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ABSTRACT 

The influence of buoyant effects on developing heat transfer in strongly 

curved duct flows has been studied numerically for the special case of steady 

state, incompressible laminar flow of a constant physical property fluid to 

which the Boussinesq approximations apply. The two cases of: a) buoyant 

forces aligned with, and b) opposed to, the main flow direction were investigated. 

The presence of several streamwise recirculation zones necessitates the solution 

of fully elliptic transport equations. It is found that when buoyant forces are 

aligned with the main flow direction in curved duct flow geometries they can 

significantly enhance the rate of heat transfer, especially at the inner-

radi us wa 11. By contradi sti ncti on, when buoyant forces and the rna in flow are 

opposed, three additional elongated recirculati~n zones which appear at the 

inner~radius wall are the cause for reduced heat transfer to the flow in a 

curved duct. 
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NOMENCLATURE 

, 
De 

Gr 

k 

n 

Nu 

Nu 

P 

Pr 

q 

r 

specific heat capa~~Yj~t constant pressure 

Dean number (= Re ~c) 

hydraulic diameter 

gravitational constant 
2 3 2 

p gS(Tw - Tin)DH /~ 

thermal conductivity 

coordinate normal to duct wall 

local Nusselt number 

perimeter averaged Nu 

pressure 
~c 

Prandtl number (= ~ ) k . 

heat flux 

radial coordinate 

inner-radius w~ll of curved d~ct 

outer-radius wall of curved duct 

mean radius of curvature 

Reynolds number (= DHPVB/~) 

temperature 

bulk temperature 

inlet flow temperature 

wall temperature 

radial velocity component 

axial (spanwise) velocity component 

longitudinal (streamwise) velocity component 

bul k average vel oei ty 

coordinate along duct periphery; x =0 p 

corresponds to r = r; on symmetry plane 

v 



z 

S 

1-1 

P 

<I> 

axial (s panwi se )coordi na te 

coefficient of thermal expansion 

viscosity 

density 

longitudinal coordinate (streamwise directi,on) 

vi 
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I NTRODUCTI ON 

While numerical calculation schemes will probably never substitute entirely 

the experimental investigation of engineering flows, they have already proven 

extremely useful for expl ori ng and hel ping to optimize fairly compl i cated flow 

systems in which measurements are difficult, costly or laborious to obtain. 

, Developing flows in curved ducts are in this class of flows. In this case~ 

". 

three-dimensionality and, at high velocity, turbulence effects impart a high 

degree of complexity to the flow. 

Although curved duct flows have and continue to be investigated experimentally, 

a substantial portion of the knowledge acquired derives from analytical studies 

and, more recently, detailed numerical calculations. A review of experimental, 

analytical and numerical studies up to 1975 is given in [1]. Examples of analytical 

and numerical· studies for the laminar floW regime are'given ;n,[2-6], ,and for the 

turbulent flow regime (using two-equation turbulence models) i,n [7-9]. While 

the laminar flow cases have yielded to numerical prediction and are currently 

limited mainly by cost considerations dictated by computational time and storage 

requirements, calculations of corresponding 

Motions driven by buoyant forces arise 

ducts with curvature the criterion is given 

turbulent flows are less accurate [9]. 

in flows in which Gr/Re2 > 1. In 
, '" 

by Gr/De2 ,(:' 1, where the Dean number 

(De) characterizes the intensity of the cross-stream flow driven by an imbalance 

between centrifugal and radial pressure-gradient induced forces. Depending on 

the relative orientation (with respect to gravity) of a curved duct geometry and 

the ratio of buoyant to inertial forces, reversed flow regions can be expected 

to appear in curved duct flows subjected to thermal effects. Examination of the 

literature published to date suggests that, although forced convection heat trans­

fer has been investigated (see, for example, [5]), thermally induced buoyant 

motion in developing curved duct flow has peceived comparatively little attention 

[2,10,11]. 'This ;-s the case in spite of the relativeeasewHh which conditions are 
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attained propitious to the occurrence of the phenomenon. Thus, the attendant 

consequences on heat and mass transfer remain unknown for many systems of 

practical interest with natural convection present. Such systems include coiled 

chemical reactors, bends and tees in gas and oil pipelines, ventilating conduits 

in buildings, and various types of clinical flows. For example, in a coiled 

tube with a chemical (or chemical reaction) sensitive to localized temperature 

differences, it would be desirable to know the number and extent of regions of 

flow reversal induced by buoyant motion as well as the intensity of the latter. 

The lack of detailed experimental information bearing on buoyant motions 

in curved passages with heat transfer is probably due, in part, to serious 

difficulties and large uncertainties associated with measurement techniques 

in such flows. While some of the difficulties and experimental uncertainty 

can be removed by using non-intrusive techniques, such as laser-Doppler 

velocimetry for measurements of velocity, the insertion of probes for measuri ng 

temperature will perturb the flow. Perturbations of this nature would be 

especially severe in regions of flow reversal. Given the considerable difficulties 

associated with making measurements, it is surprising to find that no attempt 

has been made (to the authors' knowledge) to investigate numerically the 

influence of buoyant effects on the motion and heat transfer in developing curved 

duct flows. In principle, the accuracy of such computations in the laminar flow 

regime for an incompressible fluid are limited only by the nature of the 

equations solved (parabolic, semi-elliptic or elliptic)l and the error incurred 

lFor flows in ducts of mild curvature wherein longitudinal and cross-stream 
pressure variation can be decoupled, calculation schemes based on parabolic 
forms of transport equations [6] (boundary layer equations) may be used. For 
stronger curvature it is necessary to account more exactly for ellipticity 
in the pressure field [12], or resort to semi-elliptic or fully elliptic 
calculation schemes which allow for the direct determination of pressure 
[3-5, 8, 9]~- . 

.. 
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through numerical diffusion. Notwithstanding these limitations, provided that 

the integrity of the physics is maintained in the relevant transport equations 

and boundary conditions, computations of sufficient accuracy for engineering 

purposes can be made [5]. 

The present numerical study was motivated by the need to learn the extent 

and magnitude of thermally induced buoyant motions, and their tendency to 

produce recirculation, in ducts of strong curvature. Attention was focused 

on the laminar flow regime principally because of the uncertainties (and 

expense) associated with presently available models for the turbulent flow 

regi me. However, except for sys tems wi th unus ua 11 y high energy fl uxes, the 

relative influence of buoyant forces would be expected to decrease with 

increasing Re. Due to the expensive nature of the calculations, these were 

limited to a geometry of square cross-section and of radius ratio RclDH = 2.3 

in the curved section. It is presumed that the calculated results are 

representative of a range of flows with not too dissimilar dynamic, thermal 

and geometrical characteristics . 
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CASE STUDIES AND FLOW CONDITIONS 

Two sets of calculations were made for the geometry shown in Figure 1. In 

both cases the 90 degree curved section and exit tangent were vertically 

aligned, with the entrance tangent always in the horizontal plane. In one case 

(A), however, the exit tangent flow was aligned with the direction of gravity, 

while in the other (8) it was opposed to the direction of gravity. In both 

cases all the walls in the curved section were fixed at a temperature Tw higher 

than the entrance flow, with adiabatic conditions imposed at all the remaining 

walls in the connecting tangent sections. The entrance and exit tangents were 

5.8 and 12 hydraulic diameters long, respectively, and ensured that the flow 

in the curved section was sufficiently removed from the boundary conditions 

imposed at the entrance plane in the upstream tangent and the exit plane in 

the downstream tangent. The dimensionless parameters characterizing the flows 

were: Re = 787, De = 367, Rc/DH = 2.3, IGrl = 3.14 x 105 and Pr = 1.0~ 

The choice of conditfons was dictated by the availability in [3]of corresponding 

measurements and calculations of this flow in the absence of thermal effects. 

.. 
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EQUATIONS, BOUNDARY CONDITIONS AND CALCULATION PROCEDURE 

Calculations were based on fully elliptic~ three-dimensional finite 

difference forms of the steady state conservation equations for momentum and 

energy. The calculation scheme and its testing have already been described in 

detail in [3,4]. Its extension and validation for predicting forced convection 

heat transfer in curved duct flows may be found in [5]. A brief outline is 

given here of the adaptation of the calculation scheme in [5] to flows with 

buoyant effects to which the Boussinesq approximation apply. 

Equations 

Transport equations in cylindrical coordinates 2 for a steady, incompressible, 

variable temperature, laminar flow are given by: 

Conti nui ty. 

aVr 1 av~ . avz vr_ 
-+-~+-+-- a ar r acp az r . 

Momentum. 

[ 
aVr ~ aVr aVr ~J 

p vrar + r Tq)+ Vz az- r 

[ 
2 vr 2 ~J +]J Vv ----r r2 / acp 

- [_g cos cp + ~2 ] pS(T _ T. ) 
r 1n 

aP = -ar-

2In the upstream and downstream tangents, calculations were performed 
using equations expressed in terms of rectangular coordinate notation. 
Boundary conditions were overlapped between duct sections as explained 
in [3]. 

(1) 

(2) 
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[ 
2 2 aVr ~J 

+ II II v cp + r2 a;p - r2 

+ [-9 sin cp + vrvpJ ps(T - T. ) r ln (3) 

[ 
av v rh av . av ] v z + ~ z + v z = 

P rar- r a;p zaz ap 2 
- - + llll v az z (4) 

Energy. 

(5) 

where 

(6) 

These equations correspond to the buoyancy-opposed flow geometry in Figure 1. 

For a buoyancy-assisted flow geometry, the sign for 9 in the momentum component 

equations must be reversed. 

The Boussinesq approximations. [13,14] have been used in deriving the forms 

of the equations given above. The range of validity of the approximate equations 

has been documented,in [14].for the.case of natural convection in a horizontal 

fluid layer, corresponding·to the Rayleigh-Bernard problem. 

Boundary Conditions 

It is required to solve (1)-(5) together with the boundary conditions given 

below. 
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Entrance plane (upstream tangent). 

vr = Vz = 0, v~ = developed duct flow 

T = T. 
1n 

Exit plane (downstream tangent). 

aVr _ avz _ ~_ aT _ 
T¢"" - T¢"" - a~ - a~ - 0 

with overall continuity of mass and energy imposed. 

Side walls. 

v = v = v = 0 r z ~ 

T = Tw at all walls in the curved duct 

q = 0 at all walls in upstream and downstream tangents. 

Symmetry plane. 

av av 
v =.--.r. = ~ = aT = 0 
z az az az 

Calculation Procedure 

(7) 

(8) 

(9) 

(10) 

Finite difference equations are obtai.ned by integrating (1) .. (5) over volume 

elements or "cells" discretizing the flow domain. The velocity components, 

pressure and temperature are the dependent variables computed ana number of 

staggered, interconnected grids, each of which is associated with a specific 

variable. The general form of the finite difference expression is given by 

~p = (J Ai$i + 50\ A(.I Ai + S,,). (11) 1=1 )/\1=1 . 
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where ~p (velocity component, pressure or t~mperature) is the variable solved for 

at a position P in the discretized flow domain. The Ai coefficients are determined 

at the cell surfaces and represent the combined contributions of convection and 

diffusion to the balance of~. Other contributions arising from temperature 

pressure, centrifugal and gravitational forces (sources or sinks) are contained 

in So while the effects of the Coriolis force are contained in Sp. Detailed forms 

for So and Sp in variable property flows are available in [15]. 

Solution of the system of finite difference transport equations with appro­

priately differenced boundary conditions is achieved by means of a cyclic series 

of predictor-corrector operations as described in [3,4]. Briefly, the method 

involves using an initial or intermediate value of the pressure field to solve 

for an intermediate velocity field. A pressure correction to the pressure field 

is determined by bringing intermediate velocities into conformity with continuity. 

Corrections to the pressure and velocity fields are applied and the energy 

equation is solved for T (in flows where energy and momentum are not linked through 

temperature effects this last step can be taken after the velocity and pressure 

fields have been determined). The above steps are repeated until some pre­

established convergence criterion is satisfied. 

It has been shown in [3-5] that fully elliptic, three-dimensional computa­

tions of suffi ci ent accuracy for engi neering purposes can be obtai ned on fai rly 

coarse, unequally spaced grids. Because of cost considerations, no attempt was 

made here to produce grid-independent results. Calculations were performed on 

an unequally spaced grid covering a symmetrical half of the ducted flow. The 

grid had 15 nodes in the radial direction, 12 in the axial and 50 in the stream­

wise (longitudinal) direction. The streamwise nodes were unequally distributed 

with 12 nodes in the upstream tangent and 19 nodes in the curved and downstream 

sections, respectively. Typical computation times and storage requirements 

for converged soiutions were 1870 CPU seconds and 171 K8 words on a CDC 7600 

.. 
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machine. Strong radial variations in longitudinal pressure gradient and the 

presence of streamwise recirculation precluded the use of numerically more 

exact (and rela'tively inexpensive) parabolic or semi-elliptic calculation 

schemes. 

For the value of Gr studied here, noteworthy difficulties related to 

stability or convergence due to the presence of buoyant effects were not 

encountered. However, depending on the calculation case, under-relaxation 

factors for both pressure and velocities were varied from 0.1 to 0.75. Relative 

to a non-buoyant reference flow, the buoyant cases took about 1.3 times longer 

to attain a converged solution. It should be noticed that the relative con­

tributions of the body forces to momentum balance in the curved duct section 

varied with angular position. For the flow conditions studied, maximum values 

of the centrifugal and Coriolis body forces ((vc/lr) pS(T - Tin) and (vrv<j>/r) 

pS(T - Tin) respectively) were always less than 0.1% of the corresponding 

gravity terms and, hence, negligibly small. Nevertheless, the influence of 

centrifugal andCoriolis forces could be significant in a gravitational-free 

situation and, therefore, were retained in the present formulation. 

At high values of Grashof (Gr ~ 3 x 106), serious convergence problems 

were encountered. The instabil ity was not in the nature of that described in, 

for example, [16], due to large Coriolis forces. More likely it was related to 

the pressure correction technique derived by substitution of linearized 

velocity expression (in terms of pressure) into the continuity equation [17]. 

The behavior at high Gr was exactly similar to not using sufficiently low 

under-relaxation factors when calculating the reference and low Gr number 

cases. Further lowering of the under-relaxation factors would have led to 

unrealistically long calculation times for converged solutions at high Gr. 

To avoid this approach, other possible remedies were investigated such as to: 
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a) Impose lower values for under-relaxation of the buoyancy terms during the 

early cycles of calculation and increase these slowly; b) Commence buoyant 

calculation cases from the converged solution for the reference case and then 

IIturn on ll buoyant effects; c) Evaluate conduction effects before attempting to 

calculate velocities in order to reduce the initial steep variations of tempera­

ture at heated walls; d) Use combinations of the above. None of these approaches 

was effective in helping to remove the instability. 

Finally, it should be mentioned that the presence of streamwise recircula­

tion in the downstream tangent required that this section be long enough in 

order to set a/a¢ = 0 boundary condition at the exit plane. The influence of 

this condition was very small on the downstream tangent flow and completely 

negligible for the flow in the curved duct section. 

.. 

.. 
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DISCUSSION OF CALCULATED RESULTS 

Calculations were performed for the two cases described above and for a 

reference flow of identical conditions [5J in which buoyant contributions .to heat 

transfer were neglected. In all cases, regions of streamwise flow reversal 

were predicted . 

Two recirculation zones, common to the three cases, were found to occur 

in the curved duct section and were symmetrically located at the outer-radius 

wall corners. Thus, for example, Figure 2 shows, in the form of equal value 

dimensionless v</> contours the size and location of one of the symmetrical 

recirculation zones for the case of </> = 16.87 degrees in the buoyancy-opposed 

flow geometry. For the cases of buoyancy-opposed flow and the non-buoyant 

reference flow, these two recirculation zones extended from approximately 

</> = 0 to </> = 34 degrees. The same recirculation zones were about half as large, 

extending from </> = 11 to </> =23 degrees~ and were less intense in·the case of the 

buoyancy-assisted flow. The maximum reverse flow velocities in these zones, 

for each case, were as follows: v</>/VB $ 0.17 for buoyancy-opposed flow; 

v</>/VB $ 0.06 for buoyancy-assisted flow; v</>/VB $ 0.11 for the reference non­

buoyant flow. Similar regions of flow reversal have been predicted and discussed 

in [3-4]. The phenomenon is due to an unfavorable longitudinal pressure 

gradient near the outer-radius wall at the entrance to the curved duct. However, 

present results show that when buoyant effects oppose the main flow (Case A), 

flow recirculation is intensified. By contradistinction, when buoyant effects 

are aligned with the main flow (Case B) ,both the size and intensity of the 

recirculation zones are substantially reduced. 

In addition to the outer-corner reversed flow regions, the buoyancy-opposed 

flow showed three more zones of flow reversal at the inner radius wall. These 

may be seen in Figure 3, corresponding to a longitudinal position of </> = 61.87 
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degrees. The single recirculation zone located on the symmetry plane extended 

from ep = 34 degrees in the curved duct to a distance 1.33 hydraulic diameters 

into the downstream tangent. The smaller symmetrical reversed flow zones in 

the corners extended from about ep = 34 degrees to 0.25 hydraulic diameters 

into the downstream tangent. The maximum reversed flow on the symmetry plane 

was vep/Vb = 0.18 at ep = 61 degrees, and vep/VB = 0.05 at the corners for ep = 45 

degrees. 

Non-dimensional profiles of the main flow velocity component (v<j>/VB) and 

temperature (Tw - TUcrw - Tin) are given in Figures 4 and 5 for various 

longitudinal stations located on the duct symmetry plane. At about <j> = 45 

degrees, si gni fi cant di ffererices already appear among the velocity profil es 

with the differences becoming especially accentuated at the further downstream 

stations. Relative to the reference case, in the flow where buoyant forces 

oppose the main flow direction (Case A), the results show the main flow 

accelerating near the outer-radius wall while decelerating near the inner­

radius wall. By contrast, in the flow where buoyant forces reinforce the main 

flow (Case B), the calculations show the main flow component decelerating 

near the outer-radius wall while accelerating near the inner-radius wall. 

Thus in the buoyancy-assisted flow case, the net effect of buoyancy is to 

distribute more evenly the longitudinal component of momentum. This last 

remark is partly supported by the transverse velocity component profiles (vr/VB 
and v/VB) shown in Figure 6 at a longitudinal station of cp = 47.8 degrees, and 

the vector plots for transverse components at 87 degrees, shown in Figures 7 

and 8. The relatively large levels of v/VB in the vicinity of the inner­

radius wall for the case of buoyancy-assisted flow are further indications of 

the evening out effect being produced by buoyant forces on the longitudinal 

component of momentum. By comparison, corresponding values of v/VB at the 

same locations for buoyancy-opposed flow are weak, even though large 
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values of vr/VB and vz/VB arise near the outer-radius wall. 

The temperature profiles given in Figure 5 do not show the marked differences 

of the longitudinal velocity component. Nevertheless, the differences which do 

arise are in basic agreement with the discussion presented above in connection 

with the velocity components as influenced by buoyant effects. It is worth noting 

that, in passing from the bend into the downstream tangent, the buoyancy-assisted 

flow attains a higher average temperature than the buoyancy-opposed flow. 

The peripheral variation of local Nusselt number (calculated from Nu = 
(aTldn x DH)/(Tw - TB) is shown in Figure 9 at a location of cp = 87 degrees in 

the curved duct section. Values for Nu have been set to 0 at the duct corners. 

The 1 a rges t di fferences between Nu a ri se at the inner- radi us wa 11. It is c 1 ea r 

that the net result of buoyancy at this wall is to enhance heat transfer to the 

flow, by a facto·r of about 2, when buoyant forces are aligned with (rather than. 

opposed to) the main flow direction. Reduced heat transfer at the inner-radius 

wall in the case of the buoyancy-opposed flow is due to the appearance there of 

three regions of flow reversal; see Figures 3 and 7 where the latter figure 

shows substantially reduced secondary motion near the inner radius wall. 

Longitudinal variations of mean N~sselt number asa function of longitudinal 

position in the curved duct are given in Figure 10. In general, higher rates 

of heat transfer always arise .for the case of buoyant forces aligned with the 

main flow. The slightly smaller initial values of Nu for the buoyancy-opposed 

flow (relative to the non-buoyant reference case) are related to the symmetrical 

flow reversals at the outer-radius wall. At larger cp, the Nu for this case 

increases and.overtakes corresponding values for the reference case. This is 

partly explained by noting that inner-wall recirculation zones for this case 

constrict the main flow and force steeper gradients of Vcp at the outer-radius 

wall, thus increasing the overall transfer of heat to the flow. 
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CONCLUSIONS 

A numerical study has been conducted to determine the relative influence 

of buoyant effects in developing curved duct flows to' whi ch the Bouss i nesq 

approximation apply. It is believed that these computations are the first of 

their kind. Although limited by cost considerations to a specific geometry 

and flow conditions, the results are of value for helping to understand the 

role played by buoyant forces in enhancing or diminishing heat transfer to flows 

in ducts with strong curvature. 

In the vertically aligned geometries considered here, recirculation zones 

were predicted at the outer-radius wall for all cases, and at the inner-radi.us 

wall also for the case of buoyant forces opposed to the main flow direction. 

Maximum values of reversed flow intensity were given by vep/VB ~ 0.17 - 0.18 

at the outer-and inner-radius walls of the flow geometry for the case of 

buoyant forces and main flow direction opposed. 

When buoyant forces are aligned with the main flow, their effect is to 

enhance heat transfer to the flow and to even out the cross-stream plane distri­

bution of streamwise momentum. This effect is particularly noticeable at the 

inner-radius wall, where local values of the Nusselt number can increase two-

fold relative to corresponding values in a buoyancy-opposed flow geometry. 

The existence of strong radial variations in longitudinal pressure 

gradients and of reversed flow regions has imposed the need to deal with. fully 

ell i ptic transport equations. Unfortunately, these are expensive to sol ve in 

terms of calculation times and storage requirements. However, because it h.as 

been shown in earlier studies that realistic calculations can be performed on 

unequally spaced grids of the refinement used in this study, these and similar 

results should be of use for engineering purposes. 

.. 
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Coordinate system and calculated curved duct geometry indicating 
relative orientation of gravity. Case A, buoyancy-opposed flow; 
Case B, buoyancy-assisted flow. 
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XBL 819-1900 

Isove1ocity contours of vrfJ/VB at rfJ = 16.87 degrees in the curved 
duct section; case of buoyancy-opposed flow. Recirculation zone 
bounded by contour level A and walls. 
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Isovelocity contours of v~/VB at ~ = 61.87 degrees in the curved 
duct section; case of buoyancy-opposed flow. Recirculation zones 
bounded by contour.levels A and walls. 
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Radial variation of v$/VB as a function of longitudinal position. 
Profiles are located on the duct symmetry plane: C ... } non­
buoyant flow, C---} buoyancy-assisted flow C-) buoyancy-opposed 
flow. 
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Radial and axial variation of transverse velocity components 
vr/Vs and vz/VB at ¢ = 47.8 degrees in the curved duct section: 
( ... J non-buoyant flow, (---) buoyancy-assisted flow, (-) buoyancy­
opposed flow. 
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Radial variation of temperature at two longitudinal positions. 
Profiles are located on the duct symmetry plane: ( ... ) non-buoyant 
flow, (---) buoyancy-assisted flow, (-) buoyancy-opposed flow. 
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Vector plot of cross-stream velocity components at·~ = 87 degre 
in the.curved duct section; case of buoyancy-opposed flow. 
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Vector plot of cross-stream velocity components at $ = 87 degrees 
in the curved duct section; case of buoyancy-assisted flow. 
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Peripheral variation of local Nusselt number at ~ = 87 degrees 
in the curved duct section: ( ... ) non-buoyant flow, (---) buoyancy­
ass i sted flow, (-) buoyancy-opposed flow. 
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Longitudinal variation of mean Nusselt number in the curved duct 
section: ( ... ) non-buoyant flow, (---) buoyancy-assisted flow, 
(-) buoyancy-opposed flow. 
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