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ABSTRACT

The present paper is the second part of a two-part study on empirical modeling and prediction of climate

variability. This paper deals with spatially distributed data, as opposed to the univariate data of Part I. The

choice of a basis for effective data compression becomes of the essence. In many applications, it is the set of

spatial empirical orthogonal functions that provides the uncorrelated time series of principal components

(PCs) used in the learning set. In this paper, the basis of the learning set is obtained instead by applying

multichannel singular-spectrum analysis to climatic time series and using the leading spatiotemporal PCs to

construct a reduced stochastic model. The effectiveness of this approach is illustrated by predicting the be-

havior of the Jin–Neelin–Ghil (JNG) hybrid seasonally forced coupled ocean–atmosphere model of El Niño–
Southern Oscillation. The JNGmodel produces spatially distributed and weakly nonstationary time series to

which the model reduction and prediction methodology is applied. Critical transitions in the hybrid period-

ically forced coupled model are successfully predicted on time scales that are substantially longer than the

duration of the learning sample.

1. Introduction and motivation

In two previous papers (Molkov et al. 2012; Mukhin

et al. 2015, hereinafter Part I), we formulated an em-

pirical modeling and prediction methodology based on

artificial neural networks (ANNs; Hornik et al. 1989). A

key difficulty in applying this methodology to construct

an empirical, nonlinear stochastic model that helps

simulate and predict the real climate system’s behavior is

the mismatch between the large number of variables by

which one wishes to describe the system versus the short-

ness of the time series of available experimental data.

Observational datasets comprise usually time-varying

spatial fields of several climatic variables—such as sea

surface temperatures (SSTs), pressure, wind velocity,

and humidity—measured at differing levels of detail.

For certain purposes, a researcher might study a very

large set of time series, the number of which equals the

number of nodes in a spatial grid multiplied by the

number of climate variables to be considered. For other

purposes, however, it is well known [cf. Ghil et al. (2002,
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and references therein) or Part I] that the short duration,

of about 60 years, of measured time series is not suffi-

cient to determine the dynamics of the full system by

inverse modeling.

Efficient reduction of the system’s dimensionality is

thus essential in order to infer an evolution operator for a

low-dimensional subsystem that determines the key

properties of the observed dynamics. Specifically, in Part I

we showed that nonlinear, stochastic modeling in a two-

dimensional subspace turns out to be sufficient to predict

critical transitions in the setting of conceptual, delay-

differential equation models of El Niño–Southern Oscil-

lation (ENSO). In this setting, we applied themethodology

to scalar time series obtained from one of three highly

simplified but still infinitely dimensional ENSO models.

To extract the robust information needed to re-

construct and predict the dynamics from the spatially

distributed time series, the choice of basis functions is

important: it determines both the dimension and the

geometry of the subspace in which we wish to carry out

the reconstruction and prediction (Kravtsov et al. 2009;

Strounine et al. 2010). A widely used basis for climate

fields is that of empirically orthogonal functions (EOFs;

Preisendorfer 1988; Navarra and Simoncini 2010).

Kondrashov et al. (2005) and Kravtsov et al. (2009)

have shown the usefulness of this basis in constructing an

ENSO model by data-driven empirical model reduction

(EMR) from the multivariate time series of the SST

field. Moreover, the real-time ENSO prediction by this

leading EOF-based EMRmodel has proved to be highly

competitive among other dynamical and statistical

ENSO forecasts (Barnston et al. 2012).

Still, preparation of the learning sample by projection

onto the leadingEOFs has an important drawback: it uses

only the instantaneous correlations between points of the

spatial grid, and it does not take into account time-lagged

relationships. The latter, however, are largely determined

by physical processes in the atmosphere–ocean system,

which should be included when uncorrelated data pat-

terns are constructed. An expansion of the dataset that

does make allowance for the time-lagged correlations

between spatially distributed time series can be more

informative, since the modes obtained in this way are apt

to represent better the physics of the modeled process.

In this paper, we propose using the dynamic variables

obtained by projection onto the leading modes of

singular-spectrum analysis (SSA; Vautard and Ghil

1989; Vautard et al. 1992; Ghil et al. 2002) for model

reduction. Essentially, the SSAmethod of data-adaptive

time series analysis is a generalization of the Mañe–
Takens delay method of embedding manifolds into

minimal-dimension Euclidean spaces (Mañe 1981;
Takens 1981; Sauer et al. 1991).

In practice, SSA is based on extending PCA into the

time domain. The temporal EOFs correspond to the

eigenvectors of the lagged-covariance matrix. In this

case, the resulting variables are uncorrelated linear

combinations of the delayed variables. Multichannel, or

multivariate SSA (MSSA; Keppenne and Ghil 1993;

Plaut and Vautard 1994; Ghil et al. 2002) generalizes

univariate, or scalar SSA to the case of multivariate time

series: it uses lagged correlations of each scalar time

series, as well time-lagged correlations between distinct

time series. In the case of interest here, when the time

series are spatially gridded values of a climatic field,

MSSA allows one to obtain a parsimonious empirical

model in terms of the so-called spatiotemporal EOFs

(ST-EOFs; Plaut and Vautard 1994; Ghil et al. 2002).

In this paper, we apply the empirical stochastic model

of Molkov et al. (2012) and Part I to the prediction of

critical transitions in the climate system, when weakly

nonstationary time series—which are spatially distrib-

uted, rather than merely scalar—are available. As a step

toward the use of actually observed climate data, we

worked with data from an intermediate-complexity,

hybrid coupled ENSO model (Neelin 1991; Jin and

Neelin 1993a) over the tropical Pacific Ocean.

The Jin–Neelin–Ghil (JNG) model (Jin et al. 1994,

1996) is a seasonally forced version of the Jin–Neelin

model (Jin andNeelin 1993a,b). The latter describes two

important mechanisms that contribute to ENSO dy-

namics: the propagation of planetary ocean waves across

the tropical Pacific and the interaction of the ocean dy-

namics with the atmosphere above through the SST

field. This model is a simplification of themore complete

atmosphere–ocean model of Zebiak and Cane (1987): it

is governed by a set of shallow-water equations for the

ocean, coupled with an integral equation for the SST;

both the atmospheric and the oceanic fields depend only

on time and the longitude along the equator. The cou-

pling parameter between the two media is an important

control parameter in the seasonally forced JNG, as well

as in the Jin–Neelin model.

Following the approach of Part I, we introduce here an

adiabatic trend of this parameter to simulate the system’s

slow forcing on decadal time scales.As a result, theENSO

attractor undergoes qualitative, as well as quantitative

changes in time. These changes include bifurcations,

which manifest themselves as critical transitions within

the observed dynamics. We consider situations in which

the observed time series used for empirical model learn-

ing do not contain critical transitions and the transitions

between a chaotic regime and periodic oscillations took

place beyond the limits of the learning interval.

This paper is structured as follows: in the next section,

we describe briefly the methods used to construct the
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basis of the phase-space variables from EOF andMSSA

expansions, respectively, and then formulate the em-

pirical model used here. This formulation relies on the

general stochastic model proposed by Molkov et al.

(2012) and applied in Part I to simpler ENSO models,

and on this general model’s implementation via ANNs.

Section 3 reviews the ENSO model (Jin et al. 1994,

1996) used to generate the data. Section 4 presents our

analysis of the time series generated by the JNG model

of section 3 by using the empirical model formulated in

section 2; this section gives our results on predicting

critical transitions and demonstrates the advantages of

the MSSA data expansion over the more traditional use

of purely spatial EOFs. In the last section, we generalize

the results obtained here and discuss the perspectives of

empirical modeling in climate dynamics.

2. Phase space reduction and empirical model

a. Expansion in spatial EOFs

Let us represent the spatial field of the climatic variable

X, measured at discrete locations, as the time-dependent

vector Xk :5 X(tk), X
k 2 R

D, k 5 1, . . . , N; here, the jth

component of the vector Xk
j corresponds to the jth node

of the spatial measurement grid, which consists of D

nodes, and observations are available at N successive,

equidistant times. In what follows, we will consider nor-

malized data: that is, those reduced to the form

hXk
j ik5 0 and hXk

j X
k
j ik 5 1, (1)

where the operation h�ik denotes averaging with respect

to the time index k, and replaces in practice the expec-

tation operator.

Standard expansion of the vectors Xk into spatial

EOFs {vi: i 5 1, . . . , D} is given by

Xk 5 �
D

i51

Yk
i vi , vi 2 R

D , (2)

where the principal components (PCs) Yk do not cor-

relate with each other; that is, the covariance matrix

CY 5 hYkYkTik is diagonal, and its diagonal elements are

equal to the variances in the vi directions of the series {Y
k}.

The vectorsYk are derived from the initial vectorsXk by

using the orthonormal transformation Yk 5 VTXk, where

V is the unitarymatrixwhose columns are theEOFs vi, and

CY 5VThXkXkTikV . (3)

Thus, the EOFmatrix V rotates the initial dataXk to the

eigenvectors of their covariance matrix,CX 5 hXkXkTik,
and VT 5 V21.

Note that, since the data are reduced to the normalized

form of Eq. (1),CX is a correlation, rather than a covariance

matrix, with respect to the original, unnormalized data.

Therefore, the above-described EOFs are called, strictly

speaking, correlation EOFs (Jolliffe 1986). Actually, the

basis {vi} dependson the scalingof the initial spatial field, and

one can specify the problem of finding an optimal scaling

function [i.e., one that yields relationships differing fromEq.

(1)] as studied by Kravtsov et al. (2009) and Strounine et al.

(2010), among others. Here we consider, for simplicity, only

correlation EOFs and normalized-data compression based

on Eq. (1), since our emphasis is on including temporal

correlations along with the spatial ones used so far.

b. Spatiotemporal expansion

As already mentioned in the introduction, an empirical

model that uses spatiotemporal information already in the

data compression stage might be better at simulating and

predicting the behavior of a system in which variables de-

pend on time, as well as space. This leads us to the idea of

using anorthonormal basis extended to the time domain for

the learning subspace. Without leaving the framework of

linear transformations, we can construct such basis func-

tions by relying on time-lagged, as well as instantaneous

spatial correlations between the nodes of our spatial grid. In

other words, in order to derive the variables of our low-

order empirical model, we propose to applyMSSAanalysis

(Keppenne and Ghil 1993; Plaut and Vautard 1994; Ghil

et al. 2002) to the initial multivariate time series {Xk}.

We thus consider lagged correlations of variables

within the limits of the specified time lag T, which cor-

responds to the time scales under consideration. To do

so, we evaluate the mutual covariations of the elements

of theD3T trajectorymatrixQk (Broomhead andKing

1986a,b). The columns of the matrix are the vectors Xk,

shifted relative to each other at every time k:

Qk5 (Xk, Xk11, . . . , Xk1T) . (4)

The covariance matrix we seek is the time-averaged ten-

sor product CJ 5 hJkJkTik of the vectors Jk formed by ar-

ranging thematrix columnsQk in one column of lengthDT:

Jk 5 vec(Qk) , Jk 2 R
DT . (5)

Orthogonal rotation of the vectors Jk above, similar to

Eq. (3), ensures diagonalization of the covariancematrix

C J and makes it possible to perform the transition to

mutually uncorrelated coordinates:

Yk5VTJk . (6)

In this multivariate case, too, the columns of theDT3
DTmatrixV form the orthonormal basis {vi}, where each
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component can be represented now as a matrix Ei such

that vi 5 vec(Ei): that is, a matrix with the spatiotem-

poral structure of the indices that is similar to Eq. (4).

One thus obtains a set of basis functions of space and

time and, therefore, time series for Eq. (6) of the spa-

tiotemporal PCs (ST-PCs) Yk
i , which are found by pro-

jecting the data field on these functions. Note that these

ST-PCs are only uncorrelated at zero lag (Plaut and

Vautard 1994; Ghil et al. 2002).

c. Construction of the empirical model

Following the PCA logic of sections 2a or 2b, we

construct a model of the evolution operator in the space

of the leading PCs or ST-PCsYk, respectively (i.e., those

that are associated with the largest variances). This

means that we will use the modes that provide the

principal contribution to the dynamics of the measured

values. Actually, we will model the evolution operator

of the shortened vector Uk 5 (Yk
1 , . . . , Y

k
d ) for d , D,

which consists of the d leading components of Yk ar-

ranged in the order of decreasing variations. Selection

criteria for an optimal d in various settings are discussed

by Ghil and Robertson (2002), Ghil et al. (2002), and

Molkov et al. (2009), respectively, along with many

references.

We modify here somewhat the discrete stochastic

model described in Part I, in order to adapt it tomodeling

interannual climate variability in the setting of spatially

distributed data. The modified model is given by

Uk115 f(Uk,Uk21, . . . ,Uk2m;m)

1g(Uk,Uk21, . . . ,Uk2m;h)jk , (7)

and details appear in appendix A. Here f and g are

vector andmatrix functions, respectively, represented as

ANNs and depending on the parameters m and h, while

j is Gaussian uncorrelated noise with unit variance. As

in Part I, we represent the f and g functions by ANNs

formulated as 3-layer perceptrons with a hyperbolic

tangent used as the activation function (Hornik et al.

1989). The dimensionality of this model equals d 3 m,

and it is determined by the number of PCs or ST-PCs

taken into account and the number of the consecutive

states of the system used to predict the following state.

This model is trained by means of the Bayes procedure

described in Molkov et al. (2011, 2012) and in Part I of

this work.

Grieger and Latif (1994) already constructed an

ANN-based model of ENSO in the subspace of four

leading EOFs that were derived from a combined data-

set of SSTs, surface wind stress, and upper-ocean heat

content and compared it with a linear model based

on principal oscillation patterns (Hasselmann 1976;

Penland 1996). These authors showed that the linear

model only exhibits oscillations that decay slowly to

a single fixed point, while the ANN model recovers

a stable limit cycle in its four-dimensional phase space.

Here we go beyond the work of Grieger and Latif (1994)

in three important ways: (i) we show the superiority of

ST-EOFs over the usual, purely spatial EOFs; (ii) we

recover a chaotic attractor; and (iii) we carry out a pre-

dictability study of critical trasitions.

3. The JNG model

We use the intermediate coupled JNG model as our

generator of spatiotemporal climate variability. A brief

description of this model is provided in appendix B; see Jin

and Neelin (1993a,b), Sun et al. (2002), and Kondrashov

et al. (2008) for further details on the original Jin–Neelin

model with time-independent forcing and Jin et al. (1994,

1996) for the model formulation with seasonal forcing.

Chekroun et al. (2014) have called a further simplification

of the JNG model the forced JN (fJN) model.

The Jin–Neelin model (Jin and Neelin 1993a,b) is

essentially a further idealization of the coupled ocean–

atmosphere model of Zebiak and Cane (1987). The

vertical mean motions above the thermocline are gov-

erned by linearized shallow-water equations—forced by

the wind stress—on an equatorial b-plane in the long-

wave approximation (Neelin 1991). The resulting cur-

rents drive an advection equation describing the SST at

Earth’s equator. The major simplification is to treat

explicitly only the zonal dependence of the SST field

over an equatorial strip, while the meridional structure of

the associated atmospheric forcing is given as a Gill-type

model (Gill 1980) for the wind stress anomalies. It is the

latter model that establishes a diagnostic relation be-

tween the SST anomalies and the wind stress anomalies.

In the JNG model, the ENSO oscillation arises via

destabilization of a seasonally modulated basic state

(i.e., a periodic solution of period 1 yr). This loss of

stability leads to a rich variety of possible ENSO dy-

namics, from frequency-locked regimes to chaotic ones

via a quasi-periodic route to chaos (Jin et al. 1994, 1996).

This rich dynamics results from the nonlinear in-

teractions between the externally forced seasonal cycle

and the internally generated ENSO cycle.

The nature of the intrinsic ENSO cycle depends on the

values of two control parameters: namely, the coupling

coefficient m between the atmosphere and ocean and the

surface-layer coefficient ds; see appendix B. The param-

eter ds varies from zero to one and controls the intensity

of the anomalous surface-layer currents as a function of

the wind stress anomalies. When ds is close to unity (i.e.,

in the case of strong surface-layer feedback) stronger
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vertical and advection anomalies add to the rate of SST

change (Jin et al. 1996) and place the JNG model in

a chaotic regime that is also strongly mixing.

Strong mixing, also referred to as rapid mixing in dy-

namical systems theory (Chekroun et al. 2014), corre-

sponds to chaotic behavior that is, in addition,

characterized by fast decay of lagged autocorrelations.

In the case of the JNG model, the strongly mixing be-

havior also manifests itself by moderately energetic

peaks in the power spectrum, as opposed to the nearly

periodic behavior that is associated, in this model, with

weakmixing [i.e., slow decay of correlations; see Fig. 2 in

Chekroun et al. (2014)]. The choice of ds 5 0.95 in this

paper thus corresponds to putting the model in a less

periodic and thus less predictable regime.

We shall study here the JNG model for such a strong

mixing regime, at first with a fixed coupling between the

oceanic and atmospheric components, with ds 5 0.95

and m5 1.3. Next, we will analyze the model’s behavior

by changing another key model parameter, namely d.

This parameter affects the travel time of the equatorially

trapped waves (Jin and Neelin 1993a,b; Jin et al. 1996),

which play an essential role in ENSO dynamics. Hence,

changes in dwill lead to the critical dynamical transitions

that we are interested in simulating and predicting.

4. Prediction of critical transitions

We consider the time series of SST anomalies {Xk}

generated by the JNGmodel with a prescribed adiabatic

linear trend in the control parameter d. The SST field

consists of 24 time series, each of which corresponds to

a grid point in a uniform grid along the equator within

the Pacific basin, from Indonesia to South America.

Note that this is only a small fraction of the total number

of degrees of freedom of the numerically discretized

JNG model; the latter number equals over 400, as in-

dicated in the appendix B. The length of the series is

15 000 yr, with a sampling step of half-a-month; the

model parameter d changes linearly from 1.26 at the

beginning toward 1.36 at the end of the time interval.

A short segment of the SST time series produced by

the JNG model is plotted in Fig. 1. This solution corre-

sponds to a standing wave, with a period of roughly 5 yr;

that is, it matches fairly well the 4–5-yr period of the

observed quasi-quadrennial (QQ) ENSO mode (Jiang

et al. 1995; Ghil et al. 2002).

As in the examples from Part I, a priori information

about the system can be taken into account during the

initial processing of the time series. Here, this in-

formation consists in the dependence of the JNG

model’s time-continuous evolution operator on periodic

external forcing, and it helps one reconstruct the

discrete evolution operator as a Poincaré map, which
relates model states separated by a time interval of 1 yr.
Figures 2a,b show an example of a JNG model solu-

tion, sampled once a year at two grid points from the

eastern and central parts of the Pacific basin. One can

see that the model’s attractor undergoes qualitative

changes in time, which we associate with critical transi-

tions. These transitions correspond to the disappearance

of the chaotic regime and the consequent birth of peri-

odic regimes, whose periods are multiples of the sea-

sonal cycle, as well as with the change in the multiplicity

of the periodic regimes. Note that all qualitative transi-

tions represented in the two time series in Figs. 2a,b take

place in the series of all the other components of the

vector {Xk: k 5 1, . . . , N}, since they result from the bi-

furcations occurring in the JNGmodel as the parameter d

crosses certain threshold values in time. Such bifurcations

are part of the well-known quasi-periodic route to chaos,

as discussed by Jin et al. (1994, 1996).

As a learning sample, we take a 24-dimensional time

series over the first 4000 years, sampled with half-a-

month time steps. Our task is to train an empirical model

of the form given by Eq. (7) on this series and then

predict the sequence of critical transitions that occur

beyond the training interval. We will train the empirical

model in two ways, based on the two approaches to

variables, constructing the basis of the learning subspace

(i) using purely spatial EOFs and (ii) using ST-EOFs, as

discussed in sections 2a and 2b, respectively.

a. Results using a spatial EOF basis

Figure 3 shows the four leading EOFs, which capture

49%, 21.7%, 16.5%, and5.7%of variance, respectively, for

a total of over 90%.The spatial EOFs herewere computed

from the original SST time series, not the subsampled one.

We then used subsampled PCs for model learning.

FIG. 1. Segment of the SST time series produced by the JNG

model and used here for training the empirical ANN model. The

points along the equator, shown on the ordinate, are numbered

from west to east. This JNG model solution corresponds to

a standing wave, with a period of roughly 5 yr; see text for details.
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The top panel in Fig. 4, as well as Fig. 2c, shows the

leading PC fYk
1 g at 1-yr intervals. In Fig. 4, the black color

marks the time interval used to learn theANNmodel, and

the red color marks the unknown behavior of the JNG

model that should be predicted. The empirical model of

Eq. (7) was learned in accordance with the procedure

described in section 2 of Part I for different values of the

dimension d and the maximum lag m, with 1 # d # 15.

The numbers mf and mg of neurons in the ANN that ap-

proximated the functions f and g also varied from 1 to 15.

We will not dwell here on the behavior of empirical

models with different dimensionalities and values of

d and m or different numbers of neurons. It suffices to

show only the characteristic pattern of the predictions

made on the basis of spatial EOFs alone. Accordingly, in

the two lower panels of Fig. 4 are plotted predictions

of the leading PC shown in the upper panel, using em-

pirical models with (d 5 1, m 5 5) and (d 5 3, m 5 5),

respectively.

It is evident from these two plots that the spatial EOF-

based models failed to reconstruct the JNG model’s

behavior; not only are the future critical transitions

predicted incorrectly, but the empirical model fails to

simulate correctly the JNG model behavior during the

learning interval.

b. Results using spatiotemporal EOFs

Let us now consider the results of empirical modeling

when using a basis of spatiotemporal EOFs, as in Eq. (6).

As in the previous subsection, spatiotemporal EOFs

were computed solely from a learning interval of

4000 yr. Next, the whole dataset was projected onto

these EOFs to obtain the associated PCs that cover both

the learning and the verification intervals.

The time lag T used to construct the matrix Qk in Eq.

(4) was equal to 20 months. Thus, the number of col-

umns of the covariance matrix CJ used to obtain the ST-

EOF basis is 403 245 960. Figure 5 shows the first six of

these—namely, the first sixmatricesEi, i5 1, . . . , 6, from

FIG. 2. Poincaré map of the JNG model solution in several variables, with a 1-yr time step.
The SST time series at two points along the equator: (a) eastern and (b) central Pacific basin.
The leading (c) spatial PC and (d) ST-PC time series.

FIG. 3. The four leading spatial EOFs computed from the SST

time series of the JNG model and used to develop the empirical

model. The EOFs are ranked by variance captured, in decreasing

order: 49%, 21.7%, 16.5%, and 5.7%, respectively.
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section 2b—arranged in the order of decreasing variance

captured by the ST-PCs Yk
i .

These six leading ST-EOFs capture respectively

21.8%, 12.5%, 7.4%, 6.8%, 5.9%, and 5.7% of vari-

ance, for a total of just over 60%. They are pairwise

orthogonal and do fall into oscillatory pairs, although

the variance of EOF 1 is almost twice that of EOF 2:

EOFs 1 and 2 capture the dominant QQ mode, al-

ready visible directly in Fig. 1, while EOFs 3 and 4

appear to be associated with the first harmonic of the

seasonal cycle. In fact, it is known that this 6-month

periodicity is important near the equator, since the

solar heating is a maximum twice per year at the

equator: once when the Sun crosses it southward and

then again when it returns northward. Finally, EOFs 5

and 6 capture the annual cycle itself. The nonlinear

interaction of these three modes collectively de-

scribes the complex chaotic behavior of the JNG

model.

The leading ST-PC of the JNG model is shown in

both the top panel of Fig. 6 and in Fig. 2d. Note that the

evolution of the model’s behavior, including its critical

transitions, will not differ qualitatively when plotting

either the components of the original variables Xk or

the components of the transformed variables Yk, be-

cause of the linear character of the transformation

between the two vectors. In other words, critical tran-

sitions are represented equally well in the time series

that are directly simulated here by the JNG model—or

observed, in other potential applications of the pro-

posed methodology—as well as in the purely spatial

PCs and the ST-PCs used to train the model. This

theoretical statement can be immediately confirmed by

comparing the time series of the JNG model’s vari-

ables, shown in Figs. 2a,b, and the time series of the

PCs, shown in Figs. 2c,d. Therefore, correct prediction

of the qualitative behavior of the variables Yk given by

Eq. (6) also implies correct prediction of the behavior

in the original variables Xk.

As with the spatial EOFs in the previous subsection,

we performed experiments in which empirical models

of the form Eq. (7), with different parameters d andm,

were learned. The spatiotemporal transformation [Eq.

(6)] proved to be quite efficient, as shown by the fact

that the model with d 5 1 and m 5 2 turned out to

successfully predict the JNG model’s qualitative be-

havior during a time interval exceeding the duration of

the learning sample. In the lower panel of Fig. 6, we

plot the time series generated by this empirical model,

in which mf 5 9 and mg 5 5 neurons were used in

the ANN that approximated the functions f and g,

respectively.

FIG. 4. Predictions of JNG model behavior by using empirical models governed by Eq. (7)

and trained on the purely spatial PCs. (top) The time series of the JNG model’s leading EOF.

The black color marks the learning interval used to construct the empirical models, and the red

color corresponds to the JNG model behavior that needs to be predicted empirically. The

prediction results obtained by using ANNmodels with (middle) d5 1 andm5 5 and (bottom)

d 5 3 and m 5 5.
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The figure shows that we managed to predict the crit-

ical transitions connected with the decay of the chaotic

regime and the birth of the periodic regime at t 5 4800

while the rebirth of the chaotic regime from the periodic

one at t 5 7800 is predicted by the empirical model at

t 5 6600. A subsequent, narrower ‘‘laminar window’’

(Kadanoff 1983) in the ANN model’s prediction, at

8100 # t # 4800 is actually absent in the full JNG

model’s simulation, while a broad window in the lower

panel, near t5 12 000, corresponds to a narrower one in

the upper panel. Thus, prediction of critical transitions

for the spatially dependent, intermediate JNG model

appears to be more difficult than for the scalar models in

Part I, but still possible and thus promising.

Note that all the predicted critical transitions take

place in every leading ST-PC (not shown), not just the

first one, since they correspond to bifurcations of the

JNG model’s attractor. Hence, the problem of predict-

ing a dynamical model’s critical transitions can be re-

duced to predicting them in any single ST-PC or subset

thereof.

Figure 7 displays power spectra computed by the

Blackman–Tukey correlogrammethod for two intervals

of the JNGmodel’s simulation: the training interval 0#

t # 4000 (top panel) and 8000 # t # 11 000 (bottom

panel). In both panels the JNG model simulation is

compared with the empirical model simulation (top

panel) and prediction (bottom panel).

All four spectra capture, to various degrees, the

dominant QQ mode and the lesser QB mode. The fig-

ure shows that the dynamic properties of the JNG

model—and of ENSO observations—have been cap-

tured reasonably well by the empirical model (blue

curve in both panels) for both the training interval and

the predicted one; in particular the period and ampli-

tude of the dominant QQ mode is well captured by the

leading ST-PC.

The relative success of the prediction of critical tran-

sitions in the JNG model by using a low-dimensional

empirical model with a small number of parameters, as

seen in Fig. 6, can be explained by the apposite choice of

the basis functions for the empirical model by means of

the MSSA transformation [Eq. (6)]. The parameter

values used in the empirical model, d 5 1 and m 5 2,

mean that the function f in the model of Eq. (7) should

approximate the dependence of the ST-PC Yk
1 at time k

on the two preceding values of Y1, namely Yk21
1 and

Yk22
1 ; the latter two values are plotted as the (x, y)

coordinates in Fig. 8, while Yk
1 is plotted as the z

coordinate.

FIG. 5. The six leading ST-EOFs computed from the SST series produced by the JNG model and used to develop

the empirical model. The EOFs are ranked by variance captured in decreasing order: 21.8%, 12.5%, 7.4%, 6.8%,

5.9%, and 5.7%, respectively.
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The dependence of Yk
1 on (Yk21

1 , Yk22
1 ), which is

constructed during the learning interval, is shown by the

black curve in the middle panel of Fig. 8. One notices

that this dependence can be described fairly accurately

by a single-valued function in a wide domain of the plane

spanned by Yk21
1 and Yk22

1 . This fact plays a key role in

obtaining the correct reconstruction. The red curve in

the bottom panel marks a similar dependence con-

structed for the leading ST-PC of the JNGmodel during

a later time interval, 8000 # t # 11 000.

In both these panels, the blue curve of the empirical

model’s solution stays quite close to that of the

JNG model. Increasing either d or m does not im-

prove the fit and tends to make the empirical model

less robust.

The top panel of Fig. 8 displays, by contrast, the sit-

uation for the ANN model that used spatial EOFs as

basis functions. Clearly, the black curve of JNG model

behavior is not single valued, and the blue curve of the

ANN model does not approximate it well at all.

5. Conclusions

In this paper, we introduced spatiotemporal basis

functions as an important tool in implementing the

empirical approach to climate system modeling and

prediction. The results were compared with those

obtained by the usual data compression method using

purely spatial EOFs. Our spatiotemporal EOFs

(ST-EOFs) were obtained by an application of MSSA

to data fields that vary in both space and time (see

section 2).

The empirical ANN modeling introduced in Part I

of this work for scalar time series was thus extended

to simulate and predict the solutions of an in-

termediate, seasonally dependent coupled model of

the tropical Pacific, the JNG model [see Jin and

Neelin (1993a,b); Jin et al. (1994, 1996); and section 3

herein]. Specifically, we demonstrated that the em-

pirical, ST-EOF-based model is capable of predicting

critical transitions in the full JNG model’s dynamics

(see section 4).

The improvement in the simulation and prediction of

the JNG model’s behavior when comparing the ST-

EOF-based empirical model with the one based on the

usual spatial EOFs is striking (see especially Fig. 6 ver-

sus Fig. 4, as well as Fig. 8). Still, both the simulation

during the training interval, 0 # t # 4000 yr, and the

prediction for t . 4000 yr is only approximate, and sev-

eral ways of improving theANNmodel’s skill need to be

considered.

These ways should include an optimization of the

dimension d of the subspace in which the empirical

model is developed (see, e.g., the two bottom panels of

Fig. 4) along with the number m of delays taken into

account in Eq. (7) and the maximum lag T considered

in computing the ST-EOFs. Clearly, these parameters

of the empirical model depend on the characteristic

FIG. 6. As in Fig. 4, but for an empiricalmodel governed by Eq. (7) and trained on the ST-PCs

obtained by MSSA. (top) The leading ST-PC of the JNG model. Color conventions are as in

Fig. 4. (bottom) The prediction results of the ANN model with d 5 1 and m 5 2.
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times and the complexity of the dynamics that we wish

to simulate and predict; hence, no general recipes can

be prescribed.

Another important ingredient for the practical ap-

plication of the method proposed herein is the evalu-

ation of its skill in predicting critical transitions. In

previous papers (Molkov et al. 2011; Feigin et al.

2002), we proposed to calculate the probability of

occurrence of a certain dynamical regime at a certain

time in the future. The probability of the regime that

actually occurs at some future time can be used as

a measure of skill in predicting this regime. This

probability can be estimated by a statistical analysis of

the posterior distribution of the empirical model’s

parameters, as done in Eq. (7) of Part I; usually, we

applied a Markov chain Monte Carlo (MCMC)

method for sampling such posterior probability den-

sity functions (PDFs).

To do so, however, it is necessary first to identify the

dynamical regime of interest in a precise, quantitative

way: for instance, one can define the regime by the

number of statistically significant maxima in the in-

variant measure (Ghil and Robertson 2002), the

number of significant peaks in its spectral density

(Ghil et al. 2002), and so on. Generally speaking, such

a Monte Carlo analysis requires a large number of

numerical computations. Since the aim of this two-

part paper is just to demonstrate the possibility of

empirical forecasting of critical transitions in climate

dynamics, we simply used visual comparisons be-

tween observed versus reproduced behavior and

plotted the output of the most probable model (i.e.,

the model whose parameter values maximize the

posterior PDF). A more comprehensive analysis

is left for future work devoted to concrete climate

applications.
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FIG. 7. Comparison of the power spectra of the JNG model’s leading ST-PC and of the

empirical model derived from it via Eq. (7). The spectra are computed by the windowed

Blackman–Tukey correlogram (Kay and Marple 1981; SSA-MTMGroup 2013) with a Bartlett

window of size 70. (top) The black curve shows the spectrum of the leading ST-PC of the JNG

model, marked in red in Fig. 6; (bottom) the red curve marks the spectrum of the same ST-PC

for the time interval 8000# t# 11 000 in Fig. 6. The blue curves in (top) and (bottom)mark the

empirical model’s spectra within the corresponding time intervals.
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APPENDIX A

Stochastic Model for Multivariate Time Series

This appendix explains the model form Eq. (7) that is

well adapted to the use of multivariate climate time

series, as considered in the paper.

We study a multivariate time series U(t) 2 R
d. The

components of the vector U can be the climate vari-

ables measured on a spatial grid or a set of leading PCs

that capture much of the observed variability on that

grid; in this paper, they are the set of PCs or ST-PCs

obtained from the space-distributed SST time series.

To model the evolution operator governing the dy-

namics of U(t), we have to define an embedding (i.e.,

the set of phase variablesW that determines the model

states). The simplest way is to complement the vector

U by a number of time-lagged vectors that, together

with U itself, yield an augmented vector W(t) 5 {U(t),

U(t1 t), . . . ,U[t1 (m2 1)t]}; the new componentsWi

span a phase space of dimension d 3 m. Such an em-

bedding algorithm (Mañe 1981; Takens 1981) provides
us with many possibilities of projecting the full, un-

known phase space of the actual system under study

onto a reduced subspace. An important problem, then,

is to find optimal parameters d and m, along with the

delay t, that provide the simplest structure of the evo-

lution operator in such a projection.

An obvious step in analyzing interannual climate

variability is to use the Poincaré map that is naturally
associated with the seasonal periodicity of the variables.
In practice, we select an arbitrary phase of the seasonal
cycle (i.e., a particular day, week, or month) and con-
sider W(t) only at time instants that correspond to that

phase and, consequently, are separated by one year.

This step achieves two purposes: it reduces the di-

mension of the attractor and, simultaneously, excludes

the zero Lyapunov exponent that is hard to capture in

a discrete model.

Next, according to Part I, we construct the stochastic

model of the map so obtained, in the form

W(tk11)5 f[W(tk)]1g[W(tk)]z(tk) , W 2 R
dm ; (A1)

here f: Rdm / R
dm and g: Rdm / Ldm(R) are matrix

functions of the vector variable W, time instants tk are

separated by one year, and z(tk) is white normalized

Gaussian noise.

The choice of the delay t5 1 yr in Eq. (A1) may seem

arbitrary, since there are many methods to estimate it

(Casdagli et al. 1991; Buzug and Pfister 1992; Kantz and

Schreiber 1997). In this paper, given that interannual

ENSO dynamics has characteristic time scales of 2–7 yr,

a value of t of the an order of 1 yr is intuitively the

proper choice for it. Especially so when using ST-PCs for

our basis, as in Eq. (4) when applying MSSA, since the

time lag T was taken larger than 1 yr (see section 4b);

consequently, the leading ST-PCs have characteristic

time scales that exceed t.

FIG. 8. Comparison of the phase portraits of the JNGmodel and

the empirical model. The portraits are displayed in a three-

dimensional subspace spanned by the leading ST-PC at three suc-

cessive instants, k 2 1, k, and k 1 1. (top) ANN model based on

spatial EOFs; (middle) ANN model based on ST-EOFs for the

training interval 0# t# 4000; and (bottom) As in (middle), but for

the time interval 8000 # t # 11 000. Color convention as in the

previous figures: black for JNG model during training; red for

the samemodel beyond the training interval, t. 4000; and blue for

the ANN model.
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It is easy to show that the choice of t exactly equal

to 1 yr allows one to simplify substantially the

architecture of the model in Eq. (A1). Indeed, if

we rewrite this equation in terms of U for t 5 1 yr,

we obtain m 2 1 trivial couplings between the

variables:

U(tk11)5U(tk 1 t),

U(tk111 t)5U(tk 1 2t),

..

.

U[tk111 (m2 1)t]5 ffU(tk),U(tk 1 t), . . . ,U[tk 1 (m2 1)t]g
1gfU(tk),U(tk 1 t), . . . ,U[tk 1 (m2 1)t]gj(tk) . (A2)

Thus, the last equation in the system of Eq. (A2)

is equivalent to the model of Eq. (7). Note that now

f: Rdm / R
d, and g: Rdm / Ld(R) so that the target

spaces of these vector functions are much smaller than

in Eq. (A1).

The price to pay is that the model of Eq. (7),

working as a Poincaré map, has an obvious drawback:
it can reproduce data only with the resolution in time
imposed by the 1-yr time step of the Poincaré map
used for the reduction. This restriction makes it im-
possible, in particular, to use reconstructed compo-
nents (Ghil and Vautard 1991; Vautard et al. 1992;

Feliks et al. 2013), whose phases are fixed to within

the sampling step of the time series, as opposed to

PCs, whose phases are indeterminate to within the

window width of the analysis (Vautard et al. 1992;

Ghil et al. 2002). As shown here, though, the ST-PCs

capture well the main critical transitions in the ob-

served behavior. Hence, modeling and forecasting

their behavior suffices for the purposes stated in this

paper.

APPENDIX B

Brief Description of the JNG Model

a. The ocean

The coupled model’s ocean dynamics is governed by

linear shallow-water equations for the currents and

a nonlinear equation for the SST field. The dynamical

variables are the three velocity components (u, y, w)

and the thermocline depth anomaly h. We describe

here only the model’s main features and key param-

eters. A more complete summary of the model deri-

vation is given in appendix A of Sun et al. (2002), and

all the parameter values are listed in Table 1 of that

paper.

1) THE SEA SURFACE TEMPERATURE EQUATION

The SST in an equatorial band satisfies the semilinear,

hyperbolic partial differential equation in the zonal

direction

›T

›t
1u1

›T

›x
1H(w)

w

H1:5

[T2Tsub(h)]

2H(2yN)
2yN
Ly

(T2TN)1 �T(T2T0)5 0; (B1)

Here, T is the temperature of the surface mixed layer, u1
is the zonal and w the vertical velocity in this surface

layer, while yN is the meridional surface current at the

northern boundary of the equatorial box. Symmetry

of SST and antisymmetry of yN about the equator are

assumed.

In Eq. (B1), the Newtonian damping time is de-

noted by «T, and its value is set at (90 days)21; Ly

denotes the width of the box; and TN is the off-

equatorial SST at a distance Ly from the equator.

The depthsH1 andH2 of the two layers are taken here

to be 50 and 100m, while H1.5 5 75m is the depth

scale that characterizes upwelling of the subsurface

temperature Tsub. An analytical, smooth versionH(x)

of the Heaviside function is used in the terms of Eq.

(B1) that represent upstream differencing of meridi-

onal and vertical advection into the equatorial sur-

face strip.

The meridional velocity yN is obtained by finite

differencing the continuity equation, while w and u1
each are a sum of three parts: a climatological, sea-

sonally varying basic state; anomalous vertical mean

currents above the thermocline obtained from the

shallow-water equations [Eqs. (B2)–(B3) below]; and

anomalous oceanic shear currents. The subsurface

temperature Tsub is parameterized as a nonlinear

function of thermocline depth anomaly h by assuming

that a deeper thermocline is associated with warmer

upwelled waters.
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2) THE OCEANIC CURRENTS

The vertical mean motions above the thermocline are

governed by the linearized, reduced-gravity shallow-

water equations on a b-plane in the long-wave approx-

imation. A standard semispectral discretization is used,

with parabolic cylinder functions as basis functions in

latitude; it leads to a truncated model, including the first

Kelvin mode and the first 15 symmetric Rossby modes.

Note that this represents a higher resolution than typi-

cally used for this model: Jin and Neelin (1993a) re-

tained a total of eight oceanmodes, followed by Jin et al.

(1994, 1996) and Kondrashov et al. (2008).

The resulting equations for the 16 oceanic wave co-

efficients {qn: n 5 0, . . . , 15} are

�
d
›

›t
1 �

�
q01

›q0
›x

5 t0 (B2)

for the amplitude q0 of the Kelvin wave and

(n2 1)

�
d
›

›t
1 �

�
qn2

›qn
›x

5ntn 2 [(n2 1)]1/2tn22 (B3)

for the 15 Rossby waves {n5 2p: p5 1, . . . , 15} while tn
is the zonal wind stress projected onto oceanic mode n.

The original variables h, u, and y (i.e., the thermocline

depth anomalies and anomalous vertical mean currents

above the thermocline) are obtained by back trans-

formation as appropriate linear combination of the qns.

The relative adjustment coefficient dmeasures the ratio

of the time scale of adjustment by oceanic dynamics to

the net time scale of SST change in Eq. (B1). This pa-

rameter affects the travel time of the equatorially trap-

ped waves produced by the JNG model, and it helps

determine the dynamical regime resulting from the in-

teractions between the model’s internal variability and

the seasonal forcing (Jin et al. 1996).

The SST Eq. (B1) and Eqs. (B2) and (B3) for the

mean zonal currents give a total of 17 equations for the

model’s 17 variables: the SST, one Kelvin mode, and

15 Rossby modes. These 17 equations are numerically

discretized using 24 grid points along the equator,

which in turn gives a total of 17 3 24 5 408 degrees of

freedom.

The horizontal components us and ys of the vertical

shear currents are governed by steady-state equations

dominated by damping due to interfacial stress between

the layers (Zebiak and Cane 1987). The vertical velocity

w in the surface layer enters into the SSTEq. (B1), and it

equals ws. This vertical component of the shear currents

can be calculated from the continuity equation using us
and ys.

b. The atmosphere–ocean coupling

The climatological basic state with a seasonal cycle is

constructed as a forced solution of the uncoupled ocean

model with a wind stress t that resembles the annually

observed wind stress in the Pacific Ocean along the

equator. The oceanic component is then coupled with

the atmosphericmodel to obtain the deviations from this

basic state; it is these deviations that are referred to as

anomalies. The coupled system is set up using one-way

flux correction (Jin and Neelin 1993a), with total wind

stress t given by t 5 t 1 t0, and the wind stress anomaly

t0 is derived from the atmospheric response T 0 5 T2 T

to SST anomalies. The response of the zonal wind stress

anomalies t0 to the SST anomalies T 0 at the equator is

assumed to be steady, with the parameter m controlling

ocean–atmosphere coupling.

A relative surface-layer parameter ds, varying from

zero to unity, is introduced; it controls the intensity of

the anomalous surface-layer currents as a function of the

wind stress anomalies without affecting the climatology.

Sensitivity studies with respect to this parameter were

carried out in the Jin–Neelin model with time-constant

forcing (Neelin 1991; Jin et al. 1996), as well as for the

JNGmodel used here, with a seasonal cycle in its forcing

(Jin et al. 1996). As indicated already in section 3, cha-

otic model regimes are obtained for certain ranges of ds
values; furthermore, the mixing properties for these

regimes, in themodel’s phase space are strongly affected

by ds (cf. Chekroun et al. 2014). In the present paper,

ds 5 0.95 is close to unity, so the correlation decay of

the simulated Niño-3 index is faster than for small values
of ds. The resulting behavior is less periodic and, thus,

less predictable.
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