the same expected payoff for a type-t sender. For example, in Section 3, receivers make
simultaneous wage offers to the sender, who decides which offer (if any) to accept. In this case Ut(x, µf ) =
VL + µf (VH − VL)− Ctx.
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A.4 x∗H < xLCSE.

In combination with A.1, A.4 implies that (i) the least-cost-separating strategy profile

σL(x∗L) = 1, σH(xLCSE) = 1 is part of a PBE, and (ii) the fully efficient outcome σL(x∗L) =

1, σH(x∗H) = 1 cannot be sustained as part of a PBE.

In addition, the accuracy of the test is now permitted to depend on the sender’s choice of

action. To do so, define a testing technology to be a family of tests indexed by x and denoted

by {fL(·|x), fH(·|x)}, each satisfying T.1-T.3, and where ft(·|x) is continuously differentiable

in x. Let R(g|x) = fL(g|x)/fH(g|x).

Finally, as in the analysis in Section 3, the receivers’ interim belief, µ, and the sender’s

expected utility as a function of his costly action and the interim belief, ut(x, µ), will play a

key role. In this more general environment,

ut(x, µ) =

∫
Ut(x, µf (x, g))ft(g|x)dg (3)

4.1. Generalized RC-Informativeness and its Consequences

Because both the informativeness of the test and any advantage the high type enjoys in

taking the costly action may vary with the chosen level of the action, we need to generalize

the notion of RC-Informativeness.

Definition 4.1. For any x ∈ [x∗H , x
LCSE], the test is RC-Informative at x if and only if

E[R(g|x)|L, x] >
UL,1(x, µf )

UL,2(x, µf )

/UH,1(x, µf )

UH,2(x, µf )

∣∣∣∣
µf=1

(4)

The generalization of RC-Informativeness compares the same measure of the statistical

informativeness of the testing technology at x to the ratio of the slopes of the two types’

action-µf indifference curves at (x, 1). Notice that in the model from Section 3, the right-

hand-side of (4) is CL/CH . In terms of results, RC-Informativeness at xLCSE gives a sufficient

condition for separation to be eliminated and all D1 equilibria to rely on grades.

Proposition 4.2. If the test is RC-Informative at xLCSE, then for any µ0 ∈ (0, 1), all D1

equilibria involve some degree of pooling.

A sufficient condition for convergence to the complete-information outcome also relies on

RC-Informativeness.

Proposition 4.3. If the test is RC-Informative at all x ∈ (x∗H , x
LCSE], then as µ0 → 1, by

either notion of convergence (type-by-type or in total mass), the set of D1 equilibria converges

to the complete-information outcome.
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4.2. The Double-Crossing Property

In Section 3, BICs satisfy a key property, MRSP, which stems from the difference in how

each type is affected by the test, depending on the market’s interim belief (see Section 3.3).

In richer settings, this property may fail to hold. However, the key economic implications

are restored by an appropriate generalization, termed the double-crossing property (DCP),

which we now introduce.

For any utility level û, and either type sender, there exist actions large enough, such

that no µ ∈ [0, 1] can deliver expected utility û when they are chosen. Define x̄(ûL) ≡
max {x : bL(x, ûL) = 1}.18 Notice that xLCSE ≡ x̄(UL(x∗L, 0)).

The Double-Crossing Property (DCP). Consider any feasible ûL, ûH such that bL(x0|ûL) =

bH(x0|ûH) for some x0 ∈ [0, x̄(ûL)]. If ∂
∂x
bH(x0|ûH) ≤ ∂

∂x
bL(x0|ûL), then bH(x|ûH) >

bL(x|ûL) at all x < x0.

DCP says that if the high type’s BIC is flatter than the low type’s at a point of intersec-

tion, then the high type’s BIC lies everywhere above the low type’s at all points to the left.

Further, it implies that if the low type’s indifference curve is flatter at a point of intersection,

then it lies everywhere below to the right.

DCP is implied by MRSP, but not the converse. The property arises naturally on BICs in

many signaling models with grades. Clearly, it is satisfied in the job-market signaling model

of Section 3. In addition, each of the applications discussed in Section 5.1 satisfy DCP.19

We maintain that DCP holds for the remainder of this section, in which case the sufficient

conditions of Propositions 4.2 and 4.3 are also necessary.

Proposition 4.4. Under DCP, if the test is not RC-Informative at xLCSE, then for all

µ0 ∈ (0, 1), the LCSE is a D1 equilibrium.

Proposition 4.5. Under DCP, if there exists an x ∈ (x∗H , x
LCSE] such that the test is

not RC-Informative at x, then as µ0 → 1, the set of D1 equilibria does not converge to

the complete-information outcome by either notion of convergence (type-by-type or in total

mass).

In many environments the informativeness of the test is likely to be increasing in x.

For example, in education, more years of schooling produces a longer and more informative

18For a given ûL in the feasible set of utility levels, there can exist two action levels x′ < x such that
bL(x′, ûL) = bL(x, ûL) = 1. By A.2, it must be that x′ < x∗L < x∗H .

19It is possible to construct utility functions and testing technologies such that DCP fails by drastically
changing the terms in (4) over a small interval of action levels. Preventing such rapid changes is sufficient
to ensure the property holds.
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transcript, or a more difficult course of study is better at distinguishing students of varying

abilities. More relevant for equilibrium analysis is whether the informativeness is increasing

relative to utility differences. If the difference between the left- and right-hand sides of (4) is

increasing in x, results can be both strengthened and simplified. In this case, if the test fails

RC-Informativeness at xLCSE, then the test is not RC-Informative at any x < xLCSE. Under

this stronger hypothesis, Proposition 4.4 can be strengthened to: the LCSE is the unique D1

equilibrium for all priors. Further, convergence results hinge only on the simplified condition

of RC-Informativeness at x = x∗H .

Full Characterization

In Appendix Appendix A, we completely characterize the set of D1 equilibria under DCP (see

Proposition Appendix A.4). Here we briefly discuss the highlights. Let uL ≡ UL(x∗L, 0)

and ūL ≡ maxx UL(x, 1), which bound the payoff the low type can acheive. Now, for any

ûL ∈ [uL, ūL], let xH(ûL) denote the maximizer of uH(x, bL(x|ûL)). That is, xH(ûL) is the

optimal action for the high type to choose if the schedule of interim beliefs is µ(x) = bL(x|ûL).

That the maximizer is unique follows from DCP. Let µH(ûL) ≡ bL(xH(ûL)|ûL). We will refer

to the curve {xH(ûL), µH(ûL)} for ûL ∈ [uL, ūL] as the solution locus.

Properties of the solution locus depend on the informativeness of the testing technology.

If the test is RC-Informative at x̄(ûL), then µH(ûL) ∈ (0, 1): the high type maximizes

expected utility by relying at least partially on the outcome of the test. If the test is not

RC-Informative at x̄(ûL), then the locus lies along the upper boundary, xH(ûL) = x̄(ûL) and

µH(ûL) = 1: the high type maximizes his expected utility by completely separating from the

low type using the costly action.

Figure 7 illustrates an example. For each of the low type’s plotted BICs, the dotted

curves are the BICs corresponding to the high type’s constrained-maximal expected utility:

uH(xH(ûL), µH(ûL)). The dark line running through the tangency points is the solution

locus. Notice that µH(ûL) is non-decreasing in Figure 7. This non-decreasing locus property

is necessary and sufficient to ensure that the D1 equilibrium is generically unique. Like

DCP, this property also arises naturally in many signaling models with grades. It is satisfied

in the job-market signaling model of Section 3 and in each of the applications discussed in

Section 5.1. For each candidate utility level of the low type, the solution locus identifies

the corresponding candidate strategy (σH(xH(ûL)) = 1) and utility level for the high type.

The final step is to link candidates to equilibria. The link is made via the equilibrium belief

consistency condition, as the following proposition illustrates.

Proposition 4.6. Suppose that DCP holds and µH(ûL) is non-decreasing. Then, there exists
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a unique D1 equilibrium for almost all priors, µ0 ∈ (0, 1). Generically, if µ0 ≤ µH(uL) the

D1 equilibrium is:

• σ∗H(xH(uL)) = 1, σ∗L(xH(uL)) =
1−µH(uL)

µH(uL)
µ0

1−µ0 , and σ∗L(x∗L) = 1− σ∗L(xH(uL))

• µ(xH(uL)) = µH(uL), and µ(x) = 0 if x 6= xH(uL)

If µ0 > µH(uL) the D1 equilibrium is full pooling at xH(u∗L), where u∗L satisfies µH(u∗L) = µ0.

If the test is RC-Informative at xLCSE then µH(uL) < 1 and the D1 equilibrium involves

partial pooling for priors below µH(uL) and full pooling for priors above. On the other hand,

if xH(uL) = xLCSE, then µH(uL) = 1 and the LCSE is the unique D1 equilibrium for all

µ0 ∈ (0, 1).

A connection can be made to equilibrium selection in the gradeless model.20 In the

standard gradeless model D1 selects the LCSE. That is, it selects the equilibrium that is

optimal for the high type conditional on the low type getting his full-information payoff.

However, when the test is RC-Informative at xLCSE, the equilibrium with this same property

is the partial pooling equilibrium in which the high type chooses xH(uL) and the resultant

interim belief is µH(uL) < 1. This equilibrium exists only when µ0 ≤ µH(uL), and continues

to be selected by D1 in this case. When µ0 > µH(uL), in every D1 equilibrium the low

type attains a payoff u∗L > uL, but the high type continues to achieve the maximum payoff

consistent with the low type attaining u∗L.

5. Applications, Evidence, and Extensions

Signaling theory has been applied to a broad array of economic environments (see [36] for

a survey). We believe that grades are an important feature of many of these environments.

20We are grateful to an anonymous referee for articulating this connection.
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The model presented in Section 4 is general enough to capture a broad set of applications.

In this section we discuss several examples (Section 5.1), summarize the main empirical

implications of our results (Section 5.2), and consider two natural extensions (Section 5.3).21

5.1. Applications

The following examples fit within the framework of Section 4. In addition, it is straightfor-

ward to verify that each satisfies both DCP and the non-decreasing locus property (Section

4.2). To ensure these two properties hold, some structure on preferences and the testing

technology is needed (see footnote 19). As in Section 3, the examples below include consid-

erably more structure than needed in an attempt at retaining parsimony. Throughout, we

maintain that 0 < VL < VH .

1. Advertising: As in [22], the sender is a firm offering a good of uncertain quality t,

and the receivers are potential customers. Demand for the product is increasing in the

expected quality of the good, captured by the demand curve: Q(P, µf ) = aE[Vt|µf ]−
bP . The firm’s marginal cost of production is zero, regardless of t, so its profit is

Π(µf ) ≡ (aE[Vt|µf ])2/4b. Prior to bringing its good to market, the firm can engage in

non-informative advertising (i.e., money burning). Therefore, Ut(x, µf ) = Π(µf ) − x.

The test in this example represents product reviews, such as those provided by Yelp,

CNET, Zagat, Angie’s List, etc., which does not depend on x.

2. Warranties: As in [14], the sender is a firm offering a good of uncertain durability

t, and the receivers are a unit mass of potential customers. The firm can offer a

warranty policy that replaces the good in the event of failure before time x. Higher

quality goods breakdown less frequently. Therefore, customers’ willingness to pay is

increasing in µf , and the firm’s (expected) cost for its warranty policy is decreasing in t.

This is represented explicitly by Ut(x, µf ) = E[Vt|µf ]+x− 1
2
Ctx

2, where 0 < CL < CH .

Notice, that Ut can be non-monotonic in x because, regardless of µf and t, it may be

profit maximizing to offer a warranty. The test in this example is conducted by third-

party reviewers such as Consumer Reports, J.D. Power and Associates, etc., which

does not depend on x.

In the following two (simplified) applications from the finance literature, the sender has

mean-variance preferences over his final wealth level (W̃ ) and maximizes E[W̃ ] − γ
2
Var[W̃ ],

21In addition, a number of applied-theory working papers have a signaling-with-grades component [15, 16,
28, 25, 40]. Each of these papers seeks to answer questions tailored to a single application (such as electoral
campaigning or incentives for money managers), for which the theory of signaling in the presence of grades
is the necessary first step that the analysis builds on. We believe that the present paper can provide the
foundation of a unifying framework for this type of work, as already seen by its adoption in some of them.
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where Var[W̃ ] is the variance of final wealth and γ is a measure of the sender’s risk aversion.

These applications can be analyzed within our framework by interpreting this objective as

the sender’s expected payoff prior to the realization of the grade.22

3. Financial Structure and Inside Information: As in [27], the sender is an en-

trepreneur looking to sell a portion of his company to a market of investors (the

receivers). The future returns for the company are random with mean Vt and vari-

ance σ2 > 0. The entrepreneur chooses the fraction of the company he retains, which

serves as the signal. Because the market is competitive, the equity offering will yield a

price of P (µf ) ≡ E[Vt|µf ] per unit offered. The grade is an analyst’s recommendation,

buy or sell, prior to the issuance date, which is the outcome of a symmetric binary test

(see Remark 3.1). The expected payoff of a type-t entrepreneur before the analyst’s

recommendation is announced is given by:

x
(
Vt −

γ

2
xσ2
)

+ (1− x)
(
E[P (µf )|t, x]− γ

2
(1− x)V ar[P (µf )|t, x]

)
4. Auditors and Equity Issuance: As in [42], a firm plans to issue equity to raise

funds for a project. As in the previous example, the future returns for the company

are random with mean Vt and variance σ2 > 0. The percentage of the firm the company

retains is fixed at some α ∈ (0, 1). Prior to the issuance, the firm chooses an auditor,

whose quality is observable and thus serves as the signal. The auditor then prepares a

statement, which serves as the grade. Higher quality auditors provide more informative

statements, but are also more expensive. The cost of an auditor with quality x is given

by c(x), where c′ > 0, c′′ ≥ 0. Conditional on (x, t), G ∼ U [0, 1 +Vt ·x]. Thus a higher

quality auditor is more likely to distinguish a high-type firm from a low one.23 The

22When choosing a signal, the sender will maximize E[Ut(x, µf (x, g))], where the expectation is taken
over realizations of the grade. Hence, it is the sender’s expected utility function that plays the crucial
role for analysis. For expected-utility maximizers, the construction of the expected utility function follows
easily from Ut and the testing technology (see Section 4). Since mean-variance preferences are generally not
consistent with an expected-utility representation, one should interpret the mean-variance representation in
Applications 3-4 as a substitute for expected utility. Finally, to retain the key tradeoff facing the sender,
one must assume the sender’s risk aversion does not dominate his preference for being seen as a high type
(γ is less than some appropriately chosen upper bound γ̄).

23This testing technology involves a set of grades that perfectly distinguish the high type, violating T.2.
The main issue this raises is whether such a grade can overturn a degenerate belief. In general, the set of
equilibria can depend on the way in which this issue is addressed. However, it has no equilibrium implications
for this example (in part because the grade is completely uninformative at x = 0). Therefore we do not take
a position on this matter, and our results immediately extend to cover this example.
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sender’s expected payoff before the grade is realized is

α
(
Vt −

γ

2
ασ2

)
+ (1− α)

(
E[P (µf )|t, x]− γ

2
(1− α)V ar[P (µf )|t, x]

)
− c(x)

5.2. Implications and Evidence

Below, we summarize our main findings and provide examples of their connections to em-

pirically observed phenomenon, policy implications, and testable predictions.

The Relevance of Grades: The presence of an informative test implies that grades convey

meaningful information in equilibrium because the predicted behavior changes from separation

to pooling on the level of costly signaling.

If types are perfectly distinguishing themselves based on observable actions, then any

additional noisy information should be ignored. That is, if the prediction of separation is

correct, grades should be irrelevant. Empirical evidence suggests otherwise. For example,

Jones and Jackson [20] find that higher G.P.A.’s translate to higher salaries among college

graduates. Conversely, in some situations, such as in assessing the quality of bonds through

rating agencies, it may seem that only grades carry meaningful information, with signaling

playing no role. However, Hsueh and Kidwell [19] find that the decision to hire more bond

raters is correctly interpreted by the market as a signal of strength—controlling for ratings.

Our model examines the interaction between these two potential sources of information and,

consistent with this evidence, explains the importance of both in market outcomes.24

Test Precision: Less informative grades increase the amount of resources devoted to inef-

ficient signaling activities.

This result has policy implications for several issues currently facing educators. Recently,

elite business schools have grappled with grade disclosure policy. In 1998, Harvard Business

School adopted a policy that prohibited students from revealing grades to potential employ-

ers. Seven years later, administrators at Harvard reversed the policy citing the need for more

transparency and accountability in the classroom.25 At several other top business schools,

24An alternative explanation for the relevance of grades is that costly actions and grades are meant to
convey different aspects of the sender’s type, both of which affect his market value. For example, a sender’s
market value is θ+ τ , where θ determines the sender’s cost, and τ determines his grade distribution. In the
simplest case, θ and τ are independent, and the sender only knows θ. As in our model, grades will affect
receivers’ response. However, unlike in our model, the D1 equilibrium will still be least cost separating and
have no reliance on the prior. Further, if the sender is risk-neutral, the informativeness of the grade will have
no bearing on the D1 equilibrium. If τ is privately-known or correlated with θ, then the model qualitatively
returns toward ours—the sender is privately informed about his market value and attempts to rely on both
a costly action and a grade to convey that type to the market.

25www.thecrimson.com/article/2005/12/15/in-reversal-hbs-to-allow-grade/ (accessed October 24, 2011)
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the student body has adopted a grade non-disclosure policy (Chicago Booth, Stanford GSB,

and Wharton). Advocates of non-disclosure argue that it leads to a more collegial learning

environment. But at what cost? Our results suggest that non-disclosure may lead students to

try to distinguish themselves through other, perhaps very costly, channels such as additional

or joint degrees, certificate programs, and extra-curricular involvement.

Grade inflation at secondary schools, colleges, and universities is another relevant issue.

Since the 1980’s, the average G.P.A. at American colleges and universities has risen at a

rate between 0.1 and 0.15 points per decade on a 4.0 point scale [37]. Qualitatively, grade

inflation has an effect similar to non-disclosure because it reduces the informativeness of

grades observed by admissions offices and potential employers. This makes it more difficult

to distinguish between candidates based on grades and provides an explanation for the

anecdotal observation that extra-curricular involvement has become an increasingly essential

part of competitive applications at elite universities.

Outside of education, (inefficient) retention of equity in a venture capital or IPO setting

by an entrepreneur has been cited as a signal of his firm’s quality [27]. Our model predicts

that better analyst reports (i.e., grades) should decrease the share the entrepreneur retains.

If one believes that analyst reports have become more prevalent and (cumulatively) more

informative over time, then (controlling for other factors) we should see less entrepreneur

equity retention in the time series.

Reputation Matters for Signaling: Signaling behavior depends on the initial market

belief about the sender; a sender with a better reputation incurs lower signaling costs.

This can explain why established firms, with strong reputations for quality, expend less

on signaling than do upstart firms with lesser reputations, but similar quality. Warranties

for new cars provide evidence that signaling behavior varies with the manufacturer’s rep-

utation in manner consistent with our model and inconsistent with a gradeless model (see

Application 2 above). Standard theory suggests that more reliable cars should come with

better warranties. Why then did Honda, long regarded as the gold standard in reliability,

offer a much less comprehensive warranty for its 2006 Civic than Hyundai did for its 2006

Elantra, despite both having very similar reliability?26

The heuristic explanation for the differing warranties is that Honda needn’t signal as vig-

orously because of its superior “reputation.” When the new Civic is introduced, consumers

are already reasonably sure of its high quality. Therefore, Honda does not need to expend

26Reliability according to data collected by Consumer Reports. Summaries are available online to sub-
scribers at www.consumerreports.org. This data was collected in subsequent years, and therefore was not
part of a consumer’s information set at the time of purchase, but indicates that the Civic and the Elantra
were of roughly the same “type” with regard to reliability.
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much on signaling. It can rely on this confidence and reviews/ratings/awards to sell its

products at a high price. Consumers are less sure about the quality of an upstart company

like Hyundai. In explaining the comprehensiveness of their warranty, Hyundai CEO, John

Krafcik said, “...we were seeing indications that [Hyundai’s] quality was really much better

than the perception.”27 Correspondingly, the market has a more favorable prior for a new-

issue Civic than a new-issue Elantra. While the standard theory predicts that this should

be irrelevant, the model with grades matches the observed facts; holding type constant, a

firm with a better reputation (as measured by the prior) incurs smaller signaling costs.

By definition, a sender with a stronger reputation (e.g., Honda) is distinguishable from

other, less reputable, senders (e.g., Hyundai) prior to choosing their action. Hence, this

mechanism differs from countersignaling [12], wherein, among ex-ante indistinguishable agents,

higher types signal less vigorously than their medium type counterparts. Determining which

theory may apply is then context specific. In some instances, it may be more reasonable

to think of agents as being ex-ante indistinguishable. Certainly, when there are differences

in reputation across senders, it is not. In such cases, the reputation mechanism provides a

more plausible explanation for why highly-regarded agents signal less vigorously.

Signaling without Single-Crossing: In the presence of grades, the sender can (imper-

fectly) signal his type through money burning activities.

In many signaling models, the prediction of separating equilibria relies crucially on the

single-crossing property. Consequently, the theory has been limited to environments in which

single-crossing is justifiable. Many applications of interest do not fit this criterion, especially

when the signaling action corresponds to a monetary expenditure. Because our analysis does

not rely on (strict) single-crossing, our results apply equally well to such settings and provide

insight as to how and when agents can undertake costly dissipative actions to convey private

information even in the absence of type-dependent signaling costs.

One example of such an environment is advertising (see Application 1 above). The use

of advertising campaigns containing little or no obvious informational content (i.e., money

burning) has been well documented [34]. Prior explanations for this behavior have been

based on repeat purchase considerations [34, 22, 33]. Our results suggest that the presence

of grades can provide an alternative explanation for dissipative advertising. Our theory

is also consistent with the empirical finding that quality and advertising expenditures are

positively correlated [41].

27From interview in Newsweek March 24, 2010.

26



5.3. Extensions

In many relevant applications, the sender may have channels through which he has influence

over the outcome of the test. Such channels may affect the outcome of the test directly by

undertaking some costly action (e.g., a student chooses how much effort to exert studying

prior to an exam), or indirectly by improving the distribution of the quality being tested:

the sender’s type (e.g., a firm chooses how much to invest in product quality). In a previous

working version of this paper [10], we provide a formal, but preliminary, analysis of both

extensions. The key findings are as follows.

Indirect Influence: Ex-Ante Investment

Suppose that, before learning his type, the sender chooses how much to “invest” in his type:

the more he invests, the more likely he is to become the high type. Our statements below

pertain to the equilibria in which continuation play in the signaling stage satisfies D1.

There are two important benchmarks: the investment level that arises 1) if the type is

perfectly revealed to receivers and 2) if there is no grade (or equivalently, if the test is not RC-

Informative, since the LCSE remains the unique continuation play satisfying D1). The first

benchmark corresponds to the first-best efficient investment level if receivers compete away

all of their surplus (as in the job-market signaling model of Section 3), which we maintain

here for ease of exposition. A key insight from [38] was that private information can lead to

an inefficient allocation of resources devoted to conveying that information. In the second

benchmark, the presence of an information asymmetry creates another inefficiency in the

ex-ante stage, underinvestment. This is because being the high type is less valuable if one

must expend resources to demonstrate it.

Returning to the setting with grades, an important consideration is whether the sender’s

ex-ante investment is observable.28 When investment is unobservable, the sender always

invests less than in the complete-information/first-best benchmark. Interestingly, investment

can be higher or lower than the no-grade benchmark, despite the fact that the continuation

play is always (weakly) more efficient with grades than without. This is because the presence

of grades can improve the payoff of both types to a point that sufficiently weakens the

incentive to become the high type.

Observability strengthens the incentives to invest. This is because the sender considers

not only the benefit of increasing the probability of becoming the high type given a fixed

continuation play, but also internalizes that increasing investment changes the continuation

28This makes no difference in either benchmark because, unlike in the model with grades, continuation
play does not depend on the receivers’ post-investment belief.
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play since it directly determines the receivers’ “prior” in the signaling stage. Because of this,

the investment level can be even higher than the complete-information/first-best benchmark.

The intuition is that, unlike in the complete-information benchmark, increasing investment

can have the extra benefit of decreasing the expected amount of costly signaling in the

continuation game. In fact, this “overinvestment” is constrained-socially-optimal if a social

planner is unable to influence behavior in the signaling stage.

Direct Influence: Ex-Interim Hidden Effort

In this extension, after the sender chooses x, but before the grade is realized, the sender

chooses a level of costly, unobservable effort toward improving his grade on the test. The

game can be thought of as a combination of our model and a noisy signaling model (see

Section 2). Further, each component can be analyzed in sequence. That is, any choice of x

leads to some interim belief µ that together “endow” a noisy signaling continuation game.

Despite the fact that test informativeness depends on the effort level, the appropriate

generalization of RC-informativeness compares the cost advantage to the informativeness of

the test when the sender puts in zero effort. This is because, as µ→ 1 the sender’s effort in

the noisy-signaling game converges zero; there is no reason to exert costly (hidden) effort if

the market is already convinced of your type. Hence, the slope of the adapted BICs at µ = 1

will be just as if the sender was unable to exert (useful) effort, much like in the original

model. With these generalization in hand, Propositions 4.2-4.6, and their proofs, generalize

in the obvious way.29

This extension serves largely as a check that the model is robust to a realistic feature

of some environments. The main substantive implication it generates is that the observable

action and hidden effort are, to a degree, substitutes. If hidden effort is less costly for the

high type, then he will engage in more of it compared to the low type, which increases the

informativeness of the test. The high type will then rely more on the test and less on the

observable action, similar to the effect of increasing the informativeness of the (exogenous)

test in a setting without hidden effort (see Section 3.7). On the other hand, the inverse

statements hold if hidden effort is less costly for the low type.

6. Conclusion

Grades are a prevalent force in many incomplete information environments and often convey

meaningful information. In a strategic setting, there is a subtle interaction between the

29Propositions 4.4-4.6 rely on DCP, which in this extended environment becomes intractable to analytically
verify for many examples. However, it is not difficult to solve examples numerically and check whether
DCP and non-decreasing locus hold.
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information conveyed by costly observable actions and information conveyed by grades. In

equilibria that are robust to standard refinements, the sender resolves the trade-off between

how much to rely on each of the two transmission mechanisms. If the test is sufficiently

informative, the high type relies on its ability to convey information, and the stable equilib-

rium involves some degree of pooling. Further, the addition of grades yields a more intuitive

outcome as the prior puts greater weight on the high type. Both types gain in utility, and

the stable equilibrium converges to full pooling at the efficient signaling level—long thought

to be the appropriate convergence, but not achieved in gradeless signaling models. These

results extend to a model with N types.

We have used D1 to refine the set of PBE within our model. D1 belongs to a class of

refinements derived from the notion of strategic stability (Kohlberg and Mertens, 1986). It

may be worth noting that the stronger refinements within this class, such as NWBR and

Universal Divinity, yield the same results as D1 in our model.

A number of non-stability based refinements have been developed to refine the set of

equilibria in signaling games.30 Many of these notions eliminate strategy profiles based on

other potential equilibria in order to select more “reasonable” equilibria (for specific games)

than their stability-based counterparts. Among these refinements, the one that is perhaps

the most relevant to this work is the concept of undefeated equilibria [30]. In the gradeless

job-market signaling model with two types, the undefeated criterion (uniquely) selects the

LCSE when µ0 < µ and the efficient full-pooling outcome when µ0 > µ. Like our model,

Mailath et al. [30] predict the complete-information outcome when the prior is sufficiently

large. In fact, part of their motivation for introducing the refinement is to yield a more

satisfying prediction in the gradeless job-market signaling model.

Our motivation is quite different. We are interested in understanding signaling envi-

ronments with grades and how their presence affects equilibrium predictions. Our use of

refinements is to gain traction rather then to alter a somewhat undesirable feature prevalent

in signaling models. It is appealing that the predictions along this dimension are aligned,

but largely coincidental.

In many examples, such as education, the costly signaling action involves waiting to trade.

Static signaling models, such as the one presented here, ignore the dynamic aspects of such

an environment. Swinkels [39] demonstrates that all trade takes place immediately—there

is no signaling through delay—in the gradeless job-market signaling model when preemptive

private offers can be made frequently by the market. Kremer and Skrzypacz (2007) amend

this analysis by having a grade revealed at a commonly known fixed future date and show

30See for example Mailath et al. [30], Grossman and Perry [17], and Hillas [18].
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that some degree of signaling occurs in equilibrium. Daley and Green [9] study a dynamic

setting, analogous to the model in this paper, in which information is revealed gradually.

One interpretation is that this dynamic model relaxes the assumption of a seller’s ability to

commit to delay trade until a fixed date x. From this standpoint, one could investigate how

the timing of information revelation interacts with commitment power to impact trading

patterns and welfare. Despite their differences, a few similarities in the predictions of the

two models emerge. In each there is cutoff prior below which the low type mixes between

delaying trade and not, while the high type always chooses to delay. The payoffs to each

type are constant over priors below the cutoff, with the low type’s equal to his market value.

Delay is decreasing in the prior, while the expected value to both types is increasing in the

prior, once it is above the cutoff.
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Appendix A. Appendix

Appendix A.1. D1 Equivalence

The way we define D1 is slightly different than how it is defined in Banks and Sobel [4] and Cho
and Kreps [7]. Specifically, we use receiver interim beliefs in the definition of Bt(x, u

∗
t ) rather than

[rationalizeable] receiver best response profiles. As a result, any non-empty Bt(x, u
∗
t ) is a subset of

the N − 1 dimensional unit simplex (e.g., [0, 1] in the two-type model), rather than a much more
complicated subset of all possible final belief schedules, µf (·, ·). This simplification is crucial for
making our analysis tractable and, as we now demonstrate, is without loss of generality.

In our model, receivers’ best responses are summarized by a function of µf (x, g), (i.e., the
highest wage offer in the model of Section 3 and the identity function in the model of Section 4).
Bayesian updating from the prior µ0 to the final belief µf (x, g) can be decomposed into a first
update from µ0 to an interim belief µ(x), then a second update from µ(x) to µf (x, g) based on the
realization of the grade. The second update is purely statistical—it is based only on the commonly-
known likelihood ratios, R(g|x). Therefore, given any receiver best response profile, the interim
belief is sufficient to compute the sender’s expected payoff, allowing us to pose the refinement using
interim beliefs.31

Appendix A.2. Proofs

We begin by stating and proving that MRSP holds for the job-market signaling model, a result
that will be used in several of the proofs that follow.

Lemma Appendix A.1. The BICs of the job-market signaling model of Section 3 satisfy MRSP.

Proof. Fix ût. By definition, ut(x, bt(x|ût)) = ût. Total differentiation of both sides with respect to

x gives ∂ut
∂x +∂ut

∂µ
∂bt
∂x = 0, hence ∂bt

∂x = −∂ut
∂x /

∂ut
∂µ = Ct

w′t(µ)
, and therefore ∂bH

∂x ≤
∂bL
∂x ⇔

w′L(µ)

w′H(µ)
≤ CL

CH
. To

verify MRSP it is sufficient to show that w′L(µ)/w′H(µ) is strictly increasing (i.e., w′t(µ) is strictly log-
supermodular).32 Re-order the grade space so that R(g) = fL(g)/fH(g) is weakly increasing over
the common support. Define h(µ, g) ≡ R(g)/(µ+(1−µ)R(g))2. Note that w′t(µ) =

∫
h(µ, g)ft(g)dg.

Moreover, h(µ, g) is log-supermodular since for any g′ > g,

d

dµ

(
h(µ, g′)

h(µ, g)

)
= 2

R(g′)

R(g)
(R(g′)−R(g))

(µ+ (1− µ)R(g))

(µ+ (1− µ)R(g′))3 ≥ 0

Since w′t > 0, it is enough to show that for any µ′ > µ, w′L(µ′)w′H(µ)− w′L(µ)w′H(µ′) > 0 :

w′L(µ′)w′H(µ)− w′L(µ)w′H(µ′)

=

∫∫
h(µ′, g′)fL(g′)h(µ, g)fH(g)dgdg′ −

∫∫
h(µ, g)fL(g)h(µ′, g′)fH(g′)dg′dg

=

∫∫
fL(g′)

fH(g′)
h(µ′, g′)h(µ, g)fH(g)fH(g′)dgdg′ −

∫∫
fL(g)

fH(g)
h(µ, g)h(µ′, g′)fH(g)fH(g′)dgdg′

31In addition, let B0
t (x, u∗t ) be the set of interim beliefs µ such that ut(x, µ) = u∗t . In Banks and Sobel [4]

and Cho and Kreps [7], D1 requires that if B0
t′(x, u

∗
t′)∪Bt′(x, u

∗
t′) ⊂ Bt(x, u

∗
t ), then the receivers assign zero

probability to the sender being type t′. The continuity of the preferences and action spaces in our model
make the two statements equivalent.

32The proof method used here is adapted from Karlin [21] (Chapter 3, Proposition 5.1).
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Decompose the region of integration into two sets, g′ > g and g′ < g. Then convert the second
region into the first by the change of variable g → g′, g′ → g. By doing so, the above can be written
as ∫∫

g′>g

[
fL(g′)

fH(g′)
− fL(g)

fH(g)

] [
h(µ′, g′)h(µ, g)− h(µ′, g)h(µ, g′)

]
fH(g)fH(g′)dgdg′ (A.1)

Both bracketed terms of the integrand are non-negative for all g′ > g. Hence, we can bound
(A.1) from below by integrating over a subset of the region. Let G− ≡ {g : fH(g) > fL(g)} and
G+ ≡ {g : fH(g) < fL(g)}. Then (A.1) is bounded below by∫

g′∈G+

∫
g∈G−

[
fL(g′)

fH(g′)
− fL(g)

fH(g)

] [
h(µ′, g′)h(µ, g)− h(µ′, g)h(µ, g′)

]
fH(g)fH(g′)dgdg′ (A.2)

Both bracketed terms are strictly positive over the region of integration. Since the test is informa-
tive, the region has strictly positive measure implying that (A.2) is strictly positive and therefore
so too is (A.1).

Proof of Lemma 3.6. At µ = 1, by direct calculation the slope of the BIC is CH
(VH−VL) for the high

type and CL

(VH−VL)
∫
R(g)fL(g)dg

= CL
(VH−VL)E[R(g)|L] for the low type. The high type’s BIC is steeper if

and only if CH
(VH−VL) >

CL
(VH−VL)E[R(g)|L] ⇔ E[R(g)|L] > CL

CH
, which establishes the equivalence of 1

and 2. The equivalence of 2 and 3 is immediate from MRSP.

Proof of Proposition 3.7. Fix a prior µ0. Suppose that the test is RC-Informative. Grades con-
vey information in equilibrium if and only if there is pooling. Therefore, it is sufficient to show that
all separating equilibria are Pareto dominated. First, notice that, by definition, the LCSE Pareto
dominates all other separating equilibria. Second, let uH be the LCSE utility for the high type. By
Lemma 3.6, RC-Informativeness implies that ∂

∂xbH(xLCSE |uH) > ∂
∂xbL(xLCSE |VL). Hence, there

exists an ε > 0 such that bL
(
xLCSE − ε|VL

)
> µ0 and bL

(
xLCSE − ε|VL

)
∈ BH

(
xLCSE − ε, uH

)
.

The following equilibrium Pareto dominates the LCSE: σH(xLCSE − ε) = 1, σL(xLCSE − ε) =
1−bL(xLCSE−ε|VL)
bL(xLCSE−ε|VL)

µ0
1−µ0 and σL(0) = 1− σL(xLCSE − ε), with µ(xLCSE − ε) = bL(xLCSE − ε|VL) and

µ(x) = 0 for all x 6= xLCSE − ε.
Now suppose the test is not RC-Informative. MRSP and Lemma 3.6 imply that BICs satisfy

the single-crossing property. The result is well-known for this case (see Mailath et al. [30] for
instance).

Appendix A.2.1. Full Characterization of the Set of D1 Equilibria in the General
Model

We now turn to characterizing the set of D1 equilibria in the general two-type model (Section 4)
under DCP, with Proposition 3.8 following as a special case. We start by proving Lemma Appendix
A.2, which does not rely on DCP.

Lemma Appendix A.2. If the payoffs {u∗H , u∗L} are supported by a D1 equilibrium, then there
does not exist an x′ such that bL(x′|u∗L) > bH(x′|u∗H).

Proof of Lemma Appendix A.2. Fix a payoff vector {ûH , ûL}, with BICs bH(x|ûH), bL(x|ûL)
such that ∃x′ at which bL(x′|ûL) > bH(x′|ûH). Suppose S∗H , S

∗
L are the supports of equilibrium

strategies endowing payoffs ûH , ûL. If x′ ∈ S∗H and x′ ∈ S∗L, then belief consistency requires µ(x′) =
bH(x′|ûH) = bL(x′|ûL) contradicting the premise that bL(x′|ûL) > bH(x′|ûH). If x′ ∈ S∗H and
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x′ /∈ S∗L, then belief consistency requires µ(x′) = bH(x′|ûH) = 1 ≥ bL(x′|ûL), again contradicting
the premise. If x′ /∈ S∗H and x′ ∈ S∗L, then belief consistency requires µ(x′) = bL(x′|ûL) = 0 ≤
bH(x′|ûH), contradicting the premise. Finally, if x′ /∈ S∗L ∪ S∗H and bL(x′|ûL) > bH(x′|ûH), then
D1 requires µ(x′) = 1 > bH(x′|ûH), implying the high type can profitably deviate to x′. Hence,
{ûH , ûL} cannot be supported by any D1 equilibrium.

In Section 4.2, we introduced the solution locus and stated several of its properties. We formalize
them here. To do so, fix a candidate equilibrium utility level for the low type, ûL, and consider
the high type seeking to maximize his expected utility given the schedule of interim beliefs µ(x) =
bL(x|ûL). The high type’s maximization problem can be written as

max
x∈[0,x̄(ûL)]

uH(x, bL(x|ûL)). (?)

Let xH(ûL) be the solution to (?) for a given ûL, and let µH(ûL) ≡ bL(xH(ûL)|ûL).

Lemma Appendix A.3. For each ûL ∈ [uL, ūL], xH(ûL) exists. Under DCP, the mappings
ûL → xH(ûL) and ûL → µH(ûL) on the domain [uL, ūL] are continuous functions.

Proof. For each ûL ∈ [uL, ūL], (?) maximizes a continuous function over a compact domain.
Existence of a solution is immediate. DCP ensures that the solution is unique. To see this, fix a
ûL ∈ [uL, ūL]. If there exists an x′ and ûH such that bL(x′|ûL) and bH(x′|ûH) are tangent, then
DCP implies that bH(x|ûH) > bL(x|ûL) for all x 6= x′. The tangency point is the unique solution
to (?). If there is not a tangency point for any (x, ûH), then one of the boundaries is the solution.
Again, DCP implies that the corresponding high type’s BIC lies everywhere else above the low
type’s, making the solution unique, and hence the mapping ûL → xH(ûL) is a function. From
Berge’s Theorem of the Maximum, xH is continuous. Because bL is also continuous, ûL → µH(ûL)
is continuous.

The next proposition characterizes the set of all D1 equilibria in the two-type model under DCP and
for an arbitrary solution locus.

Proposition Appendix A.4. Under DCP, the set of D1 Equilibria is as follows:

• Full Pooling Equilibria: Consider a point on the solution locus (xH(ûL), µH(ûL)), ûL ∈
[uL, ūL]. Full pooling at xH(ûL) is a D1 equilibrium if and only if µ0 = µH(ûL).

• Partial or Full Separation: For any given prior µ0 ≤ µH(uL), the equilibrium identified in
Proposition 4.6 for this case satisfies D1.

In all D1 equilibria, µ(x) = 0 for all x off the equilibrium path. There are no other D1 equilibria.

Proof. Verifying that the proposed strategies and beliefs constitute PBE is routine. To see that
the off-path beliefs satisfy D1, notice that in all equilibria S∗H = {xH(u∗L)}. Therefore, by DCP,
BH(x, u∗H) ⊆ BL(x, u∗L) for all x off path. Hence, the off-the-path beliefs satisfy D1.

We now eliminate all candidate equilibria not identified in the proposition. First, we demon-
strate that if u∗L is the low type’s payoff in equilibrium, then to satisfy D1, it must be that
σ∗H(xH(u∗L)) = 1 and µ(xH(u∗L)) = µH(u∗L). Second, we show that, for each prior, only the equi-
libria identified in the proposition are compatible with the first claim and the belief-consistency
condition for equilibrium.

36



To see the first claim, fix an equilibrium endowing payoffs u∗L,u∗H . Lemma Appendix A.2 implies
that bL(x|u∗L) ≤ bH(x|u∗H) for all x < x̄(u∗L). In addition, for all x ∈ S∗H , µ(x) = bH(x|u∗H) ≤
bL(x|u∗L) to ensure the appropriate payoff for the high type as well as incentive compatibility for the
low type. Hence, for all x ∈ S∗H , bL(x|u∗L) = bH(x|u∗H) = µ(x). DCP implies that S∗H = {xH(u∗L)}.

For the second claim, fix a µ0. If there exists an equilibrium such that u∗L > uL, it must be
that S∗L ⊆ S∗H = {xH(u∗L)}. Because S∗L must be non-empty, the equilibrium must involve full
pooling at xH(u∗L). This will satisfy µ(xH(u∗L)) = µH(u∗L) and belief consistency if and only if
µH(u∗L) = µ0. Finally, if there exists an equilibrium such that u∗L = uL, then S∗H = {xH(uL)},
µ(xH(uL)) = µH(uL), and S∗L ⊆ {0, xH(uL)}. Belief consistency then requires that µH(uL) ≥ µ0.
It is immediate that the (mixed) strategy identified in the proposition is the unique one consistent
with Bayesian updating by the receivers. This eliminates all equilibria but those put forth in the
proposition.

Proof of Proposition 3.8. Follows directly from Proposition Appendix A.4 and the following
lemma, which characterizes the solution locus in the job-market signaling model.

Lemma Appendix A.5. In the job-market signaling model of Section 3, the solution locus is as
follows:

µH(ûL) =

{
µ∗ ûL ≤ uL(0, µ∗)

bL(0|ûL) ûL > uL(0, µ∗)
, xH(ûL) =

{
b−1
L (µ∗|ûL) ûL ≤ uL(0, µ∗)

0 ûL > uL(0, µ∗)

Proof. Consider first the case in which the test is RC-Informative. By the MRSP, the only
candidate for a point of tangency (and thus an interior maximizer of (?) for some ûL) is at µ∗ < 1.
If ûL ≤ uL(0, µ∗), then the point of tangency is achieved at (x, µ) = (b−1

L (µ∗|ûL), µ∗). If ûL >
uL(0, µ∗), then tangency cannot be achieved since the high type’s BICs are steeper than the low
type’s at all (x, µ) that deliver ûL to the low type. In this case, the only possible solution is at
x = 0, which therefore necessitates µH(ûL) = bL(0|ûL). If the test is not RC-Informative then
µ∗ = 1 and the high type’s BICs are everywhere flatter. Hence, µH(ûL) = 1 for all ûL ∈ [VL, VH ],
which necessitates that xH(ûL) = b−1

L (1|ûL) as implied by the lemma.

Proof of Proposition 4.2. Consider any separating candidate equilibrium profile where the high
type chooses xs > xLCSE and garners utility usH . Let x′ ∈ (xLCSE , xs). BL(x′, uL) = ∅ and
BH(x′, usH) 6= ∅. D1 mandates that µ(x′) = 1, making a deviation to x′ profitable for the high type,
breaking the equilibrium.

Consider now the LCSE as a candidate D1 equilibrium, letting uH be the LCSE utility for

the high type. At µ = 1, by direct calculation the slope of the BIC is −−UH,1(x,1)
UH,2(x,1) for the high

type and −UL,1(x,1)
UL,2(x,1) ·

1
E[R(g|x)|L,x] for the low type. The high type’s BIC is steeper at (x, 1) if and

only if E[R(g|x)|L, x] >
UL,1(x,1)
UL,2(x,1)

/UH,1(x,1)
UH,2(x,1) . Therefore, if the test is RC-Informative at xLCSE , then

∂
∂xbH(xLCSE |uH) > ∂

∂xbL(xLCSE |uL). Hence, there exists ε > 0 such that bH(xLCSE − ε|uH) <
bL(xLCSE− ε|uL) contradicting Lemma Appendix A.2. Hence all D1 equilibria involve pooling.

Proof of Proposition 4.3. Let {µk0} be any sequence of priors that converges to 1, and (Υ∗,kL ,Υ∗,kH )
be a D1 equilibrium strategy profile for prior µk0. Then for any ε > 0 there exists an n such that
for all k > n

• There exists a Xk ⊆ S∗,kH such that, for all x ∈ Xk: 1− µ∗,k(x) < ε.
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• The total mass attributed to {x : x 6∈ Xk} by Υ∗,kH is less than δ, with δ → 0 as ε→ 0.

These follow easily from the fact that the µk0 assigns vanishingly small weight to the low type.
It is therefore sufficient to show that as ε → 0, Xk → {x∗H}. Now fix any x′ ∈ (x∗H , x

LCSE ].
RC-Informativeness establishes that ∂

∂xbH(x′|uH(x′, 1)) > ∂
∂xbL(x′|uL(x′, 1)) (see proof of Propo-

sition 4.2). UL and UH differentiable implies that for η small enough ∂
∂xbH(x′|uH(x′, 1 − η)) >

∂
∂xbL(x′|uL(x′, 1 − η)). Therefore, as ε → 0, Lemma Appendix A.2 implies that x′ 6∈ Xk for all k
large enough, giving the result.

Proof of Proposition 4.4. Again, letting uH be the LCSE utility for the high type, if the test is
not RC-Informative at xLCSE , then ∂

∂xbH(xLCSE |uH) ≤ ∂
∂xbL(xLCSE |uL) (see proof of Proposition

4.2). By DCP, bH(x′|uH) > bL(x′|uL) for all x′ < xLCSE , implying xH(uL) = xLCSE . The result
follows from Proposition Appendix A.4.

Proof of Proposition 4.5. Suppose there exists an x′ ∈ (x∗H , x
LCSE ] such that the test is not RC-

Informative at x′. If x′ = xLCSE , then the LCSE satisfies D1 for any prior (Proposition 4.4), and the
set of equilibria does not convergence to the complete-information outcome. If x′ ∈ (x∗H , x

LCSE),
then µH(uL(x′, 1)) = 1 and xH(uL(x′, 1)) = x′ by the same argument given in the proof of Proposi-
tion 4.4 for the case where x′ = xLCSE . By continuity of the solution locus (Lemma Appendix A.3)
and Proposition Appendix A.4, for µ0 arbitrarily close to 1, there exists an x′′ ∈ (x′−ε, x′+ε), such
that full-pooling at x′′ is a D1 equilibrium. As µ0 → 1, ε → 0, and hence the set of D1 equilibria
does not converge to the complete-information outcome.

Proof of Proposition 4.6. Note that since µH(·) is non-decreasing, µH(uL) corresponds to the
lower bound of µH(·). Further, by definition of ūL, µH(ūL) = 1. Thus, µH : [uL, ūL]→ [µH(uL), 1].

Let M ⊆ [µH(uL), 1] denote the set of m such that such that there exists ûL < û′L with
m = µH(ûL) = µH(û′L). Consider the preimage µ−1

H (m) ≡ {ûL ∈ [uL, ūL] : µH(ûL) = m}. By
continuity of µH , µ−1

H is non-empty on [µH(uL), 1]. Let f(m) ≡ min{µ−1
H (m)} and note that f

is a strictly increasing (left-continuous) function from [µH(uL), 1] to [uL, ūL]. Further, M = {m :
f(m−) 6= f(m+)} where f(m−) and f(m+) denote the left and right limits respectively. By Froda’s
theorem, M is (at most) a countable set and hence the set of such points is non-generic.

Now µH weakly increasing implies: (i) µ0 < µH(uL) =⇒ µ0 < µH(ûL) for all ûL ≥ uL and
(ii) for any µ0 ≥ µH(uL) and µ0 /∈ M , there exists a unique ûL such that µ0 = µH(ûL). The rest
follows from Proposition Appendix A.4.33

33For each µ0 ∈ M , let xmin(µ0) = min{x : µH(ûL) = µ0 for some ûL ∈ [uL, ūL]} and define xmax(µ0)
analogously. For any such µ0, the set of equilibrium consists of a continuum of full-pooling equilibria at
action levels x ∈ [xmin(µ0), xmax(µ0)].
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Appendix B. Supplementary Appendix: More than Two Types

Let us expand the type space to be {1, ..., N}, N > 2. The receivers’ prior, µ0, is a probability
distribution with full support over the type space. When describing beliefs (be they prior, interim
or final) we use superscripts to denote the probability assigned to the various types (e.g., µt0 is the
probability the prior assigns to type t). We now assume that after observing x and g, the receivers
each choose some action, and that all payoff-relevant information (from the sender’s perspective)
from a profile of receivers’ actions can be summarized by a scalar a ∈ R+. For example, in equity
issuance, a represents the market clearing price of the sale—the values of other bids have no direct
bearing on the sender’s payoff. We therefore, continue to represent the sender’s utility, Ut, as a
function of two arguments, with the first argument remaining x and the second argument now a
instead of µf . Ut remains differentiable, with Ut,2 > 0.

Let a∗(µf , x) denote the unique value of a that results when each receiver is playing a best
response in the continuation game that follows the sender’s choice of x and the common final belief
µf . For all x and t, a∗ is differentiable in x and µtf . The sender’s utility function continues to

satisfy A.1–A.2.34 To simplify analysis, we replace A.3 and A.4 with the following

A.3′ For any t and fixed µf , Ut(x, a
∗(µf , x)) is strictly decreasing in x.

A.4′ For any x, a and t′ 6= t, Ut,2(x, a) = Ut′,2(x, a).

A.3′ says that the signaling action is wasteful. This implies that, in equilibrium, the sender
never directly gains from signaling and that x∗t = 0 for all t. A.4′ implies that types do not differ
in their risk preference regarding lotteries over values of a.35 Finally, in line with our applications,
we assume that

A.5 For all x, if µf first-order stochastically dominates µ′f , then a∗(µf , x) > a∗(µ′f , x)

That is, when the final belief puts unambiguously more weight on higher types, the equilibrium
response from the receivers is more favorable to the sender.

Let

Zt′,t(x, a
∗) =

d
dxUt′(x, a

∗)

Ut′,2(x, a∗)

/ d
dxUt(x, a

∗)

Ut,2(x, a∗)

A testing technology is now a collection of densities {ft(·|x)}Nt=1, which we assume satisfies strict
MLRP for all x. Let Rt′,t(g|x) ≡ ft′(g|x)/ft(g|x). Our first result generalizes the insight that

34A.1, the weak Spence-Mirrlees condition, is generalized in the standard way. In A.2, µt′ is replaced with
a∗(µt′ , x).

35That is, Ut specifies both type t’s utility tradeoff between the costly action and the market response
at any given (x, a), as well as his risk preferences on lotteries over a for any given x. A.4′ maintains that
any difference between the preferences of different types is found in the former, not the latter. Notice that
without grades, A.4′ is without loss of generality in the following sense: for any {Ut}Nt=1 not satisfying A.4′,
there exists {Ũt}Nt=1 satisfying A.4′ such that both collections produce the same indifference curves and set
of equilibria. Without grades, the market response, a∗(µf , x), is deterministic, and hence the type-varying
risk preferences of the sender have no bearing on behavior.
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informative grades eliminate separation in D1 equilibria.36 (Recall that St denotes the support of
Υt.)

Proposition Appendix B.1. Fix a type t > 1. If for all x and t′ < t,

E
[
Rt′′,t(g|x)|t′

]
> Zt′,t(x, a

∗(µt, x)) for all t′′ < t, and

E
[
Rt′′,t(g|x)|t′

]
< Zt′,t(x, a

∗(µt, x)) for all t′′ > t (RCt)

then there does not exist a D1 equilibrium in which type t separates; for any action x ∈ S∗t there
exists a type t̃ 6= t such that x ∈ S∗

t̃
.

RCt is a generalization of RC-Informativeness and can be loosely paraphrased as: for all x,
strict MLRP must not only hold, but hold “strongly” enough relative to differences in preferences
over actions. The result is then similar to Proposition 4.2: if grades are informative enough, then
in equilibrium only the lowest type may assign positive probability to an action that perfectly
identifies him—which, of course, eliminates full separation, as well as other strategy profiles such
as countersignaling from Feltovich et al. [12], where the medium type separates while low and high
types pool. Once again, sufficiently informative tests (relative to cost advantages) necessitate that
grades will convey meaningful information in stable equilibria.37,38

Our second result generalizes the convergence established in Proposition 4.3.

Proposition Appendix B.2. Fix a type t > 1. If RCt holds, then as µ0 → µt, the set of D1
equilibria converges in total mass to the complete-information outcome. Further, as µ0 → µN , the
convergence holds type-by-type.

Again we find that RC-Informativeness is sufficient to both eliminate separation and ensure
convergence to the complete-information outcome. Notice that if all types have the same utility
function, then strict MLRP implies that RCt holds for all t > 1. That is, in an environment without
cost advantages, no type t > 1 separates in any D1 equilibrium, and the convergence properties
from Proposition Appendix B.2 hold.

Propositions Appendix B.1 and Appendix B.2 show that the major economic insights demon-
strated in the two-type model extend to the larger type space. In general, D1 and stronger stability-
based refinements do not select a unique equilibrium with the larger type space. It is possible to
construct examples in which both full pooling and a generalized version of the partial-pooling
equilibria from the two-type model persist.

To see why this is, consider the job-market signaling model, in which Vt is increasing in t and
a∗(µf , x) = E[Vt|µf ]. Recall that without grades, if the strict Spence-Mirrlees condition holds, then

36The D1 refinement for the N -type model can be stated as follows. Fix an equilibrium endowing expected
utilities {u∗t }t∈{1,...,N}. Consider an action x that is not in the support of any type’s strategy. If there exists
t, t′ such that Bt′(x, u

∗
t′) ⊂ Bt(x, u

∗
t ), then D1 requires that the interim belief following x assigns zero weight

to t′ (where ⊂ denotes strict inclusion).
37Existence of countersignaling equilibria requires that grades must be relatively poor at differentiating

the low type from the medium type even without refinements. As suggested by Proposition Appendix B.1,
there exists generic parameters for which D1 eliminates otherwise tenable countersignaling strategy profiles.

38Proposition Appendix B.1 does not hold for a continuum of types. For example, the LCSE survives any
stability-based refinement for the simple reason that there is nothing off-path to deviate to except actions
greater than the one chosen by the highest type, which are strictly inferior to mimicking the highest type.
However, unlike the gradeless model under single-crossing, with a continuum of types [29, 35], the presence
of grades allows outcomes other than the LCSE to survive refinements, lending credibility to their study.
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D1 uniquely selects the LCSE [7, 8]. With grades, D1 may fail to select a unique equilibrium. The
key difference is in how the market interim belief, µ, maps into best responses. In the gradeless
model, the sender will be offered his expected value given µ. Hence, for any N , E[Vt|µ] is a sufficient
statistic for any µ. That is, any µ can be reduced to a scalar—the expected market value given
that belief. Comparing the sets of interim beliefs that make a deviation profitable for each type is
therefore reduced to ascertaining which type needs a higher value of E[Vt|µ] to make the deviation
in question profitable.

When grades are present, this is no longer true. Because the interim belief will be updated
based on the grade, it cannot be reduced to a scaler (unless N = 2). For instance, in a three-type
example with V2 = 0.5V1 + 0.5V3, the interim belief µ = (µ1, µ2, µ3) = (0, 1, 0) has very different
implications for each type’s expected offer from the interim belief µ′ = (0.5, 0, 0.5). This is despite
E[Vt|µ] = E[Vt|µ′]. Under the first interim belief, the realization of the grade will have no effect on
the final belief (and offer), while the grade will be quite important under the second. Without this
equivalence, refinements based on comparing the relevant belief sets lose some of their bite.39

Appendix B.1. Proofs

The following lemma is used in the proof of Proposition Appendix B.1.

Lemma Appendix B.3. Under the setup and assumptions of Appendix Appendix B, fix any x
and t > t′. Then

• There exists a constant K such that Ut(x, a)− Ut′(x, a) = K for all a.

• For any non-degenerate interim belief µ, ut(x, µ)− ut′(x, µ) > K.

Proof. The first statement is equivalent to assumption A.4′. Now, fix any x, t > t′, and non-
degenerate interim belief µ. Let Ut(x, a)− Ut′(x, a) = K. Then

ut(x, µ)− ut′(x, µ) =

∫
Ut(x, a

∗(µf (x, g|µ), x))ft(g|x)dg −
∫
Ut′(x, a

∗(µf (x, g|µ), x))ft′(g|x)dg

Suppressing some of the dependencies to simplify notation, rewrite this as

ut(x, µ)− ut′(x, µ) =

∫
Ut(x, a

∗)ft(g|x)dg −
∫
Ut′(x, a

∗)ft′(g|x)dg

=

∫
[Ut(x, a

∗)− Ut′(x, a∗)]ft(g|x)dg +

∫
Ut′(x, a

∗)[ft(g|x)− ft′(g|x)]dg

= K +

∫
Ut′(x, a

∗)ft(g|x)dg −
∫
Ut′(x, a

∗)ft′(g|x)dg > K

where the final inequality follows from assumption A.5 (because strict MLRP implies that the
distribution of µf (x, g|µ) when the density of G is ft(·|x) strictly first-order stochastically dominates
the distribution of µf (x, g|µ) when the density of G is ft′(·|x)).

39When N = 2 a given increase in the interim belief has two effects: i) raising the expected µf of both
types, and ii) increasing or decreasing the importance of the grade (depending on from where and to where
the belief is increased). When N > 2 we can decouple these two effects. For a given set of types, it is
now often possible to find changes to a given belief that increase each type’s expected offer and increase the
importance of the grade, as well as changes to the same belief that still increase expected offers but decrease
the importance of the grade. Intuitively, higher types value the first kind of change more than lower types
do and vice versa, reducing the power of stability-based refinements.
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Proof of Proposition Appendix B.1. For the purpose of contradiction, fix a candidate equi-
librium with x∗ and t > 1 such that x∗ ∈ St and x∗ 6∈ St̃ for all t̃ 6= t. We will first show that x∗

cannot be 0. We will then demonstrate that, under RCt, for any x∗ > 0, there exists an ε > 0 such
that choosing x∗− ε leads to a higher payoff than choosing x∗ for type t under any off-path receiver
interim beliefs satisfying D1, implying the candidate equilibrium fails the criterion.

Suppose that x∗ = 0. For arbitrary t′ < t, for any x ∈ St′ , both x > 0 and

u∗t′ = ut′(x, µ(x)) ≥ ut′(x∗, µt) = Ut′(x
∗, a∗(µt, x

∗))

hold. Further, assumptions A.3′, A.5, and Ut,2 > 0 imply that for such x, µ(x) 6= µt′ . Therefore,
given that the type space is finite, there exists x′ ∈ St′ such that µ(x′) is non-degenerate. Let a′

be the certainty equivalent for type t′ when choosing x′:

Ut′(x
′, a′) = ut′(x

′, µ(x′)) ≥ Ut′(x∗, a∗(µt, x∗))

By assumption A.1,

Ut(x
′, a′)− Ut(x∗, a∗(µt, x∗)) ≥ Ut′(x′, a′)− Ut′(x∗, a∗(µt, x∗)) ≥ 0 (B.1)

Also, by Lemma Appendix B.3,

ut(x
′, µ(x′))− ut′(x′, µ(x′)) > Ut(x

′, a′)− Ut′(x′, a′)

Rearranging yields

ut(x
′, µ(x′))− Ut(x′, a′) > ut′(x

′, µ(x′))− Ut′(x′, a′) = 0 (B.2)

From (B.1) and (B.2),

ut(x
′, µ(x′))− Ut(x′, a′) + Ut(x

′, a′)− Ut(x∗, a∗(µt, x∗)) > 0

ut(x
′, µ(x′))− Ut(x∗, a∗(µt, x∗)) > 0

implying that type t garners a strictly higher payoff by choosing x′ instead of x∗, in violation of
the hypothesis. Hence, x∗ 6= 0.

Fix now x∗ > 0 and a type t′ < t. We wish to show that there exists an εt′ > 0 such that, for all
ε ∈ (0, εt′), Bt′(x

∗−ε, u∗t′) ⊂ Bt(x∗−ε, u∗t ). There are two cases to cover: 1) u∗t′ > Ut′(x
∗, a∗(µt, x

∗)),
or 2) u∗t′ = Ut′(x

∗, a∗(µt, x
∗)). Define B0

t (x, û) to be the set {µ : ut(x, µ) = û}.

Case 1: First, if t = N , then by assumption A.5 u∗t′ > Ut′(x
∗, a∗(µt, x

∗)) implies that Bt′(x
∗, u∗t′) =

B0
t′(x
∗, u∗t′) = ∅. If t < N , then u∗t′ > Ut′(x

∗, a∗(µt, x
∗)) implies that Bt′(x

∗, u∗t′) ⊂ Bt(x
∗, u∗t ) with

inf{||µ − µ′|| : µ ∈ B0
t (x∗, u∗t ), µ

′ ∈ B0
t′(x
∗, u∗t′)} > α, for some α > 0. To see this, let µ̃ be an

element of B0
t (x∗, u∗t ) not equal to µt. By A.5, µ̃ is non-degenerate. Therefore, Lemma Appendix

B.3 implies that

ut(x
∗, µ̃)− ut′(x∗, µ̃) > Ut(x

∗, a∗(µt, x
∗))− Ut′(x∗, a∗(µt, x∗))

Rearranging this gives

ut(x
∗, µ̃)− Ut(x∗, a∗(µt, x∗)) > ut′(x

∗, µ̃)− Ut′(x∗, a∗(µt, x∗))
0 > ut′(x

∗, µ̃)− Ut′(x∗, a∗(µt, x∗))
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Hence, u∗t′ > Ut′(x
∗, a∗(µt, x

∗)) > ut′(x
∗, µ̃), establishing the claim—given that Ut′ (and therefore

ut′) and a∗ are continuous. Therefore, again by continuity of Ut′ and a∗, (whether t = N or not)
there exists an εt′ > 0 such that Bt′(x

∗ − ε, u∗t′) ⊂ Bt(x∗ − ε, u∗t ) for all ε ∈ (0, εt′).

Case 2: The same argument just given for Case 1 shows that u∗t′ = Ut′(x
∗, a∗(µt, x

∗)) implies that
Bt′(x

∗, u∗t′) ⊂ Bt(x
∗, u∗t ) and that B0

t′(x
∗, u∗t′) ∩ B0

t (x∗, u∗t ) = {µt}. Consider any δ > 0, and define
Dδ ≡ {µ : ||µ− µt|| < δ} and Dc

δ to be the complement of Dδ. Continuity of Ut, Ut′ and a∗ implies
then that there exists an γt′(δ) > 0 such that {Bt′(x∗ − ε, u∗t′)∩Dc

δ} ⊆ {Bt(x∗ − ε, u∗t )∩Dc
δ} for all

ε ∈ (0, γt′(δ)).
We now need to show that there exists a δ > 0 and λt′(δ) > 0 such that {Bt′(x∗−ε, u∗t′)∩Dδ} ⊂

{Bt(x∗ − ε, u∗t ) ∩ Dδ} for all ε ∈ (0, λt′(δ)). To do this, for any type j, define χj(µ, û) to be the
action x that gives type j utility û when choosing x leads to interim belief µ (if no such x in R+

exists, then χj(µ, û) = ∅ ). It is immediate that χj is differentiable where it is strictly positive.
We can proceed analogously to the proof of Proposition 4.2. Implicit differentiation gives that, at
point (x, µ), x = χj(µ, û), for some û:

dχj
dµk

= − duj
dµk

/
duj
dx

=

−
∫
R Uj,2

[
da∗

dµ1f
· dµ

1
f

dµk
+ ...+ da∗

dµNf
· dµ

N
f

dµk

]
fj(g|x)dg

duj/dx
(B.3)

Of use here will be (B.3) evaluated at a degenerate belief, µl for l 6= k.

dχj
dµk

∣∣∣∣
µ=µl

=

−
∫
R Uj,2

[
da∗

dµkf
· fkfl −

da∗

dµlf
· fkfl

]
fj(g|x)dg

dUj(x, a∗(µl, x))/dx

=

[
da∗(µl, x)

dµkf
− da∗(µl, x)

dµlf

]
E[Rk,l(g|x)|j]

(
Uj,2(x, a∗(µl, x))

dUj(x, a∗(µl, x))/dx

)
Because we are in Case 2, χt(µt, u

∗
t ) = χt′(µt, u

∗
t′) = x∗. Therefore, by RCt, there exists a

δ > 0, such that χt(µ, u
∗
t ) > χt′(µ, u

∗
t′) for all µ such that both µ ∈ Dδ and µi > 0 for a unique

type i 6= t. Further, χt, χt′ differentiable imply that, locally, any directional derivative is the convex
combinations of the partial derivatives, which extends the result to: there exists a δ > 0, such that
χt(µ, u

∗
t ) > χt′(µ, u

∗
t′) for all µ ∈ Dδ. Because ut and ut′ are decreasing in x, it follows that for any

such δ there exists an λt′(δ) > 0 such that {Bt′(x∗ − ε, u∗t′) ∩ Dδ} ⊂ {Bt(x∗ − ε, u∗t ) ∩ Dδ} for all
ε ∈ (0, λt′(δ)). Finally, let εt′ = min{λt′(δ), γt′(δ)}, and we have that Bt′(x

∗−ε, u∗t′) ⊂ Bt(x∗−ε, u∗t )
for all ε ∈ (0, εt′).

We have shown that for each type t′ < t there exists εt′ > 0 such that, for all ε ∈ (0, εt′),
Bt′(x

∗−ε, u∗
t̃
) ⊂ Bt(x∗−ε, u∗t ). Let εm = min{εt′ : t′ < t}. Then for any ε ∈ (0, εm), Bt′(x

∗−ε, u∗t′) ⊂
Bt(x

∗ − ε, u∗t ) for every t′ < t. For ε ∈ (0, εm), if x∗ − ε is off the equilibrium path, D1 prescribes
that the interim belief puts zero weight on any type t′ < t, following a deviation to x∗ − ε. So by
assumptions A.3′ and A.5, ut(x

∗ − ε, µ(x∗ − ε)) > ut(x
∗, µ(x∗)) = Ut(x

∗, a∗(µt, x
∗)) for any µ that

is D1 admissible, making the deviation profitable for type t and breaking the equilibrium.
If x∗ − ε is on-path, then either ∃ t′ < t such that (x∗ − ε) ∈ St′ or there does not. If there

does not, then the same argument from the previous paragraph establishes that the deviation is
profitable for type t. If there does exist such a t′ < t, then ut′(x

∗− ε, µ(x∗− ε)) = u∗t′ . However, we
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have just demonstrated that under RCt, Bt′(x
∗− ε, u∗t′) ⊂ Bt(x∗− ε, u∗t ), implying, by continuity of

u, that (x∗ − ε, µ(x∗ − ε)) ∈ Bt(x∗ − ε, u∗t ). Hence, type t receives a strictly higher payoff at x∗ − ε
than at x∗, contradicting the equilibrium hypothesis and establishing the proposition.

Proof of Proposition Appendix B.2. Let {µ0,k} be any sequence of priors that converges to

µt, and (Υ∗,k1 , ...,Υ∗,kN ) be a D1 equilibrium sender-strategy profile for prior µ0,k. Then for any ε > 0
there exists an n such that for all k > n

• There exists a Xk ⊆ S∗,kt such that, for all x ∈ Xk, ||µ∗,k(x)− µt|| < ε.

• The total mass attributed to {x : x 6∈ Xk} by Υ∗,kt is less than δ, with δ → 0 as ε→ 0.

These follows easily from the fact that the µ0,k assigns vanishingly small weight to all other types. It
is therefore sufficient to show that as ε→ 0, Xk → {0}. For any x > 0, by choosing ε small enough
relative to εm in the proof of Proposition Appendix B.1, the argument given there to show that
x∗ 6> 0 and the differentiability of the utility function for each type establish that for k large enough
x 6∈ Xk. This establishes the convergence in total mass. Finally, if t = N , then every type t′ < N
receives payoff approaching Ut′(0, a

∗(µN , 0)), his maximum feasible payoff, from imitating type N
and a strictly lower payoff from not doing so, establishing that convergence will be type-by-type
when µ0 → µN .
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