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Performance Degradation of OFDM Systems
Due to Doppler Spreading

Tiejun (Ronald) Wang, Student Member, IEEE, John G. Proakis, Life Fellow, IEEE, Elias Masry, Fellow, IEEE,
and James R. Zeidler, Fellow, IEEE

Abstract— The focus of this paper is on the performance of
orthogonal frequency division multiplexing (OFDM) signals in
mobile radio applications, such as 802.11a and digital video
broadcasting (DVB) systems, e.g., DVB-CS2. The paper considers
the evaluation of the error probability of an OFDM system
transmitting over channels characterized by frequency selectivity
and Rayleigh fading. The time variations of the channel during
one OFDM symbol interval destroy the orthogonality of the
different subcarriers and generate power leakage among the
subcarriers, known as Inter-Carrier Interference (ICI). For con-
ventional modulation methods such as phase-shift keying (PSK)
and quadrature-amplitude modulation (QAM), the bivariate
probability density function (pdf) of the ICI is shown to be a
weighted Gaussian mixture. The large computational complexity
involved in using the weighted Gaussian mixture pdf to evaluate
the error probability serves as the motivation for developing a
two-dimensional Gram-Charlier representation for the bivariate
pdf of the ICI. It is demonstrated that its truncated version
of order 4 or 6 provides a very good approximation in the
evaluation of the error probability for PSK and QAM in the
presence of ICI. Based on Jakes’ model for the Doppler effects,
and an exponential multipath intensity profile, numerical results
for the error probability are illustrated for several mobile speeds.

Index Terms— OFDM, Doppler spreading, ICI, C/I ratio,
Gaussian mixture, two-dimensional Gram-Charlier series.

I. INTRODUCTION

IN OFDM systems, a serial data stream is split into parallel
streams that modulate a group of orthogonal sub-carriers.

Compared to single carrier modulation, OFDM symbols have
a relatively long time duration, but a narrow bandwidth. Con-
sequently, OFDM is robust to channel multipath dispersion
and results in a decrease in the complexity of equalizers for
high delay spread channels or high data rates. However, the
increased symbol duration makes an OFDM system more
sensitive to the time variations of mobile radio channels.
In particular, the effect of Doppler spreading destroys the
orthogonality of the sub-carriers, resulting in inter-carrier
interference (ICI) due to power leakage among subcarriers.

In several previous publications [1]-[4], the system per-
formance for OFDM was analyzed based on the assumption
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that the ICI distribution is Gaussian by invoking the central
limit theorem. In other related papers [5]-[9], efforts have
been made to evaluate the effect of ICI by calculating its
average power and comparing it with the power of the desired
signal. In [5][6], the carrier to interference (C/I) ratio has
been introduced to demonstrate the effect of the ICI under
various maximum Doppler spreads and different Doppler
spectra. Through numerical evaluations of the C/I ratios, it is
reported in [7] that an OFDM system is robust to frequency
selectivity but quite sensitive to time varying fading channels.
Li and Cimini [8] provide universal bounds on the ICI in
an OFDM system over Doppler fading channels, which are
easier to evaluate and can provide useful insights compared
with the exact ICI expression. Furthermore, the closed-form
expression of ICI power is derived and evaluated in [9], where
the normalized ICI power is represented as a function of the
normalized Doppler spread. However, all these papers do not
attempt to determine the underlying probability distribution
function (pdf) of the ICI.

In this paper we focus on providing a statistical analysis
for the ICI in an OFDM system that employs conventional
PSK and QAM signal modulation in a frequency selective,
Rayleigh fading time-varying channel. The channel, which
is assumed to be wide-sense stationary with uncorrelated
scattering (WSSUS), is modeled by a two-dimensional corre-
lation function in time and frequency, representing the time
variations and frequency selectivity of the channel. Each
subchannel is assumed to be frequency flat and, based on
the power series model developed by Bello [10], a two-term
Taylor series expansion is used to model the time variations
in an OFDM symbol. Jakes’ model [14] is used as the model
for the Doppler power spectrum and an exponential multipath
intensity profile is the model adopted for the multipath effects.
A cyclic prefix is assumed to remove the effects of inter-
symbol interference. Based on this channel model, the ICI is
expressed as the summation of leakage terms into each of the
subcarriers and its pdf is shown to be characterized statistically
by a bivariate pdf that is a weighted sum of Gaussian pdfs.

In deriving the probability of error for the OFDM system
in the presence of ICI, the use of the weighted Gaussian pdf
proves to be computationally intensive. This difficulty serves
as the motivation to develop a two-dimensional Gram-Charlier
series to represent the pdf of the ICI. A truncated version of the
Gram-Charlier is used in the evaluation of the error probability
for PSK and QAM signal modulations in an OFDM system.

The paper is organized as follows: In Section II we describe
the model for the OFDM system. In Section III we describe

1536-1276/06$20.00 c© 2006 IEEE
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Fig. 1. Base-band OFDM transmisson model with N subcarriers.

the channel model and use a Taylor series expansion for
the time variations within an OFDM symbol. In Section
IV an expression for the ICI and its power is presented.
Section V provides a thorough analysis of the statistics of the
ICI, its joint probability density, joint moments, and a two-
dimensional Gram-Charlier representation. In Section VI, the
error rate performance of BPSK and 16-QAM OFDM systems
are presented and compared. Finally, concluding remarks are
given in Section VII.

II. OFDM SYSTEM

An OFDM system with N subcarriers is represented in Fig.
1. In an OFDM system that employs M -ary digital modula-
tion, a block of log2M input bits is mapped into a symbol
constellation point dk by a data encoder, and then N symbols
are transferred by the serial-to-parallel converter (S/P). If 1/T
is the symbol rate of the input data to be transmitted, the
symbol interval in the OFDM system is increased to NT ,
which makes the system more robust against the channel delay
spread. Each sub-channel, however, transmits at a much lower
bit rate of log2M

NT bits/s. The parallel symbols (d1, · · · , dN )
modulate a group of orthogonal subcarriers, which satisfy

1
NT

∫ NT

0

exp(j2πfit) exp(j2πfjt)dt =
{

1 i = j
0 i �= j

(1)

where fi = i−1
NT , (i = 1, 2, · · · , N)

Consider the system shown in Fig. 1. The baseband trans-
mitted signal can be represented as

s(t) =
1√
NT

N∑
k=1

ske
j2πfkt, 0 ≤ t ≤ NT, fk =

k − 1
NT

.

(2)
We denote by 2Es the average energy for the complex
baseband symbol sk. Then sk is given by

sk =
√

2Esdk (3)

where dk = dk,r + jdk,i , is the signal constellation point
(e.g. BPSK, QPSK, QAM, etc.) with normalized variance
E[|dk|2] = 1 . Square M-QAM signal constellations may be
viewed as two independent

√
M -PAM signals on orthogonal

carriers. In this case, the real and imaginary parts dk,r and

dk,i are statistically independent, identically distributed and
E[dk,r ] = E[dk,i] = 0 .

III. CHANNEL MODEL

We consider a frequency selective randomly varying chan-
nel with impulse response h(t, τ). Within the narrower band-
width of each sub-carrier, compared with the coherence
bandwidth of the channel, the sub-channel is modeled as a
frequency nonselective Rayleigh fading channel. Hence, the
channel impulse response hk(t, τ) for the kth subchannel is
denoted as

hk(t, τ) = βk(t)δ(τ) (4)

where the process {βk(t),−∞ < t < ∞} is a stationary,
zero mean complex-valued process described as follows: It is
assumed that the processes {βk(t),−∞ < t < ∞}, k =
1, . . . , N , are complex-valued jointly stationary and jointly
Gaussian with zero means and cross covariance function

Rβk,βl
(τ) := E[βk(t+ τ)β∗

l (t)], k, l = 1, . . . , N. (5)

For each fixed k, the real and imaginary parts of the process
{βk(t),−∞ < t < ∞} are assumed independent with
identical covariance function. We further assume that the
correlation function Rβk,βl

(τ) has the following factorable
form

Rβk,βl
(τ) = R1(τ)R2(k − l) (6)

which has been frequently used in the literature,
e.g.,[4][15][16], and which is sufficient to represent the
frequency selectivity and the time-varying effects of the
channel. R1(τ) gives the temporal correlation for the process
{βk(t),−∞ < t < ∞} which is seen to be identical
for all k = 1, . . . , N . R2(k) represents the correlation in
frequency across subcarriers. We assume in this paper that
the corresponding spectral density ψ1(f) to R1(τ) is given
by the Doppler power spectrum, modeled as in Jakes [14],
i.e.,

ψ1(f) =

{ 1

πFd·
�

1−( f
Fd

)2
|f | ≤ Fd

0 otherwise
(7)

where Fd is the (maximum) Doppler bandwidth. Note that

R1(τ) = J0(2πFdτ) (8)
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Fig. 2. Multipath delay profile and frequency correlation function.

where J0(τ) is the zero-order Bessel function of the first
kind. In order to specify the correlation in frequency across
subcarriers, we adopt an exponential multipath power intensity
of the form S(τ) = αe−ατ , τ > 0, α > 0 where α is
a parameter that controls the coherence bandwidth of the
channel. The Fourier transform of S(τ) yields

ψ2(f) =
α

α+ j2πf
(9)

which provides a measure of the correlation of the fading
across the subcarriers as illustrated in Fig. 2. Then R2(k) =
ψ2(Δfk) where Δf = 1

NT is the frequency separation
between two adjacent subcarriers. The 3dB bandwidth of
ψ2(f) is defined as the coherence bandwidth of the channel
and easily shown to be fcoherent =

√
3α

2π .

The channel model described above is suitable for modeling
OFDM signal transmission in mobile radio systems, e.g.,
cellular systems and broadcasting systems. For example, in
DVB-CS2 with 2000 subcarriers, the symbol duration NT is
500μs. In contrast, the delay spread of many fading channels
is much smaller, which make it reasonable to view each
subcarrier as a flat fading channel. However, compared with
the entire OFDM system bandwidth W = 1/T , the coherence
bandwidth fcoherent is usually smaller, fcoherent < W ,
especially in an outdoor wireless communication environment.
Hence, the channel is frequency-selective over the entire
OFDM bandwidth.

We now turn our attention to modeling the time variations
of the channel within an OFDM symbol interval. For most
practical mobile radio fading channels, the time-varying ef-
fects in the channel are sufficiently slow, i.e., the coherence
time is always much larger than the interval of an OFDM
symbol [17][18]. For such slow fading channels, we use the
two terms Taylor series expansion, first introduced by Bello
[10], to represent the time-varying fading response βk(t) as

the following form:

βk(t) = βk(t0) + β
′
k(t0)(t− t0), t0 =

NT

2
, 0 ≤ t ≤ NT.

(10)
Therefore, the impulse response of the kth subchannel is
expressed as

hk(t, τ) = βk(t)δ(τ) = [βk(t0) + β
′
k(t0)(t− t0)]δ(τ). (11)

Since R1(τ) of (8) is infinitely differentiable, all mean-square
derivatives exist and thus the differentiation above is justified.
We use this model for the time variations of the channel within
an OFDM symbol.

IV. EXPRESSION FOR THE ICI AND ITS POWER

Let s(t) be the baseband signal transmitted over the channel
with impulse response h(t, τ) as modeled above. Then the
baseband received signal with additive noise may be expressed
as

r(t) = h(t, τ)�s(t)+n(t) =
1√
NT

N∑
k=1

βk(t)skej2πfkt+n(t)

(12)
where � denotes convolution and n(t) is the additive noise,
which is modeled as a Gaussian process with zero mean
and spectrally flat within the signal bandwidth, with one-
sided spectral density N0 watts/Hz. By using the Taylor series
expansion for βk(t) as given in (11), we obtain

r(t) =
1√
NT

N∑
k=1

βk(t0)skej2πfkt

+
1√
NT

N∑
k=1

β
′
k(t0)(t− t0)skej2πfkt + n(t). (13)

The received signal in a symbol interval is passed through
a parallel bank of correlators, where each correlator is tuned
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Fig. 3. C/I ratio curves of an OFDM system N = 256 subcarriers, subcarrier distance Δf = 7.81KHz, and carrier frequency fc = 2GHz.

to one of the N subcarriers. The output of the ith correlator
is

d̂i =
1√
2Es

1√
NT

∫ NT

0

r(t)e−j2πfitdt. (14)

Substituting (13) into (14), we obtain

d̂i =
1√

2EsNT

∫ NT

0

1√
NT

N∑
k=1

βk(t0)skej2π(fk−fi)tdt

︸ ︷︷ ︸
(1)

+
1√

2EsNT

∫ NT

0

1√
NT

N∑
k=1

β
′
k(t0)(t− t0)skej2π(fk−fi)tdt

︸ ︷︷ ︸
(2)

+
1√

2EsNT

∫ NT

0

n(t)e−j2πfitdt

︸ ︷︷ ︸
(3)

(15)

The first term yields

N∑
k=1

βk(t0)dk

(
1
NT

∫ NT

0

ej2π(fk−fi)tdt

)
= βi(t0) di. (16)

The second term yields

N∑
k=1

β
′
k(t0)dk

(
1
NT

∫ NT

0

(t− t0)ej2π(fk−fi)tdt

)

=
N∑
k=1
k �=i

β
′
k(t0)dk

j2π(fk − fi)
=
NT

2πj

N∑
k=1
k �=i

β
′
k(t0)dk
k − i

.

(17)

Finally, the additive noise term is

ni =
1√
2Es

1√
NT

∫ NT

0

n(t)e−j2πfitdt (18)

where ni is a complex Gaussian noise with zero mean and
variance N0/Es. Thus we have

d̂i = βi(t0)di︸ ︷︷ ︸
desired_signal

+
NT

2πj

N∑
k=1
k �=i

β
′
k(t0)dk
k − i

︸ ︷︷ ︸
ICI

+ni . (19)

In Section V we establish the statistical properties of the
ICI term. Here, we obtain the C/I ratio and we compare the
result with those obtained in [5],[6],[8], and [9], which are
based on different models for the time variations.

From Equation (19), the average power of the desired signal
is

C = E[|βi(t0)di|2] = E[|βi(t0)|2]E[|di|2] = 1 . (20)

Since Rβk,βk
(τ) = R1(τ) is infinitely differentiable, all

(mean-square) derivatives of the process {βk(t),−∞ <
t < ∞} exist. In particular, the first-order derivative
process {β′

k(t),−∞ < t < ∞} is a zero mean complex-
valued Gaussian process with correlation function E[β′

k(t +
τ)(β′

k(t))
∗] = −R′′

1 (τ) (identical for all k) with corresponding
spectral density

ψ3(f) =

⎧⎨
⎩

(2πf)2

πFd·
�

1−( f
Fd

)2
|f | ≤ Fd

0 otherwise
(21)

Then,

E[|β′
k(t)|2] =

∫ ∞

−∞
ψ3(f)df

=
∫ Fd

−Fd

(2πf)2

πFd

√
1 − ( f

Fd
)2
df = 2π2Fd

2. (22)
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Thus, the power of the interference (ICI) is

I = E

[∣∣∣∣∣
NT

2πj

N∑
k=1
k �=i

β
′
k(t0)dk
k − i

∣∣∣∣∣
2]

=
(
NT

2π

)2 N∑
k=1
k �=i

N∑
l=1
l �=i

1
(k − i)(l − i)

E
[
(β

′
k(t0)dk)(β

′
l (t0)dl)

∗]

=
(NT

2π
)2 N∑

k=1
k �=i

N∑
l=1
l �=i

k �=l

1
(k − i)(l − i)

E
[
(β

′
k(t0)dk)(β

′
l (t0)dl)

∗]

+

(
NT

2π

)2 N∑
k=1
k �=i

1
(k − i)2

E
[|β′

k(t0)dk|2
]

=: J1 + J2. (23)

Note that (β
′
k(t0), β

′
l (t0)) is independent of (dk, dl). Also, the

dk’s are i.i.d. with zero means. Thus J1 = 0. It then follows
that

I =
(
NT

2π

)2 N∑
k=1
k �=i

E[|β′
k(t0)|2]E[|dk|2]
(k − i)2

=
(NTFd)2

2

N∑
k=1
k �=i

1
(k − i)2

. (24)

Thus the signal to interference ratio (C/I) ratio can be ex-
pressed as

C

I
=

1

(NTFd)2

2

N∑
k=1
k �=i

1
(k−i)2

(25)

The C/I curve of the middle subcarrier, i.e., subcarrier index
k = N/2, is plotted versus the Doppler frequency Fd in Fig.
3 (a). The OFDM system is assumed to have N = 256 sub-
carriers, with subcarrier spacing Δf = 1/NT = 7.81KHz,
and carrier frequency fc = 2GHz. The C/I curve given
in Fig. 3 (a) matches very well with the results given in
[5][6][9], which were obtained without the use of Taylor series
approximation. Furthermore, using an expanded scale in Fig.
3 (b), we compare our analytical result with the upper and
lower bounds on C/I given by Li and Cimini [8].

In order to evaluate the approximation effect embodied in
the two-term Taylor series expansion, we also demonstrate
in Fig. 4 the comparison of the C/I ratio curves of the
same OFDM system in very high Doppler frequency regimes.
We can observe from Fig. 4 that the two-term Taylor series
expansion model well approximates the actual fading channel
up to a relatively large Doppler frequency 10000Hz, i.e., the
two-term Taylor series expansion model becomes inaccurate
only when Fd is larger than 10000Hz, which is equivalent to
a normalized Doppler frequency of 1.28. This is larger than
any practical wireless fading channel for OFDM applications.
For example, if we consider 802.11a with carrier frequency of
5GHz, the terminal must be moving at a speed of 2160km/hr.
Overall, the two term Taylor expansion channel model is a

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

−20
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Fig. 4. C/I ratio curves of an OFDM system N = 256 subcarriers, subcarrier
distance Δf = 7.81KHz, and carrier frequency fc = 2GHz.

very good approximation of the time variations encountered
in many physical channels.

V. THE DISTRIBUTION AND MOMENTS OF THE ICI

In this section we derive expressions for the bivariate
probability density and joint moments of the ICI complex ran-
dom variable Z including a two-dimensional Gram-Charlier
expansion. We carry out this analysis in a fairly general setting
so that the results can be applied to situations where the
channel model and the signal constellation are different from
those assumed in the previous sections. Let

Z :=
N∑
k=1

akXkdk (26)

where the ak’s are real-valued constants and the sets of
random variables {Xk}Nk=1 and {dk}Nk=1 are independent.
The random vector X̃ := (X1, . . . , XN)T is complex-valued
circular Gaussian with zero mean and N×N complex-valued
covariance matrix Σ̃ = E[X̃X̃

∗T
]. We allow Σ̃ to be an

arbitrary covariance matrix. It is readily evident from (26) that,
given the {dk}, Z is conditionally complex Gaussian random
variable. We seek an explicit expression for the the joint
probability density of its real and imaginary parts. Decompose
Xk into its real and imaginary parts, Xk = Xk,r+ jXk,i, k =
1, . . . , N, and define the 2N × 1 real-valued Gaussian vector
X := [X1,r · · ·XN,rX1,i · · ·XN,i]

T . The 2N × 2N real-
valued covariance matrix Σ = E[XXT ] is given by (see for
example [19])

Σ =
1
2

[
�[Σ̃] −�[Σ̃]
�[Σ̃] �[Σ̃]

]
=:
[

Σ11 −Σ12

Σ12 Σ22

]
. (27)

Next the signal constellation points dk’s are assumed to be
i.i.d. complex-valued random variables and we set dk =
dk,r + jdk,i for its real and imaginary parts. Again, in the
general setting here, we do not assume that dk,r and dk,i are
independent taking values with equal probabilities. Instead we
assume that

P [dk,r = bl, dk,i = cm] = pl,m, l,m = 1, . . . , L (28)



WANG et al.: PERFORMANCE DEGRADATION OF OFDM SYSTEM DUE TO DOPPLER SPREADING 1427

where bl and cm are real-valued. This allows general signal
constellations. Finally the constants {ak} appearing in (26)
are arbitrary; in the special case that will be considered later,
we set ak = 1/(k − i), for k �= i and ak = 0 for k = i. In
this case, ICI = NT

2πjZ .
Decompose the complex-valued random variable Z of (26)

into its real and imaginary parts,

Z := Zr + jZi =
N∑
k=1

ak[Xk,rdk,r −Xk,idk,i]

+j
N∑
k=1

ak[Xk,rdk,i +Xk,idk,r] (29)

and let fZr,Zi(u, v) be its joint probability density. We first
seek an expression for this density and its joint moments.

It can be seen that fZr,Zi(u, v) is a Gaussian mixture and
one can write

fZr,Zi(u, v)=
L∑

l1=1

L∑
m1=1

. . .

L∑
lN =1

L∑
mN =1

(
N∏
n=1

pln,mn

)
fY1,Y2(u, v)

(30)
where fY1,Y2(u, v) is a bivariate Gaussian density with zero
means and 2×2 dimensional covariance matrix whose entries
depend on (bl1 , . . . , blN ; cm1 , . . . , cmN ) (i.e., on the values of
the signal constellation points {dk}Nk=1). Moreover, one can
verify that under our assumptions we have cov{Y1, Y2} = 0
whereas the variance of Y1 and Y2 are identical and given by

σ2
Y (bl1 , . . . , blN ; cm1 , . . . , cmN )

=
N∑
i=1

N∑
k=1

aiakσ11(i, k)[bliblk + cmicmk
]

+ σ12(i, k)[−cmiblk + blicmk
] (31)

where σ11(i, k) is the (i, k)th entry of the matrix Σ11 and
σ12(i, k) is the (i, k)th entry of the matrix Σ12 defined in
(27). It follows that

fZr,Zi(u, v)=
L∑

l1=1

L∑
m1=1

. . .

L∑
lN =1

L∑
mN=1

(
N∏
n=1

pln,mn

)
fY1(u)fY2(v)

(32)
where fY (u) is a one-dimensional Gaussian density with zero
mean and variance given by (31). Equation (32) allows the
computation of the joint moments of (Zr, Zi). We have

E[Zk1r Z
k2
i ]

=
L∑

l1=1

L∑
m1=1

. . .
L∑

lN=1

L∑
mN=1

(
N∏
n=1

pln,mn

)
E[Y k11 ]E[Y k22 ](33)

and since

E[Y k] =
{

1 × 3 . . .× (k − 1)σkY , k even
0, k odd

(34)

it follows that

E[Zk1r Z
k2
i ] =⎧⎪⎪⎨

⎪⎪⎩

L∑
l1=1

L∑
m1=1

. . .
L∑

lN=1

L∑
mN=1

(
N∏
n=1

pln,mn

)
[1 · 3 · · · (k1 − 1)]·

×[1 · 3 · · · (k2 − 1)] · σk1+k2
Y , k1&k2 even

0, otherwise
(35)

Note that when the real and imaginary parts of the signal
constellation points are independent and equally probable,
there is a significant simplification in (32) and (35) since then
pl,m is a constant. Computationally, finding fZr,Zi(u, v) from
(32) is very intensive for large N and L since the dependence
on the values of the signal constellation points appear in the
exponent of the Gaussian density fY (u) via its variance σ2

Y .
On the other hand, computing the joint momentsE[Zk1r Z

k2
i ] is

considerably simpler as the dependence on the values of the
constellation points appear directly in σY and only in term
of sums of products of two values as seen from (31). We
therefore plan to use the joint moments E[Zk1r Z

k2
i ] to obtain

an approximation of the joint probability density fZr ,Zi(u, v).
This is carried out below using a two-dimensional Gram-
Charlier expansion.

The one-dimensional Gram-Charlier expansion and its rate
of convergence are as follows [20] [21]: Let φ(x) be the
standard Gaussian probability density with zero mean and
unit variance. The nth Hermite polynomial Hn(x) is defined
by Hn(x) := (−1)nex

2/2Dn[e−x
2/2] where D stands for

derivative. Hn(x) is given explicitly as

Hn(x) = n!
[n/2]∑
k=0

(−1)kxn−2k

k! 2k (n− 2k)!
. (36)

The first few Hermite polynomials are given by

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1,
H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3. (37)

The Hermite polynomials satisfy the orthogonality relationship∫ ∞

−∞
Hn(x)Hk(x)φ(x)dx = n! δn,k (38)

where δn,k is the Kronecker delta. Let g(x) be a probability
density function of a real-valued random variable X . It can
be expanded in a Gram-Charlier series

g(x) =
∞∑
n=0

θnHn(x)φ(x) (39)

where the coefficient θn is given by

θn =
1
n!

∫ ∞

−∞
g(x)Hn(x)dx =

1
n!
E[Hn(X)] (40)

and by (36), can be expressed in terms of the moments of X
up to order n:

θn =
[n/2]∑
k=0

(−1)kE[Xn−2k]
k! 2k (n− 2k)!

. (41)

The convergence properties of the Gram-Charlier series are
presented in [21]: Set

gK(x) :=
K∑
n=0

θnHn(x)φ(x) (42)

then if g(x) has s continuous derivatives satisfying certain
integrability conditions ([21], Theorem II and Corollary I),
we have

|g(x) − gK(x)| ≤ constant

Ks/2
(43)
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uniformly in x. Thus, the smoother g(x) is, the better the ap-
proximation of g(x) by gK(x). In two-dimensions, the Gram-
Charlier series takes the following form (see for example
[22]): Let (X,Y ) be jointly distributed random variables with
probability density function g(x, y). We can then represent
g(x, y) in a two-dimensional Gram-Charlier series

g(x, y) =
∞∑
n=0

∞∑
m=0

θn,mHn(x)Hm(y)φ(x)φ(y) (44)

where the coefficient θn,m is given by

θn,m =
1

n!m!

∫ ∞

−∞

∫ ∞

−∞
Hn(x)Hm(y)g(x, y)dxdy

=
1

n!m!
E[Hn(X)Hm(Y )]. (45)

In view of (36), it is seen that θn,m can be expressed in terms
of the joint moments of (X,Y ):

θn,m =
[n/2]∑
k=0

[m/2]∑
l=0

(−1)k+lE[Xn−2kY m−2l]
k! l! 2k+l (n− 2k)! (m− 2l)!

. (46)

Applying the representation (44) to the bivariate density
fZr,Zi(u, v) we have

fZr,Zi(u, v) =
∞∑
n=0

∞∑
m=0

θn,mHn(u)Hm(v)φ(u)φ(v) (47)

where the coefficient θn,m is now given by

θn,m =
[n/2]∑
k=0

[m/2]∑
l=0

(−1)k+lE[Zn−2k
r Zm−2l

i ]
k! l! 2k+l (n− 2k)! (m− 2l)!

. (48)

Note that by (35) θn,m is nonzero only if both n and m are
even. In practice the two-dimensional Gram-Charlier series
(47) is truncated at a total order K , i.e.,

f
(K)
Zr,Zi

(u, v) =
∞∑
n=0

∞∑
m=0

n+m≤K

θn,mHn(u)Hm(v)φ(u)φ(v). (49)

Thus if, say, K = 4, we only need to compute the marginal
moments E[Z4

r ] and the joint moment E[Z2
rZ

2
i ] in (35); in

turn this only requires the computation of σ2
Y of (31).

It should be noted that the standard Gram-Charlier expan-
sion is generated by a normalized Gaussian density φ(x) with
zero mean and unit variance. Clearly, if the variables Zr and
Zi in (49) have variances substantially different from one, we
are likely to need large truncation level K for an acceptable
approximation. This problem could be easily remedied as
follows: Let s21 and s22 be the variances of the random
variables Zr and Zi respectively. We can generate a two-
dimensional Gram-Charlier expansion starting from Gaussian
density functions with zero means and variances s21 and s22. It
is easy to see that instead of (47) we now have

fZr ,Zi(u, v)=
1

s1s2

∞∑
n=0

∞∑
m=0

θ̄n,mHn

( u
s1

)
Hm

( v
s2

)
φ
( u
s1

)
φ
( v
s2

)
(50)

with coefficients

θ̄n,m =
[n/2]∑
k=0

[m/2]∑
l=0

(−1)k+lE[Zn−2k
r Zm−2l

i ]
k! l! 2k+l sn−2k

1 sm−2l
2 (n− 2k)! (m− 2l)!

(51)

and the representation is truncated at n+m ≤ K .
We now specialize the above general results to the case

introduced in the previous sections. For the covariance matrix
of the vector X , set

Xk,r := �[β′
k(t0)], Xk,i := �[β′

k(t0)]. (52)

It then follows from (6) that the (i, k)th component of the
covariance matrix Σ11 is given by

σ11(i, k) := E[Xi,rXk,r]

= −1
2
R′′

1 (0)�[R2(i− k)], i, k = 1, . . . , N. (53)

Similarly, it is seen that the (i, k)th component of the covari-
ance matrix Σ12 is given by

σ1,2(l, k) := E[Xl,rXk,i] =
1
2
R′′

1 (0)�[R2(l − k)]. (54)

Note that this vanishes for l = k. Next we specify the values
and corresponding probabilities of the signal constellation
points. Unlike the general formulation earlier, we now assume
that dk,r and dk,i are independent taking values from a square
M-point QAM signal constellation with equal probabilities

P [dk,r = ld] = P [dk,i = ld]

=
1√
M
, l = ±1,±3, . . . ,±(

√
M − 1). (55)

This corresponds to setting pl,m = 1√
M

with L =
√
M in our

general formulation. Finally, we set ak = 1/(k − i), for k �= i
and ak = 0 for k = i. Thus for the special case, the expression
for σ2

Y of (31) remains applicable with ak as specified above
and bk = kd, cm = md and the values of σ11(i, k) and
σ12(i, k) are specified in (53) and (54) respectively. The
expression for fZr,Zi(u, v) of (32) simplifies to

fZr,Zi(u, v) =
1

MN−1

∑
l1

∑
m1

. . .
∑
lN

∑
mN

fY1(u)fY2(v)

(56)
where we use the compact notation

∑
l

:=

√
M−1∑

l=−(
√
M−1)

l odd

. (57)

The joint moments E[Zk1r Z
k2
i ] simplify to

E[Zk1r Z
k2
i ] = 1

MN−1

×
⎧⎨
⎩
∑

l1

∑
m1

. . .
∑
lN

∑
mN

[1 × 3 . . .× (k1 − 1)]·
×[1 × 3 . . .× (k2 − 1)]σk1+k2

Y , k1 and k2 even
0, otherwise

(58)
The truncated two-dimensional Gram-Charlier representation
is again given by (49) with coefficients θn,m given by (48)
involving the joint moments E[Zk1r Z

k2
i ] now given by (58).

Thus, we only need to obtain an expression for σ2
Y . Straight-

forward calculations using (31) (53) and (54) show that

σ2
Y =

(
NTFd d

2

)2 N∑
r=1
r �=i

N∑
s=1
s�=i

�[ψ2(Δf(r − s))](lrls +mrms)
(r − i)(s− i)

+
�[ψ2(Δf(r − s))](−mrls + lrms)

(r − i)(s− i)
. (59)
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Similar computations hold for the scaled Gram-Charlier ex-
pansion (50).

The above Gram-Charlier approximation method can be
easily applied to Rician fading statistics. The only difference
in applying the above proposed approximation approach is to
adjust the corresponding ICI joint moments. In this paper, our
results are limited to Rayleigh fading statistics.

VI. EVALUATION OF OFDM SYSTEM PERFORMANCE

We now evaluate the error probability for an M -QAM
system with coherent detection. In view of (19) and (26) we
can write

d̂i = βi(t0)di +
NT

2πj
Z + ni (60)

where Z represents the ICI contribution whose statistics were
thoroughly studied in Section V. We assume that we have
perfect knowledge of βi(t0) in each sub-channel and we form
the decision variable

D̂i =
d̂i βi

∗(t0)
|βi(t0)|2 = di +

NT

2πj
Z β∗

i (t0)
|βi(t0)|2 +

ni β
∗
i (t0)

|βi(t0)|2 . (61)

Set a := NT/(2π), Z = Zr + jZi, βi(t0) = W1 + jW2, and
ni = ni,1 + jni,2 for their real and imaginary parts. Then

�[D̂i] = �[di] +
a(ZiW1 − ZrW2)

W 2
1 +W 2

2

+
ni,1W1 + ni,2W2

W 2
1 +W 2

2

.

(62)

�[D̂i] = �[di] − a(ZrW1 + ZiW2)
W 2

1 +W 2
2

+
ni,2W1 − ni,2W2

W 2
1 +W 2

2

.

(63)
A final decision is made by comparing the location of random
variable D̂i with the M -QAM constellation points and select-
ing the signal point that is nearest to di. The decision of the
detector is based on (61): Assuming a symmetric rectangular
QAM signal constellation, the detector performs independent
decisions on the real and imaginary parts conditioned on a
particular channel realization βi(t0) and ICI realization Z . A
symbol error occurs if either the real or imaginary components
are in error. Let Ai be the event of making an error in the real
(or imaginary) part in the ith sub-channel. Then, conditioned
on a particular channel realization βi(t0) and ICI realization
Z , we have the following equations for the probability of error
in the x (real) and y (imaginary) parts:

P xs [Ai|Z = u+ jv, βi(t0) = w1 + jw2]

=
L− 1
L

[
Q

(
d(w2

1 + w2
2) + a(vw1 − uw2)

[(N0/2Es)(w2
1 + w2

2)]1/2

)

+Q
(
d(w2

1 + w2
2) − a(vw1 − uw2)

[(N0/2Es)(w2
1 + w2

2)]1/2

)]
(64)

P ys [Ai|Z = u+ jv, βi(t0) = w1 + jw2]

=
L− 1
L

[
Q

(
d(w2

1 + w2
2) + a(uw1 + vw2)

[(N0/2Es)(w2
1 + w2

2)]1/2

)

+Q
(
d(w2

1 + w2
2) − a(uw1 + vw2)

[(N0/2Es)(w2
1 + w2

2)]1/2

)]
(65)

where d =
√

3
2(M−1) with L2 = M . The conditional symbol

error probability is then given by

Ps[Ai|Z = u+ jv, βi(t0) = w1 + jw2] =

1 −
(
(1 − P xs [Ai|Z = u+ jv, βi(t0) = w1 + jw2]) ·

×(1 − P ys [Ai|Z = u+ jv, βi(t0) = w1 + jw2])
)

(66)

In order to obtain unconditional probability of error, we
average over the distributions of the ICI variable Z and over
the distribution of βi(t0). We first note that the bivariate
probability density fZr ,Zi(u, v) of the ICI disturbance Z is
given in (56) and its Gram-Charlier approximation by (49). We
further note that the ICI complex random variable Z and the
channel random variable βi(t0) are independent. This follows
from the following argument: The process {βl(t),−∞ <
t < ∞} is complex Gaussian with covariance function
Rβl,βl

(τ) = R1(τ) given by (8). The derivative process
{β′

k(t),−∞ < t < ∞} is complex Gaussian with covariance
function Rβ′

k,β
′
k
(τ) = −R′′

1 (τ). The cross covariance function
Rβ′

k
,βl

(τ) = R′
1(τ)R2(k − l) which vanishes at τ = 0.

Since the processes are jointly Gaussian, the random variable
βi(t0) is independent of the random variables {β′

k(t0)}Nk=1

and thus independent of Z in view of the ICI term in (19).
We finally note that the the real and imaginary parts of βi(t0)
are independent zero mean Gaussian random variables with
identical variance equals 1/2. Thus

Ps[Ai]

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Ps[Ai|Z = u+ jv, βi(t0) = w1 + jw2]

×fZr,Zi(u, v)fW (w1)fW (w2)dudvdw1dw2 (67)

where fW (w) = 1√
π
e−w

2
. The above multidimensional inte-

gration can be evaluated by numerical integrations. The system
performance is obtained by averaging over all sub-channels,

Ps =
1
N

N∑
i=1

Ps[Ai]. (68)

Since the probability density fZr ,Zi(u, v) of the ICI variable
is quite involved (see (56)), we use the Gram-Charlier approx-
imation developed in Section 5. We have

f
(K)
Zr,Zi

(u, v)

=
1
s2

∞∑
n=0

∞∑
m=0

n+m≤K

θ̄n,mHn(u/s)Hm(v/s)φ(u/s)φ(v/s). (69)

with coefficients θ̄n,m given by (51) and with joint moments
given by (58). Here s2 = var[Zr] = var[Zi]. This leads to an
approximate probability of error,

P (K)
s =

1
N

N∑
i=1

P (K)
s [Ai]. (70)

Figs. 5 through 6 illustrate the symbol error probability of un-
coded 16-QAM OFDM system with bandwidth W = 1/T =
1MHz over a frequency-selective channel with an exponential
multipath power intensity and channel coherence bandwidth
(3dB bandwidth) of W/4 under different Doppler spreads,
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TABLE I

PERFORMANCE DEGRADATION VS. DOPPLER SPREAD

OFDM Carrier Doppler SER SER
symbol Frequency Spread Fd at ×10−4 No Doppler
(NT ) v = 200km/hr ×10−4

802.11a 4µs 5GHz 1KHz 3.5 1.8
DVBCS2 500µs 480MHz 0.1KHz 278 1.8
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Fig. 5. Performance for 16-QAM OFDM system with fc = 5 GHz, T = 1µs
(W ≈ 1MHz), and speed of 50km/hr.
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Fig. 6. Performance for 16-QAM OFDM system with fc = 5 GHz, T = 1µs
(W ≈ 1MHz), and speed of 200km/hr.

Fd, of 231.5 and 926.0Hz, corresponding to mobile speeds
of 50 and 200km/hr. The carrier frequency is fc = 5GHz.
At the higher speeds, we observe that the ICI causes a large
deterioration in performance as the number N of subcarriers
increases. When the average SNR (Eb/N0) is large, the ICI
is ultimately the limiting factor in performance at any speed
and for any N .

Fig. 7 provides a comparison in error rate performance
between BPSK (bit error probability) and 16-QAM (symbol
error probability) when the mobile speed is 100km/hr. In
this case, we observe that the ICI causes a significantly higher
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Fig. 7. Performance comparison for BPSK OFDM and 16-QAM OFDM
system with fc = 5 GHz, T = 1µs (W ≈ 1MHz), and speed of 100km/hr.

degradation in performance for 16-QAM compared with that
for BPSK.

Next we compare the performance for two practical OFDM
systems. One is an IEEE 802.11a system, the other is a Digital
Video Broadcasting (DVB) system operating in the CS2 mode.
Both systems are operating at a signal to noise ratio (SNR) of
40dB in a vehicle traveling at a speed of 200km/hr and both
employ uncoded 16-QAM modulation. The SER degradation
for the two systems is different for the same mobile Rayleigh
fading channel. As can be seen in the Table I, the average error
rates of 802.11a and DVB-CS2 increase by 1.94 times and 155
times respectively, compared to the case of no Doppler spread.

The error probability shown in Fig. 5 through 7 were evalu-
ated by using equations (67), (69), and (70) with K = 4 in the
Gram-Charlier expansion. We found that K = 4 provides a
very close agreement with the error rate performance obtained
from Monte Carlo simulation. For example, Fig. 8 illustrates
the probability of a symbol error for 16-QAM and a mobile
speed of 100 km/hr for three different orders of the Gram-
Charlier series, K = 2, 4, 6, and the result obtained from
simulation. We observe that K = 4 provides a very close
approximation to the simulation results. We point out that
Gram-Charlier approximations of orders K = 0 and K = 2
both result in a bivariate Gaussian pdf with uncorrelated (Zr,
Zi) components. Consequently, the approximation for K = 0
and K = 2 corresponds to the case in which the ICI is
modeled as bivariate Gaussian with uncorrelated real and
imaginary components. Fig. 9 illustrates the comparison of
the performance obtained with the Gaussian approximation
(Gram-Charlier expansion of order 2) for the ICI and the non-
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Fig. 8. Performance for 16-QAM system with 128 subcarriers, fc = 5 GHz,
T = 1µs (W ≈ 1MHz), and speed of 100km/hr.
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Fig. 9. Performance for 16-QAM OFDM system with fc = 5 GHz, T = 1µs
(W ≈ 1MHz), and speed of 100km/hr.

Gaussian approximation (Gram-Charlier expansion of order
4). We note that the Gaussian model (K = 2) give results
that differ from the simulation results illustrated in Fig. 8
and the non-Gaussian approximation (G.C. order 4) in Fig.
9 by one or more dB depending on the SNR. The mismatch
between the Gaussian approximation and the actual system
performance is due to the fact that the ICI interference is not
Gaussian distributed, as is illustrated in Section V. The most
important feature of the Gram-Charlier approximation lies in
the property that it makes use of the higher order statistics
(moments) of the ICI, by employing a higher order Gram-
Charlier approximation. Thus, the Gram-Charlier expansion
provides a better match to the pdf of the ICI than the Gaussian
approximation (which is based on second order statistics).

There is also a major difference between Gram-Charlier
approximation of higher order K ≥ 4 and a Gaussian
approximation for the ICI. In a Gaussian approximation, the
system performance only depends on the number of OFDM
subcarriers and the normalized Doppler spread, due to the fact
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Fig. 10. Performance for 16-QAM OFDM system with 128 subcarriers,
fc = 5 GHz, T = 1µs (W ≈ 1MHz), speed of 100km/hr, and transmitting
over different frequency-selective fading channels.

the second order moment of the ICI only depends on these
two parameters. Therefore, the performance approximation
obtained with the Gaussian model for the ICI can not represent
the effect of channel frequency selectivity of the overall
OFDM system. On the other hand, by using Gram-Charlier
approximation, the ICI joint moments of order K ≥ 4 do
not only depend on the normalized Doppler frequency and
the number of subcarriers, but also depend on the correlation
structure among the subcarriers (hence the power delay profile
of the frequency selective fading channel), and the baseband
modulation constellations. Therefore, the Gram-Charlier ap-
proximation provides us with a much more accurate approach
in evaluating the performance of an OFDM system under
different frequency selective fading channel conditions. As an
example, we demonstrate in Fig. 10 the system performance
curves as well as their Gram-Charlier approximations (of order
4) of the same OFDM system transmitting over different
frequency-selective fading channels with coherence bandwidth
W/4 and W/32. We observe from the plot that the proposed
Gram-Charlier approximation (with orderK = 4) accounts for
the effects of frequency-selectivity on ICI interference whereas
the simple Gaussian approximation does not.

VII. CONCLUDING REMARKS

In this paper, the performance of an OFDM system was
analyzed with respect to its sensitivity to Doppler related
inter-carrier interference. We obtained explicit formulas for
the bivariate probability density of the ICI, its joint moments,
as well as two-dimensional Gram-Charlier representation and
approximation. The performance of the OFDM system was
obtained based on a truncated Gram-Charlier expansion of
the ICI bivariate density. The effect of the Doppler spread in a
time variant mobile radio channel on the performance of QAM
and BPSK OFDM systems was evaluated. The performance of
OFDM systems for M-ary PSK can be evaluated in a similar
manner using the methods described in this paper.
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