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ABSTRACT OF THE THESIS 

 

Comparison of Shape Reconstruction Strategies in a Complex Flexible Structure 
 
 
 

by 
 
 
 

Zhu Mao 
 
 

Master of Science in Structural Engineering 
 
 

University of California, San Diego, 2008 
 
 

Professor Michael D. Todd, Chair 
 
 

Current control and performance requirements for large-aperture deployable structures call for 

precise displacement control, with some tolerances approaching micron levels.  Given that strain gages are 

one of the most economically-deployed sensor architectures, we explored two methods for reconstructing 

displacement from a distributed strain sensing array. One method linearly maps displacement fields to local 

strains in a supervised learning mode. After loading the system with sufficient cases, a matrix can be 

established to approach the approximate displacement-strain relationship. The other method is based on 

linear regression of generalized basis function projections, typically mode shapes. Results of these two 

approaches are compared for accuracy, robustness, training time, and real-time feasibility. The second 

method has higher accuracy due to natural modal behaviors, while the first method is feasible if large 

amount of training cases and measuring points are available. 

ix 



 

1.  Introduction and Background 

1.1. Space Application Needs and Requirements 

The development of large span structures has received increasing attention in the Department of 

Defense in recent years for the potential of these frames to carry devices such as optical telescopes, 

interferometers, and high-precision microwave and radar antennas, and improve the quality of space 

communication. [1][26] However, due to the large inertia and high flexibility of the space-based large span 

trusses, large thermal gradients of the cosmic environment, and even many local influences such as debris 

or micrometeoroid impacts, these structures will have deformation that cannot be ignored in orbit with 

regard to precise positioning and control for required communications performance. As such, this 

deformation becomes one of the major reasons of degradation of communication quality, and one possible 

method to deal with this issue is software compensation, which requires accurate on-orbit geometric 

configurations. The shape sensing techniques to be performed in compensation of communication process 

must conform the lambda over 20 rule, which means error of the metrology system should be less than 

lambda/20 RMS. Specifically for radar platform, where the boom has a dimension of hundreds of meters, to 

have the acceptable communication quality, the in-situ error of shape reconstruction should be less than 1 

millimeter over the entire span, which is a challenging task. [1]

 
Figure 1: space facilities 

1 
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Figure 2: long span aperture truss (picture courtesy of B. J. Arritt, Air Force Research Laboratory, Kirtland 

AFB, NM.) 

1.2. Scope and Contribution of the thesis 

A complete solution to state awareness (and more specifically, shape reconstruction) problems 

necessarily requires investigation into both hardware (sensor) and algorithm issues.  In this work, we shall 

assume that distributed local strain measurements, such as those obtained from a Bragg grating sensor 

array, are available. Subsequently, in this thesis we shall develop and compare two strategies for shape 

reconstruction of the large span flexible truss: a simplified neural network approach (linearization that 

becomes a matrix map) and mechanics-based basis functions approach (that uses finite sets of three-

dimensional modal functions). The first approach is a training-based approach that requires a set of pre-

deployment training cases to span the expected response range and then uses the trained “map”, which may 

be inverted in a pseudo-inverse sense due to linearity, to use as a displacement predictor.  The second 
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approach does not require training and relies on explicit modeling of strain and displacement relationships.  

Each method requires a few “tuning” parameters, and the effects of the parameters are studied in detail as 

the two approaches are compared as possible algorithm candidates for real-time shape reconstruction of 

complex flexible structures. 

The main contribution of this thesis is that a comparative study is performed on two methods that 

seek to map a finite, distributed strain field to global displacement (a form of inverse problem).  Highly 

simplified versions of these approaches, particularly the mechanics approach, have been used before for 

one- and two-dimensional structures where much more explicit models have been developed, but nothing 

has been considered for full three-dimensional motion where exact models are not available.  This 

contribution is made in light of several constraints placed on the problem such as no full-field measurement 

technique is allowed (i.e., the technique must rely only upon in-situ components), the technique must have 

flight qualification promise (primarily a hardware issue), and extraordinarily challenging goals in terms of 

spatial resolution are desirable. 

1.3. Current Truss Model Description 

A scaled model of such a truss structure that supports these activities is shown in Figure 2. The 

model is composed of several basic components (shown in Figure 3), which are connected in a global 

assembling topology (for convenience, we label each of the component as shown in Figure 4).  There are 

five floors in the structure with equilateral triangular frame on each floor (shown in Figure 4), which makes 

the frame stable and well loadable. SMA (shape memory alloy) strips are adopted at certain bend edges of 

the longeron unit to create actuation points that make the frame deployable. Geometrical parameters and 

boundary conditions are listed in Table 1. 

Table 1: geometrical dimension and boundary 

Cross section equilateral triangular Number of floors 5 
Side length 0.78 m Total height 2.28 m 
Batten width 36.8 mm Longeron width 49.6 mm 

    
Bottom B.C. fixed Top B.C. free 
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Figure 3: components of the structure 

Batten-1 

Batten-2 
Batten-3 

Longeron-1 

Longeron-2 

Longeron-3 

 
Figure 4: label of each component 

It is assumed that the materials of frame are linear and elastic, and the parameters are shown in 

Table 2. It is also assumed that all loading situations cause only small deformations. 

Table 2: material properties 

Name IM7/977-2 UNI NiTi (SMA) 
type lamina isotropic 

density ρ=1630 kg/m3 ρ=6450 kg/m3

E1=1.73E+011 Pa Young’s modulus 
E2=9.17E+009 Pa 

E=7.5E+010 Pa 

Poisson’s ratio ν12=0.34 ν=0.3 
Shear modulus G12=5.65E+009 Pa - 

 



 

2.  Shape Reconstruction Approaches 

2.1. Previous Work Review 

Previous work in shape reconstruction strategies may be classified into either of two classes of 

methods--non-contact and contact--depending upon implementation.  In the non-contact regime, data are 

acquired via remote sensing means, typically optical methods, with no direct contact with the structure. F. 

Chen et al. provided an overview of non-contact 3-D shape reconstructions, [8] and in this reference, the 

surveyed optical techniques include: 

• Time in Flight: This method is based on the time measured in flight of a laser or other light 

sources. To determine the distance of a target surface, the time difference between the arrival of an 

object pulse which is reflected back and a reference pulse which passes through an optical fiber is 

measured and then converted to distance. 

• Laser Scanning: This technique is based on the triangulation relationship in optics, and digitizes 

the scanned point laser image by charged couple device (CCD), or a position sensitive detector 

(PSD). 

• Moiré: The key to this technique is a master grating and a reference grating. From the two 

gratings, contour fringes can be generated and then resolved by a CCD camera. 

• Laser Speckle Pattern Sectioning: This method uses 3-D Fourier transform relationship between 

distance space (range domain) and optical wavelength space (frequency domain) for object shape 

sensing. The Laser Speckle Pattern Sectioning, actually laser radar 3-D imaging is obtained by 

utilizing the correspondence of the two spaces. 

• Interferometry: In this method, the fringes are formed by variation of the sensitivity matrix 

relating the geometry of an object with measured optical phases. There are three variables in the 

matrix: wavelength, refractive index, and illumination and observation directions, which can 

5 
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derive three methods respectively: multiple wavelength, refractive index change, and illumination 

direction variation. Moreover, using frequency shift, double heterodyne interferometry, with better 

accuracy, can be deployed. 

• Photogrammetry: This method usually requires bright markers such as retroreflective painted dots 

or pieces of glistening tape on the surface of measured object, and the shape reconstruction is 

established on the bundle adjustment principle. 

• Laser Tracking System: The device of Laser Tracker is a combination of an interferometer for 

measuring distances and two high accuracy angle encoders for determining vertical and horizontal 

angles. 

• Structured Light: This method is also categorized as active triangulation, and includes both 

projected coded light and sinusoidal fringe techniques. 

By choosing suitable optical sources, implementing an adequate technique, and transforming local 

coordinates to the global coordinate systems, the shape of object can be reconstructed. This shape sensing 

process has various applications such as: intelligent structure control, obstacle detection, reverse 

engineering, orthopedics, geotechnical exploration, etc. [9] [10] [20] 

For example, in reference [11] and [12], Radio Frequency (RF) was selected as the optical source. 

The RF-based sensor is also called the Autonomous Formation Flying (AFF) sensor, and this realize the 

deep space precision formation flying by measuring the relative range and bearing angles between multiple 

spacecrafts. For 1 km separations between two spacecrafts, AFF sensor has an excellent accuracy in real-

time for both range and bearing angle measurements (2 cm and 1 arcmin). [11] Another application of AFF 

modules was implemented on control of a 25-Meter Aperture Virtual Structure Gossamer Telescope, and 

inter-module relative position and velocity vectors were estimated. [12] 

More application on space structure, which utilized an eye-safe laser for its optical source, and a 

laser range scanner (LARS) was established as a precision measurement tool in space structures, with a 

short-medium range 3-D sensing capability (between 0.5 and 2000 m). The camera in this LARS can 
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address any spatial location within the field of 30×30 degrees of view in searching and measuring target. In 

this LARS application, target-based, feature-based, and image-based measurements are all allowed. [4] 

In the area of reverse engineering and computer aided design (CAD), C. Reich et al. proposed a 

technique that combines photogrammetry and fringe projection. In their work, the shape of a car’s door was 

determined by combining the phase-shift method for fringe measurement with a photogrammetric 

triangulation to calculate the 3-D coordinates of each measuring point on the surface. [5] With the similar 

approach, cloud of points was generated in Azernikov and Fischer’s work, and surface information was 

reconstructed to build up the solid model. [13]

The non-contact measurement techniques can be used in remote sensing and geodetic survey. In 

optical remote sensing, solar radiation in different wavelength regions is detected, after reflection and 

scattering, photographs are taken by equipments located high up in space. In this application, sun light is 

the optical source. Many kinds of information will be acquired, including the broad shape of the earth’s 

surface, and detailed shape of a certain building. 

After reviewing the non-contact sensing techniques in structure shape reconstruction, the 

remaining techniques may be denoted as contact-based, which means that sensors are physically mounted 

onto the structures in the data acquisition process, with data and/or power conveyed either in wired or 

wireless modes. Wired modes are more mature, but wireless communications protocols, energy harvesting 

strategies, and efficient computing and transmission have significantly advanced wireless transmission in 

order to realize long distance data acquisition. [18]

For shape sensing in contact regime, Moll, M. et al. presented results on shape reconstruction of 

an unknown smooth convex 2-D plate using two tactile sensors, without requiring object immobilization. 

[14] In this process, two flat palms covered with tactile sensors manipulated the object, and there is one 

rotational degree of freedom at the joint of two palms. By tracking the contact points via tactile sensors, the 

outline curve of the plate can be determined, when the angle of two palms changes. Another example of 

wired sensing in shape reconstruction was from Luna Innovations Incorporated and Boeing, that, the shape 

of Variable Geometry Chevron (VGC) system at take-off was reconstructed from high density distributed 
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strain fiber mounted on the surface of the chevron. On each chevron, there are a set of three strain gages 

attached, and consider the simple model with only bending effective, the tip position (shape) can be 

estimated by geometrically calculating and integrating the strain data. [15]

In the contact problems, wireless sensing has emerged as a promising technology that could 

greatly impact the field of structural sensing and monitoring. [16] Some work about on-ground structural 

health monitoring (SHM) has utilized the remote sensing techniques, and a wireless intelligent sensor 

network was established, which combined sensor, A/D converter, microprocessor, wireless transmitter and 

power supply together. [17][18]  

In summary, each non-contact and contact method has its own advantages. The non-contact 

methods require optical equipment, such as cameras to be fixed and adjusted apart from the structure itself, 

which requires extra on-orbit observer platforms whose controllability itself adds significant complication. 

The other method is inherently in-situ, using sensor array to capture certain information and then mapping 

those signals/measurements to the 3-D coordinates of the structure. Related with the present research scope 

involving the space truss, an in-situ technique is self-contained, although the possibility of weight addition 

to the deployed platform by sensor nodes and/or cables must be considered.  

 

With the goal of designing “state aware” space structures in a lower-cost and lighter-weight, 

optical fiber sensors, especially fiber Bragg gratings, are a strongly-suited candidate for comprising a 

contact-category shape reconstruction strategy [1][2].  The most significant well-known advantages of fiber 

optical sensing include very high resolution (sub-micron sensitivity) [3], insensitivity to electromagnetic 

interference, negligible cabling weight, self-telemetry (the sensor is encoded directly into the cabling), and 

easy inline multiplexing. [7] For more information, reference [19] ~ [22] provide a comprehensive review of 

sensor network and fiber optical sensor technology. 

Friebele et al. reviewed the results of some work at the Naval Research Laboratory where optical 

fiber strain sensors have been used on spacecraft structures, [2] and related work on a small cantilever 
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deployable boom was implemented by Blandino et al. using FBG strain sensors to obtain longitudinal 

deformation. [6] Moreover, with the outstanding performance of fiber Bragg gratings in metrology, shape 

sensing strategies on a similar boom to the task structure in this thesis (shown in Figure 2) are being 

considered at the Air Force Research Laboratory at Kirtland Air Force Base. [1] Using this test structure 

model as a platform, this work considers some candidate approaches for completing this shape 

reconstruction algorithm strategy.  

 

Reconstruction algorithm is the important connection from data acquisition to the shape 

estimation. There are mainly three types of data processing algorithm in doing structural shape rebuilding: 

mathematical integration, artificial neural network, and model resolution. 

The most straight forward method for displacement estimation is to integrate the strain 

measurements. In reference [23], the in-plane strains were obtained from a highly accurate measurement 

via wavelength-multiplexed fiber optic Bragg gratings. Assumed the mid-plane strain to be zero, or 

measured the top and bottom surface and solved mid-plane strain, which was due to axial stretching; then 

fitting the discrete strain data, and integrated twice to get displacement, an average RMS error of 0.025” 

was achieved. Kirby et al. directly calculated the integration approximating the strain-displacement 

relationships, with a polynomial representation of the strain field. [28] Similar approach of integration to 

reconstruct displacement in simple structures can be found in reference [6] and [15]. 

Some researchers regarded the shape sensing procedure as an artificial neural network, in both 

optical (non-contact) and strain measuring (contact) implementations. For example, Ganotra et al. used a 

feed-forward back propagation neural network in fringe projection profilometry for reconstruction of 3-D 

objects. There was a grating structure comprising two regions of different spatial periods, and the shape 

was reconstructed with the help of neural networks using images of the projected grating. [24] In reference 

[25], deformable self-organizing feature map (SOFM) was used on the morphing techniques by Igwe, P.C., 

et al., which is a skeletal framework for modeling object surfaces that changing shape dynamically and has 
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an unsupervised training nature. Meanwhile, strain data obtained in contact method can also be related to 

displacements via neural network model, as Bruno, R., et al. did in JPL. [26]

Besides artificial neural network, other relationship was established based on physical modeling. 

Foss, G.C. et al. first suggested the concept of a modal transformation algorithm to reproduce deformations 

from strains and a structure’s modal characteristics. Experiment on a simply supported plate was 

implemented to validate the approach. [27][29] P. Bogert solved this inverse problem through modal 

transformation, which uses the structure’s deformation and strain modes, in conjunction with the discrete 

strain data, to determine the deformed shape. [27] Bernasconi and Ewins demonstrated determination of 

mass-normalized modal strain fields from strain gages. [27][30]  

Similar types of algorithms can be considered in non-contact sensing regime, Audette, M.A., et al. 

present a literature survey on the algorithms of automatic surface registration techniques, and various 

approaches were covered for each of the partitioned steps: choice of transformation, elaboration of surface 

representation and similarity criterion, and matching and global optimization; especially in the issue of 

surface representation,  approaches based on feature, cloud of points, global shape and physical model were 

reviewed. [31]

As a summary, the algorithm of data integration is a fast and straight-forward approach to get 

displacement determination, if the structure is simple in spatial domain. For a complicated structure, 

especially space aperture, it is more necessary to enhance the performance of algorithms in order to 

compensate the incomplete onboard measurements. Physical model or data-based neural network model 

will be adopted, and as a result, more of the quality of shape reconstruction will depend on the on-ground 

or off-line, such as system straining and mechanism development. [26]

2.2. Candidate Approaches  

Given a series of distributed strain measurements from a fiber Bragg grating array, the major 

subsequent objective is to reconstruct the global shape of a 3-D large, flexible structure according to that 

sensing architecture. Due to cost consideration, usually the number of sensors is limited, which necessitates 
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optimization of the structural sensing architecture. The data analysis methodology also plays an important 

role for enhancing the reconstruction accuracy. In this work, we want to study and compare two different 

strategies of reconstruction: simplified neural network approach and mechanics/modal basis functions 

approach. 

 

 
Figure 5: assembled truss with full set of interest points (IPs) 

We use a finite element model based in ABAQUS, which is a widely used simulation tool, to 

obtain the strain and displacement data of the boom similar to what is shown in Figure 2. The flow 

overview is illustrated in Figure 6. The strain data generated by ABAQUS at the all interest points (IPs), 

shown in Figure 5, is the input of the shape reconstruction process, while the displacement data produced 

by ABAQUS serves as a benchmark to evaluate the accuracy of the estimated displacement from our shape 

reconstruction. 

 



12 

strain measurement 
from sensors

FEA in ABAQUS

Shape 
Reconstruction

displacement

strain

3D displacement
global shape

model validation & testing

Data @ interesting points

strain measurement 
from sensors

FEA in ABAQUS

Shape 
Reconstruction

displacement

strain

3D displacement
global shape

model validation & testing

Data @ interesting points

 
Figure 6: flow overview 

Two different strategies are studied and compared in our work to reconstruct structural shape from 

limited strain information.  

The two strategies are shown in Figure 7. The upper branch depicts the linear neural net approach, 

which relates the strain measurements with displacement by a simplified linear mapping. The mapping is 

obtained after training the system with a supervised learning mode. 

The lower branch represents the idea of mechanics approach, which is based on basis function 

projections. This approach follows the idea that all the deformation quantities such as strains and 

displacements are linear combination of different functions; therefore the strain measurements and 

structural shapes are connected by the weighting. 

displacementstrain 
measurements

Simplified linear neural 
network

basis function 
projections

mechanics 
& 

geometry

displacementstrain 
measurements

Simplified linear neural 
network

basis function 
projections

mechanics 
& 

geometry  
Figure 7: two different strategies in our work 
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2.2.1. “Linear” Neural Net:  Matrix Mapping 

A neural network is a general map between inputs and outputs that requires training for proper 

classification, and we hypothesize that, since strain-to-displacement is linear, we could form a simpler 

“linear neural net” between inputs (strain) and outputs (displacement configuration). 

Under the assumption of linear mapping relationship between strain and displacement, a 

generalized neural network relationship for a single layer reduces to 

                                                            3n n= ×U B E                                                                     (1) 

where U is the displacement vector of n IPs, with first n elements being displacement in  direction 1 (see 

Figure 5), second n elements in direction 2, and third n elements in direction 3, and E is the strain vector of 

the n IPs, and B is the mapping matrix. The number of elements of B is 3n2. For a certain loading case, 

there are 3n equations, which are not sufficient for uniquely determine all the elements in B. To solve B 

accurately, we add various training cases to the structure, and Eq. (1) can be rewritten as 

                                                           3n m n m× ×= ×U B E                                                               (2) 

where m is the number of training cases. Each column of matrix U corresponds to one unique training case 

and so does matrix E. The dimension of transformation matrix B is only determined by number of interest 

points, and number of training cases independent. 

Eq. (3) and (4) are the expansion of Eq. (2), where u, v and w represent the displacements in 

direction 1, 2 and 3 respectively. 

To solve the over-constrained system in Eq. (2), we use pseudo-inverse algorithm to determine 

matrix B, which guarantees to have the least square error. The whole process is shown in Figure 8. 

                                                      

[ ]
3

n m

n m

×

×

⎡ ⎤
⎢ ⎥ = ×⎢ ⎥
⎢ ⎥⎣ ⎦

u
v B ε
w

                                                            (3) 

 



14 

                       

11 12 1

21 22 2

1 2

11 12 1 11 12 1

21 22 2 21 22 2
3

1 2 1 2

11 12 1

21 22 2

1 2 3

m

m

n n nm

m m

m m
n n

n n nm n n nm n

m

m

n n nm n m

u u u
u u u

u u u

v v v
v v v

v v v

w w w
w w w

w w w

ε ε ε
ε ε ε

ε ε ε

×

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ = ×
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

B

…
…

# # % #
…

… …
… …

# # % # # # % #
… …

…
…

# # % #
…

m×

           (4) 

training loading

training 
displacement

mapping 
matrix BE U

training 
strain

training loading

training 
displacement

mapping 
matrix BE U

training 
strain

 
Figure 8: flow chart of matrix approach 

Since the full set of IPs has been demonstrated in Figure 5, we illustrate only the locations of 

training cases as follows. Figure 9 shows all possible loading points in ABAQUS model, which are 

presented by yellow dots, and the red dots along central axes are the loading points actually selected in our 

training experiments. 
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Figure 9: loading illustration 

There are several issues for selecting the training points and setting up the training experiments: 

1. The finally selected training points should contain all IPs that appear in the linear mapping equations. 

2. Since the three longerons carry more global shape information of the structure, more training points 

should be located on longerons compared to battens. In our settings, there are 276 total training cases, in 

which 186 are located on longerons and 90 are located on battens. 

3. In order to maintain the matrix B at full rank, we want to minimize the linear dependencies among 

different training cases. 

4. To avoid local stress concentration, which gives us little global shape information, we choose training 

points on center axes of each component away from key connections that often create stress concentrations. 
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2.2.2. Mechanics Approach:  Modal Basis Functions 

The idea of mechanics approach is to decompose the deformation of an arbitrary loading to a 

linear combination of a set of basis functions or vectors. The coefficients of the linear combination, also we 

call them weighting ratios, are the same for both strain and displacement decomposition, and therefore are 

essential for the description of the deformation.  

 
Figure 10: flow chart of modal approach 

 

Since modal expansion technique has been widely used in dynamic analysis, we naturally choose 

modal functions as the set of basis to decompose the strain measurements. The main flow of this approach 

is given in Figure 10.  

For each test loading we do the following three steps: 

Step 1: we do ABAQUS finite element simulation to have the measured strain vector E[t] in an arbitrary 

test, and a set of modal strains E[m]. E[t] is an n-point vector, where n is the number of IPs. E[m] is a matrix 

in which each column is a modal strain series. Due to the computation limit, we only include the first 29 

modes from ABAQUS in all the following experiments. By adopting the pseudo-inverse operation in 

Matlab, we can derive the weighting of each mode, as shown in Eq. (7), Eq. (8), and Eq. (9). 
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Step 2: also from ABAQUS calculation, we have the modal displacements of 3 directions on a large 

amount of discrete measuring points, then we use linear regression algorithm to do curve fitting with 

polynomial model so that the continuous displacement functions in spatial domain are obtained, as shown 

in Eq. (10) and Figure 11. Validation of the polynomial function is also performed. 

                                                   ( )[ ]
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mPolynomial=U
[ ]m

U                                                (10) 
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Figure 11: flow chart of modal displacement functions fitting 

Step 3: we multiply the modal displacement functions by the weighting ratios derived in step 1 to produce 

estimated continuous displacements (shown in Eq. (11)). Alternatively, we can also multiply the modal 

displacement vectors by the weighting ratio, and produce estimated displacements only at IPs (shown in Eq 

(12), and Eq. (13)). The second method avoids the error generated in step 2, but loses a global view of 3-D 

motions. 

[ ] [ ]t m

function function= ×U U W

[ ] [ ]t m

                                                    (11)                                                         

                                                              = ×U U W                                                            (12) 
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To evaluate the estimation accuracy, we compare the results from Eq. (11) in step 3 with the 

measured displacement of ABAQUS, and calculate the errors. 

 



 

3.  Implementation and Results 

3.1. Matrix Mapping Results 

3.1.1. Reconstruction test 

With the transform matrix derived from the 276 training cases, we are able to approximately 

reconstruct the structural shape for arbitrary loading situations.  

To systematically inspect the validation of the transform matrix, we need a set of tests that 

represents different types of possible loadings. We create 26 tests with various loadings including 

concentrated force, displacement specification, body force, and surface pressure (as shown in Figure 12). 
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Body 
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Figure 12: four types of test loadings 

A quantitative criterion is necessary to evaluate the accuracy of reconstruction results for each 

spatial direction, and we define it in Eq. (5).  
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The superscript is the direction index, the subscript indicates either estimation results or ABAQUS 

results, and n is the number of IPs. Difference of (Uestimation – UABAQUS) for a certain “n” and a direction “i” 

is the absolute error, and is normalized when divided by the maximal displacement of the structure along 

any direction.  

Three factors influence the error defined in Eq. (5): number of training cases, number of IPs and 

locations of IPs. We will discuss their effects respectively in the following sections. 

3.1.2. Parameter study 

In this section, the three factors that affect the reconstruction error will be studied, number of 

training cases, number of interest points and locations of interest points. 

Number of training cases: 

To analyze the effect of number of training cases upon reconstruction accuracy, we firstly 

randomly choose Nc cases from the total 276 cases to train the system, and then validate the system with 26 

test cases. The normalized RMS errors of the 26 test cases are averaged and then compared for Nc=120, 

180, 240, and 276. All 129 IPs are used in this experiment. The relationship between Nc and the average 

error are shown in Figure 13, in which the trend is very obvious that more training cases increases the 

accuracy. Meanwhile, it is noticeable that shape sensing fails when number Nc is too small, such as 

Nc=120. 
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The average error in Figure 11 is defined in Eq. (6), where the “e(i)” has been defined in Eq. (5). 
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Figure 13: matrix approach reconstruction for different training cases 

We notice that the consistency between the type of training cases and the type of test cases also 

has effect on the reconstruction accuracy. When we test the system with concentrated forces, the error 

becomes smaller since the system has been trained with cases of concentrated forces. 

Table 3 shows the detailed results of Nc=276, full set of trainings we did. It includes the total error 

and the errors along direction 1, 2 and 3, (u, v and w in the table), with different test cases. The first column 

gives the type of test loading, in which “c” indicates concentrated force, “d” means displacement 

specification, “p” represents surface pressure, and “b” is body force. The second column shows the case 

indices. Column 3, 4, and 5 give the displacement components of u, v and w for Longeron 1, and similarly, 

column 6, 7, and 8 and 9, 10, and 11 are for Longeron 2 and Longeron 3 respectively. We show the values 
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of displacement in direction 2 (v component) with milli unit due to its small magnitude. The rightmost 

column gives the summation of error values in each row. 

Table 3: detailed results of shape sensing errors 
matrix approach / 276 trainings / 129IPs 

Longeron_1 Longeron_2 Longeron_3 Desc. # 
u v / 1e-003 w u v / 1e-003 w u v / 1e-003 w 

Σ 

c 1 0.4357 2.1460 0.4088 0.1450 1.8780 0.6762 0.0965 0.6881 0.1547 1.9216 
c 2 0.0325 0.2076 0.0151 0.0771 0.2902 0.0554 0.0795 0.4461 0.0682 0.3287 
c 3 0.4357 2.1460 0.4088 0.1450 1.8780 0.6762 0.0965 0.6881 0.1547 1.9216 
c 4 0.0042 0.0380 0.0073 0.0209 0.0715 0.0223 0.0178 0.0912 0.0027 0.0754 
c 5 0.0633 2.9930 0.2548 0.4259 2.4144 0.2213 0.4550 1.9245 0.5580 1.9856 
c 6 0.1340 0.7414 0.0612 0.1022 0.3410 0.1007 0.1136 0.3064 0.1649 0.6780 
d 7 8.9505 30.1726 1.2806 4.7861 29.6619 0.4611 4.0796 41.6966 2.0971 21.7565
d 8 0.7317 5.7149 0.8896 0.9183 10.6673 1.6246 0.9208 6.0897 0.4685 5.5760 
d 9 0.0514 0.5362 0.0741 0.2932 1.5457 0.0506 0.2958 1.0727 0.2085 0.9768 
d 10 0.0156 0.5722 0.0856 0.3116 1.0744 0.2673 0.3002 1.6017 0.0859 1.0694 
p 11 1.3052 12.2174 1.9810 1.2086 7.5408 2.5721 1.1561 9.7286 1.0064 9.2589 
p 12 0.2759 0.3313 0.0409 0.2963 0.9974 0.2654 0.2801 0.8115 0.2967 1.4574 
p 13 5.6743 29.4113 4.0544 4.9708 33.2858 0.5600 5.9631 15.1011 10.2066 31.5070
p 14 0.0555 1.1127 0.1572 0.5058 2.6227 0.1378 0.4796 1.6357 0.4073 1.7486 
b 15 0.8920 10.7736 1.5771 1.2636 5.6451 2.0282 1.2532 9.1758 0.7035 7.7432 
b 16 0.1509 0.1808 0.0177 0.2173 0.5627 0.2392 0.2075 0.7331 0.1923 1.0264 
b 17 0.1351 0.7987 0.1287 0.2595 1.6590 0.0276 0.2691 0.8871 0.3039 1.1272 
b 18 1.7379 2.6033 0.6154 1.2280 7.4155 0.2428 1.1764 9.7310 1.1416 6.1618 
b 19 0.1968 0.3594 0.0829 0.1111 0.2589 0.1111 0.1094 0.3876 0.2846 0.8969 
b 20 0.3194 0.1840 0.0318 0.1326 0.1921 0.2925 0.1302 0.0334 0.2294 1.1363 
b 21 0.2788 0.8073 0.1222 0.1027 0.2802 0.1036 0.0938 1.0929 0.1883 0.8916 
b 22 1.3662 2.1110 0.1095 1.4692 7.8203 0.2744 1.4030 5.9644 0.3665 5.0047 
b 23 0.1946 0.3226 0.0524 0.1847 0.6038 0.1660 0.1722 0.3356 0.2550 1.0262 
b 24 1.2183 2.9346 0.7634 0.8127 5.1316 0.1805 0.4691 6.9693 1.5496 5.0086 
b 25 0.0904 0.0718 0.0177 0.3083 1.3647 0.1439 0.3004 1.4430 0.1030 0.9666 
b 26 0.5623 0.4526 0.0347 0.7219 4.1839 0.1984 0.8116 4.2114 0.1849 2.5226 

average 0.9734 4.2285 0.5105 0.8084 4.9764 0.4500 0.7973 4.7249 0.8224 4.3759 
 

We can have the following observations from the experimental results in this section: 

1. Generally, reconstruction accuracy increases when the number of training cases grows. 

2. When the number of training cases is too small, the shape sensing fails.  

3. The consistency between the type of training cases and the type of test cases is beneficial to the 

reconstruction accuracy. It is thus important when training the model (or the actual specimen) that the 

training load cases span what is expected in reality to the degree possible; such a linear matrix mapping has 

a reduced extrapolation window that perhaps a nonlinear mapping would not have. 
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Number of interest points: 

To analyze the effect of number of IPs, we use 276 training cases and select uniform distribution 

of IPs (i.e. identical selection of points for each batten and longeron.), but vary the total number of IPs 

alone.  

There are five IPs on each batten unit, which is denoted as [1 2 3 4 5] (shown in Figure 14-a), and 

two IPs on each longeron unit, denoted as [1 2] (shown in Figure 14-b). The total structure contains five 

floors, each floor has three batten units, and a longeron has nine units. If we pick IPs uniformly, a subset of 

array [1 2 3 4 5] for batten unit with a subset of array [1 2] for longeron unit generate a global IP 

distribution. 

1 2 3 4 51 2 3 4 5

1

2

1

2

 
Figure 14: IP labels on batten unit (left, Fig. 14-a) and longeron unit (right, Fig. 14-b) 

We vary the number of IPs from 54 to 129, and the corresponded normalized RMS error averages 

are given in Figure 15. The global views of different IPs selections are also depicted in the zoom-in region 

for errors less than 15. 
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Figure 15: matrix approach reconstruction for different interest points 
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Figure 16: zooming in of Figure 15 with global views of different IPs selections 
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Three observations from the experimental results can be concluded as follows: 

1. Similar with the effect of number of training cases, when more IPs are included, the total error drops to a 

tolerable level. 

2. When the number of IPs is too small, the shape reconstruction fails. 

3. When the number of IPs is adequately high, for example larger than 80, the correlation between average 

error and the number of IPs are not strong. 

Table 4 gives detailed results when the subsets [1 2 4 5] for unit battens and the subsets [1 2] for 

unit longerons are chosen. The table format follows Table 3. 

Table 4: detailed results of shape sensing errors 
matrix approach / 276 trainings / IP 1 2 4 5& 1:2/ 114 

Longeron_1 Longeron_2 Longeron_3 Desc. # 
u v / 1e-003 w u v / 1e-003 w u v / 1e-003 w 

Σ 

c 1 0.5798 2.1008 0.3192 0.1719 1.9774 0.5428 0.1026 0.6589 0.1448 1.8658 
c 2 0.0642 0.2551 0.0338 0.1037 0.3330 0.0732 0.0832 0.5910 0.0552 0.4145 
c 3 0.5798 2.1008 0.3192 0.1719 1.9774 0.5428 0.1026 0.6589 0.1448 1.8658 
c 4 0.0034 0.0606 0.0114 0.0261 0.0543 0.0328 0.0168 0.1011 0.0066 0.0973 
c 5 0.2355 4.2610 0.4591 0.2800 3.1649 0.1650 0.4292 1.6989 0.9843 2.5622 
c 6 0.1149 0.7243 0.0581 0.0661 0.3342 0.0576 0.0830 0.2792 0.1001 0.4811 
d 7 4.3126 24.3075 1.4062 2.2205 15.8325 1.0441 2.0452 19.4318 0.9872 12.0754
d 8 1.7324 4.2617 0.6778 1.0658 12.0005 1.8802 0.9938 8.1694 0.7145 7.0889 
d 9 0.0684 0.4214 0.0615 0.3023 1.5154 0.0621 0.2994 1.1268 0.1868 0.9836 
d 10 0.0055 0.6899 0.0979 0.3287 1.0189 0.2986 0.3092 1.6545 0.0797 1.1230 
p 11 0.6415 9.0494 1.1252 1.0620 5.6983 0.6451 0.8315 9.2761 1.4365 5.7658 
p 12 0.1035 0.3648 0.0366 0.3778 1.2448 0.3125 0.3125 1.2994 0.1326 1.2784 
p 13 2.3095 16.4581 2.6409 8.2489 42.2286 1.7010 6.8285 26.0264 5.9729 27.7864
p 14 0.0876 0.6163 0.0775 0.5999 2.7128 0.2404 0.5148 2.2546 0.2363 1.7621 
b 15 0.8820 9.3174 0.9495 1.1965 6.1810 0.4462 1.0605 9.1819 1.1801 5.7395 
b 16 0.1525 0.4778 0.0562 0.2489 0.4775 0.3036 0.2303 0.9296 0.1659 1.1593 
b 17 0.0465 0.3975 0.0676 0.3403 1.7674 0.0734 0.2951 1.3237 0.1650 0.9914 
b 18 2.3775 3.3762 0.7948 1.6620 8.8893 0.3646 1.4790 12.0502 1.5541 8.2563 
b 19 0.2203 0.3425 0.0789 0.0963 0.2123 0.1166 0.0959 0.3815 0.2841 0.8930 
b 20 0.3299 0.1582 0.0266 0.1325 0.2137 0.2952 0.1242 0.0790 0.2332 1.1421 
b 21 0.2195 0.3814 0.0566 0.0505 0.3758 0.0211 0.0752 0.6664 0.0789 0.5032 
b 22 1.4034 2.1575 0.1115 1.3479 7.6308 0.1713 1.2349 5.8865 0.2540 4.5387 
b 23 0.1557 0.1411 0.0117 0.2202 0.5747 0.2210 0.1966 0.5938 0.2031 1.0096 
b 24 2.2169 4.1887 0.9961 1.3508 7.1292 0.2609 1.0548 10.7503 1.8826 7.7842 
b 25 0.1141 0.2055 0.0335 0.3253 1.3451 0.1654 0.3020 1.5319 0.0696 1.0130 
b 26 0.4376 0.5421 0.0512 0.6415 3.1939 0.2464 0.6394 3.4258 0.0585 2.0818 

average 0.7459 3.3599 0.4061 0.8707 4.9263 0.3955 0.7592 4.6164 0.6658 3.8562 
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Location of interest points: 

We discuss the effect of the locations of IPs in this section, based on the same experiment in the 

last section. We re-summarize the results in Figure 15 and Figure 16. For simplicity, we name different 

combination of IPs with collection indices and put them in column 1 and 5 of Table 5. Column 2 shows the 

corresponding number of IPs. Column 3 and 4 are the batten/longeron IP selection patterns, and column 4 

is average RMS errors. 

Table 5: averaged error with different IP locations for matrix approach 
Collection 

# 
Number of total 

IPs 
Batten IP 
selection 

Longeron IP 
selection 

Averaged RMS 
error 

Collection 
# 

1 129 [ 1 2 3 4 5 ] [ 1 2 ] 4.3759 1 
2 102 [ 1 2 3 4 5 ] [ 1 ] 4.2327 2 
3 102 [ 1 2 3 4 5 ] [ 2 ] 4.4635 3 
4 114 [ 1 2 4 5 ] [ 1 2 ] 3.8562 4 
5 99 [ 1 3 5 ] [ 1 2 ] 7.6095 5 
6 99 [ 1 4 5 ] [ 1 2 ] 6.8239 6 
7 99 [ 1 2 4 ] [ 1 2 ] 7.2213 7 
8 84 [ 1 5 ] [ 1 2 ] 7.4825 8 
9 84 [ 2 4 ] [ 1 2 ] 14.7183 9 
10 57 [ 1 5 ] [ 1 ] 13.8869 10 
11 57 [ 1 5 ] [ 2 ] 13.7469 11 
12 69 [ 3 ] [ 1 2 ] 3,633.144 12 
13 54 [ ] [ 1 2 ] 85.6679 13 

 

We can have the following observations: 

1. In collection 1, 2 and 3, it can be seen that the error keeps fairly the same when we choose different 

longeron IP patterns and maintain the same batten IP patterns. Similar phenomenon appears also in 

collection 10 and 11. Hence, the shape reconstruction results are not sensitive to the locations of IPs on 

longeron. 

2. In contrast to collect 1, collect 4 does not choose IP#3 in batten unit, and the error becomes smaller. 

Compare collection 8 to 5 and 13 to 12, we can see the similar thing. 

3. Comparing collection 8 to collection 9, with the same amount of IPs, we find [1 5] is far more effective 

in shape sensing than [2 4]. This statement is also supported by comparing collection 6 to collection 7. 
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3.1.3. Reconstruction visualization 

As an example with good shape reconstruction, the results of test case #4 are shown in Figure 17, 

Figure 18, and Figure 19. Figure 17 shows the loading for the test, and Figure 18 illustrates the deformed 

shape of the test. The estimated/real displacements along three different directions are shown in Figure 19. 

We can see that the matrix approach can grasp the global shaping information fairly well from the 

strain input, with a proper training process. 

   
Figure 17: test case #4 loading illustration (left) 

Figure 18: test case #4 deformation and strain distribution illustration (right) 
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Figure 19: test case #4 displacement reconstruction curves 
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3.2. Modal Basis Functions Approach Results 

3.2.1. Modal analysis 

We perform modal analysis on the finite element model in ABAQUS to have the measured modal 

strain and displacement information.  For completeness, we list the natural frequencies and mode shape 

descriptions in Table 6. Only first 29 modes are analyzed in our experiments. The pictorial representations 

of the first four modes are given in Figure 20 to Figure 23. The amplitudes of longitudinal strain are shown 

in these figures. 

 

Table 6: first 29 natural frequencies 

Mode # 1 2 3 4 5 6 7 8 
Natural frequency 

(Hz) 10.777 10.777 17.260 19.192 19.192 30.452 32.752 32.752 

description bending bending torsion bending bending torsion bending bending

Mode # 9 10 11 12 13 14 15 16 
Natural frequency 

(Hz) 33.686 41.739 43.891 43.891 49.764 49.764 51.132 51.240 

description torsion torsion bending bending bending bending bending bending

Mode # 17 18 19 20 21 22 23 24 
Natural frequency 

(Hz) 51.597 52.310 53.258 54.450 54.450 55.481 55.481 58.919 

description bending bending bending bending bending bending bending torsion 

Mode # 25 26 27 28 29 30 31 32 
Natural frequency 

(Hz) 62.837 62.837 62.964 72.026 72.026 - - - 

description torsion torsion torsion torsion torsion - - - 
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Figure 20: the first mode shape  

 
Figure 21: the second mode shape 
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Figure 22: the third mode shape 

 
Figure 23: the fourth mode shape 
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3.2.2. Modal functions 

We assume the polynomial model for modal displacement function has the following form: 
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where Nx, Ny, Nz are the highest orders for coordinate variables x, y, and z (matching to direction 1, 2, and 

3). am
i,j,k, bm

i,j,k, and cm
i,j,k are the coefficients for each polynomial term, and we need to find those 

coefficients for all the terms in our fitting functions φm
x(x,y,z), φm

y(x,y,z),  and φm
z(x,y,z) with linear 

regression algorithm. 

In our application, we only concern about the longerons’ movements, and the highest order for x 

and z term is zero, so the polynomial model reduces to: 
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where N is the highest polynomial order applied to the mode fitting. 

 



33 

The boundary conditions can be written as follows (shown in Table 7): 

Table 7: boundary conditions for linear regression of modal displacement functions 

( ) 0m
x yφ =  ( ) 0m

y yφ =  ( ) 0m
z yφ =  zero displacement 

0y =  
( ) 0

m
x y
y

φ∂
=

∂
 - ( ) 0

m
z y
y

φ∂
=

∂
 zero slope 

- 
( )

0
m
y y
y

φ∂
=

∂
 - zero axial force 

( )2

2 0
m
x y
y

φ∂
=

∂
 - ( )2

2 0
m
z y
y

φ∂
=

∂
 zero bending y h=  

( )3

3 0
m
x y
y

φ∂
=

∂
 - ( )3

3 0
m
z y
y

φ∂
=

∂
 zero shearing 

 

3.2.3. Order selection of the polynomial model  

We try different highest polynomial order N (as in Eq. (17), Eq. (18) and Eq. (19)) from 3 to 24, 

tabulate and plot the summation of RMS errors for the curve fitting results in Table 8 and Figure 24. It can 

be noticed that the error drops when N increases, and the trend of convergences to zero is obvious. The 

errors of u, v, w along three directions are plotted with log scale from Figure 25 to Figure 27 respectively. 

Table 8: detailed curving fitting results 

average RMS error of displacement fitting  /m 
longeron 1 longeron 2 longeron 3 Order: N 

u v /1e-3 w u v/1e-3 w u v/1e-3 w 
average

3 0.1033 1.0513 0.1227 0.1406 1.1496 0.1281 0.1380 1.0494 0.1243 0.0845 
5 0.0244 0.3947 0.0602 0.0627 0.4025 0.0447 0.0599 0.3733 0.0433 0.0329 
8 0.0053 0.1397 0.0135 0.0134 0.1436 0.0098 0.0126 0.1341 0.0099 0.0072 

10 0.0019 0.0914 0.0072 0.0070 0.0941 0.0047 0.0064 0.0869 0.0046 0.0036 
12 0.0010 0.0757 0.0045 0.0043 0.0780 0.0028 0.0039 0.0718 0.0027 0.0022 
16 0.0003 0.0508 0.0018 0.0017 0.0521 0.0011 0.0016 0.0483 0.0010 0.0009 
18 0.0003 0.0416 0.0014 0.0013 0.0428 0.0008 0.0012 0.0399 0.0008 0.0007 
20 0.0002 0.0369 0.0009 0.0008 0.0380 0.0006 0.0008 0.0355 0.0005 0.0004 
24 0.0002 0.0311 0.0006 0.0006 0.0323 0.0004 0.0006 0.0300 0.0004 0.0003 
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Figure 24: total fitting error with different orders of polynomial model 
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Figure 25: fitting error of “u” in log scale, with different orders of polynomial model 
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Figure 26: fitting error of “v” in log scale, with different orders of polynomial model 
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Figure 27: fitting error of “w” in log scale, with different orders of polynomial model 
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We also find that even for some lower modes, high order polynomial is also necessary to have a 

good fitting result. In Figure 28 and Figure 29, we show the relations between RMS error and mode 

number, when the order of polynomial are 6 and 12. 
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Figure 28: fitting error for different modes with a 6-order polynomial model 
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Figure 29: fitting error for different modes with a 12-order polynomial model 
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3.2.4. Modal function Verification 

In the previous section, the polynomial fitting results are verified at all IPs. However, the results 

on the points other than IPs still need to be examined. One concern is that there might be erroneous 

overfitting oscillations due to the very high order terms in the polynomial model.  

Before diving into a complex verification process, we can make a simple consideration. With the 

order no more than 24, there are 25 unknowns in the linear regression problem. We include 315 points in 

the modal displacement measurement (shown in Figure 30), which means the number of equations is much 

larger than the number of unknowns and consequently the regression problem is heavily over constrained. 

As a result, it is very unlikely that there are large oscillations among those 315 points. 

 
Figure 30: huge amount of points in fitting modal functions 
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More quantitatively, we examine the strain and displacement relationship shown in Eq.(20), Eq. 

(21), and Eq. (22), which means we calculate the strains from the derivatives of fitted modal displacement 

functions, and compare the results with ABAQUS measured strain. If there are oscillations in the fitted 

modal displacement functions near the IPs, the derivatives should be much larger than those of a smooth 

fitted function, which will introduce significant error into the estimated strains. 

                                                               yy
v
y

ε ∂
=
∂

                                                                       (20) 

                                               stretching
u wv v x z
y y
∂ ∂

= − ⋅ − ⋅
∂ ∂

                                                    (21) 

                                      
2 2

2

w
y2

stretching
yy

vv ux z
y y y

ε
∂∂ ∂ ∂

= = − ⋅ − ⋅
∂ ∂ ∂ ∂

                                        (22) 

Eq. (20) relates the measured strain εyy (E11 in ABAQUS output notations) with vertical 

displacement function v.  

 

We show the verification results of v in Figure 31 (mode #1, bending) and Figure 32 (mode #3, 

torsion), and we see very good estimation results. 
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Figure 31: displacement function “v” verification, mode #1 
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Figure 32: displacement function “v” verification, mode #3 
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Eq. (21) relates the v with horizontal movement u and w, where vstreching is an unknown variable 

meaning the vertical displacement due to pure stretching, and x and z are the offsets between the measuring 

points and neutral axis. Eq. (22) rewrites Eq. (20) with substitution of v with Eq. (21). 

It is assumed in Eq. (21) that vstreching is very small, as major portion of vertical movements is 

induced by bending. Due to the flexibility and complexity of the frame, it is hard to determine the values of 

x and z offsets. For simplicity, as shown in Figure 33, we assume that these two offsets are constant during 

the loading process, and they are equal to the projections of the distance between measuring point and 

neutral axes along global 1 and 3 directions. 

 
 

O 

 

 
  

 
Figure 33: bending offsets illustration 
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Figure 34: displacement function “u” and “w” verification, mode #1 

With these two assumptions, we calculate the estimated strain according to u and w for mode #1, 

and show the results in Figure 34, which can be compared with the estimated strain according to v in Figure 

31. 

The estimation becomes worse than the verification result according to vertical displacements, 

which is because the actual offsets x and z are non-constant for different loading and location. The actually 

x and z values are considerably less than what we assumed at most measuring points, and consequently the 

magnitudes of estimated strains are larger than real values. With some errors introduced by our assumption, 

nevertheless the estimated strains are quite stable and within a reasonable range, which makes us confident 

in the fitting results of u and w. 

3.2.5. Reconstructing test 

We use the same 26 test cases as in the matrix approach (shown in Figure 12) to check the 

reconstruction results for modal approach. 
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The same RMS error is defined as criterion to evaluate the reconstruction for each spatial direction 

in the strategy of modal approach. Since we only have the displacement vector at interest points as 

benchmark, we evaluate reconstruction only at IPs. 
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In Eq. (23), U[m] and E[m] are the matrix of modal displacement and strain, and W is the weighting 

ratio vector. 

Four factors influence the RMS error defined in Eq. (23): order of polynomial, number of IPs, 

locations of IPs and number of modes. We will discuss their effects respective in the following sections. If 

we use modal vector instead of continuous modal function (Eq. (23) specifically shows this instance), then 

order of polynomial does not affect our reconstruction results. 

3.2.6. Parameter study 

Order of polynomial: 

We have studied the relationship between the fitting error and the order of polynomial in the 

section of “3.2.3 Order selection of the polynomial model”. Convergence was achieved when the order 
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was increased, and for the order higher than 16, the total normalized average error in all three directions 

dropped lower than 10-3. With the best fitting performance, 24-order polynomial model was selected.  

Number of interest points: 

Using the same 26 test cases and uniform distribution of IPs as described in the corresponding 

section of matrix approach, we perform shape reconstruction with changing number of IPs and plot the 

normalized RMS error averages in Figure 35.  

Similarly with matrix approach, we also find the RMS errors are not strongly correlated with the 

number of IPs. 
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Figure 35: modal approach reconstruction for different number of interest points 
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Figure 36: zooming in of Figure 35 with global views of different IPs selections 

Location of interest points: 

Following the method used in matrix approach, we choose different combinations of IPs from 

subsets of unit battens and longerons so that IPs are uniformly distributed globally, as shown in Figure 36. 

Table 9: averaged error with different IP locations for modal approach 
Collection # Number of total IPs Batten IP selection Longeron IP selection Average RMS error Collection #

1 129 [ 1 2 3 4 5 ] [ 1 2 ] 1.8172 1 
2 102 [ 1 2 3 4 5 ] [ 1 ] 1.8810 2 
3 102 [ 1 2 3 4 5 ] [ 2 ] 2.8951 3 
4 75 [ 1 2 3 4 5 ] [ ] 0.5692 4 
5 114 [ 1 2 4 5 ] [ 1 2 ] 1.9146 5 
6 60 [ 1 2 4 5 ] [ ] 0.5760 6 
7 45 [ 1 3 5 ] [ ] 2.1138 7 
8 45 [ 1 4 5 ] [ ] 1.1704 8 
9 45 [ 1 2 4 ] [ ] 1.0723 9 
10 30 [ 1 5 ] [ ] 4.2170 10 
11 30 [ 2 4 ] [ ] 216670.008 11 
12 15 [ 3 ] [ ] 2.9317 12 
13 15 [ 2 ] [ ] 2.9318 13 
14 15 [ 5 ] [ ] 3.0418 14 
15 54 [ ] [ 1 2 ] 788.0213 15 
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Table 10: detailed results of shape sensing errors 
modal approach with IP [1:5] & [ ], 24 order polynomial 

Longeron_1 Longeron_2 Longeron_3 Desc. # 
u v / 1e-003 w u v / 1e-003 w u v / 1e-003 w 

Σ 

c 1 0.1139 0.6574 0.1032 0.1741 1.1566 0.0850 0.3833 0.9966 0.5975 1.4598 
c 2 0.0221 0.6500 0.0704 0.1503 0.2951 0.2195 0.0782 0.7773 0.0361 0.5783 
c 3 0.1139 0.6574 0.1032 0.1741 1.1566 0.0850 0.3833 0.9966 0.5975 1.4598 
c 4 0.3111 0.2790 0.0329 0.0480 0.6313 0.0495 0.0591 0.5009 0.0522 0.5542 
c 5 0.6344 6.6217 0.6776 0.2966 1.8936 0.7403 0.1792 2.0119 0.0990 2.6376 
c 6 0.0889 1.4875 0.1364 0.1713 1.4530 0.0549 0.3792 0.6682 0.5895 1.4238 
d 7 0.0118 0.6064 0.0599 0.0169 0.2830 0.0466 0.0159 0.2503 0.0296 0.1818 
d 8 0.1773 1.0686 0.1483 0.0395 0.6571 0.0946 0.1181 1.1316 0.3884 0.9691 
d 9 0.0889 1.9400 0.2004 0.0233 0.5320 0.1261 0.0608 0.4473 0.1313 0.6337 
d 10 0.0524 0.0909 0.0137 0.0490 0.5994 0.0131 0.0546 0.5175 0.0221 0.2061 
p 11 0.0115 0.5794 0.1067 0.0122 0.3284 0.1033 0.0111 0.2687 0.0830 0.3290 
p 12 0.1130 0.6188 0.0351 0.0403 0.9811 0.0553 0.0287 0.5617 0.0340 0.3086 
p 13 0.0429 0.8115 0.0475 0.0851 0.7616 0.1333 0.0666 1.1671 0.0783 0.4564 
p 14 0.0509 0.2485 0.0267 0.0673 0.5048 0.0337 0.0478 0.3014 0.0096 0.2371 
b 15 0.0115 0.5491 0.0912 0.0132 0.3075 0.0867 0.0124 0.2518 0.0669 0.2830 
b 16 0.1636 0.6607 0.0910 0.0887 0.1879 0.0989 0.1314 0.5305 0.0713 0.6463 
b 17 0.0130 0.1810 0.0189 0.0594 0.4496 0.0165 0.0746 0.5536 0.0231 0.2067 
b 18 0.0111 0.2898 0.0359 0.0102 0.1902 0.0318 0.0063 0.0970 0.0258 0.1217 
b 19 0.0060 0.2762 0.0341 0.0108 0.0371 0.0289 0.0185 0.2366 0.0259 0.1247 
b 20 0.0596 0.0454 0.0061 0.0389 0.0006 0.0672 0.0406 0.0533 0.0562 0.2687 
b 21 0.0494 0.7745 0.1076 0.0154 0.4762 0.1148 0.0319 0.4547 0.0737 0.3945 
b 22 0.0355 0.4924 0.0623 0.0119 0.2967 0.0816 0.0075 0.1940 0.0348 0.2346 
b 23 0.2054 0.4778 0.0391 0.0651 0.2010 0.0780 0.1064 0.3270 0.1099 0.6049 
b 24 0.0299 0.3322 0.0393 0.0142 0.2472 0.0465 0.0072 0.0728 0.0216 0.1594 
b 25 0.0347 0.0975 0.0123 0.0443 0.3596 0.0146 0.0416 0.2579 0.0094 0.1576 
b 26 0.0361 0.1883 0.0268 0.0175 0.1571 0.0202 0.0196 0.1055 0.0407 0.1614 

average 0.0957 0.7955 0.0895 0.0668 0.5440 0.0972 0.0909 0.5281 0.1272 0.5692 
 
 

Table 9 gives the reconstruction errors with different IP locations in modal approach. Several 

observations are summarized as follows. 

1. Comparing collection 1, 2, 3 and 4, the best reconstruction is collection 4, which indicates that the IPs on 

longeron has negative effect on reconstruction accuracy in modal approach. Collection 5 and 6 also 

demonstrate the same tendency. Collection 15 further confirms the destructive effect of IPs on longerons. 

2. Comparing collection 4 and 6, error becomes a little larger as IP#3 is not included. 

3. Comparing collection 10 and 11, error blows up if subset [2 4] is used. 

4. Collection 12, 13 and 14 shows that when only one IP is selected on unit batten, there is no preference in 

terms of error to choose [2], [3] or [5]. 

 



47 

As a more detailed result, we list the data into Table 10 for the 26 tests with the best combination 

of IPs,  

Number of modes: 

We demonstrate the effect of number of modes on reconstruction errors in Figure 37. It is 

observed that when more than 10 modes are used, the reconstruction results are converged with very low 

errors. The slight increment of error when increase the number of mode from 15 to 29 is caused by the 

particularity of test cases we choose. 
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Figure 37: modal approach reconstruction for different number of modes 

3.2.7. Reconstruction visualization 

As an example of good reconstruction, visualizations of results of case #18 are shown in Figure 38 

to Figure 41. Figure 38 depicts the loading of the case, which is defined as gravity with the direction 

showed by an arrow, Figure 39 gives the deformed shape of the structure, Figure 40 plots the weighting 

ratio of each mode and Figure 41 shows the estimated/real displacement along all three directions on 

longeron 1, 2 and 3. 
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Figure 38: test case #18 loading illustration (left) 

Figure 39: test case #18 deformation and strain distribution illustration (right) 
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Figure 40: test case #18 weighting ratio for each mode 
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Figure 41: test case #18 displacement reconstruction curves 

 



 

4.  Summary and Conclusions 

4.1 Comparison of the two strategies 

Based on all the reconstruction results we obtained in previous sections, we compare the two 

reconstruction strategies in this section.  

In the matrix approach, without involving mechanical understanding, we simply consider the 3-D 

displacements under a loading as linear combinations of the corresponding strains. In contrast, we project 

the strain measurements to the different mode in the modal approach, and this modal analysis contains 

mechanics of the structure itself. Generally speaking, modal approach can achieve better reconstruction 

than matrix approach, as shown in Figure 42. 

However, we find the matrix approach outperform the modal approach for some concentrated 

forces tests. That is because in the matrix approach, the system is trained with concentrated force, so it can 

have good performance in the tests with a similar loading as those trainings, even better than modal 

approach. 
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Figure 42: Comparison between the two strategies 

50 



51 

4.2 Conclusions 

Comparing the two approaches of shape reconstruction in a complex flexible structure, we 

conclude our work as follows. 

• In matrix approach, we approximate the static displacements as linear combinations of strains after 

training the system in a self learning mode. With a matrix representing the linear mapping, we found that if 

sufficient training cases are made, there will be a satisfactory shape reconstruction. 

• There are three major factors affecting the shape reconstructing results of matrix approach: 

amount of training cases, amount of IPs, and the location of those IPs. 

1. Generally speaking, the more we trained the system, the better of our reconstruction results. 

Especially when the test case is similar to some training cases, good shape reconstruction can be 

achieved. 

2. The amount of IPs does not affect the reconstruction significantly if it is more than a certain value.  

3. The location of IPs is the most dominant factor in the matrix approach. A good architecture of IPs 

optimizes the reconstruction process in terms of cost and accuracy. 

• In modal approach, we select modal functions as a set of basis to decompose the strain 

measurements, and regard the weighting ratio of each mode as the connection between strain and 

displacement, so that structural shape can be reconstructed according to strain measurements. 

• There are three major factors affecting the shape reconstructing results of modal approach: number 

of modes included in the superposition, amount of IPs, and the location of those IPs. 

1.  Generally, the more the modes are included in the superposition, the better the reconstruction 

shall we obtain.  

2.  The amount of IPs does not affect the reconstruction very much, but a necessary number of points 

should be guaranteed to capture the deformation characteristics. 
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3.  The location of IPs is the essential factor dominating the reconstruction. A good architecture of 

IPs optimizes the reconstruction process in terms of cost and accuracy. 

• There is no mechanical methodology in the matrix approach, while the modal approach is based 

on the basic dynamic knowledge, and more complex to model, hence more possible sources of error.  

• Overall the modal approach is more accurate than the matrix approach, but for tests with 

concentrated forces, the matrix approach does a better job, because the system is trained in this way. 

• The modal approach is more robust since it requires only mode shape estimation, and is only 

determined by the sensor topology without learning process required or knowledge of loads. 

• There is trade-offs to be considered between accuracy, the ability to train, and complexity of 

modeling.  

4.3. Future Work 

Thermal gradients on this structure should be considered in a more realistic scenario since the 

truss is exposed to the radiation of the sun. More importantly, the thermal gradient induces extra strain 

when the measurement is performed. We plan to characterize and analyze the thermal characteristics, as an 

improvement of current shape sensing strategies. 

The fiber Bragg gratings are actually attached to the boom by epoxy, which introduces a load-

dependent shear transfer. We will analyze and evaluate the effects of the shear transfer on reconstruction 

accuracy and modify our shape sensing model accordingly in the next phase. 

The strategies can be implemented rapidly into operational software, and a quasi-real time shape 

determination can be performed. 

Experimental investigation on a model boom at Air Force Research Lab will be considered. 

Instead of using ABAQUS finite element simulation, we will further verify our approaches with real strain 

and displacement data. 
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