UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Default Defeaters in Explanation-Based Reasoning

Permalink
https://escholarship.org/uc/item/83q7b30§
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 8(0)

Authors

Harman, Gilbert
Cullingford, Richard
Bienkowski, Marie

Publication Date
1986

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/83q7b308
https://escholarship.org/uc/item/83q7b308#author
https://escholarship.org
http://www.cdlib.org/

Default Defeaters in Explanation-Based Reasoning

Gilbert Harman, Department of Philosophy, Princeton University
Richard Cullingford, Information and Computer Science, Georgia Institute of Technology
Marie Bienkowski, Bell Communications Research, Morristown, New Jersey
Ken Salem, Department of Computer Science, Princeton University
Ian Pratt, Department of Philosophy, Princeton University

The purpose of this paper is to illustrate an approach to the theory of reasoning
that takes all reasoning to be "explanation-based". In particular, we consider how to
treat "default reasoning” as a special case of explanation-based reasoning and we indi-
cate what implications this treatment of default reasoning has for handling cases where
the legitimacy of default reasoning is defeated by special considerations.

We are particularly interested in the following question about default reasoning.
Given a default principle of the form, "Normally A’s are B’s," one can normally infer
that a given A is a B. But sometimes further information about an A can block this
inference. The question is: How should the rules of inference accommodate these
exceptional cases?

One method that is used in certain production systems is to have several rules,
one for the default rule and one for each of the exceptional cases: "From x is an A,
infer x is a B." "From x is an A and x is a C, infer x is not a B." Etc. Furthermore,
a restriction is placed on the rules of inference saying that, if the left hand side of a
rule R is satisfied, one can use R only if there is no satisfied rule whose left hand side
includes all the conditions of R’s left hand side plus some further conditions. Given A
only, one can then use the first rule to infer B. But given A and C one cannot use the
first rule, since the second rule’s left hand side is now satisfied.

This method supposes that one has already discovered whether the case is excep-
tional before deciding whether to infer from "x is an A" to "x is a B" using the default
rule. This does not account for the case in which the current evidence would allow
the inference that x is an exception but this has not yet been inferred. McDermott and
Doyle (1980) handle this case by using rules of the following form: "Given that x is
an A and that x cannot be inferred to be a C, infer that it is a B." But even this
approach does not handle a case in which the evidence indicates that there is a
significant chance that x is a C, without being so strong as to allow the inference that
xisaC.

The research reported here was supported in part by a research grant from the James S. McDonnell Foundation, by a
research grant (487906) from IBM, by the Defense Advanced Research Projects Agency of the Department of Defense
and by the Office of Naval Rescarch under Contracts Nos. N00014-85-C-0456 and N00014-85-K-0465, and by the Na-
lional Science Foundation under Cooperative Agreement No. DCR-8420948 and under NSF grant number IST8503968.
The views and conclusions contained in this document are those of the authors and should not be interpreted as neces-
sarily representing the official policies, either expressed or implied, of the McDonnell Foundation, IBM, the Defense
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In some cases of this sort, the possibility of x’s being a C is relevant because the
reason why A’s are normally B’s is that A’s are normally C’s, and C’s are always B’s.
We suggest that in order to infer from x’s being an A to x’s being a B one must be
able simultaneously to infer that x is a C. If the evidence indicates that there is a
significant chance that x is not C, then it will not be possible to conclude that x is C,
and that will prevent the inference that x is B. As we will now indicate, this way of
handling certain default defeaters fits in with a general framework of explanation-based
reasoning.

REASONING

A preliminary account of explanation-based reasoning occurs in Harman (1986).
Reasoning is identified with a nonmonotonic process of "change in view". Such a
change occurs only in the presence of an interest or goal of the agent, for example, an
interest in the answer to a particular question. The process of reasoning tries to
respond to this interest or goal by making a minimal change in the agent’s beliefs that
improves the explanatory coherence of the whole set of beliefs by addition to and sub-
traction from that set. The process is subject to a number of constraints discussed in
Harman (1986) that will not be discussed here.

We envision a computer program, AR (for Artificial Reasoner), that modifies
representations of beliefs in accord with the principles of explanation-based reasoning
(Cullingford, et al., 1985).. When AR draws a new conclusion, this conclusion will
normally take the form of a complex explanatory structure, in which beliefs are linked
together by relations of intelligibility. Sometimes, explanation-based reasoning will
involve new beliefs that are inferred as the best explanation of the truth of certain old
beliefs. For example, when doctor AR infers that a patient has a particular disease,
AR'’s conclusion is that the patient’s having this disease explains why the patient has
such and such symptoms. Sometimes explanation-based reasoning will introduce new
beliefs whose truth is inferred to be explained by certain old beliefs. For example,
when predictor AR predicts that an agent will do a particular action, AR’s conclusion
is that such and such motives will lead the agent to do that action and so will explain
the agent’s action. Other more complex cases are discussed in Harman (1986).

The unit of inference is an explanatory structure. When AR is considering
whether or not to accept a given conclusion C, AR must consider whether there is
some explanatory structure AR can accept of which C is a part. So, AR will have
some principles for determining what possibly acceptable explanatory structures there
are. AR will also have principles for deciding among competing explanatory struc-
tures (e.g. for choosing the best explanation). (These principles need not be wholly
separate, because the possibly acceptable explanatory structures might be produced in
an order that indicates how good they are. For example, there might be a preference
for explanatory structures that involve fewer rather than more new beliefs. There
might also be a preference for explanatory structures that account for more rather than
less.)
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S Pis in a position to know whether S.
I I
|
P knows that S P is sincere
| |

I
P says that S

FIGURE 1: A (SLIGHTLY) COMPLEX EXPLANATION

STRUCTURES

In this view, beliefs are organized into complex explanatory structures. The basic
links in such structures are immediate explanations. Immediately intelligible links
represent connections that AR grasps without having to note intermediate links. An
immediate explanation or e-node has two components, an explanans or list of (pointers
to) immediately explaining beliefs and an explanandum or (pointer to) something
immediately explained. Every belief is associated with explainer links to e-nodes of
which the belief is the explanandum and explained links to e-nodes of which the belief
is one of the explanans.

A complex explanation is a structure of immediate explanations, perhaps a tree,
with the wultimate explanandum (thing explained) at the root, where it and other propo-
sitions in the tree have as immediate descendents e-nodes of which they are the
explananda, where these e-nodes have as their descendents the propositions that are the
explanans of the e-nodes. (Figure 1)

Some e-structures are more complex than this, since a new hypothesis might
allow the explanation of more than one thing. For example, doctor AR should prefer a
diagnosis that accounts for several of a patient’s symptoms over a diagnosis that
accounts for only one symptom. That involves an explanatory structure with more
than one root. So we have to allow for cases in which there is more than one e-node
below a proposition. It is not clear what to call this structure, but it consists basically
in links among propositions and e-nodes.

So, we assume that AR has | ‘ocedures that produce possible explanatory struc-
tures of this sort containing the proposition it is "considering” and minimizing the
number of new beliefs it adds and old beliefs it gets rid of.

INFERRING STRUCTURES

Suppose AR knows that A is F and AR also knows that, normally, x is F only if
x is G. But AR does not know why this is so. In particular AR does not know
whether something’s being F is responsible for its being G, whether something’s being
G is responsible for its being F, or whether some other thing is responsible for this
correlation. Still, AR can infer that A is G. But how is that to be represented as an
explanatory inference?
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Normally, x is F only if x is G.
|
AisFonlyif Ais G Ais F
| |

I
Ais G

FIGURE 2: EXPLANATION USING A DEFAULT PRINCIPLE

We suggest the following answer: AR infers that the existence of the general
correlation between something’s being F and something’s being G will account for the
correlation in this particular case. That is, AR will add an e-node whose single
explainer is (a link to) "Normally, x is F only if x is G" and whose explanandum is (a
link to) "A is F only if A is G". AR will also add an e-node whose explainers are
links to "A is F only if A is G" and "A is F' and whose explanandum is "A is G."
These two e-nodes and the propositions they are linked to make up the explanatory
structure that AR infers on this occasion. (Figure 2) (This is not to say that AR has to
retain this structure in memory as time goes on. Rather: this is what AR accepts for
the moment in coming to accept "A is G".)

How does AR infer from "S says that P" to "P"? Perhaps via the generalization,
"Usually, x says that m only if m." Then this is an instance of the sort of inference
just discussed.

However, AR might also have a view as to why the generalization holds. AR
might believe that the generalization holds because, usually, when x says that m, that
is because x believes that m and x wants to say whether m, and, furthermore, x
believes that m because m and x is in a position to know whether m. It is only
because AR accepts such an explanation that AR can avoid inferring "P" from "S says
that P" on those occasions on which AR believes S does not want to say whether P or
on those occasions on which AR thinks S is not in a position to know whether P.
(Eventually, we consider how AR’s acceptance of this sort of explanation allows AR
to avoid these bad inferences.)

To represent this we need to allow for explanatory structures that link proposi-
tions with variables in them. The relevant structure here contains an e-node whose
explanandum is (a link to) "x says that m" and whose explainers are (links to) "x
believes that m" and "x wants to say whether m". It also contains an e-node whose
explanandum is (a link to) "x believes that m" and whose explainers are (links to) "m"
and "x is in a position to know whether m." (Figure 3)
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m x is in a position to know whether m
| |
I
x believes that m X wants to say whether m
I |
[
x says that m

FIGURE 3: EXPLANATORY STRUCTURE WITH VARIABLES

Call this structure ST, then the relevant belief is that, usually, when x says that m, then
ST. Notice that this involves quantifiers whose scope is the whole explanatory struc-
ture. (Also the phrase, "usually when x says that m," is a kind of quantifier here. Its
scope is also the whole structure.)

LIMITED REASONING

The amount of processing required to tell whether a conclusion is currently infer-
able in N steps is an exponential function of N. Furthermore, anyone who has taught
a logic course knows that students often have trouble with more than one or two steps
of inference at a time. Proofs have to be broken down into manageable stages, each of
which must be absorbed before going on to the next. In general, people are capable of
only a few steps of inference at any given time. So we wanted AR to be subject to
the same limitations.

Our first implementation of this idea was to limit AR to N steps of immediate
implication or immediate inductive projection, where N is 1 or, anyway, small. But
the reasoning involved in many elementary activities, e.g. story understanding, often
involves rather complex chains of inference.

Reflection on various examples seemed to us to indicate that how many steps of
immediate inference are possible depends on how familiar the area is. So, our second
implementation of AR replaced the limitation to N steps of inference with a set of
rules specifically spelling out what deductions or projections AR was capable of at any
given time, where these rules might allow (in principle) for unlimited chains of impli-
cation and projection, if the chains were of a "familiar" sort. (What chains of reason-
ing were to count as familiar dictated the choice of rules. The notion of familiarity
did not play an explicit role in the rules.)

Now, in order to make further progress here, we saw we had clearly to distin-
guish between a step of inference (i.e. a step of belief revision) and a step of implica-
tion or inductive projection. This distinction is easy to appreciate for the case in
which belief revision includes the elimination of some prior belief, because eliminating
a belief is clearly different from inferring an implication or projection from prior
beliefs. But the distinction is also important for reasoning that does not eliminate any
old beliefs, in other words, for reasoning that adds new beliefs that are implications
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and/or projections of old beliefs. What gets added in such a case is (we claim) an
implicational-explanatory structure. There will often be a complex chain of implica-
tion and projection in the structure. In a sense this represents a complex chain of rea-
soning. But in another sense (we want to say) this might be only one step of reason-
ing.

For example, a person may accept as a background "belief' a complex general
explanatory structure. A single step of inference might involve the acceptance of a
particular instance of that general structure, accepted as an instance of that structure.
Then the conclusion accepted can involve a number of steps of implication and projec-
tion even though there is only one step of inference between the general explanatory
belief and that conclusion.

So, we can combine the original idea that there is a limit to the number of steps
of reasoning a person can do at any one time with the observation that some reasoning
involves a complex chain of considerations, once we distinguish between a step of rea-
soning and a link in an implicational-explanatory chain.

DEFAULT REASONING
Suppose AR believes -

Normally, if x is an F, x is a G.

Normally, if x is an F and x is an H, x is a Q.
G and Q are contraries.

alisanF.

Then AR can accept the conclusion "al is a G." More specifically AR can accept the
explanatory structure in Figure 4. This involves adding one new belief, namely "al is
a G", which is linked to beliefs previously accepted.

The competing explanatory structure involves adding two new beliefs (Figure 5).
The two new beliefs added here are "al is an H" and "al is a Q". The explanatory
power of this structure is the same as that of the previous structure, so the previous
structure is preferred to this one.

Normally, if x is an F, x is a G. al is an F.

|
al is a G.

FIGURE 4: DEFAULT STRUCTURE
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Normally, if x is an F and xis an H, xisa Q. alis an F. alisa G

| | I
|
alisa Q.

FIGURE 5: COMPETING STRUCTURE

If AR’s evidence included both "al is an F' and "al is an H", then the second
structure would be preferred because it links "al is an H" to the newly inferred belief,
whereas the first structure would only link "al is F' to the newly inferred belief.

McDermott and Doyle (1980) would allow the first inference only given the
further premises, "I have no reason to infer “al is H’". But this premise is not needed
on the explanation-based reasoning approach.

DEFEATERS
Suppose AR believes

(1) Normally, if x is F, then x is G.
(2)ais F.

Then AR ought to be able to infer a is G. But not if AR also believes:
(3) (1) holds because, normally, if x is F, then x is H, and any H is G.

together with other things that prevent AR from using (3) to infer that a is H, either
because AR believes things that imply a is not H, or because AR believes things that
imply that there is a significant chance that a is not H despite (2) and (3).

Notice that we cannot capture this within a "nonmonotonic logic" by asserting
that, when something like (3) is believed, (1) must be replaced with

(4) Normally, if x is F and it is not inferable that x is not H, then x is G.

This is not enough of a modification in (1), because it would not prevent the inference
in certain cases in which the inference should be prevented, namely, those in which it
is not inferable that x is not H but it is also not inferable from (3) that x is H (e.g.
because we have other evidence that indicates a significant likelihood that x is not H
(for example the evidence might indicate that there is a 50-50 probability that x is not
H).

ALGORITHM

Here is a quasi-algorithm that AR uses, given an interest in answering a question.
It first forms a list of possible e-structures it might infer that contain an answer. It
orders this list in terms of how good these explanations are as measured by the extent
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of change required (the more change the worse the explanation) and effect on explana-
tory connections (the more the better). This is discussed in Harman (1986) without
settling on a precise measure. We do not have space here to discuss possible meas-
ures. In any event, call the ordered list L. AR takes the first item from L. Call this
item I. AR forms a list of competing e-structures that might be inferred. It considers
whether I is better than any e-structure in this last list. If so, it infers I. If not, it con-
siders the next item in L and goes back three steps. If L is empty, no answer to the
question can be inferred.

INTERSECTION EXAMPLE

We conclude with a different sort of example which we have been examining.
Suppose AR starts with an interest in answering the question, "Do the two streets
Harrison and Aiken intersect?” It collects a list of e-structures it might infer that con-
tain an answer, using backward chaining. In this case the possible answers are yes and
no, i.e. "Harrison and Aiken do intersect" and "Harrison and Aiken do not intersect".

AR discovers the following possible e-structure that it might infer: Harrison and
Aiken do intersect, because Harrison and Aiken are near each other and perpendicular
to each other, and, normally, when roads are near each other and perpendicular, they
intersect. This e-structure is inferable only because AR already believes (1) that
Harrison and Aiken are near each other and perpendicular to each other and (2) nor-
mally, when roads are near each other and perpendicular, they intersect.

AR discovers no other inferable e-structure.

AR next considers whether there are competing e-structures that might be inferred
and discovers none. So AR infers that Harrison and Aiken intersect.

The rules of backwards chaining applicable in a case like this are quite similar to
ordinary backward chaining inference rules EXCEPT that they lead to an e-structure
containing all the "premises".

It might be good to say a bit more about "near" and "perpendicular”. In saying
that Harrison and Aiken are near and perpendicular what is meant is that there is a
point X on Harrison and a point Y on Aiken such that X is near Y and the orientation
of Harrison at X is perpendicular to the orientation of Aiken at Y. AR might know
about such points, €.g. the intersection of Aiken and Princeton and the intersection of
Harrison and Nassau.

Now suppose that AR starts by believing this:

(*) Normally, if
X is a point on S1,
Y is a point on S2,
X and Y are near each other, and
the orientation of S1 at X is perpendicular to the orientation of S2 at Y,
then: S1 intersects S2.
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Then AR comes to believe that (*) holds because

(a) the lines going through X and Y with the orientations of S1 at X and S2 at Y inter-
sect in a point Z that is near or at both X and Y and

(b) normally, given a point P on a road R, the road continues at least a short distance
along in the same direction from that point, so that, if P’ is near or at P and P’ is on
the line through P that has the same orientation that R has at P, then R continues from
PtoR --so

(c) S1 continues to Z and S2 continues to Z, so

(d) S1 and S2 are both at Z, so

(e) S1 and S2 intersect at Z.

Now, if AR is considering whether Harrison and Aiken intersect, backchaining leads to
a much more complicated e-structure, which might be expressed in words as follows:
Harrison and Aiken do intersect because there is a point X on Harrison and a point Y
on Aiken such that X is near Y and the orientation of Harrison at X is perpendicular to
the orientation of Aiken at Y and that means there is a point Z that is near X and near
Y and Harrison continues beyond X to Z and Aiken continues beyond Y to Z, where Z
is the intersection of the lines going through X and Y that are oriented as Harrison and
Aiken are at X and Y, and where all this is so because of the generalizations alluded
to above.

This modification of backchaining requires that some change be made to the ori-
ginal generalization linking it to its explanation. The backchaining rule has to be sen-
sitive to this link in such a way that it yields the e-structure just given.

This means that AR will be unable to infer that Harrison and Aiken intersect if it

cannot infer the more complex e-structure, perhaps because AR believes that Aiken
does not continue on in the indicated way but instead dead ends into a park.
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