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Abstract

Optic atrophy 1 (OPA1) is a dynamin-like GTPase located in the inner mitochondrial membrane and mutations in OPA1 are
associated with autosomal dominant optic atrophy (DOA). OPA1 plays important roles in mitochondrial fusion, cristae
remodeling and apoptosis. Our previous study showed that dOpa1 mutation caused elevated reactive oxygen species (ROS)
production and resulted in damage and death of the cone and pigment cells in Drosophila eyes. Since ROS-induced
oxidative damage to the cells is one of the primary causes of aging, in this study, we examined the effects of heterozygous
dOpa1 mutation on the lifespan. We found that heterozygous dOpa1 mutation caused shortened lifespan, increased
susceptibility to oxidative stress and elevated production of ROS in the whole Drosophila. Antioxidant treatment partially
restored lifespan in the male dOpa1 mutants, but had no effects in the females. Heterozygous dOpa1 mutation caused an
impairment of respiratory chain complex activities, especially complexes II and III, and reversible decreased aconitase
activity. Heterozygous dOpa1 mutation is also associated with irregular and dysmorphic mitochondria in the muscle. Our
results, for the first time, demonstrate the important role of OPA1 in aging and lifespan, which is most likely mediated
through augmented ROS production.
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Introduction

OPA1 is a ubiquitously expressed large dynamin-related

GTPase, encoded by the nuclear genome and targeted to the

inner mitochondrial membrane [1–3]. The predicted structure of

OPA1 reveals a mitochondrial targeting signal, a transmembrane

domain, a presenilin-associated rhomboid-like protease (PARL)

recognition site, and a dynamin/GTPase domain. The mitochon-

drial inner membrane PARL is required for the correct

proteolytical processing of OPA1 and subsequent assembly of

OPA1 oligomers [4]. OPA1 promotes mitochondrial fusion and is

essential for maintaining normal mitochondrial morphology. In

addition, OPA1 regulates cytochrome c mediated apoptosis by

modulating mitochondrial cristae structures [5,6].

In human, mutations of OPA1 cause dominant optic atrophy

(DOA), the most common form of autosomal inherited optic

neuropathy. DOA is characterized by degeneration of retinal

ganglion cells [7] and progressive loss of vision [8]. Optical

atrophy can be accompanied by deafness and/or neurological

manifestations [9–12]. The most prevalent form of DOA is caused

by mutations in the OPA1 protein [13]. Although a substantial

progress has been made to unravel the molecular function of

OPA1, the pathogenesis of DOA remains poorly understood.

Recently, we have generated a Drosophila knockout model for optic

atrophy [14]. Heterozygous mutation of dOpa1 by a P-element or

transposon insertions caused no discernable eye phenotype under

a light microscope, whereas the homozygous mutation resulted in

embryonic lethality. In the eye-specific somatic clones, the somatic

homozygous mutation of dOpa1 in the eyes caused rough

(mispatterning) and glossy (decreased lens and pigment deposition)

eye phenotypes in adult Drosophila. In Drosophila eyes, dOpa1

mutation resulted in elevated ROS generation and mitochondrial

fragmentation associated with damage and death of the cone and

pigment cells. Treatment with antioxidants or superoxide

dismutase (SOD1), as well as over-expression of human SOD1

did reverse the glossy phenotype, further indicating the important

role of ROS in etiology of optic atrophy.

ROS remain as one of the most widely accepted cause of aging.

Mitochondrial dysfunction was shown to affect longevity [4,15].

Aging in biological systems is also accompanied by mitochondrial

morphological changes [15]. Reducing mitochondrial fission in

two fungi models resulted in decreased mitochondrial fragmenta-

tion and extended lifespan by increased resistance to induction of

apoptosis [16]. Since OPA1 is ubiquitously expressed and OPA1
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mutation is associated with altered mitochondrial dynamics and

elevated ROS production in the Drosophila retinal cells, OPA1

insufficiency may also accelerate aging and affect lifespan. In this

study, we further exploited our Drosophila model to investigate the

effects of dOpa1 mutation on ROS production in Drosophila,

mitochondrial complex activities and lifespan. We found that

heterozygous mutation of dOpa1 results in a shortened lifespan, an

increased production of ROS, sensitivity to oxidative stress, defects

in complex activity of respiratory chain and aberrant mitochon-

drial morphology. Our studies suggest that heterozygous mutation

of dOpa1 causes shortened lifespan mediated through increased

ROS production.

Results

Heterozygous mutation of dOpa1 results in decreased
lifespan in Drosophila

To test the hypothesis that heterozygous mutation of dOpa1

affects the lifespan in Drosophila, we performed a longevity assay on

a large cohort (n = 300/genotype) of dOpa1+/2 (dOpa1+/in3,

dOpa1+/ex2) and dOpa1+/+ (dOpa1+/+ and dOpa1+/ex14) control

Drosophila. We previously showed that the P-element insertion in

exon 2 (dOpa1+/ex2) and transposon insertion in intron 3 (dOpa1+/

in3) disrupted dOpa1 expression while insertion in non-coding exon

14 had no effect on the dOpa1 protein level, therefore, dOpa1+/ex14

also served as a control. Drosophila were maintained at 40–50

Drosophila/vial, transferred to fresh food and counted every 3 days.

As shown in Figure 1, the dOpa1+/2 mutant strain had a significant

reduction in both average and maximum lifespan. Since there is

no phenotypical difference between dOpa1+/in3 and dOpa1+/ex2,

dOpa1+/in3 is referred as dOpa1+/2 in all subsequent experiments.

Wild-type Drosophila with the same background are used as the

control and referred as dOpa1+/+.

Heterozygous mutation of dOpa1 results in decreased
resistance to oxidative stress and increased reactive
oxygen species (ROS)

ROS damage biological macromolecules and have been shown

to be a major cause of aging. In a previous study, we found that

somatically generated homozygous dOpa1 mutation large clones

displayed higher ROS levels in dOpa+/2 cells than in dOpa12/2 cells

in the eyes [14]. In this experiment, we used MitoSOX to measured

the ROS levels of 7 day old dOpa1+/2 and dOpa1+/+ whole flies, and

observed that both ROS levels and generation rates were

significantly elevated in dOpa1+/2 Drosophila (Figure 2A, B).

One important genetic determinant for the lifespan of an

organism is its sensitivity to oxidative stress [17]. Paraquat can

generate more superoxide anion that can lead to synthesis of more

ROS [18]. Susceptibility to paraquat can indicate the tolerance of

the organism to oxidative stress. To test the overall fitness of

dOpa1+/2 compared to dOpa1+/+ Drosophila, we exposed adult flies

to paraquat for a prolonged period of time and monitored their

survival. Compared to control animals, dOpa1+/2 Drosophila

exhibited a significantly increased sensitivity to oxidative stress

(Figure 2C).

Heterozygous mutation of dOpa1 leads to a respiratory
defect in Complex II and III of the electron transport
chain (ETC)

In order to further investigate the mechanism by which dOpa1

mutation elevates ROS, we performed a detailed comparison of

respiration of the mitochondria of dOpa1+/2 and dOpa1+/+ adult

Drosophila (7 d.o.), as inhibition of the mitochondrial ETC can

increase ROS. In oxygen consumption assays, metabolism of

NADH-linked complex I substrates pyruvate and malate was

unaffected by dOpa1+/2 mutation while succinate-driven respira-

tion via complex II was significantly decreased (P,0.05) in

dOpa1+/2 Drosophila (Figure 3A). Consistent with these findings,

while no significant differences were observed in the specific

activities of complexes I and IV in 7-day old dOpa1+/2 and

dOpa1+/+ flies, complexes II (38% reduction, p = 0.001) and III

(37% reduction, p = 0.026) activities were significantly attenuated

in dOpa1+/2 Drosophila (Figure 3B). In 35 d.o. dOpa1+/2 flies, a

similar impairment of enzymatic activities in complexes II (37%

decrease, p = 1.97e-07) and III (28% decrease, p = 0.008) was

observed. In addition, moderate (10%), but significant (p = 0.02)

decline of complex IV activity was observed in 35 d.o. dOpa1+/2

flies (Figure 3C). Our result also showed that there was a gender

difference in the complex II activity. Heterozygous mutation of

dOpa1 in males caused more significant inhibition of the complex

II activity at 5 week of age (Supplemental Figure S1).

Mitochondria are not only the major sources of ROS

production, but the complexes are also vulnerable targets of

ROS [19]. To investigate whether the decreased complex activities

cause increased ROS production or increased ROS inhibits the

complex activities in the dOpa1+/2 mutant files, we studied their

mitochondrial aconitase activity. In the 7-day old flies, no

significant differences in mitochondrial aconitase activities were

observed between dOpa1+/2 and dOpa1+/+ flies (data not shown).

However, in the 35-day old dOpa1+/2 flies, mitochondrial

aconitase activities were reduced by 22% relative to age-matched

controls (Figure 3D). Furthermore, after reactivation with

dithiothreitol and iron, aconitase activity was restored to an even

higher level in dOpa1+/2 flies. This result suggests that ETC

dysfunction is the primary cause. Since the inhibition of aconitase

activity is only observed in the older flies and the inhibition was

reversible, increased ROS may enforce a vicious cycle and further

lead to mitochondrial dysfunction.

The shortened lifespan of heterozygous dOpa1 mutants
is extendable through the administration of antioxidants
in male flies, but not in female flies

Exogenously supplemented antioxidant can detoxify ROS and

may retard aging. We have shown that antioxidant treatments

were able to ameliorate ROS damage-induced glossy eye

phenotype in dOpa1 mutant large clones [14]. To study if

antioxidant administration can reverse the observed reduced

lifespan of the dOpa1+/2 mutant strain, we added MnTBAP to the

fly food and generated the survival curves for dOpa1+/2 flies. Since

males and females of the same species may differ in their responses

to interventions that affect lifespan [20], we separated male and

female flies in the survival study. Indeed we observed sex-specific

effects of antioxidant on lifespan in dOpa1+/2 flies. While

MnTBAP treatment showed no consequences on lifespan of

female dOpa1+/2 flies, significantly increased lifespan (50%

survival time increased by 7 days) was observed in antioxidant-

fed male dOpa1+/2 flies (Figure 4).

Heterozygous mutation of dOpa1 results in highly
irregular and dysmorphic mitochondria in the skeletal
muscle of adult Drosophila

We previously described morphologically perturbed mitochon-

dria in dOpa1+/2 cells of ‘large clone’ Drosophila compound eyes

[14]. Since OPA1 is ubiquitously expressed, it is interesting to

investigate if dOpa1 mutation also leads to morphological

aberrancy of mitochondria in other organs than the eyes. We

dOpa1 Mutation and Lifespan
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used TEM analysis (Figure 5) and found that the dOpa1+/2

mitochondria were highly irregular and dysmorphic (Left)

compared to dOpa1+/+ mitochondria (Right) in the muscle. This

result suggests that heterozygous mutation of dOpa1 also affects the

mitochondrial dynamics in Drosophila.

Discussion

OPA1 is involved in mitochondrial fusion, cristae organization,

control of apoptosis, ROS production and mutations in OPA1 genes

lead to DOA. Using the Drosophila model, we demonstrated that

heterozygous mutation of dOpa1 resulted in a shortened lifespan,

enhanced production of ROS and boosted sensitivity to oxidative

stress. Impairment of respiratory chain complex activities and age-

dependent defects in aconitase activity were also observed, which is

associated with irregular and dysmorphic mitochondria in the

skeletal muscle. In male dOpa1+/2 flies, shortened lifespan can be

increased by administration of antioxidants.

Mitochondrial energy metabolism and ROS toxicity are

important factors affecting Drosophila aging. The Indy mutant

restricting the availability of calories lived longer [21]. Transgenic

flies expressing increased Cu/ZnSOD and catalase [22] displayed

extended lifespan. OPA1 is an important regulator of mitochondrial

fusion and provide protection for the mitochondria from damage.

OPA1 mutations in DOA patients have been associated with

mitochondrial fragmentation [23,24], mtDNA copy number

reduction [25] and deletions [12], reduced ATP generation

capability [26,27], and increased susceptibility to apoptosis [28].

All these suggest OPA1 insufficiency relates to mitochondrial

dysfunction, a well-known factor contributing to accelerated

senescence, implicating the involvement of OPA1 in aging. Indeed,

in our Drosophila model, lifespan of the dOpa1+/2 mutants was

significantly reduced, demonstrating the important role of OPA1 in

longevity. We also observed increased mitochondrial ROS levels

and production rates in dOpa1+/2 adult Drosophila. Excessive

mitochondrial ROS can shorten the lifespan by directly impairing

mitochondrial genome, lipids of the inner membrane, mitochon-

drial protein activity and/or affecting nuclear gene transcription.

In our dOpa1+/2 Drosophila model, the most severely damaged

electron transport chain unit is complex II, suggesting that

complex II is an important determinant of Drosophila lifespan.

This result is consistent with a comprehensive study of the lifespan

in Drosophila with RNAi-inactivation of nuclear genome-encoded

mitochondrial complexes I–V genes. The study shows one third of

the RNAi lines that exhibited altered lifespan resulted from

inactivation of complex II-encoding genes (David Walker, UCLA,

personal communication).

In Hela cells, inhibition of Drp1 modifies the pattern of OPA1

isoforms, results in dysfunction of OPA1 and leads to a significant

decrease in complex II respiration with complex I function intact

[29]. The correlation between OPA1 defect and complex II

dysfunction in both flies and Hela cells suggests that the mitochondria

structure is important for integrity of complex II functions.

Mitochondrial complex II oxidizes succinate to fumarate and

passes the electrons into the quinine, thus serving as the only

Figure 1. Heterozygous dOpa1 mutations shorten lifespan in Drosophila. The survival curves for Drosophila with P Element insertions in
exon2 (dOpa1+/ex2), intron 3 (dOpa1+/in3), and exon 14 (dOpa1+/ex14) of dOpa1, as well as wild-type (dOpa1+/+) show that heterozygous mutations in
exon 2 and intron 3 of dOpa1 significantly reduced both median and maximum lifespan. All dOpa1+/ex2 and dOpa1+/in3 Drosophila had died by Day 61.
doi:10.1371/journal.pone.0004492.g001

dOpa1 Mutation and Lifespan
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mitochondrial membrane complex involved in both electron

transport and the tricarboxylic acid cycle. It was shown that

complex II defect alone is associated with an increased level of

ROS [30]. Mutation in sdhB in Drosophila, encoding for subunit B

of complex II, displays structural abnormalities in the mitochon-

dria, causes an increased level of mitochondrial hydrogen

peroxide, and is associated with hypersensitive to oxygen and

shortened lifespan [30]. In Caenorhabditis elegans, a mutation in mev-

1, encoding for a subunit of complex II, also resulted in augmented

ROS production and shortened lifespan [31,32]. In fact, the short-

lived mutant exhibited increased level of nuclear damage,

demonstrating mitochondrial derived oxidants may also be a

Figure 2. Heterozygous dOpa1 mutation results in increased Reactive Oxygen Species (ROS) production and decreased resistance
to oxidative stress. ROS production rate (A) and ROS levels (B) in dOpa1+/2 and dOpa1+/+ Drosophila were measured by MitoSOX fluorescence.
Survival curves of dOpa1+/2 and dOpa1+/+ Drosophila exposed to 15 mM paraquat (C) indicated that dOpa1 deficiency was associated with increased
sensitivity to paraquat treatment.
doi:10.1371/journal.pone.0004492.g002

dOpa1 Mutation and Lifespan
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significant source of overall genomic instability [33]. Whether

OPA1 deficiency leads to nuclear complex II gene transcriptional

reduction, damage to complex assembly or protein function

remains to be elucidated.

In contrast to our data, in OPA-RNAi MEF cells, knock down of

OPA1 induced a severe reduction in respiration, and oxygen

consumption for complexes I, III and IV were all compromised

[34]. Fibroblast cells derived from DOA patients with missense

mutation showed a significant impairment of oxidative phosphory-

lation (OXPHOS), mostly mediated by complex I [27]. Furthermore,

Co-immunoprecipitation experiments revealed a direct interaction

between OPA1 and complexes I, II, and III, but not IV [27]. The

discrepancy might be associated with the type of cells investigated —

cultured fibroblast cells preferentially use anaerobic glycolysis for

energy production and so mitochondrial OXPHOS in MEF might

be metabolically different from that in vivo. In addition, different OPA1

mutations can also result in variable energy defects [35,36]. In our

experiments, mutant dOpa1 Drosophila were generated by P-element

or transposon insertion and resulted in dOpa1 haploinsufficiency.

ROS can damage the electron transport chain. The respiratory

chain malfunction can also lead to increased ROS production,

constituting a reinforcing vicious cycle and possibly resulting in

catastrophic breakdown of mitochondrial function [37]. In the

dOpa1+/2 flies, both increased ROS levels and compromised ETC

functions were observed. It is intriguing to investigate which serves

as the primary cause. To distinguish between these two

possibilities, we studied mitochondrial aconitase activity. At one

week of age, heterozygous mutation of dOpa1 caused a significant

decrease in the complex activities, but aconitase activity was

normal, suggesting that dysfunction of ETC is the primary cause.

However, we also observed an age-dependent aconitase activity

decline and an elevated aconitase protein level in dOpa1+/2 flies

after reactivation at 5 weeks of age, suggesting that the aconitase

activity reduction was the consequence of inactivation of existing

enzyme by increased ROS. The elevated amount of extant

aconitase in dOpa1+/2 flies might reflect the physiological

responses to synthesize more aconitase protein to compensate for

the reduction in enzymatic activities. These data indicate that

decreased complex activities are the primary underlying mecha-

nism and the secondary increase of ROS reinforces vicious cycle

and results in catastrophic mitochondrial dysfunction, including

decrease in ATP production. The gradual accumulation of ROS

Figure 3. Heterozygous dOpa1 mutation impairs mitochondrial bioenergetics. (A) dOpa1+/2 Drosophila displayed compromised oxygen
consumption driven by complex II substrate succinate. Mitochondrial respiratory chain complexes II and III activities were also significantly
attenuated in both 7 d.o. (B) and 35 d.o. (C) dOpa1+/2 Drosophila. In the 35-day old dOpa1+/2 flies, mitochondrial aconitase activities were reduced by
22% relative to age-matched controls (D).
doi:10.1371/journal.pone.0004492.g003

dOpa1 Mutation and Lifespan
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Figure 4. The shortened lifespan of heterozygous dOpa1 mutants is extendable through the administration of antioxidants in male
flies, but not in female flies. dOpa1+/2 mutants and dOpa1+/+ controls were transferred to fresh food every two to three days while aging. Male
and female dOpa1+/2 Drosophila and dOpa1+/+Drosophila were separated and maintained on with and without 100 mM MnTBAP antioxidant food.
Longevity assays were performed. MnTBAP feeding significantly extended lifespan of male dOpa1+/2 Drosophila (A), but not in the females (B).
doi:10.1371/journal.pone.0004492.g004

Figure 5. dOpa1+/2 mitochondria are highly irregular and dysmorphic in the muscle. Tissues from adult Drosophila were analyzed by
transmission electron microscopy. Mitochondrial phenotypes in muscle (A, B). The dOpa1+/2 mitochondria were highly irregular and dysmorphic
(Left) compared to wild type mitochondria (Right). Bar = 0.5 mm.
doi:10.1371/journal.pone.0004492.g005

dOpa1 Mutation and Lifespan
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and resultant chronic damage to the mitochondria is consistent

with the progressive manifestation of phenotypes in OPA1-related

DOA patients.

Gender is an important and profound factor in aging and

lifespan and it is predicted that the longer-lived gender should

have lower levels of oxidative stress. In both mammals and flies,

females generally have a longer lifespan, possibly due to the sub-

optimal mitochondrial function in the males [40]. The insulin/

IGF pathway [19,41] and JNK-dependent signaling [42] are

important regulators for tolerance to oxidative stress and longevity

in Drosophila and both cascades can be activated by ROS.

Generally, females respond better to antioxidant interventions.

The lifespan extension impacts of human SOD over-expression in

Drosophila were more obvious in the females in six out of ten

different genetic backgrounds studied while only one male

background showed significant increase [43]. Interestingly, the

antioxidant rescue of lifespan for heterozygous dOpa1 mutants is

only effective in the males, but not in the females in our study,

which is consistent with the complex II activity. The gender-

specific variation of antioxidant influence can also be explained by

differences in feeding habits and/or distinct responses to

intracellular redox status changes between male and female flies.

In summary, OPA1 deficiency causes malfunction of ETC and

results in elevated production of ROS, which in turn can further

impaired the complex activity and mitochondrial bioenergetic

capability and consequently accelerate aging in dOpa1+/2 mutants.

Whether OPA1 insufficiency causes ETC dysfunction and induces

augmented ROS generation is independent of its role in

mitochondrial dynamics and apoptosis, as suggested in the C.

elegans DOA model [44], requires furthering elucidation. In the

future, the observations from the Drosophila DOA model can be

extended to human DOA subjects and have the potential to

establish a new model for longevity. Data presented in this study

also suggest that antioxidants can sequester ROS and may hold

potential as an effective therapeutic agent in this condition.

Materials and Methods

Drosophila stocks
y[d2] w[1118] P{ry[+t7.2] = ey-FLP.N}2; P{ry[+t7.2] = -

neoFRT}42D PBac{WH}CG8479f02779 (dOpa1+/2) and y[d2]

w[1118] P{ry[+t7.2] = ey-FLP.N}2; P{ry[+t7.2] = neoFRT}42D

PBac{WH}CG8479f03594 (dOpa1+/+) Drosophila were used in this

study. These stocks were established in a previous study [14].

dOpa1+/2 mutant type and dOpa1+/+ control were transferred to

new food every two to three days while aging. dOpa1+/2(antiox)

Drosophila and dOpa1+/+(antiox)Drosophila are heterozygous mutant or

wild-type Drosophila and were kept on antioxidant food.

Longevity assay and Drosophila husbandry
Lifespan was determined under standard conditions for

Drosophila husbandry (25uC, 50% Humidity, 12 hour light cycle)

as described before [46]. Drosophila were collected over a 24 hour

period and aged in vials containing standard Drosophila media (40–

50 Drosophila/vial; same sex) and transferred every 3–6 days to

fresh Drosophila media.

ROS measurements
Adult Drosophila were collected within 12 h of emergence under

light CO2 anesthesia, and transferred into vials with food in

groups of 15, sexes separate. Drosophila were tested for the rate of

superoxide anion production as well as levels of superoxide using

MitoSOX (Invitrogen) based on previously established methods

[14]. Briefly, tissue homogenates of 40 adult Drosophila were

stained with MitoSOX (2.5 mM), and fluorescence was performed

at 510 nm exciation/580 nm emission via a Perkin Elmer L20B

luminescence spectrometer.

Paraquat survival
Adult Drosophila were collected within 12 h of emergence under

light CO2 anesthesia, and transferred into vials with food in groups

of 15 Drosophila per vial, sexes separate. Seven days after

emergence, Drosophila were tested for resistance to paraquat

(Sigma), based on previously established methods [46]. Drosophila

were starved for 2 h by placing them in empty vials, and then

transferred into test vials containing filter paper disks soaked with

20 mM paraquat and 5% sucrose or 5% sucrose alone as a

control. The starvation treatment ensures that initial ingestion of

paraquat does not vary between lines because of differences in

feeding status. Numbers of living Drosophila were recorded at 24 h

intervals.

Mitochondria isolation and respiration
Mitochondria were isolated as described before [46]. Respira-

tion rates were determined by oxygen consumption using a Clark-

type electrode and metabolic chamber containing 650 mL of

reaction buffer consisting of 225 mM mannitol, 75 mM sucrose,

10 mM KCl, 10 mM Tris-HCl and 5 mM KH2PO4 (pH 7.2) at

25uC. Mitochondrial ATP production rates were calculated from

ADP consumption rates during state III respiration.

Mitochondrial enzyme assays
Citrate synthase activity was analyzed by the reduction of 5,59-

dithiobis-2-nitrobenzoic acid at 412 nm in the presence of acetyl-

CoA and oxaloacetate [47]. Aconitase activity was measured by

monitoring conversion of citrate into a-ketoglutarate at 340 nm at

25uC using the coupled reduction of NADP to NADPH [48].

Aconitase was reactivated by incubation with 2 mM dithiothreitol

and 0.2 mM ferrous ammonium sulfate before repeating the

enzymatic activity assays.

Mitochondrial respiratory chain complex I–IV activity
assay

Complex I (NADH dehydrogenase) activity was determined as

the rotenone-sensitive NADH oxidation at 340 nm, using the

coenzyme Q analogue 2, 3-dimethyl-5-methyl 6-n-decyl-1, 4-

benzomethyluinone (DB) as an electron acceptor [47,49]. The

activity of complex II (succinate dehydrogenase) was analyzed by

tracking the secondary reduction of 2,6 –dichlorophenolindophe-

nol by ubiquinone-2 at 600 nm [47,49]. Complex III (cytochrome

bc1 complex) activity was determined by measuring the reduction

of cytochrome c at 550 nm with reduced decylubiquinone [47,49].

Complex IV (cytochrome c oxidase) activity was measured by

monitoring the oxidation of reduced cytochrome c as a decrease of

absorbance at 550 nm [47,49]. Complex I–IV activities were

normalized by citrate synthase activity and then used in the

analysis.

Transmission electron microscopy (TEM)
TEM was performed as previously described [14]. Briefly, adult

Drosophila were fixed overnight in 4% paraformaldehyde at 4uC
and transferred to a post-fixation solution of 1% glutaraldehyde

for 1 hour, then rinsed in PBS and placed in 1% osmium tetroxide

for 20–60 min. The samples were dehydrated by ethanol and

propylene oxide immersion. A flat-embedding procedure was used

followed by trimming of the tissue block with a single-edged razor

blade under a dissecting microscope (Nikon). A short series of

dOpa1 Mutation and Lifespan
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ultrathin (60–80 nm) sections of the whole flies was cut from each

block with an ultramicrotome (Reichert-Jung) and serial sections

were collected on mesh and formvar-coated slot grids. The

sections were stained with uranylacetate and lead citrate to

enhance contrast. Skeletal muscle was examined with a Philips

CM-10 transmission electron microscope and images of omma-

tidial units were captured with a Gatan digital camera.

Supporting Information

Figure S1 Heterozygous dOpa1 mutation causes an age-

dependent gender-specific difference of complex II activity

decline.

Found at: doi:10.1371/journal.pone.0004492.s001 (0.08 MB JPG)
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