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~ ABSTRACT

The'influence of buoyant effects on developing heat fransfer in strongly
curved dhct flows has been studied numerica]1y fbr the special case of steady
state, incompressible Taminar flow of a constant physical property fluid to. |
which the Boussinesq approximations apply. The two cases off a) buoyant
forces é]igned with, and b) oppbsed to, the main flow direction were investigated.
The presence of several streamwise recirculation zones netessitates.the solution
of fully e]]iptic transport equations. It is found that when buoyant forces are
a]ﬁgned with the main flow direction in curved:duct flow geometries they can |

significantly enhance the rate of heat transfer, especially at the inner-

~radius wall. By contradistinction, when buoyant forces and the main flow are

opposed, three additional elongated recirculation zones which appear at the

inner-radius wall are the cause for reduced heat transfer to the flow in a

curved duct.



NOMENCLATURE

D

cp. v , ; 'SbGCific heat capacig at constaht pressur
De Dean number (= Re Ec ) :
D, hydréu]ic'diameter
g gravitational constant
Gr ngB(Tw_' T1’n)DH3/lJz
kK ' -thermal conductivity
n . : coordinate normal to duct wall
Nu local Nusselt number
Nu perimeter averaged Nu
P ~ pressure
Pr ~ Prandtl number (= EEE:)
q heat flux
r. : radial coordinate
ry “inner-radius wall of curved duct
fo outer-radius wall of curved duct
_ Rc * - mean radius of curvature
Re Reynolds number (= oHpo/u)
T | temperature
TB - bulk temperature
in inlet flow temperature
Tw wall temperature
Vi o _ radial velocity component
v, axial (spanwise) velocity component
Ve Tongitudinal (streamwise) velocity component
Vg bulk average velocity
xp ' coordinate along duct periphery;-xp =0

corresponds to r = r; on symmetry plane

v



axial (spanwise) coordinate
coefficient of thermal expansion
viscosity
density

longitudinal coordinate (streamwise direction)

vi



INTRODUCTiON
While numerical calculation schemes Wi]] probably never substitute entirely

the experimental investigétion of engineerfng flows, they have already proven
extremely dsefu1 for exploring and he]ping to optimize fairly cth]icatgd flow
systems in which measurements are difficult, costly or laborious to obtain.
Deve]oping flows in'curved ducts are in thigmclass of flows. In this case,
'.three-dimenéionaiity ahd, at high_velocify, turbulence effects impart a high
degree of complexity to the flow.

~Although curved duct flows have and continuevto be investigated experimentally,
a substantial portion 6f'the know]edge:aCQUired derives from analytical studies
and, more recent]y, detailed numerical calculations. A review df experimental,
_ ana]ytica] and numerical studies up to 1975‘15 given in [1]. - Examples of analytical
and- numer1ca1 stud1es for the 1am1nar flow regime are: g1ven in<[2-6], and for the
turbulent flow regime (using two-equation turbulence models) in [7 9] wh11e
the Taminar flow cases have yielded to numerical prediction and are currently
1imited main]y'by'cost consideratidns dictated by computational‘time and stqrage
requirements, calculations of corresponding turbulent flows are less accurate [9].

2

Motions driven by buoyant forces arise in flows in which Gr/Re“ 2 1. In

ducts with curvature the criterion is given by Gr/be2

> 1, where the Dean number
(De) characterizes the intensity of the cross-stream flow driven by an imbalance
between centrifugal and radial pressure-gradient induced forces. Depending on

the relative orientation (with respect»to_gravity) of a curved duct geometry and
the ratio of buoyant to inertial forces, reversed flow regions can be expected

to appear in curved duct flows subjected to thermal effects. Examination of the
literature published to date suggests that, although forced convection heat trans-
fer has been investigated (see, for example, [5]), thermally induced buoyant

motion in developing curved duct flow has received comparatively little attention

[2,10,11]. This is the case in spite of the relative ease with which conditions are



attained propitious to the occurrence of the phenomenon. Thus, the attendant
“consequences on heat and mass transfer‘remain‘unknown for many systems of
practical interest with natural convection present. Such systems include coiled
chemical reactors, bends and tees in gas and‘oil pipelines, venti]ating conduits
in buildings, and various types of clinical flows. For examp1é, in a coiied
tube with a chémita] (or chemical reaction) sensitive to localized temperature
differences, it would be desirable to know the number and extent of regions of
flow reversal induced by buoyant motion as we]].as the intensity of the latter.
The lack of detailed experimental information bearing on buoyant motions
in curved passages with heat transfer is probably due, in part, to serious
difficulties and large uncertainties associated with measurement techniques
in such flows. While some of the difficulties and experimental uncertainty
can be removed by using non-intrusive téchniques, such as laser-Doppler
velocimetry for measurements of velocity, the insertion of probes for measuring
temperature will perturb the flow. Perturbations of this nature would be
especially severe in regidns of flow reversal. 'Given the considerable difficulties
associated with making measurements, it is surprising to find that no attempt.
has been made (to the authors' knowledge) to investigate numerically the
influence of buoyant effects on the motion and heat transfer in developing curved
duct flows. In principle, the accuracy of such computations in the laminar flow
regime for an incompressible fluid are limited only by the nature of the

equations solved (parabolic, semi-elliptic or e]]iptic)] and the error incurred

]For flows in ducts of mild curvature wherein longitudinal and cross-stream
pressure variation can be decoupled, calculation schemes based on parabolic
forms of transport equations [6] (boundary layer equations) may be used. For
stronger curvature it is necessary to account more exactly for ellipticity
in the pressure field [12], or resort to semi-elliptic or fully elliptic
Ea]cu]atioglschemes which allow for the direct determination of pressure

3-5, 8, 9].. '
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through numerical diffusion. thwithstanding'fhese Timitations, provided thai
'the~integrify of the physics is méintained ih the relevant transport équétions'
~and boundary conditions, computations of sufficient accuracy for engineering
purposes can be made [5]. | |

The present numerical study was motivated'by the need to learn the extent
and magnitude of thermally induced buoyant motions, and their tendency to
produce recirculation, in.ducts of strong cufvature. Attention was focused
" on the Taminar flow regime principally because of the uncertainties (and
expenSe) associated with presently available models for the turbu]ent flow |
regime. HoweVer, éxcept for systemsvwith unusually high énergy fluxes,:the
relative inf]uence of buoyant forces would be expected to decreaSé with
increasing Re. Due to the expensivé nature of the.ca1cu1étions, these wefe
limited to a geometry of square cross-section and of radius_rétio RC/DH,=_2.3
in the curved section. It is presumed that the calculated results afe |
representative of a range of flows with not too dissimilar dynamic, thermal

and geometrical characteristics.



CASE STUDIES AND FLOW CONDITIONS

Jwo sets of ca]cu]ationé were made for the geometry shown in Figure 1. In
both cases the 90 degree curved section and exit tangent were vertically
aligned, with the entrance tangent always in the horizontal plane. In one case
(A), however, the exit tangent flow was a]igned with the direction of gravity,
while in the other (B) it was opposed to the direction of gravity. In both
cases all the walls in the curved section were fixed at a temperature Tw higher .
than the entrance flow, with adiabatic conditions imposed at all the remaining
walls in the cqnnecting tangent sections. The entrance and exit tangents were
5.8 and 12 hydraulic diameters long, respective]y, and ensured that the flow
in the curved section was sufficiently removed frdm the boundary conditions
imposed at the entrance plane in the upstream tangent and the exit plane in
the downstream tangent. The dimension]ess parameters characterizing the flows
were: Re = 787, De = 367, R./Dy = 2.3, |Gr| = 3.14 x 10° and Pr = 1.0.
The choice of conditions was dictated by the availability in [3] of cerresponding

measurements and calculations of this flow in the abéence of thermal effects.
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EQUATIONS,_BOUNDARY CONDITIONS AND CALCULATION PROCEDURE

.Ca]cufations‘were based on fully e]]ipiic, three-dimensional finite
difference forms of the steady state conservétion'equations fdr momentum ahd
energy. -The ca]cu]atibn_échéme and its testing,haye already been described in
detail in [3,4]. Its extension and validation for predicting forced'convectiOn
heat transfer in curved duct flows may be found in [5]. ‘A brief outline is
gfven hereiof the adaptation of the calculation scheme in [5] to flows with

'buoyant'effects'to which the Boussinesq approximation apply.

Equations

Transport equations in cy]indrical'coordinatesz-for a steady, incompressible,

variable temperature, laminar flow are given by:

Continuity.

v v v v ’ :
_r,1- 4,z ,r_ : . .
ar‘+.r 3¢ ' Y4 * r 0. ' _ (])
Momentum.
5V v, dv 3v. v.2
p v_r+i r v_._.t- ] =_£
r ar r 9 Z 93z r ar

.V 2 .
- [-9 cos ¢ +';? ] o8(T - T: ) (2)

2In the upstream and downstream tangents, calculations were performed

using equations expressed in terms of rectangular coordinate notation.
Boundary conditions were overlapped between duct sections as explained

in [3].



v vV, 9V v V. Vv
o} Y J«}-i_Q-FV _Q_,__Y‘_Q =_]_£
r or r 3% 'z 3z r r a¢
oV v
2 2 " r ¢
+u|viv, + -
[ ¢ r2 o r2 ]
V.V
+[-9 sin ¢ +%‘&] o8(T - T, )
v, Vv, dv Y
_Z4 $_z _z| =_23P 2
p[rar T 3% zaz] 3z T WY,

where

These equations correspond to the buoyancy-opposed flow geometry in Figure 1.

)

(4)

(5)

For a buoyancy¥assisted flow geometry, the sign for g in the momentum component

equations must be reversed.

The Boussinesq approximations [13,14] have been used in deriving the forms

of the equations given above. The range of validity of the approximate equations

has been documented.in [14] for theﬂcase of natural convection in a horizontal

fluid layer, corresponding-to the Rayleigh-Bernard problem.

Boundary Conditions

It is required to so]ve.(l)-(S) together with the boundary conditions given

below. -



Entrance plane (upstream tangent).

v.=v_ =0,V

r . 0" developed dqct flow - | (7)

T = Tin

. Exit plane (downstream tangent).

v, 3V v ' ’ v
r__z_._¢_.23T_ , o
3 "0 o | (&)

9¢ - 3o 3

with overall continuity of mass and energy imposed.

Side walls.

T, at all walls 1in the curved duct

1]

q 0 at all wé]]s in upstreamband downstream tangents.

~ Symmetry plane.
av,,  av

=——r=J_=_a.T_= .’ . ’ . o |
Vz 9z ¥4 9z 0 v (]O)

Calculation Procedure

Finite difference equations are obtained by integrating (1)-(5) over volume
elements -or "cells" discretizing the'f]ow domain.. The velocity components,
pressure and temperature are the dependent variables computed on a number of
staggered, interconnected grids, each of which is associated_with_a specific

variable. The general form of the finite difference expression is given by

6 - 6



where ¢P (velocity componént, pressure or temperature) is the variable solved for
at a position P in the discretized flow domain. The Ai coefficients are determined
at the cell surfaces and represent the combined contributions of convection and
diffusion to the balance of ¢. Other contributions arising from temperature
vpresshre, centrifugal and gravitational forces (sources or sinks) are contained

in So while the effects of the Coriolis force are contained in SP' Detailed forms
for S, and S, in variable property flows are available in [15].

Solution of the syStem of finite difference transport equations with appro-
priately differenced boundary conditions is achieved by means of a cyclic series
of predictor-corrector operations as.déscribed in [3,4]. Briefly, the method
involves using an initial or intermediate value of the pressure field to solve
for an intermediate velocity field. A pressure corréction to the pressure field
is determined by bringing intermediate vé]ocitiés into conformity with continuity.
Corrections to the preésure and velocity fields are applied and the energy
equation is solved for T (in flows where energy and momentum are not 1inked through
temperature effects thisllast step can be taken after the velocity and pressure
fields have been determined). The above steps are repeated until some pre-
established convergence criterion is satisfied.

It has been shown in [3=5] that fully elliptic, three-dimensional computa;
tions of sufficient accuracy for engineering purposes can be obtained on fairly
coarse, unequally spaced grids. Because of cost considerations, no attempt was
made here tb produce grid-independent results. Calculations were performed on
an unequally spaced grid covering a symmetrical half of the ducted flow. The
~grid had 15 nodgs in the radial direction, 12 in the axial and 50 in the stream-
wise (longitudinal) direction. The streamwise nodes were unequally distributed
with 12 nodes in the upstream tangent and 19 nodes in the curved and downstream
sections, respectiVe]y. Typica] computation times and storage requirements

for converged solutions were 1870 CPU seconds and 171 K8 words on a CDC 7600
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machine. Strong radial Variatioh§ in longitudinal pressukg gradient and the
presence of streamwise recirculation precluded the use of numerically more
exact (and relatively inexpensive) parabolic qrvsemi-e11ipt1clcalcuiation
schemes. |

" For the value of Gr studied here, noteworthy difficu]ties related to
stability or convergence.due to the presence of buoyant effects were not
encouhtered. However, dépending on the_ca]cu]ation;case, under-reiaxation
factors.for both pressure and velocities were varied from 0.1 to 0.75. Relative
to a non-buoyant reference flow, the buoyant cases took about 1.3 times longer
to attain a.conVerged solution. It should be notiﬁed that the relative con-
_tributions of the body forces to momentum baiahce in the curved duct section
varied_with angu]ar_position. ‘For fhe flow conditions studied, maximum values
of the centrifugal and Coriolis body forces ((v¢2/r) pB(T - Tin) and (vrv¢/r)
oB(T = Tin) respectively) were always less than 0.1%'of>the corresponding
gravity terms and, hence, negligibly small. Nevertheless, the influence of
centrifugal and Coriolis forces coujd'be significant in a gravitational-free
situatibn and, therefore, were retained in the present formulation.

At high values of Grashof (Gr = 3 x 106), serious convergence problems

. were éncountered. The instability was not in the nature of that described in,
for example, [16], due to large Coriolis forces. More likely it was related to
thepfessurecorrectioh technique derived by substitution of Tinearized
velocity expression (in terms of pressure) into the continuity equation [17].
The behavior at high Gr was exactly similar to not using sufficiently Tow
under-relaxation factors when cé1cu1ating the reference and low Gr number
cases. Further lowering of the under-relaxation factors would have Ted to
unrealistically Tong calculation times for converged solutions at high Gr.

To avoid this approach, other possible remedies were investigated such as to:
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a) Impose lower values for under-relaxation of the buoyancy terms during the
early cycles of calculation and increase these slowly; b) Commence buoyant
calculation cases from the converged solution for fhe reference case and then
"turn on" buoyant effects; c) Evaluate conduction effects before attempting to
calculate velocities in order to reduce the initial steep vériations of tempera-
ture at heated walls; d) Use combinatibns of the above. None of}these approaches
was effective in helping to remove the instability.

Finally, it should be mentioned that the presence of streamwise recircula-
tion in the downstream tangent required that this section be long enough in
order to set 3/3¢ = 0 boundary condition at the exit plane. The influence of
this condition was very small on the downstream tangent flow and completely

negligible for the flow in the curved duct section.
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DISCUSSION OF CALCULATED RESULTS

Calculations were performed for the two casés deécribed above and for a
reference flow of idehtica] conditions [5] in which buoyant contributions to heat
transfer were neglected. 1In all cases, fegions of streamwise flow reversal
- were predicted.

" Two recirculation zones, common to fhe three cases, were found to occur

in the curved duct section and were symmetrically ]ocated‘at the outer-radius
wall corners. Thus, for example, Figure 2 shows, in the form of equal value
dimensionless Ve contours the size and location of one of the symmetrical
récircu]atidn zones for the case of ¢ = 16.87 degrees in the buoyancy-opposed
flow'geometry‘ For the cases of buoyancy-opposed flow and the non-buoyant
reference flow, these two recirculation zones extended from apprOXimate1y 
¢ =0 to¢ =34 dégrees. The same recirculation zones were about.half as large,
extending from ¢ =11 to ¢ = 23 degrees, and were less intense in the case of the
buoyancy-assisted flow. The maximum revefse flow velocities in these zones,
for each case, were as follows: V¢/VB < 0.17 for buoyancy-opposed flow;
'V¢/VB < 0.06 for buoyancy-assisted f]ow; V¢/VB < 0.11 for the reference non-
buoyant flow. Similar regions of flow reversal have been predicted and discussed
in [3-4]. The phenomenon is due to an unfavorable Tongitudinal pressure -
gradient near theouter-radius wall at the entrance to the curved duct. However,
present results show that when buoyant effects oppose the main flow (Case A),
flow recirculation is intensified. By contradistinction, when buoyant effects
are aligned with the main flow (Case B), both the size and intensity 6flthe
recirculation zones are substantially reduced.

In addition.to the outer-corner reversed flow regions, the buoyancy-opposgd
flow showed three more zones of flow reversal at the inner radius wall. These

may be seen in Figure 3, corresponding to a longitudinal position of ¢ = 61.87
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degrees. The single recirculation zone located on the symmetry plane extended
from ¢ = 34 degrees in the cukved duct to é distance 1.33 hydraulic diameters
into the downstream tangent. The smaller symmetrical reversed flow zones_in
the corners extended from about ¢ = 34 degrees to 0.25 hydraulic diameters
into the dbwnstream tangent. The maximum reversed flow on the symmetry plane
was v¢/Vb'= 0.18 at ¢ = 61 degrees, and v¢/vB = 0.05 at the cornérs for ¢ = 45
degrees. '

Non-dimensional profiles of the main flow velocity component (v¢/VB) and
temperature (Ty - Tﬁ/ﬁw - Tin) are given in Figures 4 and 5 for various
longitudinal stations ]ocatéd on the duct symmetry plane. At about ¢ = 45
degrees, significant differenceé already appear among the velocity profiles
with the differences becoming especially accentuated at the further downstream
stations. Relative to the reference case, in the flow where buoyant forces
dppose the main flow direction (Case A), the results show the main flow
accelerating near the outer-radius wall while deceierating near the inner-
radius wall. By contrast, in the flow where buoyant forces reinforce the main
flow (Case B), the calculations show the main flow component decelerating
near the outer-radius wall whi]e‘accelerating near the inner-radius wall.

Thus in the buoyancy-assisted flbw case, the net effect of buoyancy is to
distribute more evenly the 1ongitudina1 component of momentum. This last
remark is partly supported by the transverse velocity component profiles (Vr/VB
and vZ/VB) shown in Figure 6 at a longitudinal station of ¢ = 47.8 dggregs, and
the vector plots for transverse components at 87 degrees, shown in Figures Z
and 8. The relatively large levels of vZ/VB in the vicinity of the inner-
radius wall for the case of buoyancy-assisted flow are further indications of
the evening out effect being produced by buoyant forces on the longitudinal
component of momentum. By comparison, corresponding values of VZ/VB at the

same locations for buoyancy-opposed flow are weak, even though large
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values of v /Vp and v /Vp arise near the outer-radiﬁs wall.

The temperature profiles given in Figure 5 do not show the marked differences
of the*]ongitudinal velocity component. Neverthe]ess, the differences which do
arise are in basic agreement with the discussion‘presentéd above in connection
with the velocfty.components as influenced. by bupyant effects. It is worth noting
that, in passing from the bend into the downstréam tangent, the buoyancy—aSsisted
f]ow»attains a higher average temperature than the buoyancy-opposed flow.

The peripheral variation of local Nusselt number (calculated from Nu =
(8T/8n_x'DH)/(Tw - TB) is shown in Figure 9 at a Tocation of ¢ = 87 degrees in
the curved duct section. Values for Nu have been set to 0 at the duct corners. n
The largest diffefehces between Nu arise at the inner-radius wall. it is clear
that the net result of buoyancy at this wall is to enhahce heat transfer to-tﬁe
flow, by é factor of about 2, when.buoyaht forces are aligned with (rather than.
opposed to) the main flow direcfion. Reduced heat transfer at the inner-radius
wall in fhe case of the buoyancy-opposed f]ow is due to the appearance there of
three regions of flow reversal; see Figures 3 and 7 where the latter figure
shows substantially reduced secondary motion near the inher radius wall.

Longitudinal variations of mean Nusselt number as a function of 1ongitudina1
position in the curved duct are given in Figure 10. In general, higher rates
of heat transfer always arise .for the case of buoyant forces aligned with the
main flow. The slightly smaller initial values of Nu for the buoyancy-opposed
flow (relative to the non-buoyant reference case) are related to the symmetrical
flow reversals at the outer-radius wall. At larger ¢, the Nu for this case
increases and.overtakes corresponding values for the reference case. This is
part1y explained by nqting that inner-wall recirculation zones for this case
constrict the main flow and force steeper gradients of Ve at thg Quter-radius

wall, thus increasing the overall transfer of heat to the flow.
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CONCLUSIONS 4 |

A numerical study has been conducted to determine the relative influence
of bubyant effects in developing curved duct flows to- which the Boussinesq
approximation apply. It is believed that these computations are the first of
their kind. Although Timited by cbﬁt considerations to a specific geometry
and flow conditions, the results are of value for helping to understand the
role played by buoyant forces in enhancing or diminishing heat transfer to flows
in ducts with strong curvature.

In the vertically aligned geometrfes considered here, recirculation zones
were predicted at the outer-radius wall for all cases, and at the inner-radius
wall also for the ca§e of buoyant forces opposed to the main f]qw direction.
Maximum values of reversed flow intensity were given by v¢/vB < 0.17 - 0.18
at the outer-and inner-radius walls of the flow geometry for the case of
buoyant forces and main flow direction opposed.

When buoyant fofcesvafe aligned with the main flow, their effect is to
enhance heat transfer to the flow and to even out the cross-stream plane distri-
bution of streamwise momentum. This effect is particularly noticeable at the
inner-radius wall, where local values of the Nusselt number can increase two-
fold relative to corresponding values in a buoyancy-opposed flow geometry.

The existence of strong radial variations in longitudinal pressure
gradients and of reversed flow regions has imposed the need to deal with fully
elliptic transport equationé. Unfortunately, these are expensive to solve in
terms of calculation times and storage requirements. However, because it has
been shown in earlier studies that realistic calculations can be performed on
unequally spaced grids of the refinement used in this study, these and similar

results should be of use for engineering purposes.
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Figure 1 Coordinate system and calculated curved duct geometry indicating
relative orientation of gravity. Case A, buoyancy-opposed flow;
Case B, buoyancy-assisted flow.
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Figure 2 Isovelocity contours of v¢/VB at ¢ = 16.87 degrees in the curved
duct section; case of buoyancy-opposed flow. Recirculation zone
bounded by contour level A and walls. '
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Isovelocity contours of v¢/VB at ¢ = 61.87 degrees in the curved
duct section; case of buoyancy-opposed flow. Recirculation zones
bounded by contour levels A and walls.
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Figure 5 Radial and axial variation of transverse velocity components
zr/v§ and v,/Vg at ¢ = 47.8 degrees in the curved duct section:

non-buoyant flow, (---) buoyancy-assisted flow, (-) buoyancy-
opposed flow.
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Figure 7 Vector plot of cross-stream velocity components at ¢ = 87 degre

in the curved duct section; case of buoyancy-opposed flow.
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Figure 8 Vector plot of cross-stream velocity components at ¢ = 87 degrees

in the curved duct section; case of buoyancy-assisted flow.
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Figure 9 Peripheral variation of local Nusée]t number at ¢ = 87 degrees
in the curved duct section: (...) non-buoyant flow, (---) buoyancy-
assisted flow, (-) buoyancy-opposed flow.
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Figure 10 ' Longitudinal variation of mean Nusselt number in the curved duct
' section: (...) non-buoyant flow, (---) buoyancy-assisted flow,
(-) buoyancy-opposed flow.
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