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Abstract

The A-fibered Burnside Ring as A-fibered Biset Functor in Characteristic Zero

by

Deniz Yılmaz

Let A be an abelian group and let K be a field of characteristic zero containing roots of

unity of all orders equal to finite element orders in A. In this thesis we prove foundational

properties of the A-fibered Burnside ring functor BA
K as an A-fibered biset functor

over K. This includes the determination of the lattice of subfunctors of BA
K and the

determination of the composition factors of BA
K . The results of the paper extend results

of Coşkun and the author for the A-fibered Burnside ring functor restricted to p-groups

and results of Bouc in the case that A is trivial, i.e., the case of the Burnside ring functor

over fields of characteristic zero.
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Chapter 1

Introduction

The study of group actions on sets plays an important role in representation

theory. As the simplest case, the action of a finite group on a finite set leads to the

theory of Burnside rings. Considering the common features shared by Burnside rings and

other representation rings, Dress [D73] and Green [Gn71] introduced Mackey functors

to give a unified treatment of these objects. The structure of Mackey functors was later

studied extensively by Thévenaz and Webb [TW95]. The theory of Mackey functors has

several important applications such as the canonical induction formualae introduced by

Boltje [Bo98].

Let G and H be finite groups. A (G,H)-biset X is a finite set X equipped

with a left G-action and a right H-action that commute with each other. Equivalently,

a (G,H)-biset is a left G×H-set. The translation between these two points of view is

given by (g, h)x = gxh−1, for g ∈ G, h ∈ H, and x ∈ X. The biset notation is more

useful when the composition of bisets is considered whereas the other point of view is
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used when the description of the transitive G × H-sets is given. The study of bisets

leads us to the theory of biset functors introduced by Bouc in [Bc96]. One of the most

important applications of biset functors, among many others, is the final determination

of the structure of the Dade group by Bouc [Bc06].

Let A be an abelian group. Let X be an A×G-set with finitely many A-orbits

and the property that the A-action on X is free. Since the A-action is free, such an

action of A × G on X can be considered as G acting on the A-fibers and in this case,

the set X is called an A-fibered G-set. These objects were introduced by Dress in [D71]

and studied by Boltje [Bo] and Barker [Ba04].

Representation rings carry more structure by also considering multiplication

with one-dimensional representations as structural maps compared to the biset functor

structure. Motivated from this fact, Boltje and Coşkun generalized the notions of bisets

and fibered G-sets, and introduced fibered bisets and fibered biset functors [BC18].

Let A be an abelian group and let k be a commutative ring. An A-fibered biset

functor F over k is, informally speaking, a functor that assigns to each finite group G

a k-module F (G) together with maps resGH : F (G) → F (H) and indGH : F (H) → F (G),

whenever H 6 G, called restriction and induction, maps infGG/N : F (G/N) → F (G)

and defGG/N : F (G)→ F (G/N), whenever N is a normal subgroup of G, called inflation

and deflation, and maps isof : F (G)→ F (H), whenever f : G→ H is an isomorphism.

Moreover, the abelian group G∗ := Hom(G,A) acts k-linearly on F (G) for every finite

group G. These operations satisfy natural relations. Standard examples are various

representation rings of KG-modules, for a field K and A = K×. In this case, G∗ is the
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group of one-dimensional KG-modules acting by multiplication on these representation

rings. In [BC18] the simple A-fibered biset functors were parametrized. If A is the

trivial group then one obtains the well-established theory of biset functors, see [Bc10]

as special case. A-fibered biset functors over k can also be interpreted as the modules

over the Green biset functor BA
k , where BA

k (G) is the A-fibered Burnside ring of G

over k (also called the K-monomial Burnside ring of G over k, when A = K× for a

field K). Another natural example of A-fibered biset functors (without deflation) is the

unit group functor G 7→ BA(G)×. This structure was established in a recent paper by

Bouc and Mutlu, see [BM19] and generalizes the biset functor structure on the unit

group B(G)× of the Burnside ring.

Representation rings carry more structure when viewed as A-fibered biset func-

tors compared to the biset functor structure. One of the goals is to understand their

composition factors as such functors. By various induction theorems they can be viewed

as quotient functors of the functor BA
k for various A. Thus, it is natural to first investi-

gate the lattice of subfunctors of BA
k and its composition factors. This is the objective

of this thesis, where k is a field of characteristic zero containing sufficiently many roots

of unity. Coşkun and the author achieved this already in [CY19] for the same functor

category restricted to finite p-groups for fixed p.

The thesis is arranged as follows. In Chapter 2 we recall the notions of G-sets,

A-fibered G-sets, A-fibered (G,H)-bisets, and their Grothendieck groups BA
k (G) and

BA
k (G,H) over a commutative base ring k. The tensor product of A-fibered bisets leads

to the A-fibered biset category CAk and its functor category FAk of k-linear functors from
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CAk to kMod, the category of A-fibered biset functors over k. The relevant definitions and

constructions are recalled in Section 2.5. In Section 2.6 we recall the parametrization

of simple A-fibered biset functors from [BC18]. In Chapter 3 we parametrize the set of

primitive idempotents of BA
K(G) over a field K of characteristic 0 which contains enough

roots of unity in relation to the finite element orders of A. We also derive an explicit

formula for these idempotents, using results from [BRV19] on the −+ construction. We

take advantage of the fact that the Green biset functor BA
K arises as the −+ construction

of the Green biset functor G 7→ KG∗. Interestingly, the idempotent formula we derive

in Theorem 3.0.2 is different from the one given by Barker in [Ba04], which was proved

for more restrictive cases of A. It is used as a crucial tool in the following sections.

In Chapter 4 we provide formulas for the action of inductions, restrictions, inflations,

deflations, isomorphisms and twists by φ ∈ G∗ on these idempotents. Crucial among

those is the action of defGG/N , which maps a primitive idempotent of BA
K(G) to a scalar

multiple of a primitive idempotent of BA
K(G/N). After establishing three technical

lemmas in Chapter 5, this mysterious scalar is studied in more depth in Chapter 6.

The vanishing of this scalar is a condition that leads to the notion of a BA-pair (G,Φ),

where G is a finite group and Φ ∈ Hom(G∗,K×), in Chapter 7. There, we also study

particular subfunctors E(G,Φ) of BA
K . In Chapter 8, we show that every subfunctor of

BA
K is a sum of the functors E(G,Φ) and that the subfunctors of BA

K are in bijection with

the set of subsets of isomorphism classes of BA-pairs that are closed from above with

respect to a natural partial order 4, see Theorem 8.0.7. In Chapter 9 we determine

the composition factors of BA
K in terms of the parametrization of simple functors from
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[BC18], see Theorem 9.0.2. Finally, in Section 10, we consider the special case that A is

a subgroup of K×. In this case, a natural isomorphism G/O(G)
∼→ Hom(G∗,K×) for a

normal subgroup O(G) of G depending on A, allows to reinterpret the set of BA-pairs

and makes our results compatible with the language and setup in [Ba04] and [CY19].

The approach in this thesis follows closely the blueprint in [Bc10, Section 5]

for the case A = {1}. However, the presence of the fiber group A requires additional

ideas and techniques to achieve the analogous results. The main technical problem is

that a transitive A-fibered biset with stabilizer pair (U, φ), does not in general factor

through the group q(U) ∼= pi(U)/ki(U), i = 1, 2, since φ is in general non-trivial when

restricted to k1(U)× k2(U).

1.1 Notation

For a finite group G we denote by exp(G) the exponent of G. If X is a left

G-set, we write x =G y if two elements x and y of X belong to the same G-orbit. For

x ∈ X, we denote by Gx or stabG(x) the stabilizer of x in G. By XG we denote the

set of G-fixed points in X and by [G\X] a set of representatives of the G-orbits of X.

For subgroups H and K of G, we denote by [H\G/K] a set of representatives of the

(H,K)-double cosets of G.

For an abelian group A, we denote by tor(A) its subgroup of elements of finite

order, and, for a ring R, we denote by R× its group of units.
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Chapter 2

Preliminaries

2.1 G-sets and Burnside rings

Throughout this section, G denotes a finite group. We recall the basic notions

and results regarding G-sets and the Burnside ring of G. We refer the reader to [Bc10,

Chapter 2] for more details.

Recall that a left G-set X is a set X equipped with a map

G×X → X , (g, x) 7→ g · x = gx , (2.1)

such that the following conditions holds

(i) For g, h ∈ G and x ∈ X we have g · (h · x) = (gh) · x.

(ii) For any x ∈ X, we have 1G · x = x where 1G is the identity element of G.

Throughout the thesis we use G-set X to mean a finite G-set. A morphism

between two G-sets is a G-equivariant map. The G-sets and their morphisms form a
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category which we denote by Gset. Similarly one defines the category setG of right

G-sets.

Let X be a G-set and x ∈ X. For a subgroup H of G, the set

H · x = {hx | h ∈ H}

is called the H-orbit of x. We denote by [G\X] a set of representatives of G-orbits of X.

The G-set X is called transitive if it has a single G-orbit. The set

XH = {x ∈ X | ∀h ∈ H,hx = x}

is called the set of H-fixed points of X. The set

Gx = {g ∈ G | gx = x}

is called the stabilizer of x in G.

Let X be a transitive G-set. Then X is isomorphic, as G-sets, to the G-set

G/Gx of left cosets of Gx in G for any x ∈ X. Here the G-action on G/Gx is defined by

g · hGx = ghGx (2.2)

for any g, h ∈ G. If H and K are subgroups of G, then the G-sets G/H and G/K are

isomorphic if and only if H and K are conjugate in G.

There is an obvious notion of disjoint union of G-sets which is also a categorical

coproduct. The Burnside group B(G) of G is defined as the Grothendieck group of

the category Gset with respect to disjoint union. In other words, it is defined as the

quotient of the free abelian group on the set of isomorphism classes of finite G-sets, by
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the subgroup generated by the elements of the form

[X t Y ]− [X]− [Y ]

where X and Y are finite G-sets, t denotes the disjoint union, and [X] denotes the

isomorphism class of X. Note that the classes of transitive G-sets form a Z-basis of

B(G). For a commutative ring k, we set Bk(G) := k ⊗Z B(G).

Note that if X and Y are G-sets, then the cartesian product X × Y of X and

Y is again a G-set with the diagonal G-action. This induces a ring structure on the

Burnside group B(G). Note that B(G) is a commutative ring and the class of a G-set

with cardinality one is the identity element. Dress showed in [D69] that the Q-algebra

BQ(G) is split semisimple and the primitive idempotents of BQ(G) are indexed by the

set of conjugacy classes of subgroups of G. We have the following explicit formula by

Gluck [G81] and Yoshida [Y83].

Theorem 2.1.1. Let G be a finite group. There is a bijective correspondence between

primitive idempotents eGH of BQ(G) and conjugacy classes of subgroups H of G. More-

over we have

eGH =
1

NG(H)

∑
K6H

|K|µ(K,H)[G/K] , (2.3)

where µ is the Möbius function on the poset of the subgroups of G.

2.2 Bisets

Throughout this section G, H and K denote finite groups and k denotes a

commutative ring. We recall the definition and the basic properties of bisets. We refer
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the reader to [Bc10, Chapters 2,3] for more details.

A (G,H)-biset X is a finite set X equipped with a left G-action and a right

H-action that commute with each other. Equivalently, a (G,H)-biset is a left G×H-set.

The translation between these two points of view is given by (g, h)x = gxh−1, for g ∈ G,

h ∈ H, and x ∈ X. We call the latter notation the biset notation. A morphism between

two (G,H)-bisets is a G×H-equivariant map. The (G,H)-bisets and their morphisms

form a category which we denote by GsetH . The Grothendieck group of the category

GsetH is denoted by B(G,H). The class of a (G,H)-biset X is again denoted [X].

Let X be a (G,H)-biset and Y be an (H,K)-biset. Then the cartesian product

X × Y is an H-set via the action h · (x, y) = (xh−1, hy). The set of H-orbits of X × Y

under this action is denoted by X ⊗ Y and it is called the composition of X and Y .

The orbit of an element (x, y) ∈ X × Y is denoted by x ⊗ y. Note that X ⊗ Y has a

(G,K)-biset structure where the actions are given by g · (x⊗y) ·k = gx⊗yk. Note that

the composition of bisets induces a bilinear map

− ·
H
− : Bk(G,H)×Bk(H,K)→ Bk(G,K) . (2.4)

If K is the trivial group, then via the identifications GsetK ∼= Gset and HsetK ∼= Hset,

the map in 2.4 induces the map

− ·
H
− : Bk(G,H)×Bk(H)→ Bk(G) .

The map in 2.4 also allows us to define the biset category.

Definition 2.2.1. The biset category Ck of finite groups over a commutative ring k is

the category defined as follows:
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• The objects of Ck are finite groups.

• If G and H are finite groups, then HomCk(G,H) = Bk(H,G).

• If G, H and K are finite groups, then the composition v ◦ u of the morphism

u ∈ HomCk(G,H) and the morphism v ∈ HomCk(H,K) is equal to v ·
H
u.

• For any finite group G, the identity morphism of G in Ck is equal to [G] the class of

the (G,G)-biset G where the actions are given by multiplications from both sides.

Since the sets of morphisms in Ck are k-modules, and the composition in Ck is

k-bilinear, it follows that the category Ck is a k-linear category.

Definition 2.2.2. A biset functor over k is a k-linear functor from Ck to kMod.

Together with natural transformations, biset functors over k form an abelian

category which we denote by Fk.

Example 2.2.3 (Burnside functor). The map

• G 7→ Bk(G)

• x ∈ Bk(H,G) 7→
(
x ·
H
− : Bk(G)→ Bk(H)

)

is a biset functor over k.
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2.3 A-fibered G-sets and A-fibered Burnside rings

Throughout the thesis we fix an abelian group A. For any finite group G we

set

G∗ := Hom(G,A)

and view G∗ again as abelian group with point-wise multiplication.

Throughout this section G denotes a finite group. We introduce A-fibered

G-sets and the associated monomial Burnside ring BA(G) (or A-fibered Burnside rings).

These structures were first considered by Dress in [D71]. We recall the most important

definitions and results and refer the reader to [D71] for more details and proofs.

We denote by M(G) = MA(G) the set of all pairs (H,φ) such that H 6 G

and φ ∈ H∗. The set M(G) has a partial order: (K,ψ) 6 (H,φ) if and only if K 6 H

and ψ = φ|K . Moreover, G acts by conjugation on M(G): For (H,φ) ∈ M(G) and

g ∈ G one sets g(H,φ) := ( gH, gφ), with gφ(x) := φ(g−1xg), for x ∈ gH. This way,

M(G) becomes a G-poset, i.e., G acts by poset automorphisms. We denote the G-orbit

of (H,φ) ∈M(G) by [H,φ]G.

Recall that a (left) A-fibered G-set X is a left (G × A)-set with only finitely

many A-orbits and the property that every A-orbit is regular, i.e., ax = bx for a, b ∈ A

and x ∈ X implies a = b. Here and in the sequel we consider A and G as subgroups of

G×A via a 7→ (1, a) and g 7→ (g, 1) so that expressions like gax, for g ∈ G, a ∈ A, and

x ∈ X, are defined. Together with (G × A)-equivariant maps, one obtains a category

Gset
A. Similarly, we define the category setAG of right A-fibered G-sets. We sometimes
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view a left A-fibered G-set X also as a right A-fibered G-set. In this case the right

A-action is given by xa := ax and the right G-action by xg := g−1x for a ∈ A, g ∈ G

and x ∈ X. We view the A-action in analogy to the action of the base ring k when

considering a module for a k-algebra. The A-orbits of X are called the A-fibers of X.

Since the actions of G and A on X commute, we can consider the set of A-fibers of X

as a G-set.

There is an obvious notion of disjoint union in Gset
A which is also a categorical

coproduct. Moreover, there is a tensor product X ⊗ Y = X ⊗A Y ∈ Gset
A defined as

the set of A-orbits of the direct product X×Y under the A-action a(x, y) = (xa−1, ay).

The orbit of (x, y) is denoted by x ⊗ y. One has a(x ⊗ y) = ax ⊗ y = x ⊗ ay and

g(x⊗ y) = gx⊗ gy for all a ∈ A, g ∈ G, x ∈ X and y ∈ Y .

Every element x of an A-fibered G-set X has an associated stabilizing pair,

(Hx, φx) ∈M(G), where Hx denotes the stabilizer in G of the A-orbit of x, and φx ∈ H∗x

is defined by the relation hx = φx(h)x, for h ∈ Hx. The stabilizing pair of (g, a)x is

equal to g(Hx, φx). If X is transitive, the associated stabilizing pairs form a G-orbit

in M(G) which determines X up to isomorphism. If (H,φ) ∈ M(G), then the set

(G × A)/({(h, φ(h−1)|h ∈ H}) is a transitive A-fibered G-set with a stabilizing pair

(H,φ).

The set of isomorphism classes of Gset
A is a commutative semiring with respect

to disjoint union as addition and ⊗ as multiplication. The associated Grothendieck ring

is denoted by BA(G). The ring BA(G) is called the monomial Burnside ring of G,

or sometimes the A-fibered Burnside ring of G. The class of X ∈ Gset
A in BA(G) is
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denoted by [X]. The classes of the transitive A-fibered G-sets form a Z-basis of BA(G).

For computational purposes we will often view BA(G) as the free abelian group with

basis elements [H,φ]G, where (H,φ) ∈ [G\M(G)], and refer to those elements as the

standard basis of BA(G). The multiplication in BA
k (G) is given by

[H,φ]G · [V, ψ]G =
∑

g∈[U\G/V ]

[U ∩ gV, φ|U∩ gV · (
gψ)|U∩ gV ]G , (2.5)

for (H,φ), (V, ψ) ∈M(G). The identity element of BA
k (G) is [G, 1]G.

In the case that A = {1}, the trivial group, we may identify G×A with G and

obtain BA(G) = B(G), the Burnside ring of G.

2.4 A-fibered bisets

Throughout this section, G, H, and K denote finite groups and k denotes a

commutative ring. We recall the notions and basic results regarding A-fibered bisets,

the A-fibered biset category, and A-fibered biset functors from [BC18, Sections 1–3].

The category of A-fibered (G,H)-bisets is formally defined as the category

G×Hset
A and is also denoted by Gset

A
H . We often consider an A-fibered (G,H)-biset X

as equipped with a left G-action, a right H-action and a two-sided A-action, all four

actions commuting with each other, via gaxhb := ((g, h−1), ab)x for g ∈ G, h ∈ H,

a, b ∈ A, and x ∈ X (fibered biset notation). Note that b is not inverted consistent with

the convention in 2.3.

If H is the trivial group, we can identify GsetH with Gset and Gset
A
H with Gset

A

in the obvious way. Similar identifications apply if G is the trivial group.

13



There exists a functor

−⊗AH− : Gset
A
H × Hset

A
K → Gset

A
K , (2.6)

the tensor product of A-fibered bisets, given on objects X ∈ Gset
A
H and Y ∈ Hset

A
K as the

set of those (H ×A)-orbits of X × Y under the action (h, a)(x, y) := (x(ha)−1, hay) (in

fibered biset notation) which are A-free under the induced A-action on these orbits. The

orbit of (x, y) is denoted by x⊗ y. Thus, in fibered biset notation, xah⊗ y = x⊗ ahy.

The set X ⊗AH Y is an A-fibered (G,K)-biset via (g, k, a)(x ⊗ y) = (g, a)x ⊗ ky in

formal notation and ga(x⊗ y)k = gax⊗ yk in fibered biset notation. This construction

is associative, i.e., the map (x⊗ y)⊗ z → x⊗ (y ⊗ z) is a well-defined isomorphism in

Gset
A
L between (X ⊗AH Y )⊗AK Z and X ⊗AH (Y ⊗AK Z), whenever L is a finite group

and Z ∈ Kset
A
L . It is functorial in X, Y and Z.

If K is the trivial group, then via the identifications Hset
A
K
∼= Hset

A and

Gset
A
K
∼= Gset

A, the tensor product functor in (2.6) induces a functor

−⊗AH− : Gset
A
H × Hset

A → Gset
A . (2.7)

Similarly, choosing G as the trivial group, we obtain a functor

−⊗AH− : setAH × Hset
A
K → setAK . (2.8)

There is an obvious notion of disjoint union in Gset
A
H which is also a categorical

coproduct. We denote the Grothendieck group of Gset
A
H with respect to disjoint union

by BA(G,H). For any commutative ring k we set BA
k (G,H) := k⊗BA(G,H). The class

of an A-fibered (G,H)-biset X in BA(G,H) is denoted by [X]. We also write [X] for

14



1⊗ [X] ∈ BA
k (G,H). If X ∈ Gset

A
H is transitive with stabilizing pair (U, φ) ∈M(G×H)

for some x ∈ X, then we often write
[
G×H
U,φ

]
for [X]. Thus, if (U, φ) runs through a set

of representatives of the (G ×H)-orbits of M(G ×H) then the elements
[
G×H
U,φ

]
form

a k-basis of BA
k (G,H).

The tensor product constructions above induce the following k-bilinear maps

on the Grothendieck group levels:

− ·
H
− : BA

k (G,H)×BA
k (H,K)→ BA

k (G,K) , (2.9)

− ·
H
− : BA

k (G,H)×BA
k (H)→ BA

k (G) , (2.10)

− ·
H
− : BA

k (H)×BA
k (H,K)→ BA

k (K) . (2.11)

The first bilinear map allows us to define the fibered biset category CAk .

Definition 2.4.1. The fibered biset category CAk of finite groups over a commutative

ring k is the category defined as follows:

• The objects of CAk are finite groups.

• If G and H are finite groups, then HomCAk
(G,H) = BA

k (H,G).

• If G, H and K are finite groups, then the composition v ◦ u of the morphism

u ∈ HomCAk
(G,H) and the morphism v ∈ HomCAk

(H,K) is equal to v ·
H
u.

• For any finite group G, the identity morphism of G in CAk is the element
[
G×G

∆(G),1

]
∈

Bk(G,G), which is also the class of the A-fibered (G,G)-biset G × A with the

multiplication actions from both sides. Here, ∆(G) := {(g, g) | g ∈ G}.
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In order to state a formula for the tensor product of two transitive A-fibered

bisets we need the following notation.

Let U be a subgroup of G×H. Then U 6 p1(U)×p2(U), where p1 : G×H → G

and p2 : G×H → H denote the projection maps. Moreover, setting

k1(U) := {g ∈ G | (g, 1) ∈ U} and k2(U) := {h ∈ H | (1, h) ∈ U} ,

we obtain ki(U) E pi(U) for i = 1, 2 and k1(U) × k2(U) E U . The projections pi

induce isomorphisms q(U) := U/(k1(U) × k2(U))
∼→ pi(U)/ki(U) for i = 1, 2, so that

one obtains an isomorphism

ηU : p2(U)/k2(U)
∼→ p1(U)/k1(U) (2.12)

given by ηU (hk2(U)) = gk1(U) if and only if (g, h) ∈ U . We call q(U) the quotient

of U . Note that it is isomorphic to a subquotient of G and a subquotient of H. For

φ ∈ U∗ = Hom(U,A), we can write φ|k1(U)×k2(U) = φ1× φ−1
2 , with uniquely determined

φ1 ∈ k1(U)∗ and φ2 ∈ k2(U)∗. We also associate to the pair (U, φ) its left invariants

and right invariants

l(U, φ) := (p1(U), k1(U), φ1) and r(U, φ) := (p2(U), k2(U), φ2) .

If additionally V is a subgroup of H ×K, one sets

U ∗ V := {(g, k) ∈ G×K | ∃h ∈ H : (g, h) ∈ U, (h, k) ∈ V }

a subgroup of G × K. Moreover, if φ ∈ U∗ and ψ ∈ V ∗ with the property that

φ2|k2(U)∩k1(V ) = ψ1|k2(U)∩k1(V ), then one obtains a homomorphism φ∗ψ ∈ Hom(U ∗V,A)
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defined by

(φ ∗ ψ)(g, k) := φ(g, h)ψ(h, k) ,

where h ∈ H is chosen such that (g, h) ∈ U and (h, k) ∈ V .

When K is the trivial group we identify H ×K with H, and obtain

U ∗ V := {g ∈ G | ∃h ∈ V : (g, h) ∈ U} 6 G ,

for V 6 H. Moreover, for (U, φ) ∈ M(G ×H) and (V, ψ) ∈ M(H) with φ2|k2(U)∩V =

ψ|k2(U)∩V , we define φ∗ψ ∈ Hom(U ∗V,A) by (φ∗ψ)(g) := φ(g, h)ψ(h) for any g ∈ U ∗V ,

where h ∈ V is chosen such that (g, h) ∈ U .

Similarly, choosing G to be the trivial group, we define U ∗ V for U 6 H and

V 6 H ×K, and a product φ ∗ ψ for (U, φ) ∈ M(H) and (V, ψ) ∈ M(H ×K) if φ−1

and ψ1 coincide on U ∩ k1(V ).

The following theorem gives explicit formulas for the tensor products (2.9)–

(2.11) of standard basis elements. We will refer to it as the Mackey formula.

Theorem 2.4.2. ([BC18, Corollary 2.5]) (a) For (U, φ) ∈ M(G × H) and (V, ψ) ∈

M(H ×K) one has[
G×H
U, φ

]
·
H

[
H ×K
V,ψ

]
=

∑
t∈[p2(U)\H/p1(V )]

φ2|Ht=
t
ψ1|Ht

[
G×K

U ∗ (t,1)V, φ ∗ (t,1)ψ

]
,

where Ht := k2(U) ∩ tk1(V ).

(b) For (U, φ) ∈M(G×H) and (V, ψ) ∈M(H) one has[
G×H
U, φ

]
·
H

[V, ψ]H =
∑

t∈[p2(U)\H/V ]

φ2|
k2(U)∩

t
V

=
t
ψ|
k2(U)∩

t
V

[U ∗ tV, φ ∗ tψ]G .
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(c) For (U, φ) ∈M(H) and (V, ψ) ∈M(H ×K) one has

[U, φ] ·
H

[
H ×K
V,ψ

]
=

∑
t∈[U\H/p1(V )]

φ−1|
U∩

t
k1(V )

=
t
ψ1|

U∩
t
k1(V )

[U ∗ (t,1)V, φ ∗ (t,1)ψ]K .

Proof. (a) See [BC18, Corollary 2.5].

(b) This follows immediately from Part (a) by choosing K to be the trivial

group:

[
G×H
U, φ

]
·
H

[V, ψ]H =

[
G×H
U, φ

]
·
H

[
H × 1

V × 1, ψ × 1

]
=

∑
t∈[p2(U)\H/V ]

φ2|
k2(U)∩

t
V

=
t
ψ|
k2(U)∩

t
V

[
G× 1

U ∗ (t,1)(V × 1), φ ∗ (t,1)(ψ × 1)

]

=
∑

t∈[p2(U)\H/V ]

φ2|
k2(U)∩

t
V

=
t
ψ|
k2(U)∩

t
V

[U ∗ tV, φ ∗ tψ]G .

(c) This is proved similarly after choosing G to be trivial group in Part (a).

If A is the trivial group, we can identify Gset
A
H with GsetH , BA

k (G,H) with

Bk(G,H), and CAk with Ck.

For general A we have an embedding Bk(G,H) → BA
k (G,H), induced by

the functor X 7→ X × A where the A-action is defined as the multiplication on the

second component. This functor maps a standard basis element [(G × H)/U ] to the

standard basis element
[
G×H
U,1

]
. This induces an embedding of categories Ck ⊆ CAk and

we may view the elementary bisets of induction, restriction, inflation, deflation, and
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isomorphism (see [Bc10, 2.3.9]) also as morphisms in CAk . These morphisms are defined

as follows. For H 6 G one sets

resGH :=

[
H ×G
∆(H), 1

]
= [G] ∈ B(H,G) and indGH :=

[
G×H
∆(H), 1

]
= [G] ∈ B(G,H) ,

with G viewed as (H,G)-biset and as (G,H)-biset via left and right multiplication. For

N E G, one sets

infGG/N :=

[
G×G/N

{(g, gN) | g ∈ G}, 1

]
= [G/N ] ∈ B(G,G/N)

and

defGG/N :=

[
G/N ×G

{(gN, g) | g ∈ G}, 1

]
= [G/N ] ∈ B(G/N,G) ,

with G/N viewed as (G,G/N)-biset and as (G/N,G)-biset via multiplication and the

natural epimorphism G→ G/N . Finally, if f : H → G is an isomorphism, one sets

isof :=

[
G×H

{(f(h), h) | h ∈ H}, 1

]
= [G] ∈ B(G,H) ,

where G is viewed as (G,H)-biset via gxh := gxf(h) for g ∈ G and h ∈ H. In the

special case that H 6 G, x ∈ G and f = cx : H → xH is conjugation by x, we also set

cx := cHx := isocx ∈ B( xH,H).

For φ ∈ G∗ we define ∆(φ) ∈ ∆(G)∗ by ∆(φ)(g, g) := φ(g) and define the map

∆: BA
k (G)→ BA

k (G,G) , [H,φ]G 7→
[

G×G
∆(H),∆(φ)

]
,

for (H,φ) ∈ M(G). Using the explicit multiplication rule from 2.5 and the Mackey

formula in Theorem 2.4.2(a) it is straightforward to see that this map is a k-algebra

homomorphism. Moreover, it is injective. In fact, for (H,φ), (K,ψ) ∈ M(G), one has
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(∆(H),∆(φ)) =G×G (∆(K),∆(ψ)) if and only if (H,φ) =G (K,ψ). The explicit Mackey

formulas in Theorem 2.4.2(b) and (c) imply that

x ·
G

∆(y) = x · y = ∆(x) ·
G
y (2.13)

for all x, y ∈ BA
k (G).

For φ ∈ G∗ we set

twφ := ∆([G,φ]G) ∈ BA(G,G) ,

the twist with φ. The Mackey formula shows that, for (U, φ) ∈M(G×H), κ ∈ G∗, and

λ ∈ H∗, one has

twκ ·
G

[
G×H
U, φ

]
=

[
G×H

U, (κ× 1)|U · φ

]
and

[
G×H
U,φ

]
·
H

twλ =

[
G×H

U, φ · (1× λ)|U

]
.

(2.14)

We will call the elementary bisets in (b) together with the twists, the elementary

A-fibered bisets.

Remark 2.4.3. Recall from [BC18, 1.6, 1.7] that the construction of the opposite

A-fibered biset induces a k-linear map −◦ : BA
k (G,H)→ BA

k (H,G),
[
G×H
U,φ

]
7→
[
H×G
U◦,φ◦

]
,

with U◦ := {(h, g) ∈ H ×G | (g, h) ∈ U and φ◦(h, g) := φ−1(g, h) for (h, g) ∈ U◦. Note

that (U◦)◦ = U , p1(U◦) = p2(U), k1(U◦) = k2(U), (φ◦)◦ = φ, and (φ◦)1 = φ2. The

Mackey formula in Theorem 2.4.2(a) implies that, for x ∈ BA(G,H) and y ∈ BA(H,K),

one has

(x ·H y)◦ = y◦ ·H x◦ ∈ BA(K,G) . (2.15)
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Moreover, one has a ring isomorphism −◦ : BA(G) → BA(G) given by [U, φ]G 7→

[U, φ−1]G for (U, φ) ∈M(G). The Mackey formulas in Theorem 2.4.2(b) and (c) imply

that, for x ∈ BA(G), y ∈ BA(G,H) and z ∈ BA(H), one has

∆(x◦) = ∆(x)◦ , (x ·
G
y)◦ = y◦ ·

G
x◦ ∈ BA(H) , and (y ·

H
z)◦ = z◦ ·

H
y◦ ∈ BA(G) .

(2.16)

Using the above notation, we obtain a canonical decomposition of a standard

basis element of BA(G,H) into elementary bisets and a standard basis element for

smaller groups.

Theorem 2.4.4. ([BC18, Proposition 2.8]) Let (U, φ) ∈M(G×H) and set P := p1(U),

Q := p2(U), K := ker(φ1), and L := ker(φ2). Then K E P , L E Q, K × L E U , and

[
G×H
U,φ

]
= indGP ·

P
infPP/K ·

P/K

[
P/K ×Q/L
U/(K × L), φ̄

]
·

Q/L
defQQ/L ·Q resHL ,

where φ̄ ∈ (U/(K × L))∗ is induced by φ and U/(K × L) is viewed as subgroup of

P/K ×Q/L via the canonical isomorphism (P ×Q)/(K × L) ∼= P/K ×Q/L.

2.5 A-fibered biset functors

Throughout this section, G and H denote finite groups and k denotes a com-

mutative ring.

Definition 2.5.1. ([Bc10, Definition 3.2.2], [BC18, Definition 3.1]) An A-fibered biset

functor over k is a k-linear functor F : CAk → kMod.
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Together with natural transformations, the A-fibered biset functors over k form

an abelian category that we denote by FAk . This allows us to define subfunctors, quotient

functors, simple functors etc. Clearly, via restriction along the embedding Ck ⊆ CAk ,

every A-fibered biset functor can also be viewed as a biset functor. Thus, if F ∈ FAk or

F ∈ Fk, we can apply F to the elementary fibered bisets, see Section 2.4. We denote the

resulting homomorphisms with the same symbols: resGH = F (resGH) : F (G) → F (H) for

H 6 G, etc. Moreover, for H 6 G, g ∈ G, and m ∈ F (H), we denote by gm ∈ F ( gH)

the element cg(m).

Example 2.5.2 (The character ring). [BC18, Section 11B] Let A = C× be the unit

group of the complex numbers and let RC(G) denote the character ring of CG-modules.

Using the properties of the linearization map

linG : BC×(G)→ RC(G) , [H,φ]G 7→ indGH(φ) ,

one can show that the functor that assigns to each finite group G the character ring

RC(G) defines an C×-fibered biset functor RC×. Clearly we can extend the coefficients

from Z to any commutative ring k. If k is a field, then the C×-fibered biset functor kRC

is simple, see [BC18, Theorem 11.3]. It is worth noting that the character ring as a

biset functor, i.e., when the fiber group A is trivial, is semisimple being a direct sum of

infinitely many simple biset functors [Bc10, Chapter 7].

Example 2.5.3 (The fibered Burnside functor). Mapping a finite group G to BA
k (G)

and an element x ∈ BA
k (G,H) to the k-linear map x·H− : BA

k (H)→ BA
k (G) from (2.10)

defines an A-fibered biset functor BA
k over k, which we can also view as a biset functor
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over k.

In this thesis, our main goal is to describe the subfunctor lattice and the

composition factors of BA
k .

By the formula in Theorem 2.4.2(b), we have the following explicit elementary

biset operations on BA
k (G): For H 6 G, (U, φ) ∈M(G) and (V, ψ) ∈M(H), one has

resGH([U, φ]G) =
∑

g∈[H\G/U ]

[H ∩ gU, ( gφ)|H∩ gU ]H and indGH([V, ψ]H) = [V, ψ]G .

For N E G and (U/N, φ) ∈M(G/N) one has

infGG/N ([U/N, φ]G/N ) = [U, φ ◦ ν]G ,

where ν : U → U/N is the natural epimorphism, and

defGG/N ([V, ψ]G) =


[V N/N, ψ̃]G/N , if V ∩N 6 ker(ψ),

0 otherwise,

where ψ̃(vN) := ψ(v) for v ∈ V . For an isomorphism f : H → G and (V, ψ) ∈ M(H),

we have

isof ([V, ψ]H) = [f(V ), ψ ◦ f−1|f(V )]G .

In particular, for g ∈ G and H 6 G, and (K,ψ) ∈M(H), we have

g[K,ψ]H = [ gK, gψ] gH .

Finally, for λ ∈ G∗ and (H,φ) ∈M(G) one has

twλ([H,φ]G) = [H,λ|H · φ]G .
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It is easily verified that resGH , infGG/N and isof are ring homomorphisms, and that BA
k (G)

is a kG∗-algebra via tw.

The ring structure of BA
k (G) defined in Section 2.3 provides the biset functor

BA
k even with the structure of a Green biset functor over k. The category of A-fibered

biset functors over k is isomorphic to the category of BA
k -modules, see [Bc10, Sec-

tions 8.6, 8.7] and also [R12]. Again, the necessary axioms can be verified immediately

with the formulas in Theorem 2.4.2.

Let Dk be the subcategory of Ck with the same objects as Ck, but with mor-

phism sets generated by all elementary bisets, excluding inductions. In other words,

HomDk(G,H) ⊆ Bk(G,H) is the free k-module generated by all standard basis ele-

ments [(G × H)/U ] with p1(U) = G. Mapping G to the group algebra kG∗ defines a

Green biset functor F on Dk over k in the sense of [Bc10, Definition 8.5.1] with restric-

tion, inflation and isomorphisms defined as usual, viewing Hom(−, A) as contravariant

functor, and deflation defined by

defGG/N (φ) :=


φ̄, if φ|N = 1,

0, otherwise,

whenever N is a normal subgroup of G and φ ∈ G∗. Here, φ̄ ∈ (G/N)∗ is induced

by φ. In fact, it is straightforward to check that all the relations in [Bc10, 1.1.3]

that do not involve inductions are satisfied. Thus, we are in the situation of [BRV19,

Theorem 7.3(a),(b)] and obtain via the −+-construction a Green biset functor F+ on

D+ = C. This Green biset functor is isomorphic to the Green biset functor BA
k by
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[BRV19, Theorem 4.7(c)] and the explicit formulas for the elementary biset operations

in [BRV19, Remark 4.8]. We will use this point of view in Section 3 in order to determine

the primitive idempotents of BA
k (G) for special cases of k and A.

Note that the construction of BA
k (G) is also functorial in A. If f : A′ → A

is a homomorphism between abelian groups, then we obtain an induced homomor-

phim Hom(G,A′) → Hom(G,A) for all finite groups G and an induced G-equivariant

map MA′(G) → MA(G). We also obtain a group homomorphism BA′
k (G) → BA

k (G),

[H,φ]G 7→ [H, f ◦ φ]G. This group homomorphism is even a k-algebra homomorphism.

Moreover, it commutes with the tensor product maps in (2.9) and (2.10). In this way

we obtain a morphism BA′
k → BA

k of Green biset functors and a functor CA′k → CAk . If

A′ 6 A then BA′
k (G) is a k-subalgebra of BA

k (G) and CA′k becomes a subcategory of CAk .

2.6 Simple A-fibered biset functors

Let A be an abelian group and k a commutative ring. In this section we recall

the parametrization of simple A-fibered biset functors over k. We refer the reader to

[BC18] for more details. We first recall several constructions from [Bc96].

For a finite group G, let EG = EAk (G) denote the endomorphism algebra of G

in CAk , i.e.,

EG = HomCAk
(G,G) = BA

k (G,G).

Note that for any A-fibered biset functor F , the k-module F (G) is a left EG-module.

Let IG = IAk (G) denote the ideal of EG generated by the morphisms that factor through
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groups of smaller order, i.e.,

IG =
∑
|H|<|G|

BA
k (G,H) ·

H
BA
k (H,G) ⊆ EG.

The factor k-algebra ĒG = EG/IG is called the the essential algebra of G. Given a finite

group G and an irreducible module V of EG, we define two functors in FAk . The functor

LG,V is defined on the objects as

LG,V (H) = HomCAk
(G,H)⊗EG V = BA

k (H,G)⊗EG V ,

for any finite group H. Here HomCAk
(G,H) is considered as a right EG-module via

composition of morphisms. The functor JG,V is defined on the objects as

JG,V (H) =

{∑
i

xi ⊗ vi ∈ BA
k (H,G)⊗EG V |∀y ∈ B

A
k (G,H) :

∑
i

(y ·
H
xi)(vi) = 0

}
,

for any finite group H. By the general theory in [Bc96] the functor JG,V is the unique

maximal subfunctor of LG,V . Moreover, the simple quotient SG,V = LG,V /JG,V satisfies

SG,V (G) ∼= V .

Definition 2.6.1. Let F ∈ FAk be an A-fibered biset functor. A finite group G is called

a minimal group for F if G is a group of minimal order with F (G) 6= {0}.

Let S ∈ FAk be a simple A-fibered biset functor and let G be a minimal group

of S. Then V := S(G) is a simple EG-module and we have S ∼= SG,V in FAk . Moreover

the simple EG-module V is annihilated by IG. This implies, in particular, that every

simple A-fibered biset functor is isomorphic to SG,V for some finite group G and some

simple EG-module V which is annihilated by IG. Conversely, if G is a finite group and V
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is a simple EG-module V which is annihilated by IG, then G is a minimal group of SG,V .

Therefore, the isomorphism classes of simple A-fibered biset functors are parametrized

by the isomorphism classes of pairs (G,V ) where G is a finite group and V is a simple

ĒG-module.

In [BC18], Boltje and Coşkun provide a further parametrization by showing

that the essential algebra is isomorphic to a direct product of matrix algebras over some

group algebras. To review this parametrization briefly, we start with some notations

and definitions. We refer the reader to [BC18] for more details.

Recall that the group G acts on the set M(G) via conjugation. Let M(G)G

denote the set of G-fixed points ofM(G). A pair (K,κ) ∈M(G) is G-fixed if and only

K is a normal subgroup of G and κ is a G-stable homomorphism. Let (K,κ) ∈M(G)G

be a pair. The set

∆K(G) = {(g1, g2) ∈ G×G |g1K = g2K} = (K × {1})∆(G) = ({1} ×K)∆(G)

is a subgroup ofG×G since K is a normal subgroup of G. Moreover the map φκ(g1, g2) =

κ(g1g
−1
2 ) = κ(g−1

2 g1) is a homomorphism on ∆K(G) since κ is G-stable. We set e(K,κ)

to be the class of the A-fibered (G,G)-biset

(
G×G

∆K(G), φκ

)

in EG = BA
k (G,G). We now set

f(K,κ) =
∑

(K,κ)6(L,λ)∈M(G)G

µ/(K,L)e(L,λ)
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where µ/ is the Möbius function on the poset of normal subgroups of G. The elements

f(K,κ), (K,κ) ∈M(G)G, are mutually orthogonal idempotents [BC18, Proposition 4.4].

Let H be another finite group. Let also (K,κ) ∈M(G)G and (L, λ) ∈M(H)H .

We say that the pairs (G,K, κ) and (H,L, λ) are linked, if there exists (U, φ) ∈M(G×H)

such that l(U, φ) = (G,K, κ) and r(U, φ) = (H,L, λ).

Let (K,κ) ∈ M(G)G. Then the set of standard basis elements
[
G×G
U,φ

]
∈ EG

with l(U, φ) = (G,K, κ) = r(U, φ) form a finite group Γ(G,K,κ) under multiplication,

with identity element e(K,κ) and inverses induced by taking opposite of bisets.

Suppose (K,κ) ∈ M(G)G and (L, λ) ∈ M(H)H are linked. Then any pair

(U, φ) ∈ M(G × H) with the property that l(U, φ) = (G,K, κ) and that r(U, φ) =

(H,L, λ) induces an isomorphism Γ(H,L.λ) → Γ(G,K,κ) and as a result one obtains a

canonical bijection

Irr(kΓ(H,L.λ))→ Irr(kΓ(G,K,κ)). (2.17)

See [BC18, Section 6.1] for more details.

We now set RG = RAk (G) = {(K,κ) ∈ M(G)G |e(K,κ) /∈ IG}. We call the pair

(K,κ) ∈ M(G) a reduced pair if (K,κ) ∈ RG. Note that if (K,κ), (K ′, κ′) ∈ M(G)G

are G-linked, then (K,κ) is reduced if and only if (K ′, κ′) is reduced.

Let SG = SAk (G) = {((K,κ), [V ]) |(K,κ) ∈ RG, [V ] ∈ Irr(kΓ(G,K,κ))}. We

call two elements ((K,κ), [V ]), ((K ′, κ′), [V ′]) ∈ SG equivalent, if (K,κ) and (K ′, κ′) are

G-linked and [V ] corresponds to [V ′] via the canonical bijection in 2.17. Let R̃G denote
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a set of representatives of the linkage classes of RG. Then

S̃G = {((K,κ), [V ]) |(K,κ) ∈ R̃G, [V ] ∈ Irr(kΓ(G,K,κ))}

is a set of representatives of the equivalence classes of SG.

Theorem 2.6.2 (Proposition 8.4(c), Corollary 8.5, [BC18]). (a) For any reduced pair

(K,κ) ∈ RG, the map

kΓ(G,K,κ) → f̄(K,κ)ĒGf̄(K,κ) a 7→ f̄(K,κ)āf̄(K,κ)

is a k-algebra isomorphism.

(b) The map

((K,κ), [V ]) 7→ Ṽ := ĒGf̄(K,κ) ⊗kΓ(G,k,κ)
V

induces a bijection between a set of equivalence classes of SG and Irr(ĒG).

Note that Part (b) of the theorem above implies that for any ((K,κ), [V ]) ∈ SG

we obtain a simple A-fibered biset functor S(G,K,κ,V ) := SG,Ṽ ∈ F
A
k . Set

S = {(G,K, κ, [V ]) |G ∈ Ob(CAk ), (K,κ) ∈ RG, [V ] ∈ Irr(kΓ(G,K,κ))}.

Two quadruples (G,K, κ, [V ]), (H,L, λ, [W ]) in S are called linked, if (G,K, κ) ∼

(H,L, λ) and the module [V ] corresponds to the module [W ] via the canonical bijection

Irr(kΓ(H,L,λ))→ Irr(kΓ(G,K,κ)). Note that the linkage defines an equivalence relation on

S. Let S̄ denote the set of linkage classes [(G,K, κ, [V ])] of S.
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Theorem 2.6.3 (Theorem 9.2, [BC18]). The map

S̄ → Irr(FAk ), [(G,K, κ, [V ])] 7→ [S(G,K,κ,V )]

is a bijection between the set of the linkage classes of S and the set of isomorphism

classes of the simple A-fibered biset functors.

30



Chapter 3

Primitive idempotents of BA
K(G)

Throughout this section we assume that G is a finite group such that H∗ =

Hom(H,A) is a finite abelian group for every H 6 G. This is equivalent to torexp(G)(A)

being finite. Moreover, we assume that K is a splitting field of characteristic zero for

all H∗, H 6 G. Note that this holds if and only if K has a root of unity of order

exp(torexp(G)(A)). Also note that in this case S∗ is finite and K is a splitting field for

S∗, for each subquotient S of G.

We define X (G) as the set of all pairs (H,Φ) withH 6 G and Φ ∈ Hom(H∗,K×)

and note that G acts on X (G) by conjugation: g(H,Φ) := ( gH, gΦ), with gΦ(φ) :=

Φ( g
−1
φ), for g ∈ G, (H,Φ) ∈ X (G), and φ ∈ H∗. The assumptions on K imply that, for

any H 6 G,

KH∗ →
∏

Φ∈Hom(H∗,K×)

K , a 7→ (sHΦ (a))Φ , (3.1)

is an isomorphism of K-algebras. Here, we K-linearly extended Φ to a K-algebra homo-
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morphism

sHΦ : KH∗ → K .

The first orthogonality relation implies that, for Ψ ∈ Hom(H∗,K×), the element

eHΨ :=
1

|H∗|
∑
φ∈H∗

Ψ(φ−1)φ ∈ KH∗ (3.2)

is the primitive idempotent of KH∗ which is mapped under the isomorphism in (3.1) to

the primitive idempotent εHΨ ∈
∏

Φ K whose Φ-component is δΦ,Ψ.

For any H 6 G we consider the map

πH : BA
K(H)→ KH∗ , [U, φ]H 7→


φ if U = H,

0 otherwise.

It is easily seen by the multiplication formula in 2.5 that πH is a K-algebra homomor-

phism and we obtain for every (H,Φ) ∈ X (G), a K-algebra homomorphism

sG(H,Φ) := sHΦ ◦ πH ◦ resGH : BA
K(G)→ BA

K(H)→ KH∗ → K .

Theorem 3.0.1. The map

BA
K(G)→

 ∏
(H,Φ)∈X (G)

K

G

, x 7→
(
sG(H,Φ)(x)

)
(H,Φ)

, (3.3)

is a K-algebra isomorphism. Here, G acts on
∏

(H,Φ)∈X (G) K by permuting the coordi-

nates according to the G-action on X (G). In particular, every K-algebra homomorphism

BA
K(G)→ K is of the form sG(H,Φ) for some (H,Φ) ∈ X (G). For (H,Φ), (K,Ψ) ∈ X (G)

one has sG(H,Φ) = sG(K,Ψ) if and only if (H,Φ) =G (K,Ψ).
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Proof. By Theorem [BRV19, Theorems 6.1 and 7.3(c)] and using the point of view from

Section 2.5, the mark morphism

mG : BA
K(G)→

∏
H6G

KH∗
G

, x 7→
(
πH(resGH(x))

)
H6G , (3.4)

is a homomorphism of K-algebras and by Theorem [BRV19, Corollary 6.4] it is an

isomorphism, since |G| is invertible in K. Here, G acts on
∏
H6GKH∗ by g((aH)H6G) :=

( gag−1Hg)H6G. Using the K-algebra isomorphisms from (3.1), we obtain a G-equivariant

K-algebra isomorphism ∏
H6G

KH∗ →
∏

(H,Φ)∈X (G)

K .

Taking G-fixed points of this isomorphism and composing it with the isomorphism in

(3.4), we obtain the isomorphism in (3.3). The remaining assertions follow immediately.

Clearly, for each (H,Φ) ∈ X (G), we obtain a primitive idempotent εG(H,Φ) of

the right hand side of the isomorphism (3.3). More precisely, εG(H,Φ) has entries equal

to 1 at indices labelled by the G-conjugates of (H,Φ) and entries equal to 0 everywhere

else. We denote the idempotent of BA
K(G) corresponding to εG(H,Φ) by eG(H,Φ) ∈ B

A
K(G).

If (H,Φ) runs through a set of representatives of the G-orbits of X (G) then eG(H,Φ) runs

through the set of primitive idempotents of BA
K(G), without repetition. Thus, we have

sG(H,Φ)(e
G
(K,Ψ)) =


1, if (H,Φ) =G (K,Ψ),

0, otherwise,

and x · eG(H,Φ) = sG(H,Φ)(x)eG(H,Φ) , (3.5)

for any (H,Φ), (K,Ψ) ∈ X (G) and any x ∈ BA
K(G).
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The following theorem gives an explicit formula for eG(H,Φ). A different formula

for particular choices of A was given by Barker in [Ba04, Theorem 5.2]. For any H 6 G

and a =
∑

φ∈H∗ aφφ ∈ KH∗ we will use the notation [H, a]G :=
∑

φ∈H∗ aφ[H,φ]G ∈

BA
K(G). Moreover, NG(H,Φ) denotes the stabilizer of (H,Φ) under G-conjugation.

Theorem 3.0.2. For (H,Φ) ∈ X (G) one has

eG(H,Φ) =
1

|NG(H,Φ)|
∑
K6H

|K|µ(K,H)[K, resHK(eHΦ )]G (3.6)

=
1

|NG(H,Φ)|
∑
K6H

Φ|
K⊥=1

|K|µ(K,H)[K, resHK(eHΦ )]G (3.7)

=
1

|NG(H,Φ)| · |H∗|
∑
K6H

Φ|
K⊥=1

∑
φ∈H∗

|K|µ(K,H)Φ(φ−1)[K,φ|K ]G ∈ BA
K(G) , (3.8)

where K⊥ := {φ ∈ H∗ | φ|K = 1} 6 H∗ and µ is the Möbius function on the poset of

all subgroups of G.

Proof. We use the inversion formula of the K-algebra isomorphism (3.4) from [BRV19,

Proposition 6.3] and obtain

eG(H,Φ) =
1

|G|
∑

L6K6G

|L|µ(L,K)[L, resKL (aK)]G , (3.9)

with aK ∈ KK∗, K 6 G, given by aH =
∑

x∈[NG(H)/NG(H,Φ)]
x
eHΦ , a gH = gaH , for any

g ∈ G, and aK = 0 for all K not G-conjugate to H. Thus, in the above sum, it suffices

to sum only over G-conjugate subgroups of H in place of K, and we obtain

eG(H,Φ) =
1

|G|
∑

x∈[G/NG(H)]

∑
L6

x
H

|L|µ(L, xH)[L, res
x
H
L ( xaH)]G . (3.10)
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Replacing L with xK, for K 6 H, we see that the sum over L is independent of x and

we obtain

eG(H,Φ) =
[G : NG(H)]

|G|
∑
K6H

|K|µ(K,H)[K, resHK(aH)]G . (3.11)

Substituting aH =
∑

g∈[NG(H)/NG(H,Φ)]
g
eHΦ and using the same argument as above, we

obtain the formula in (3.6). In order to prove the formula in (3.7) it suffices to show

that resHK(eHΦ ) = 0 if Φ|K⊥ 6= 1. Substituting the formula (3.2) for eHΦ , we obtain

resHK(eHΦ ) =
1

|H∗|
∑
φ∈H∗

Φ(φ−1)φ|K . (3.12)

Note that K⊥ = ker(resHK : H∗ → K∗) and choose for every ψ ∈ im(resHK) 6 K∗ an

element ψ̃ ∈ H∗ with ψ̃|K = ψ. Then the right hand side in (3.12) is equal to

1

|H∗|
∑

ψ∈im(resHK)

∑
λ∈K⊥

Φ(ψ̃−1λ−1)ψ =
1

|H∗|
∑

ψ∈im(resHK)

Φ(ψ̃−1)
( ∑
λ∈K⊥

Φ(λ−1)
)
ψ ,

and it suffices to show that
∑

λ∈K⊥ Φ|K⊥(λ−1) = 0. But

∑
λ∈K⊥

Φ|K⊥(λ−1) = [K⊥ : K⊥ ∩ ker(Φ)]
∑

λ̄∈K⊥/(K⊥∩ker(Φ))

Φ|K⊥(λ̄−1) , (3.13)

with an injective homomorphism from Φ|K⊥ : K⊥/(K⊥∩ker(Φ))→ K×. It follows that

K⊥/(K⊥ ∩ ker(Φ)) is cyclic, say of order n. Our assumption on K implies that K has a

primitive n-th root of unity. Moreover, since Φ|K⊥ 6= 1, we have n > 1. Thus the sum

on the right hand side of (3.13) is equal to the sum of all n-th roots of unity in K, which

is 0. This proves Equation (3.7). Formula (3.8) is now immediate after substituting the

formula for eHΦ .
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Remark 3.0.3. If A′ is the trivial subgroup of A we have BA′
K (G) = BK(G), the Burn-

side algebra over K. Using the functoriality properties in Section 2.5, we obtain a

commutative diagram

BK(G) (
∏
H6G

K)G (
∏
H6G

K)G

BA
K(G) (

∏
H6G

KH∗)G (
∏

(H,Φ)∈X (G)

K)G

mG id

mG

(3.14)

of K-algebra homomorphisms, where the left horizontal maps are the mark isomorphisms

mG from (3.4) given by (πH ◦ resGH), the right top horizontal map is the identity, the

right bottom horizontal map is the product of the isomorphisms from (3.1), the middle

vertical map is the product of the unique K-algebra homomorphisms K→ KH∗, and the

right vertical map is induced by the G-equivariant map X (G)→ {H 6 G}, (H,Φ) 7→ H,

between the indexing sets. We denote the primitive idempotents of BK(G) by eGH , for

any H 6 G. Thus, by the above commutative diagram,

eGG =
∑

Φ∈Hom(G∗,K×)

eG(G,Φ) . (3.15)

Lemma 3.0.4. For any x ∈ BA
K(G) one has eGG · x = 0 if and only if πG(x) = 0.

Proof. Since mG : BA
K(G)→

∏
H6G is injective and multiplicative, one has eGG · x = 0 if

and only if mG(eGG) ·mG(x) = 0. But mG(eGG) has entry 1 in the G-component and entry

0 everywhere else. Thus, eGG ·x = 0 if and only if the entry of m(x) in the G-component

is equal to 0. But this entry equals πG(x).
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Chapter 4

Elementary operations on primitive

idempotents

Throughout this section we assume as in Section 3 that G is a finite group

such that S∗ = Hom(S,A) is finite for all subquotients S of G, and that K is a field of

characteristic 0 which is a splitting field of S∗ for all subqotients S of G.

In this section we will establish formulas for elementary fibered biset operations

on the primitive idempotents of BA
K(S) for subquotients S of G. These formulas will be

used in later sections.

Proposition 4.0.1. Let H 6 G.

(a) For (L,Ψ) ∈ X (H) one has sH(L,Ψ) ◦ resGH = sG(L,Ψ) : BA
K(G)→ K.

(b) For (K,Φ) ∈ X (G) one has

resGH(eG(K,Φ)) =
∑

(L,Ψ)∈[H\X (H)]
(L,Ψ)=G(K,Φ)

eH(L,Ψ) .
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(c) For Φ ∈ Hom(G∗,K×) and H < G one has resGH(eG(G,Φ)) = 0.

Proof. (a) We use the point of view from Section 2.5. By [BRV19, Equation (13) and

Theorem 6.1] the left square in

BA
K(G)

∏
K6G

KK∗
∏

(K,Φ)∈X (G)

K

BA
K(H)

∏
L6H

KL∗
∏

(L,Ψ)∈X (H)

K

mG

resGH

mH

(4.1)

is commutative, where the left horizontal maps are the mark homomorphisms from (3.4),

the right horizontal maps are given by the isomorphisms in (3.1), and the middle and

right vertical maps are the canonical projections. Since the right hand square commutes

as well, following up with the projection onto the (L,Ψ)-component of
∏

(L,Ψ)∈X (H) K,

yields the result.

(b) Since resGH : BA
K(G)→ BA

K(H) is a K-algebra homomorphism, resGH(e(K,Φ))

is the sum of certain primitive idempotents eH(L,Ψ), (L,Ψ) ∈ [H\X (H)]. Moreover,

eH(L,Ψ) occurs in this sum if and only if sH(L,Ψ)(resGH(eG(K,Φ))) 6= 0. The result follows now

immediately from (a).

(c) This follows immediately from Part (b).

Proposition 4.0.2. Let N E G.

(a) For (H,Φ) ∈ X (G) one has sG(H,Φ) ◦ infGG/N = s
G/N
(HN/N,ΦN ), where ΦN :=

Φ◦ν∗ ◦α∗ ∈ Hom((HN/N)∗,K×) with α : H/(H ∩N)
∼→ HN/N denoting the canonical

isomorphism and ν : H → H/(H ∩N) denoting the canonical epimorphism.
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(b) For (U/N,Ψ) ∈ X (G/N) with N 6 U 6 G, one has

infGG/N (e
G/N
(U/N,Ψ)) =

∑
(H,Φ)∈[G\X (G)]

(HN/N,ΦN )=G/N (U/N,Ψ)

eG(H,Φ) .

Proof. (a) We use again the point of view from Section 2.5. By [BRV19, Equation (12)]

applied to D := {(g, gN) | g ∈ G} 6 G × G/N and [BRV19, Theorem 6.1] the left

square in

BA
K(G/N)

∏
N6U6G

K(U/N)∗
∏

(U/N,Ψ)∈X (G/N)

K

BA
K(G)

∏
H6G

KH∗
∏

(H,Φ)∈X (G)

K

mG/N

infGG/N

mG

(4.2)

is commutative, where the left horizontal maps are the mark homomorphisms from (3.4),

the right horizontal maps are given by the isomorphisms in (3.1), the middle vertical

homomorphism maps the family (aU/N )N6U6G to (infHH/(H∩N)(α
∗(aHN/N )))H6G with

α : H/(H ∩ N)
∼→ HN/N denoting the canonical isomorphism, and the right vertical

homomorphism maps the family (a(U/N,Ψ))(U/N,Ψ)∈X (G/N) to (a(HN/N,ΦN ))(H,Φ)∈X (G).

Since the right hand square commutes as well (note that infHH/(H∩N) : K(H/(H∩N))∗ →

KH∗ is the K-linear extension of ν∗ from (a)), following up with the projection onto the

(H,Φ)-component of
∏

(H,Φ)∈X (G) K, yields the result.

(b) Since infGG/N : BA
K(G/N) → BA

K(G) is a K-algebra homomorphism, the

element infGG/N (e
G/N
(U/N,Ψ)) is the sum of certain primitive idempotents eG(H,Φ), (H,Φ) ∈

[G\X (G)]. Moreover, eG(H,Φ) occurs in this sum if and only if sG(H,Φ)(infGG/N (e
G/N
(U/N,Ψ))) 6=

0. Part (a) now implies the result.
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Proposition 4.0.3. Let N E G.

(a) For all (H,Φ) ∈ X (G), there exists mG,N
(H,Φ) ∈ K such that

defGG/N (eG(H,Φ)) = mG,N
(H,Φ) · e

G
(HN/N,ΦN ) (4.3)

with ΦN defined as in Proposition 4.0.2(a).

(b) For all Φ ∈ G∗ one has

mN
(G,Φ) := mG,N

(G,Φ) =
|(G/N)∗|
|G| · |G∗|

∑
K6G
KN=G
Φ|
K⊥=1

|K| · |K⊥| · µ(K,G) ∈ Q . (4.4)

Proof. (a) For any x ∈ BA
K(G/N) we have

x · defGG/N (eG(H,Φ)) = defGG/N (infGG/N (x) · eG(H,Φ)) = defGG/N (sG(H,Φ)(infGG/N (x)) · eG(H,Φ))

= defGG/N (s
G/N
(HN/N,ΦN )(x) · eG(H,Φ)) = s

G/N
(HN/N,ΦN )(x) · defGG/N (eG(H,Φ)) .

In fact, the first equation follows from the Green biset functor axioms (see [BRV19,

Definition 7.2(a)] and [R11, Definición 3.2.7, Lema 4.2.3]), the second from (3.5), and

the third from Proposition 4.0.2(a). Choosing x = e
G/N
(HN/N,ΦN ), and reading the above

equations backward, we obtain

defGG/N (eG(H,Φ)) = defGG/N (eG(H,Φ)) · e
G
(HN/N,ΦN ) .

Now, (3.5) implies the result with mG
(H,Φ) = s

G/N
(HN/N,ΦN )(defGG/N (eG(H,Φ))).

(b) Substituting the explicit idempotent formula (3.8) for eG(G,Φ) and using the

explicit formula for defGG/N : BG
K (G)→ BA

K(G/N) from Section 2.5, the left hand side of
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(4.3) is equal to

1

|G| · |G∗|
∑
K6G

Φ|
K⊥=1

∑
φ∈G∗

φ|K∩N=1

|K|µ(K,G) Φ(φ−1) [KN/K, φ̃|K ]G/N ,

where φ̃|K(kN) := φ(k) for k ∈ K. Moreover, using the explicit formula (3.8) for

e
G/N
(G/N,ΦN ), the right hand side of (4.3) is equal to

m
(G,Φ)
N

|G/N | · |(G/N)∗|
∑

U/N6G/N
ΦN |(U/N)⊥=1

∑
ψ∈(G/N)∗

|U/N |µ(U/N,G/N) ΦN (ψ−1) [U/N,ψ|U/N ]G/N .

Next we compare the coefficients at the standard basis element [G/N, 1]G/N of BA
K(G/N)

on both sides. On the left hand side, we only have to sum over those K 6 G with

KN = G and those φ ∈ G∗ with φ̃|K = 1. By the definition of φ̃|K , this is equivalent

to φ ∈ K⊥. But then Φ|K⊥ = 1 implies that Φ(φ−1) = 1 for all such φ. Thus, the

coefficient of [G/N, 1]G/N on the left hand side of (4.3) is equal to

1

|G| · |G∗|
∑
K6G

Φ|
K⊥=1

KN=G

|K| |K⊥|µ(K,G) .

On the right hand side of (4.3) only the summands with U = G and ψ = 1 contribute

to the coefficient of [G/N, 1]G/N and this coefficient evaluates to mN
(G,Φ)/|(G/N)∗|. The

result follows.

Proposition 4.0.4. Let H be a subgroup of G and let (K,Ψ) ∈ X (H). Then

indGH(eH(K,Ψ)) =
|NG(K,Ψ)|
|NH(K,Ψ)|

· eG(K,Ψ) .

Proof. This is an immediate consequence of the explicit formula in (3.8), since for any

(L, φ) ∈M(H) we have indGH([L, φ]H) = [L, φ]G.
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Proposition 4.0.5. (a) For every isomorphism f : G
∼→ G′ and (H,Φ) ∈ X (G) one

has isof (eG(H,Φ)) = eG
′

(f(H),Φ◦(f |H)∗).

(b) For every g ∈ G, H 6 G, and (K,Ψ) ∈ X (H) one has
g
eH(K,Ψ) = e

g
H

(
g
K,

g
Ψ)

.

(c) For every (H,Φ) ∈ X (G) and α ∈ G∗ one has twα(eG(H,Φ)) = Φ(α|H) eG(H,Φ)

and ∆(eG(H,Φ)) ·G twα = Φ(α|H) ∆(eG(H,Φ)).

Proof. All three parts follow immediately from the explicit formulas for the three opera-

tions in Section 2.5, the explicit idempotent formula (3.8), and the Mackey formula.
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Chapter 5

Three lemmata

Throughout this section, G and H denote finite groups and K a field of char-

acteristic 0 such that S∗ is finite and K is a splitting field of S∗ for all subquotients S

of G and H.

Lemma 5.0.1. Let G and H be finite groups and let k be a commutative ring. For

(U, φ) ∈M(G×H) with p1(U) = G and p2(U) = H the following are equivalent:

(i) There exists α ∈ G∗ such that α|k1(U) = φ1.

(ii) There exists β ∈ H∗ such that β|k2(U) = φ2.

(iii) There exists ψ ∈ (G×H)∗ such that ψ|U = φ.

(iv) In the category CA, the morphism
[
G×H
U,φ

]
factors through q(U).

(v) In the category CAk , the morphism
[
G×H
U,φ

]
factors through q(U).

Proof. Clearly, (iii) implies (i) and (ii).
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We next show that (i) implies (iii). Let α ∈ G∗ be an extension of φ1. Since

φ ∈ U∗ and α × 1 ∈ (G × {1})∗ coincide on U ∩ (G × {1}) = k1(U) × {1} and since

G × H = (G × {1})U with G × {1} normal in G × H, the function ψ : G × H → A,

(g, 1)u 7→ α(g)φ(u) is well-defined and extends φ. It is also a homomorphism, since

G× {1} is normal in G×H and α× 1 is U -stable.

Similarly one proves that (ii) implies (iii).

Next we show that (iii) and implies (iv). Let ψ = α × β ∈ (G × H)∗ extend

φ ∈ U∗. By (2.14), we have

[
G×H
U, φ

]
= twα ·

G

[
G×H
U, 1

]
·
H

twβ

and the morphism
[
G×H
U,1

]
factors through G/k1(U) by Theorem 2.4.4.

Clearly, (iv) implies (v).

Finally, we show that (v) implies (iii). Assume that
[
G×H
U,φ

]
factors in CAk

through K := q(U) with K ∼= G/k1(U). Then there exist (V,Ψ) ∈ M(G × K) and

(W,ρ) ∈ M(K × H) such that
[
G×H
U,φ

]
occurs with nonzero coefficient in

[
G×K
V,ψ

]
·K[

K×H
W,ρ

]
. By the Mackey formula, this implies that there exists t ∈ K such that ψ2|Kt =

ρ1|Kt with Kt := k2(V )∩ tk1(W ) and (U, φ) =
(g,h)

(V ∗ (t,1)W,ψ∗ (t,1)ρ). Replacing (V, ψ)

with (g,1)(V, ψ) and (W,ρ) with (t,h)(W,ρ), we may assume that there exist (V, ψ) ∈

M(G × K) and (W,ρ) ∈ M(K × H) with ψ2|k2(V )∩k1(W ) = ρ1|k2(V )∩k1(W ) and (V ∗

W,ψ ∗ ρ) = (U, φ). By [Bc10, 2.3.22.2] one has

k1(V ) 6 k1(V ∗W ) = k1(U) 6 p1(U) 6 p1(V ) .

44



Since p1(U) = G, this implies that p1(V ) = G. Moreover, since p1(U)/k1(U) is isomor-

phic to a subquotient of p1(V )/k1(V ) ∼= p2(V )/k2(V ), which in turn is a subquotient of

K ∼= p1(U)/k1(U), we otain that k1(V ) = k1(U), p2(V ) = K and k2(V ) = {1}. Since

ψ2 = 1, it extends trivially to K = p2(V ). By the first part of the proof (note that

p1(V ) = G and p2(V ) = K) we also obtain that ψ extends to α×1 ∈ (G×K)∗ for some

α ∈ G∗. Similarly one shows that ρ extends to 1× β ∈ (K ×H)∗ for some β ∈ H∗. But

then φ = ψ ∗ ρ is the restriction of (α× 1) ∗ (1× β) = α× β and (iii) holds.

Lemma 5.0.2. Let (U, φ) ∈M(G×H).

(a) If Φ ∈ Hom(H∗,K×) satisfies
[
G×H
U,φ

]
·H eH(H,Φ) 6= 0 then p2(U) = H and

φ2 extends to H∗.

(b) If Φ ∈ Hom(G∗,K×) satisfies eG(G,Φ) ·G
[
G×H
U,φ

]
6= 0 then p1(U) = G and φ1

extends to G∗.

Proof. Using the explicit formula (3.8) it is easy to check that (eH(H,Φ))
◦ = eH(H,Φ−1).

Thus, by 2.4.3 and Equation (2.16), it suffices to show Part (a).

Since
[
G×H
U,φ

]
=
[
G×p2(U)
U,φ

]
·p2(U) resHp2(U), Proposition 4.0.1(c) implies that

p2(U) = H.

We will show that φ2 extends to H by induction on |G|. If |G| = 1 then φ1 is

trivial, thus extends to G, and Lemma 5.0.1 implies that φ2 extends to H. From now

on assume that |G| > 1. We distinguish two cases.

Case 1: πG

([
G×H
U,φ

]
·H eH(H,Φ)

)
= 0. By Lemma 3.0.4, this implies that

eGG ·
([

G×H
U,φ

]
·H eH(H,Φ)

)
= 0 and therefore, using the primitive idempotents eGK of the
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Burnside ring (see Remark 3.0.3) and (2.13), we have

0 6=
[
G×H
U,φ

]
·
H
eH(H,Φ) = (1− eGG) ·

([
G×H
U, φ

]
·
H
eH(H,Φ)

)
=

∑
K∈[G\S(G)]

K<G

eGK ·
([

G×H
U, φ

]
·
H
eH(H,Φ)

)
=

∑
K∈[G\S(G)]

K<G

∆(eGK) ·
G

([
G×H
U, φ

]
·
H
eH(H,Φ)

)
.

Moreover, using the explicit formula for eGK (in the special case that A is trivial), we

have

0 6=
[
G×H
U, φ

]
·
H
eH(H,Φ) ∈

∑
K<G

K ·
[
G×G

∆(K), 1

]
·
G

([
G×H
U, φ

]
·
H
eH(H,Φ)

)

=
∑
K<G

K ·
([

G×G
∆(K), 1

]
·
G

[
G×H
U,φ

])
·
H
eH(H,Φ) =

∑
K<G

K ·
[

G×H
∆(K) ∗ U, 1 ∗ φ

]
·
H
eH(H,Φ) .

Therefore, there exists K < G such that
[

G×H
∆(K)∗U,1∗φ

]
·H eH(H,Φ) 6= 0. Note that p1(∆(K)∗

U) 6 K, so that we can decompose[
G×H

∆(K) ∗ U, 1 ∗ φ

]
= indGK ·

K

[
K ×H

∆(K) ∗ U, 1 ∗ φ

]
.

Thus, [
K ×H

∆(K) ∗ U, 1 ∗ φ

]
·
H
eH(H,Φ) 6= 0 . (5.1)

By the first part of the proof this implies that p2(∆(K) ∗ U) = H. Moreover, it is

straightforward to verify that k2(∆(K) ∗ U) = k2(U) and that (1 ∗ φ)2 = φ2 ∈ k2(U)∗.

Since K < G, the inductive hypothesis applied to (5.1) yields that φ2 extends to H.

Case 2: πG

([
G×H
U,φ

]
·H eH(H,Φ)

)
6= 0. The explicit formula for eH(H,Φ) in (3.8)

implies that

∑
K6H

Φ|
K⊥=1

∑
ψ∈H∗

|K|µ(K,H) Φ(ψ−1)πG

([
G×H
U, φ

]
·
H

[K,ψ|K ]H

)
6= 0 .
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Thus, there exists K 6 H and ψ ∈ H∗ such that πG

([
G×H
U,φ

]
·H [K,ψ|K ]H

)
6= 0. This

implies that U ∗K = G and φ2|k2(U)∩K = ψ|k2(U)∩K . Since φ2 is stable under p2(U) = H

and φ2 and ψ coincide on k2(U) ∩ K, there exists an extension β ∈ (k2(U)K)∗ of φ2

and ψ. Moreover, U ∗ K = G implies k2(U)K = H. In fact, if h ∈ H = p2(U) then

there exists g ∈ G with (g, h) ∈ U . Since g ∈ G = U ∗K, there exists k ∈ K such that

(g, k) ∈ U . But then hk−1 ∈ k2(U) and h ∈ k2(U)K. This completes the lemma.

Lemma 5.0.3. Let (U, φ) ∈ M(G × H), Φ ∈ Hom(G∗,K×) and Ψ ∈ Hom(H∗,K×).

Then

eG(G,Φ) ·
([

G×H
U, φ

]
·
H
eH(H,Ψ)

)
= 0

unless p1(U) = G, p2(U) = H, φ has an extension α × β ∈ (G × H)∗, Φk1(U) =

Ψk2(U) ◦ η∗U , and m
k2(U)
(H,Φ) 6= 0, in which case one has

eG(G,Φ) ·
([

G×H
U, φ

]
·
H
eH(H,Ψ)

)
= Φ(α) Ψ(β)m

k2(U)
(H,Ψ) · e

G
(G,Φ) .

Proof. Assume that

eG(G,Φ) ·
([

G×H
U, φ

]
·
H
eH(H,Ψ)

)
6= 0 . (5.2)

By Lemma 5.0.2, p2(U) = H and φ2 extends to H. Assume p1(U) < G. Then
[
G×H
U,φ

]
·

eH(H,Ψ) is in the K-span of elements of the form [U ∗L,ψ]G, with L 6 H and ψ ∈ (U ∗L)∗.

Since U ∗ L 6 p1(U) < G we obtain mG(e(G,Φ) · [U ∗ L,ψ]G) = mG(e(G,Φ) · mG([U ∗

L,ψ]G) = 0, because the first factor has vanishes in the components indexed by proper

subgroups of G and the second factor vanishes in the G-component. By the injectivity

of mG this implies that the element in (5.2) vanishes, a contradiction. Thus, p1(U) = G.
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By Lemma 5.0.1, φ has an extension α× β ∈ (G×H)∗. With (2.14) we obtain

eG(G,Φ) ·
([

G×H
U, φ

]
·
H
eH(H,Ψ)

)
= eG(G,Φ) ·

(
twα ·

G

[
G×H
U, 1

]
·
H

twβ ·
H
eH(H,Ψ)

)
= ∆(eG(G,Φ)) ·

G
twα ·

G

[
G×H
U, 1

]
·
H

twβ ·
H
eH(H,Ψ)

by (2.13). By Proposition 4.0.5(c) we have twβ ·H eH(H,Ψ) = twβ(eH(H,Ψ)) = Ψ(β) · eH(H,Ψ)

and ∆(eG(G,Φ)) ·G twα = Φ(α) ·∆(eG(G,Φ)). Thus,

eG(G,Φ) ·
([

G×H
U, φ

]
·
H
eH(H,Ψ)

)
= Φ(α)Ψ(β) ·∆(eG(G,Φ)) ·

G

[
G×H
U, 1

]
·
H
eH(H,Ψ)

= Φ(α) Ψ(β) e(G,Φ) ·
(

infGG/k1(U) ·
G/k1(U)

[
G×H
Ū, 1

]
·

H/k2(U)
defHH/k2(U) ·

H
eH(H,Ψ)

)
= Φ(α) Ψ(β) e(G,Φ) ·

(
infGG/k1(U) ·

G/k1(U)
isoηU ·

H/k2(U)
defHH/k2(U) ·

H
eH(H,Ψ)

)

Using Propositions 4.0.3(a), 4.0.5(a) and 4.0.2(b), we obtain

eG(G,Φ) ·
([

G×H
U, φ

]
·
H
eH(H,Ψ)

)
= Φ(α) Ψ(β)m

k2(U)
(H,Ψ)

∑
(K,Θ)

eG(G,Φ) · e
G
(K,Θ) , (5.3)

where the sum runs over those (K,Θ) ∈ [G\X (G)] satisfying

(Kk1(U)/k1(U),Θk1(U)) =G/k1(U) (G/k1(U),Ψk2(U) ◦ η∗U ) .

Since the term in (5.3) is nonzero, one of these pairs (K,Θ) must be G-conjugate, and

then also equal, to (G,Φ). This implies the result.
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Chapter 6

The constant mN
(G,Φ)

Throughout this section, G and H denote finite groups and K denotes a field

of characteristic 0 such that for any subquotients S of G and T of H the groups S∗ and

T ∗ are finite and K is a splitting field for S∗ and T ∗.

In this section we prove the crucial Propsition 6.0.4 stating that mM
(G,Φ) =

mN
(G,Φ) if (G/M,ΦM ) ∼= (G/N,ΦN ) (see Definition 7.0.3(a)).

Proposition 6.0.1. Let N and M be normal subgroups of G with N 6 M and let

Φ ∈ Hom(G∗,K×). Then

mM
(G,Φ) = mN

(G,Φ) ·m
M/N
(G/N,ΦN ) .

Proof. This follows immediately from Proposition 4.0.3(a) and applying

isof ◦ def
G/N
(G/N)/(M/N) ◦ defGG/N = defGG/M

to eG(G,Φ), where f : (G/N)/(M/N)→ G/M is the canonical isomorphism.

49



Lemma 6.0.2. Let f1, f2 : G → H be group homomorphisms, let Φ ∈ Hom(G∗,K×),

and let K 6 G be such that Φ|K⊥ = 1 and f1|K = f2|K . Then Φ ◦ f∗1 = Φ ◦ f∗2 ∈

Hom(H∗,K×).

Proof. Let λ ∈ H∗. Then (Φ ◦ f∗1 )(λ) = (Φ ◦ f∗2 )(λ) if and only if Φ(λ ◦ f1) = Φ(λ ◦ f2)

which in turn is equivalent to Φ((λ ◦ f1) · (λ ◦ f2)−1) = 1. But, since f1|K = f2|K , we

have (λ ◦ f1) · (λ ◦ f2)−1 ∈ K⊥ and since Φ|K⊥ = 1 the result follows.

Proposition 6.0.3. For Φ ∈ Hom(G∗,K×) and normal subgroups M and N of G one

has

mM
(G,Φ) =

1

|G| · |G∗|
∑
K6G

KN=KM=G
Φ|
K⊥=1

|K|µ(K,G) |ΣK
M,N |m

(K∩M)N/N
(G/N,ΦN ) ,

where ΣK
M,N is the set of elements φ ∈ G∗ such that φ|K∩M∩N = 1 and such that there

exists ψ ∈ ((G/M)× (G/N))∗ with ψ(kM, kN) = φ(k) for all k ∈ K.

Proof. Consider the element

v := e
G/M
(G/M,ΦM ) ·

(
defGG/M ·

G
∆(eG(G,Φ)) ·

G
infGG/N ·

G/N
e
G/N
(G/N,ΦN )

)
∈ BA

K(G/M) .

Then, on the one hand,

v = mM
(G,Φ)e

G/M
(G/M,ΦM ) ∈ B

A
K(G/M) . (6.1)

In fact, by (2.13) and Proposition 4.0.2(b),

∆(eG(G,Φ)) ·
G

infGG/N ·
G/N

e
G/N
(G/N,ΦN ) = eG(G,Φ) · (infGG/N ·

G/N
e
G/N
(G/N,ΦN )) = eG(G,Φ) ,
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and then Proposition 4.0.3(a) implies (6.1). On the other hand, using the formula in

(3.8) for eG(G,Φ) we obtain

v =
1

|G| · |G∗|
∑
K6G

Φ|
K⊥=1

∑
φ∈G∗

|K|µ(K,G) Φ(φ−1) e
G/M
(G/M,ΦM ) ·

(
xK,φ ·

G/N
e
G/N
(G/N,ΦN )

)
(6.2)

with

xK,φ := defGG/M ·
G

∆([K,φ|K ]G) ·
G

infGG/N =


[
G/M×G/N

∆K
M,N ,φ̄

]
, if φ|K∩M∩N = 1,

0, otherwise,

for K 6 G with Φ|K⊥ = 1, by the Mackey formula in Theorem 2.4.2(a), where, in

the first case, ∆K
M,N := {(kM, kN) | k ∈ K} and φ̄((kM, kN) := φ(k) for k ∈ K.

Note that AK := k1(∆K
M,N ) = (K ∩ N)M/M , BK := k2(∆K

M,N ) = (K ∩ M)N/N ,

p1(∆K
M,N ) = KM/M , and p2(∆K

M,N ) = KN/N . Lemma 5.0.3 implies that, if the term

e
G/M
(G/M,ΦM )·(xK,φ ·G/N

e
G/N
(G/N,ΦN )) in (6.2) is nonzero then KM = G = KN , φ|K∩M∩N = 1,

and φ̄ extends to some ψ = α×β ∈ ((G/M)×(G/N))∗, and the formula in Lemma 5.0.3

yields

v =
1

|G| · |G∗|
∑
K6G

KM=G=KN
Φ|
K⊥=1

∑
φ∈ΣKM,N

|K|µ(K,G) Φ(φ−1) ΦM (αK,φ) ΦN (βK,φ)mBK
(G/N,ΦN )·

· eG/M(G/M,ΦM ) , (6.3)

where, for K and φ as above, αK,φ ∈ (G/M)∗ and βK,ψ ∈ (G/N)∗ are chosen such that

αK,φ × βK,φ is an extension of φ̄. Denoting the inflations of αK,ψ and βK,ψ to G by

α̃K,ψ ∈ and β̃K,ψ, we have

Φ(φ−1)ΦM (αK,φ)ΦN (βK,φ) = Φ(φ−1α̃K,φβ̃K,φ) = 1
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since α̃K,φ(k)β̃K,φ(k) = αK,φ(kM)βK,φ(kN) = φ̄(kM, kN) = φ(k) for all k ∈ K and

Φ|K⊥ = 1. Thus,

v =
1

|G| · |G∗|
∑
K6G

KM=G=KN
Φ|
K⊥=1

|ΣK
M,N | |K|µ(K,G)mBK

(G/N,ΦN ) e
G/M
(G/M,ΦM ) . (6.4)

Comparing Equations (6.1) and (6.4), the formula for mM
(G,Φ) follows.

Proposition 6.0.4. Let M and N be normal subgroups of G such that there exists an

isomorphism f : G/N
∼→ G/M and let Φ ∈ Hom(G∗,K×) be such that ΦN ◦ f∗ = ΦM ∈

Hom((G/M)∗,K×). Then one has mM
(G,Φ) = mN

(G,Φ).

Proof. We proceed by induction on |G|. If |G| = 1 the result is clearly true. So assume

that |G| > 1. If M = N is the trivial subgroup of G then the result holds for trivial

reasons. So assume that M and N are not trivial. By Proposition 6.0.3 one has

mM
(G,Φ) =

1

|G| · |G∗|
∑
K6G

KN=KM=G
Φ|
K⊥=1

|K|µ(K,G) |ΣK
M,N |m

(K∩M)N/N
(G/N,ΦN )

and

mN
(G,Φ) =

1

|G| · |G∗|
∑
K6G

KN=KM=G
Φ|
K⊥=1

|K|µ(K,G) |ΣK
N,M |m

(K∩N)M/M
(G/M,ΦM ) .

We will show that these sums coincide by comparing them summand by summand.

Since ΣK
M,N = ΣK

N,M , it suffices to show that m
(K∩M)N/N
(G/N,ΦN ) = m

(K∩N)M/M
(G/M,ΦM ) . By Proposi-

tion 4.0.3(b), for any X E G/N we have

mX
(G/N,ΦN ) =

|((G/N)/X)∗|
|G/N | · |(G/N)∗|

∑
L6G/N
LX=G/N

(ΦN )|
L⊥=1

|L| |L⊥||µ(L,G/N)
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and

m
f(X)
(G/M,ΦM ) =

|((G/M)/α(X))∗|
|G/M | · |(G/M)∗|

∑
K6G/N

Kf(X)=G/N
ΦM |K⊥=1

|K| |K⊥|µ(K,G/M) .

Note that the summand for L in the first sum is equal to the summand for K = f(L)

in the second sum. Thus, with X = (K ∩M)N/N , we obtain

m
(K∩M)N/N
(G/N,ΦN ) = m

f((K∩M)N/N)
(G/M,ΦM ) (6.5)

for any K 6 G with KM = G = KN and Φ|K⊥ = 1. It now suffices to find an

isomorphism f1 : (G/M)/f((K ∩M)N/N)
∼→ (G/M)/((K ∩N)M/M) such that

(ΦM )f((K∩M)N/N) ◦ f∗1 = (ΦM )(K∩N)M/M ,

since then, by induction, we have m
f((K∩M)N/N)
(G/M,ΦM ) = m

(K∩N)M/M
(G/M,ΦM ) and together with

Equation (6.5) this implies that desired equation. We define f1 := η ◦ f̄−1, where

f̄ : (G/N)/((K ∩M)N/N)
∼→ (G/M)/f((K ∩M)N/N)

is induced by f and η := η∆K
M,N

: (G/N)/((K ∩M)N/N)
∼→ (G/M)/((K ∩N)M/M) is

induced by ∆K
M,N := {(kM, kN) | k ∈ K}, see 2.12. It remains to prove that

Φ ◦ ν∗M ◦ ν∗f((K∩M)N/N) ◦ f
∗
1 = Φ ◦ ν∗M ◦ ν∗((K∩N)M/M) , (6.6)

where the maps νM : G → G/M , νf(K∩M)N/N : G/M → (G/M)/f((K ∩M)N/N), and

ν(K∩N)M/M : G/M → (G/M)/((K ∩ N)M/M) denote the natural epimorphisms. But

f∗1 = (f̄−1)∗ ◦ η∗, ν∗f((K∩M)N/N) ◦ (f̄−1)∗ = (f−1)∗ ◦ ν∗(K∩N)M/M , and Φ ◦ ν∗M ◦ (f−1)∗ =

ΦM ◦ (f−1)∗ = ΦN = Φ ◦ ν∗N . Thus, the left hand side of Equation (6.6) is equal to
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Φ ◦ ν∗N ◦ ν∗(K∩M)N/N ◦ η
∗. By Lemma 6.0.2 and since Φ|K⊥ = 1, it now suffices to show

that

(η ◦ ν(K∩M)N/N ◦ νN )|K = (ν(K∩M)N/N ◦ νN )|K .

But this follows from (kM, kN) ∈ ∆K
M,N for k ∈ K, and the proof is complete.
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Chapter 7

BA-pairs and the subfunctors EN
(G,Φ) of BA

K

Throughout this section G denotes a finite group and we assume that K is a

field of characteristic 0 which is a splitting field for KG∗ for all finite groups G. This

is equivalent to requiring that, for any torsion element a of A, the field K has a root of

unity whose order is the order of a.

In this section we introduce the important subfunctors E(G,Φ) of BA
K and study

their properties.

Definition 7.0.1. For any finite group G and Φ ∈ Hom(G∗,K×) we denote by E(G,Φ)

the subfunctor of BA
K generated by eG(G,Φ). In other words, for each finite group H, one

has

E(G,Φ)(H) = {x ·G e(G,Φ) | x ∈ BA
K(H,G)} .

Proposition 7.0.2. For Φ ∈ Hom(G∗,K×), the following are equivalent:

(i) If H is a finite group with E(G,Φ)(H) 6= {0} then |G| 6 |H|.
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(ii) If H is a finite group with E(G,Φ)(H) 6= {0} then G is isomorphic to a

subquotient of H.

(iii) For all {1} 6= N E G one has mN
(G,Φ) = 0.

(iv) For all {1} 6= N E G one has defGG/N (eG(G,Φ)) = 0.

Proof. That (ii) implies (i) and that (i) implies (iv) follows from the definitions. More-

over, that (iii) and (iv) are equivalent follows from Proposition 4.0.3(a). So, it suffices

to prove that (iii) implies (ii).

Assume that (iii) holds and let H be a finite group with E(G,Φ)(H) 6= {0}.

By the definition of E(G,Φ) this implies that there exists (U, φ) ∈ M(G×H) such that[
H×G
U,φ

]
·G eG(G,Φ) 6= 0. Using the canonical decomposition of

[
H×G
U,φ

]
from Theorem 2.4.4

implies that

[
(P/K)× (Q/L)

Ū , φ̄

]
·

p2(U)/ ker(φ2)
defQQ/L ·Q resGQ ·

G
eG(G,Φ) 6= 0 ,

with P := p1(U), K := ker(φ1), Q := p2(U), L := ker(φ2), Ū corresponding to

U/(K × L) via the canonical isomorphism (P × Q)/(K × L) ∼= (P/K) × (Q/L), and

φ̄ ∈ (Ū)∗ induced by φ. Proposition 4.0.1(c) implies that G = Q, and then Proposi-

tion 4.0.3(a) implies that L = {1}. Thus, p1(Ū) = P/K, p2(Ū) = G, k2(Ū) = {1}

and [
P/K ×G
Ū, φ̄

]
·
G
eG(G,Φ) 6= 0 .

Lemma 5.0.2 implies that (φ̄)2 extends to G and Lemma 5.0.1 implies that φ̄ extends

to some α× β ∈ ((P/K)×G)∗ with α ∈ (P/K)∗ and β ∈ G∗, since p1(Ū) = P/K and
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p2(Ū) = G. By (2.14), we have

0 6=
[

(P/K)×G
Ū, φ̄

]
·
G
eG(G,Φ) = twα ·

P/K

[
(P/K)×G

Ū, 1

]
·
G

twβ ·
G
eG(G,Φ)

with twβ ·
G
eG(G,Φ)e = Φ(β)eG(G,Φ) by Proposition 4.0.5(c). Thus, using the canonical

decomposition of
[

(P/K)×G
Ū,1

]
as in Theorem 2.4.4 we obtain defGG/k2(Ū) ·G e

G
(G,Φ) 6= 0.

Proposition 4.0.3(a) implies that k2(Ū) = {1}. But this implies that G ∼= G/{1} ∼=

p2(Ū)/k2(Ū) ∼= p1(Ū)/k1(Ū) is isomorphic to a subquotient of Ū , which is isomorphic

to a subquotient of H.

Note that by the formula for mN
(G,Φ) in Proposition 4.0.3, the condition in

Proposition 7.0.2(iii) is independent of the choice of K as long as K has enough roots of

unity.

Definition 7.0.3. Let G and H be finite groups and let Φ ∈ Hom(G∗,K×) and Ψ ∈

Hom(H∗,K×).

(a) We call (G,Φ) and (H,Ψ) isomorphic and write (G,Φ) ∼= (H,Ψ) if there

exists an isomorphism f : H
∼→ G such that Ψ ◦ f∗ = Φ. We write (H,Ψ) 4 (G,Φ) if

there exists a normal subgroup N of G such that (H,Ψ) ∼= (G/N,ΦN ).

(b) The pair (G,Φ) is called a BA-pair if the equivalent conditions in Proposi-

tion 7.0.2 are satisfied.

Remark 7.0.4. (a) If (G,Φ) ∼= (H,Ψ) then E(G,Φ) = E(H,Ψ). In fact, if f : H
∼→ G

satisfies Ψ ◦ f∗ = Φ then isof (eH(H,Ψ)) = eG(G,Φ), by Proposition 4.0.5(a).

(b) The relation 4 is reflexive and transitive. Moreover, if (H,Ψ) 4 (G,Φ)

57



and (G,Φ) 4 (H,Ψ) then (G,Φ) ∼= (H,Ψ). It induces a partial order on the set of iso-

morphism classes [G,Φ] of pairs (G,Φ), where G is a finite group and Φ ∈ Hom(G,K×).

We denote this relation again by 4. This partial order restricts to a partial order on

the set BA of isomorphism classes of BA-pairs.

Proposition 7.0.5. Let G and H be finite groups and let Φ ∈ Hom(G∗,K×) and

Ψ ∈ Hom(H∗,K×).

(a) If (H,Ψ) 4 (G,Φ) then E(G,Φ) ⊆ E(H,Ψ).

(b) If (H,Ψ) is a BA-pair and E(G,Φ) ⊆ E(H,Ψ) then (H,Ψ) 4 (G,Φ).

Proof. (a) Let N E G and let f : H
∼→ G/N be an isomorphism with Ψ ◦ f∗ = ΦN .

Then, by Proposition 4.0.5(a) and Proposition 4.0.2(b), we have

eG(G,Φ) = eG(G,Φ) · (infGG/N ·
G/N

isof ·
H
eH(H,Ψ)) ∈ E(H,Ψ)(G) ,

so that E(G,Φ) ⊆ E(H,Ψ).

(b) Since E(G,Φ) ⊆ E(H,Ψ), we have eG(G,Φ) ∈ E(H,Ψ)(G) and there exists (U, φ) ∈

M(G×H) such that

0 6= eG(G,Φ) ·
([

G×H
U, φ

]
·
H
eH(H,Ψ)

)
. (7.1)

Lemma 5.0.3 implies that p1(U) = G, p2(U) = H, φ extends to some α×β ∈ (G×H)∗,

Φk1(U) = Ψk2(U)◦η∗U , and m
k2(U)
(H,Ψ) 6= 0. Since (H,Ψ) is a BA-pair, we obtain k2(U) = {1}

and Φk1(U) = Ψ ◦ η∗U . Thus, ηU is an isomorphism H
∼→ G/k1(U) with Φk1(U) = Ψ ◦ η∗U ,

so that (H,Ψ) 4 (G,Φ).
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Chapter 8

Subfunctors of BA
K

We keep the assumptions on K from Section 9. In this section we prove one of

our main results, Theorem 8.0.7, which describes the lattice of subfunctors of BA
K .

For any finite group G, the group Aut(G) acts on X (G) via f(K,Ψ) :=

(f(K),Ψ ◦ (f |K)∗). We will denote by X̂ (G) ⊆ X (G) the set of those pairs (K,Ψ)

with K = G. Note that X̂ (G) is Aut(G)-invariant and that G acts trivially by conju-

gation on X̂ (G), so that X̂ (G) can be viewed as an Out(G)-set.

Proposition 8.0.1. Let F be a subfunctor of BA
K in FAK .

(a) For each finite group G one has

F (G) =
⊕

(K,Ψ)∈[G\XF (G)]

KeG(K,Ψ) ,

where XF (G) := {(K,Ψ) ∈ X (G) | eG(K,Ψ) ∈ F (G)}.

(b) For any finite group G, the set XF (G) is invariant under the action of

Aut(G).
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(c) If H is a minimal group for F then XF (H) contains only elements of the

form (K,Ψ) with K = H. Each (H,Ψ) ∈ XF (H) is a BA-pair and one has E(H,Ψ) ⊆ F .

Proof. (a) For all a ∈ F (G) and x ∈ BA
K(G), (2.13) implies x · a = ∆(x) ·G a ∈ F (G).

Thus, F (G) is an ideal of BA
K(G). Since the elements eG(K,Θ) with (K,Ψ) ∈ [G\X (G)]

form a K-basis of BA
K(G) consisting of pairwise orthogonal idempotents, the assertion

in (a) follows.

(b) If eG(K,Ψ) ∈ F (G) and f ∈ Aut(G) then eG(f(K),Ψ◦(f |K)∗) = isof (eG(K,Ψ)) is

contained in F (G).

(c) Assume that H is a minimal group for F and that (K,Ψ) ∈ XF (H). Then

eH(K,Ψ) ∈ F (H) and

0 6= eK(K,Ψ) = eK(K,Ψ)resHK(eH(K,Ψ)) ∈ F (K) ,

by Proposition 4.0.1(b). The minimality of H implies K = H. By Proposition 4.0.3(a),

the minimality also implies that mN
(H,Ψ) = 0 for all {1} 6= N E H, since eH(H,Ψ) ∈ F (H).

Clearly, E(H,Ψ) ⊆ F .

Definition 8.0.2. Let F be a subfunctor of BA
K in FAK . If H is a minimal group for F

and Ψ ∈ Hom(H,K×) is such that (H,Ψ) ∈ XF (H) then we call (H,Ψ) a minimal pair

for F . By Proposition 8.0.1(c), each minimal pair for F is a BA-pair.

Proposition 8.0.3. Let H be a finite group, Ψ ∈ Hom(H∗,K∗), and let (G,Φ) be a

minimal pair for E(H,Ψ). Then:

(a) E(H,Ψ) = E(G,Φ).
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(b) There exists N E H with mN
(H,Ψ) 6= 0 and (H/N,ΨN ) ∼= (G,Φ). In

particular (G,Φ) 4 (H,Ψ). Moreover, if also N ′ E H satisfies (H/N ′,ΨN ′) ∼= (G,Φ)

then mN ′

(H,Ψ) = mN
(H,Ψ) 6= 0.

(c) Up to isomorphism, (G,Φ) is the only minimal pair for E(H,Ψ).

(d) If (H,Ψ) is a BA-pair, then, up to isomorphism, (H,Ψ) is the only minimal

pair of E(H,Ψ). In particular,

E(H,Ψ)(H) =
⊕

(H,Ψ′)∈X̂ (H)
(H,Ψ′)=Out(H)(H,Ψ)

KeH(H,Ψ′) .

Proof. (b) Since (G,Φ) is a minimal pair for E(H,Ψ), there exists x ∈ BA
K(G,H) such

that eG(G,Φ) = x ·H e(H,Ψ). Multiplication with eG(G,Φ) yields eG(G,Φ) = eG(G,Φ) · (x ·H e
H
(H,Ψ)).

Thus, there exists (U, φ) ∈M(G×H) with

eG(G,Φ) ·
([

G×H
U, φ

]
·
H
eH(H,Ψ)

)
6= 0 .

Lemma 5.0.3 implies that p1(U) = G, φ has an extension to G×H, Φk1(U) = Ψk2(U) ◦

η∗U , and m
k2(U)
(H,Ψ) 6= 0. Since φ has an extension to G × H,

[
G×H
U,φ

]
factors through

q(U) ∼= G/k1(U) by Lemma 5.0.1. Since G is a minimal group of E(H,Ψ) this implies

k1(U) = {1}. Set N := k2(U) E H. Then ηU : H/N
∼→ G satisfies ΨN ◦ η∗U = Φ. If also

N ′ E G satisfies (H/N ′,ΨN ′) ∼= (G,Φ), then (H/N,ΨN ′) ∼= (H/N,ΨN ) and we obtain

mN ′

(H,Ψ) = mN
(H,Ψ) 6= 0 by Proposition 6.0.4.

(a) Note that E(G,Φ) ⊆ E(H,Ψ) by Proposition 8.0.1(c). The converse follows

from Proposition 7.0.5(a) and Part (b).
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(c) Assume that also (G′,Φ′) is a minimal pair for E(H,Φ) = E(G,Φ). Then,

by Part (b) applied to (G′,Φ′) and (G,Φ) in place of (G,Φ) and (H,Ψ), we have

(G′,Φ′) 4 (G,Φ). Since both G and G′ are minimal groups for E(H,Ψ), they have the

same order. Thus, (G′,Φ′) ∼= (G,Φ).

(d) Now assume that (H,Ψ) is a BA-pair and let (G,Φ) be a minimal pair for

E(H,Ψ). Then, by Part (b), there exists N E G with mN
(H,Ψ) 6= 0 and (H/N,ΨN ) ∼=

(G,Φ). Since (H,Ψ) is a BA-pair, this implies N = {1} and (H,Ψ) ∼= (G,Φ).

Notation 8.0.4. For any finite group G and any Φ ∈ Hom(G∗,K×) we denote by

β(G,Φ) the class of all minimal pairs for E(G,Φ). Thus β(G,Φ) is the isomorphism

class [H,Ψ] of a BA-pair (H,Ψ), see Remark 7.0.4(b). Note that β(G,Φ) 4 [G,Φ] by

Proposition 8.0.3(b).

The following proposition is not used in this paper, but of interesting its own

right. It is the analogue of [Bc10, Theorem 5.4.11].

Proposition 8.0.5. Let G be a finite group and let Φ ∈ Hom(G∗,K×).

(a) If (H,Ψ) is a BA-pair with (H,Ψ) 4 (G,Φ) then [H,Ψ] 4 β(G,Φ).

(b) For any N E G the following are equivalent:

(i) mN
(G,Φ) 6= 0.

(ii) β(G,Φ) 4 [G/N,ΦN ].

(iii) β(G,Φ) = β(G/N,ΦN ).

(c) For any N E G the following are equivalent:
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(i) [G/N,ΦN ] ∼= β(G,Φ).

(ii) (G/N,ΦN ) is a BA-pair and mN
(G,Φ) 6= 0.

Proof. Let (K,Θ) ∈ β(G,Φ). Thus, E(G,Φ) = E(K,Θ) by Proposition 8.0.3(a) and (K,Θ)

is a BA-pair.

(a) Let (H,Ψ) be as in the statement. Then E(K,Θ) = E(G,Φ) ⊆ E(H,Φ) by

Proposition 7.0.5(a). Now Proposition 7.0.5(b) implies (H,Ψ) 4 (K,Θ).

(b) (i)⇒(ii): Since mN
(G,Φ) 6= 0, Proposition 4.0.3(a) implies that

e
G/N
(G/N,ΦN ) = (mN

(G,Φ))
−1defGG/N (eG(G,Φ)) ∈ E(G,Φ)(G/N) = E(K,Θ)(G/N)

so that E(G/N,ΦN ) ⊆ E(K,Θ). Proposition 7.0.5(b) implies (K,Ψ) 4 (G/N,ΦN ).

(ii)⇒(iii): By Part (a) applied to (K,Θ) and (G/N,ΦN ) we obtain β(G,Φ) =

[K,Θ] 4 β(G/N,ΦN ). Conversely, we have β(G/N,ΦN ) 4 [G/N,ΦN ] 4 [G,Φ] and

Part (a) again implies β(G/N,ΦN ) 4 β(G,Φ).

(iii)⇒(i): By Proposition 8.0.3(b) there exists M E G such that mM
(G,Φ) 6= 0

and [G/M,ΦM ] ∼= β(G,Φ). Similarly, there exists N 6M ′ E G such that m
M ′/N
(G/N,ΦN ) 6=

0 and [(G/N)/(M ′/N), (ΦN )M ′ ] = β(G/N,ΦN ). Since

[G/M ′,ΦM ′ ] = [(G/N)/(M ′/N), (ΦN )M ′ ] = β(G/N,ΦN ) = β(G,Φ) = [G/M,ΦM ] ,

Proposition 6.0.4 implies that mM ′

(G,Φ) = mM
(G,Φ) 6= 0. By Proposition 6.0.1 we have

mM ′

(G,Φ) = mN
(G,Φ) ·m

M ′

(G/N,ΦN ) which implies that mN
(G,Φ) 6= 0.

(c) This follows immediately from the equivalence between (i) and (iii) in

Part (b), noting that β(G/N,ΦN ) = (G/N,ΦN ) if (G/N,ΦN ) is a BA-pair and that
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β(G,Φ) consists of BA-pairs.

Definition 8.0.6. A subset Z of the poset BA, ordered by the relation 4 (cf. Re-

mark 7.0.4(b)) is called closed if for every [H,Ψ] ∈ Z and [G,Φ] ∈ BA with [H,Ψ] 4

[G,Φ] one has [G,Φ] ∈ Z.

Theorem 8.0.7. Let S denote the set of subfunctors of BA
K in FAK , ordered by inclusion

of subfunctors, and let T denote the set of closed subsets of BA, ordered by inclusion of

subsets. The map

α : S → T , F 7→ {[H,Ψ] ∈ BA | E(H,Ψ) ⊆ F}

is an isomorphism of posets with inverse given by

β : T → S , Z 7→
∑

[H,Ψ]∈Z

E(H,Ψ) .

Proof. Clearly, α and β are order-preserving. Let F ∈ S. By Proposition 8.0.1(a) we

have

F =
∑
G

(H,Ψ)∈XF (G)

〈eG(H,Ψ)〉 ,

where G runs through a set of representatives of the isomorphism classes of finite groups

and 〈eG(H,Ψ)〉 denotes the subfunctor of BA
K generated by eG(H,Ψ). For any finite group

G and any (H,Ψ) ∈ X (G) one has eG(H,Ψ) ∈ F (G) if and only if eH(H,Ψ) ∈ F (H). In

fact, eH(H,Ψ) = e(H,Ψ) · resGH(eG(H,Ψ)) by Proposition 4.0.1 and eG(H,Ψ) ∈ K · indGH(eH(H,Ψ)) by

Proposition 4.0.4. Thus

F =
∑
H

(H,Ψ)∈X̂F (H)

E(H,Ψ) ,
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where H runs again through a set of representatives of the isomorphism classes of finite

groups and X̂F (H) = X̂ (H)∩XF (H). By Propositions 8.0.1(c) and 8.0.3(a), we obtain

F =
∑

[H,Ψ]∈BA
(H,Ψ)∈XF (H)

E(H,Ψ) =
∑

[H,Ψ]∈α(F )

E(H,Ψ) = β(α(F )) ,

since (H,Ψ) ∈ XF (H) if and only if E(H,Ψ) ⊆ F .

Let Z be a closed subset of BA. By definition of α and β we have

α(β(Z)) = {[H,Ψ] ∈ BA | E(H,Ψ) ⊆
∑

[G,Φ]∈Z

E(G,Φ)} .

The inclusion Z ⊆ α(β(Z)) is obvious. Conversely, assume that [H,Ψ] ∈ BA satisfies

E(H,Ψ) ⊆
∑

[G,Φ]∈Z E(G,Φ). Evaluation at H and Proposition 8.0.1(a) imply that there

exists [G,Φ] ∈ Z with eH(H,Ψ) ∈ E(G,Φ)(H), which implies E(H,Ψ) ⊆ E(G,Φ). Since (G,Φ)

is a BA-pair, Proposition 7.0.5(b) implies [G,Φ] 4 [H,Ψ]. Since [G,Φ] ∈ Z and Z is

closed we obtain [H,Ψ] ∈ Z. Thus, α(β(Z)) ⊆ Z, and the proof is complete.

Remark 8.0.8. (a) If (G,Φ) is a BA-pair, then the subfunctor E(G,Φ) of BA
K corresponds

under the bijection in Theorem 8.0.7 to the subset BA<[G,Φ] := {[H,Ψ] ∈ BA | [G,Φ] 4

[H,Ψ]}. Clearly, BA�[G,Φ] := {[H,Ψ] ∈ BA | [G,Φ] ≺ [H,Ψ]} is the unique maximal

closed subset of BA<[G,Φ].

(b) For every element [G,Φ] ∈ BA there exist only finitely many elements

[H,Ψ] ∈ BA with [H,Ψ] 4 [G,Φ]. Therefore, every non-empty subset of BA has a

minimal element.
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Chapter 9

Composition factors of BA
K

We keep the assumptions on K from Section 9. In this section we determine

the composition factors of BA
K .

Recall from Section 2.6 that the simple A-fibered biset functors S over K are

parametrized by isomorphism classes of quadruples (G,K, κ, V ). Here G is a minimal

group for S, (K,κ) ∈ M(G) is such that the idempotent f(K,κ) ∈ BA
K(G,G) does not

annihilate S(G), and V := S(G) is an irreducible KΓ(G,K,κ)-module for the finite group

Γ(G,K,κ).

Note that the idempotent f(K,κ) lies in the K-span of standard basis elements[
G×G
U,φ

]
with (U, φ) ∈ M(G,G) such that k2(U) > K. Note also that in the case

(K,κ) = ({1}, 1), the group Γ(G,{1},1) is the set of standard basis elements
[
G×G
U,φ

]
of

BA
K(G,G) with p1(U) = G = p2(U) and k1(U) = {1} = k2(U). The multiplication

is given by ·G. Thus, in this case,
[
G×G
U,φ

]
= twα ·G isof , where f = ηU ∈ Aut(G)

and α ∈ G∗ is given by α(g) = φ(ηU (g), g) for g ∈ G. Mapping
[
G×G
U,φ

]
to the element
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(α, f̄) ∈ G∗oOut(G) defines an isomorphism. Here, Out(G) acts on G∗ via f̄α := α◦f∗.

Moreover, Γ(G,{1},1) acts on S(G) by ·G.

Proposition 9.0.1. Let (G,Φ) be a BA-pair. The subfunctor E(G,Φ) of BA
K has a unique

maximal subfunctor J(G,Φ), given by

J(G,Φ) =
∑

[H,Ψ]∈BA�[G,Ψ]

E(H,Ψ) .

The simple functor S(G,Φ) := E(G,Φ)/J(G,Φ) is isomorphic to S(G,{1},1,VΦ) where VΦ is

the irreducible K[G∗ o Out(G)]-module

VΦ := Ind
G∗oOut(G)
G∗oOut(G)Φ

(KΦ̃) ,

with Φ̃ ∈ Hom(G∗ o Out(G)Φ,K×) defined by Φ̃(φ, f̄) := Φ(φ) for φ ∈ G∗ and f ∈

Aut(G).

Proof. By Remark 8.0.8(a) and Theorem 8.0.7, J(G,Φ) is the unique maximal subfunctor

of E(G,Φ). Thus, the functor S := S(G,Φ) is a simple object in FAK . Moreover, G is a

minimal group for S, since G is a minimal group for E(G,Φ) and E(H,Ψ)(G) = {0} for all

[H,Ψ] ∈ BA�[G,Φ].

Let (U, φ) ∈ M(G × G) with k2(U) 6= {1}. Then
[
G×G
U,φ

]
factors through the

group q(U) which has smaller order than G. Thus,
[
G×G
U,φ

]
·G eG(G,Φ′) = 0 for all (G,Φ′) ∈

X̂ (G) with (G′,Φ′) =Out(G) (G,Φ). By Proposition 8.0.3(d) this yields
[
G×G
U,φ

]
·GS(G) =

{0}. Thus, f(K,κ) ·G S(G) = 0 for all (K,κ) with |K| > 1.

This implies that S is parametrized by the quadruple (G, {1}, 1, V ), with V =

S(G) viewed as KΓ(G,{1},1)-module. Since S(G) is the K-span of the idempotents eG(G,Φ′),
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with (G,Φ′) running through the Out(G)-orbit of (G,Φ), and since twα·Gisof ·GeG(G,Φ′) =

Φ(α) · eG(G,Φ′◦f∗) for all α ∈ G∗ and f ∈ Aut(G) and (G,Φ′), the KΓ(G,{1},1)-module

S(G) is monomial. The stabilizer of the one-dimensional subspace KeG(G,Φ) is equal to

G∗ o Out(G)Φ and this group acts on KeG(G,Φ) via Φ̃. Thus, S(G) ∼= VΦ as KΓ(G,{1},1)-

module and the proof is complete.

Theorem 9.0.2. Let F ′ ⊂ F ⊆ BA
K be subfunctors in FAK such that F/F ′ is sim-

ple. Then there exists a unique [G,Φ] ∈ BA such that E(G,Φ) ⊆ F and E(G,Φ) 6⊆ F ′.

Moreover, E(G,Φ) + F ′ = F and E(G,Φ) ∩ F ′ = J(G,Φ), and F/F ′ ∼= S(G,Φ).

Proof. Since α(F ′) is a maximal subset of α(F ) and both are closed, it follows from

Theorem 8.0.7 and Remark 8.0.8 that α(F )rα(F ′) = {[G,Φ]} for a unique [G,Φ] ∈ BA.

For any [H,Ψ] ∈ BA one has E(H,Ψ) ⊆ F and E(H,Ψ) 6⊆ F ′ if and only if [H,Ψ] ∈ α(F )

but [H,Ψ] /∈ α(F ′). Thus, the first condition is equivalent to [H,Ψ] = [G,Φ]. Further,

we have F ′ ⊂ F ′ + E(G,Φ) ⊆ F which implies F ′ + E(G,Φ) = F , since F/F ′ is simple.

Thus, 0 6= E(G,Φ)/(E(G,Φ) ∩ F ′) ∼= (E(G,Φ) + F ′)/F ′ = F/F ′, and by Proposition 9.0.1

we obtain E(G,Φ) ∩ F ′ = J(G,Φ) so that F/F ′ ∼= E(G,Φ)/J(G,Φ)
∼= S(G,Φ).
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Chapter 10

The case A 6 K×

In this section we assume that A is a subgroup of the unit group of a field K of

characteristic 0. Then the assumptions on A and K from the beginnings of Sections 3–9

are satisfied. This special case has been used for instance in the theory of canonical

induction formulas, see [Bo98]. This assumption was also used in [Ba04] and [CY19].

By double duality it allows us to consider pairs (G, gO(G)) for a normal subgroup O(G)

of G instead of pairs (G,Φ) with Φ ∈ Hom(G∗,K×). This section makes this translation

precise and also translates previously defined features for pairs (G,Φ) to features for

pairs (G, gO(G)).

For any finite group G we have a homomorphism

ζG : G→ Hom(G∗,K×) , g 7→ εg , with εg(φ) := φ(g),

for φ ∈ G∗. Note that ζG is functorial in G, i.e., if f : G→ H is a group homomorphism
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then ζH ◦ f = Hom(f∗,K×) ◦ ζG. We set

OA(G) := O(G) := ker(ζG) =
⋂
φ∈G∗

ker(φ) ,

which is a normal subgroup of G containing the commutator subgroup [G,G] of G.

Thus, we obtain an injective homomorphism ζ̄G : G/O(G)→ Hom(G∗,K×).

Proposition 10.0.1. Let G be a finite group.

(a) The homomorphism ζG is surjective and ζ̄G : G/O(G)
∼→ Hom(G∗,K×) is

an isomorphism.

(b) The subgroup O(G) is the smallest subgroup [G,G] 6 M 6 G such that A

has an element of order exp(G/M).

(c) For any normal subgroup N of G one has O(G/N) = O(G)N/N .

Proof. (a) Applying the functoriality with respect to the natural epimorphism f : G→

G/[G,G], and using that f∗ is an isomorphism, it suffices to show the statement when

G is abelian. Since Hom(−∗,K×) preserves direct products of abelian groups, we are

reduced to the case that G is cyclic. Using again the functoriality with respect to the

natural epimorphism onto the largest quotient of G whose order occurs as an element

order in A, we are reduced to the case that G is cyclic of order n and A has an element

of order n. In this case it is easy to see that ζG is injective and that G and Hom(G∗,K×)

have the same order.

(b) First note that if M1 and M2 have the stated property, then also M1 ∩M2

has this property. In fact, G/(M1 ∩M2) is isomorphic to a subgroup of G/M1×G/M2,
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whose exponent is equal to the order of an element in A. Here we use that if elements

a and b in A have orders k and l respectively, then A has an element whose order is

the least common multiple of k and l. Thus, there exists a smallest subgroup M with

the stated property. Clearly, ker(φ) has the property for every φ ∈ G∗. Therefore, also

O(G) has the desired property. Conversely, if M has the property, then by writing G/M

as a direct product of n cyclic groups whose orders are achieved as element order in A,

it is easy to construct elements φ1, . . . , φn ∈ G∗ such that
⋂n
i=1 ker(φi) = M , implying

that O(G) 6M .

(c) Since the exponent of G/O(G) is equal to the order of an element of A also

the exponent of (G/N)/(O(G)N/N) ∼= G/(O(G)N) is equal to the order of an element

of A. Thus, O(G/N) 6 O(G)N/N . Conversely,

O(G) =
⋂
φ∈G∗

ker(φ) 6
⋂
φ∈G∗
φ|N=1

ker(φ) ,

and taking images in G/N yields the reverse inclusion.

For any finite group G, Proposition 10.0.1(a) yields a bijection between the

set of pairs of the form (G,Φ), with Φ ∈ Hom(G∗,K×) and the set of pairs (G, gO(G))

with gO(G) ∈ G/O(G). More precisely, we identify (G, gO(G)) with (G, εg). The

following proposition translates various relevant features of pairs (G,Φ) to features of

the corresponding pairs (G, gO(G)). The proofs are straightforward and left to the

reader.

Proposition 10.0.2. Let G and H be finite groups.

71



(a) Let g ∈ G and h ∈ H. Then (G, gO(G)) ∼= (H,hO(H)) if and only if there

exists an isomorphism f : G→ H such that f(g)O(H) = hO(H).

(b) Let N be a normal subgroup of G, let g ∈ G, and set Φ := εg. Then

ΦN = εgN .

(c) Let g ∈ G and h ∈ H. Then (H, εh) 4 (G, εg) if and only if there exists a

normal subgroup N of G and an isomorphism f : H
∼→ G/N with f(h) ∈ gO(G)N .

(d) Let K 6 G and g ∈ G. Then εg|K⊥ = 1 if and only if g ∈ KO(G).
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[CY19] O. Coşkun, D. Yılmaz: Fibered p-biset functor structure of the fibered Burn-

side rings. Algebras and Representation Theory 22 (2019), 21-41.

[D69] A. Dress: A characterization of solvable groups. Math. Zeit. 110 (1969) 213–

217.

[D71] A. Dress: The ring of monomial representations I. Structure theory. J. Alge-

bra 18 (1971) 137–157.

[D73] A. Dress: Contributions to theory of induced representations. Lecture Notes in

Mathematics, 342 1973, Springer-Verlag, New York, 183-240.

[G81] D. Gluck: Idempotent formula for the Burnside ring with applications to the

p-subgroup simplicial complex. Illinois J. Math. 25 (1981) 63–67.

[Gn71] J. Green: Axiomatic representation theory for finite groups. J. Pure and Appl.

Algebra 1 (1971) 41-771.

[R11] N. Romero: Funtores de Mackey. PhD Thesis, UNAM Morelia, 2011.

[R12] N. Romero: Simple modules over Green biset functors. J. Algebra 367 (2012),

203–221.

74
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