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When I heard the learn’d astronomer; 

When the proofs, the figures, were ranged in columns before me; 

When I was shown the charts and diagrams, to add, divide, and measure them; 

When I sitting heard the astronomer where he lectured with much applause in the 
lecture-room, 

How soon, unaccountable, I became tired and sick; 

Till rising and gliding out, I wander’d off by myself, 

In the mystical moist night-air, and from time to time, 

Look’d up in perfect silence at the stars. 

 

Walt Whitman, 1865  
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ABSTRACT 
 

CONSEQUENCES OF SPATIAL AND TEMPORAL CLIMATE VARIABILITY FOR 
SPECIES DISTRIBUTION MODELING 

by 
Miguel Alejandro Fernandez Trigoso 

Doctor of Philosophy 
University of California, Merced 

Dr. Lara M. Kueppers, Chair 
 

Our understanding of how species will respond to global change is still limited. Species 
distribution models (SDMs) are used to generate hypotheses regarding the potential 
distributions of species under different environmental conditions. However, that species 
observations and climatic variables are not measured at the same spatial and temporal 
resolution still hinders our ability to forecast species range shifts and expansions in 
response to global change. One of the possible consequences of this data mismatch is the 
observed discrepancy between realized climate niches in species’ native and invasive 
ranges. In the first chapter of my dissertation, I address this issue by evaluating niche 
similarity between native and invaded ranges for 10 species using a combination of 
monthly and inter-annual climatic variability data.  My results suggest that some species’ 
ranges may be constrained by one aspect of climatic variability in the native range but a 
different one in the invaded range.  A second issue, also a consequence of the spatio-
temporal mismatch, is that weather station data are often spatially interpolated to match 
the species observations without any uncertainty assessment. The second chapter 
evaluates and quantifies the effects of three complementary aspects of uncertainty present 
in weather station data interpolations. I examine the influence of topographic 
heterogeneity, interannual climatic variability, and distance to weather station on SDM 
performance for 20 well observed North American breeding birds, and show that 
topographic heterogeneity has the highest contribution to omission errors, or false 
absences. A third consequence of the spatio-temporal data mismatch is the inability of 
global simulations to capture local manifestations of climate change. This inability can 
limit the capacity of SDMs to produce accurate simulations for species whose 
distributions depend on small-scale climate phenomena. While changes in global climatic 
patterns are projected using global climate model (GCM) simulations, local climatic 
trends are not always well represented by GCMs, or by simple downscaled projections 
derived from GCMs. In the final chapter of my dissertation, I use interpolated, fine-scale 
historic climate records in a novel approach to estimate the sensitivity of SDM’s to 
locally coherent changes in temperature and precipitation at larger scales, using coast 
redwood (Sequoia sempervirens) as an example. Overall, the results of this thesis confirm 
the importance of establishing an appropriate relational basis in time and space between 
species and climatic observations. Historical collection records should be thoroughly 
analyzed and integrated with historical climatic time series to gain a better understanding 
of species’ response to climate variability in the past, thereby informing the selection of 
appropriate spatio-temporal scales of climate variability for projections under present and 
future conditions.
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INTRODUCTION 
 
 
 
Our understanding of the fundamental unit of biogeography, species’ geographic ranges 
(Angert, 2009), is derived from information on what organisms occur where in nature. 
Because available documented records of species occurrences are typically sparse in 
comparison to the complete distribution of a species, a variety of methods have been 
devised to visualize, infer and analyze species ranges based only on field samples 
(Fernández et al., 2009). These methods vary from simple convex hull plots around 
occurrence records to more sophisticated approaches that not only take advantage of the 
geographic position where species have been observed but also of the environmental 
variables that characterize these sites that can be used to deduce the conditions that are 
apparently conducive to species’ survival. 
 
Since the establishment of the Global Biodiversity Information Facility in 2001, there has 
been a substantial increase in the availability of species occurrence data as a result of 
large scale efforts to digitize and georeference specimens held in natural history museums 
(e.g., HerpNet,	
  ORNIS), as well as efforts to improve online access to large observational 
data sources (e.g., BirdLife; Yesson et al., 2007). At the same time, information about 
climate, topography, soils, and photosynthetic activity have become available for almost 
the entire planet at increasingly fine spatial and temporal resolutions (Turner et al., 2003). 
Hardware and software coupled with the capacities to transfer, manipulate and analyze 
large quantities of digital information have allowed the development of geospatial tools 
that can relate species occurrences and environmental data in a more sophisticated way, 
providing estimates of potential suitable habitats. These estimates, once mapped onto the 
landscape, can result in practical and novel hypothesis of what structures species 
distributions in space and time (Franklin, 2009). 
 
Species distribution models (SDMs), in their simplest form, are based on observations 
defining upper and lower bounds for temperature and precipitation within the species 
distribution range, resulting in what is known as the bioclimatic envelope for the species 
(Nix, 1986). More advanced statistical algorithms integrate multiple environmental 
variables and also account for the existing correlations among these variables (Phillips et 
al., 2006). These methods, embedded in a geographic information system (GIS) 
framework, combine taxonomic and geographic data describing organismal observations 
records with fine scale environmental variables to produce a set of correlative rules that 
identify the multidimensional environmental space in which the species was recorded 
(Peterson and Vieglais, 2001).  This n-dimensional environmental space can then be 
projected onto geographic space, to estimate the likelihood that a location has favorable 
or unfavorable conditions for the species. The multidimensional environmental space also 
can be projected onto a scenario of future climate change to project where climatic 
conditions may be suitable for the species in the future. These approaches yield estimated 
distributions for large numbers of species for which we have relatively little physiological 
or demographic data from which to infer climate sensitivity.  
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There are many areas of environmental science where the demand for predictive models 
has outstripped the scientific understanding on which predictions are based (Baveye et 
al., 2009).  Species distribution modeling has long been one of these areas (Huston, 
2002). Modeling to increase our theoretical understanding of a system and modeling to 
carry out predictions for practical applications, are the two extremes in the continuum 
that represent the current application of SDMs.  Inferential representations of species 
geographic ranges have become popular in many fields, from theoretical ecology and 
evolution (e.g., Lenoir et al., 2010; Thuiller et al., 2011) to applied conservation and 
resource management (de Oliveira et al., 2012; Hannah et al., 2013).   
 
Despite their wide use, these practical summaries of biogeographic information are still 
controversial (Araujo and Peterson 2012; Saupe et al., 2012 ). Much of the criticism 
focuses on the simplifying assumptions (Wiens et al., 2009) necessary to reduce the full 
complexity of the system into a useful mathematical abstraction represented in a map 
while maintaining full scientific rigor. One key issue that has profound implications in 
the predictive power of the models and in the interpretation of the results is mixing data 
collected at different times and with different spatial resolution. This doctoral dissertation 
focuses on this issue and presents three case studies that illustrate how integrating species 
observations and climatic variables that are not measured at the same spatial and 
temporal scale hinders our ability to forecast species range shifts and expansions in 
response to global change. I also make recommendations, as explained in the following 
chapters, for deriving and interpreting SDMs with these issues in mind.  
 
In the first chapter (Fernandez et al., 2012), I explore one of the possible consequences of 
not measuring species and climate observations at the same spatio-temporal scale. I 
hypothesize that multi-scale climatic variability is responsible for the lack of niche 
transferability often observed in invasive species. I create a novel spatial climate dataset, 
ClimVar, which is freely available at: http://ecoclim.org/.  Using ClimVar, I assess 
environmental niche transferability using three different configurations of environmental 
layers: (1) monthly (2) inter-annual and (3) a combination of monthly and inter-annual 
climatic variability. I contrast SDMs between native and invaded ranges of a suite of 
taxonomically diverse and well documented invasive species.  My results suggest that 
some species range limits might be constrained by one scale of climatic variability in the 
native range and a different one in the invaded range. If these findings are extrapolated to 
niche transferability in time, I suggest that historical collection records should be 
analyzed to understand species’ response to multiple scales of climate variability in the 
past, thereby informing the selection of appropriate scales of climate variability in the 
future. 
 
To match the spatial and temporal resolution of the species occurrences, weather station 
data often are interpolated and these resulting continuous data layers are incorporated into 
SDMs, often without any assessment of uncertainty. The second chapter of my 
dissertation (Fernandez et al., 2013) evaluates and quantifies the effects of three unrelated 
but complementary aspects of uncertainty present in weather station interpolations. I 
examine the influence of topographic heterogeneity, interannual variability, and distance 
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to weather station on SDM performance (over- and under-prediction errors). My findings 
show that these three metrics of uncertainty in interpolated weather station data have 
varying contributions to over- and under-prediction errors in SDMs. Topographic 
heterogeneity has the highest contribution to omission errors; the lowest contribution to 
commission errors is from Euclidean distance to weather station. The results confirm the 
importance of establishing an appropriate relational basis in time and space between 
species and climatic layers, providing key operational criteria for selection of species 
observations used in SDMs. My findings also highlight the importance of identifying 
weather station locations used in interpolated products, which will allow characterization 
of some aspects of uncertainty and identification of regions where users need to be 
particularly careful when making a decision based on a SDM. 
 
SDM studies that evaluate the effect of climate change on terrestrial ecosystems often use 
scenarios from downscaled Global Climate Model outputs (GCMs). These simulations do 
not capture local manifestations of greenhouse gas-induced warming such as the 
hypothesized intensification of wind-driven coastal upwelling along the California coast 
(Bakun et al., 2010). Ignorance of this local effect reduces GCM’s ability to provide 
accurate scenarios of future climate in coastal ecosystems. In the third chapter of my 
dissertation I take advantage of naturally occurring variability in the high-resolution 
historic climatic record, to develop multiple scenarios of coastal climate. I use these 
scenarios to estimate potential suitable habitat for coastal redwoods (Sequoia 
sempervirens) under “normal” combinations of temperature and precipitation, and under 
anomalous combinations, while maintaining coherent relationships between regional 
climate and coastal upwelling. By comparing historical state-wide conditions to GCM 
projections of state-wide climate from the CMIP5 archive, I found that warmer (but 
normal precipitation) historic scenarios are equivalent to changes projected for California 
for the 2020’s and 2030’s. Our results suggest that we could potentially use this high 
resolution “equivalent” as an alternative to downscaled GCMs in species distribution 
modeling and produce more reasonable and physically accurate estimates of the 
anticipated range shifts in response to projected climate change. However since none of 
the years in the past century provide mean scenarios beyond the 2030’s, the approach is 
limited to near term projections. 



	
  
	
  

4	
  
	
  

CHAPTER 1 
Does adding multi-scale climatic variability improve our capacity to explain niche 

transferability in invasive species? 
 
 
 
Introduction 
 
Our understanding of the fundamental unit of biogeography, species’ geographic ranges 
(Angert, 2009), is derived from documented records of species occurrences in nature. 
Distributions maps have been inferred in many ways, from simply plotting convex hulls 
around occurrence points on a map (Burgman and Fox, 2003), to applying complex 
geostatistical tools that integrate specimen location data with fine scale environmental 
information, resulting in a species distribution model (SDM; for reviews see: Schröder, 
2008; Elith and Leathwick, 2009; Zimmermann et al., 2010). Also known as bioclimatic 
models (e.g., Titeux et al., 2009) or ecological niche models (e.g., Hegel et al., 2010), 
SDMs have aided researchers in analyzing possible biogeographic scenarios and have 
provided valuable visualizations (Franklin and Miller, 2009). SDMs are now established 
as a key tool used in a variety of fields ranging from ecology and evolution (e.g., Graham 
et al., 2004; Lenoir et al., 2010), to natural resource management and conservation 
planning (e.g., Rodriguez et al., 2007; Thorn et al., 2009). 
 
Despite their wide use and promise (Franklin and Miller, 2009; Drew et al., 2011), these 
practical summaries of biogeographic information are still controversial (Elith and 
Graham, 2009; Elith et al., 2010; Terribile et al., 2010; Barve et al., 2011; Rota et al., 
2011). A critical aspect of SDMs is related to the niche concept developed by Hutchinson 
(1957); SDMs build a multivariate statistical representation of a species niche by relating 
species occurrences to environmental predictors. Applying SDMs to forecast species 
range shifts in response to climate change (e.g., Tingley et al., 2009; Carroll, 2010) or to 
predict invasive species range expansions (e.g., Roura-Pascual et al., 2009; Smolik et al., 
2010), results in the same niche being projected into a different temporal or spatial 
context (i.e., niche transferability; (Phillips, 2008). These projections assume that the 
statistical and mechanistic relationships between species and environment remain static in 
the transferred context (e.g., Jeschke and Strayer, 2008; Steiner et al., 2008; Rödder and 
Lötters, 2009). However, studies focusing on invasive species have noted that while 
SDMs can perform well in areas for which the models have been fitted, they often fail in 
predicting occurrences of new invasions when projected into a different spatial context, 
showing a mismatch between realized climate niches in species’ native and invasive 
ranges (Araujo and Rahbek, 2006; Randin et al., 2006; Broennimann et al., 2007; 
Beaumont et al., 2009; da Mata et al., 2010; Rödder and Lötters et al., 2010). 
 
The choice of appropriate environmental data is another critical aspect of SDMs 
(Franklin and Miller, 2009) that requires additional attention (Suarez-Seoane et al., 2004; 
Peterson and Nakazawa, 2008). While past research efforts that address the issue of 
environmental predictors in SDMs have focused on increasing spatial resolution of 



5	
  
	
  

	
  
	
  

gridded datasets (e.g., Kriticos and Leriche, 2010), and testing alternative environmental 
variables (e.g., Synes and Osborne, 2011), there has been little attention to the various  
scales of variability inherent in the global climate system (Zimmermann et al., 2009). 
These natural fluctuations in climatic phenomena, such as temperature and precipitation, 
can range in a temporal scale from high (e.g., monthly) to low frequency (e.g., inter-
annual), and are referred as multi-scale climatic variability (Diaz and Markgraf, 2000).  
 
Recent studies suggest that the inclusion of these multi-scale measures of climatic 
variability can improve our understanding of species geographic limits (Jackson et al., 
2009; Giesecke et al., 2010; Reside et al., 2010; Jiguet et al., 2011). However, these 
efforts, while important, do not provide clear guidelines for environmental variable 
selection for SDMs addressing questions related to modeling range expansions or shifts. 
In addition, opportunities to apply environmental predictors that characterize multi-scale 
climate variability in SDMs are limited by the lack of available global datasets offering 
temporal series at spatial resolutions relevant to biodiversity and its interaction with the 
environment (Heikkinen et al., 2006; Sax et al., 2007, Kremen et al., 2008). The best and 
most widely used approximation is Worldclim (Hijmans et al., 2005), an interpolated 
climatic dataset that characterizes monthly variability only consisting of mean, maximum 
and minimum temperatures, and total precipitation averaged for each month over a 50 
year period, which fails to capture inter-annual climatic variability (Jackson et al., 2009). 
 
In this study, we hypothesize that multi-scale climatic variability is responsible for the 
lack of transferability. The main purpose of this paper was not to generate a new gridded 
interpolated climatic dataset, but rather to examine the effect of multi-scale climatic 
variability on niche transferability (Phillips, 2008), using invasive species as a case study. 
Since a gridded characterization of inter-annual climatic variability was not previously 
available, we created a novel spatial climate dataset, ClimVar, which is freely available 
at: http://ecoclim.org/.  Using ClimVar, we assess environmental niche transferability 
using three different configurations of environmental layers: (1) monthly (2) inter-annual 
and (3) a combination of monthly and inter-annual climatic variability. We contrast 
SDMs for native versus invaded ranges of a suite of taxonomically diverse and well 
documented invasive species, using Hellinger similarity index I. We ask if the inclusion 
of multi-scale climatic variability can shed light on whether or not species remain in the 
same n-dimensional climatic space when moved into a different spatial and temporal 
context. Our study indirectly contributes to understanding the magnitude of uncertainty in 
SDM applied to invasive species due to natural climatic variability. 
 
Methods 
 
Species and geographic occurrence data 
 
We evaluated ecological niche transferability using a selected subset of terrestrial 
macrobiotic widespread organisms derived from the International Union for Conservation 
of Nature (IUCN) list of the top 100 Invasive Species (Lowe et al., 2004). Each of these 
species has at least 100 unique georeferenced localities in each of the native and invaded 
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ranges, precise to seconds in latitude and longitude. Most of the georeferenced locality 
information was obtained from the Global Biodiversity Information Facility. However, 
complementary datasets were also included (see Table 1). 
 
Observation data points for each species were attributed to native or invaded ranges 
according to range discriminations described in the Global Invasive Species Database, 
thus creating	
  two geospatial databases for each species, one for the native and one for the 
invaded range (Appendix A, Figs. S1-S10).	
  Occurrence spatial bias (Hortal et al., 2008) 
was avoided by ensuring that the native range was sufficiently represented by available 
occurrence data, contrasting native range observations with known range descriptions. 
Point locality information and georeferenced range literature descriptions were 
transformed into raster format using the ArcGIS v10 and a grid of 50 km2. The two 
resulting raster layers, for each species, were compared (i.e., one map was subtracted 
from the other) using raster calculator in ArcGIS v10 Spatial Analyst, and only species 
with ≥80% similarity between the two maps were selected for the analysis. Ten species of 
the initial list of 100 species fulfilled all criteria (i.e., terrestrial, macrobiotic, with at least 
100 observations and with a good representation of the native range in the locality 
information), including six plants, two amphibians, one bird and one insect (Table 1). 
 
Table 1. Species list with specimen georeferenced observation data source and region.  
 
Species (common English name)  Group Native Invaded Sources 
Rhinella marina (Cane toad) Amphibian 1919 729 GBIF, CAS, NMNH 
Lantana camara (Spanish flag) Plant 1118 640 GBIF, TNC 
Leucaena leucocephala (White leadtree) Plant 450 515 GBIF, TNC 
Linepithema humile (Argentine ant) Insect 265 1020 GBIF, CAS, ROURA 
Mimosa pigra (Mimosa) Plant 399 108 GBIF, TNC 
Lithobates catesbeianus (American bullfrog) Amphibian 4141 2187 GBIF, CAS, NMNH 
Sphagneticola trilobata (Creeping ox-eye) Plant 451 158 GBIF, TNC 
Sturnus vulgaris (European starling) Bird 176300 116700 GBIF 
Tamarix ramosissima (Saltcedar) Plant 3109 1173 GBIF 
Ulex europaeus (Common gorse) Plant 35241 479 GBIF 
CAS  California Academy of Sciences  
GBIF  Global Biodiversity Information Facility  
NMNH  Smithsonian Institution  
ROURA Roura-Pascual et al. (2004)  
TNC  The Nature Conservancy   
 
Environmental layers 
 
Nineteen climate-derived environmental layers, at a resolution of 10 km2, were obtained 
from Worldclim (Hijmans et al., 2005). These variables, commonly referred to as 
Bioclim layers (Table 2), are generated from interpolated global weather station data and 
represent biologically relevant aspects of temperature, precipitation and seasonality. This 
dataset has been widely utilized because of its global extent and high spatial resolution 
relative to similar products (e.g., Purvis et al., 2011; Roura-Pascual et al., 2011; 
Zelazowski et al., 2011). However, these climatic layers are available only as an averaged 
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product for the period of 1950 to 1999, providing only a single value for each climatic 
variable. 
 
To provide a measure that quantifies inter-annual climatic variability, we generated an 
original gridded dataset using historical weather station observations obtained from two 
complementary sources: the World-wide Agro-climatic Database from the Food and 
Agriculture Organization (FAOCLIM-2, 2005), and the Global Historical Climatology 
Network (GHCN; Vose et al., 1992). Time series from both sources were combined in 
28,032 stations for monthly average temperature and 47,416 stations for precipitation. 
Duplicates were removed following protocols from Hijmans et al. (2005), with stations 
selected that have been recording data for at least the last 30 years (e.g., 1970 to 2000), 
resulting in 23,012 stations for monthly average temperature and 39,631 stations for 
precipitation (Appendix A, Figs. S11 and S12). For each station, the coefficient of 
variation for monthly values of precipitation and standard deviation for mean monthly 
values of temperature were calculated across years. The latitudes and longitudes of the 
corresponding weather stations were interpolated to a spatial resolution of 10 km2 with 
Ordinary Kriging using a spherical model and a search radius of 12 points in ArcGIS v10. 
The monthly values of the coefficient of variation and monthly values of the standard 
deviation were used as interpolated magnitudes. One of the bioclimatic layers was used 
as a mask to assure seamless integration with the Worldclim variables. 
 
Evaluation of the interpolation was achieved by means of data partitioning and cross 
validation (Picard and Cook, 1984). The coefficient of variation for monthly values of 
precipitation and standard deviation for mean monthly values of temperature were 
divided randomly into ten sub-samples each. Following Guo et al. (2010), the 
interpolation algorithm was run ten times, each time withholding one of the ten sub-
samples from the interpolation. The withheld data was then used to calculate the Root 
Mean Squared Errors (RMSE), a metric that evaluates accuracy of interpolated surfaces 
(Aguilar et al., 2005):  

2
0

1
( )

n

m
i
x x

RMSE
n

=

−
=
∑

 

where xm is the interpolated model, xo is the observation, and n is the total number of 
points (Figure 1).  
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Figure 1. Interpolation accuracy evaluation. Root Mean Squared Errors (RMSE) results 
for precipitation and temperature based on a ten-fold cross validation. 
 
The complete datasets of both the coefficient of variation and standard deviation points 
were used in the final interpolation, which resulted in 24 high-resolution novel variables 
that characterize monthly inter-annual climatic variability for precipitation and mean 
temperature at a global extent, referred to as ClimVar, and freely available for download 
at http://ecoclim.org/.  
 
Based on Bioclim and ClimVar variables (Table 2), three configurations of climate layers 
were created: (1) Bioclim layers, representing monthly variability; (2) ClimVar layers, 
representing inter-annual variability; and (3) a combination of Bioclim and ClimVar 
layers, which represent monthly and inter-annual climatic variability. 
 
To use ClimVar in a global test projecting species potential distributions from one 
hemisphere to the other, a reverse seasonality evaluation was required. We plotted and 
compared the following values against latitude: (1) mean monthly temperature, (2) total 
precipitation, (3) temperature inter-annual variability and (4) precipitation inter-annual 
variability for four months that represent the peak of each season in the northern 
hemisphere. The results indicate that the clear patterns of reverse seasonally observed in 
mean monthly temperature and total precipitation, don’t exist in temperature inter-annual 
variability and precipitation inter-annual variability, which allow us to conclude that 
reverse seasonality is not an issue in ClimVar at global scale, nor at regional scale 
(Appendix A, Fig. S13), which support the use of the ClimVar dataset in combination 
with the 19 Bioclimatic variables without any transformations. To address the issues of 
multicolinearity of environmental variables (e.g. Peterson et al., 2007; Holt et al., 2009), 
each of the three variable configurations was subjected to a variable transformation, 
inside ArcGIS v10 (ESRI, 2010) using principal components analysis (PCA). PCA is a 
multivariate data reduction methodology previously employed in SDM (e.g., Cadena and 
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Loiselle, 2007; Drew et al., 2011; Fuller et al., 2011). Orthogonal components were 
retained by calculating the number of components with eigenvalues over one, which 
cumulatively explained most of the overall variation in the original variables (Everitt, 
2005). For each climate layer configuration, 12 principal components were retained as the 
new predictor variables to be used in the SDMs.  
 
Table 2. List of variables used in the analysis. 
 
Variable name (units) Dataset 
Annual Mean Temperature (oC) Bioclim 
Mean Diurnal Temp Range (oC) Bioclim 
Isothermality  Bioclim 
Temperature Seasonality  Bioclim 
Max Temperature of Warmest Month (oC) Bioclim 
Min Temperature of Coldest Month (oC) Bioclim 
Temperature Annual Range (oC) Bioclim 
Mean Temperature of Wettest Quarter (oC) Bioclim 
Mean Temperature of Driest Quarter (oC) Bioclim 
Mean Temperature of Warmest Quarter (oC) Bioclim 
Mean Temperature of Coldest Quarter (oC) Bioclim 
Annual Precipitation (mm) Bioclim 
Precipitation of Wettest Month (mm) Bioclim 
Precipitation of Driest Month (mm) Bioclim 
Coefficient of variation for annual precipitation Bioclim 
Precipitation of Wettest Quarter (mm) Bioclim 
Precipitation of Driest Quarter (mm) Bioclim 
Precipitation of Warmest Quarter (mm) Bioclim 
Precipitation of Coldest Quarter (mm) Bioclim 
Standard deviation for January Mean Temperature (oC) Climvar 
Coefficient of Variation for January Precipitation Climvar 
Standard deviation for February Mean Temperature (oC) Climvar 
Coefficient of Variation for February Precipitation Climvar 
Standard deviation for March Mean Temperature (oC) Climvar 
Coefficient of Variation for March Precipitation Climvar 
Standard deviation for April Mean Temperature (oC) Climvar 
Coefficient of Variation for April Precipitation Climvar 
Standard deviation for May Mean Temperature (oC) Climvar 
Coefficient of Variation for May Precipitation Climvar 
Standard deviation for June Mean Temperature (oC) Climvar 
Coefficient of Variation for June Precipitation Climvar 
Standard deviation for July Mean Temperature (oC) Climvar 
Coefficient of Variation for July Precipitation Climvar 
Standard deviation for August Mean Temperature (oC) Climvar 
Coefficient of Variation for August Precipitation Climvar 
Standard deviation for September Mean Temperature (oC) Climvar 
Coefficient of Variation for September Precipitation Climvar 
Standard deviation for October Mean Temperature (oC) Climvar 
Coefficient of Variation for October Precipitation Climvar 
Standard deviation for November Mean Temperature (oC) Climvar 
Coefficient of Variation for November Precipitation Climvar 
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Species distribution modeling 
 
We constructed the SDMs using the program MaxEnt v3.3.1 (Phillips et al., 2006; 
Phillips and Dudik, 2008; Elith et al., 2011). MaxEnt is a correlative niche model that 
uses the principle of maximum entropy to estimate a set of functions that relate 
environmental variables and species occurrence in order to approximate species’ niche 
and potential geographic distribution (Phillips et al., 2006). We chose MaxEnt because of 
its proven performance with presence-only data (Elith et al., 2006; Elith and Leathwick, 
2009), relative to alternative SDM techniques (but see Li et al., 2011). 
  
For each species, native and invaded ranges were modeled separately (Appendix A, Figs 
S14-S23). Fifty percent of the occurrence points were withheld from the model to be used 
as independent test data. This process was repeated 100 times with randomly permuted 
occurrence samples to produce the underlying probability density. All other MaxEnt 
settings relating to model parameterization were left at their default values. 
 
Model evaluation was performed using the area under the curve (AUC) of the receiver 
operating characteristic plot analysis (Fielding and Bell, 1997). AUC was chosen because 
it is a widely accepted, threshold-independent metric of SDM performance (Marmion et 
al., 2009; Warren et al., 2010) that provides an overall picture of how well the data fit the 
model (but see Lobo et al., 2008), and has previously been used in comprehensive SDM 
evaluations (Elith et al., 2006). Model predictive performance was assessed by comparing 
AUC scores among the three environmental layer configurations and across the ten 
species in their native and invaded ranges. 
 
Niche similarity 
 
To quantify environmental niche similarity between the species’ native and invaded 
ranges, we used a measure, I, derived from Hellinger’s similarity distance (Warren et al., 
2008). Hellinger’s I quantifies the difference between two normalized probability 
distributions (e.g. two SDM outputs) and ranges from 0, when species’ niches do not 
overlap, to 1, where there is a complete overlap between species. This niche overlap 
metric was selected because it allows a threshold-independent comparison of two 
continuous raster layers. The I statistic is defined as:  

211 ( )
2

I A B= − −∑  

where A and B represent the two normalized SDM outputs that are to be compared pixel 
by pixel. Statistical significance was assessed following Warren et al. (2008), repeating 
the comparison one hundred times, based on random samples with replacement of the 
original locality data from the native and invaded ranges. Each of these one hundred 
locality subsets for the native and invaded range was used as input in MaxEnt to produce 
a SDM. Once the models were created, ENMTools v1.0 (Warren et al., 2010) was used to 
calculate I for each new pair of maps and provide an average. 
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Assessing the statistical significance of the differences among niche similarity values and 
among SDM model performance values was accomplished with an ANOVA, using a 
multiple range test based on Fisher’s least significant difference procedure in 
Statgraphics Centurion v16.1 (Appendix A, Table S1 and S2). 
 
Results 
 
The evaluation of SDM performance in both the native and invaded ranges based on the 
three environmental layer configurations produced three general patterns among species 
(Figure 2). For 60% of the species in the native range (L. camara, L. humile, L. 
catesbeianus, R. marina, T. ramosissima and U. europaeus), and 70% of the species in 
the invaded range (L. leucochephala, L. humile, L. catesbeianus, R. marina, S. vulgaris, 
T. ramosissima and U. europeus), SDMs showed significant improvement in the capacity 
to accurately predict the withheld test data when monthly and inter-annual climatic 
variability were used in combination. For 40% of the species in the native range (L. 
leucocephala, M. pigra, S. trilobata and S. vulgaris), and 30% of the species in the 
invaded range (L. camara, M. pigra and S. trilobata), SDMs showed no improvement in 
performance when multiple scales of variability were used over models that only 
considered monthly variability. For all cases, SDMs that were based on inter-annual 
climatic variability only, performed significantly worse than the other two layer 
configurations. 
 
Contrasting native and invaded ranges for the SDM performance results (Figure 2) 
showed that for 70% of the species, the same layer configuration produced the highest-
performing SDMs in the native and invaded range (L. humile, L. catesbeianus, M. pigra, 
R. marina, S. trilobata, T. ramosissima and U. europaeus). In contrast, L. leucocephala 
and S. vulgaris showed different results between the native and invaded ranges; no 
improvement in performance was found when multi-scale variability was used over 
models that only considered monthly variability in the native range, but a significant 
improvement was found when the combined layer configuration was used to produce the 
models in the invaded range. Conversely, for L. camara, native range SDMs did show 
improvement in model performance when the combined layer configuration was 
considered, however, the invaded range SDMs did not show difference in model 
performance between monthly and multi-scale variability. 
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Figure 2. Comparison of the influence of three configurations of climatic datasets on 
MaxEnt model performance based on testing AUC values for 100 bootstrap models. 
Higher AUC values represent higher performing SDMs. Circles represent the 
performance of SDMs considering the monthly variability layer configuration (Bioclim); 
the cross represents the performance of SDMs considering inter-annual variability layer 
configuration (ClimVar); and the triangle represents the performance of SDMs 
considering both scales of climate variability (Bioclim+ClimVar). The predictive 
performance of MaxEnt based on ClimVar alone is relatively low for most species in the 
native and invaded range. There is an improvement in predictive performance when 
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Bioclim and ClimVar are used in combination (60% of the species in the native range and 
70% of the species in the invaded range). For 30% of the species, the layer configuration 
that produced the best models in the native range was not the same that produced the best 
models in the invaded range. Black squares represent statistical significant differences 
(<0.05) between models in an ANOVA with a Fisher’s least significant difference 
procedure where: 1/2: Bioclim over ClimVar; 1/3: Bioclim over Bioclim-ClimVar; 2/3: 
ClimVar over Bioclim-ClimVar. 
 
The evaluation of native and invaded niche similarity (Figure 3) showed that for 90% of 
the species, the most similar niches were obtained when monthly variability only was 
considered. The exception was S. vulgaris, for which the highest similarity values 
between the native and invaded ranges were obtained when inter-annual variability only 
was considered. For L. leucocephala there was no significant difference in climatic 
niches between native and invaded ranges when monthly and inter-annual climate layer 
configurations were considered. Finally, our results showed that the combination of 
monthly and inter-annual climate variability did not produce the most similar results in 
any of the species. 
 

 
Figure 3. Comparison of values of niche similarity among the invaded range and the 
native range as defined by MaxEnt based on the three environmental layer 
configurations: monthly (Bioclim), inter-annual variability (ClimVar), and both scales of 
climate variability (Bioclim+ClimVar), based on 100 bootstrap models. A value of 1 for 
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the Hellinger’s I index, represents a complete similarity between native and invaded 
range; a value of 0 represent a complete dissimilarity. For 90% of the species, native and 
invaded range comparison resulted in more similar SDMs when considering Bioclim 
only. For S. vulgaris, the most similar SDMs between native and invaded were obtained 
when ClimVar only was considered. ClimVar did not produce the most similar niches in 
any case. 
 
Discussion 
 
Global gridded datasets that characterize inter-annual climatic variability at spatial 
resolutions relevant to biodiversity do not exist. Currently available multi-year datasets 
that can be used to derive inter-annual variability either have low spatial resolution 
(CRU3.0; Mitchell and Jones, 2005) or the spatial extent is restricted to a region (PRISM; 
Daly et al., 2000). To test our hypotheses, we have derived a dataset that characterizes 
inter-annual climatic variability at 10km2 for the terrestrial surface of the globe.  
 
The ClimVar dataset is limited by the data and methods that were used to construct it. 
Weather station data is not evenly distributed in time or space, and a large fraction of 
meteorological data is still not digitized (Broennimann et al., 2008). Users should be 
aware that the inter-annual variability layers have relatively high degree of uncertainty in 
regions with low density of weather stations (Supplementary material, Figure S36 and 
S37). Yet, researchers interested in the spatio-temporal aspects of biodiversity can use 
these layers to move beyond monthly climatic means, and frame their hypotheses from a 
recent historical climatic perspective. Alternative global datasets that focus on climatic 
means, which are also based on interpolated weather station data (e.g., Worldclim, 
CliMond), use more sophisticated interpolation methods that account for co-variables in 
the regressions. Since the relationship between elevation and inter-annual climatic 
variability is not as clear as the relationship between elevation and temperature, we could 
not follow the same approach. For ecological niche modelers, ClimVar represents a way 
to improve model performance for species in which inter-annual climatic variability plays 
a factor in determining their distributions.  
 
The idea that invasion success is based in part on the differential levels of ecological 
restrictions between native and invaded ranges is not new (Lockwood, 2009). However, 
global distributions of invasive species are still being projected under the assumption that 
species environmental preferences will be retained in the invaded area (Thuiller et al., 
2005). By including an alternative scale of natural climatic variability in models of 
species that have already experienced major range expansions, our results have revealed a 
mismatch (i.e., the same set environmental layers did not produced the best models from 
native to invaded ranges) in realized climatic niches between the invaded and the native 
range for some of the species analyzed here. Although previous researchers have noted 
that SDMs trained in the native range often fail when projected into the invaded range 
(Randin et al., 2006; Broennimann et al., 2007; Beaumont et al., 2009; da Mata et al., 
2010; Rödder and Lötters et al., 2010), our results demonstrate that some species’ native 
ranges are being limited by one scale of climatic variability while the invaded ranges are 
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limited by a different one (L. camara, L. leucocephala and S. vulgaris). These results 
suggest that invasion success for these species can be attributed not only to the release 
from biotic interactions, but also to release from environmental limitations that existed in 
the native range. In other words, species in the native range had available suitable habitat 
in one scale of climatic variability but were being restricted in a different one, and when 
moved to the invaded range both scales allowed them to expand their range.  These 
limitations might be a result of the multiple scales of climatic variability that affect 
natural systems, which suggests that their combined use may also improve our capacity to 
forecast species response to global change.    
 
While our research results aim to improve understanding of invasion biology and advance 
the assessment of invasion risk, we could not find one general rule that applies to all the 
species and resolves the issue of niche transferability. One likely contributing factor is 
that many complexities of biological interactions in the species we analyzed remain 
unaccounted for. For example, the asymmetries we found between the native and invaded 
range for L. camara could be attributed to the hybridization process that this species has 
gone through in the invaded range with a closely related species, Lantana depressa 
(Caddotte et al 2006). Failure to differentiate the hybrid from L. camara may explain the 
disconnection between native and invaded range. Biological interactions also mediate 
invasion in L. catesbeinaus, where establishment has been facilitated in parts of the 
invaded range by the also invasive sunfish, which reduces the density of dragonfly larvae 
populations that attack the small L. catesbeinaus tadpoles (Cox, 2004). In our results, L. 
catesbeinaus shows no significant difference between native and invaded model 
performance. However, based on the mutualistic relationship that it has with the sunfish, 
it is clear that this biotic interaction is influential in determining at least a portion of its 
invaded range. Clearly, in these examples, climate is not the only factor that plays an 
important role in determining invasive establishment. However, when information on the 
ecology of the invasive species is limited, climate can provide a useful hypothesis of 
geographic potential in the absence of evolutionary changes and biotic interactions. 
 
A limitation in our analysis results from treating all the species equally in the way they 
respond and perceive the environment. Clear differences exist in the dispersal abilities 
among the taxa that met our analysis criteria, and the spatial scales at which they operate. 
While wind-mediated dispersal is critical for some plant species, an amphibian's ability to 
disperse will mostly depend on the availability of water sources and the distance between 
them. Dispersal of invasive insects is often human-mediated, while bird dispersal ability 
is highly correlated with food availability. Future research on transferability in 
combination with the study of ecological traits at fine spatial scales is needed to increase 
our understanding on the subject. 
 
In our approach, the native and invaded ranges were treated as homogeneous populations, 
decreasing the discriminative power needed to understand the effect of population 
structure in the species response to a highly variable spatio-temporal phenomenon such as 
climate (Lenoir et al., 2010). If a species that invades multiple regions originates from a 
single native population, we expect the more limited distribution of the originating 
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population will influence the range of conditions under which the species may establish 
in the invaded range. For example, S. vulgaris experienced a population bottleneck and 
exhibits very low levels of genetic variability, however, it still became a successful 
invasive (Lockwood, 2009). The decrease in genetic variability in the invaded range 
translates into a higher susceptibility to year-to-year environmental changes, (Cox, 2004), 
and might explain why the invaded range models in our results are more affected by the 
inclusion of inter-annual climatic variability. Future research that explores the idea of 
transferability in combination with molecular data, where finer scale traits are better 
correlated with particular geographies, might prove fruitful. 
 
Overall, our results demonstrate that there were no improvements in the model 
predictions that use only inter-annual climatic variability. ClimVar, although unable to 
provide a full ecological picture by itself, does provide an improvement when combined 
with climatic means (e.g., Worldclim). Even with the addition of standardized measures 
of central tendency and dispersion (e.g., mean, standard deviation and coefficient of 
variation), we have yet to capture information about climatic extremes, which can have 
major impacts on biological systems. For example, the rapid spread of L. camara 
following the death of forest trees during severe drought in the southeast of North 
America (Mooney and Hobbs, 2000), and the major expansion of M. pigra in Australia 
following a major flood in Australia (Cox, 2004) show us how extreme and isolated 
events can cause stress in indigenous species and trigger episodic recruitment events. 
Thus a key question that remains to be answered is: What additional levels of natural 
climatic variability can and should be included to improve analyses aimed at the 
relationship of climate and species distributions? Time series records of species 
occurrences, such as natural history museum collections, natural resource monitoring 
programs, and long term ecological research efforts, are invaluable assets toward 
addressing this question. Only by understanding species’ response to particular scales of 
climate variability over time can we be better prepared to make informed decisions in the 
selection of appropriate levels of climate variability in the future.
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CHAPTER 2 
Characterizing uncertainty in species distribution models derived from interpolated 

weather station data 
 
 
 
Introduction 
 
An attempt to understand species distributions, the fundamental unit of biogeography 
(Angert, 2009; Lomolino, 2010), has stimulated the development of tools to model the 
geographic distribution of organisms as a function of environmental factors. These 
models are used not only to understand distributions under contemporary environmental 
conditions, but also to predict whether or not a species might find suitable habitat outside 
the boundaries of its current distribution (e.g., Vaclavik and Meentemeyer, 2012) and to 
investigate the response of a species to projected future climates or reconstructed paleo-
climates (e.g., Fordham et al., 2012; Stigall, 2012). Species distribution modeling, also 
known as ecological or environmental niche modeling, has undergone an exponential 
growth in popularity and applications in recent years (Elith and Leathwick, 2009) and is 
now a frequently used method in multiple fields such as ecology, evolution, conservation 
biology, epidemiology and agriculture. 
 
As with any model, the output of species distribution models (SDMs) is dependent on the 
quality of data upon which they are built. Two key sources of SDM input data include: 
(1) species observations in nature, such as georeferenced point occurrences, and (2) 
environmental variables, such as high-resolution gridded climate layers. Multiple 
correlations between environmental parameters and known locations of species 
occurrences are constructed using geostatistical algorithms, defining an n-dimensional 
space that represents the climatic requirements of a species. This inferred 
multidimensional space can then be projected back into geographic space to produce a 
map of the species’ potential distribution. While the quality of species observations and 
their effect on SDMs have been extensively documented (Soberon et al., 2000; Graham et 
al., 2008; Hortal et al., 2008; Loiselle et al., 2008; Fernández et al., 2009; Lobo et al., 
2010; Feeley and Silman, 2011; Naimi et al., 2011), the deficiencies and biases of 
environmental variables have seldom been considered (Peterson and Nakazawa, 2008; 
McInerny and Purves, 2011; Synes and Osborne, 2011), despite the key role they play in 
the process of building, evaluating and calibrating SDMs. 
 
SDM applications that project models to a space or time other than that from which they 
were created often use interpolations based on weather station data (e.g., Fernández et al., 
2012; Gonzales et al., 2010), in which the spatial pattern of uncertainties is non-uniform 
and highly variable (Johnson et al., 2000), and as such, can lead to misinterpretation of 
spatial and temporal accuracy by users (Beale and Lennon, 2012). Worldclim (Hijmans et 
al., 2005), a gridded climatic dataset that consists of monthly mean temperature and 
precipitation values averaged over the 1950 to 1999 period at one km2 spatial resolution, 
is one example of an interpolated dataset widely used in SDMs where the degree of 
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uncertainty associated with individual cell values for a particular climatic variable is 
influenced by three elements: (1) spatial variability, (2) temporal variability, and (3) the 
density of available observations (Zhang and Goodchild, 2002). The first two elements 
are considered to be intrinsic characteristics of the parameter to be estimated, while the 
last one is considered to be a characteristic attributable to the observation system. 
Although these three unrelated but complementary elements represent the core of 
uncertainty characterization of interpolations for weather station data, their effect on 
SDM performance has not been quantified.  
 
Recent studies suggest that poor model performance, in part, can be attributed to high 
levels of uncertainty in the environmental data (Kriticos and Leriche, 2010; Beale and 
Lennon, 2012; Kamino et al., 2012); however the relationship between model omission 
and commission errors and the degree of uncertainty in the interpolated environmental 
input layers has not yet been addressed in the literature. The aim of this study is to 
determine whether SDM performance can be directly attributed to any of these three 
aspects of uncertainty. Explicitly accounting for the underlying uncertainty in the weather 
station interpolated data, we investigate three hypotheses: 1) SDM omission and 
commission errors are more often found in regions with high levels of spatial variability, 
2) SDM performance is degraded by the mismatch between the scale of climatic 
variability used to create the model and the scale at which species distributions respond, 
and 3) SDM omission and commission errors are expected to be higher in regions with 
relatively low density of weather stations. These expectations are tested using a 
combination of high quality species occurrence data and novel gridded datasets that 
include estimates of environmental uncertainty. Our results suggest that biogeographers 
can benefit from increased attention to the variability and uncertainty in gridded spatial 
climate data when developing and applying SDMs. 
 
Methods 
 
Species occurrence data 
 
We selected a subset of twenty species of birds from distribution data compiled by the 
North American Bird Breeding Survey (BBS; Sauer et al., 2006). The BBS dataset is a 
well-vetted, standardized, spatially balanced, long-term source of bird species 
occurrences (Sauer et al., 2006). Importantly, it is a close approximation to a true 
presence-absence, multi-species, observational dataset available at a continental scale. 
From the full list, twenty species were selected (Table 3) based on the criteria that their 
breeding distributions are largely determined by climate (John Dumbacher, personal 
communication, June 2011); increasing the likelihood their distributions can be 
reasonably modeled using primarily climate variables. 
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Table 3. Species list. 
 

Species Distribution comments 

Callipepla squamata* Range fluctuates in response to variability in winter rainfall (Giuliano and 
Lutz, 1993). 

Dendragapus obscurus* Prefers high lands in the winter. Occurs in pine and fir forest habitats from 
sea level to 3,600 m (Johnsgard, 1988). 

Tympanuchus cupido* Extirpated from much of the range in US. Native prairie is preferred, but 
also adapted to cropland (Schroeder and Braun, 1993). 

Centrocercus urophasianus* 
Adapted to winter extremes. Distribution is reduced as a result of loss of 
sagebrush habitat. Current distribution estimated at 56% of pre-settlement 
(Drut et al., 1994). 

Columba fasciata  Moves seasonally to areas higher or lower than normal range. Timing of 
breeding a factor of food availability (Howell and Webb, 1995). 

Buteo regalis* Distribution and density closely associated with cycles of prey abundance 
determined by climate (NatureServe, 2012). 

Picoides borealis * 
Cooperative breeder influenced by loss of habitat, requires >80 ha of 
continuous habitat. Dependent of fire-maintained, old-growth pine forest 
(BirdLife, 2012). 

Picoides nuttallii * Endemic species to California and Baja California. Confined to oak 
woodlands (NatureServe, 2012). 

Picoides albolarvatus* 
Fire suppression and fragmentation has contributed to range decline in the 
northern part of the distribution. Biology and ecology remains unstudied 
(IUCN, 2012). 

Melanerpes lewis * Strongly associated with fire-maintained old-growth ponderosa pine (Saab 
and Dudley, 1998). 

Calypte anna ** Moves to low elevations in the winter. The only hummingbird that spends 
the winter in northern climates (Johnsgard, 1983). 

Selasphorus platycercus ** Some individuals have moved into urban and suburban areas of 
southwestern due to hummingbird feeders (Calder, 1994). 

Selasphorus sasin Apparent expansion in breeding range due to availability of non-native 
flowers (Johnsgard, 1983). 

Pyrocephalus rubinus * Northern populations move south in the winter. Can be found between 0 
and 3,000 m in elevation (NatureServe, 2012). 

Aphelocoma californica* Can be found in scrub-brush, boreal forests and temperate forests. Well 
adapted to suburban areas (NatureServe, 2012). 

Calamospiza melanocorys ** Arrives until late May to the northern edge of its range (NatureServe, 
2012). 

Limnothlypis swainsonii  Summer and winter distribution. One of the least observed of North 
American birds if it weren't for its loud song (BirdLife, 2012). 

Vermivora luciae ** 
Incomplete information on breeding ecology. Arrives and departs early 
from breeding grounds perhaps to evade much of the summer heat 
(BirdLife, 2012). 

Vermivora virginiae ** Limited information on distribution and habitat preferences (NatureServe, 
2012). 

Dendroica caerulescens ** 
Male common in forest at lower to mid-elevations, female uses shrubbier 
habitat at higher elevations. Mortality from exposure to cold or rainy 
weather (BirdLife, 2012). 

* Year round distribution  ** Winter and breeding distribution  
 
For each species, observation data points representing multi-year survey routes (Sauer et 
al., 2003) were split into presence and absence. In order to avoid a subjective decision in 
the placement of the break between presence vs. absence across all survey years, two 
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complementary approaches were applied. First, species observations in transect location 
maps were plotted as histograms, supporting the detection of naturally occurring breaks 
in the data. Secondly, BBS range maps were compared to an independent source of 
species range descriptions (BirdLife International and Natureserve, 2012; Appendix B, 
Figs. S24-S43). Following Fernández et al., (2012), the independent range maps were 
transformed into a raster format that matched the BBS map’s spatial resolution. The maps 
were compared using ArcGIS Version 10 Spatial Analyst, looking for the value in the 
classification of each BBS continuous map that provided the highest value of similarity 
among them. The two approaches agreed for all species. We therefore defined presences 
as a survey route location point along which a particular bird species had been recorded 
during at least one of the ten years that the route was visited (1994 to 2003); routes 
without at least one positive record were considered absences. 
 
Climatic gridded data 
 
Nineteen climate layers, at a resolution of 1 km2, were obtained from Worldclim Version 
1.4 (Hijmans et al., 2005). These variables, commonly referred to as bioclimatic layers 
(Table 2), represent biologically relevant aspects of temperature and precipitation. This 
gridded climatic dataset, which provides one of the finest spatial resolutions relative to 
other similar products at a global extent (e.g., Purvis et al. 2011, Roura-Pascual et al. 
2011, Zelazowski et al. 2011), was chosen for multiple reasons. First, for North America, 
Worldclim was generated from interpolated weather station data obtained from the 
Global Historical Climatology Network (GHCN, Vose et al. 1992), and the World-wide 
Agro-climatic Database from the Food and Agriculture Organization (FAOCLIM-2 
2005), datasets to which we also had access. Second, this climatic dataset is available 
only as an averaged product for the period of 1950 to 1999 and, therefore, does not 
account for interannual climatic variability. Third, Worldclim does not provide the user 
with an assessment of the quality of the information or uncertainty characterization in the 
data. Finally, this climatic dataset has been cited 1,534 different times since its 
publication (ISI, 2012), and constitutes a critical resource for studies in diverse scientific 
fields including ecology, conservation, paleobiology, public health, anthropology and 
developmental biology (e.g., de Oliveira et al. 2012, Levsen et al. 2012, Daszak et al. 
2012, Kamilar et al. 2012, Rosell et al. 2012). 
 
Uncertainty layers 
 
To test our three hypotheses, we generated three gridded datasets that represent three 
different aspects of uncertainty in interpolated climatic data layers. The first dataset 
provided a metric of spatial variability, a factor known to contribute to biodiversity at the 
landscape level (Kreft and Jetz 2007). Spatial variability was quantified as topographic 
heterogeneity, measured by the number of unique elevation values within 25 km2 of the 
target pixel derived from the one km2 spatial resolution Shuttle Radar Topographic 
Mission digital elevation model (SRTM-DEM, Farr et al. 2007), using a Python script to 
iterate ArcGIS Version 10 Zonal Statistics tool.  
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The second uncertainty dataset was an index of temporal climate variation, ClimVar 
(Fernández et al. 2012), calculated for weather stations that had a record of at least 30 
years. This dataset was chosen because it represents a fine resolution spatial 
characterization of interannual climatic variability, which represents the largest temporal 
fluctuation in the climatic system, as compared to daily, intraseasonal and interdecadal 
variability (Ghil 2002). ClimVar is based on the same combined sources of weather 
stations (Table 4) used to create Worldclim. The specific ClimVar layers used here are 
one standard deviation of mean annual temperature and the coefficient of variation of 
annual total precipitation. 
 
The third dataset provided a measure of the density of available information for 
interpolation. This dataset was based on the 6,499 stations recording monthly average 
temperature and 8,671 stations recording precipitation for the continental United States 
(Appendix B, Fig. S44), the same weather station data used to produce ClimVar and 
WorldClim. Using the SRTM-DEM as reference for cell size, cell center position, and 
elevation value, we calculated a new gridded layer where each cell value reflected the 
combination of vertical and horizontal distance (i.e., Euclidean distance) from the center 
of the cell to the closest temperature or precipitation weather station (these were rarely 
equivalent). The Marine Geospatial Ecology Tools Version 0.8a44 and the Proximity 
Toolset in ArcGIS Version10 were used to determine the closest weather station and 
measure the distances as follows: 

( ) ( ) ( )2 2 2
2 1 2 1 2 1d x x y y z z= − + − + −  

Where x2- x1 represents the longitudinal distance between any point in the reference 
shapefile (x1) and the nearest weather station (x2), y2- y1 represents the latitudinal distance 
between any point in the reference shapefile (y1) and the nearest weather station (y2), and 
z2- z1 represents the difference in elevation from any point in the reference shapefile (z1) 
and the elevation at the nearest weather station (z2). 
 
Table 4. List of variables used in the analysis. 
 
Code Variable description (units) Source 
Bioclimatic layer Annual Mean Temperature (oC) 1 
Bioclimatic layer Mean Diurnal Temp Range (oC) 1 
Bioclimatic layer Isothermality 1 
Bioclimatic layer Temperature Seasonality 1 
Bioclimatic layer Max Temperature of Warmest Month (oC) 1 
Bioclimatic layer Min Temperature of Coldest Month (oC) 1 
Bioclimatic layer Temperature Annual Range (oC) 1 
Bioclimatic layer Mean Temperature of Wettest Quarter (oC) 1 
Bioclimatic layer Mean Temperature of Driest Quarter (oC) 1 
Bioclimatic layer Mean Temperature of Warmest Quarter (oC) 1 
Bioclimatic layer Mean Temperature of Coldest Quarter (oC) 1 
Bioclimatic layer Annual Precipitation (mm) 1 
Bioclimatic layer Precipitation of Wettest Month (mm) 1 
Bioclimatic layer Precipitation of Driest Month (mm) 1 
Bioclimatic layer Coefficient of variation for annual precipitation 1 
Bioclimatic layer Precipitation of Wettest Quarter (mm) 1 
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Bioclimatic layer Precipitation of Driest Quarter (mm) 1 
Bioclimatic layer Precipitation of Warmest Quarter (mm) 1 
Bioclimatic layer Precipitation of Coldest Quarter (mm) 1 
Uncertainty layer Topographic heterogeneity 2 
Uncertainty layer Standard deviation from mean annual temperature 3 
Uncertainty layer Coeficient of variation from annual total precipitation 3 
Uncertainty layer Euclidean distance to closest temperature weather station 2, 4 & 5 
Uncertainty layer Euclidean distance to closest precipitation weather station 2, 4 & 5 
1Worldclim 2SRTM   3ClimVar 
4FAOCLIM-2 5GHCN 
 
Species distribution modeling 
 
Continuous SDMs were generated using MaxEnt Version 3.3.3e (Phillips et al. 2006), a 
machine learning algorithm that uses the principle of maximum entropy to derive a set of 
rules correlating environmental variables and species occurrences to estimate the 
potential geographic distribution of a target species. MaxEnt was chosen because of its 
well established performance relative to alternative niche modeling techniques (Elith et 
al. 2006, Elith and Leathwick 2009, but see Li et al. 2011), and its capacity to deal with 
multicollinearity in the environmental variables, by considering redundant information 
without penalizing models by overfitting (Phillips et al. 2006, Phillips and Dudik 2008, 
Elith et al. 2011). 
 
In order to avoid spatial autocorrelation (Peterson et al. 2011), all the localities that 
included presences and absences for each species were split into three subsets: 60% for 
model training, 20% for threshold selection and 20% for model evaluation (Figure 4) 
based on spatially structured partitioning and random selection of the data (modified from 
Daszsak et al. 2012). Only the presence portion of the 60% subset was used to train each 
SDM. The first 20% subset, which included presences and absences, was used to select 
the threshold value applied to convert the continuous SDM output into a binary map. A 
cutoff value that maximizes sensitivity and specificity was computed based on the area 
under the receiver operating characteristic (ROC) curves (Fielding and Bell 1997) using 
SigmaPlot Version 11.0. The remaining 20% subset, which also included presences and 
absences, was contrasted with the resulting MaxEnt binary map using a Python script to 
detect observations that were over- or under-predicted by the model. This process was 
repeated one hundred times, each time randomly sampling with replacement a new 
combination of 60-20-20. This analysis produced two combined datasets that include all 
of the localities that were identified as false positives (commission errors) or false 
negatives (omission errors) by at least one of the bootstrapped SDMs for each species. 
These combined datasets were then used as the reference locations for which associated 
values of uncertainty were extracted (Figure 4), using the Geospatial Modeling 
Environment Version 0.7.2 RC2 Isectpntrst tool (Beyer 2012). 
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Figure 4. Flowchart describing spatially structured partitioning of the data and sampling 
strategy. All localities were randomly split into three subsets: 60% for model training, 
20% for threshold selection and 20% for model evaluation. The presence portion of the 
60% subset was used to train a SDM. The first 20% subset was used to select the 
threshold. Cutoff values that maximize sensitivity and specificity were computed based 
on the area under the ROC curve. The second 20% subset was contrasted with the 
resulting MaxEnt output to detect observations that were over- or under-predicted by the 
model. This process was repeated for each species to produce 100 bootstrapped iterations. 
The results were two combined datasets that include all the localities that were identified 
as false positives or false negatives by at least one of the bootstrapped SDMs for each 
species. These datasets were then used as the reference locations for which associated 
values of uncertainty were extracted. 
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Data analysis 
 
To understand the relationship between performance errors in the SDMs and the three 
sets of layers that represent different aspects of uncertainty in the interpolated station 
data, we compared the uncertainty values associated with over- and under-predictions to 
a null distribution using the two sample Kolmogorov-Smirnov test (K-S) with Stata 
Version 11.2. The two sample K-S test is commonly used to assess whether two 
independent samples come from an identical distribution, making no assumptions about 
the normality of the data. The two sample K-S statistic D represents a measure of the 
maximum difference between the cumulative distribution functions for each sample 
(Conover 1999).  For each species’ withheld evaluation data, two different sets of 100 
localities were randomly resampled with replacement (bootstrap, Efron 1982) 10,000 
times. Using the two sample K-S test, their associated values of uncertainty were 
compared to produce the underlying probability density for D under the null distribution. 
From this distribution the mean value, Dnull, was calculated (Figure 5a). 
 
To compare the correctly predicted absences to the incorrectly predicted absences (i.e., 
false negatives), two subsets of 100 localities obtained from the withheld evaluation data 
were contrasted using the two sample K-S test. The process was bootstrapped 10,000 
times to obtain the underlying probability density for D, in the case of the commission 
errors. From this distribution the mean value, Dov, was calculated (Figure 5b). 
 
To compare the correctly predicted presences to the incorrectly predicted presences (i.e., 
false positives), two subsets of 100 localities obtained from the withheld evaluation data 
were contrasted using the two sample K-S test. The process was also bootstrapped 10,000 
times to obtain the underlying probability density for D, this time for the omission errors. 
From this distribution the mean value, Dun, was calculated (Figure 5c).  
 
For each distribution, the mean value calculated for the resulting bootstrapped parameter 
(i.e., Dov and Dun) was subtracted from the mean value calculated from its corresponding 
null distribution (i.e., Dnull). The absolute magnitudes of the differences were used to 
determine the strength of the association between commission or omission errors and 
each of the uncertainty layers (Figure 5, Table 5, 6 and 7). The same approach was 
repeated for each uncertainty layer and each species, totaling 200 comparisons. Finally, 
confidence intervals were defined for D under the null distribution, the commission 
errors, and the omission errors, based on the percentile method (Dixon 1993), where the 
intervals were calculated and compared directly from the frequency distributions of the 
bootstrapped statistics (Q2.5% and Q97.5%) to define statistical significance.  
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Figure 5. Normalized mean differences were obtained by subtracting the average value 
of the 10,000 bootstrap null distribution (D null) for the Kolmogorov-Smirnov test (D) 
from the mean value from the distributions obtained by bootstrapping the over-predicted 
(X ov) localities and the under-predicted (X un) localities for Vermivora luciae (shown) and 
for all other species.  
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Table 5. Two sample Kolmogorov-Smirnov test results for topographic heterogeneity. 
 
 Topographic heterogeneity 
 Overprediction Underprediction 

Species name 
Mean 
Obs. 
Coef. 

Boot. 
Std. 
Err. 

Q 
(2.5%) 

Q 
(97.5%) 

Sig. 
0.05 

Mean 
Obs. 
Coef. 

Boot. 
Std. 
Err. 

Q 
(2.5%) 

Q 
(97.5%) 

Sig. 
0.05 

A. californica  0.49 0.13 0.24 0.79 - 0.87 0.12 0.53 1 * 
B. regalis  0.55 0.16 0.25 0.89 - 0.80 0.18 0.40 1 * 
C. melanocorys 0.57 0.19 0.25 0.95 - 0.45 0.14 0.22 0.81 - 
C. squamata 0.49 0.17 0.22 0.90 - 0.79 0.19 0.37 1 * 
C. anna 0.73 0.10 0.50 0.93 * 0.90 0.12 0.50 1 * 
C. urophasianus 0.56 0.12 0.35 0.81 * 0.87 0.14 0.45 1 * 
C. fasciata  0.68 0.10 0.46 0.88 * 0.86 0.15 0.45 1 * 
D. obscurus 0.64 0.09 0.45 0.83 * 0.85 0.16 0.44 1 * 
D. caerulescens 0.49 0.13 0.26 0.81 - 0.77 0.20 0.37 1 * 
L. swainsonii  0.51 0.18 0.24 0.94 - 0.85 0.15 0.49 1 * 
M. lewis 0.55 0.11 0.34 0.78 * 0.93 0.08 0.65 1 * 
P. albolarvatus 0.72 0.11 0.49 0.91 * 0.89 0.13 0.48 1 * 
P. borealis 0.57 0.17 0.27 0.93 - 0.87 0.15 0.45 1 * 
P. nuttallii 0.75 0.11 0.50 0.94 * 0.85 0.17 0.43 1 * 
P. rubinus  0.31 0.11 0.15 0.59 - 0.91 0.10 0.60 1 * 
S. platycercus 0.55 0.12 0.33 0.79 * 0.88 0.12 0.51 1 * 
S. sasin 0.77 0.13 0.47 0.99 * 0.93 0.06 0.77 1 * 
T. cupido 0.49 0.13 0.25 0.78 - 0.79 0.20 0.38 1 * 
V. luciae 0.69 0.13 0.41 0.94 * 0.91 0.08 0.70 1 * 
V. virginiae 0.45 0.11 0.22 0.69 - 0.89 0.12 0.55 1 * 
 
Table 6. Two sample Kolmogorov-Smirnov test results for interannual variability. 
 
  Interannual variability 
  Overprediction Underprediction 

Species name Var. 

Mea
n 
Obs. 
Coef. 

Boot. 
Std. 
Err. 

Q 
(2.5%) 

Q 
(97.5%) 

Sig. 
0.05 

Mea
n 
Obs. 
Coef. 

Boot. 
Std. 
Err. 

Q 
(2.5%) 

Q 
(97.5%) 

Sig. 
0.05 

A. californica  PPT 0.66 0.12 0.37 0.91 * 0.67 0.19 0.31 1.00 * 
T 0.56 0.11 0.33 0.77 * 0.68 0.19 0.32 0.99 * 

B. regalis  PPT 0.52 0.13 0.28 0.82 - 0.61 0.19 0.29 0.99 * 
T 0.39 0.14 0.17 0.72 - 0.60 0.19 0.26 0.97 - 

C. melanocorys PPT 0.57 0.12 0.33 0.88 * 0.80 0.08 0.61 0.92 * 
T 0.45 0.15 0.23 0.81 - 0.61 0.12 0.39 0.88 * 

C. squamata PPT 0.69 0.14 0.36 0.93 * 0.59 0.19 0.27 0.98 - 
T 0.54 0.15 0.26 0.85 - 0.61 0.20 0.28 0.98 - 

C. anna PPT 0.79 0.16 0.41 0.99 * 0.61 0.17 0.29 0.99 * 
T 0.68 0.13 0.39 0.95 * 0.65 0.19 0.29 0.99 * 

C. urophasianus PPT 0.55 0.11 0.33 0.78 * 0.60 0.19 0.28 0.99 - 
T 0.37 0.12 0.17 0.64 - 0.60 0.19 0.02 0.98 - 

C. fasciata  PPT 0.58 0.14 0.29 0.88 * 0.58 0.18 0.27 0.98 - 
T 0.59 0.09 0.39 0.75 * 0.60 0.20 0.27 0.99 - 

D. obscurus PPT 0.44 0.12 0.22 0.72 - 0.60 0.19 0.28 0.99 - 
T 0.34 0.10 0.16 0.57 - 0.60 0.19 0.27 0.99 - 

D. caerulescens PPT 0.65 0.13 0.38 0.88 * 0.69 0.18 0.32 1.00 * 
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T 0.51 0.10 0.33 0.73 * 0.65 0.18 0.31 0.99 * 

L. swainsonii  PPT 0.49 0.16 0.24 0.81 - 0.64 0.17 0.31 0.99 * 
T 0.73 0.10 0.45 0.92 * 0.70 0.19 0.31 0.99 * 

M. lewis PPT 0.56 0.13 0.30 0.82 * 0.60 0.19 0.28 0.99 - 
T 0.39 0.11 0.19 0.62 - 0.62 0.20 0.28 0.99 - 

P. albolarvatus PPT 0.60 0.14 0.33 0.91 * 0.62 0.18 0.29 0.99 * 
T 0.56 0.11 0.33 0.76 * 0.65 0.19 0.30 0.99 * 

P. borealis PPT 0.43 0.10 0.26 0.68 - 0.61 0.18 0.29 0.99 * 
T 0.78 0.12 0.48 0.94 * 0.64 0.19 0.29 0.99 * 

P. nuttallii PPT 0.85 0.11 0.57 1.00 * 0.60 0.17 0.29 0.99 * 
T 0.66 0.11 0.38 0.88 * 0.63 0.19 0.29 0.98 * 

P. rubinus  PPT 0.57 0.15 0.28 0.90 - 0.69 0.19 0.33 1.00 * 
T 0.77 0.06 0.64 0.90 * 0.72 0.19 0.34 0.99 * 

S. platycercus PPT 0.61 0.12 0.35 0.85 * 0.62 0.19 0.29 0.99 * 
T 0.44 0.12 0.21 0.69 - 0.63 0.20 0.29 0.99 * 

S. sasin PPT 0.83 0.16 0.45 1.00 * 0.65 0.19 0.31 1.00 * 
T 0.75 0.14 0.37 0.97 * 0.67 0.20 0.31 0.99 * 

T. cupido PPT 0.39 0.12 0.20 0.70 - 0.61 0.18 0.29 0.99 * 
T 0.41 0.09 0.26 0.62 - 0.62 0.18 0.29 0.99 * 

V. luciae PPT 0.87 0.12 0.54 1.00 * 0.71 0.20 0.33 1.00 * 
T 0.73 0.14 0.40 0.96 * 0.70 0.20 0.32 0.99 * 

V. virginiae PPT 0.70 0.08 0.53 0.86 * 0.66 0.18 0.33 0.99 * 
T 0.38 0.11 0.17 0.62 - 0.68 0.19 0.32 0.99 * 

  
Table 7. Two sample Kolmogorov-Smirnov test results for Euclidean distance. 
 
  Euclidean distance 
  Overprediction Underprediction 

Species name Var. 
Mean 
Obs. 
Coef. 

Boot. 
Std. 
Err. 

Q 
(2.5%) 

Q 
(97.5%) 

Sig. 
0.05 

Mean 
Obs. 
Coef. 

Boot. 
Std. 
Err. 

Q 
(2.5%) 

Q 
(97.5%) 

Sig. 
0.05 

A. californica  PPT 0.339 0.109 0.176 0.594 - 0.937 0.191 0.430 1.000 * 
T 0.341 0.108 0.178 0.592 - 0.841 0.187 0.438 1.000 * 

B. regalis  PPT 0.362 0.129 0.180 0.677 - 0.863 0.187 0.459 1.000 * 
T 0.361 0.130 0.184 0.680 - 0.833 0.199 0.418 1.000 * 

C. melanocorys PPT 0.456 0.171 0.212 0.889 - 0.455 0.156 0.216 0.798 - 
T 0.452 0.170 0.255 0.859 - 0.441 0.147 0.217 0.773 - 

C. squamata PPT 0.429 0.165 0.200 0.888 - 0.946 0.117 0.546 1.000 * 
T 0.426 0.165 0.200 0.857 - 0.952 0.106 0.592 1.000 * 

C. anna PPT 0.444 0.153 0.212 0.814 - 0.963 0.105 0.576 1.000 * 
T 0.439 0.152 0.211 0.808 - 0.951 0.119 0.525 1.000 * 

C. urophasianus PPT 0.298 0.099 0.152 0.532 - 0.947 0.107 0.566 1.000 * 
T 0.300 0.099 0.150 0.527 - 0.919 0.129 0.515 1.000 * 

C. fasciata  PPT 0.347 0.115 0.168 0.602 - 0.912 0.147 0.512 1.000 * 
T 0.356 0.117 0.170 0.613 - 0.901 0.156 0.500 1.000 * 

D. obscurus PPT 0.298 0.096 0.147 0.515 - 0.827 0.199 0.423 1.000 * 
T 0.300 0.095 0.149 0.513 - 0.834 0.194 0.429 1.000 * 

D. caerulescens PPT 0.594 0.123 0.362 0.857 * 0.792 0.216 0.378 1.000 * 
T 0.602 0.125 0.365 0.866 * 0.808 0.212 0.418 1.000 * 

L. swainsonii  PPT 0.641 0.164 0.333 0.960 * 0.838 0.201 0.490 1.000 * 
T 0.638 0.163 0.326 0.948 * 0.854 0.198 0.500 1.000 * 

M. lewis PPT 0.291 0.091 0.152 0.505 - 0.957 0.099 0.606 1.000 * 
T 0.293 0.091 0.153 0.502 - 0.930 0.128 0.531 1.000 * 
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P. albolarvatus PPT 0.402 0.127 0.202 0.691 - 0.991 0.043 0.898 1.000 * 
T 0.389 0.126 0.189 0.674 - 0.951 0.117 0.531 1.000 * 

P. borealis PPT 0.617 0.147 0.333 0.899 * 0.969 0.097 0.586 1.000 * 
T 0.609 0.152 0.330 0.908 * 0.972 0.088 0.667 1.000 * 

P. nuttallii PPT 0.479 0.158 0.232 0.857 - 0.983 0.060 0.776 1.000 * 
T 0.476 0.156 0.237 0.838 - 0.969 0.086 0.667 1.000 * 

P. rubinus  PPT 0.423 0.130 0.197 0.695 - 0.913 0.162 0.500 1.000 * 
T 0.408 0.126 0.190 0.677 - 0.921 0.155 0.500 1.000 * 

S. platycercus PPT 0.300 0.098 0.150 0.526 - 0.895 0.171 0.500 1.000 * 
T 0.308 0.100 0.158 0.537 - 0.863 0.187 0.485 1.000 * 

S. sasin PPT 0.562 0.189 0.260 1.000 - 0.960 0.102 0.592 1.000 * 
T 0.563 0.175 0.296 1.000 * 0.971 0.080 0.667 1.000 * 

T. cupido PPT 0.584 0.127 0.333 0.837 * 0.871 0.192 0.480 1.000 * 
T 0.580 0.127 0.333 0.837 * 0.889 0.184 0.490 1.000 * 

V. luciae PPT 0.462 0.157 0.227 0.869 - 0.894 0.159 0.500 1.000 * 
T 0.463 0.156 0.233 0.847 - 0.936 0.111 0.586 1.000 * 

V. virginiae PPT 0.274 0.088 0.142 0.479 - 0.858 0.193 0.480 1.000 * 
T 0.280 0.089 0.143 0.484 - 0.873 0.187 0.500 1.000 * 

 
 
Results 
 
The results of our analysis indicate that false negatives and false positives, in that order, 
were significantly (p<0.05) associated (a) with regions of high topographic heterogeneity 
for 95% and 50% of the species (Figure 6a), (b) with regions of high interannual 
precipitation variability for 75% and 70% of the species (Figure 6b, left panel) and with 
regions of high interannual temperature variability for 70% and 55% of the species 
(Figure 6b, right panel), and (c) with regions located further away from precipitation 
stations for 95% and 20% of the species (Figure 6c, left panel) and with regions located 
further away from temperature stations for 95% and 25% of the species (Figure 6c, right 
panel), when compared to their corresponding null distributions.  
 
The comparisons based on the precipitation weather stations and those based on the 
temperature stations for interannual variability were weakly correlated (Figure 7a). 
However, when an outlier was not included in the regression, the correlation for false 
negatives was stronger (r2=0.74; Figure 7a, right panel, dotted line). Correlations between 
precipitation and temperature for Euclidean distance uncertainty were high for both false 
positives (r2=0.99; Figure 4b, left panel) and for false negatives (r2=0.97; Figure 7b, right 
panel). 
 
Among the three datasets characterizing uncertainty in interpolated climatic layers, 
interannual precipitation variability showed the highest values associated with false 
positive errors in the SDM, with a species average relative distance ( | |null ovD D− ) of 0.45 
(where 0 represents no effect and 1 represents the highest effect). Euclidean distance to 
station showed the lowest species average relative distance ( | |null ovD D− ) of 0.26, 
associated with false positive errors for both temperature and precipitation based layers 
(Figure 8). For SDM false negative errors, the dataset that showed the highest associated 
value was topographic heterogeneity with a species average relative distance ( 
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| |null unD D− ) of 0.68; followed by interannual variability with a species average relative 
distance ( | |null unD D− ) of 0.47 for the temperature weather station based layer and 0.48 
for the precipitation weather station based layer. Euclidean distance showed the lowest 
species average relative distance of ( | |null unD D− ) of 0.45, associated with false negatives 
for both temperature and precipitation based layers (Figure 8).  
 

 
Figure 6. Species-specific normalized mean differences for each uncertainty layer. False 
positives are marked with circles and false negatives are marked with triangles. 
Statistically significant values are shown with filled markers. 
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Figure 7. Comparison of temperature and precipitation results based on the species-
specific normalized mean differences ( | |null unD D−  and | |null ovD D− ) for interannual 
variability and Euclidean distance. Note that for Euclidean distance the results have a 
high degree of similarity between temperature-derived and precipitation-derived 
uncertainty layers. 
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Figure 8. Results for normalized mean differences averaged across all species. Averaged 
values corresponding to false positives (commission errors) are shown in black and 
averaged values corresponding to false negatives (omission errors) are shown in grey. 
Note that results for interannual variability and Euclidean distance have two results, the 
first corresponding to precipitation and the second one corresponding to temperature. 
 
Discussion 
 
Our goal was to determine the effects of three different metrics of uncertainty associated 
with climate data geo-processing on the performance of species distribution models. 
Specifically, we were interested in understanding the uncertainty associated with weather 
station-based interpolations and its effect on omission and commission errors. We found 
evidence for the influence of all three of the tested sources of uncertainty on SDM 
performance: topographic heterogeneity, interannual variability and distance to the 
closest weather station. 
 
Our results are consistent with each of our expectations; however, there are some clear 
differences in the degree of association between each of the uncertainty layers we 
analyzed and the observed errors of omission and commission. We found that, among the 
three uncertainty components, the highest degree of association occurred between false 
negative errors and topographic heterogeneity (Figure 5), indicating that in areas of high 
topographic heterogeneity, SDMs are more likely to under-predict than over-predict a 
species’ distribution. This finding can be explained by how the models classify a 
particular pixel as species presence vs. absence. For example, if an area situated in the 
Great Plains in Kansas, where climatic layers have relatively low spatial variability, is 
compared to a second area located on the Eastern slope of the Andes where variables 
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change abruptly over relatively short distances, errors will diverge. In the first example 
the model will tend to over-predict because the climatic similarity from one pixel to the 
next is high and decreases slowly, making it easier for the model to fit a curve that 
explains the relationship between observations and the environmental layers. In the 
second example, the climatic similarity from one pixel to the next has the potential to 
change dramatically, thus making it harder for the model to fit a curve that explains the 
complexity in the environmental layer without raising the degree of the polynomial 
approximation. In this case, the model choice will be the most parsimonious solution, 
which results in an under-prediction. These results suggest that a model of a species that 
is distributed in areas of high topographic heterogeneity will have lower performance 
than one of a species that comes from areas of relatively low topographic heterogeneity, 
and that poor performance is more likely to result in under-prediction of the species’ 
actual range.  
 
The second largest degree of association was between interannual climatic variability and 
false negatives (Figure 5), which highlights the importance of establishing the appropriate 
temporal relationships between species observations and environmental layers as a step 
towards improving model performance. The processes that condition a species 
distribution operate at different spatial and temporal scales (e.g., Wiens 1989).  Here we 
use interannual climatic variability, a metric that is highly synchronized with ecological 
processes that affect the distribution of the taxa under study. However, for some species 
this strategy can have implications that influence the interpretation of our results. For 
example, artificially influenced resource availability (e.g., bird feeders) can provide 
inaccurate cues regarding habitat quality (Robb et al. 2008), causing a temporal and/or 
spatial mismatch between the species and the natural availability of the resource. Also, 
natural climatic oscillations occur at multiple temporal scales, and organisms are adapted 
to cope with this variability at some scales better than others. For example, plants in xeric 
environments are well adapted to high variability in temperature at short time scales (i.e., 
diurnal), while a change in the pattern of interannual precipitation for the same system 
can have profound impacts on levels of physiological stress (Freas and Kemp 1983). To 
directly incorporate the effect of natural climatic variability on SDMs requires a direct 
connection between each particular species observation and the year when the 
observation was made. This is not always possible due to the lack of high-resolution 
gridded time series climate data for most of the world. When time-series climatic data is 
not available, we recommend that model confidence should be based on the life cycles of 
the taxa under scrutiny. For example, perennial plant species or animal species that do not 
migrate might be less sensitive to interannual variability than annual or migratory 
species.  
 
The assumption that climatic similarity between two points in space is a function of the 
distance between them does not hold under every circumstance.  Climatic similarity 
between two points will also depend on their difference in elevation; the Euclidean 
distance metric we used here integrates both vertical and horizontal distance to capture 
the effect on SDM performance of relative weather station density in topographically 
similar areas. Our results for this distance-based analysis show a clear difference in how 
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omission vs. commission errors respond (Figure 5). As an example, we can compare 
India, with a robust network of highly dense precipitation weather stations (0.001 
stations/km2) recording over many decades, to its neighbor Myanmar, where the density 
of weather stations (0.00002 stations/km2) is two orders of magnitude less. The Euclidean 
distance alone is not enough to characterize the uncertainty in the interpolations of 
climatic parameters in both countries. It is also critical to know where these weather 
stations are located in relationship to the underlying environmental variability. Regions in 
the north of India will require a considerably larger number of weather stations to 
accurately characterize local precipitation patterns due to their high topographic 
heterogeneity. Conversely, South Myanmar may be climatically well characterized by the 
current density of weather stations. We advocate for the inclusion and sharing of weather 
station locations used to build interpolated climatic products. Open access to this 
information will allow users to develop their own uncertainty metrics, and to identify 
regions where they need to be particularly careful when interpreting the results of SDMs.  
 
Our results are based on the assumption that the spatial distributions of the twenty bird 
species we analyze here are mainly determined by climate. However, for any taxon, it is 
unlikely that climatic variables alone will shape their realized distribution. Although 
examining whether climate determines these species’ ranges is not the goal of this study, 
we acknowledge that non-climatic factors can also be responsible for a false positive or a 
false negative. Alternative factors responsible for absence data predicted as presence are 
not simple (see Lobo et al. 2010); and possibilities can be grouped into two categories: a) 
species related factors (e.g., locality climatically favorable but dispersal barriers prevent 
occurrence, interspecific interactions, local extinctions, or limited resources), and b) 
extrinsic factors (e.g., incomplete surveys and biased information). Because we chose to 
work with a multiyear observational dataset, our results should be less affected by these 
extrinsic factors, leaving species-related issues potentially contributing to errors. In the 
case of presence data predicted as absence, our analysis suggests that the underlying 
climatic data is not only unsuitable, but also incorrectly characterized by the interpolation 
due to high uncertainty. However, the underlying climate may be unsuitable and correctly 
characterized by the interpolation, requiring alternative explanations for why the 
observation was recorded as a presence. Such a result could be attributed to source-sink 
dynamics, transient occupancy observed by chance, or even artificial food availability. 
This will not change the implicit SDM assumption that documented species observations 
always represent suitable habitat. In other words, the MaxEnt algorithm assumes that a 
species will always choose the appropriate habitat. However, it is possible for an 
individual of a species to err in selecting climatically suitable habitat. For example, 
juvenile birds will have less experience in choosing locations for a nesting site; also, late 
arrivers will have fewer options in site selection. These outliers under normal 
circumstances will also have a lower chance of successfully breeding (Martin and Roper 
1988). Indeed, part of the process of natural selection is individuals making mistakes in 
the selection of suitable habitat. These ecological mistakes, essential in the process of 
evolution and currently overlooked by SDM practice, have the potential to be applied to 
our understanding of how a species will respond to climate change. 
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The reasons behind our choice of taxonomic group to test our hypotheses were mainly 
based on species occurrence data quality and availability, which also limits inference and 
application to other taxonomic groups. Yet we believe that the same principles and 
mechanisms explored here apply also to other organisms, and that the results can be 
cautiously extrapolated to other taxonomic groups. However, underlying quality and 
accuracy of the gridded information used as environmental layers should not be the only 
direction to look for sources of over- and under-prediction errors and ways to improve the 
models. Coastal redwood (Sequoia sempervirens), as an example of a relict plant species, 
has its suitable bioclimatic envelope restricted to a narrow 50 km belt in the coast of 
California. However, some parts of its actual current distribution may be better explained 
by factors of land use change rather than climate (Pyke 2004).  
 
Attributing the omission and commission errors in areas that were predicted by the model 
as presence due to climate alone will be incorrect. A simple yet difficult-to-achieve 
recommendation for resource managers applying the results of SDMs is to asses all the 
potential sources of uncertainty and to focus on characterization of the sources that 
provide the largest amount of error. However, integrated tools to aid resource managers 
in evaluating multiple sources uncertainty, while needed, are not yet available. 
 
Finally, a useful SDM is not only precise, but also accurate. While past literature that 
deals with SDM environmental layer uncertainty focuses on model precision, (e.g., 
Kriticos and Leriche 2010) here we ask how divergent results can be between known and 
modeled distributions if a parameter is uncertain. We quantified the relationship between 
omission and commission errors in the predictions and the degree of uncertainty in the 
interpolated environmental input layers. We attribute decrease in SDM performance to 
the three aspects of uncertainty evaluated here; however, not all of them were identified 
as equally important sources of over- and under-prediction errors in SDMs. Our results 
confirm the importance of establishing appropriate relationships in time and space 
between species and environmental layers. Uncertainty characterizations for 
environmental layers can provide operational criteria for the selection of species 
observations fed into SDMs, and help identify conditions where users can weigh their 
degree of confidence when making decisions based on a SDM. 
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CHAPTER 3 
Back to the future: using historical climate variation to project near-term shifts in 

habitat suitable for coastal redwood 
 
 
Introduction 
 
Although global climate models (GCMs) project changes in climatic patterns at coarse 
spatial scales, the regional to local manifestations of climate change are not yet well 
quantified (Knutti and Sedlácek, 2013), limiting our ability to incorporate them into 
ecological forecasts (Osmond et al., 2004). Further, local climatic trends do not always 
follow global trends (Helmuth et al., 2002), suggesting a considerable need to identify 
how global forcings are intensified or weakened by local conditions (Cordero et al., 
2011). One example of the inability of GCMs to capture complex local climate in future 
simulations occurs in California and other western continental margins, where local 
conditions are characterized by a cool coastal climate and substantially warmer interior. 
While weather station data in California show a coherent statewide positive trend in 
minimum surface air temperature (LaDochy et al., 2007), maximum temperature trends 
vary spatially, with cooling in coastal areas and warming in inland areas (Lebassi et al., 
2009), suggesting that the local manifestation of large scale warming is affected by local 
negative feedback processes along the coast. 
 
The mechanism proposed to explain the asymmetric change in surface air temperatures 
involves differential heating between ocean and the coastal landmasses, which has been 
hypothesized to result in stronger and more persistent wind-driven coastal upwelling 
along the coast of California (Bakun, 1990). Wind-driven coastal upwelling is the product 
of wind stress moving parallel to the shoreline toward the equator that, combined with the 
earth’s rotation, displaces surface water offshore and brings pulses of deep cold water 
from beneath (Mann and Lazier 2006). Based on regional climate models, intensification 
of wind-driven coastal upwelling has been postulated to limit the projected increases in 
temperatures by reducing insolation and raising humidity in coastal terrestrial ecosystems 
in California (Snyder et al., 2003; O’Brien et al., 2012). However, although long-term 
observations support this prediction (Seo et al., 2012), it has not yet been consistently 
corroborated by GCM simulations (Wang et al., 2009), likely due to oversimplifications 
in coupled ocean-atmosphere models and the mismatch in spatial scale between the 
coastal intensification and resolutions of global simulations (Bakun et al., 2010). 
 
The limited capacity of global simulations to resolve local climates has profound 
implications for projecting climate change impacts in many fields (Wilby et al., 2004). 
Species distribution modeling (SDM) is one of these areas (Kremen et al., 2008).  SDM 
integrates taxonomic and geographic data associated with documented species 
occurrences and interpolated climatic observations to produce a set of correlative rules 
that identify the multidimensional space where the species was collected or observed 
(Peterson and Vieglais, 2001). This n-dimensional space can then be projected back onto 
the same geographic space that was used to generate it, yielding a very fine scale 
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hypothesis of current climatically suitable habitat. SDMs can also be applied to estimate 
where the climatic conditions will be suitable for the species in the future under the 
assumption that the species-climate relationship remains stable (Franklin, 2009). This is 
achieved by projecting fine scale hypotheses of current suitable habitat into downscaled 
future global simulations. Downscaling is a necessary process that brings down the 
spatial resolution of the coarse scale climate models into the resolution of current climate 
datasets to avoid combining data with different discretization levels (Wilby et al., 2004). 
 
Multiple approaches are used to downscaled global simulations; they range from basic 
approaches such as the simple change factor approach to more complex techniques such 
as statistical and dynamic downscaling. The simple change factor approach takes into 
consideration the change in a particular climatic parameter from one time period to 
another, and imposes the resulting difference to observed climate in order to obtain the 
future downscaled data (e.g., Tabor and Williams, 2010). The problem with this approach 
is that it is unable to get higher order climate statistics that are sometimes required in 
vulnerability assessments, and also assumes homogenous climatic anomalies. In the 
intermediate category is the synthetic statistical downscaling approach (e.g., Wood et al., 
2004). This approach is able to incorporate measures of variability and it doesn’t need to 
be bounded to a specific region or few models, which makes it widely employed for 
generating multiple future scenarios. Unfortunately, some of the products based on 
synthetic statistical downscaling typically inherit the limitations of simulations at coarse 
spatial scales and are often unable to resolve local manifestations of climate. A second 
limitation of some of the products from this approach is that climate variables are 
downscaled independently, sometimes resulting in physically implausible outcomes. 
Dynamic downscaling (e.g., Castro et al., 2005), is a more sophisticated approach that 
can reproduce local atmospheric processes with relatively high fidelity, but is limited to 
small regions and few models due to the computational cost. Also, the products of 
dynamical downscaling, known as regional climate models (RCMs), typically do not 
represent coastal processes and, therefore, would not include dynamic response of 
upwelling to large-scale forcing. Finally, under the name of deterministic statistical 
downscaling (e.g., Hidalgo et al., 2008; Abatzoglou and Brown 2012), there is a group of 
methods that try to address some of the limitations of synthetic statistical and dynamic 
downscaling approaches. The deterministic statistical approach is computationally more 
efficient than the dynamic statistical approach and it doesn’t need to be bounded to a 
particular region. Moreover, it overcomes the uncertainties associated with spatial 
interpolation that exist in the synthetic statistical approach. This method benefits from the 
use of historic climatic data that already captures regional climate and weather patterns 
with high fidelity; however, at the same time, it is limited by the spatial resolution of the 
data used to produce it, since it requires relatively high frequency historic climatic data to 
construct the analogs (Abatzouglou and Brown, 2012). A second limitation of this 
approach is that it is currently restricted to the few GCMs that archive daily data. 
 
Researchers that attempt to project the potential effects of climate change on biodiversity 
using SDMs and downscaled climatic outputs should base the decision about what 
gridded climatic dataset they will use on the methods and limitations from each 
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downscaling approach and the specific questions they want to answer. However, this is 
not always possible and, often, practical considerations have a higher relative weight than 
methodological considerations in the final decision. If the spatial resolution is the most 
important criteria for the selection of the appropriate dataset, probably the datasets that 
result from the basic downscaled approach (e.g., Tabor and Williams, 2010) should be 
used; however, these products can’t resolve local manifestations of climate such as the 
effect of wind-driven coastal upwelling on surface air temperature and humidity patterns 
on coastal terrestrial ecosystems. If the skill of capturing the sharp energy/moistures 
gradients between coastal and inland essential to coastal terrestrial ecosystems is the most 
important criteria for the selection of the most appropriate dataset, probably the one that 
results from deterministic statistical downscaling approach should be selected. 
 
Currently, there isn’t an available downscaled dataset produced in such a way that can 
capture both the effect of wind driven coastal upwelling on surface air temperature and 
humidity patterns on coastal terrestrial ecosystems and, at the same time, present a spatial 
resolution fine enough to capture the high environmental heterogeneity characteristic of 
costal California; a combination of properties that would allow us to delineate 
conservation strategies at a scale relevant to resource management decisions. Despite this 
issue, researchers have used dynamically downscaled (Kueppers et al., 2005) and 
statistically downscaled temperature and precipitation outputs (Loarie et al., 2008; 
Klausmeyer and Shaw, 2009) with SDMs to project potential effects of climate change on 
California biodiversity. These SDMs do not include the already observed changes in 
wind-driven coastal upwelling, nor the predicted effects on surface air temperature and 
humidity patterns on coastal terrestrial ecosystems, which suggest that the range shifts 
estimates for species that live within regions influenced by ocean-atmosphere interactions 
may not reflect realistic changes in temperature and precipitation across their distribution. 
 
Projecting biodiversity response to climate change is a crucial step towards mitigation 
and adaptation strategies. As a consequence, we cannot afford to wait until global 
simulations are capable to capture fine scale atmosphere-ocean interactions that exist in 
climatologically complex and biologically unique regions as coastal California (Loarie et 
al., 2008).  The aim of this study was to develop a novel approach to more reasonable 
estimates of climatically suitable habitat that incorporates not only the regional but also 
the local manifestation of greenhouse induced climate change for a coastal species, which 
distribution coincides with a region that is strongly influenced by ocean-atmosphere 
interactions. Coastal redwoods (Sequoia serpervirens), once a widely distributed species 
(Barron et al., 2003), and now limited to a narrow 50 km belt along the coast of 
California (Noss, 2000), is particularly well suited for our analysis. Redwoods also 
provide an interesting case study because they are known to be poor regulators of water 
usage (Burgess and Dawson 2004). They transpire considerable quantities of water at 
night because they are unable to fully close their stomata (Burgess and Dawson 2004). 
However, in situ measurements have shown that the presence of cloud moisture in the 
canopy can nearly eliminate the water vapor deficit that causes transpiration (Simonin et 
al., 2009).  These physiological traits and restricted distribution are evidence that 
redwoods rely on high levels of ambient humidity, suggesting that SDM based on 
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temperature and precipitation alone may be inadequate. 
 
In this paper we address four questions: (1) Does adding monthly water deficit, a variable 
directly related to redwood physiology, improve redwood distribution model accuracy? 
(2) Do projections of future mean regional climate have observed analogs in the historic 
climatic record, for example as individual years in the tails of annual temperature 
distributions? (3) Do climate scenarios that more reasonably capture local manifestations 
of climate change differ from those obtained from coarse resolution global climate 
models? (4) Do scenarios of climatically suitable habitat that integrate historic climate 
variability allow us to identify highly stable zones (refugia) for conservation planning and 
management in coastal California? To address these questions, we evaluated species 
distribution models with and without monthly water deficit, in addition to the more 
typical temperature and precipitation variables. We then used naturally occurring 
variability in the historic climatic record to develop multiple scenarios of California 
climate and compared these to GCM projections from the CMIP5 archive. We developed 
estimates of climatically suitable habitat for redwoods under historical “normal” 
temperature and precipitation, and for the multiple climate scenarios. With this approach, 
we maintain coherent relationships between regional climate and local effects of coastal 
upwelling, and also preserve observed covariance among climatic variables in space and 
time. Combining the scenarios we developed into an ensemble model allow us to identify 
coherent sub-regions robust to modest climate change that can inform management and 
conservation initiatives in coastal ecosystems in California. 
 
Methods 
 
We used the tails of the normal distribution of temperature and precipitation values 
(Hansen et al., 2012), to develop scenarios of California coastal climate at finer spatial 
scales than those produced by global climate models (GCMs). This new approach, similar 
to the climatic-analogs method developed by Lorenz (1969), takes advantage of spatially 
gridded climatic time series. However, instead of searching for equivalent surfaces at the 
resolution of the GCMs (Zorita and Von Storch, 1999), we first selected climatically 
anomalous years at the statewide scale from the historic record and matched them to 
near-term changes predicted by GCMs to limit the range of plausible scenarios and 
provide a temporal context. 
 
Selection of anomalous years in California 
 
An anomalous year is defined here as an unusually warm or cool year for temperature 
(wet or dry years for precipitation) in the historical climatic record. They are identified as 
years in which the annual departure, relative to a baseline, falls in the tails of the normal 
(Gaussian) distribution (i.e., values are above or below one standard deviation from the 
mean; Hansen et al., 2012).  To identify historic anomalous years in California, we used a 
dataset hosted at the California Climate Data Archive (CCDA; Abatzoglou et al., 2009). 
This dataset was produced by the Western Regional Climate Center and Scripps 
Institution of Oceanography and includes a network of 195 Cooperative Observer 
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Network climate stations for the State of California. This dataset avoids potential bias 
arising from fluctuations in spatial and temporal coverage of weather stations by filling 
missing values using data from an interpolated gridded time series (PRISM; Daly et al., 
2000). We did not use PRISM directly to avoid, as much as possible, any uncertainties 
associated with the interpolation (Fernandez et al., 2013). From the CCDA dataset, we 
examined four annual climatic variables, but here we only focus on mean annual 
temperature and annual total precipitation; results for maximum and minimum 
temperature are included in the Supplementary information (Appendix C, Figs. S45-S48). 
 
We computed departures by subtracting the observed mean annual temperature and 
annual total precipitation values for each year from statewide averages for the full 
historic record (i.e., 1895 to 2010) (Fig. 9). The departures for each year (x) and the 
values that represent +/- one standard deviation (s) from the mean (µ) were used to assign 
each year to one of three possible categories: (1) x > µ +	
  s; (2) x < µ -	
  s; and (3) µ -	
  s < x 
< µ +	
  s. We classified years based on both annual mean temperature and total annual 
precipitation, thereby, assigning each year to one of nine quadrants (Fig. 10). The years 
within each of the eight periphery quadrants represent rare (i.e., less probable) climates, 
and we used them as climatic scenarios in our analysis (Fig. 10). The years represented in 
the central quadrant are more common (i.e., more probable) combinations of temperature 
and precipitation, and we use them to characterize “normal” climatic conditions. 
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Figure 9. Mean annual temperature anomalies from 1895 to 2010 baseline for California 
(top) and annual precipitation anomalies (bottom) based on the CCDA dataset. Dotted 
line represents +/- one standard deviation from the 1895-2010 mean (solid line) for each 
variable. 
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Figure 10. Assignment of individual years to climate scenarios. Each white or gray circle 
represents mean annual temperature and total precipitation anomalies for an individual 
year between1895 and 2010. The black circle in the center represents climatologically 
“normal” conditions obtained by calculating means for the full period. Dotted lines 
represent +/- one standard deviation from the 1895-2010 mean (grey line) for each 
variable (short dotted line for temperature and long dotted line for precipitation).We use 
the years grouped in the eight periphery quadrants as the multiple climatic scenarios in 
our analysis. 
 
Global climate change context 
 
The above climatic scenarios reflect naturally occurring climatic variability that 
redwoods have experienced in the past century. To relate these scenarios to plausible 
future conditions and to provide a temporal context for our analysis, we compared these 
historically-based scenarios to GCM output from the Coupled Model Intercomparison 
Project (CMIP5) Representative Concentration Pathway (RCP) 4.5 (Thompson et al., 
2011). The RCP4.5 greenhouse gas concentration trajectory provides a conservative 
estimate of global temperature change for the future compared with alternative 
trajectories (Peters et al., 2013), although trajectories of temperature change do not 
diverge substantially until after the 2040’s (Knutti and Sedlacek, 2013). From the CMIP5 
archive, we obtained mean monthly temperature and total monthly precipitation from 19 
GCMs for the period 1895 to 2099. We calculated mean annual temperature, annual total 
precipitation and anomalies for each year from 2020 to 2099 using the same baseline 
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period used in the selection of historically anomalous years (i.e., 1895 to 2010) for each 
GCM. We compared these future model-derived anomalies to the anomalies obtained for 
each year in the observed historical period (Appendix C, Figs. S57-S60). We then 
calculated mean anomalies for three future 20-year periods (i.e., 2020 to 2039, 2040 to 
2059 and 2060 to 2079).  
 
Climate variables for species distribution models 
 
To generate the SDMs we used a gridded time series dataset for the period of 1895 to 
2010, at a resolution of 800 m, from the PRISM Climate Group at Oregon State 
University (Daly et al., 2000). For every grid cell, PRISM values are estimated using a 
local regression where surrounding weather stations used to populate the regression are 
weighted by their physiographic similarity to the grid cell being modeled. PRISM 
incorporates the effect of elevation, terrain-induced airmass blockage, coastal effects, 
temperature inversions and cold-air pooling; and includes monthly gridded layers for dew 
point, precipitation, temperature and vapor pressure, providing one of the finest spatial 
resolutions relative to other similar products at regional scale (but see Flint and Flint 
2012). PRISM also constitutes a well vetted and critical resource for studies in diverse 
scientific fields including ecology, biogeography, conservation and natural resource 
management (e.g., Fitzgerald and Gordon et al., 2012; Franklin et al., 2013; Torregrosa et 
al., 2013), which focus within the continental U.S.  
 
In addition to PRISM monthly variables (i.e., maximum, minimum temperature, total 
precipitation, mean dew point temperature and vapor pressure), we decided to include in 
our analysis a variable that addresses the eco-physiological challenges that redwoods 
face. Previous research suggests that the seasonal interactions between energy and water 
supply could potentially improve our understanding of the role of climate in defining 
vegetation distribution at fine spatial scales (Stephenson, 1990). From climate water 
balance calculations (Stephenson, 1998), we could derive climatic water deficit (WD) as 
the difference between potential and actual evapotranspiration. However, actual 
evapotranspiration is hard to accurately estimate, as it is a function of the amount of soil 
moisture, soil type, vegetation type and slope.  Moreover, the two sources of soil 
information in the U.S.: the Soil Survey Geographic Database (SSURGO) and the U.S. 
General Soil Map (STATSGO2) don’t have complete coverage for the area of study. To 
solve this problem, we followed Stephenson (1998) recommendation and thus decided to 
use a different approach to calculate the seasonal interaction between energy and water 
supply (Ellis et al., 2008). We calculated WD as the difference between precipitation and 
potential evapotranspiration (Paltineanu et al., 2009; Ellis et al., 2010). We calculated 
water deficit for each month of every year for the period of 1895 to 2010 for the 
continental U.S. using the Hamon (1963) method, which is a refinement of the 
Thornthwaite method (Thornthwaite and Matter, 1955). This method has been proven to 
be robust under a wide range of conditions (Vörösmarty et al., 1998) and, when 
compared to alternative approaches, it provided the most accurate approximation when 
the inputs are limited to temperature and precipitation (Lu et al., 2005). 
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Monthly water deficit (WD) was calculated as follows: 
WD P PE= −  

where P represents precipitation for each month, and PE represents monthly potential 
evapotranspiration. PE is calculated as: 

213.97 tPE dD W=  
where d represents the number of days in a month for a particular year, D represents 
mean monthly daylight hours in units of 12 hours, and Wt represents saturated water 
vapor density. Wt is calculated as follows: 

0.0624.95
100

T

t
eW =  

where T represents mean monthly temperature in (oC). D is calculated following Forsythe 
et al. (1995): 
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where L represents the latitude and φ  represents the sun’s declination angle. φ is 
calculated as: 

1sin (0.39795cos )φ θ−=  
where θ  represents the revolution angle. θ  is calculated as: 

( )( )10.2163108 2 tan 0.9671396 tan 0.0086 186Jθ −= + −⎡ ⎤⎣ ⎦  

where J represents the day of the year. 
 
Based on the PRISM variables and the derived monthly WD, we created two 
configurations of climate layers: (1) PRISM; (2) PRISM+WD. 
 
Species occurrence data 
 
To build the species distribution models, we compiled all of the S. sempervirens 
occurrence data from museum specimens, primarily from georeferenced specimens from 
the Consortium of California Herbaria (accessed June 2012), a centralized repository for 
16 regional herbaria, and from the Global Biodiversity Information Facility (accessed 
June 2012), a global consortium of biodiversity data holding institutions. To evaluate the 
models, we obtained independent occurrence data from redwood specimens held at the 
California Academy of Sciences, which were retrospectively georeferenced following 
Chapman and Wieczorek (2006) protocols. In this study, a species occurrence was 
defined by a unique locality expressed as latitude and longitude with positional 
uncertainty represented by a maximum error estimate of less than 800 m, supported by a 
vouchered specimen collected from 1895 to 2010. 
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Species distribution models 
 
We generated species distribution models using MaxEnt v3.3.3k (Phillips et al., 2006), a 
method particularly effective at dealing with presence-only data (Elith and Leathwick 
2009). MaxEnt uses the principle of maximum entropy to estimate a set of rules 
correlating environmental variables and species occurrences to approximate the potential 
bioclimatic habitat of the target species (Phillips and Dudik 2008). The MaxEnt 
algorithm is related to Bayesian theory and considers redundant information without over 
fitting; eliminating the need to apply a variable reduction technique before running the 
models (but see Parolo et al., 2008). We calibrated the models using an approach that 
addresses spatial autocorrelation by using a spatially structured partitioning procedure 
adapted from Fernandez et al., (2013). This process randomly resamples species’ 
observations into different subsets where 80% of the localities are used for training and 
20% are used for testing the model. We repeated the process creating 100 subsets of the 
species observations that we used in turn to produce 100 MaxEnt models for “normal” 
conditions (i.e., averages of variables across the years within the central quadrant; 
Appendix C, Figs. S49-S54) based on the two environmental layer configurations (i.e., 
PRISM and PRISM+WD). We used the default values in the MaxEnt algorithms for the 
maximum number of iterations and convergence threshold (i.e., 500, 10−5).  
 
We averaged the 100 bootstrapped results based on the PRISM and the PRISM+WD 
layers configurations into two final niche models that provided a continuous index of 
relative suitability under “normal” conditions with and without WD. We converted these 
probabilistic outputs into a presence/absence map based on a widely accepted method of 
using the value of the points on the receiver operating characteristic curve where the sum 
of sensitivity and specificity is maximized (Loarie et al., 2008). 
 
We evaluated the final models produced for “normal” conditions under the two 
environmental layer configurations using several complementary approaches. First, we 
took advantage of the independent evaluation data and measured the prediction success of 
the models for the withheld independent localities classified as presence (Zweig and 
Campbell, 1993). Since prediction success is a function of the threshold for assigning 
presence, we also evaluated the models using the area under the receiver operating 
characteristic curve (AUC). AUC is a threshold-independent metric that summarizes a 
model’s overall performance over every possible threshold (Lobo et al., 2008) and 
although it has been criticized for being sensitive to the total extent over which models 
are produced (VanDerWal et al., 2009), this should not affect our results because we kept 
extent constant. Although these metrics are statistically defensible, they are still 
hampered by the lack of true absence data (Lobo et al., 2010). Since the current 
distribution of redwoods is relatively well known and mapped, we compared the models 
for “normal” conditions created with and without WD to the known distribution of 
redwoods using the true skill statistic (TSS; Allouche et al., 2006). We used the 
Classification and Assessment with Landsat of Visible Ecological Groupings (CALVEG 
2009), a fine scale dataset that was primarily derived from remote sensing and produced 
by the U.S. Department of Agriculture, as the known distribution. 
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We projected each bootstrapped simulation that contributed to the final model for the 
“normal” conditions based on the environmental layer configuration that produced the 
best results (i.e., PRISM+WD) into each of the anomalous years. Since each scenario has 
a different number of years we combined the probabilistic outputs from MaxEnt for each 
group of years before selecting the threshold following Marmion et al., (2009). We 
converted the results into presence/absence maps using the same threshold rule used for 
“normal” conditions. 
 
Analysis of the distributions 
 
To quantify changes in the distribution of suitable habitat, we compared the projected 
distributions for individual anomalous years to those for “normal” conditions based on 
the environmental layer configuration that included WD using three complementary 
approaches. First, we evaluated the differences in spatial patterns between current and 
projected scenarios by subtracting gridded model outputs under each scenario from the 
distribution under “normal” conditions and mapped the differences. Second, we measured 
the change in area between the current distribution and the distributions under each of the 
eight possible climate scenarios. To calculate areas, we converted all gridded model 
outputs into polygons and projected them into an equal area projection (Albers Equal 
Area Conic); we measured areas using Spatial Statistics toolset in ArcGIS v.10.1. Third, 
using centroids we measured the change in distance and direction between the current 
distribution and the distributions under each of the eight possible climate scenarios. To 
calculate centroids we projected the data into Azimuthal Equidistant projection and 
measured the shifts in distance and direction relative to the “normal” distribution using 
the centers of mass using the Geographic Distributions toolset in ArcGIS v.10.1. 
 
Results 
 
Models for the “normal” conditions based on both PRISM and PRISM+WD 
environmental layer configurations yielded reasonable approximations of the known 
current distribution (Fig. 11). When both SDMs were compared using the independent 
species occurrences for model validation we found that the prediction success for the 
PRISM and PRISM+WD environmental layer configurations were 96% and 94.5% and 
the value for AUC were 0.931 and 0.952 respectively (where a value of 0.5 indicates a 
model that is not better than random and a value of 1 indicates a theoretically perfect 
model). When the known current distribution from CALVEG was compared to the SDMs 
for the “normal” conditions, the true skill statistic was 0.956 for the SDM based on 
PRISM and 0.988 for the SDM based on PRISM+WD. 
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Figure 11. Model evaluation. Left, model evaluation using independent occurrence data 
obtained and georeferenced from the California Academy of Sciences. Right, model 
evaluation using a remote sensing derived dataset (USDA CALVEG). 
 
 
Our results showed that the historical climate scenario that best resembles the future 
climate scenarios is the one where the temperature is higher than average but 
precipitation remains relatively unchanged statewide (Fig. 12). Moreover, when we 
compared model anomalies for multiple years, we found that most of the years for the 
warmer (normal precipitation) scenario that we developed are within one standard 
deviation of the 2020s and 2030s from the future but also that there is a trend in future 
models that show that temperature keeps increasing but precipitation remains within the 
normal range (Fig. 12). Although the years from the future models are centered in the 
warmer (normal precipitation) scenario, the standard deviation across models for the 
annual total precipitation extends into the drier and warmer scenario as well as the wetter 
and warmer scenario.  
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Figure 12. Multi-model mean annual temperature and precipitation anomalies for 
California projected for three decades in the 21st century (colored circles) compared to 
historical annual temperature and precipitation anomalies (circles as in Figure 10).  
 
The potential distribution under each scenario (Appendix C, Figs. S49-S54) was 
synthesized using a map that integrates the results across years in each category and 
yields an ensemble estimate of climate change induced distributional 
expansion/contraction for redwoods for each scenario (Fig. 13). The distribution of 
redwoods projected into the scenario that resembles closely the CMIP5 projections  of 
regional mean climate showed a range contraction in the south, with a reduction equal to 
8.809 km2 (50% of the climatically suitable area under “normal” conditions; Fig. 14), 
with no suitable habitat remaining south of the San Francisco Bay. This contraction is 
balanced by an expansion in the north, with a gain in area equal to 5,895 km2 (34%; Fig. 
14). The stable area for this scenario is restricted to the coastal areas in the central part of 
the distribution (Fig. 13B). 
 
In addition all the scenarios showed some degree of stability, contraction and expansion 
in projected geographic ranges. The three drier scenarios (Fig. 13A, 13D and 13F) 
produced greater contraction and less expansion compared to the remaining five 
scenarios (Fig. 14). Similarly, the three wetter scenarios (Fig. 13C, 13E and 13H) showed 
the least contraction relative to the remaining scenarios, with slightly less contraction as 
scenario temperatures cooled (Fig. 14,); these three scenarios also had the greatest 
expansion. The three warmer scenarios (Fig. 13A, 13B and 13C) and the three cooler 
scenarios (Fig. 13F, 13G and 13H), both showed high and low degrees of contraction 



48	
  
	
  

	
  
	
  

within each group, and then note that for a given precipitation change (Fig. 14,), how 
temperature affects the distribution (Figs. 13ABC and 13FGH).  
 
When the individual scenarios were inspected, the drier and warmer scenario (Fig. 13A) 
showed the highest degree of contraction, with a reduction equal to 13,691 km2 (79% of 
the climatically suitable area under “normal” conditions; Fig. 14). Most of the stable 
habitat under this scenario was located north of 40o latitude (Fig. 13A). This same 
scenario projected an increase in area of 847 km2 (5%), mainly north of the California-
Oregon border (Fig. 13A). The drier scenario (normal temperatures; Fig. 13D) presented 
the next highest degree of contraction with a loss in suitable habitat of 10,879 km2 (63%); 
Fig. 14), closely followed by the drier and cooler scenario (Fig. 13F) with a loss in 
suitable habitat of 10,610 km2 (61%; Fig. 14). Most of the stable suitable habitat was 
restricted to coastal areas in both scenarios (Fig. 13D and 13F).  
 
The wetter and cooler scenario (Fig. 13H) had the highest degree of expansion with a 
significant estimated gain equal to 7,761 km2 (44% of the climatically suitable area under 
“normal conditions”; Fig. 14), mostly located in the coastal areas at the north and south 
extremes of the distribution; and away from the coast in the central part of the 
distribution (Fig. 13H). While this scenario resulted in the largest relative expansion, it 
also projected some reduction discretely localized north of the San Francisco Bay (Fig. 
13H). The second largest degree of expansion was presented by the wetter and warmer 
scenario (Fig. 13C) with a projected increase of 6,380 km2 (37%; Fig. 14). The scenario 
that presented the lowest degree of habitat expansion was the drier and warmer (Fig. 
13H) with an estimated gain of 847 km2 (11%; Fig. 14). 
 



49	
  
	
  

	
  
	
  

 
Figure 13. Synthetic generalization of the predicted expansion, contraction and stability 
for the eight scenarios we developed. 
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Figure 14. Comparison of changes in absolute area among scenarios.  
 
When the centroids of each projected distribution were compared to the centroid of the 
historical mean redwood distribution, the scenarios with the greatest relative shifts were 
the warmer scenario (normal precipitation; Fig. 13B) and the drier and warmer scenario 
(Fig. 13A), with shifts of 201 and 192 km, respectively (Fig.15). The wetter and cooler 
scenario (Fig. 13H) showed the lowest degree of geographic shift of 10 km (Fig. 15). All 
the scenarios, except the wetter and cooler scenario presented an average north-northwest 
(insert mean +/-5o) direction of displacement (Fig. 15). 

 
Figure 15. The shift in the center of mass of modeled redwood distributions for each of 
the eight scenarios relative to that under “normal” conditions. 
 
When we combined the stable areas from all the scenarios that integrate historic climatic 
variability to characterize coherent sub-regions robust to modest climate change we 

Warmer Cooler WetterDrier



51	
  
	
  

	
  
	
  

found that the most stable region is located in the northern part of California (Fig. 16) 
restricted to an area of 3,010 km2. When we combed only the stable areas from only the 
warmer scenarios the area was of 3,642 km2. 
 

 
Figure 16. Ensemble scenarios for climatically stable sub-regions. 
 
Discussion 
 
Our first goal was to improve model accuracy by developing a tailored variable 
customized to redwood physiology. Different from what we expected, we did not find 
statistically significant improvement in the performance metrics between the models 
based on PRISM alone and PRISM+WD, although we did find small differences. It is 
clear that prediction success on independent data alone is not a very informative metric; 
the environmental layer configuration that did include WD was rated slightly below the 
one that didn’t include WD. However, acknowledging that this metric is highly 
influenced by the area predicted as presence, it is possible to get a very high prediction 
success value with a model that tends to over predict. On the other hand, AUC and TSS 
ranked the models in similar way, giving the model based on the PRISM+WD a slight 
edge over the model based on PRISM alone, even though we use pseudo-absence data to 
calculate the AUC values, and the TSS was based on a cell by cell comparison to the 
CALVEG dataset. Overall it was informative to know that the prediction success on 
independent data was high for both models. However that the AUC and TSS metrics 
converge in their results was more helpful in selecting the best performing model because 
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they were calculated using different datasets and both account for how much area is over 
predicted, therefore they are more sensitive to the errors of commission in the SDM. In 
addition to the value provided by performance metrics, an important aspect of model 
evaluation is the subjective assessment that users apply to models. While rating models 
based only on a single number that attempts to capture the overall model performance in 
the landscape can result in no apparent improvement, once these performance metrics are 
translated into the geography, small differences can become very important. Moreover 
practical applications of species distribution models in conservation planning that are 
focus on a particular regions (e.g., reserve design and species invasions) do not value all 
areas in the map similarly and the overall improvement of the model is often less 
important than the capacity of the model to correctly predict small areas that are under 
scrutiny or for which prior knowledge of the species distribution is available.   
 
The slight improvement we obtained in the model based on PRISM+WD over that based 
on PRISM is telling us that we are looking in the right direction; but that we couldn’t 
obtain conclusive evidence that supports the use of WD to improve the model suggest that 
either the choice of variable or the method we use is not appropriate. WD can be 
calculated in multiple ways that can include additional variables such as soil depth, slope 
orientation and wind speed (Lu et al., 2005). However in our experiment we were limited 
to temperature and precipitation and the only additional information besides these two 
variables that we included was a calculation of daylight hours that provides a measure of 
the amount of energy received corrected by latitude and time of the year and assumes a 
topographically homogeneous landscape. We can’t discard a third option that results from 
the fact that both models, with and without WD, were able to capture relatively well the 
known distribution of coastal redwoods. This suggests that perhaps redwood physiology 
was already addressed by a variable included in the PRISM original dataset and the 
inclusion of WD in the SDMs did not add any additional information that was not already 
there. We suspect of monthly vapor pressure which is part of PRISM, however we did 
not run any comprehensive test to test this hypothesis. 
  
We took advantage of naturally occurring climatic variability in the 20th century to 
develop eight scenarios (Fig. 13) for California coastal climate at finer spatial scales than 
those produced by GCMs to evaluate if projections of future mean regional climate have 
observed analogs in the historic climatic record. We found evidence that supports the use 
of our warmer (normal precipitation) scenario as equivalent to the mean annual 
temperature and annual total precipitation projected changes for California by the CMIP5 
projections. This finding has significant implications because it suggests that we could 
potentially use this high resolution “equivalent” as an alternative to downscaled GCMs. 
Specifically, if this “equivalent” is used in SDMs, we can produce more reasonable and 
physically accurate estimates of the anticipated range shifts in response to projected 
climate change not only for redwoods but for all terrestrial species that live in the area of 
influence of the upwelling zone in California. Consistent with Hansen (2012), CMIP5-
RCP4.5 data confirmed that our anomalous years for the warmer (normal precipitation) 
scenario are in the vicinity of the projections for the 2020’s and 2030’s, which limits 
projections based on historic climate variability to the next few decades. We could also 
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note that for changes in that time frame, our equivalent scenario predicted a suitable 
habitat shift of 201 km to the north-northwest, and a contraction of 50% of that predicted 
by the “normal” conditions. 
 
Key issues relevant to conservation planning and resource management that can be 
addressed through examination of the ensemble SDMs in response to anomalous 
conditions using our method include: identification of climatically highly stable and 
highly variable zones and identification of new conditions for zones that are predicted to 
change. In conservation planning, addressing these issues can inform the prioritization of 
areas that have higher degrees of natural resilience (i.e., refugia) to climate change. Also, 
areas that are outside the current range but that are predicted to become climatically 
suitable could be used for translocation efforts under our projected scenario of climate 
change. In resource management, the prospect of using our methods to evaluate the 
response of economically important crops to changing climatic conditions in the coast of 
California is also of great interest (Diffenbaugh et al., 2011). One example is the highly 
profitable variety of Vitis vinifera, known as Pinot noir, that shares the same bioclimate 
of redwoods, and for which there has been mounting pressure from the wine industry to 
convert current redwood lands to vineyards (Dimson, 2012). The areas that, in our 
models, are identified as climatically suitable today but that do not include redwoods, can 
be used to find a win-win solution among the wine industry and natural resource 
managers by providing information on where current Pinot noir grape production could 
be expanded without affecting redwoods. The areas identified as climatically suitable 
under the scenario that parallels IPCC projected change can also be use as a planning tool 
for new vineyard establishment in anticipation of future change. Moreover, crops are not 
limited by the dispersal abilities of species in natural ecosystems and can take full 
advantage of distant and fragmented suitable habitat as it becomes available in the future. 
Still, this type of analysis will require more detailed time series analysis (i.e., month to 
month variability) that can provide information about seasonality in agriculture. 
 
Conservation planning frameworks are more often required to incorporate a better 
understanding of the spatio-temporal relationships between actual biodiversity and 
climate. New and interesting avenues of research can be developed if dendrochronologies 
are fully integrated with SDMs based on time series climatic data. Tree-rings are the log-
book of the long-term climatic conditions that occur across species range providing the 
raw measures of the species physiological responses to the environment at a superior 
spatial density than any current or future weather station network. Integrated with 
hypothesis of species distributions, the dendrochronology climate records can help us 
understand fundamental questions about the spatial variability of redwoods’ sensitivity to 
natural climatic variability and response to persistent extreme climatic conditions. Future 
research should also focus on dynamically updating our projections as the future unfolds, 
feeding our models with improved and novel species occurrences datasets (e.g., citizen  
science observations) and more robust time series data that can provide the fuel for 
successful adaptive management strategies.  
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We produced a multi-scenario assessment of potential climate change impacts to 
redwood forest that can inform resource managers about conservation opportunities at 
800 m spatial resolution. While natural resource managers are continually seeking greater 
spatial precision in the projections (McPherson et al., 2006), there is still a lag in how 
they can best incorporate the uncertainty associated with these fine spatial resolution 
projections. Species distributions model outputs can vary substantially and while our 
research addresses the issue of how climate manifests at local scales, our method doesn’t 
eliminate uncertainties associated with fine-scale interpolated climate data (Fernandez et 
al., 2013), which are also models with limitations (Franklin 2009). As a consequence, the 
resulting mapped representations of projected suitable habitat should be carefully 
interpreted. Ways to estimate the uncertainty due to interpolation include weighting the 
pixels by how far they are from the closest weather stations, or by how heterogeneous the 
landscape is using a finer resolution digital elevation model (Fernandez et al., 2013). Also 
very important but rarely considered in ecological forecasts is how the projected 
climatically suitable habitats will interact with non-climatic factors such as land-use 
change. Habitat degradation and land conversion play critical roles in estimating suitable 
habitat stability and should be incorporated in the projections.
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CONCLUSION 
 
 
 

With estimates of the number of living species in the planet ranging between 2 to 8 
million (Costello et al., 2013), we acknowledge that we have little idea about the actual 
number and that we know even less about their actual spatial distributions. However, we 
do know from paleo-records (e.g., Blois and Hadly, 2007; Gonzáles-Carranza et al., 
2012) that climate has a fundamental influence on where species are distributed in space, 
and also that differences between climates do not need to be so dramatic for us to see 
variation in species spatial organization. 
 
The evidence of human induced climate change is now unequivocal. Between 20 to 30 
percent of species will be at increased risk of extinction if global warming exceeds 1.9oC, 
and that the number could increase to 40 to 70 percent if global temperature exceed 6.3oC 
(IPCC, 2007). With a projected increase in temperatures of ~2oC by midcentury, 
regardless of the postulated emission scenario, it is critical that we try to understand the 
impacts of climate change on biodiversity. However, the mechanisms by which climate 
change can impact biological populations are multiple and remain only partially 
unraveled, making it extremely difficult to predict what impacts on biodiversity will be in 
the future. 
 
Species distribution modeling is a useful tool for describing the climate in which a 
species can live. Using this technique, it is possible to draw on a map locations predicted 
to have favorable conditions for the species under a scenario of future climate change. 
Therefore, a species distribution model simply creates a hypothesis of where the climate 
conditions that a species inhabit at the current time will be in the future, given 
assumptions about greenhouse gas emissions and climate model abilities to represent 
local climate change. However, a species may not experience the full range of climatic 
conditions that it can tolerate. SDMs work under the assumption that the species-climate 
relationship will remain stable trough time. Also, SDMs assume that all the individuals of 
a species or population are identical and will respond in the same manner to changing 
conditions. Predictions from SDMs are, therefore, far from perfect and difficult to 
interpret. Yet the approach provides us with a first estimate of the extinction risk 
problem. Only equipped with a clear understanding of how the models work we can 
move forward to look at the result with a critical eye. 
 
The argument that connects the three chapters in my dissertation is related to the spatio-
temporal mismatch between species observations and environmental data. This issue is 
relevant to species distribution modeling, and can be traced back to the two main data 
models created to store, display and analyze digital information: vector and raster data 
models. Both models have advantages and limitations that have been extensively 
reviewed elsewhere (e.g., Zhang and Goodchild 2002). The assumptions behind each of 
these models are different, and until very recently it was still difficult to work with both 
types of data models inside the same 
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GIS environment without applying a data transformation. The fundamental difference 
between these two data models relevant to our discussion, is that while the vector model 
can scale without any degradation, whereas, the raster model quality is completely 
dependent on the resolution (grid cell size). These data models are employed inside 
geographic information systems software to store, analyze and display different types of 
spatial information that can range from discrete data, which can relatively accurately be 
represented with points and lines that connect these points (i.e., vector data model), to 
continuous data that require some degree of discretization before it can be incorporated 
into a GIS (i.e., raster data model). Relevant to our problem is that the two sources of 
input data in SDM (i.e., species observations and environmental variables) are collected 
in their raw form using the vector data model with attributes that are measured from x, y, 
z coordinates, where the x and y represent the geographic position and z represents time. 
 
Environmental information (e) is continuous data by nature (e.g., temperature and 
precipitation). However, due to practical limitations, it is measured from a relatively 
small sample of observations in the form of points (i.e., discrete). Also important is that 
for each x, y coordinate that represents a point, there are in general multiple e sample 
values collected at different z times. Despite their relative low spatial density, they 
provide us with a general view of the environmental conditions at different locations. 
Based on the idea that near things are more related than distant things (Tobler, 1970), we 
can use the x, y coordinates for the places from where we know the value of e, and 
interpolate the conditions for places lacking measurements. The result is a gridded layer 
where each grid cell has a value that represents the estimated value of e based on the 
closest samples. Applying this process to environmental information is common but it 
has consequences that affect its quality and accuracy. One consequence is that the data is 
transformed from the vector model into a raster model; a transformation process that 
requires the selection of a grid cell size. A second consequence is that in general the 
value that is interpolated is an average of multiple e values over z and its 
representativeness is determined by the longevity and consistency of the measure over 
time. 
 
In the case of species occurrences (s), the spatial density of x, y measurements is several 
orders of magnitude lower than the density of environmental information. It also is rare to 
have more than one measure of s for every x, y sample data point over time (but see: 
Smith et al., 2013). Moreover, the x, y coordinates for s are rarely the same x, y 
coordinates for e samples. Current SDMs therefore correlate e (in the transformed raster 
model) with s in vector model x, y coordinates. The inferences that SDMs make about 
species climatic preferences carry some degree of uncertainty because e and s are not 
measured at the same x, y and z. Integrating species observations and climatic variables 
that are not measured at the same spatial and temporal resolution thus hinders our ability 
to forecast species range shifts and expansions in response to global. 
 
Where sufficient occurrence data in the invaded range is available, the inclusion of an 
additional scale of climatic variability can enhance ecological understanding of the 
invasion events. However, when invaded range occurrence data is not available, the most 
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conservative approach would be to use only monthly climatic variability (Fernández et 
al., 2012). These findings have also very important implications for the SDM community 
in general, especially for those of us interested in projecting species distributions in time. 
From Global Climate Model simulations, we know that future conditions will not only 
shift in their mean values, but that they will also increase their variability from one year 
to the next. This means that if two similar locations under future conditions show no 
significant change in average, they might still present differences in their variability and, 
thus, species can perceive these two locations as very different environments.  
 
Understanding species’ response to multiple scales of climate variability in the past can 
help us understand how they will respond to changes in different scales of climate 
variability in the future. Not only relevant to species distribution modeling but in a more 
broad ecological sense, a measure that captures the relative variability from one year to 
the next in a map can help us identify populations within a species that live under a 
relative higher degree of climatic stress, and perhaps use this information as a surrogate 
for their adaptive capacity to future changing conditions. Also, derived higher level 
statistics, such as analysis of extremes, can provide some information that can be used as 
proxy for species’ physiological limitations.  
 
The second chapter of my thesis confirms the importance of characterizing uncertainty in 
interpolated climate layers derived from weather stations. My results identify three clear 
sources of uncertainty that have an effect on model performance: environmental 
heterogeneity, inter-annual climatic variability and distance to the closet weather station 
(Fernández et al., 2013). Nonetheless, I acknowledge that these are not all the possible 
sources of uncertainty in interpolated products. Two elements related to the weather 
stations that should also be considered in future studies are the longevity (i.e., for how 
long the station has been collecting records) and the consistency (i.e., gaps in the data and 
also changes in instrumentation that can affect the measurements). Also important, is that 
I analyzed the three sources of uncertainty as independent elements, and there are 
circumstances where one source of uncertainty can enhance another one. For example, 
areas of high topographic heterogeneity, in some regions, are also remote areas with very 
low accessibility and, as a consequence, very low density of weather stations. Future 
research should evaluate the interactions between these variables. 
 
Environmental heterogeneity and inter-annual climatic variability can be derived in 
multiple ways and without necessarily having access to the original weather stations data 
that went into the creation of the final interpolated climatic products. However, for the 
distance to the closest weather station variable, which happens to be the one that has the 
highest effect on model performance, the information about weather stations locations 
used in interpolated products is crucial to identify regions where SDM users need to be 
particularly careful when making a decision on a model. A particular problem in 
developing countries is that most of the weather station information is not in digital form. 
If it is a challenge to obtain the locations of weather stations in these countries, is even 
more challenging to incorporate the records of those stations in interpolated products. 
The SDM community and the conservation community that often has more presence in 
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these countries should make an effort to promote the digitalization and sharing of these 
records. 
 
The results of the third chapter of my thesis	
  suggest that we could potentially use this 
high resolution “equivalent” as an alternative to downscaled GCMs in species 
distribution modeling and produce more reasonable and physically accurate estimates of 
the anticipated range shifts in response to projected climate change. When I compare the 
scenarios I developed to data from the CMIP5 the results showed that the warmer 
(normal precipitation) scenario is in the vicinity of the projections for the 2020’s and 
2030’s, which limits the use of our method to this time frame. Regions similar to 
California, where local manifestations of global climate depend on ocean-atmosphere 
dynamics are not rare around the world and our method provides an opportunity to 
understand the links between upwelling pulses and the terrestrial ecosystems that 
surround them, as a step towards its conservation and appropriate management.  
 
Important is that not all future climatic downscaled datasets are compatible with every 
question, taxa or region and sometimes spatial resolution is not the best metric to measure 
the appropriateness of a gridded datasets to be applied to answer certain question. The 
SDM community needs to engage climate modelers that can guide the selection of 
downscaled gridded datasets used to project species distribution in the future. 
 
Despite my findings, several methodological issues remain to be explored and solved in 
order to provide the methodological rigor that the species distribution modeling field 
highly needs. The preceding chapters that constitute this thesis abound with challenges 
for future work and new directions, hopefully as a consequence of a promising area of 
research. Some of the major future challenges that I perceive include: (1) the need to 
improve our species occurrence records, (2) the need to improve global environmental 
datasets, and finally (3) how to assess quality in aggregated datasets.  
 
The first point is related to the fact that for most of the species today we are forced to 
build 100% complete maps by using a sample of less than 0.1%. Although field 
observations are usually very expensive to obtain, it is very important to promote the 
maintenance and constant update of biodiversity repositories. Despite the initiatives to 
integrate the efforts of institutions that collect and host primary biodiversity data around 
the world (GBIF), we are still far away from having a global network of biodiversity that 
can not only serve as a data archive but also synthesize spatial and taxonomic information 
to provide yearly assessments of potential sites for new expeditions and revisits that are 
based on taxonomic, spatial and temporal coverage.  
 
The second point is related to the unique challenges that modeling the effect of climate 
change and invasive species present. For the U.S., the only sub-kilometer climatic time 
series dataset that exists at a continental scale is PRISM, which becomes useless if the 
range of your species is shifting into Canada, even worse if the species of interest is an 
invasive from a different country. Climate change range shifts and invasive species range 
expansions are the two applications of SDM that affect biodiversity regardless of political 
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boundaries or data boundary limitations. Solving global problems require global datasets 
created with the same quality standards. However, this will require a truly global effort to 
promote sharing and availability of global weather station data. Future research should 
focus on the creation of high resolution time series climatic data for the entire planet.  
 
Related to the previous two is the issue of aggregated datasets. It is very unusual in 
species distribution modeling to use data that was collected specifically with the objective 
to model the distribution of the species. Most of the time, modelers harvest and query 
multiple online databases and resources that they are familiar with at the time that is 
allocated for this task inside a project. However, they differ in quality from one dataset 
the next in projects that sometimes take advantage of hundreds of datasets (Fernandez et. 
al., 2012) is not transparent. Although there are some efforts to standardize the 
characterization of spatial uncertainty in museum collections the true is that once those 
georeferenced museum collections are integrated into a GIS the uncertainty associated 
with the latitude and longitude is often forgotten. 
 
Clearly much more work is needed and although the preceding chapters in my 
dissertation are restricted to a few aspects of the field of species distribution modeling I 
hope I have achieved nonetheless a step toward a better understanding of the spatial 
distribution of species in the planet. I believe that spatio-temporal analysis of biodiversity 
aided with technological advances and a solid conceptual development has the potential 
to bridge disciplines and to serve as a framework for truly cross disciplinary research and 
synthesis.
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Appendix A 
 
 

 
Figure S1. Lantana camara georeferenced occurrences. 
 

 
Figure S2. Leucaena leucocephala georeferenced occurrences. 
 

 
Figure S3. Linepithema humile georeferenced occurrences. 
 

 
Figure S4. Lithobates catesbeianus georeferenced occurrences.
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Figure S5. Mimosa pigra georeferenced occurrences. 
 

 
Figure S6. Rhinella marina georeferenced occurrences. 
 

 
Figure S7. Sphagneticola trilobata georeferenced occurrences. 
 

 
Figure S8. Sturnus vulgaris georeferenced occurrences. 
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Figure S9. Tamarix ramosissima georeferenced occurrences. 
 

 
Figure S10. Ulex europaeus georeferenced occurrences. 
 

 
Figure S11. FAOCLIM and GHCN temperature weather station locality maps. 
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Figure S12. FAOCLIM and GHCN precipitation weather station locality maps. 
 

 
Figure S13. Global reverse seasonality evaluation. We plotted values of weather stations 
against latitude for four purposely selected months that represent the peak of each season 
in the Northern hemisphere. Red represent stations that record temperature and blue 
represent stations that record precipitation. The first and second column represent mean 
monthly temperature and monthly total precipitation and how the change along the 
latitudinal gradient. The reverse pattern is clearly depicted by mean temperature where 
January almost mirrors July. Precipitation also shows a clear reverse pattern between 
January and July. The third and fourth columns represent inter-annual variability 
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values. Red depicts standard deviation for temperature recording weather stations and 
blue depicts coefficient of variation for precipitation recording stations. Note that the 
there is no reverse pattern in the third and fourth column which represent ClimVar. 
 

 
Figure S14. Lantana camara Maxent logistic model outputs. Left: models based on the 
native range localities. Right: models based on the invaded range localities. 
 

 
Figure S15. Leucaena leuocephala Maxent logistic model outputs. Left: models based on 
the native range localities. Right: models based on the invaded range localities. 
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Figure S16. Linepithema humile Maxent logistic model outputs. Left: models based on 
the native range localities. Right: models based on the invaded range localities. 
 

 
Figure S17. Lithobates catesbeianus Maxent logistic model outputs. Left: models based 
on the native range localities. Right: models based on the invaded range localities. 
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Figure S18. Mimosa pigra Maxent logistic model outputs. Left: models based on the 
native range localities. Right: models based on the invaded range localities. 
 

 
Figure S19. Rhinella marina Maxent logistic model outputs. Left: models based on the 
native range localities. Right: models based on the invaded range localities. 
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Figure S20. Spagneticola trilobata Maxent logistic model outputs. Left: models based on 
the native range localities. Right: models based on the invaded range localities. 
 

 
Figure S21. Sturnus vulgaris Maxent logistic model outputs. Left: models based on the 
native range localities. Right: models based on the invaded range localities. 
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Figure S22. Tamarix ramosissima Maxent logistic model outputs. Left: models based on 
the native range localities. Right: models based on the invaded range localities. 
 

 
Figure S23. Ulex europaeus Maxent logistic model outputs. Left: models based on the 
native range localities. Right: models based on the invaded range localities. 
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Table S1. Native and Invaded range SDM performance, summary of the models and 
comparison tests. AUC1: Bioclim environmental layer configuration. AUC2: ClimVar 
environmental layer configuration. AUC3: combined environmental layer configuration. 
The significance of the difference between models in an ANOVA with a Fisher’s least 
significant difference procedure is reported for the following comparisons: 1/2: Bioclim 
over ClimVar; 1/3: Bioclim over Bioclim-ClimVar; 2/3: ClimVar over Bioclim-ClimVar.  
 

 
Table S2. Niche similarity between native and invaded range, summary of the models 
and comparison tests. CONF1: Bioclim environmental layer configuration. CONF2: 
ClimVar environmental layer configuration. CONF3: combined environmental layer 
configuration. The significance of the difference between models in an ANOVA with a 
Fisher’s least significant difference procedure is reported for the following comparisons: 

Species AUC1 AUC2 AUC3 1/2 1/3 2/3 AUC1 AUC2 AUC3 1/2 1/3 2/3
Lantana camara 0.967 0.961 0.974 ** ** ** 0.975 0.961 0.975 ** **
Leucaena leucocephala 0.986 0.960 0.986 ** ** 0.965 0.960 0.973 ** ** **
Linepithema humile 0.989 0.981 0.992 ** ** ** 0.972 0.957 0.975 ** ** **
Lithobates catesbeianus 0.974 0.961 0.976 ** ** ** 0.968 0.962 0.977 ** ** **
Mimosa pigra 0.984 0.972 0.984 ** ** 0.991 0.979 0.991 ** **
Rhinella marina 0.967 0.960 0.973 ** ** ** 0.977 0.970 0.986 ** ** **
Sphagneticola trilobata 0.987 0.978 0.987 ** ** 0.985 0.971 0.985 ** **
Sturnus vulgaris 0.975 0.957 0.975 ** ** 0.974 0.959 0.982 ** ** **
Tamarix ramosissima 0.966 0.969 0.973 ** ** ** 0.965 0.961 0.973 ** ** **
Ulex europaeus 0.973 0.968 0.978 ** ** ** 0.983 0.977 0.988 ** ** **
    **<0.05

Treatment Contrast
Native range

Treatment Contrast
Invaded range

Species
CONF1 CONF2 CONF3 1/2 1/3 2/3

Lantana camara 0.5664 0.5405 0.4922 ** ** **
Leucaena leucocephala 0.5825 0.4418 0.4424 ** **
Linepithema humile 0.5075 0.4051 0.4125 ** ** **
Lithobates catesbeianus 0.4504 0.4119 0.4038 ** ** **
Mimosa pigra 0.6102 0.5063 0.4729 ** ** **
Rhinella marina 0.6395 0.5729 0.5194 ** ** **
Sphagneticola trilobata 0.6007 0.4881 0.5041 ** ** **
Sturnus vulgaris 0.5477 0.5734 0.4892 ** ** **
Tamarix ramosissima 0.5153 0.4935 0.4534 ** ** **
Ulex europaeus 0.4606 0.4147 0.4321 ** ** **
    **<0.05

Treatment Contrast
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1/2: Bioclim over ClimVar; 1/3: Bioclim over Bioclim-ClimVar; 2/3: ClimVar over 
Bioclim-ClimVar. 
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APPENDIX B 
 

 
Figure S24. Aphlecoma californica distribution, Top: Bird breeding Survey data; bottom: 
Bird Life International-NatureServe data. 
 

 
Figure S25. Buteo regalis distribution, Top: Bird breeding Survey data; bottom: Bird 
Life International-NatureServe data.
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Figure S26. Calamospiza melanocorys distribution, Top: Bird breeding Survey data; 
bottom: Bird Life International-NatureServe data. 
 

 
Figure S27. Callipepla squamata distribution, Top: Bird breeding Survey data; bottom: 
Bird Life International-NatureServe data. 
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Figure S28. Calypte anna distribution, Top: Bird breeding Survey data; bottom: Bird 
Life International-NatureServe data. 
 

 
Figure S29. Centrocercus urophasianus distribution, Top: Bird breeding Survey data; 
bottom: Bird Life International-NatureServe data. 
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Figure S30. Columba fasciata distribution, Top: Bird breeding Survey data; bottom: Bird 
Life International-NatureServe data. 
 

 
Figure S31. Dendragapus obscures distribution, Top: Bird breeding Survey data; 
bottom: Bird Life International-NatureServe data. 
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Figure S32. Dendroica caerulescens distribution, Top: Bird breeding Survey data; 
bottom: Bird Life International-NatureServe data. 
 

 
Figure S33. Limnothlypis swainsonii distribution, Top: Bird breeding Survey data; 
bottom: Bird Life International-NatureServe data. 



	
  
	
  

89	
  
	
  

 
Figure S34. Melanerpes lewis distribution, Top: Bird breeding Survey data; bottom: Bird 
Life International-NatureServe data. 
 

 
Figure S35. Picoides albolarvatus distribution, Top: Bird breeding Survey data; bottom: 
Bird Life International-NatureServe data. 
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Figure S36. Picoides borealis distribution, Top: Bird breeding Survey data; bottom: Bird 
Life International-NatureServe data. 
 

 
Figure S37. Picoides nuttalli distribution, Top: Bird breeding Survey data; bottom: Bird 
Life International-NatureServe data. 
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Figure S38. Pyrocephalus rubinus distribution, Top: Bird breeding Survey data; bottom: 
Bird Life International-NatureServe data. 
 

 
Figure S39. Selasphorus platycercus distribution, Top: Bird breeding Survey data; 
bottom: Bird Life International-NatureServe data. 
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Figure S40. Selasphorus sasin distribution, Top: Bird breeding Survey data; bottom: 
Bird Life International-NatureServe data. 
 

 
Figure S41. Tympanuchus cupido distribution, Top: Bird breeding Survey data; bottom: 
Bird Life International-NatureServe data. 
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Figure S42. Vermivora luciae distribution, Top: Bird breeding Survey data; bottom: Bird 
Life International-NatureServe data. 
 

 
Figure S43. Vermivora virginiae distribution, Top: Bird breeding Survey data; bottom: 
Bird Life International-NatureServe data. 
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Figure S44. Precipitation (left) and temperature (right) weather stations combined from 
FAOCLIM-2 and GHCN. 
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APPENDIX C 
 

 
Figure S45. Minimum annual temperature anomalies calculated from 1895 to 2010 base period. 
 

 
Figure S46. Maximum annual temperature anomalies calculated from 1895 to 2010 base period.
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Figure S47. Assignment of individual years to climate scenarios. Each white or gray circle 
represents minimum annual temperature and total precipitation anomalies for an 
individual year between1895 and 2010.  

 

 
Figure S48. Assignment of individual years to climate scenarios. Each white or gray circle 
represents maximum annual temperature and total precipitation anomalies for an 
individual year between1895 and 2010. 
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Figure S49. PRISM monthly minimum temperatures baseline. 
 

 
Figure S50. PRISM monthly mean temperatures baseline. 
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Figure S51. PRISM monthly maximum temperatures baseline. 
 

 
Figure S52. PRISM monthly total precipitation baseline. 
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Figure S53. PRISM monthly vapor pressure baseline. 
 

 
Figure S54. Climatic water deficit derived from PRISM baseline. 
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Figure S55. Predicted suitable habitat for the eight scenarios we developed. Left, based on 
years selected from the minimum temperature and total annual precipitation anomalies. 
Right, based on years selected from the maximum temperature and annual precipitation 
anomalies. 
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Figure S56. Synthetic generalization of the predicted expansion, contraction and stability 
for the eight scenarios we developed. Left, based on years selected from the minimum 
temperature and total annual precipitation anomalies. Right, based on years selected from 
the maximum temperature and annual precipitation anomalies. 
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Figure S57. Multi-model mean annual temperature and precipitation anomalies for 
California projected for the 2020s in the 21st century compared to historical annual 
temperature and precipitation anomalies (circles as in Figure 10). 

 
Figure S58. Multi-model mean annual temperature and precipitation anomalies for 
California projected for the 2030s in the 21st century compared to historical annual 
temperature and precipitation anomalies (circles as in Figure 10). 
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Figure S59. Multi-model mean annual temperature and precipitation anomalies for 
California projected for the 2040s in the 21st century compared to historical annual 
temperature and precipitation anomalies (circles as in Figure 10). 

 

 
Figure S60. Multi-model mean annual temperature and precipitation anomalies for 
California projected for the 2050s in the 21st century compared to historical annual 
temperature and precipitation anomalies (circles as in Figure 10). 
 
 




