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Abstract

The genomic sequence of the horse has been available since 2009, providing critical

resources for discovering important genomic variants regarding both animal health and pop-

ulation structures. However, to fully understand the functional implications of these variants,

detailed annotation of the horse genome is required. Due to the limited availability of func-

tional data for the equine genome, as well as the technical limitations of short-read RNA-

seq, existing annotation of the equine genome contains limited information about important

aspects of gene regulation, such as alternate isoforms and regulatory elements, which are

either not transcribed or transcribed at a very low level. To solve above problems, the Func-

tional Annotation of the Animal Genomes (FAANG) project proposed a systemic approach

to tissue collection, phenotyping, and data generation, adopting the blueprint laid out by the

Encyclopedia of DNA Elements (ENCODE) project. Here we detail the first comprehensive

overview of gene expression and regulation in the horse, presenting 39,625 novel tran-

scripts, 84,613 candidate cis-regulatory elements (CRE) and their target genes, 332,115

open chromatin regions genome wide across a diverse set of tissues. We showed substan-

tial concordance between chromatin accessibility, chromatin states in different genic fea-

tures and gene expression. This comprehensive and expanded set of genomics resources

will provide the equine research community ample opportunities for studies of complex traits

in the horse.

Author summary

Functional annotation of a reference genome provides critical information that pertains

the tissue-specific gene expression and regulation. Non-model organisms often rely on

existing annotations of human and mouse genomes and the conservation between species

for their genome annotation. This approach has limited power in annotating transcripts
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and regulatory elements that are less evolutionarily conserved. Such are the cases of alter-

natively spliced isoforms and enhancer elements. In a large-scale collaborated effort,

Functional Annotation of Animal Genome (FAANG) aims to generate species-specific

and tissue-aware functional annotation for farm animals. In this study, we present the

overall annotation efforts and findings from the equine FAANG group. This integrated

annotation for the horse genome provides, for the first time, a comprehensive overview of

gene expression and regulation landscape in nine major equine tissues, as well as an ana-

lytical framework for further inclusion of other important tissues.

Introduction

A reference genome for the horse has been available since 2009 [1], with an improved assembly

EquCab3.0 available since 2018 [2]. EquCab3.0 contains 3,771 gaps comprising 9 Mb (0.34%

of the genome) and has a scaffold N50 of 86 Mb, with 99.7% mammalian Benchmark Universal

Single-Copy Orthologs (BUSCO). This high-quality assembly has enabled development of crit-

ical tools and many important discoveries in the horse, which were reviewed by Raudsepp

et al. [3].

Accompanying the reference genome, annotation was made available via the RefSeq [4]

and Ensembl [5] annotation pipelines. The latest RefSeq annotation for EquCab3.0 contains

33,146 genes, of which 21,129 are protein coding, with an average isoform-to-gene ratio of 2.3

[6]. The Ensembl annotation contains 29,969 genes, of which 20,955 are protein coding, with

an average isoform-to-gene ratio of 2.0 [7]. With limited public mRNA-seq data for the horse,

both RefSeq and Ensembl annotation relied heavily on computational prediction and compar-

ative genomics by translating human and mouse annotation to the horse genome. While this

approach produced high-quality annotation for most highly conserved protein-coding genes,

it was not able to accurately identify many alternate splicing (AS) in multi-exonic genes. This

is evident when comparing the isoform-gene ratios annotated in the horse genome (2.3 and

2.0 in RefSeq and Ensembl, respectively) to that annotated in the human genome (4.0) [8].

While this difference can be attributed to vast quantities of transcriptomic data available in

human, recent developments in the long-read sequencing technology provided a unique

opportunity for non-model organisms to quickly annotate AS without generating a prohibi-

tively large amount of data. Alternative splicing has been shown to drive cell differentiation

and tissue-specific functions [9] and variants leading to aberrant AS have been associated with

many diseases [10]. While in-silico tools exist to predict variant-induced alterations in AS,

accurate annotation of AS isoforms is necessary to establish a reference [11]. Recent advances

in long-read sequencing technologies have enabled new approaches to experimentally catego-

rize AS across tissues [12]. In particular, Iso-seq has been successfully applied to various spe-

cies to characterize AS isoforms [13–15].

In eukaryote genomes, DNA is organized in a three-dimensional structure, where nucleo-

somes are dynamically unpacked in actively transcribed or regulatory regions [16–19]. This

dynamic chromatin remodeling constitutes a crucial aspect of gene regulation: cis-regulatory

elements are brought near their target regions by formation of chromatin loops and transcrip-

tion factors (TF) are recruited to exposed DNA elements. Genetic variants altering this regula-

tory landscape have been demonstrated to have phenotypic effects [20–22]. Therefore,

annotating the genome by specifically defining these cis-regulatory elements (CREs) can pro-

vide significant context to understanding genetic variations contributing to many important

traits in the horse.
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accessed from ENA and SRA under the accession

number PRJEB53020. ATAC-seq data can be

accessed from ENA and SRA under the accession

number PRJEB53037 (https://data.faang.org/

dataset/PRJEB53037). Histone modification peaks

can be accessed from FAANG data portal (https://

data.faang.org/) under the accession number

PRJEB35307 (https://data.faang.org/dataset/

PRJEB35307). CTCF ChIP-seq data can be

accessed from SRA/ENA under project accession

PRJEB41079. Histone ChIP-seq data were

published by Kingsley et al. (https://doi.org/10.

3390/genes11010003) and Barber et al (thesis;

https://digitalcommons.unl.edu/animalscidiss/233/

). The GO ontology database link used for the

pathway analyses can be found at 10.5281/

zenodo.6399963 and was released on March 3,

2022. The integrated track hub hosted on UCSC

genome browser can be accessed at https://

genome.ucsc.edu/s/cjfinno/equCab3. All data

underlying this track hub can be accessed via

UCSC table browser or at https://github.com/

FinnoLab/FAANGtracks/tree/main/data.
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Active CREs are typically characterized by a lack of nucleosome binding and therefore,

chromatin accessibilities are often used as a proxy for identifying active regulatory elements

[23]. The assay for transposase-accessible chromatin using sequencing (ATAC-seq) is a popu-

lar method to assess the genome-wide chromatin accessibilities, owing to its simple protocol

and quick turn-around time [24]. Several efforts have been made to adapt the original ATAC-

seq protocol to tissue [25] and cryopreserved nuclei [26] samples. We previously demonstrated

the feasibility of interrogating genome-wide chromatin accessibility using both flash frozen tis-

sues as well as cryopreserved nuclei in the horse [27].

While the complex molecular mechanism through which this process is regulated remains

an active field of research, a growing body of evidence points to histone protein post-transla-

tional modifications as an important intermediary of transcription regulation [28–30]. Specifi-

cally, histone protein 3 lysine 4 mono- and tri-methylation (H3K4me1 and H3K4me3) have

been shown to be enriched around the enhancer and promoter regions, respectively [31,32],

with known downstream effectors that further regulate gene expression [33–35]. Additionally,

H3K27ac is enriched around active elements and associated with higher levels of gene expres-

sion [36]. On the other hand, H3K27me3 is usually found around genes that are not active

[37]. Taken together, these protein modifications can be strong indicators of functional activi-

ties in specific genomic regions.

To improve AS annotation for the horse transcriptome and to systemically categorize these

epigenetic features and identify potential CREs in the equine genome, we collected over 80 tis-

sues from four healthy adult Thoroughbred horses as a part of the Functional Annotation of

Animal Genome (FAANG) initiative. Detailed phenotyping and tissue collection protocols

have been previously reported [38,39]. Nine prioritized tissues (lamina, liver, left lung, left ven-

tricle of heart, longissimus muscle, skin, parietal cortex, testis, and ovary) were used to gener-

ate a diverse set of data that represent different aspects of gene expression and regulation.

Additional RNA-seq data from 57 other tissues, generated from these same horses as a result

of a community-driven effort, were used to compare our revised FAANG annotation with pre-

vious Ensembl and NCBI annotations. Here we present an integrated analysis of the equine

FAANG dataset.

Results

Long-read data improved transcriptome annotation

Using Iso-seq data from nine prioritized tissues, we assembled a transcriptome with improved

AS and 3’ transcription termination site (TTS) annotation for Equcab3 [2]. This transcriptome

contained 56,672 transcripts including 39,625 novel transcripts. A majority of these transcripts

(51,639) were multi-exonic. Of these novel transcripts, 30,964 (78%) were AS isoforms with

either novel combinations of known splice junctions (6,330) or novel splice junctions (24,634).

Of the 17,407 known transcripts, 12,470 contain splice junctions fully matched to a reference

transcript annotated in the Ensembl gene annotation [5,7] for EquCab3 (full-splice match,

FSM). The majority (9,924 or 79.6%) of these transcripts extended reference annotation at the

3’ end, with 4,232 transcripts having TTS more than 1 kb downstream of Ensembl annotated

TTS (Fig 1A). The remaining 4,937 known transcripts lacked known splice junctions at either

5’ or 3’ end (incomplete-splice match, ISM), of which 2,395 extended the reference annotation

at the 3’ end (Fig 1A). At the transcription start sites (TSS), the majority (98.4%) of transcripts

had higher RNA-seq coverage in 100bp windows downstream of TSS than upstream and 89.1%

had at least twice coverage in 100bp windows downstream of TSS than upstream (Fig 1B).

The tissue-specific expression of these transcripts was quantified using short-read RNA-seq

data from 57 tissues of the same animals, nine of which were the same tissues used to generate
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Iso-seq data. Approximately 78% of known isoforms were expressed in at least half of the tis-

sues sequenced, while novel isoforms of known genes and novel intergenic transcripts each

showed a bimodal distribution, with 44.3% of novel isoforms and 56.8% of intergenic tran-

scripts detected in less than half of the tissues (Fig 1C). We also noted that, on average, 61.4%

(33.3%-70.9%) of multi-isoform genes expressed more than one isoform in any given tissue

and had different dominant major isoforms (isoform with highest relative expression of a

given gene), depending on the tissue type.

The completeness of this transcriptome annotation was assessed by aligning RNA-seq reads

directly to transcriptome sequences. Compared to the Ensembl and RefSeq annotations, this

Iso-seq transcriptome showed substantial improvement in mapping rates, as measured by per-

centage of properly paired reads, with a median mapping rate of 83.25% as compared to

61.10% and 75.15% when using Ensembl and RefSeq annotation, respectively (Fig 1D).

Fig 1. Iso-seq transcriptome improved gene annotation. (A) Distance between Iso-seq Ensembl annotated TTS, negative values indicate shorter 3’

ends. Eg. -1000 indicates that Iso-seq annotated TTS is 1000 bp upstream of Ensembl annotated TTS. (B) Log2 of 100 bp downstream as compared to

upstream of TSS RNA-seq coverage. Positive ratios indicate higher coverage downstream of TSS. The dotted line indicates equal coverage up- and

down-stream of TSS while the solid line indicates 100% higher coverage downstream of the TSS than upstream. (C) Distribution of known vs. novel

transcripts detected in different numbers of tissues. (D) Distribution of mapping rates against Iso-seq transcriptome vs. Ensembl or RefSeq

transcriptome across 57 RNA-seq samples. FSM: full-splice match; ISM: incomplete-splice match; TTS: transcription start site; TSS: transcription

termination site.

https://doi.org/10.1371/journal.pgen.1010468.g001
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Since only nine tissues were used to construct this Iso-seq transcriptome, it was expected

that many tissue-specific genes and transcripts will be missing. Indeed, several tissues had

decreased mapping rates when aligned to the Iso-seq transcriptome as compared to Ensembl

or RefSeq (S1 Fig), especially those with large stem cell populations. Therefore, this Iso-seq

transcriptome was merged with Ensembl and RefSeq transcriptome to construct a more com-

plete transcriptome annotation, termed the FAANG transcriptome. RNA-seq alignment data

indicated that the FAANG transcriptome was substantially more complete than the existing

annotations, with an average 19.5% (8–45%) increase in mapping rates across all sequenced

tissues (Fig 2). The FAANG transcriptome consisted of 153,492 transcripts (of which 128,723

were multi-exonic) from 36,239 genes, with a gene-isoform ratio of 4.2.

Tissue-specific open chromatin annotation

Chromatin accessibility was profiled from the same nine tissues (adipose, heart, lamina, liver,

lung, ovary, testis, muscle, parietal cortex). Most libraries contained 60% to> 90% unique

reads, with the exception of liver and cerebral cortex samples. Data from the female liver sam-

ples were generated from our previous study, where excessive mitochondria contamination

Fig 2. Comparison of FAANG, RefSeq and Ensembl equine transcriptomes. Changes in percentages of properly

paired reads aligned to combined FAANG transcriptome when compared to Ensembl or RefSeq transcriptomes,

whichever has higher percentage.

https://doi.org/10.1371/journal.pgen.1010468.g002
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led to lower library complexities and resequencing was performed to reach desired unique

read counts [27]. After removing polymerase chain reaction (PCR) duplicate reads, all libraries

contained less than 20% of mitochondria reads. Despite lower library complexities, both liver

and cerebral cortex samples showed clear nucleosomal periodicities and high enrichment

around TSS (Fig 3A).

Peaks were called by MACS3 [40,41] single-end BED mode using both ends of aligned frag-

ments. Accuracies of peak calling were estimated using published histone ChIP-seq data from

the same tissues [42]. Briefly, open chromatin peaks were intersected with “true positive” (TP,

H3K4me1 or H3K4me3 peaks overlapping H3K27ac) and “true negative” (TN, H3K27me3

peaks) peak sets to calculate true positive rates (TPR) and false positive rates (FPR). Since testes

Fig 3. ATAC-seq Quality Control. (A) Fragment size distributions and TSS enrichment plots (upper right inset plots) of liver and cerebral cortex samples as

examples. (B) ROC plot of liver peaks, as a representative example across tissues. TPR: true positive rate, FPR: false positive rate, AUC: area under curve. (C)

Number of peaks that were observed in a given number of tissues.

https://doi.org/10.1371/journal.pgen.1010468.g003
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were not included in the histone ChIP-seq dataset from Kingsley et al. [42], testes’ libraries

were not evaluated at this step. Area under curve (AUC) values of at least 0.6 were achieved for

all tissues evaluated (Figs 3B and S2). Cutoff scores were set at 25% FPR to filter a final set of

peaks for each tissue, except testis. After filtering, the evaluated tissues had 59k-95k peaks

remaining (Table 1). Testis and liver had the highest amounts of tissue-specific peaks (31,880

and 31,460, respectively), while lung had the lowest number of tissue-specific peaks (8,447).

Only a very small number of peaks were conserved across examined tissues (Fig 3C).

These open chromatin peaks were annotated by their overlapping genic features as pro-

moter-TSS (2 kb up- or down-stream of a TSS), exon, intron, TTS, and intergenic peaks. Open

chromatin peaks across tissues were enriched in TSS, TTS, and exon regions (2.9-, 1.3-, and

1.3-fold enrichment, respectively). This enrichment was more apparent among peaks con-

served across tissues (Fig 4). Gene ontology (GO) terms overrepresented in genes associated

with these conserved peaks were all essential housekeeping biological processes such as TOR

signaling and kinase activity (S1 Table). For each tissue, 11–22% peaks were located within

promoter-TSS regions. However, the same pattern was not observed in tissue-specific peaks.

Only 3–5% of tissue specific peaks were in the promoter-TSS regions, while substantially more

peaks were located in intronic or intergenic regions (17–22% intronic, 21–34% intergenic

Table 1. Open Chromatin Peak Metrics. Number of peaks identified in each tissue before and after filtering as well as union and tissue-specific peaks.

Merged Raw Peak Count Cutoff TP FP TPR FPR Remaining Peak Count Tissue Specific

Adipose 941,236 67 10,595 2,008 0.59 0.25 77,655 22,884

Cortex 435,514 114 14,109 1,959 0.78 0.25 65,583 18,249

Heart 581,396 85 14,955 2,226 0.83 0.25 86,368 19,730

Lamina 722,387 89 9,423 1,765 0.48 0.25 63,136 21,805

Liver 557,874 76 16,078 2,815 0.87 0.25 95,048 31,460

Lung 522,294 103 13,672 1,957 0.76 0.25 59,024 8,447

Muscle 360,298 98 15,891 2,090 0.86 0.25 74,285 19,772

Ovary 463,426 109 12,583 1,767 0.64 0.25 66,726 16,588

Testis 520,160 N/A N/A N/A N/A N/A 78,164� 31,880

Union 332,115

Conserved 5,080

� Testis peaks were filtered by score at 85th quantile since no histone peaks were available for this tissue

TP: number of true positive peaks, FP: number of false positive peaks; TPR: true positive rate; FPR: false positive rate; cutoff: cutoff score below which peaks were

removed from final peak set; union: peaks found in any tissue, after iterative merging; ubiquitous: peaks found in all nine tissues

https://doi.org/10.1371/journal.pgen.1010468.t001

Fig 4. Peak annotations. Left: Composition of peaks by annotation in union peaks; Right: Composition of peaks by

annotation in ubiquitous peaks.

https://doi.org/10.1371/journal.pgen.1010468.g004
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peaks across tissues; 23–26% intronic, 23–45% intergenic tissue-specific peaks). Motif analyses

of these intergenic regions revealed a diverse range of TF binding sites, such as hepatocyte

nuclear factor-4 alpha (HNF-4α) and estrogen-related receptor alpha (ERRα) binding sites in

liver-specific intergenic open chromatin regions, myocyte enhancer factor-2 (MEF2) family

TF binding sites in heart-specific open chromatin regions, and SRY-related HMG-box (SOX)

family TF binding sites in cerebral cortex-specific open chromatin regions. (S2 Table).

Unsurprisingly, TSS accessibility showed significant correlations with their corresponding

gene expression. Fig 5 shows a representative differential accessibility and expression analysis

of parietal cortex and heart tissues. Overall, approximately 16% of peaks showed differential

accessibility (FDR adjusted p<0.05), with 25,144 peaks (7.6%) more accessible in cortex and

29,206 peaks (8.8%) more accessible in heart (Fig 5A). The log2 fold-change (log2FC) of differ-

entially accessible regions (DAR) was significantly correlated with log2FC of differentially

expressed genes (DEG) in the same cortex and heart samples (one-sided Wald test, p<1 x

10−5, Pearson correlation coefficient r = 0.4, Fig 5B). After selecting peak-gene pairs whose

FDR adjusted p values from both DAR and DEG analyses were below 0.05, we observed that

most genes were located in quadrants 1 and 3 (Q1 and Q3 respectively), showing concordant

changes in promoter-TSS accessibility and gene expression (Fig 5C). GO enrichment analyses

Fig 5. Differential accessibility analysis. (A) Volcano plot of open chromatin peaks; peaks with FDR adjusted p<0.05 and |log2FC|>1 were colored by

direction of accessibility change, positive log2FC indicate greater accessibility in cerebral cortex. (B) Scatter plot of log2FC from DEG and DAR analyses,

Pearson correlation r = 0.4. (C) Scatter plot of log2FC from DEG and DAR analyses, only those with both FDR adjusted p<0.05 were plotted; shaded areas

indicate regions where either FCDEG or FCDAR was under 2-fold.

https://doi.org/10.1371/journal.pgen.1010468.g005
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showed that Q1 genes were primarily associated with neural activities while muscular and car-

diac related GO terms were enriched among Q3 genes (S3 and S4 Tables). There were also

175 and 177 genes in Q2 and Q4, respectively. GO Terms related to synaptic activity were

enriched in Q2 (S5 Table) while Q4 genes were overrepresented in actin-filament based

processes.

Cis-regulatory element annotation

Chromatin states were first identified using four major histone modifications (H3K4me1,

H3K4me3, H3K27ac, H3K27me3) as well as CTCF binding from the same nine tissues. Over-

all, 14 unique states, corresponding to enhancer, promoter, and insulator states of various

degrees of activities, as well as polycomb repressed state were identified (Fig 6A). Notably, the

CTCF-bound active TSS state (state 4), co-enriched with CTCF and active promoter marks

(H3K4me3 and H3K27ac), was highly enriched around TSS, whereas the CTCF-less active

TSS state (state 3) was more enriched at approximately 500 bp up- and down-stream of TSS.

Collectively, states with assayed epigenetic signals (states 1–13) covered up to 20% of the

genome, with the polycomb repressed state (state 13) covering the largest portion of the

genome across tissues, followed by enhancer states (states 6–10, Fig 6B). While promoter states

only accounted for 3–5% of the genome, or around 20% of all annotated states, they comprised

over 50% of states annotated at TSS regions (Fig 6B and 6C).

To correlate gene expression with chromatin state annotation, companion RNA-seq data

for each tissue from FAANG was used to quantify the equine FAANG transcriptome via

Fig 6. Chromatin states. (A) Emission probabilities, TSS neighborhood enrichment, and different genic features’ enrichment at each state. (B) The percentage

of genome covered by each state in each tissue. (C) The number of segments from each state in each tissue.

https://doi.org/10.1371/journal.pgen.1010468.g006
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quasi-mapping [43]. Transcript level quantification was then summarized to gene level using

tximport [44]. For each tissue, genes were classified as high- or low-expression based on their

aggregated transcripts per million (TPM) values (high: TPM� 1; low: TPM < 1). The enrich-

ment of each state was then estimated across gene bodies, in exonic regions, around TSS and

transcription end sites (TES) across all nine tissues (Fig 7). CTCF bound active TSS state (state

4) showed a 59.4-fold enrichment around TSS of highly expressed (TPM� 1) genes, 7.7 times

that of lowly expressed genes (TPM < 1). Similarly, active promoter state (state 9) showed a

14.7-fold enrichment in promoter-TSS neighborhood (TSS2kb), 6.4 times that of lowly

expressed genes. On the other hand, poised promoter and enhancer states (states 1 and 7) were

more enriched around TSS of lowly expressed genes (18.7- and 7.5-fold enrichment, respec-

tively). Polycomb repressed states (state 13) were absent around genes with high expression

but enriched in low-expression genes while promoter state marked by a single H3K4me3 mark

(state 5) was observed at a similar level in both categories. Since this promoter state also

showed the highest tissue-specificity (S3 Fig), we further examined its distribution among tis-

sues. Most remarkably, testis harbored a substantially greater number of segments of State 5
than any other tissues (46,406 in testis compared to 5,235 in ovary, which was the next highest

tissue) (S4 Fig). 61% of promoter state (state 5) was found in testis and of those, 86% were spe-

cific to testis. Similarly, testis also contained the highest numbers of CTCF-less active TSS and

poised promoter states (S5 Fig). While less pronounced, it also accounted for 44% of CTCF-

less active TSS state (state 3) and 54% of poised promoter state (state 1).

To infer potential functions of open chromatin regions, especially those located in the inter-

genic regions, open chromatin peaks were annotated based on overlap chromatin state seg-

ments in each tissue. First, we examined overlap between each chromatin region and different

open chromatin states across tissues (Fig 8A). There was an overall agreement in promoter-

TSS assignment between open chromatin regions and chromatin state annotations: 92.9% of

open chromatin peaks located in TSS-promoter regions overlap a TSS or promoter state (states

1–5, 9). Additionally, open chromatin regions located in exonic and intergenic regions showed

higher percentages of enhancer states (28.9% and 17.9%, respectively) (Fig 8A). Next, we

Fig 7. State enrichment in tissue specific genes. Heatmap of enrichment for each state around genes expressed and

not expressed in each tissue. The top three color bars denote gene expression status, genic features, and tissues,

respectively. Enrichment scores were normalized in each column.

https://doi.org/10.1371/journal.pgen.1010468.g007
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compared chromatin state enrichment among shared and tissue-specific open chromatin

regions (Fig 8B). An open chromatin region was annotated as specific if it was found in only

one tissue. CTCF bound active TSS state (state 4) was highly enriched in common accessible

chromatin regions, especially those annotated as promoter-TSS regions (121-fold enrichment),

but much less so in tissue-specific accessible chromatin regions (12-fold enrichment). Simi-

larly, CTCF bound enhancer state (state 10) was also highly enriched in common accessible

chromatin regions outside of promoter-TSS neighborhoods (15.3- to 31.5-fold enrichment),

and less so in tissue-specific accessible chromatin regions (3.9- to 7.6-fold enrichment).

Since many enhancers interact with genes other than their nearest neighbors [45], in order

to predict target genes CREs in absence of chromatin interaction data, we predicted chromatin

loops and correlated H3K27ac signal (data originally generated and reported by Kingsley et al.

[42]) of CREs with expression of genes resided within the same chromatin loops. First, chro-

matin loops were predicted using CTCF ChIP-seq data, as described by Oti et al. [46]. Overall,

we identified 10-14k CTCF-mediated loops per tissue, with testis being the only exception,

having only 6,146 CTCF-mediated loops. In all tissues, including testis, these predicted loops

covered 80–85% of the genome. Since we only had at most 4 biological replicates per tissue

(two for ovary and testis samples), which was not enough samples to reliably estimate

Fig 8. Chromatin accessibility across states. (A) Percentage of open chromatin peaks that overlap each chromatin state. (B)

Heatmap of enrichment for each state around open chromatin peaks. The top three color bars denote shared or tissue-specific

open chromatin, open chromatin annotation, and tissues, respectively. Enrichment scores were normalized in each column.

https://doi.org/10.1371/journal.pgen.1010468.g008
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Spearman correlation coefficients [47], we opted for a pan-tissue approach. Tissue-wise chro-

matin loops were merged across tissues to form a catalog of pan-tissue CTCF-mediated chro-

matin loops, enabling estimation of correlation across 9 tissues and 4 biological replicates. This

catalog contained 4,556 non-overlapping loops, covering 94.0% of the equine genome.

As demonstrated by Kern et al. [48], H3K27ac intensity of a CRE is most tightly correlated

with its target gene’s expression level. Therefore, we correlated H3K27ac ChIP-seq read counts

and RNA-seq read counts of each CRE-gene pair that resided within a same predicted chroma-

tin loop. After adjusting for multiple testing using Benjamini-Hochberg procedure to control

the false discovery rate at 5%, a total of 84,613 CRE-gene pairs remained as candidates. These

CREs were then annotated as genic, intergenic, or TSS-proximal based on their relative prox-

imities. A majority of these candidate pairs had their CREs outside of the gene bodies or TSS-

proximal regions (intergenic CREs, 66,051) while only a small portion of them had promoter-

like relationship (CREs in the TSS-proximal regions, 8,225). Intergenic CREs were found at

varying distances to TSS, with a median distance of 200 Kb and 79% of CREs being within 1

Mb their target TSS. We also observed more CREs (75%) located downstream of their target

genes (S6 Fig).

To provide the equine community with an integrated, openly access FAANG dataset, we

developed a UCSC track hub (https://genome.ucsc.edu/s/cjfinno/equCab3) to host all cur-

rently published equine FAANG datasets. All features discussed above can be found in this

track hub.

Discussion

In this study, we detailed the efforts to create an integrated annotation for the horse genome

that will aid in deeper understanding of gene expression and regulation across tissues in the

horse. Utilizing the rich tissue repository from the equine FAANG project, we improved the

equine transcriptome with 39,625 novel transcripts and identified 84,613 candidate CRE-gene

pairs, 78.1% of which were intergenic CREs. We anticipate these new resources will play a vital

role to understanding how genetic variation in the horse contributes to equine biology and

health.

First, we outlined an expansive transcriptome annotation for the horse. The previous efforts

to annotate the horse genome were limited by the number of tissue types available and

sequencing lengths available at that time [49–51]. Specifically, Hestand et al. sequenced 43 dif-

ferent equine tissues in one pool on an Illumina HiSeq 2000, both single- and paired-end at 75

bp on 4 lanes each [50]. While that study included more diverse tissue types than the current

FAANG transcriptome, the pooling approach employed in that study limited discovery of rare

novel and tissue-specific isoforms. The non-stranded protocol employed in that study also ren-

dered it impossible to identify antisense transcripts. Mansour et al. compared sequences of 8

tissue samples from 59 individuals using short-read RNA-seq libraries from several studies

(80–125 bp, single- and paired-end, stranded and unstranded) and identified 36,876 genes

with 76,125 isoforms [51]. Due to the limitation of short-read sequencing technology in both

the Hestand and Mansour studies, an aggressive filter was necessary to remove mono-exonic

transcripts that were not evolutionarily conserved, a common strategy in short-read based

transcriptome assemblies [4,5]. This unfortunately would also remove many small noncoding

RNAs. Based on recent advances in long isoform sequencing, our approach centered around

high-quality full-length reads from Iso-seq and used abundant RNA-seq data to validate splice

junction, TSS, and TTS annotation. As a result, novel alternate-spliced isoforms as well as

extended 5’ and 3’ transcribed regions were identified using long-read Iso-seq, validated by

abundant short-read mRNA-seq. This combined approach expanded the equine transcriptome
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to 153,492 transcripts (of which 128,723 are multi-exonic) from 36,239 genes, with a gene-iso-

form ratio of 4.2 and an average 19.5% (8–45%) improvement in completeness compared to

Ensembl and RefSeq transcriptomes across all sequenced FAANG tissues. The newly discov-

ered genes and isoforms could help identify important coding or regulatory variants in the

horse.

Despite these improvements, the present Iso-seq transcriptome was unable to accurately

define TSS due to a lack of 5’ captured reads. While an aggressive approach was taken to ensure

5’ completeness by collapsing transcripts that only differ at 5’ ends, a small portion of tran-

scripts were still determined to be potentially 5’ incomplete. In addition, this approach may

hinder the discovery of alternative TSS. Furthermore, small RNAs with non-polyadenylated

tails are missing from the poly-A captured cDNA libraries used for both Iso-seq and RNA-seq.

Assays targeting non-polyadenylated RNAs, such as small RNA sequencing and techniques

capturing 5’ capped transcripts like CAGE-seq are necessary to complement this Iso-seq tran-

scriptome to fully capture the transcriptional landscape in the horse genome. Further, while

we demonstrate improved completeness of the FAANG equine transcriptome, only 9 tissues

were utilized to construct it, and many rare or tissue-specific transcripts are likely to be miss-

ing, especially stem-cell-specific or embryonically specific transcripts. Indeed, short read

sequencing data from bone marrow was the only tissue that showed a drastic decrease in map-

ping rate when compared to RefSeq or Ensembl transcriptomes, suggesting specific isoforms

from this tissue are missing in the new transcriptome. In addition, since mare and stallion tis-

sues were prepared at two different laboratories, despite using same protocols, we could not

distinguish any sex-specific expression from batch effects during RNA-seq library construc-

tion. Lastly, since RNA-seq data was only used to validate and quantify transcripts identified in

Iso-seq data, our approach heavily relied on Iso-seq data being complete. This unfortunately

was not true as it was evident in Figs 2 and S1 that a substantial amount of reads from RNA-

seq failed to map to Iso-seq transcriptome. A closer examination of RNA-seq data in conjunc-

tion with the Iso-seq data could further refine the FAANG transcriptome.

With an improved transcriptome annotation, we set out to identify other non-transcribed

or lowly transcribed regulatory regions in the horse genome. The first step was to identify

regions of the horse genome that were accessible to transcription factors, which can then serve

as proxies to identifying important regulatory regions. Using ATAC-seq, we identified 332,115

regions with open chromatin genome wide across tissues, with 59,024–95,048 peaks identified

in each tissue. We showed that these open regions were enriched with known TF binding sites,

further supporting their potential functional roles in gene regulation.

We observed that, while promoter-TSS regions were highly enriched in open chromatin

peaks, especially in peaks found in all tissues, they were conspicuously absent from tissue-spe-

cific peaks. This echoed the findings from Halstead et al. [52], which showed very low numbers

of TSS-related peaks in species-specific open chromatin regions. This would corroborate

recent findings that enhancers, not promoters, are the main drivers of tissue-specific transcrip-

tion [53], which would be classified as intergenic in both our study as well as in Halstead et al.,
as all species interrogated in these studies lacked enhancer annotation.

Combining our ATAC-seq data with previously reported mRNA-seq data from the same

tissue and samples, we showed a strong correlation between differential accessibility of a func-

tional element and differential expression of the corresponding gene. When FDR for both

DAR and DEG was controlled at 5%, we observed concordant patterns between the gene

expression level and accessibility of promoter-TSS region. Interestingly, a small number of

genes (352 out of 4,566, 7.8%) also showed discordant patterns between gene expression and

promoter-TSS accessibility. It should be noted that, while we took a similar analytical approach

for DEG and DAR, ATAC-seq and RNA-seq signals reflect fundamentally different regulatory
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features. RNA-seq captures total transcriptional activities in a population of cells, where a

small population of cells with extremely high transcription of a given gene can dominate

RNA-seq signals for the entire population. On the other hand, ATAC-seq captures the propor-

tion of cells whose DNA is accessible at a given locus. Thus, if a small population of cells have

substantially high expression of a given gene, while the remaining cells do not express this

gene nor is it accessible, the gene would be upregulated in the RNA-seq dataset but not identi-

fied as open in an ATAC-seq dataset, which could explain the discordant patterns we observed

in Q2 and Q4 genes. Additionally, the presence of silencers in CREs or the time difference

from CRE activation to change in mRNA abundance may also explain the observed discor-

dance. To further dissect the fine regulatory landscape of these genes, single-cell based

approaches are advisable for both RNA quantification and chromatin accessibility assessment

to best match representing cell types across assays.

In all nine tissues, 21–34% of peaks were located in the intergenic regions while 23–45% of

tissue-specific peaks were in intergenic regions. Motif analyses in this study identified com-

mon TF binding sites in many of these intergenic open chromatin regions. For example, over

41% (4,112) of the liver-specific intergenic open chromatin regions contained binding sites for

ERRα, a TF known as a central regulator of energy metabolism [54]. Similarly, binding sites

for various SOX family TFs were detected in 15–32% of cerebral cortex-specific intergenic

open chromatin regions. The SOX family TFs have been shown to be important regulators for

neural differentiation and adult neurogenesis [55].

It is likely that many of intergenic open chromatin regions have important regulatory func-

tions. To elucidate their functional roles, we identified potential regulatory states genome wide

across tissues using signals from biochemical assays (histone modifications and CTCF ChIP-

seq) and correlated them with open chromatin peaks. We identified 14 unique chromatin

states using data from four major histone marks and CTCF binding assays. These chromatin

states were identified in each of the nine tissue types, covering 7–21% of the genome, repre-

senting major CREs. Overall, the chromatin state annotation correlated well with chromatin

accessibility in the same tissues and provided additional information regarding potential func-

tion of REs in these tissues. These annotated REs will be an invaluable addition to the equine

reference genome assembly. The similar annotation provided by ENCODE has led to discover-

ies of many regulatory variants in various diseases [20,22,56]. We anticipate this catalog of REs

will prove instrumental in evaluating complex genetic traits and disease in the horse.

In developing these unique chromatin states, we noted a particular difference in chromatin

state annotation for shared and tissue-specific open chromatin peaks. CTCF bound promoter and

enhancers were highly enriched in shared open chromatin regions but less so in tissue-specific

regions. CTCF is a chromatin regulator that facilitates formation of chromatin loops. It has been

suggested that a subset of CTCF binding sites is constitutively bound and critical to well-regulated

gene expression [57] and that CTCF binding at proximal promoters promotes distal enhancer-

promoter interaction, which is essential to the activation of many genes across a diverse range of

tissues [58]. Our results suggest that these CTCF-mediated promoter-enhancer interactions play a

large role in genes expressed across multiple tissues, rather than tissue-specific genes. This aligns

with other findings which suggest that CTCF patterns are established early in embryogenesis [59].

Taking advantage of the extensive research surrounding the relationship between CTCF binding

and 3-dimensional chromatin structures (TADs), we used our CTCF ChIP-seq data to predict

chromatin loops and were therefore able to predict 84,613 candidate CRE-gene interactions across

tissues. This dataset should dramatically improve our ability to both identify important regulatory

variants and predict their target genes and gene networks.

Work from this study has opened doors for further exploration. For example, the discor-

dant relationships between differentially accessible regions (DARs) and differentially expressed
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genes (DEGs) in brain and heart tissues suggest substantial sub-population differences within

each of these tissues. Future studies utilizing single-cell-based technologies could help unravel

such differences and identify cell-type-defining genes and CREs. Additionally, we observed

substantial differences between testes and all other tissues from both the ATAC-seq and ChIP-

seq data. This difference could be a result of significant spermatozoa population in our testis

samples, or it could be related to the unique transcriptional landscape of testis. Future research

should focus on separating mature spermatozoa with spermatogonium and other cell types in

testis to further refine the regulatory landscape of this tissue. Overall, we presented an inte-

grated repository of equine FAANG data, encompassing both transcriptional and regulatory

features that are now freely available to the equine community. We anticipate this resource to

be integral to future equine research.

Methods

RNA extraction and sequencing

From the outset of the equine FAANG initiative, researchers were invited to “adopt” tissues of

interest. This involved sponsorship of the sequencing costs for two biological replicates (2

male or 2 female) of the “adopted” tissue. Under this Adopt-A-Tissue model, along with the

eight prioritized tissues funded by both the USDA National Institute of Food and Agriculture

and the Grayson Jockey Club Foundation, the equine community collectively generated short-

read mRNA-seq data from over forty tissues. All RNA extractions for mRNA-seq were per-

formed at two locations (female samples at UC Davis, male samples at University of Nebraska-

Lincoln). Briefly, tissue aliquots were homogenized using Biopulverisor and Genogrinder in

TRIzol reagent (ThermoFisher Scientific, Waltham MA). RNA was isolated and purified using

RNeasy Plus Mini/Micro columns (Qiagen, Germantown, MD) or Direct-zol RNA Miniprep

Plus (Zymo Research, Irvine, CA). A detailed protocol can be found in S1 and S2 Texts. For

the female tissues, cDNA libraries were prepared with Illumina TruSeq Stranded kit and

sequenced at the University of Minnesota sequencing core facility on an Illumina HiSeq 2500

using 125 bp paired-end reads. Male samples went through similar library preparation before

150 bp paired-end sequencing at Admera Health (South Plainfield, NJ) on an Illumina

NovaSeq.

Nine tissues (lamina, liver, left lung, left ventricle of heart, longissimus muscle, skin, parietal

cortex, testis, and ovary) from the FAANG biobank [38,39] were selected for Iso-seq to repre-

sent a wide range of biological functions and therefore, gene expression. RNA for Iso-seq was

extracted separately from the same tissues as mRNA-seq using the same protocol. All tissues

were processed in one batch for Iso-seq, except for parietal cortex, which was processed in a

separate batch as a pilot study. One sample per sex per tissue was selected for sequencing based

on sample availability and RNA integrity numbers (RINs selected> 7). cDNA libraries were

prepared and sequenced at UC Berkely QB3 Genomics core facility. Two libraries were ran-

domly pooled and sequenced on a single SMRT cell on PacBio Sequel II.

Transcriptome assembly

Pooled subreads were first demultiplexed using Lima (https://lima.how/). Circular consensus

reads (ccs) were then constructed from demultiplexed subreads using PacBio Ccs program

(https://ccs.how/). PolyA tails were trimmed from ccs reads using Isoseq3 (https://github.com/

PacificBiosciences/IsoSeq). This step also removes concatemers and any reads lacking at least

20 bp of polyA tails. Redundant reads were then clustered based on pair-wise alignment using

Isoseq3. Clustered transcripts were aligned to the reference genome EquCab3 [2] using mini-

map2 [60] without reference annotation as guide. Collapsed transcripts were filtered if they
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were not supported by at least two full length reads. Filtered transcripts from each sample were

then merged into a single transcriptome using Cupcake (https://github.com/Magdoll/cDNA_

Cupcake/) and further filtered to retain only those detected in more than one sample. The

merged total transcriptome was again aligned to the reference genome and collapsed to

remove redundant transcripts. Potential 5’ degraded transcripts were also removed by collaps-

ing transcripts that had identical 3’ ends and only differed at 5’ ends. SQANTI3 [61] was then

used to classify and annotate the transcriptome against the RefSeq transcriptome as reference.

Finally, the total transcriptome was filtered to remove nonsense-mediated decay transcripts,

transcripts with a splice junction not covered by short-read RNA-seq data, and transcripts

without short-read coverage support to generate the final FAANG equine transcriptome

(5,546, 7,262, and 12,900 transcripts were removed by each filter, respectively). To detect

potential intra-primed transcripts, the percentage of adenines in a 20 bp window immediately

downstream of the annotated TTS was calculated for every Iso-seq transcript. Transcripts with

80% or more adenines (i.e., allowing for 4 mismatches with poly-T oligonucleotides) in a 20

bp window downstream of annotated TTS were designated as potential intra-priming candi-

dates. Data processing, visualization, and statistical analyses were performed using pandas

[62], matplotlib [63], seaborn [64], scipy [65], and scikit-learn [66]. Detailed program versions,

commands, parameters, and code can be obtained from https://github.com/FinnoLab/

FAANG_IsoSeq.

RNA-seq analysis

Short-read RNA-seq data were trimmed to remove adapters and low-quality reads using trim-

galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and Cutadapt [67].

Read qualities were inspected using fastQC [68] and multiQC [69]. Trimmed reads were

aligned to equCab3.0 using STAR aligner [70] with standard parameters (with—outSAM-

strandField intronMotif—outSAMattrIHstart 0). PCR duplicates were marked using sam-

bamba [71]. Mapping rates, qualities, and fragment lengths were assessed with SAMTools [72]

and deepTools [73]. Aligned reads were used to assess completeness of transcriptomes using

deepTools. BWA MEM [74] was used to align the RNA-seq reads directly to transcriptomes

and SAMTools was used to calculate the percentages of properly paired reads from the tran-

scriptome alignment. Due to the presence of alternatively spliced isoforms in transcriptomes,

multiple-alignment reads were not removed. Salmon [43] was used to quantify the transcripts

using RNA-seq data. Transcript level TPM values were summarized to gene level using txim-

port [44]. For the chromatin state enrichment analyses, genes were designated “active” if its

aggregated TPM was at least 1 in a tissue. TSS, promoter-TSS neighborhood (TSS±2kb), exon,

intron, and TTS coordinates were determined for each gene based on the FAANG transcrip-

tome. Detailed program versions, commands, parameters, and code can be obtained from

https://github.com/FinnoLab/FAANG_IsoSeq.

ATAC-seq analysis

ATAC-seq data from the 9 tissues (adipose, lamina, liver, left lung, left ventricle of heart, long-

issimus muscle, parietal cortex, testis, and ovary) of two sexes collected from the equine

FAANG biobank [38,39] were generated according to Peng et al. [27] Libraries were

sequenced in 50 bp paired-end mode (PE50) on Illumina NovaSeq 6000. Reads were aligned

to EquCab3.0 using BWA MEM with default parameters. Alignments were filtered to remove

fragments that mapped to mitochondria genome, were discordantly mapped, PCR duplicates,

or mapped to multiple loci using SAMTools. Remaining reads were shifted +4/-5 bp on plus/

minus strand, respectively, to account for the 9 bp insertion introduced by Tn5 transposase
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[24] using deepTools. Both forward and reverse reads of the final fragments were converted to

bed format using bedtools [75] and peaks were called and refined using MACS3 [40,41] (-f

BED -p 0.01—shift -75—extsize 150—nomodel—call-summits—nolambda—keep-dup all).

After peak calling, we extracted summits from called peaks, and extended them on both sides

by 250 bp, resulting in a set of 501 bp fixed length peaks. These peaks were then sorted by their

score and non-overlapping, most significant peaks were retained, as described in Grandi et al.
[76]. The same procedure was employed to subsequently merge biological replicates and then

all tissue peak sets to generate a union set of peaks. A count matrix was constructed for the

union peak set containing number of transposition events per peak per sample. This count

matrix was used for differential accessibility analyses using DESeq2 [77]. The union peak set

was then intersected with each tissue peak set to determine if a peak was present in each tissue.

Peaks only identified in one tissue type were denoted “unique” peaks while those identified in

all nine tissues were denoted as “conserved”. Detailed program versions, commands, parame-

ters, and code can be obtained from https://github.com/FinnoLab/atac-seq.

Differential accessibility and expression analyses

DAR and DEG were analyzed with similar approaches. First, a matrix of raw counts was con-

structed containing number of transposition events (DAR) or RNA-seq reads (DEG) for each

union open chromatin peaks (DAR) or gene (DEG). The raw counts were then normalized

and fitted to a negative binomial generalized linear model using DESeq2 (1.30.1) [77] package

with default parameters. Wald tests were applied to obtain p-values for each region (DAR) or

gene (DEG) and Benjamini-Hochberg procedure were used to control false discovery rate at

5%.

ROC analyses

For each set of peaks merged by tissues, false positive rates (FPR), true positive rates (TPR),

and precision were calculated using published Histone ChIP-seq peaks from Kingsley et al.
[42]:

First, a set of “real positive” (RP) peaks were collected by merging H3K4me1 and H3K4me3

peaks and intersecting the merged peaks with H3K27ac peaks from each tissue. A set of “real

negative” (RN) peaks were collected from H3K27me3 peaks from each tissue. Subsequently,

each set of ATAC-seq peaks were intersected with RP and RN peaks, and the number of inter-

sections were recorded as “true positive” (TP) and “false positive” (FP). TPR, FPR, and preci-

sion were then calculated as follows:

TPR ¼
nTP

nRP

FPR ¼
nFP

nRN

Precision ¼
nTP

nTP þ nFP

Motif and gene ontology analyses

Motifs were analyzed using HOMER [78] (-size 250) with custom genome built from Equ-

Cab3.0 assembly and FAANG transcriptome annotation. GO enrichment analyses were per-

formed using PANTHER [79] with default parameters.
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Chromatin state discovery

ChIP-seq data for histone modifications were obtained from previously published studies

[42,80]. Additionally, ChIP-seq for CTCF was performed for the same nine frozen tissue sam-

ples at Diagenode Inc. (Belgium). Briefly, CTCF ChIP libraries were sequenced at 50bp single-

and paired-end (female and male samples, respectively). Reads were aligned to EquCab3.0

using BWA MEM with default parameters. Aligned reads were subsequently filtered to remove

low-quality mapping, PCR duplicates, and mitochondria reads using SAMTools. BAM files for

all five marks were binarized using ChromHMM [81] BinarizeBam (-b 100 -n 140 -p 0.00001)

and several models with different numbers of states were trained on binarized data using

LearnModel function (-b 100). A model with 14 states was selected because it had the mini-

mum number of states with strong correlation to all states identified in other models.

Chromatin loop prediction and CRE-gene interaction analyses

To obtain a pan-tissue set of chromatin loops in absence of chromatin interaction data, CTCF

ChIP-seq data was used to predict chromatin loops in each tissue, using the algorithm pro-

posed by Oti et al.[46]. Briefly, CTCF ChIP-seq peaks were identified using MACS3 [40] (-q

0.05 -f BAM -g 2365156725—keep-dup auto). CTCF motifs were then extracted from these

peaks using FIMO function from MEME [82] (—motif MA1930.1—parse-genomic-coord).

Then in each tissue, each chromosome was scanned continuously, and a loop was recorded by

detecting a pair of parallel and anti-parallel CTCF motifs. The predicted CTCF loops across tis-

sues were then combined by merging overlapping loops using bedtools [75] merge function.

To obtain a list of CREs, neighboring active chromatin states (states 2–5 and 8–11) were

merged and annotated by their proximity to a known gene (genic, intergenic, and TSS-pro-

moter) as well as their closest genes. These CREs were then quantified by number of overlap-

ping reads from their corresponding H3K27ac ChIP-seq data. Reads counts were normalized

by a scaling factor calculated using weighted trimmed mean (TMM) method. Normalized

RNA-seq read counts were obtained from previous analysis (see Methods - Differential Acces-

sibility and Expression Analyses). Spearman correlation between H3K27ac read count in each

CRE and RNA-seq read count in each gene was calculated using spearmanr function from

SciPy [65]. P-values were adjusted using Benjamini-Hochberg procedure and candidate CRE-

gene pairs were filtered at 5% false discovery rate.

Enrichment analysis

Enrichment of each state in genes and open chromatin regions was calculated using the follow-

ing formula:

N
Ann
T

State

NAnn
Nstate

Ngenome

where NAnn is the number of bases in a particular annotation (gene, exon, TSS, open chroma-

tin peaks, etc) and Nstate is the number bases in each state. NAnn
T
State refers to the number of

bases that are in both a particular state and annotation. Ngenome is the total size of the reference

genome.

Supporting information

S1 Fig. Comparison of FAANG, RefSeq and Ensembl equine transcriptomes. Changes in

percentages of properly paired reads aligned to combined Iso-seq transcriptome when
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compared to Ensembl or RefSeq transcriptomes, whichever has higher percentage.

(TIF)

S2 Fig. ROC plots of ATAC-seq peaks. Receiver Operating Characteristics (ROC) of eight tis-

sues whose ATAC-seq peaks were validated by Histone ChIP-seq data

(TIF)

S3 Fig. Tissue-specificity of states. The proportion of segments from each state that were

identified in different numbers of tissues.

(TIF)

S4 Fig. Promoter state shared across tissues. Intersection plot showing number of segments

annotated as promoter state (state 5) unique to each tissue and shared across tissues. Top: bar

plot indicates sizes of each intersection; Bottom right: each column denotes a unique set of

peaks where filled dots indicat that peaks in this set were found in the corresponding tissue;

Bottom left: bar plot indicates number of segments annotated as promoter state (state 5) in

each tissue.

(TIF)

S5 Fig. CTCF-less active TSS and poised promoter states shared across tissues. Intersection

plots showing number of segments annotated as (A) CTCF-less active TSS state (state 3) and

(B) poised promoter state (state 1) unique to each tissue and shared across tissues. Top: bar

plot indicates sizes of each intersection; Bottom right: each column denotes a unique set of

peaks where filled dots indicate that peaks in this intersection were found in the corresponding

tissue; Bottom left: bar plot indicates number of segments annotated as (A) CTCF-less active

TSS state (state 3) or (B) poised promoter state (state 1) in each tissue.

(TIF)

S6 Fig. Distance from intergenic RE to target genes’ TSS. Density plot of distances from

intergenic REs to their target genes’ TSS. Negative distance denotes RE being upstream of tar-

get TSS. Median absolute distance: 200 Kb.

(TIF)

S1 Table. Gene ontology of peaks identified across all 9 tissues. GO enrichment analysis of

peaks conserved across all nine tissues.

(XLSX)

S2 Table. De novo motif discoveries in tissue specific intergenic regions. Top known motifs

in each tissue, filtered by FDR q�0.05.

(XLSX)

S3 Table. Gene ontology of Q1 genes. GO enrichment analysis of Q1 genes upregulated in

both DEG and DAR analyses of cerebral cortex vs. heart.

(XLSX)

S4 Table. Gene ontology of Q3 genes. GO enrichment analysis of Q1 genes downregulated in

both DEG and DAR analyses of cerebral cortex vs. heart.

(XLSX)

S5 Table. Gene ontology of Q2 genes. GO enrichment analysis of Q1 genes upregulated in

DEG but downregulated in DAR analyses of cerebral cortex vs. heart.

(XLSX)
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S1 Text. Detailed protocol for RNA Isolation using a column and on-column DNA diges-

tion.

(DOCX)

S2 Text. Detailed protocol for Finno modifications of the RNeasy Lipid Tissue Kit (Qia-

gen) for sesamoid bone.

(DOCX)

S1 Data. Gtf file for the merged FAANG-refseq-ensembl annotated transcripts in Equ-

Cab3.0. This is a tab-delimited text formatted file can be uploaded to the Integrated Genome

Viewer (IGV; https://software.broadinstitute.org/software/igv/ or UCSC https://genome.ucsc.

edu).

(GZ)
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