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ABSTRACT OF THE DISSERTATION

Macroscopic implications from phase space dynamics of tokamak
turbulence: relaxation, transport, and flow generation

by

Yusuke Kosuga

Doctor of Philosophy in Physics

University of California, San Diego, 2012

Professor Patrick H Diamond, Chair

Aspects of the macroscopic phenomenology of tokamak plasmas - relax-

ation, transport, and flow generation - are analyzed in the context of phase space

dynamics. Particular problems of interest are: i) fluctuation entropy evolution

with turbulence driven flows and its application to flow generation by heat flux

driven turbulence, and ii) dynamical coupling between phase space structures and

zonal flows and its implication for macroscopic relaxation and transport.

In chapter 2, intrinsic toroidal rotation drive by heat flux driven turbulence

in tokamak is analyzed based on phase space dynamics. In particular, the dynamics

of fluctuation entropy with turbulence driven flows is formulated. The entropy

budget is utilized to quantify tokamaks as a heat engine system, where heat flux is

xiii



converted to macroscopic flows. Efficiency of the flow generation process is defined

as the ratio of entropy destruction via flow generation to entropy production via

heat input. Comparison of the results to experimental scalings is discussed as well.

In chapter 3, dynamics of a single phase space structure (drift hole) is

discussed for a strongly magnetized 3D plasma. The drift hole is shown to be

dynamically coupled to zonal flows by polarization charge scattering. The coupled

dynamics of the drift hole and zonal flow is formulated based on momentum bud-

get. As an application, a bound on the self-bound drift hole potential amplitude

is derived. The results show that zonal flow damping appears as a controlling

parameter.

In chapter 4, dynamics of both a single structure and multi-structures in

phase space are discussed for a relevant system, i.e. trapped ion driven ion tem-

perature gradient turbulence. The structures are dynamically coupled to zonal

flows, since they must scatter polarization charge to satisfy the quasi-neutrality.

The coupled evolution of the structures and flows is formulated as a momentum

theorem. An implication for transport process is discussed as well. The transport

flux is prescribed by dynamical friction exerted by structures on flows. The dy-

namical friction exerted by zonal flow is a novel effect and reduces transport by

algebraically competing against other fluxes, such as a quasilinear diffusive flux.

xiv



Chapter 1

Introduction

Magnetic confinement fusion[7, 8] ultimately aims to produce energy by

confining hot plasmas via a magnetic field and by enabling ion nuclei therein to

fuse with each other. In the magnetic confinement, hot plasmas are confined

in a device of a torus shape, which is called a tokamak(Fig.1.1). In tokamak

confinement, a strong magnetic field along the torus prohibits cross field motion

of plasmas, and hence confines plasmas. By retaining plasmas sufficiently hot

(∼ 10keV∼ 100, 000, 000 degree celsius!), we expect ion nuclei to fuse each other,

and then to release their mass energy.

From an early stage of fusion research, anomalous transport[9] has been a

major issue. Here, transport is said to be ‘anomalous’ since the observed level

of transport cannot be explained by a transport prediction based on collisional

processes[9]. Indeed, the observed transport level is 1-2 order of magnitude larger

than the collisional transport prediction. Such anomalous transport is attributed

to turbulence[10], which is driven by inhomogeneity in plasmas, a necessary con-

sequence of ‘confinement.’ (hot in the core and cool at the edge.) Indeed, the

turbulence and turbulent transport in fusion plasmas are ubiquitous and thus it

even seems that the anomalous transport is a usual state of tokamak plasmas.

Turbulence in magnetically confined plasmas can be characterized by its

tendency to support numerous collective oscillations and instabilities[10]. This

idea is well laid out by Kadomtsev[10] as “ when applying the term “turbulence”

to a plasma, it is used in a broader sense than in conventional hydrodynamics.

1
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Figure 1.1: A tokamak device for the magnetic confinement.[1] The tokamak is
one of the major magnetic confinement devices, and is chosen as a design for the
International Thermonuclear Experimental Reactor (ITER).

If hydrodynamic turbulence represents a system made up of a large number of

mutually interacting eddies, then in a plasma we have together with the eddies (or

instead of them), also the possible excitation of a great variety of oscillations.” A

typical example of such turbulence is drift wave turbulence, where the turbulence

is an ensemble of weakly interacting collective oscillations or waves. Indeed, drift

wave turbulence is a standard paradigm for the cause of the anomalous transport

in magnetic fusion, partly because drift wave turbulence can give rise to observed

anomalous transport levels[11, 12].

While the tendency to support collective oscillations is one of the character-

istics of turbulence in magnetically confined plasmas, here we add that turbulence

in fusion plasmas is also characterized by its tendency to support macroscopic

flows and structures [13]. Macroscopic flows in turbulent systems are commonly

observed. Examples include shear flows in fluid turbulence[14], stellar rotation in

convective turbulence[15], planetary flows in atmospheric turbulence[16], etc. In

the tokamak context, such flows in turbulence are observed as zonal flows[17] in

drift wave turbulence. Flows in tokamak turbulence are an important element,
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since such flows can shear apart eddies and reduce transport to the collisional

level[18]. Moreover, flows in tokamak turbulence can be driven by turbulence it-

self via the Reynolds force, and the flows in turn feedback to the turbulence via

shearing. Such coupling requires self-consistent treatment of the dynamics of the

flows and turbulence, whose understanding is essential for the predictive modeling

of tokamak turbulence and associated transport.

As with turbulence driven flows, structures often accompany turbulence.

Here, by structures we refer to components of turbulence which cannot be de-

scribed as collective oscillations or flows, and which have a tendency to persist

for a certain lifetime. Examples of such structures in turbulence include coherent

vortices, eddies, etc. Note that by definition coherent vortices have a very long

life time while eddies have a short life time, albeit finite. What we refer to by

‘structure’ may be further clarified in the context of Jupiter. Namely, Jupiter has

spectrum of fluctuations, including Rossby waves, zonal flows, as well as coherent

vortices (long lived ‘eyes’) and turbulent eddies (vortices which break apart, say, in

one turn-over time). In the collisionless tokamak context, such structures includ-

ing coherent vortices and turbulent eddies can form in phase space. This is one of

the distinguishing characteristics of plasma turbulence. Being collisionless, plasma

turbulence involves resonant interactions between waves and particles. When the

resonance is strong, it leads to a trapping of particles in a potential trough, and to

the formation of phase space structures. Such phase space structures are observed

(numerically) as BGK vortices in phase space[19], phase space density holes[20]

(variant of the BGK solutions), phase space density granulations[21], etc. As ex-

plained later, such phase space structures also contribute to a relaxation process by

exerting dynamical friction[22], whose effects cannot be captured by a conventional

quasilinear analysis.

This thesis places special emphasis on turbulence driven flows and struc-

tures (especially phase space structures) in tokamak plasma turbulence. In par-

ticular, we discuss i) an ‘engine’ picture of flow generation in heat driven tokamak

turbulence and ii) turbulent transport with phase space structures. Here we start

from brief discussions of each topic (the engine picture in section 1.1 and the phase
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Figure 1.2: Jupiter[2]

space structures in section 1.2.). While the two phenomenologies look quite differ-

ent, both problems are conveniently formulated based on phase space dynamics. A

brief discussion on the common theme of the phenomenologies based on the phase

space dynamics is given in section 1.3.

1.1 Intrinsic toroidal generation by drift wave

turbulence: an engine paradigm for toroidal

rotation generation

Toroidal rotation in tokamak plasmas plays an important role in toka-

mak confinement by stabilizing harmful magnetohydrodynamic (MHD) instabil-

ities (such as Resistive Wall Mode) and by controlling transport processes. While

toroidal rotation is primarily driven by an external torque exerted via Neutral

Beam Injection (NBI), the NBI acceleration may be less efficient for future larger

devices due to their larger inertia and shallow beam penetration depth. Instead, in

future tokamaks, it is argued that we can exploit the property that plasmas tend

to self-accelerate via a heat flux.

The spontaneous spin-up of toroidal plasmas, so called intrinsic rotation[23,
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3], is observed by heating plasmas at rest, while there is no obvious momentum in-

put. The phenomena is robust and observed in a wide variety of toroidal machines

including tokamaks as well as stellarators. Empirical scalings (Figs.1.3 and 1.4.)

for the resultant velocity are obtained experimentally[23, 3, 4]. The scalings are

obtained for toroidal velocity that results across transition from low confinement

to improved confinement. The scalings are summarized as [23, 3, 4]

∆vφ(0) ∝ ∆Wp

Ip
or ∇T (1.1)

Here, ∆Wp is the increment in the energy stored in the plasmas, Ip is the plasma

current, and ∇T is the temperature gradient at the plasma edge in the improved

confinement[24]. The experimental scalings indicate that the resultant toroidal

velocity is proportional to the energy stored in plasmas or the local temperature

gradient at the plasma edge in the improved confinement. Since the plasma stored

energy or the temperature gradient is ultimately set by heat input, it seems that

we can view intrinsic toroidal rotation generation as a result of a heat engine

process [25, 26], where heat is converted to flows under the action of turbulence.

Such flow generation in heat driven turbulence is not limited only to toka-

maks. Rotation of planets’ atmosphere or stars can be also viewed as a consequence

of heat conversion processes. Indeed, super-rotation of Venus’s atmosphere may

likely be an example of a heat flux converted flow. In Venus, heat input from

the Sun drives convective turbulence in the atmosphere, and the heat flux driven

turbulence accelerates Venus’s atmosphere to rotate faster than Venus itself. In

the Sun, heat is generated from the fusion reaction at the core, and conducted by

convective turbulence. The convective turbulence produces differential rotation of

the sun, which can be viewed as another example of engine process.

In chapter 2, we discuss the engine picture of tokamak toroidal rotation gen-

eration. The aim of the discussion is to derive a simple scaling relation between

heat input and resultant flow speed, in an attempt to understand the origin of em-

pirical trends of toroidal rotation observed in tokamak experiments. In particular,

we quantify tokamak plasmas as an engine system by calculating its entropy budget

based on microscopic phase space dynamics. The entropy budget is further utilized
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Figure 1.3: The toroidal velocity increment across the L-H transition[3]. The
velocity increment is proportional to the increment of the energy stored in the
plasmas Wp and is inversely proportional to the plasma current Ip.

to define flow generation efficiency. The flow generation efficiency is defined as a

ratio between the entropy production via heat input and the entropy destruction

via flow generation. The result agrees well with experimental observations, both

qualitatively and quantitatively.

1.2 Turbulent relaxation and transport with

phase space structures: whether quasilinear

theory wither?

Mean field modeling of turbulent transport, which attempts to represent

transport flux in terms of mean field quantities and transport coefficients, is an

important issue for many applications, including magnetic fusion energy. An oft-

used example of the mean field theory is quasilinear theory[27, 28, 10], which

assumes turbulence as an ensemble of weakly interacting waves[27, 28, 10]. The
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Figure 1.4: The local scaling of the toroidal velocity increment from L- to I-
mode[4]. The velocity increment is proportional to the local temperature gradient
∇T . A similar scaling is obtained for H-mode[4].

quasilinear theory has been successfully applied to numerous problems, including

residual stress modeling[29] in tokamak physics. However, while the quasilinear

theory is an extremely useful concept, and while its prediction often agrees with

experimental observations in fusion plasmas, the quasilinear theory alone cannot

be a complete description of turbulent transport. A shortcoming of the quasilin-

ear theory is particularly apparent when strong wave-particle resonance occurs,

which leads to the formation of phase space structures[19, 20, 30]. As discussed

in the following, the effect of such structures enters transport flux as dynamical

friction[22], whose effect cannot be captured by the quasilinear analysis.

In the presence of strong wave-particle resonance, structures in phase space

can form. Simply put, this is a consequence of trapping of particles in a potential

trough, since the trapped particles in turn provide a self-potential to trap them-

selves, leading to self-sustained structures[19, 21, 20]. An example of such phase

space structure is a BGK vortex[19], as shown in Fig.1.5. The BGK vortex has

a long life time and can be viewed as a coherent vortex in phase space. Other
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Figure 1.5: A coherent vortex in phase space[5]

examples of such coherent structures in phase space include phase space density

holes[20], clump-hole pairs in the Berk-Breizman model[31], etc. While coherent

structures have a long life time, there are another type of phase space structures

with a shorter life time (albeit finite). Such phase space structures break apart

while they are circulating in phase space, since trapped particles are detrapped

by turbulent scattering caused by other structures. Such phase space structures

may be viewed as analogous to cascading eddies in fluid turbulence, which break

apart in one turn over time. An example of such phase space structure (or eddies

in phase space) is phase space density granulation[21].

In any case, particle trapping leads to the formation of phase space struc-

tures. Once formed, the phase space structures can impact relaxation and trans-

port by exerting dynamical friction on each other[22]. Here, the idea is that we

view the phase space structures as macro-particles, consisting of correlated trapped

particles. By looking at the phase space structures as a macro-particle, we can see

that these macro-particles can exert dynamical friction with each other, since these

macro-particles emit potential wakes. This is very much like the wake drag effect on

an object in water, which feels a drag by emitting radiating water waves (Fig.1.6).

Such effect enters the transport flux as dynamical friction, which leads to a total
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Figure 1.6: Structures and wakes[6]

flux (for a simple 1D Vlasov plasma)

J(v) = −D∂〈f〉
∂v

+ F 〈f〉 (1.2)

where D is the quasi-linear like diffusion and F is dynamical friction. In the

presence of phase space structures, then, transport flux is not the simple quasilinear

diffusion, but becomes a Lenard-Balescu type, with both the diffusive term and

dynamical friction. Of course, the effect of phase space structures as dynamical

friction cannot be captured by the conventional quasilinear analysis.

While the idea of transport with phase space structures has been noted from

time to time in the fusion community[32, 33, 34], the role of turbulence driven zonal

flows in turbulent relaxation with phase space structures has not been addressed

before. Zonal flow coupling in phase space turbulence in magnetized plasmas

is quite likely, since structures must scatter polarization charges to satisfy the

overall quasineutrality condition, which leads to non-zero zonal flow coupling via

the Taylor identity[35] 〈ṽr∇2
⊥φ̃〉 = ∂r〈ṽrṽθ〉. The zonal flow coupling is a relevant

issue, since zonal flows can enter as a critical element to determine dynamical

evolution of turbulence with phase space structures. Since turbulence determines

the transport level, such zonal flow effects in turbulence with phase space structures

surely leave a footprint in transport process.

Such turbulent relaxation and transport with phase space structures and

turbulence driven zonal flows are discussed in chapter 3 and chapter 4.
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1.3 A unifying concept: phase space density cor-

relation and its relatives

While the two phenomenologies discussed above seem quite different, both

problems are conveniently formulated based on phase space density correlation

δf 2 evolution. As shown below, δf 2 is analogous to potential enstrophy in a

quasi-geostrophic system. As such, the phase space density correlation is called as

’phasetrophy’[30]. Phasetrophy is further related to fluctuation entropy[36], as well

as the fluctuation pseudomomentum of phase space structures[37, 38]. Leaving the

detailed discussion to the later chapters, here we briefly discuss the utility and the

physical interpretation of δf 2 in a simplified system.

In general, dynamics of magnetized plasmas is described by the Vlasov

equation for a distribution function f (or phase space density) and by the Maxwell

equations for an electric and a magnetic field. While the Vlasov-Maxwell systems

may be exact, it is still far too complicated for any practical use. In fusion plasmas,

however, we can simplify the set of equations by exploiting the fact that plasmas are

strongly magnetized. The strong magnetic field makes the cyclotron frequency of

charged particles the fastest times scale in dynamics. By integrating out the fastest

time scale associated with the charged particle gyration, we can reduce the full

Vlasov-Maxwell equations to gyrokinetic(GK) Vlasov-Maxwell equations, which

describe dynamics with the reduced degrees of freedom. The GK equations are

one of the standard tools for the analysis of tokamak turbulence and transport. For

detailed discussion and derivation, see the literature[39, 40]. We add that the GK

equations are further reduced if there is another fast motion, such as the bouncing

motion of particles trapped in a magnetic mirror. The integration over the fast

bounce motion gives a bounce kinetic equation, which is useful to analyze trapped

particle driven turbulence in tokamaks. The bounce kinetic equation is used in

chapter 4 to analyze trapped ion driven ion temperature gradient turbulence.

Here, as an example of GK dynamics, we consider a simplified GK model

which consists of drift kinetic equations for both ions and electrons (σ = i, e) and
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Table 1.1: Comparison of the QG system and the GK system

QG system GK system

Dynamical variable PV, q(x, t) distribution function, f(x, v, t)

Potential Vorticity PV, q = ∇2φ+ F (φ, n) GK Poisson, Pol Charge
Relation

∫
d3vf + ρ2

s∇2φ = g(φ, ne, ...)

Time evolution
dq

dt
= ∂tq + {q, φ} = 0

df

dt
= ∂tf + {f,H} = 0

Rossby waves Drift waves

Linear waves ωk = −βkx
k2
⊥

ωk =
ω∗e

1 + k2
⊥ρ

2
s

the GK Poisson equation:

∂tfσ + v‖∇‖fσ + vE×B · ∇fσ +
eσ
mσ

E‖
∂fσ
∂v‖

= 0 (1.3)

− ρ2
s∇2
⊥
eφ

Te
=

∫
dv‖fi −

∫
dv‖fe (1.4)

Here, the equations are simplified in that the finite Larmor radius effect - a product

of gyrokinetic analysis - is only kept in the gyrokinetic Poisson equation and ne-

glected in ion phase space density evolution (in full gyrokinetics the finite Larmor

radius effect enters the equation for fi as the Bessel function J0(k⊥ρi)).

We note that the dynamics described by the simplified model is similar to

potential vorticity (PV) dynamics in quasi-geostrophic (QG) systems (Table.1.1).

In the simplified GK model, phase space density f is conserved along a trajectory

produced by Hamiltonian. This is analogous to the conservation of PV q in the

QG systems. Furthermore, a physical content of the conserved quantities, f and

q, is quite analogous to each other, since both consist of the vorticity part and the

other part (planetary part for the QG system, mean distribution function 〈f〉 for

the GK system). As shown below, the simplified system support drift waves. This

is analogous to Rossby waves in the QG system.

Linear dynamics of the simplified model is described by linear eigenmodes,
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whose dispersion relation is obtained as follows. In the simplified model, fluctuating

phase space density is calculated as

δfσk =
i

ω − k‖v‖
i(ω̂∗σ(v‖)− k‖v‖)

eσφ̃k
Tσ
〈fσ〉 (1.5)

Here ω̂∗σ(v‖) ≡ (cTσ)/(Beσ)∂x〈fσ〉/〈fσ〉 = ω∗σ{1 + ησ(v2
‖/v

2
thσ − 1)/2} and 〈fσ〉 is

assumed to be the local Maxwellian. Assuming k‖vthi < ω < k‖vthe, the fluctuation

density is given as

δnik
n0

=

∫
dv‖δfik =

ω∗e
ω

|e|φ̃k
Te

+
k2
‖c

2
s

ω2

(
1− ω∗i(1 + ηi)

ω

) |e|φ̃k
Te

(1.6)

δnek
n0

=

∫
dv‖δfek =

|e|φ̃k
Te

(1.7)

Substituting the fluctuation densities for the GK Poisson equation gives the dis-

persion relation

1 + k2
⊥ρ

2
s −

ω∗e
ω
−
k2
‖c

2
s

ω2

(
1− ω∗i(1 + ηi)

ω

)
= 0 (1.8)

The eigenmodes consist of two branches, namely electron drift waves and

ion temperature gradient (ITG) modes (in particular the negative compressibility

driven ITG). When the acoustic coupling is small, the dispersion relation gives the

electron drift wave solution:

ω =
ω∗e

1 + k2
⊥ρ

2
s

=
kyv∗e

1 + k2
⊥ρ

2
s

(1.9)

The electron drift waves are analogous to Rossby waves, as the dispersion relation

of the electron drift waves is similar to that of the Rossby waves:

ω = −kxβ
k2
⊥

(1.10)

The dispersion relation gives an ITG solution when the density profile is

relatively flat (ηi large) and the perpendicular wave number is relatively small,

compared to the inverse of the ion sound Larmor radius. In this case, the dispersion
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relation simplifies to

ω2 = k2
‖c

2
s

(
1− ω∗iηi

ω

)
(1.11)

This is the negative compressibility driven ITG. The effect of the negative com-

pressibility may be better understood by comparing the dispersion relation to

Jean’s instability of a self-gravitating matter:

ω2 = k2v2
th

(
1− 4πρmG

k2

)
(1.12)

Jean’s instability describes a collapse of a self-gravitating gas. As can be explicitly

seen in the competition in the parenthesis, the collapse is possible when the at-

tractive gravitational force can overcome the stabilizing effect from acoustic waves.

Back to ITG, we can see that the instability is possible when the ion acoustic cou-

pling is dominated by the negative compressibility by ηi. Note that the negative

compressibility is possible only when a mode is propagating in the ion diamag-

netic direction, ω∗i/ω > 0. Now, when the negative compressibility dominates, the

dispersion relation is obtained as

ω = (k2
‖c

2
s|ω∗i|ηi)1/3

(
1,−1

2
± i
√

3

2

)
(1.13)

which contains the unstable branch with γk > 0.

The role of δf 2 in the simplified model merits some discussion. Here, for

simplicity, we assume electrons are responding adiabatically and calculate δf 2
i .

The δf 2
i balance is then calculated to be (〈...〉 is the spatial average in y and z)

∂t〈δf 2
i 〉+ ∂x〈ṽxδf 2

i 〉+
|e|
mi

∂

∂v‖
〈Ẽ‖δf 2

i 〉 = −2〈ṽxδfi〉〈fi〉′− 2
|e|
mi

〈Ẽ‖δfi〉
∂〈fi〉
∂v‖

(1.14)

The righthand side takes the conventional form of fluctuation production, namely

the form of the fluxes times the gradients. The lefthand side consists of ‘spreading’

of phase space turbulence δf 2
i in both configuration and velocity spaces. The δf 2

i

balance can be converted to forms with more clear physical meaning, namely that

of fluctuation entropy (
∫
dv‖〈δf 2

i 〉/〈fi〉) balance or fluctuation pseudomomentum
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(
∫
dv‖〈δf 2

i 〉/〈fi〉′) balance.

The δf 2 balance is related to fluctuation entropy balance:

∂t

∫
dv‖
〈δf 2

i 〉
〈fi〉

+ ∂x

〈
ṽx

∫
dv‖

δf 2
i

〈fi〉

〉
= P (1.15)

Here we assumed that fluctuations vary rapidly compared to mean quantities (α =

x, t),

∂αδfi/δfi > ∂α〈fi〉/〈fi〉,

and P is defined as

P ≡ −2

∫
dv‖〈ṽxδfi〉

〈fi〉′
〈fi〉
− 2
|e|
mi

∫
dv‖〈Ẽ‖δfi〉

1

〈fi〉
∂〈fi〉
∂v‖

(1.16)

P describes the local production of entropy by turbulent relaxation. The quasilin-

ear calculation yields

P =
2Dxx

QL

L2
n

+
Dxx
QL

L2
T

(1.17)

Here DQL ≡
∑

k c
2
sRe(i/ωk)(kθρs)

2|eφk/Te|2 is the quasilinear spatial diffusion co-

efficient, L−1
n ≡ ∂x ln〈n〉 and L−1

Ti
≡ ∂x ln〈Ti〉. The production term is clearly

related to the entropy production, as it can be written as

P = − 2

〈n〉2
(
−Dxx

QL

∂〈n〉
∂x

)
∂〈n〉
∂x
− 1

〈Ti〉2
(
−Dxx

QL

∂〈Ti〉
∂x

)
∂〈Ti〉
∂x

(1.18)

Written in this form, the production term has the conventional form of the en-

tropy production, namely the form of the flux times the gradient. In chapter 2

the entropy balance is extended to include turbulent driven flows and utilized to

describe a tokamak as a heat engine.

The δf 2
i balance also gives fluctuation pseudomomentum balance:

∂t

∫
dv‖
〈δf 2

i 〉
〈fi〉′

+ ∂x

〈
ṽx

∫
dv‖

δf 2
i

〈fi〉′
〉

=− 2

∫
dv‖〈ṽxδfi〉 − 2

∫
dv‖
|e|
mi

〈Ẽ‖δfi〉
∂〈fi〉/∂v‖
∂〈fi〉/∂x

(1.19)
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Here,
∫
dv‖〈δf 2

i 〉/〈fi〉′ gives the negative of drift wave momentum density, as

∫
dv‖
〈δf 2

i 〉
〈fi〉′

=
∑
k

Ln
ω2
∗e
ω2

∣∣∣∣eφkTe
∣∣∣∣2 = −ρscs

∑
k

ky
Ek
ωk

(1.20)

Here ω = ωk = ω∗e/(1 + k2
⊥ρ

2
s) and Ek = (1+ρ2

sk
2
⊥)|eφk/Te|2 is the energy density of

drift waves. Since Ek/ωk is the action density of drift waves, (Ek/ωk)ky is the drift

wave momentum density in y direction. Hence
∫
dv‖〈δf 2

i 〉/〈fi〉′ is related to fluc-

tuation momentum. Indeed,
∫
dv‖〈δf 2

i 〉/〈fi〉′ balance describes momentum budget

between turbulence and flows. The flow coupling is contained in the righthand

side, as ∫
dv‖〈ṽxδfi〉 = −ρ

2
s|e|
Te
〈ṽx∇2

⊥φ̃〉 = − 1

ωci
∂x〈ṽxṽy〉 (1.21)

Here, the GK Poisson equation was used in the first line and the Taylor identity

was used in the second line. Since the Reynolds forcing describes turbulent drive of

zonal flow 〈vy〉, the
∫
dv‖〈δf 2

i 〉/〈fi〉′ balance describes momentum budget between

turbulence and flows. More explicitly, by employing a simplified model for turbu-

lence driven zonal flow ∂t〈vy〉 = −∂x〈ṽxṽy〉 − νc〈vy〉, we have a coupled evolution

equation for phase space density perturbations and zonal flow as:

∂t

(〈vy〉
ωci

+

∫
dv‖
〈δf 2

i 〉
2〈fi〉′

)
= −〈ṽxδne〉

−
∫
dv‖
|e|
mi

〈Ẽ‖δfi〉
∂〈fi〉/∂v‖
∂〈fi〉/∂x

− ∂x
〈
ṽx

∫
dv‖

δf 2
i

2〈fi〉′
〉
− νc
ωci
〈vy〉 (1.22)

This is a momentum theorem for the simplified model for drift wave turbulence

and zonal flows.

While we assumed that fluctuations are supported by waves to connect

kinetic pseudomomentum to wave momentum, the psuedomomentum is a more

generalized concept than wave momentum. Indeed, as shown later, the kinetic

pseudomomentum enters momentum budget between phase space structures and

zonal flows. Utilities and implications of the momentum budget between phase

space structures and zonal flows are treated in chapter 3 and chapter 4.
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1.4 Organization of the thesis

In the remainder of the thesis, turbulence driven flows and phase space

structures in tokamak turbulence are characterized based on phase space density

correlation evolution. In chapter 2, intrinsic toroidal rotation is treated as an

example of turbulence driven flows, and the flow engine calculation is presented.

There, a special emphasis is made to quantify the tokamak as a heat engine,

where heat is converted to toroidal flows. Specifically, an efficiency of the flow

generation process is defined and calculated. Comparison to experimental scalings

is discussed as well. Chapter 3 and chapter 4 discuss relaxation and transport

by phase space structures. In chapter 3, it is argued that in a generic drift wave

system the drift hole is formed and cause subcritical instability. Coupling to zonal

flows is emphasized throughout. Specifically, roles of zonal flows in determining

drift hole structure and in describing drift hole dynamics are discussed. In chapter

4, hole and granulation in trapped ion induced ion temperature gradient driven

turbulence are discussed. We show that zonal flows reduce transport by exerting

dynamical friction, which algebraically competes against other transport fluxes,

such as a quasilinear diffusive flux.



Chapter 2

Efficiency of Intrinsic Rotation

Generation in Tokamaks

2.1 Introduction

Turbulence driven mesoscale and mean flows in fusion plasmas, such as E×
B shear flows (zonal flow, ZF)[17] and intrinsic rotation in toroidal direction[41, 23],

play an important role in achieving better confinement and improving stability.

The reduction of turbulent transport by radially sheared E × B flow[18, 33] is

a widely accepted concept in the fusion community. The reduction of transport

by sheared toroidal rotation[18] is also argued, based on the idea that the radial

force balance relates the toroidal rotation to the radial electric field Er, which is

responsible for the transport reduction. The stabilization of resistive wall modes

by toroidal rotation[42] is discussed as a means to achieve and sustain a high β dis-

charge. The need for intrinsic flow in the transport reduction and the stabilization

will surely increase for the future larger machines since it becomes harder to drive

the plasma rotation by external means (NBI) due to shallow beam penetration

and large plasma inertia.

One of the main issues in intrinsic flow physics is to explain its generation

processes. The system is characterized by no external momentum input, while

energy is injected into a system using methods such as radio-frequency heating.

17
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To explain the generation of flows, the concept of a wave driven residual stress was

developed and extensive experimental[41, 43, 44] and theoretical[45, 46] research

on this topic is ongoing. The residual stress is a component of momentum flux

which is not proportional to either flow or flow shear, as

〈ṼrṼ‖〉 = −χφ〈V‖〉′ + Ur〈V‖〉+ Πres
r‖ (2.1)

The first term is diffusive part, the second term is pinch[47, 48, 49], and the last

term is the residual stress. Intrinsic torque in toroidal plasmas, which is related

to the residual stress via η = −∇ · Πres
r‖ , was observed for a plasma with no flow

and unbalanced NBI injection (1 co + 2 counter)[43]. For a cylindrical plasma, the

residual stress was determined by measuring the total flux 〈ṼrṼθ〉 and the diffusive

part −χθ〈Vθ〉′ separately[44]. Note the direction of intrinsic flow is azimuthal

in the case of a cylindrically symmetric plasma. The residual contribution was

determined by calculating the difference of the two (i.e. the total flux and the

diffusive flux), since there was no radial convection, i.e. no pinch effect, in the

experiment. Symmetry breaking mechanisms were identified and shown to induce

a non-zero Reynolds stress 〈ṼrṼ‖〉 ∝ 〈k‖kθ〉 which includes the residual stress[46].

The momentum conservation theorem was formulated for wave-particle interaction

and the resultant momentum flux, which includes the diffusive flux, the pinch, and

the wave-driven residual stress, was calculated[45].

In the framework of residual stress, the generation process of flows can be

understood as a conversion of thermal energy, which is injected into a system by

heating, into kinetic energy of macroscopic flow by drift wave turbulence excited

by ∇T , ∇n, etc (Fig. 2.1). From this picture, one may conceptually view the

plasma as a type of an engine, where energy input drives turbulence, which leads

to ∇T relaxation but also to the generation of flow. See Table 2.1 for a comparison

between a ‘car’ and intrinsic rotation.

The idea of attributing flow generation to heat was mentioned by Carnot[25]

to explain the general circulation of the Earth’s atmosphere. The concept of an

engine may be applied to the problem of the solar differential rotation as well. In

the case of solar differential rotation, energy is generated by fusion at the core
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Figure 2.1: Energy input Q sets temperature profile ∇T which generates tur-
bulence in a system. The turbulence leads to both relaxation and generation of
flow

Table 2.1: Car and Intrinsic flow

Car Intrinsic Rotation

Fuel Gas Heating ⇒ ∇T
Conversion Burn ∇T driven DW Turbulence

Work Cylinder/Cam Residual Stress
direction - symmetry breaking

Result Wheel Rotation Flow

of the sun (an example of fusion which actually works, albeit one using inertial

confinement), leading to excitation of turbulence at the convective zone and gen-

eration of the solar differential rotation profile. See Table 2.2 for a comparison. In

the fusion community, some attempts to characterize flow generation in plasmas as

the result of the action of a thermodynamic engine have been discussed[50, 51]. In

those, flow generation is treated as analogous to the work (power, more precisely)

which can be extracted from the exchange of heat between hot and cold part of

plasmas, i.e. the heat flux driven by ∇T . However, these discussions have not

given a systematic calculation for the figure of merit of the engine.

In this paper, using the physical picture of plasma flow generation as an

engine and a simple kinetic model with drift kinetic ions and adiabatic electrons, we

formulate an explicit expression for the criterion for engine efficiency by comparing

rates of entropy production/destruction due to thermal relaxation/flow generation.

Flow generation reduces entropy since it leads to large scale order in the system.

We formulate the entropy budget for the turbulent relaxation process by calculating

the time evolution of the mean field entropy[52]. The mean field entropy is the
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Table 2.2: Comparison of differential rotation in the sun and intrinsic rotation in
tokamak

Sun Tokamak

Heat Source fusion reaction at the core Heat deposition
Turbulence Source ∇T ∇T

Threshold Schwarzschild Criteria ITG
1

T

∣∣∣∣dTdz
∣∣∣∣ > (γ − 1)

1

ρ

∣∣∣∣dρdz
∣∣∣∣ R/LT > R/LT,c

Turbulence Convective Turbulence ITG Turbulence
Symmetry Breaking Rotation, β velocity shear, 〈VE〉′

Stratification Intensity gradient, I(x), ...
Resultant Flow Polar Differential Rotation Intrinsic Rotation

vφ(θ) v‖(r)
B.C. ? SOL, Edge, ...

part of entropy defined using only the mean field distribution function as S0 ≡
−
∫
dΓ〈f〉 ln〈f〉, which evolves due to the action of turbulence. Note that S0

is defined in terms of coarse grained fields. We show that thermal relaxation

creates entropy, while intrinsic flow generation decreases the entropy of the system,

consistent with the physical picture of flow as an ordered state. We also show that

the destruction of entropy due to zonal flow is larger in magnitude than that due to

intrinsic toroidal rotation by order of O(k‖/k⊥), where k is a representative wave

number of the drift waves. Given the disparity in their magnitude, we discuss the

nature of the stationary state achieved by order-by-order balance in the entropy

budget. We show that the lowest order balance, i.e. the balance between the

entropy production rate due to the thermal relaxation and the entropy destruction

rate due to the zonal flow generation, recovers the conventional stationary state,

where turbulence is suppressed by zonal flow shearing. After discussing the class

of possible stationary states, we define and calculate the efficiency of plasma flow

drive using the entropy production rate and destruction rate. More precisely, an

upper bound on the efficiency is calculated, since only the dominant contribution

to the entropy production rate is retained. The scaling of intrinsic toroidal rotation

generation is derived by using the entropy destruction rate due wave driven residual

stress and shown to be proportional to ρ2
∗(L

2
s/L

2
T ). We emphasize these results are
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obtained for, and apply only to, a standard, generic model of drift wave turbulence.

The reminder of the paper is organized as follows. In Sec. II, the entropy

budget for turbulent relaxation with flow generation, is formulated. Using the

expression for the entropy budget, we discuss the possible stationary state with

coupling to flows. In Sec. III, we define and calculate the efficiency of the plasma

flow drive, by using the entropy production rate derived in Sec. II. In Sec. IV, we

present discussion and conclusions.

2.2 Entropy Budget

In this section, we formulate the entropy budget for the processes of tur-

bulent relaxation and flow generation for a simple model of drift-ITG mode tur-

bulence. In this derivation, we assume simple drift kinetic ions and adiabatic

electrons. Given the basic structure of entropy budget, we discuss the possible

stationary states with and without flow generation. We derive a coupled set of

equations for turbulent fluctuations, δf 2 and shear flow evolution, which are anal-

ogous to the conventional predator-prey model for drift wave-zonal flow turbulence

system, but are formulated at the level of phase space dynamics. The role of in-

trinsic toroidal rotation generation in stationary state is discussed as well.

2.2.1 Formulation

In kinetic theory, entropy is given as S ≡ −
∫
d3xd3vf ln f where f is the

distribution function of a system. Here f is normalized to
∫
d3vf = n. For a

general case, f evolves in time according to the Boltzmann equation df/dt = C(f)

where C(f) is a collision operator. For this system – which is open – one can

calculate the evolution of entropy as (dΓ ≡ d3xd3v)

∂tS = −
∫
dΓC(f) ln f +

∫
d3v

∫
dA · (vf ln f) (2.2)

where
∫
dA denotes the integral over the surface area. From this relation, one

can see that the net entropy of a system changes in two ways, i.e. by collisional
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Figure 2.2: Heat flux through boundary. The region of interest is surrounded by
hot and cold region with the temperature TH and TC .

entropy production (positive by H-theorem) and by a boundary flux term, which

arises as a consequence of outflow of particles, heat, turbulence intensity, etc. In

the following analysis the boundary term is dropped by assuming a boundary

condition such as f ∝ n→ 0 or vn → 0 where vn is the velocity component normal

to the boundary. Before preceding, we offer the observation that the boundary

term may play an important role in the entropy budget. For example, the role of

the boundary term for thermodynamic systems is described by Ozawa et.al.[26]

as follows. For a system as shown in Fig. 2.2, the region of interest exchanges

heat across the boundary between hot and cold regions. The entropy production

associated with the heat exchange through the boundaries is −Fin/TH and Fout/TC

respectively, where Fin > 0 is the inflow of heat, Fout > 0 is the outflow of heat, TH

is the temperature of hot region, TC is the temperature of cold region. Since for a

stationary state, the influx and outflux are equal, the total effect of the boundary

term on the net entropy balance is

−Fin
TH

+
Fout
TC

= F
TH − TC
TCTH

> 0 (2.3)
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which shows a net contribution to the entropy budget from the boundary terms.

Such an effect can be important in tokamak plasmas when one considers an annular

region with steep temperature gradient, which suggests a significant difference in

temperature across boundary. Here we consider a simplified case with no entropy

outflow, so net volume integrated production and dissipation must cancel. As a

consequence then, this theory is probably more directly relevant to δf particle

simulations – which impose the boundary condition ∇φ = 0 and so preclude any

out flux of entropy – than to actual tokamak plasmas. Indeed, since trends in

the evolution of intrinsic rotation appear closely linked to the L-H transition,

we note that the drop in the cross-boundary flux 〈ṽrδf 2〉/〈f〉 (which necessarily

occurs at the transition) will impact the global entropy budget, and thus should

be considered in models of intrinsic rotation evolution.

Since we are interested in turbulent relaxation, we focus on the generation

of the “mean field” entropy[52], S0 ≡ −
∫
dΓ〈f〉 ln〈f〉, where 〈f〉 is a coarse grained

mean distribution fucntion. By decomposing f = 〈f〉 + δf , one can approximate

the coarse grained entropy as

〈S〉 = −
∫
dΓ〈(〈f〉+ δf) ln(〈f〉+ δf)〉

∼= −
∫
dΓ〈f〉 ln〈f〉 −

∫
dΓ
〈δf 2〉
〈f〉

≡ S0 + S2

where S2 ≡ −
∫
dΓ〈δf 2〉/〈f〉 is entropy of fluctuations. Using the decomposition of

entropy and a linearized collision operator, i.e. C(f) = C(〈f〉) + C(δf) ∼= C(δf),

with 〈f〉 thus driven to a local Maxwellian, Eq. (2.2) can be rewritten in terms of

S0 as

∂tS0 =− ∂tS2 −
∫
dΓ
〈δfC(δf)〉
〈f〉

=∂t

∫
dΓ
〈δf 2〉
〈f〉 −

∫
dΓ
〈δfC(δf)〉
〈f〉 (2.4)

which relates the evolution of the mean field entropy to the evolution of and col-
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lisional dissipation of δf 2. Note the last term, collisional dissipation, is positive

definite, as a consequence of the H-theorem.

To calculate δf 2 generation, we employ a simple drift kinetic equation for

ions

∂tf + v‖∇‖f +
c

B
ẑ×∇φ̃ · ∇f +

|e|
mi

Ẽ‖
∂f

∂v‖
= C(f) (2.5)

and assume adiabatic response for electrons

δne
n0

=
|e|φ̃
Te

(2.6)

Thus we are interested in ITG turbulence as a specific model of drift wave turbu-

lence. For δf 2 balance, we have

∂t

〈
δf 2

2〈f〉

〉
+

1

r
∂r

(
r

〈
Ṽr
δf 2

2〈f〉

〉)
− 〈δfC(δf)〉

〈f〉

=− 〈ṽrδf〉
〈f〉′
〈f〉 −

|e|
mi

〈Ẽ‖δf〉
1

〈f〉
∂〈f〉
∂v‖

(2.7)

where a scale separation between mean and fluctuation, i.e. ∂tδf � ∂t〈f〉 and

∇δf � ∇〈f〉 was assumed. Since we are interested in the evolution of∫
dΓ〈δf 2〉/〈f〉

(see Eq. (2.4)), we need to integrate Eq. (2.7) over phase space. Taking the phase

space integral, one obtains

∂t

∫
dΓ
〈δf 2〉
2〈f〉 =

∫
d3x(P −D) (2.8)

where

P ≡
∫
d3v

(
−〈ṽrδf〉

〈f〉′
〈f〉 −

|e|
mi

〈Ẽ‖δf〉
1

〈f〉
∂〈f〉
∂v‖

)
(2.9a)

D = −
∫
d3v
〈δfC(δf)〉
〈f〉 (2.9b)

Here P is the δf 2 production rate due to the free energy in configuration space (i.e.

∼ ∂〈f〉/∂r) and velocity space (i.e. ∼ ∂〈f〉/∂v‖). D is the collisional dissipation.
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To calculate P , we assume 〈f〉 as a local Maxwellian with a mean shear

flow, 〈V⊥〉(r) and 〈V‖〉(r). With quasi-neutrality ñe = ñi, one obtains

P =− n

TiLT
Qi
turb −

n

v2
thi

〈V⊥〉′〈ṼrṼ⊥〉

− n

v2
thi

〈V‖〉′〈ṼrṼ‖〉+
1

Ti
〈J̃ i‖Ẽ‖〉 (2.10)

where vthi ≡
√

(Ti/mi), L
−1
T ≡ (dTi/dr)/Ti, Q

i
turb ≡ n−1

∫
d3vE〈Ṽrδf〉 = 〈ṼrT̃i〉,

〈ṼrṼ〉 ≡ n−1
∫
d3v(v− 〈V〉)〈Ṽrδf〉 and 〈J̃ i‖Ẽ‖〉 = |e|

∫
d3v(v‖ − 〈V‖〉)〈δfẼ‖〉. Note

the mean ion velocity was replaced by the mean plasma velocity, due to the large

ion inertia. The first three terms are related to the spatial inhomogeneity of a local

Maxwellian and have the standard form of the entropy production rate JkXk, where

Jk = {Qi
turb, 〈ṼrṼ⊥〉, 〈ṼrṼ‖〉} is the flux vector and Xk = {−〈T 〉′, −〈V⊥〉′, −〈V‖〉′}

is the thermodynamic force. In the following, we further simplify the entropy

production rate by employing a simple model to calculate the turbulent flux as

Jk = Jk[Xl] and discuss their consequences. The last term in Eq. (2.10) comes

from the velocity space dependence in the distribution function and represents the

effect of resonant heating. Using Poynting’s theorem[53], one can write the heating

term as ∫
d3x〈J̃ i‖Ẽ‖〉

=

∫
d3x(−∂tW −∇ · Sw − 〈J̃⊥ · Ẽ⊥〉) (2.11)

Here W is wave energy density and Sw is flux of wave energy density. For a

stationary state, the first term in the right hand side is zero, ∂tW = 0. The

second term also vanishes due to the boundary conditions,
∫
d3x∇ · Sw =

∫
dA ·

Sw|boundary → 0. In other words we assumed there are no outgoing waves, again

as enforced in simulations. The third term is also zero, 〈J̃⊥ · Ẽ⊥〉 = 0, since

J⊥ ∝ E×B at the lowest order. Thus the heating term is dropped in the following

discussion.

To further simplify the entropy production rate term in Eq. (2.10), we

employ a simple model for flux terms here. The first term in Eq. (2.10) is related
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to the thermal relaxation. For simple ITG turbulence, we have a simple flux-

gradient relation Qi
turb = −χi∇T , where the thermal conductivity χi is

χi ∼
∑
k

τDWk |ṽr|2kΘ(R/LT −R/LT,c) (2.12)

Here τDWk is the correlation time for ITG drift wave turbulence and Θ is the

step function, which accounts for the threshold condition. Using the flux-gradient

relation, it follows that the production rate due to thermal relaxation is positive

definite, i.e.

− n

TiLT
Qi
turb = nχi

(∇T
T

)2

> 0 (2.13)

Thus turbulent thermal relaxation produces entropy. The second and the third

term in Eq. (2.10) are the momentum flux in the perpendicular and parallel direc-

tion, which contain information concerning flow generation. For the perpendicular

flow, for simplicity we consider only E×B shear flow or zonal flow, 〈V⊥〉′ = 〈VE〉′.
The momentum flux in the perpendicular direction can be calculated using the

wave kinetic equation as 〈ṼrṼθ〉 = K〈VE〉′ (See appendix B for the derivation)

where

K ≡
∑
k

c2
sτZF

ρ2
sk

2
θ

(1 + k2
⊥ρ

2
s)

2

(
−kr

∂〈ηk〉
∂kr

)
(2.14)

ηk ≡ (1 + k2
⊥ρ

2
s)

2

∣∣∣∣eφkTe
∣∣∣∣2 (2.15)

Here τZF is the correlation time of the zonal flow, ηk is the fluctuation potential

enstrophy and K is related to the nonlinear growth rate of zonal flow as γZF = q2
rK

with qr as the radial wave number of the zonal flow. Making the assumption that

the zonal flow grows (γZF > 0 ⇔ K > 0 ⇔ −kr∂〈ηk〉/∂kr, a standard criteria for

the zonal flow growth[17]), one can show that the entropy production rate due to

zonal flow growth is negative definite, i.e.

− n

v2
thi

〈V⊥〉′〈ṼrṼ⊥〉 = −nK
(〈VE〉′
vthi

)2

< 0 (2.16)
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Hence, the generation of zonal flow leads to a destruction of entropy. This is

physically plausible and can be easily understood, since zonal flow shears oppose

relaxation of ∇T by reducing transport, and hence acts against entropy produc-

tion. Put differently, one can regard zonal flow as a large scale coherent structure,

and the generation of a coherent structure may be viewed as restoring “order” to

the system, thus decreasing the entropy of that system. Note that the entropy de-

struction occurs only in the sense that it opposes entropy production due to other

relaxation processes, i.e. thermal relaxation, here. The overall entropy production

rate, i.e. the sum of those due to thermal relaxation and zonal flow generation,

cannot be negative. The parallel momentum flux can be decomposed as[29]

〈ṼrṼ‖〉 = −χφ〈V‖〉′ + U〈V‖〉+ Πres
r‖ (2.17)

The first term is turbulent diffusion of parallel momentum, the second term shows

the effect of the pinch and the third term is residual stress, which leads to genera-

tion of intrinsic toroidal rotation. The pinch term is taken to be zero for simplicity

hereafter, since it only re-distributes momentum by radial convection. For a sta-

tionary state, there is no torque input, so we must have

〈ṼrṼ‖〉 = −χφ〈V‖〉′ + Πres
r‖ = 0 (2.18)

to get a non-trivial toroidal flow profile, 〈V‖〉′ = Πres
r‖ /χφ. From this consideration,

we see that the total entropy production rate due to parallel momentum flux,

∝ 〈V‖〉′〈ṼrṼ‖〉, is zero for a stationary state of intrinsic toroidal rotation. However,

it consists of two competing parts, i.e. the terms due to the diffusive and residual

parts of the momentum flux, respectively. The diffusive part gives rise to viscous

heating and the resultant entropy production rate is shown to be positive definite,

i.e.

− n

vthi
〈V‖〉′〈ṼrṼ‖〉|diff = nχφ

(〈V‖〉′
vthi

)2

> 0 (2.19)

The residual part in the parallel momentum flux leads to the generation of intrinsic

toroidal rotation and the resultant entropy production rate is shown to be negative
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definite, i.e.

− n

v2
thi

〈V‖〉′〈ṼrṼ‖〉|res

=− n

v2
thi

〈V‖〉′Πres
r‖ = − n

χφv2
thi

Πres
r‖

2 < 0 (2.20)

where the stationary condition for the parallel momentum flux 〈V‖〉′ = Πres
r‖ /χφ

was used.

After the simplification above, we have

P =nχi

(∇T
T

)2

− nK
(〈VE〉′
vthi

)2

+ nχφ

(〈V‖〉′
vthi

)2

− n
Πres
r‖

2

v2
thiχφ

(2.21)

The first term is due thermal relaxation and is positive definite. The second term

is related to the zonal flow generation and is negative definite, given that the zonal

flow grows. The third term is due to viscous heating and is positive definite. The

fourth term comes from the generation of intrinsic toroidal rotation and is negative

definite.

2.2.2 Flow generation and stationary state

Since we are interested in the calculation of the efficiency of an engine for a

stationary state, it would be important to clarify the criteria for stationarity and

the physical picture of the system we are concerned with. Here we discuss the class

of states which is defined by requiring δf 2 to be stationary. First we discuss the

stationary state when the flow generation is weak. Then we consider the case with

generation of flow.

When the generation of the flow is weak and the instability source is the

temperature gradient, the production rate becomes

P ∼= nχi

(∇T
T

)2

> 0 (2.22)
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Table 2.3: Comparison of δf 2 stationary state

P = D P = 0

Flow generation Not necessarily Yes
δf 2 production ∇T relaxation ∇T relaxation
δf 2 destruction Collisional dissipation Flow generation

(small scale) (meso scale)

which is positive definite as long as a supercritical temperature gradient is main-

tained. To achieve stationarity, we must balance production with dissipation, i.e.

P = D. Note that this is a global balance in phase space. One may understand

this balance as a cascade of ‘phasetrophy’ δf 2 in phase space[30, 54], where δf 2 is

produced by inhomogeneity in 〈f〉(x) at some scale in phase space, transferred to

smaller scale by nonlinear interaction and eventually dissipated by collision.

However, by allowing the generation of flow, one can access different type

of stationary states, since entropy destruction occurs due to flow generation, as we

saw in the last section. With the generation of flow, one can achieve stationary

state with P ∼= 0. See Table 2.3 for the comparison.

Since 〈ṼrṼ⊥〉 ∝ kθk⊥, 〈ṼrṼ‖〉 ∝ kθk‖ and k⊥ > k‖ for typical drift wave

turbulence, the entropy destruction rate due to zonal flow generation is virtually

always larger than that due to intrinsic toroidal rotation generation. Alterna-

tively put, since self-generated flows are ultimately driven by wave momentum

(i.e. momentum conservation laws relates flow momentum plus turbulence pseu-

domomentum to sources, sinks etc), and since pθ = kθN while p‖ = k‖N , poloidal

wave momentum naturally exceeds parallel wave momentum. In turn then, absent

damping, poloidal and zonal flows naturally can be expected to exceed intrinsic

toroidal flows. Hence, the P ∼= 0 state can be calculated order by order. To the

lowest order in O(k‖/k⊥),

P ∼= nχi

(∇T
T

)2

− nK
(〈VE〉′
vthi

)2

+O(k‖/k⊥)

Note that K > 0 for zonal flow growth. A non-trivial stationary state is evident
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with P ∼= 0, i.e. when:

〈VE〉′2 =
χi
K

v2
thi

L2
T

(2.23)

Note that χi and K approximately cancel, i.e. χi/K ∼ 1, since χi ∼=
∑

k |ṽr|2kτDWk ,

K ∼=
∑

k |ṽr|2kτZFk and τZF ∼ τDW for a simple model. Here τZFk ∼ 1/νeff , τ
DW
k ∼

1/∆ωk where νeff is the ‘Krook’ operator for wave-wave scattering process[30],

∆ωk is the decorrelation rate. Thus the stationary flow shear is tied directly to

the ∇T force by:

〈VE〉′2 ∼=
v2
thi

L2
T

Θ(L−1
T − L−1

T,c) = v2
thi

(∇T
T

)2

Θ(L−1
T − L−1

T,c) (2.24)

where the step function Θ(L−1
T − L−1

T,c) accounts for the threshold behavior, origi-

nating from the turbulent thermal conductivity χi. Note that the profile of zonal

flow is relatively smooth. In other words the zonal flow treated here is a large scale

flow, at the limit of long wave length.

It is interesting to see how δf 2 evolves in time with the dominant terms in

the production rate, i.e. that of ∇T relaxation and zonal flow generation:

∂t

∫
dΓ
〈δf 2〉
2〈f〉 =

∫
d3x

(
nχi

(∇T
T

)2

− nK
(〈VE〉′
vthi

)2
)

(2.25)

Adding the equation for flow shear amplification by Reynolds stress, we have

∂t

∫
dΓ
〈δf 2〉
2〈f〉 =

∫
d3x

(
nχi

(∇T
T

)2

− nK
(〈VE〉′
vthi

)2
)

(2.26a)

∂t
〈VE〉′2

2
= Kq̄2

r〈VE〉′2 − νcol〈VE〉′2 (2.26b)

where q̄2
r ≡

∑
q q

2
r〈VE〉′2q /〈VE〉′2 is the spectral average of the radial wave number

of the zonal flow, qr. Note that Eqs. (2.26a) and (2.26b) have the same structure

as the familiar predator-prey model for the DW-ZF turbulence system[17, 55]. For

comparison, recall the standard predator-prey form:

∂tε = γLε− αV ′2ε−∆ω(ε)ε (2.27a)
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∂tV
′2 = αV ′2ε− νcolV ′2 (2.27b)

where ε is the turbulence intensity, V ′2 is flow shear, γL is linear growth rate of a

mode, α represents a coupling between flow and fluctuations, ∆ω is a decorrelation

rate, νcol is a collisional drag on flow. By comparing the two set of equations, not

surprisingly, we see that the fluctuation entropy or δf 2 plays the same role of the

fluctuation intensity ε. In the terminology of the predator-prey system, δf 2 or

fluctuation entropy is the ‘prey’ and the zonal flow shear is the ‘predator.’ The

‘prey’ grows with the relaxation process, nχi(∇T/T )2, and decreases with the gen-

eration of the ‘predator,’ n〈VE〉′2K/v2
thi. The ‘predator’ increases by consuming the

‘prey’ (i.e. flow generated by fluctuations), Kq̄2
r〈VE〉′2, and eventually dissipated

by small, but finite, collisional damping, νcol〈VE〉′2. The steady state occurs when

entropy generation and destruction balance each other. The stationary state is

thus

〈VE〉′2 =
χi
K

v2
thi

L2
T

(2.28a)

K(|φ̂|2) =
νcol

q̄2
r

(2.28b)

which has the same structure as a stationary solution for the familiar predator-prey

system, namely:

V ′2 =
1

α
(γL −∆ω(ε)) (2.29a)

ε =
νcol
α

(2.29b)

The stationary level of the flow has similar structure in both systems, through

the χi/L
2
T and γL − ∆ω dependence. Both systems show threshold behavior,

χi ∝ Θ(LT,c/LT − 1) and γL −∆ω. The flow level increases as drive of instability

is strengthened, as manifested in 1/LT and γL. This reflects the fact that the

dynamical system naturally couples ∇T free energy to the flow. The stationary

level of turbulence, K ∼ χi in the model and ε in the standard predator-prey,

is tied to the collisionality in flow, χi ∼ K = νcol/q̄2
r and ε = νcol/α, which is

consistent with gyrokinetic simulations[56].

The role of generation of intrinsic toroidal rotation in stationary state can

be seen by going to the higher order O(k‖/k⊥) balance in the production rate term.
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After the cancellation at the lowest order terms, the production rate becomes

P = n
χφ
v2
thi

〈V‖〉′2 − n
Πres
r‖

2

v2
thiχφ

(2.30)

which consists of the production due to turbulent viscous heating and the destruc-

tion due to toroidal flow generation. The two terms cancel for a stationary state

of intrinsic toroidal rotation, since

〈ṼrṼ‖〉 = −χφ〈V‖〉′ + Πres
r‖ = 0 (2.31)

Hence the total entropy production rate by the parallel momentum flux vanishes in

a stationary state, i.e. the entropy production by intrinsic toroidal flow is balanced

by the entropy destruction by intrinsic toroidal flow generation, to order O(k‖/k⊥).

To summarize, we considered the two classes of stationary state: P=D and

P ∼= 0. The former is the stationary state with the balance between production

(positive definite) and total dissipation, without the coupling to the flow genera-

tion. One may understand this process as the cascade of the ‘phasetrophy’. The

latter is achieved by including the effect of flow generation. The P = 0 state is

achieved order by order since the entropy destruction rate due to zonal flow and in-

trinsic toroidal rotation differ by O(k‖/k⊥). The dominant balance occurs between

∇T relaxation and zonal flow generation. The effect of intrinsic toroidal rotation

generation appears in the next order in O(k‖/k⊥) and vanishes for a stationary

state. Given all the terms calculated above, the total production rate becomes

P =nχi

(∇T
T

)2

− nK
(〈VE〉′
vthi

)2

+ nχφ

(〈V‖〉′
vthi

)2

− n
Πres
r‖

2

v2
thiχφ

(2.32)

The first two terms balance at the lowest order and the next two terms balance at

the next order. In the next section, we calculate the efficiency of flow generation

for the stationary state with flow, i.e. the P = 0 state.
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2.3 Efficiency of Intrinsic Flow Drive

Having established the entropy budget for the flow generation and relax-

ation process, we are ready to calculate the efficiency of flow generation. In this

section, we present a definition and calculation for the plasma flow generation effi-

ciency. First, we define the efficiency using the entropy budget in the last section.

After defining the efficiency, we give the actual calculation of its value and scaling,

both for zonal flow and intrinsic toroidal rotation.

2.3.1 Definition of Efficiency

With the flow generation terms in the production rate, we have

∂tS0 =

∫
d3x

(
nχi

(∇T
T

)2

− nK 〈VE〉
′2

v2
thi

+nχφ
〈V‖〉′2
v2
thi

− n
Πres
r‖

2

v2
thiχφ

)
(2.33)

We calculate the efficiency of flow generation for stationary state with P = 0 where

the balance is achieved order by order as explained in the last section. Using the

expression for the entropy production rate, we define the efficiency of plasma flow

generation as follows:

e ≡ |
∫
d3xPflow|∫
d3xPnet

(2.34)

i.e. the ratio between the magnitude of the entropy destruction rate due to flow

generation and the total entropy production rate due to relaxation. Note that the

efficiency here is defined using the entropy production rate and destruction rate (∝
Q̇ where Q is heat, not heat flux ), while usually the efficiency of a thermodynamic

engine is defined in terms of heat and work (∝ Q). In other words, the former

is defined using ratios of power, while the latter is defined using ratios of energy.

As for the entropy destruction mechanism, we can consider two cases, i.e. zonal

flow generation Pflow = −(nK〈VE〉′2)/v2
thi and intrinsic toroidal flow generation
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Pflow = −n(Πres
r‖ )2/χφ. As for the net production rate, we have

Pnet = nχi

(∇T
T

)2

+ nχφ

(〈V‖〉′
vthi

)2

(2.35)

The first term is related to ∇T relaxation due to turbulence. The second term

is related to the turbulent viscous heating. The second term is smaller than the

first term by order of (〈V‖〉/vthi)2, where (〈V‖〉/vthi)2 ≡M2
th ∼ 0.01, typically. This

follows, in part, from:

nχφ

(〈V‖〉′
vthi

)2

∼ nχφ

(〈V‖〉′
〈V‖〉

)2 〈V‖〉2
v2
thi

∼ nχi

(∇T
T

)2 〈V‖〉2
v2
thi

with Pr ≡ χφ/χi ∼ 1 and ∇T/T ∼ 〈V‖〉′/〈V‖〉. Hereafter, we only keep the

dominant contribution to the net entropy balance, i.e. Pnet ∼= χi(∇T/T )2. Since we

drop the positive definite term (the turbulent viscous heating) in the denominator

in Eq. (2.34), we calculate an upper bound for the efficiency.

2.3.2 Efficiency of zonal flow generation

As the first case, we consider the efficiency of zonal flow generation, although

the outcome is trivial as shown below. Using the definition given above, we obtain,

as an upper bound,

eZF .

∫
d3x(nK〈VE〉′2)/v2

thi∫
d3x(nχi)/L2

T

. (2.36)

Since we are interested in the efficiency at a stationary state, we substitute Eq.

(2.23) for the value of 〈VE〉′. With the substitution, one obtains

eZF . 1 (2.37)
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This is the result we should expect given the assumption we made, i.e. we consid-

ered flow shear dominated state for δf 2 balance

∂t

∫
dΓ
〈δf 2〉
〈f〉 =

∫
d3x

(
n
χi
L2
T

− n〈VE〉′2
v2
thi

K

)
= 0 (2.38)

and defined the efficiency to be the ratio of the two terms in the right hand side.

Hence

eZF . 1 (2.39)

is just the restatement of the fact that we have a stationary state by balancing

the entropy production rate due to thermal relaxation and the dominant entropy

destruction rate due to zonal flow growth.

2.3.3 Efficiency of intrinsic toroidal flow generation

The efficiency of zonal flow production was calculated using dominant terms

in the production rate, Eq. (2.32). By going to next order in O(k‖/k⊥), we can

calculate the efficiency of intrinsic toroidal rotation generation. In this picture,

generation of intrinsic toroidal rotation is considered to be a two step process (Fig.

2.3): Firstly, a stationary state is achieved by a balance between dominant terms in

the entropy production rate, i.e. temperature relaxation and zonal flow generation.

This is the state given by the stationary solution of Eq.(2.26a) and Eq.(2.26b) with

eZF ∼ 1. As a secondary process, this preexisting stationary turbulent plasma and

shear flow give rise to the wave driven residual stress, which generates an intrinsic

toroidal torque. Thus, the efficiency of intrinsic toroidal flow in this process is,

from the definition,

eIR ∼=
∫
d3xn(Πres

r‖ )2/(v2
thiχφ)∫

d3xnχi(∇T/T )2
(2.40)

We can easily estimate the order of magnitude for eIR. Using the stationary

condition for intrinsic flow Πres
r‖ = χφ〈V‖〉′ and assuming 〈V‖〉′/〈V‖〉 ∼ σ∇T/T

(where σ is a O(1) constant factor), we can obtain (here Mi ≡ 〈V‖〉/vthi is toroidal
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Figure 2.3: Turbulent plasma and flow generation

Mach number)

eIR =

∫
d3xnχφ〈V‖〉′2/v2

thi∫
d3xnχi(∇T/T )2

∼ σ2M2
i (2.41)

For a typical value of Mi ∼ 0.1 and σ ∼ 1, we have eIR ∼ 0.01 which states that

intrinsic toroidal rotation generation has low efficiency. This is also consistent with

the assumption that intrinsic toroidal rotation contribution to entropy generation

is smaller than that from zonal flow. Both are a straightforward consequence of

the ordering k‖ < k⊥. Note that more careful consideration must be given to cases

with reversed shear.

In order to explicitly calculate the scaling form of eIR, one needs the mod-

eling of residual stress. In doing so, we consider a simple 〈VE〉′ driven case, since

〈VE〉′ is already given as a consequence of lowest order balance in δf 2 stationar-

ity. In this case, a shift in the spectral envelope, which is required for non-zero

Reynolds stress 〈k‖kθ〉 ∝ 〈x〉, originates from the radial electric field shear or 〈VE〉′

as[46] 〈
k‖
kθ

〉
= −ρ∗

Ls
2cs
〈VE〉′ (2.42)

for simple drift wave turbulence. Here ρ∗ ≡ ρs/a, ρs is ion sound Larmor ra-

dius, L−1
s = ŝ/(qR) is a shear length, a is the minor radius. This can be further
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calculated by using the stationary value for the E ×B flow, Eq. (2.24):〈
k‖
kθ

〉
= ∓ρ∗

Ls
2cs

√
χi
K

vthi
LT

= ∓ ρ∗
2τ

√
χi
K

Ls
LT

(2.43)

where τ ≡ Te/Ti. The sign is ultimately determined by the sign of E × B shear;

however, in the following discussion we only need the squared value of 〈k‖/kθ〉, so

the sign is not important. Given the symmetry breaking by E ×B shear, one can

calculate the residual stress driven by the wave momentum flux as[45]

Πres
r‖ = K〈VE〉′

〈
k‖
kθ

〉
(2.44)

= −ρ∗
Ls
2cs

K〈VE〉′2 (2.45)

= −ρ∗
Ls
2cs

χi

(∇T
T

)2

v2
thi (2.46)

Here we assumed the E ×B flow shear symmetry breaking in the second equality

and δf 2 stationarity in the third equality. Note that the residual stress scales

directly as the temperature gradient, ∇T . This is due to the fact that to estimate

〈VE〉′, we used δf 2 stationarity instead of radial force balance, which would relate

〈VE〉′ to the pressure gradient ∇P , rather than ∇T . Use of δf 2 stationarity is more

consistent, with both the model under study and with assumptions made in the

theory. A recent simulation result by Wang, et.al.[57] exhibits a similar behavior,

albeit the scaling is between intrinsic torque (∝ ∇ · Πres
r‖ ) and ion temperature

gradient. Wang has also noted that intrinsic torque scales with ∇Te for CTEM

turbulence.[58]

One of the consequences of the residual stress modeling here, although

somewhat outside of the scope of the paper, is that one can calculate a non-trivial

stationary profile of intrinsic toroidal flow as

〈V‖〉′ =
Πres
r‖
χφ

= −1

2
ρ∗
χi
χφ

Ls
cs

(∇T
T

)2

v2
thi (2.47)

This simple relation directly relates the intrinsic toroidal flow shear to the tem-

perature gradient – which is consistent with recent experiments on LHD[59] and
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Alcator C-Mod – and the magnetic shear. Note that the intrinsic toroidal flow

shear depends strongly on temperature gradient as 〈V‖〉′ ∝ (∇T )2, while zonal

flow shear is directly proportional to temperature gradient, 〈VE〉′ ∝ ∇T . This is

because in this model, E ×B shear flow plays a dual role in intrinsic toroidal flow

shear; i.e. E×B shear flow breaks symmetry (〈k‖kθ〉 ∝ 〈VE〉′) and gives rise to the

flux of wave momentum (Πres
r‖ ∝ 〈VE〉′).[30] Hence 〈V‖〉′ ∝ 〈VE〉′2, which gives the

(∇T )2 dependence. Note also the explicit ρ∗ dependence, which originates from the

symmetry breaking. One can also calculate the flow velocity 〈V‖〉 by integrating

once to show:
〈V‖〉
vthi
∼= 1

2
ρ∗
χi
χφ

Ls
LT

√
Ti
Te

(2.48)

Here we used (T ′/T )′ = −(T ′/T )2 + T ′′/T ∼= −(T ′/T )2. The scaling derived here

can be compared to Rice scaling[23] ∆vφ(0) ∼ ∆Wp/Ip, which shows similar be-

havior; ∇T is large when confinement is good, such as the H-mode, which tracks

the ∆Wp behavior. Current scaling can enter through the geometry of the B field,

Ls ∝ q/ŝ, which suggests the scaling, q ∝ Bθ ∼ I−1
p . Note that the scaling cal-

culated here shows the direct dependence on ∇T rather than ∇P , since 〈δf 2〉
stationarity is used to calculate 〈VE〉′ and 〈δf 2〉 evolves via ITG turbulence. Note

also that the expression for the flow contains the information regarding direction-

ality. However, the sign of the flow direction is strongly model dependent.[46]

Moreover, this is a consequence of residual stress modeling and is not directly re-

lated to the efficiency calculation, which is the main focus of the paper. Indeed,

note e ∼ Πres
r‖

2, so e is independent of the sign of Πres
r‖ . Hence here we do not

pursue a detailed discussion regarding the relation between flow direction and en-

tropy, but rather leave this to a future publication. We also note that a similar

scaling ∆vφ ∼ ∇〈T 〉/Bθ was proposed on the basis of the modeling of off-diagonal

components in momentum flux.[60, 61] That work was concerned with the velocity

increment for the change of NBI direction and included the explicit momentum

source (NBI torque) in the analysis.
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The efficiency can be calculated by using the value for Πres
r‖ :

eIR =

∫
d3xn

χi
χφ
χi(∇T/T )2 L

2
s

L2
T

ρ2
∗

4

v2
thi

c2
s∫

d3xnχi(∇T/T )2

∼ ρ2
∗
q2

ŝ2

R2

LT
2 (2.49)

where we assumed that χi ∼ χφ, Te ∼ Ti, ŝ 6= 0. The efficiency depends on: i)

machine size, ρ∗, which implies the efficiency will decrease for larger machines. Note

that the ρ∗ scaling appears, even after calcualting the ratio of turbulence driven

quantities, i.e. it is not a trivial consequence of |e|φ̃/Te ∼ ρ∗ scaling. In fact,

the ρ∗ scaling originates from ρ∗ dependence in the symmetry breaking correlator,

〈k‖kθ〉 ∝ 〈x〉 ∝ ρ∗. We speculate the ρ∗ dependence is thus inherent to any

residual stress modeling based on k‖ symmetry breaking of drift wave turbulence.

ii) geometry of the B field, q/ŝ. In a simple geometry with ŝ = const ∼ O(1),

the efficiency varies as q ∝ Bθ ∼ I−1
p , which shows an unfavorable current scaling,

as in the Rice scaling[23] ∆vφ(0) ∼ ∆Wp/Ip. Note this is a q(r) scaling, not

an Ip scaling. and iii) temperature gradient, R/LT , which originates from both

symmetry breaking and wave momentum flux driven by V ′E ∝ ∇T . Plasmas with

a steep gradient, i.e. such as H-mode plasmas, are more effective and efficient

for driving intrinsic toroidal rotation. The dependence on ∇T can be linked to

the ∆Wp dependence in the Rice scaling. Here, the efficiency scaling of intrinsic

rotation drive is directly tied to ∇T rather than ∇P . This is a consequence of the

fact that the model in this paper is derived for ITG turbulence. The resultant E×B
flow is also driven by ITG turbulence, so it is no surprise that we have 〈VE〉′ ∝ ∇T .

Note that the scaling was evaluated in local form in the last expression. This is a

reasonable approximation when a system has a well-defined gradient region, such

as for a peaked profile or a transport barrier, for example. Of course the case

with reversed shear internal transport barrier is of great interest; however, this is

beyond the scope of the paper, which assumes normal shear with ŝ ∼ O(1).
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2.4 conclusion

In this paper, by analogy between plasma flow generation and an engine,

we introduced the concept of flow generation efficiency by calculating the ratio

of the entropy destruction rate due to turbulent flow generation to the entropy

production rate due to thermal relaxation. The principal results are:

1. The entropy production rate was calculated and shown to be

P =nχi

(∇T
T

)2

− nK
(〈VE〉′
vthi

)2

+ nχφ

(〈V‖〉′
vthi

)2

− n
Πres
r‖

2

v2
thiχφ

Thermal relaxation and viscous heating produce entropy. Flow generation,

driving both zonal flow and intrinsic toroidal rotation, leads to the destruc-

tion of entropy. The first two terms is larger than the last two terms by

the order of O(k‖/k⊥). The production rate due thermal relaxation (the

first term) and viscous heating (the third term) differs in magnitude by

M2
i ≡ (〈V‖〉/vthi)2 ∼ 0.01 for a typical value of Mi ∼ 0.1, since χi ∼ χφ,

(〈V‖〉′/vthi) ∼Mi(〈V‖〉′/〈V‖〉), (∇T/T ) ∼ σ(〈V‖〉′/〈V‖〉) and σ ∼ 1.

2. Coupled equations for phase space density fluctuation intensity δf 2 and zonal

flow were formulated based on entropy budget and wave kinetic analysis.

They have a similar structure to the familiar predator-prey model

∂t

∫
dΓ
〈δf 2〉
2〈f〉

=

∫
d3x

(
nχi

(∇T
T

)2

− nK
(〈VE〉′
vthi

)2
)

∂t
〈VE〉′2

2
= Kq̄2

r〈VE〉′2 − νcol〈VE〉′2

where δf 2 plays the role of the prey population density.

3. The stationary levels of zonal flow and intrinsic toroidal rotation were cal-
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culated for the state achieved by imposing P = 0 order by order. They

are

〈VE〉′2 =
χi
K

v2
thi

L2
T

〈V‖〉′ = −
1

2
ρ∗
χi
χφ

Ls
cs

(∇T
T

)2

v2
thi

〈V‖〉
vthi
∼= 1

2
ρ∗
χi
χφ

Ls
LT

√
Ti
Te

The first relation is obtained from lowest order balance in the entropy produc-

tion rate. The E ×B shear is tied to the ∇T thermodynamic force directly,

since at saturation entropy destruction due zonal flow balances entropy pro-

duction due thermal relaxation. The second relation is calculated from the

next order balance in the entropy production rate and the third relation is

obtained by integrating the second relation. The intrinsic toroidal flow shows

a similar scaling to the Rice scaling ∆vφ(0) ∼ ∆Wp/Ip, i.e. L−1
T ∼ ∇T cor-

responds to ∆Wp and Ls ∝ q ∼ Bθ for fixed magnetic shear corresponds to

I−1
p . Explicit ρ∗ scaling originates from the symmetry breaking mechanism

invoked in the model.

4. The efficiency of flow generation is defined as the ratio of entropy destruction

rate due to flow generation to entropy production rate due to thermal relax-

ation. The actual value for the efficiency was calculated for intrinsic toroidal

rotation and shown to be eIR ∼M2
i ∼ 0.01−0.1 for a value of Mi ∼ 0.1−0.3.

This indicates that the drive of toroidal rotation is inherently one of a process

of modest efficiency. This finding follows from k‖ < k⊥.

5. The scaling of the intrinsic toroidal flow generation efficiency was derived as

eIR = ρ2
∗
q2

ŝ2

R2

L2
T

The efficiency of intrinsic toroidal flow generation scale as machine size ρ∗,

geometry of the B field q/ŝ and temperature profile R/LT . Related to 3.)

above, the efficiency exhibits a similar scaling behavior to the Rice scaling,
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except for the appearance of explicit ρ∗ scaling. Note that the efficiency

scaling suggests a possible origin of the unfavorable current scaling through

the safety factor[62], q.

As a caveat, the model cannot capture the phenomenology of flow direction

dependence on plasma current direction. In particular, the model cannot describe

the reversal of flow direction in TCV[63], since this reversal is likely related to

the conversion of drift modes between ion and electron branches. However, model

presented here includes only ITG turbulence. A recent simulation by W. X. Wang

also showed that the residual stress scaling is strongly dependent upon the kind of

driving turbulence, i.e. the residual stress scale with ∇Ti for ITG turbulence and

with ∇Pe for CTEM turbulence[58], which is likely to give a different efficiency

scaling for CTEM turbulence. To capture the flow reversal physics and clarify

the mode dependence of the efficiency scaling, one would need a further extension

of the theory to include the dynamics of non-adiabatic electrons and their role

in the entropy budget. The boundary term is dropped throughout the analysis

as well. These may also have an impact on the entropy budget. Note that in H-

mode, turbulence is unlikely and fluctuation flux, a cause of the boundary terms, is

quenched. Note also that the calculation implemented here is a reasonably faithful

model of the computer simulation studies by W. X. Wang[57]. In that δf PIC

simulation using GTS, ∇φ = 0 is imposed at the boundaries, thus guaranteeing

no entropy outflow. Interestingly, that simulation observed symmetry breaking

by zonal flow shear 〈VE〉′ and a level of intrinsic toroidal rotation 〈Vφ〉 ∼ ∇T ,

as calculated here. This suggests that it would be interesting for the simulation

to examine the ρ∗ and Ip scaling of the intrinsic rotation, as well as to directly

calculate the efficiency and compare with theoretical predictions. The role of the

boundary term will pursued in the future publication.

2.A Appendix: Linear mode

In this section, we review basic properties of drift waves (DW) which we

need in the calculation of shift in the mode.
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First we start with DW without symmetry breaking. Susceptibility for DW

(ñ/n = χ(|e|φ̃/Te)) is given by

χ =
ω∗e
ω

+
k2
‖c

2
s

ω2
− 1− k2

⊥ρ
2
s (2.51)

In sheared magnetic field, susceptibility takes a operator form

χ̂ =
ω∗e
ω

+
k2
yc

2
sx

2

ω2L2
s

− 1− k2
yρ

2
s + ρ2

s∂
2
x (2.52)

Solving the eigenvalue problem χ̂φ̂ = 0, one obtains

ω =
ω∗e

1 + k2
yρ

2
s

− i |Ln||Ls|
(2.53)

φ ∝ exp(−iµ
2
x2) with µ ≡ Ln

ρ2
sLs

(2.54)

With E ×B shear flow as a symmetry breaker,

χ̂ ∼= ω∗e
ω

(1− ky〈VE〉′x
ω

) +
k2
yc

2
sx

2

ω2L2
s

− 1− k2
yρ

2
s + ρ2

s∂
2
x (2.55)

and the mode will be shifted around a rational surface by

x0 = −ρ∗
L2
s

2cs
〈VE〉′ (2.56)

φ ∝ exp(−iµ
2

(x+ x0)2) (2.57)

Then the spectral average of k‖ is obtained as〈
k‖
kθ

〉
=

〈
x0

Ls

〉
= −ρ∗

Ls
2cs
〈VE〉′ (2.58)



44

2.B Appendix: Wave Kinetic Analysis of flow

generation

In this section, we derive the radial momentum flux of E × B shear flow,

the growth rate of the mean E × B flow and the radial momentum flux of IR,

based on wave kinetic equations.

We start with wave kinetic equation

∂tNk +
∂ωk
∂k
· ∂Nk

∂x
− ∂ωk

∂x
· ∂Nk

∂k

=− 2
Imε

∂ε/∂ω
Nk + Cw(Nk) (2.59)

Here Nk = (∂ε/∂ω)(|Ek|2/8π) is wave action density and we allowed wave-wave

scattering in the right hand side. At the simplest level one can employ Krook

type operator Cw(Nk) = −νeffδNk. In the following calculation we assume strong

‘collisionality’ between waves, i.e. ν−1
eff is assumed to be the fastest timescale[17].

Note the dielectric function ε is related to the susceptibility in the last section as

ε = 1− χ/(k2λ2
De). For example, wave action density for EDW is

Nk = −∂χ
∂ω

|Ek|2
8πk2λ2

De

=
nTe
2ω∗e

(1 + k2
⊥ρ

2
s)

2

∣∣∣∣eφkTe
∣∣∣∣2 (2.60)

Inhomogeneity in medium, such as intensity gradient and E×B shear flow, builds

up inhomogeneity in wave population density. For the general derivation and

discussion, see [17]. For the purpose of this paper, it is sufficient to consider a pure

〈VE〉′(x) driven case. For this case, one can solve wave kinetic equation to obtain

δNk(x) =
1

νeff
kθδ〈VE〉′(x)

∂〈Nk〉
∂kr

(2.61)

With this, one can calculate the Reynolds Stress to drive ZF and the residual stress

for IR.
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For the Reynolds stress for ZF, one can calculate as

δ〈ṼrṼθ〉(x) =−
∑
k

ρ2
skrkθc

2
s

(1 + k2
⊥ρ

2
s)

2

2ω∗e
nTe

δNk(x)

≡Kδ〈VE〉′(x) (2.62)

where

K ≡
∑
k

c2
sτZF

ρ2
sk

2
θ

(1 + k2
⊥ρ

2
s)

2

(
−kr

∂〈ηk〉
∂kr

)
, (2.63)

ηk ≡ (1 + k2
⊥ρ

2
s)

2|(eφk)/Te|2 is potential enstrophy and τZF ≡ ν−1
eff .

The growth rate is easily obtained with the momentum flux derived above

and shown to be

γflow = q2
rK (2.64)

The instability requires K > 0 or −kr(∂〈ηk〉/∂kr) > 0, which is the same criteria

for zonal flow growth.

For the residual stress in the parallel momentum flux Πres
r‖ , one can calculate

as[30]

Πres
r‖ =

1

min

∑
k

vg,rk‖δNk

=
c2
s

Ten

∑
k

− 2ρ2
skrkθv∗

(1 + k ⊥2 ρ2
s)
k‖δNk

≡
〈
k‖
kθ

〉
Kδ〈VE〉′(x) (2.65)

where 〈
k‖
kθ

〉
≡ 1

K

∑
k

k‖
kθ
c2
sτZF

ρ2
sk

2
θ

(1 + k2
⊥ρ

2
s)

2

(
−kr

∂〈ηk〉
∂kr

)
(2.66)
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Chapter 3

Drift hole structure and dynamics

with turbulence driven flows

3.1 Introduction

A coherent structure is a frequently observed element in turbulent sys-

tems. While a coherent structure often forms in fluid turbulence in real space,

such structures also form in phase space. In real space, a well-known example of

such a coherent structure is a coherent vortex in fluid turbulence, especially those

observed in quasi-2D fluids, including ‘eyes’ on Jupiter. Another example in real

space turbulence is a density blob or a hole in tokamak plasmas[64, 65] (Fig.3.1).

Density blobs or holes are generated at the plasma edge, where strong gradient

perturbations generate an outgoing blob and an incoming hole. Once generated,

the density hole (blob) can grow as it climbs (descends) the density gradient. This

observation suggests that turbulence may be stirred by incoming nonlinear struc-

tures, as well as by local linear instability. Such structure driven turbulence may

play a role in understanding the phenomenology of ‘No Man’s Land’ in tokamak

plasmas, a region that connects the tokamak core and edge.

A coherent structure in turbulence and its growth are not limited to real

space, but also extend to phase space. The simplest example of such structures

is that from 1D Vlasov plasmas, such as a BGK vortex[19], a phase space density

46
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hole[20], and clump-hole pairs[31] in the context of the Berk-Breizman model[31]

for energetic particle phenomenology. These coherent structures in phase space

form due to strong wave-particle resonance, which generates a potential that can

hold particles together in a trough. These trapped particles in turn generate a

self-potential, leading to formation of a self-sustained structure. Once formed,

such structures can grow by extracting free energy, as depicted in Fig.3.1. More

precisely, the growth is made possible by momentum exchange with, and velocity

scattering by other species[20] (for example, structures in ions must scatter elec-

trons to maintain the quasi-neutrality). Such mechanisms allow a hole to be dis-

placed up the phase space density gradient. The displacement leads to the growth

of the hole, since phase space density is necessarily conserved along trajectory.

Such growth of phase space density structures was predicted theoretically[20, 66]

and confirmed in numerical simulations[67, 68, 31, 69, 70]. One of the striking

features of the growth is that it can be subcritical, namely structures can extract

free energy even when plasmas are predicted to be linearly stable[66]. Based on

this, the fundamental role of linear stability theory was called into question[66].

A coherent structure in phase space also forms in more complex systems,

such as inhomogeneous magnetized plasmas, a system of interest to the fusion

community. Earlier study showed that BGK solutions can be obtained in such a

system and thus a phase space density hole (dubbed drift hole[34]) forms. Due to

the magnetic field, the drift hole has distinctive features in the parallel and the

perpendicular directions. In the parallel direction, the structure is similar to the 1D

Vlasov case, where trapping is provided by a potential field. In contrast, the drift

hole has a perpendicular structure which can be viewed as a localized E×B vortex.

Once formed, as with other phase space structures, drift holes can drive subcritical

instability. As for the 1D Vlasov plasma, this is a consequence of the conservation

of total phase space density, which necessitates that a localized depletion grows

as it is displaced up the gradient (Fig.3.1). However, unlike the 1D problem, drift

hole dynamics necessitates a spatial flux of particles. In particular, motion of an

electron drift hole necessitates a spatial flux of ions. Intuitively, the displacement

and the growth process of the electron drift hole may be understood in terms of
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Figure 3.1: Formation and growth of structures. The flattening of the gradient
leads to the formation of blobs (local excess) and holes (local deficit). Once formed,
holes (blobs/clumps) can grow by propagating against (down) the gradient

its screening field. Namely, once the electron drift hole forms, it attracts a cloud

of screening field. The screening field can spatially scatter ions, which forces the

electron drift hole to move up the gradient, so as to satisfy the quasi-neutrality

condition.

While early studies examined the basic structure and dynamics of drift

holes, further development is still necessary. This is especially true regarding the

issue of zonal flows[17]. The coupling of zonal flows in drift hole physics can be

motivated from an analogy to dynamics of drift wave turbulence. It has been

demonstrated that zonal flows have significant impact on fluctuation dynamics of

drift wave turbulence via amplitude suppression and cross phase decorrelation[17].

This naturally leads us to the expectation that zonal flows could also impact drift

hole driven relaxation processes. However, such zonal flow coupling was ignored in

an earlier study[34]. This is partly because that study naively ignored mesoscales

and envelope scales, and so treated 〈ṽx∇2
⊥φ̃〉 ∼ Reikyk

2
⊥|φ̃|2k → 0. Note that

the polarization charge flux is equivalent to the Reynolds force via the Taylor
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identity[35, 71, 53] 〈ṽx∇2
⊥φ̃〉 ∼ ∂x〈ṽxṽy〉.

The role of polarization charge flux in zonal flow coupling may be fur-

ther clarified in the context of potential vorticity (PV) dynamics in the quasi-

geostrophic (QG) system. The important physical meaning of the conservative PV

dynamics is the conservation of a total charge[71, 72]. For example, in Hasegawa-

Wakatani system[73], the PV is q = ne− ρ2
s∇2
⊥φ, where the total charge q consists

of (guiding center) electron charge and polarization charge. The growth of the PV

fluctuation is driven by transport of the total q. Since the transport of the total q

contains polarization charge flux, and since the polarization charge flux is equiv-

alent to Reynolds force[35, 71, 53], growth of fluctuation in the QG system must

involve zonal flow acceleration. The point is depicted in Fig.3.2. Such coupled

evolution was formulated as a momentum theorem[35, 74, 71] for the PV fluctua-

tion and zonal flow. Similarly, in the drift hole dynamics, phase space density f is

related to a total charge via
∫
d3vfe =

∫
d3vfGCi + ρ2

s∇2
⊥φ. Total charge conserva-

tion (or the quasi-neutrallity constraint) requires the screening cloud of a structure

to scatter the oppositely charged particles, as well as polarization charge, during

the growth process. Thus, we expect that the growth of the drift hole structure

be accompanied by zonal flow growth, as for PV dynamics in Hasegawa-Wakatani

system. As shown later, such polarization charge flux and thus zonal flow cou-

pling in drift hole physics can be triggered by hole-flow resonance, which allows a

non-zero cross-phase in the polarization charge flux, and hence the Reynolds force.

That zonal flow coupling is made non-zero with hole-flow resonance is physically

plausible, since the resonance allows the flow and the hole to exchange energy and

momentum with each other.

In this paper, we present the theory of the structure and dynamics of drift

holes with turbulence driven flows. Simply, drift hole structures are influenced by

flows, since flows alter the medium response. The effect shows up in the screen-

ing length of the self-consistent drift hole potential. The flow correction in the

screening leads to the shift of the E × B vortex produced by drift hole potential,

analogous to a well known shear flow effect[75] on eigenmode structure[76]. In

addition, the drift hole is coupled to flows via hole-flow resonance, which provides
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Figure 3.2: Growth of drift hole and zonal flow

the proper phase for non-zero polarization charge flux and hence Reynolds force.

The non-zero flow coupling has an impact on drift hole dynamics as well. To ac-

cess free energy and to grow, (electron) drift holes must move up the gradient by

scattering guiding center ions, while the structure is coupled to zonal flows via

the polarization charge flux. It is shown that drift hole growth is coupled to tur-

bulence flow generation. The coupled dynamics of drift holes and zonal flows is

analogous to that of drift wave-zonal flow turbulence[17, 55], in which waves and

flows regulate one another. Since drift hole and zonal flow are coupled together,

a stationary state with a finite zonal flow is possible. We argue that since even

a single phase space structure can drive zonal flows, familiar concepts for zonal

flow generation such as inverse cascade[77], Rhine’s scale[78], and modulational

instability[17] etc are maybe useful but are not fundamental. We also discuss the

implication for the saturated amplitude of the drift hole. Since the drift hole and



51

zonal flow are coupled, a non-zero zonal flow can result in a stationary state. The

resultant zonal flow in turn deforms the drift hole structure itself by modifying

the screening effect. By requiring that potential screening is finite in the presence

of the stationary zonal flow, an upper bound on drift hole amplitude in the drift

hole-zonal flow system is calculated. The result indicates |φ|2max ∼ (νd/ωci)(k‖/ky),

where the zonal flow damping appears as a control parameter.

The implication for the edge-core connection problem - the ‘No Man’s Land’

phenomenology - is discussed as well. It has long been known that a strong pertur-

bation at the tokamak edge can nucleate localized quasi-coherent structures (blobs

and holes)[64, 65]. Once formed, such holes can propagate inward and bombard

the ‘No Man’s Land’ region. Since such structures will also tap free energy in a

different way from linear instabilities driven by the local gradients, these structures

can enhance the turbulence level in the ‘No Man’s Land’ region. This is a poten-

tially important step toward resolving the long standing problem of reconciling

drift turbulence theories with observed levels of fluctuations and transport near

the edge of the plasma.

The remainder of the paper is organized as follows. In section II, the radial

structure of the drift hole potential is discussed in detail. The drift hole potential

is determined in the plasma medium with flows. In section III, we show that drift

hole growth is coupled to turbulence driven flows. The saturation dynamics is

discussed as well, along with the calculation of an upper bound on the fluctuation

amplitude at saturation. Section IV presents the discussion and conclusion.

3.2 Drift hole structure with flows

Here, we construct the drift hole potential and discuss its radial structure

with flows in detail. Generally speaking, a drift hole will form at a strong resonance,

which traps charged particles in a potential structure. In turn, the trapped charges

produce a self-potential to reinforce the self-binding. Specifically, the drift hole has

distinct structure both in the parallel and perpendicular directions. In the parallel

direction, drift hole structure is characterized by trapping, and thus is similar to
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the 1D problem. In contrast, in the perpendicular direction, the structure can

be viewed as a E × B vortex. Mathematically, drift holes are BGK solutions of

magnetized plasmas, which are constructed by solving both the kinetic and Poisson

equations to determine the particle distribution and potential, self-consistently.

Assuming electron trapping here for definiteness, self-consistent potential

is determined by solving the Gyrokinetic (GK) Poisson equation[39, 40, 34]:

|e|φ
Te

+

∫
t

dv‖
{
f te(φ)− 〈fe〉

}
=− (∂t + 〈vy〉∂y)−1 v∗e

∂

∂y

|e|φ
Te

+ ρ2
s∇2
⊥
|e|φ
Te

. (3.1)

Here, the lefthand side (electrons) consists of the screening by adiabatic electrons

and the trapped electrons (hole). The righthand side (ions) contains the screening

ions, including the guiding center ions with flows and the polarization ions. We

can rewrite Eq.(3.1) in a form where the screening effect is more apparent:

(∂2
x − λ̂−2)

eφ

Te
=

1

ρ2
s

∫
t

dv‖
{
f te(φ)− 〈fe〉

}
. (3.2)

Here we introduced the screening length λ̂−2 ≡ ρ−2
s χ̂ and χ̂ is the susceptibility

defined as

χ̂ ≡ 1− ρ2
s∂

2
y + (∂t + 〈vy〉∂y)−1 v∗e

∂

∂y
. (3.3)

Eq.(3.2) takes the form of Poisson equation to determine the potential, with the

source from the trapped electrons and the screening from the untrapped charges.

Here, the screening appears as an effect of the shielding medium, which consists

of the adiabatic electrons, the guiding center ions with flows, and the polarization

charges. Loosely, structure corresponds to a localized potential φ ∼ exp(−x/λ),

which requires λ−2 > 0. If λ−2 < 0, the potential is not localized and φ ∼
exp(ikxx), which may be viewed as symptomatic of Cerenkov radiation of energy.

If φ ∼ exp(ikxx) then a localized structure does not form. We hereafter focus on

the former case of the localized potential, φ ∼ exp(−x/λ).

To solve Eq.(3.2), we need to specify f te. f te is obtained as a stationary
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solution for the drift kinetic equation:

∂tf
t
e + v‖∇‖f te +

c

B
ẑ ×∇φ · ∇f te −

|e|
me

E‖
∂f te
∂v‖

= 0. (3.4)

Eq.(3.4) has a stationary solution with the form f te[mev
2
‖/2 − |e|φ]. The solution

of Eq.(3.2) obtained for any f te[mev
2
‖/2− |e|φ] is the BGK solution for magnetized

plasmas. As a subclass of such BGK solutions, hole solutions are constructed by

maximizing entropy. The form of f te which maximizes the entropy of system is

derived by Dupree[20], and is:

f te = 〈fe〉 exp

(
E + |e|φm

τ

)
. (3.5)

Here E ≡ mev
2
‖/2−|e|φ is the total energy of the electrons, −|e|φ < E < −|e|φm for

electrons trapped in the electrostatic potential, and τ is a temperature used as the

Lagrange multiplier to maximize entropy[20]. f te is called the Maxwell-Boltzman

hole. The potential for the Maxwell-Boltzmann hole is obtained by substituting f te

in Eq.(3.2) with the Maxwell-Boltzmann hole, and by then solving the resultant

equation:

(∂2
x − λ̂−2)

eφ

Te
=

2

ρ2
s

∫ −|e|φ
−|e|φm

dE√
2me(E + |e|φ)

〈fe〉

×
(

exp

(
E + |e|φm

τ

)
− 1

)
. (3.6)

Although in principle the potential for the Maxwell-Boltzmann hole is obtained by

solving Eq.(3.6), we note that Eq.(3.6) is a nonlinear integro-differential equation

which cannot be solved except for special cases. Leaving the discussion of the

exact solution for the special case to the appendix, we consider an approximate

solution for Eq.(3.6) below. A useful approximation to the Maxwell-Boltzmann
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hole is given by the box hole[20, 34] (Figs.3.3 and 3.4):

f te =


〈fe〉+ fH for

{
|v‖ − u‖| < ∆v‖/2

|x| < ∆x/2, |y| < ∆y/2

〈fe〉 for others

. (3.7)

Namely, the electrons trapped in the parallel direction consist of those moving at

the speed u‖, within a range of velocities width ∆v‖. Electrons are localized in the

perpendicular plane as well, within a spatial region of extent ∆x and ∆y, forming

a E × B vortex. As discussed before, the box hole is a reasonable approximation

to the Maxwell-Boltzmann hole[20, 34], in particular for (E + |e|φm)/τ � 1. For

the box hole, the GK Poisson equation is

(∂2
x − λ̂−2)

eφ

Te
=

1

ρ2
s

fH∆v‖. (3.8)

In the Fourier representation,

(∂2
x − λ−2

k [〈vy〉])
eφk
Te

=
1

ρ2
s

fH∆v‖
∆y

Ly

2

ky∆y
sin

ky∆y

2
. (3.9)

Here Ly is the Fourier box size, λ−2
k = ρ−2

s χ(k, k‖u‖), χ(k, ω) = 1+k2
yρ

2
s−ω∗e/(ω−

ky〈vy〉), and ω is evaluated at the hole doppler frequency ω = k‖u‖.

Eq.(3.9) retains flow effects via the screening length or the susceptibility,

λ−2
k ∝ χ. Since the flow enters the susceptibility in the form (k‖u‖ − ky〈vy〉)−1, it

naturally raises the question of the singularity, or more physically, of the meaning

and impact of the resonance between drift hole and shear flow. To treat the

resonance properly, we employ the Plemelj formula,

1

k‖u‖ − ky〈vy〉
= P

1

k‖u‖ − ky〈vy〉
− iπδ(k‖u‖ − ky〈vy〉). (3.10)

Here, the ‘P ’ denotes the principal value of the integral. We note that, of course,

the formula makes sense only when it appears inside an integral, such as that arises



55

✲ v‖

✻
fe

✲✛

∆v‖

u‖

Figure 3.3: Hole in velocity space

in solving Eq.(3.9). Now, given the formula, the susceptibility becomes

χ(k, k‖u‖, 〈vy〉) =1 + k2
yρ

2
s − P

ω∗e
k‖u‖ − ky〈vy〉

+ iω∗eπδ(k‖u‖ − ky〈vy〉) (3.11)

∼=χ(0)(k, k‖u‖)−
(
kycs
k‖u‖

)2 〈vy〉
cs

+ iω∗eπδ(k‖u‖ − ky〈vy〉), (3.12)

where in the second line we assumed k‖u‖ > ky〈vy〉 and χ(0)(k, k‖u‖) ≡ 1 + k2
yρ

2
s −

ω∗e/(k‖u‖) is the susceptibility without flow. Thus, flow modifies the plasma re-

sponse via the susceptibility, which changes the screening of the drift hole potential.

Alternatively put, flow determines the structure and dynamics of the screening

cloud of trapped particles. Finally, the flow-hole resonance gives an absorption

mechanism, namely Imχ ∝ δ(k‖u‖− ky〈vy〉). The resonance allows the flow to ab-

sorb the energy in the screening field. As a consequence of the resonance process,

‘cat’s eye’ patterns[79] are produced around the resonance location.

Having discussed the role of flow in plasma response, now we discuss the
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solution of Eq.(3.9). A general solution of Eq.(3.9) can be obtained as

|e|φk
Te

=

∫
dx′

ρ2
s

Gk(x, x
′)fH(x′)∆v‖

∆y

Ly

2

ky∆y
sin

ky∆y

2
, (3.13)

where Gk(x, x
′) is the Green’s function which satisfies

(∂2
x − λ−2

k [〈vy〉])Gk(x− x′) = δ(x− x′). (3.14)

Note the Green’s function here may be viewed as a renormalized propagator which

includes the effect of flow in the medium. However, while the physical interpreta-

tion is clear, it is not an easy task to obtain the full renormalized Gk(x, x
′), due
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to the flow dependence in the screening length.

Thus, here we seek an approximate approach to obtain a solution φk. (As

explained later, the approximation is analogous to the Born approximation in

quantum mechanics[80].) Namely, rather than keeping the flow in the screening

term, we rewrite Eq.(3.9) as

(∂2
x − λ(0)

k

−2
)
eφk
Te

=
1

ρ2
s

fH∆v‖
∆y

Ly

2

ky∆y
sin

ky∆y

2

+

(
kycs
k‖u‖

)2 〈vy〉
cs

|e|φk
Te
− iω∗eπδ(k‖u‖ − ky〈vy〉)

|e|φk
Te

, (3.15)

to obtain

|e|φk
Te

=

∫
dx′

ρ2
s

G
(0)
k (x, x′)fH(x′)∆v‖

∆y

Ly

2

ky∆y
sin

ky∆y

2

+

∫
dx′

ρ2
s

G
(0)
k (x, x′)

(
kycs
k‖u‖

)2 〈vy(x′)〉
cs

|e|φk(x′)
Te

−
∫
dx′

ρ2
s

G
(0)
k (x, x′)iω∗eπδ(k‖u‖ − ky〈vy(x′)〉)

|e|φk(x′)
Te

. (3.16)

Here G
(0)
k (x, x′) is the ‘bare’ Green’s function, which satisfies

(∂2
x − λ(0)

k

−2
)G

(0)
k (x, x′) = δ(x− x′), (3.17)

and thus

G
(0)
k (x, x′) = −λ

(0)
k

2
exp

(
−|x− x

′|
λ

(0)
k

)
. (3.18)

Simply put, the first term in Eq.(3.16) describes an isotropic E × B vortex, the

second term describes a shift to the isotropic E × B vortex, and the third term

accounts for flow-hole resonance and contributes to a non-zero momentum flux.

We consider each term in detail in the following.

The first term in Eq.(3.16) describes an isotropic E ×B vortex, which was
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obtained in an earlier study[34]. The solution is

eφ
(0)
k

Te
= −∆v‖fH

χ

∆y

Ly

2

ky∆y
sin

(
ky∆y

2

)
X

(0)
k (x), (3.19)

where X
(0)
k (x) is a function which determines the radial profile of the potential

field

X
(0)
k (x) =

exp

(
−|x|
λk

)
sinh

(
∆x

2λk

)
for |x| > ∆x/2

1− cosh

(
x

λk

)
exp

(
−∆x

2λk

)
for |x| < ∆x/2

. (3.20)

Hereafter it is understood that the susceptibility and the screening length are

evaluated without flow, λ−2
k = ρ−2

s χ and χ = 1 + k2
yρ

2
s − ω∗e/(k‖u‖) > 0. The

potential (Eq.(3.19)) is given by φ =
∑

ky
φk exp(ikyy) and plotted in Fig.3.5; the

drift hole potential leads to a localized, E ×B vortex in 2D (x, y) plane.

Here, in contrast, we have the two additional terms in Eq.(3.16) due to the

flow effects. Physically, as discussed in detail below, the second term describes the

shift of the E × B vortex while the third term describes the flow-hole resonance

which enables energy transfer between drift hole and shear flow. Technically, these

terms are expressed in terms of the integration involving the solution φ. To pro-

ceed, we approximate the φ in the integrand by φ(0). This is analogous to the

Born approximation in quantum mechanical particle scattering, where the actual

scattered wave function is replaced by the zeroth order plane wave solutions[80].

Further, for simplicity we assume 〈vy〉 ∼= Sx in the following. The approximation

of the flow structure simplifies the analysis by allowing the spatial integral to be

performed straightforwardly, while we note that as a caveat, the flow profile should

be in principle determined from coupled evolution of the drift hole and zonal flow.

The second term in Eq.(3.16) describes the deformation and shift of the

E × B vortex. Using the approximation discussed above, the second term in
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Figure 3.5: Potential contour without flow feedback. Here, length are normalized
in ρs. The other parameters used are: |fH∆v‖| = 0.1, ∆x/ρs = ∆y/ρs = 3.0,
ρs/Ly = 0.03, ρ∗ = 0.01. The screening is symmetric and E × B vortex is
symmetric.
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Eq.(3.16) can be integrated to give

eφshiftk

Te
=
|fH∆v‖|

2χ3/2

(
kycs
k‖u‖

)2
S

ωci
ρ∗

∆y

Ly

2

ky∆y

× sin

(
ky∆y

2

)
Xshift
k (x), (3.21)

where Xshift
k (x) is a function which determines the radial structure of φshiftk .

Xshift
k (x) is defined as

Xshift
k (x) ≡

[
Iin −

1

2

(
∆x2

4ρ2
s

− x2

ρ2
s

)
exp

(
−∆x

2λk

)]
sinh

x

λk

+
2x

χλk
− x

2ρs
√
χ

exp

(
−∆x

2λk

)
cosh

x

λk
, (3.22)

for |x| < ∆x/2 and

Xshift
k (x) ≡ x

|x| exp

(
−|x|
λk

)
×
[
Iout −

1

2

(
∆x2

4ρ2
s

− x2

ρ2
s

)
sinh

∆x

2λk
+
|x|

2
√
χρs

sinh
∆x

2λk

]
, (3.23)

for |x| > ∆x/2. The constants Iin and Iout are defined as

Iin ≡
1

2χ

(
1 +

∆x

λk

)
exp

(
−∆x

λk

)
− 1

χ

(
7

4
+

∆x

λk

)
exp

(
−∆x

2λk

)
(3.24)

+
1

4χ

(
1 +

∆x

λk

)
exp

(
−3∆x

2λk

)
, (3.25)

and

Iout ≡−
1

4χ

[
7 +

(
1 +

∆x

λk

)
exp

(
−∆x

λk

)]
sinh

∆x

2λk
+

1

4χ
exp

(
−∆x

2λk

)
sinh

∆x

λk

+
∆x

χλk

(
cosh

∆x

2λk
− 1

4
exp

(
−∆x

2λk

)
cosh

∆x

λk

)
. (3.26)

To see the effect of φshift, we plot φ =
∑

ky
(φ

(0)
k + φshiftk ) exp(ikyy) in Fig.3.6. As

compared to φ(0) (Fig.3.5), the potential is clearly deformed by the shear flow. In

particular, the potential lacks reflectional symmetry in x, and is shifted radially.
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Figure 3.6: Potential contour with flow feedback (〈vy〉 = Sx, external flow).
Here, length are normalized in ρs. The other parameters used are: |fH∆v‖| = 0.1,
∆x/ρs = ∆y/ρs = 3.0, ρs/Ly = 0.03, ρ∗ = 0.01, ρ∗ωci/(k‖u‖) = 1.0, S/ωci = 0.05.
The potential is screened more strongly for x < 0 than for x > 0, resulting in a
shifted, deformed E ×B vortex.

This is because the shear flow introduces a spatial dependence to the screening

length λ[〈vy(x)〉]. The spatial dependence leads to different screening responses

for x > 0 and x < 0, which leads to the overall radial shift of the E × B vortex.

We note that the analysis and the result given here are analogous to the well-known

shear flow effect[75] on the eigenmode structure of drift waves[76], where a shear

flow breaks the eigenfunction symmetry around the rational surface and shifts the

eigenmode potential radially.

The third term in Eq.(3.16) is related to flow-hole resonance. The integra-
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tion can be performed to give

|e|φresk
Te

=
iπ

2
√
χ

exp

(
−|x− xc|

λk

)
cs

|S||Ln|
ky
|ky|
|e|φ(0)

k (xc)

Te
. (3.27)

where xc is the location of the hole-flow resonance (i.e. the location of the critical

layer), i.e.

xc =
k‖
ky

u‖
S
. (3.28)

This term physically describes the coupling of the drift hole structure to the plasma

flow via a dissipative resonance. The localized structure produces a screening field,

as depicted in Fig.3.7. The resonance allows the energy in the screening field to

be radiated and absorbed into the flow. As a result, the localized structure feels

the presence of the flow through the screening field, whose effect appears as φres.

Stated differently, the structure and the flow form a single entity through the

absorption process.

An important feature of the resonance process is that it enables the coupling

between drift holes and zonal flows by allowing the necessary finite cross phase in

the Reynolds stress, to produce a momentum flux. The momentum is (〈...〉 denotes

average in y and z direction)

〈ṽxṽy〉 =
c2

B2
Re
∑
k

iky(φ
(0)
−k + φshift−k + φres−k )

× ∂x(φ(0)
k + φshiftk + φresk ). (3.29)

Noting φ
(0)
k and φshiftk are purely real and φresk is purely imaginary, the non-zero

contribution comes from the terms involving φresk as

〈ṽxṽy〉 =
c2

B2
Re
∑
k

iky(φ
(0)
−k + φshift−k )∂xφ

res
k

+
c2

B2
Re
∑
k

ikyφ
res
−k∂x(φ

(0)
k + φshiftk ). (3.30)

The fact that the drift hole is coupled to zonal flows requires us to incorporate

zonal flows into the dynamics of the drift hole as well. The dynamical dependence
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Figure 3.7: Drift hole and zonal flow coupling.

of drift hole growth on zonal flows is discussed in the next section.

To summarize, the total potential was obtained as

|e|φk
Te

=
|e|φ(0)

k

Te
+
|e|φshiftk

Te
+
|e|φresk
Te

. (3.31)

φ(0) describes the isotropic E×B vortex, Fig.3.5. φshift and φres arise due to flow,

which influences drift hole potential structure by changing the plasma medium

response and thus the screening effect. φshift gave a shift to the isotropic E × B
vortex (Fig.3.6), which is similar to the shift of drift wave eigenmode structure.

φres is related to the flow-hole resonance, which allows the zonal flow to absorb

energy or momentum of the screening field.

3.3 Drift hole dynamics and turbulence driven

flows

Once formed, drift hole structure can grow by extracting free energy. Simply

put, the growth is caused by a hole being displaced up the background gradient, as
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depicted in Fig.3.8. As a hole is displaced up the gradient, since fe is conserved, its

depth δfe = fe−〈fe〉 must grow[20, 66, 34]. For an electron drift hole, the displace-

ment is made possible by scattering off ions. The scattering of ions requires the

electron structure to move up the gradient so as to maintain the quasi-neutrality

constraint. This enables the electron hole to be displaced in phase space and to

grow.

3.3.1 Drift hole growth with turbulence driven flows

To describe the growth of a drift hole, we consider a displacement of the

drift hole in phase space from (x0, u‖) to (x, v‖). Let phase space density at the

initial position 〈fe〉|0 +fH0 and at the displaced position 〈fe〉+fH (Fig.3.8). Since

phase space density is conserved along trajectory, the two values must be same:

〈fe〉|0 + fH0 = 〈fe〉+ fH . (3.32)

From this, the increment in the depth of the hole δfe ≡ fH − fH0 is calculated to

be

δfe = 〈fe〉|0 − 〈fe〉

' −(x− x0)
∂〈fe〉
∂x

∣∣∣∣
0

− (v‖ − u‖)
∂〈fe〉
∂v‖

∣∣∣∣
0

. (3.33)

The growth of the depth along the trajectory is then

d

dt
δf 2

e = 2δfe
d

dt
δfe (3.34)

= 2δfe

(
−ṽx

∂〈fe〉
∂x

∣∣∣∣
0

+
|e|
me

Ẽ‖
∂〈fe〉
∂v‖

∣∣∣∣
0

)
, (3.35)

where we used

d

dt
(x− x0) = ṽx =

c

B
Ẽy,

d

dt
(v‖ − u‖) = − |e|

me

Ẽ‖. (3.36)
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Integrating over v‖ and averaging over y and z, we obtain

∂

∂t

∫
dv‖
〈δf 2

e 〉
2

= −
〈
ṽx
δne
n0

〉
∂〈fe〉
∂x

∣∣∣∣
0

+
|e|
me

〈
Ẽ‖
δne
n0

〉
∂〈fe〉
∂v‖

∣∣∣∣
0

. (3.37)

Now, the electron drift hole growth is constrained by other charges via the quasi-

neutrality condition. Since δne = δnGCi +n0ρ
2
s∇2
⊥eφ̃/Te, the evolution of drift hole

perturbation is given by

∂

∂t

∫
dv‖
〈δf 2

e 〉
2

= −
〈
ṽx
δnGCi
n0

〉
∂〈fe〉
∂x

∣∣∣∣
0

+
|e|
me

〈
Ẽ‖
δnGCi
n0

〉
∂〈fe〉
∂v‖

∣∣∣∣
0

−
〈
ṽxρ

2
s∇2
⊥
eφ̃

Te

〉
∂〈fe〉
∂x

∣∣∣∣
0

+
|e|
me

〈
Ẽ‖ρ

2
s∇2
⊥
eφ̃

Te

〉
∂〈fe〉
∂v‖

∣∣∣∣
0

. (3.38)

Thus, the overall growth is determined by the spatial and velocity scattering of

guiding center ion and polarization charge. Simply put, to climb up the gradient,

electron drift hole must scatter guiding center ion and polarization charge to satisfy

quasi-neutrality.

The first two terms due to the guiding center ions are the drive of drift hole

instability, as discussed in an earlier study. Writing δnGCi /n0 = χi(eφ/Te), we have

−
〈
ṽx
δnGCi
n0

〉
∂〈fe〉
∂x

∣∣∣∣
0

+
|e|
me

〈
Ẽ‖
δnGCi
n0

〉
∂〈fe〉
∂v‖

∣∣∣∣
0

= −〈fe〉|0
∑
k

(ω∗e|0 − k‖u‖)Imχi(k, k‖u‖)
∣∣∣∣∣eφ̃Te
∣∣∣∣∣
2

k

. (3.39)

Here, ω∗e|0 = −kyρscs∂x ln〈fe〉|0 ' ω∗e(1 − ηe/2) (u‖ < vthe was assumed), the

frequency ω is evaluated at hole Doppler frequency ω = k‖u‖, k refers to modes

excited by the drift hole, and Imχi is the imaginary part of the guiding center ion

susceptibility. Note that here ion dissipation Imχi acts as a trigger of instability.

This is quite different from the usual drift wave instability, where ion dissipation
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Figure 3.8: Configuration of hole displacement

is a stabilizing effect. The dissipation Imχi is a necessary ingredient for drift

hole instability, since such instability requires the irreversible scattering of guiding

center ions via the quasi-neutrality constraint.

The third and the fourth terms in Eq.(3.38) are associated with polariza-

tion charge. Physically, these terms are related to zonal and toroidal flows. The

connection may be best seen by noting the identities:

〈ṽx∇2
⊥φ̃〉 = − c

B
∂x〈∂yφ̃∂xφ̃〉 =

B

c
∂x〈ṽxṽy〉, (3.40)

and

〈Ẽ‖∇2
⊥φ̃〉 =− ∂x〈∂zφ̃∂xφ̃〉+

1

2
∂z〈(∂xφ̃)2〉

− ∂y〈∂zφ̃∂yφ̃〉+
1

2
∂z〈(∂yφ̃)2〉

=− ∂x〈ẼxẼ‖〉. (3.41)

The first identity relates polarization charge flux (vorticity flux) to the Reynolds

force on zonal flow[35, 71], while the second one is related to the parallel accel-

eration of toroidal flow due to charge separation[81, 82]. Thus, the drift hole
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instability is coupled to the generation of both zonal and toroidal flows. Of course,

a finite cross-phase is required for non-zero contribution. The cross-phase of po-

larization charge scattering is set by flow-hole resonance, as follows. The spatial

flux of polarization charge is written using the potential structure derived above

as

〈ṽx∇2
⊥φ̃〉 =

c

B
Re
∑
k

iky(φ
(0)
−k + φshift−k + φres−k )

× ∂2
x(φ

(0)
k + φshiftk + φresk ). (3.42)

Due to its radial structure and phase, we have a non-zero contribution from the

combination of φshift (pure real) and φres (pure imaginary) as

〈ṽx∇2
⊥φ̃〉 =

c

B
Re
∑
k

iky(φ
shift
−k ∂2

xφ
res
k + φres−k∂

2
xφ

shift
k ). (3.43)

which leads to non-zero Reynolds forcing. Thus, the proper phase for polarization

charge flux and thus Reynolds forcing is provided by the flow-hole resonance. A

similar argument applies to the velocity scattering of polarization charge.

Having discussed each term in Eq.(3.38), we now discuss the implication

for drift hole growth. Collecting the result, Eq.(3.38) now becomes

∂

∂t

∫
dv‖
〈δf 2

e 〉
2

=− 〈fe〉|0
∑
k

(ω∗e|0 − k‖u‖)Imχi
∣∣∣∣∣eφ̃Te
∣∣∣∣∣
2

k

− 1

ωci
∂x〈ṽxṽy〉

∂〈fe〉
∂x

∣∣∣∣
0

− mi

me

c2

B2
∂x〈ẼxẼ‖〉

∂〈fe〉
∂v‖

∣∣∣∣
0

. (3.44)

The first term is due to the scattering of guiding center ions, while the second and

the third terms are due to the scattering of polarization charge. Here, we first

consider a ‘bare’ growth, i.e. without flow coupling, and later come back to the

issue of flows. For the growth rate, we derive its scaling property. Using |eφ̃/Te|2k ∼∫
dv‖,1dv‖,2〈δfe(1)δfe(2)〉k/|χ|2 via the GK Poisson equation,

∫
dv‖δfe ∼ ∆v‖δfe,
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and Imχi < 0 for ion Landau damping, we have

γ∆v‖〈δf 2
e 〉 ∼ 〈fe〉|0(ω∗e|0 − k‖u‖)(|Imχi|)

∆v2
‖〈δf 2

e 〉
|χ|2 . (3.45)

This estimate then yields a scaling form of the growth rate as

γ ∼ 〈fe〉|0∆v‖(ω∗e|0 − k‖u‖)
|Imχi|
|χ|2 ∼ k‖∆v‖

|ImχeImχi|
|χ|2 . (3.46)

We can extract several features of drift hole instability from Eq.(3.46). First of

all, the growth rate is nonlinear, as it depends on amplitude via ∆v‖ ∼
√
φ̃. This

allows explosive, rather than linear exponential growth, of fluctuations. Secondly,

the instability requires a free energy, γ ∝ ω∗e|0 − k‖u‖. The requirement that

ω∗e|0 − k‖u‖ > 0 for instability means that spatial scattering has to release more

energy than the cost due to velocity scattering, similar to ω < ω∗e for drift wave

instability. Finally, the drift hole instability is triggered by ion dissipation Imχi.

Ion dissipation is essential for drift hole instability since it allows irreversible scat-

tering of ions and thus non-zero ion flux. Due to the quasi-neutrallity condition,

the non-zero ion flux allows an electron hole to be displaced up the gradient, and

thereby to access free energy, as depicted in Fig.3.8.

The feature of the drift hole instability can be further clarified by compar-

ing it to the linear growth of drift waves, Table 3.1. Both instabilities require free

energy to grow, i.e. ω∗e|0 > k‖u‖ for the drift hole instability and ω∗e > ω for

the linear drift wave instability. On the other hand, the drift hole instability is

distinctive in that it is nonlinear and triggered by ion dissipation. The drift hole

instability is amplitude dependent γ ∼ ∆v‖ and thus allows nonlinear explosive

growth, while the electron drift wave instability is independent of amplitude and

thus gives exponential linear growth. In addition, the drift hole instability is trig-

gered by Imχi, while the linear instability is damped by Imχi. Due to the different

dependence on Imχi, we note that the growth of the hole can be subcritical, i.e.

γ > 0 even when γL . 0. This allows release of free energy even when plasmas are

linearly stable or only weakly unstable, and thus drift hole structures can be more

efficient at tapping free energy than drift wave eigenmodes.
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Table 3.1: Comparison between linear and nonlinear instabilities.

Electron drift wave Electron drift hole

Growth rate γL ∼ |∂χ/∂ωk|−1 γ ∼ k‖∆v‖|ImχeImχi|/|χ|2
×(|Imχe| − |Imχi|)

Access to free energy ω∗ > ω ω∗e|0 > k‖u‖

Amplitude dependence No Yes, ∝ ∆v‖ ∼
√
φ̃

Ion Landau Damping Stabilizing Destabilizing
Type of instability Supercritical Subcritical

Exponential growth Explosive growth

Table 3.2: Growth in 1D Vlasov v.s. Gyrokinetic plasma. For 1D Vlasov plasma,
‘BOT’ is ‘bump-on-tail,’ γd is a generic background dissipation, u is a resonant
velocity, ωp is the plasma frequency.

1D Vlasov plasma Gyrokinetic plasma

Linear growth γBOT − γd |∂χ/∂ωk|(|Imχe| − |Imχi|)
rate γL

Nonlinear growth ∆v(∂f0/∂v)|uuγd f
(0)
e ∆v‖(ω∗e|0 − k‖u‖)

rate γNL ×(ω2
p/(k

2u2 + 4γ2
d)) |Imχi|/|χ|2

Dissipation γd Imχi
Subcritical growth Yes Yes

We also note that a similar scaling form as Eq.(3.46) is obtained for a

subcritical hole instability in 1D Vlasov system with a bump on tail and a generic

background dissipation[31]. The result for the 1D Vlasov system qualitatively

agrees with a simulation result[69]. Table 3.2 shows a comparison between the

results from the GK calculation and the 1D Vlasov calculation.

The drift hole instability is coupled to zonal and toroidal flows, as explicitly

seen in Eq.(3.44). This leaves a footprint on the drift hole growth. Namely, by

scattering polarization charges, the drift hole is coupled to zonal flows (and toroidal

flows). The coupling is made possible via hole-flow resonance, which provides

the proper phase for polarization scattering. The flow coupling makes structure-

induced mixing more difficult, resulting in the reduction of instability drive. The

effect explicitly appears in Eq.(3.44), from which we can see that the dissipation

drive via ion Landau damping must overcome the energy penalty due to the flow
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coupling.

Eventually, the flow coupling can saturate drift hole instability. Namely,

while drift hole grows by extracting free energy, the growing hole keeps pump-

ing turbulence driven flows via absorption arising from hole-flow resonance. The

pumping amplifies the hole-flow resonance, and eventually makes the polarization

scattering comparable to the guiding center ion scattering. This leads to the sat-

uration of drift hole growth. In the following, we discuss a more precise treatment

of the coupled dynamics of the drift hole-zonal flow system and its implication for

the saturation of the drift hole growth.

3.3.2 Saturation of drift hole growth with turbulence

driven flows and an upper bound on fluctuation am-

plitude

Here, we discuss the saturation of the nonlinear instability. Since the quasi-

neutrality constraint on drift hole growth requires the scattering of polarization

charge, drift hole turbulence is dynamically coupled to turbulence driven flows.

Thus, the saturation of drift hole instability is a highly nonlinear phenomena in-

volving the interplay between dynamically evolving turbulent fluctuations and tur-

bulence driven flows. Explicitly, as seen in Eq.(3.44), the evolution of drift hole

turbulence contains both the Reynolds force on the zonal flow and the polarization

force on the toroidal flow. To describe the fully nonlinear dynamics of the coupled

system, we need an evolution equation for the flows. For the zonal flow momentum

balance, we employ a simplified model:

∂t〈vy〉 = −∂x〈ṽxṽy〉 − ν⊥d 〈vy〉. (3.47)

Here, the drive is given by the Reynolds force, and the damping is accounted for by

ν⊥d . For the toroidal flow, we note that forcing arises from both the momentum flux

and the polarization forcing[81, 82]. Since the toroidal flow coupling in Eq.(3.44)

describes a part of the toroidal flow drive, fully coupled dynamics of the drift

hole growth and toroidal flow generation requires modeling of the momentum flux
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(including residual stress) driven by the drift hole potential. However, this is

beyond the scope of the paper and hereafter we focus on the zonal flow coupling in

drift hole dynamics. Note that neglecting the toroidal flow feedback is consistent

with restricting the analysis to ω∗|0 > k‖u‖, since the ratio of zonal flow feedback

to toroidal flow feedback in 〈δf 2
e 〉 evolution is∣∣∣∣− 1

ωci
∂x〈ṽxṽy〉

∂〈fe〉
∂x

∣∣∣∣
0

∣∣∣∣ :

∣∣∣∣−mi

me

c2

B2
∂x〈ẼxẼ‖〉

∂〈fe〉
∂v‖

∣∣∣∣
0

∣∣∣∣
∼|ω∗| : |k‖u‖|. (3.48)

Eliminating the Reynolds force, we obtain the coupled evolution equation

for drift hole turbulence and turbulence driven zonal flows:

∂

∂t

(∫
dv‖

ωci〈δf 2
e 〉

2∂〈fe〉/∂x|0
− 〈vy〉

)
=
c2
s

v∗

∑
k

(ω∗e|0 − k‖u‖)Imχi
∣∣∣∣∣eφ̃Te
∣∣∣∣∣
2

k

+ ν⊥d 〈vy〉, (3.49)

where v∗ = (ρs/|Ln|)cs(1− ηe(1−u2
‖/v

2
the)/2). In the presence of flows, the growth

of the structure must accompany the acceleration of zonal flow, as depicted in

Fig.3.2. The coupled evolution of the drift hole and zonal flow is analogous to

the coupled evolution of turbulence and flows in a potential vorticity conserving,

quasi-geostrophic system. For example, in the Hasewaga-Wakatani system[73] the

coupled evolution is described by a momentum theorem[71],

∂

∂t

{〈δq2〉
2〈q〉′ + 〈vθ〉

}
= −〈ṽrñe〉

− 1

〈q〉′
(
∂

∂r

〈
ṽr
δq2

2

〉
+D0〈(∇δq)2〉

)
− ν〈vθ〉. (3.50)

Here q = n−ρ2
s∇2
⊥(eφ/Te), 〈δq2〉/〈q〉′ is the wave activity density, D0 is the diffusiv-

ity of potential vorticity, and ν is a collisional drag on the flow. Here for simplicity

the particle diffusivity (D0) and the viscosity (µ) were assumed to be equal. The

wave activity density is related to fluctuation pseudomomentum[83], since in weak

turbulence limit 〈δq2〉/〈q〉′ ∼ −|v∗|−1
∑

k(1 + ρ2
sk

2
⊥)2|φ̂|2k ∼ −

∑
k kθ(Ek/ωk) which
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is recognizable as the negative of the wave momentum density. The theorem relates

the coupled evolution of zonal flow momentum and fluctuation psedomomentum

to the driving flux of turbulence, the local collisional dissipation of turbulence,

turbulence spreading (the triplet term), and drag on zonal flow. Note that the

turbulence spreading term can act as an effective local drive or dissipation of tur-

bulence, depending on whether there is a local convergence or divergence of the

potential enstrophy flux. The correspondence between the theorem and Eq.(3.49)

is apparent. Here, Eq.(3.49) describes the coupled evolution of zonal flow momen-

tum and the pseudomomentum of the drift hole. The drift hole pseudomomentum

is given by 〈δf 2
e 〉/〈fe〉′, which can be viewed as a kinetic extension of the wave

activity density. It may by interesting to note that the kinetic pseudomomentum

is related to several other quantities such as the phasetrophy[30, 37] 〈δf 2
e 〉 (poten-

tial enstrophy in phase space), fluctuation entropy
∫
dv‖〈δf 2

e 〉/〈fe〉, as well as the

fluctuation dynamic pressure
∫
dv‖〈δf 2

e 〉/(2∂〈fe〉/∂E|0), defined in the context of

the kinetic energy principle for the Jean’s instability for self-gravitating matter[84].

At this point, it may be appropriate to clarify the flow of free energy in the

coupled dynamics of drift hole structure and zonal flow. The free energy channel

is depicted in Fig.3.9. Note Fig.3.9 is specifically to an electron drift hole. The

electron drift hole extracts free energy from the mean distribution function 〈fe〉
by scattering guiding center ions and polarization charges. Scattering of guiding

center ions leads to the growth of the drift hole structure, and hence releases the free

energy. On the other hand, the quasi-neutrality constraint requires the structure

to scatter polarization charge as well. This allows a part of the free energy to

be coupled to zonal flows. Note zonal flows are a ‘benign’ repository of the free

energy, since they cannot cause any transport. Note also that once accelerated,

zonal flows reinforce the free energy coupling to the zonal flow channel. This is

because the accelerated zonal flows can enhance the resonant absorption of drift

holes. Zonal flow shears shift phases in the polarization charge flux further, and

hence promote free energy coupling to the zonal flow channel.

The partition of the free energy leads to a self-regulating, predator-prey

behavior of the drift hole and zonal flow. Here the prey is the drift hole, while the
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Figure 3.9: Flow of free energy

predator is the zonal flow. To address the point, it is useful to recall the predator-

prey behavior of the drift wave and zonal flow system. A simplified model of drift

wave and zonal flow turbulence is given as:

∂tEDW = γLEDW − αEDWV ′ZF 2 −∆ω(EDW )EDW , (3.51a)

∂tV
′
ZF

2
= αEDWV ′ZF 2 − νV ′ZF 2

. (3.51b)

Here, EDW is the energy of the drift wave, V ′ZF
2 is the energy of the zonal flow,

γL is a linear growth rate of the drift wave, α is a coupling constant, ∆ω is a

nonlinear damping of the drift wave, and ν is a collisional damping of the zonal

flow. The drift wave behaves as a prey, while the zonal flow behaves as a predator.

The prey is excited by the linear growth. The damping of the prey is two fold;

dissipation by itself and dissipation by coupling to the predator. The predator

is supported by the prey, while the predator reduces its population by collisional

damping. Through the coupling process, the total energy between the prey and

the predator is conserved. The conservation is explicitly manifested by adding the

coupled equations:

∂t(EDW + V ′ZF
2
) = γeffEDW − νV ′ZF 2

. (3.52)
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Here, γeff ≡ γL −∆ω(EDW ) is the difference between the linear growth rate and

the nonlinear damping of the drift waves. Note that similar conservation relation

holds for the coupled drift hole and zonal flow system (Eq.(3.49)), albeit Eq.(3.49)

describes the momentum budget.

The coupling between drift hole and zonal flow can impact the saturation

of drift hole growth. Due to the coupling, a stationary state is achieved with a

non-zero zonal flow. The stationary state is achieved when the competing effects

on the righthand side of Eq.(3.49) balance, i.e.:

0 =
c2
s

v∗

∑
k

(ω∗e|0 − k‖u‖)Imχi
∣∣∣∣∣eφ̃Te
∣∣∣∣∣
2

k

+ ν⊥d 〈vy〉.

We note that in principle, Imχi can be a function of flows. Such flow dependence

may allow a bifurcated flow solution. However, a detailed analysis of the bifurcated

flow solution is beyond the scope of the paper and will be pursued in a future

publication. Here, for simplicity, we assume Imχi is set by ion Landau damping

and is independent of the flow velocity. Given the caveat, stationary solution for

the zonal flow is given by

〈vy〉
cs

= − 1

ν⊥d

cs
v∗

∑
k

(ω∗e|0 − k‖u‖)Imχi
∣∣∣∣∣eφ̃Te
∣∣∣∣∣
2

k

. (3.53)

Several remarks on the saturation and the resultant zonal flows are in order. First,

the physical picture of saturation is that drift hole growth saturates when the

mixing of phase space density with ion dissipation is suppressed by large enough

dynamical friction from flows. This follows from the fact that since the total mo-

mentum is conserved, flows are accelerated from drift hole turbulence. Secondly, all

that is required for flow generation is a drift hole - a localized single phase space

structure - and the absorption of its momentum by the flow at the resonance.

This is sharp contrast to the familiar concepts for zonal flow generation by tur-

bulence, such as inverse cascade[77], Rhine’s scale[78], modulational instability[17]

etc. This suggests that while the above mentioned familiar concepts are useful to

understand zonal flow physics, none of them are fundamental. Finally, since drift
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holes and zonal flows form a self-regulating predator-prey system, the saturated

state discussed here with non-zero zonal flow can be viewed as the stationary state

of predator-prey system with a non-zero predator population.

We can extract the maximal saturation amplitude for drift hole-zonal flow

turbulence from the saturated zonal flow velocity Eq.(3.53). The amplitude is ob-

tained as follows. Namely, at saturated state, non-zero flows are required, while

the resultant zonal flow can feedback on drift hole structure through its screen-

ing length. If the flows were strong enough to make Reχ[〈vy〉] < 0 or at least

Reχ[〈vy〉] → 0, then the screening potential is not localized, and hence a self-

bound drift hole does not form. Hence, to have a stationary state with non-zero

flows, the resultant flow speed must not exceed the limit for the formation of the

self-bound drift hole. The condition for drift hole to be self-bound is expressed in

terms of the susceptibility as Reχ[〈vy〉] > 0, which gives

〈vy〉
cs

< min

(
u‖
cs

k‖
ky

χ(0)

1 + k2
yρ

2
s

)
. (3.54)

Here the minimum value ensures λ−2
k ∝ Reχ[〈vy〉] > 0 for each k. The condition

Eq.(3.54) can be restated that hole-flow resonance is not strong, since the condition

loosely says ky〈vy〉 < k‖u‖. This is physically plausible since if the resonance is

strong, then the energy in the screening field is radiated and absorbed into the

flows. In such cases, since the screening field is radiated away, the drift hole

cannot self-bind itself.

The bounds on potential amplitude are then set by the condition Eq.(3.54),

since the zonal flow is a function of fluctuation, i.e. 〈vy〉 = 〈vy〉[|φ̃|2] (See Eq.(3.53)).

To be specific, we consider the saturation in the limit ω∗e|0 � k‖u‖, i.e. above

threshold for drift hole growth. In this limit, the zonal flow level obtained from

Eq.3.49 is

〈vy〉
cs
∼= −ωci

ν⊥d

∑
k

kyρsImχi

∣∣∣∣∣eφ̃Te
∣∣∣∣∣
2

k

. (3.55)

Applying the condition 〈vy〉 < 〈vy〉max, the bound on potential amplitude in drift
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hole-zonal flow turbulence then is:∣∣∣∣∣eφ̃Te
∣∣∣∣∣
2

<

∣∣∣∣∣eφ̃Te
∣∣∣∣∣
2

max

, (3.56)

where, the maximum amplitude is estimated to be:∣∣∣∣∣eφ̃Te
∣∣∣∣∣
2

max

≡ν
⊥
d

ωci

1

ρskyImχi
min

(
u‖
cs

k‖
ky

χ(0)

1 + k2
yρ

2
s

)
. (3.57)

Here (...) denotes the spectral average. Note the zonal flow damping ν⊥d appears

as a control parameter for the maximum amplitude. This is similar to the case

in predator-prey models[17, 72], where the damping of the predator (zonal flow)

controls the population of the prey (drift hole). Physically put, this is because a

larger collisional damping damps the zonal flow more strongly. The strong damping

of the zonal flow allows the drift hole to easily extract the free energy, which in

turn leads to a larger fluctuation amplitude. As a caveat, however, we note that

there are both an upper and lower limit on the collisional damping ν⊥d . The upper

bound[85] is necessary since if the collisional damping is too strong, then zonal

flows are completely damped, and hence cannot act as a repository of free energy.

On the other hand, the lower bound is tied to stability of the zonal flow. If the

collisional damping is too weak, then the free energy coupling to zonal flow is so

strong that the resultant zonal flow can become Kelvin-Helmholtz unstable[86].

3.4 Conclusions

In this paper, we discussed the theory of drift hole structure and dynamics

in the presence of zonal flows. In contrast to a previous study[34], we emphasized,

throughout, the role of self-consistent turbulence driven flows in determining the

radial structure of drift hole potential and in describing nonlinear dynamics of drift

hole growth. (See Table.3.3 for comparison to the previous study.) The principal

results of the paper are:

1. The drift hole potential was determined as φ = φ(0) +φshift +φres by solving
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Table 3.3: Comparison between a previous study and this work.

Previous study[34] This work

Drift hole potential φ(0) φ(0) + φshift + φres

Time evolution ∂t
∫
dv‖〈δf 2

e 〉
∂

∂t

(∫
dv‖

ωci〈δf 2
e 〉

2∂〈fe〉/∂x|0
− 〈vy〉

)

Saturated amplitude

∣∣∣∣∣eφ̃Te
∣∣∣∣∣ ∼ 1

χ(0)

∆x

|Ln|

∣∣∣∣∣eφ̃Te
∣∣∣∣∣
2

max

=
ν⊥d
ωci

1

ρskyImχi

×min

(
u‖
cs

k‖
ky

χ(0)

1 + k2
yρ

2
s

)

the Gyrokinetic Poisson equation with flow coupling. φ(0) is the potential

without flow coupling. This term describes an isotropic E × B vortex, as

discussed in a previous study. In addition to φ(0), here we have novel pieces

due to flow coupling, i.e. φshift and φres. φshift originates from the expansion

of the plasma susceptibility in terms of flow. Physically φshift describes radial

shift of the isotropic E ×B vortex, which is analogous to a flow shear effect

on radial eigenmode structure of drift waves. φres originates from hole-flow

resonance. This term gives rise to a cross-phase for Reynolds force, ∂x〈ṽxṽy〉.

2. The theory of fully nonlinear dynamics of a drift hole and zonal flow was

formulated. The dynamical evolution of the drift hole was coupled to the

zonal flow, since the quasi-neutrallity constraint requires the drift hole to

scatter polarization charge during hole growth. Since the polarization charge

scattering is equivalent to Reynolds force on zonal flow, drift hole growth

must be dynamically coupled to zonal flows. The coupled evolution of the
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drift hole and zonal flow is described by:

∂

∂t

(∫
dv‖

ωci〈δf 2
e 〉

2∂〈fe〉/∂x|0
− 〈vy〉

)
=
c2
s

v∗

∑
k

(ω∗e|0 − k‖u‖)Imχi
∣∣∣∣∣eφ̃Te
∣∣∣∣∣
2

k

+ ν⊥d 〈vy〉.

The coupled evolution describes a momentum budget of the drift hole and

zonal flow. Due to the zonal flow coupling, it is the coupled momentum that

evolves in time. Note this reduces to the expression for drift hole growth

without flow coupling derived in an earlier study:

∂

∂t

∫
dv‖
〈δf 2

e 〉
2

= −〈fe〉|0
∑
k

(ω∗e|0 − k‖u‖)Imχi
∣∣∣∣∣eφ̃Te
∣∣∣∣∣
2

k

.

We note that the drift hole growth (up to flow) is subcritical, with the growth

rate γNL ∼ k‖∆v‖|ImχiImχe|/χ2. This is quite different from the expression

for the linear growth of drift waves, γL ∼ |ω∗|(|Imχe| − |Imχi|).

3. The coupled evolution equation for the drift hole and zonal flow was analo-

gous to momentum theorems which describe the coupled evolution of fluctu-

ation pseudomomentum and flow momentum.
∫
dv‖〈δf 2

e 〉/〈fe〉′ is pseudemo-

mentum of an electron drift hole, a kinetic expression similar to wave activity

density for quasi-geostrophic turbulence. As a consequence of the coupling,

it is not the drift hole pseudomomentum but the total momentum, including

zonal flow momentum, that evolves in time. We argued that a stationary

state is achieved when the total momentum is constant in time.

4. The coupled evolution equation for the drift hole and zonal flow was also

interpreted in the context of a predator-prey system. Here, the drift hole is

the prey, and the zonal flow is the predator. The self-regulating behavior

was analogous to that for the drift wave-zonal flow system.
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5. As a consequence of the coupled evolution, a stationary state is possible with

flow coupling. At the stationary state, non-zero zonal flow is supported, and

is given by:

〈vy〉
cs

= − 1

ν⊥d

cs
v∗

∑
k

(ω∗e|0 − k‖u‖)Imχi
∣∣∣∣∣eφ̃Te
∣∣∣∣∣
2

k

.

The saturated state is analogous to a state in the predator-prey system with

non-zero predator population.

6. An upper bound on the drift hole potential amplitude in the coupled drift

hole-zonal flow system was calculated. The derivation was based on physical

arguments that; i) energy in the screening field of a drift hole is absorbed into

flows and thus excites zonal flow. ii) the coupling leads to a non-zero zonal

flow at stationary state, and iii) the resultant zonal flow velocity must not

exceed the flow velocity above which a self-bound drift hope cannot form.

The result predicts that∣∣∣∣∣eφ̃Te
∣∣∣∣∣
2

max

=
ν⊥d
ωci

1

ρskyImχi
min

(
u‖
cs

k‖
ky

χ(0)

1 + k2
yρ

2
s

)
.

Note the appearance of the damping of zonal flow as a control parameter.

The result can be compared to a saturation amplitude in a previous study[34]

without flow coupling:

ñ

n0

∼ f̃

f0

∼ χ(0)

∣∣∣∣∣eφ̃Te
∣∣∣∣∣ ∼ ∆x

|Ln|
.

This is essentially the mixing length estimate. The result obtained here

shows that the zonal flow enters saturation dynamics as a critical element.

In particular, the zonal flow damping appears as a control parameter of the

saturation amplitude.

In a nutshell, we discussed the structure and dynamics of drift hole struc-

ture with the dissipative resonance with zonal flows. The drift hole solution was
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obtained as a BGK solution for 3D magnetized plasmas. As explained above, the

drift hole structure can tap free energy. Also, being a BGK solution, the drift hole

can be viewed as analogous to a soliton. In this sense, the drift hole structure

discussed here may be viewed as that analogous to a soliton solution in drift wave-

zonal flow system[87, 88], which can spread turbulence. However, the drift hole

solution obtained in this work is more general than the soliton solutions described

in the references[87, 88], since the drift hole solution includes resonant coupling

with zonal flows. As shown above, such resonant coupling with zonal flows sig-

nificantly influences the dynamical evolution of the drift hole soliton. This raises

a question regarding the effect of the resonant coupling with zonal flows on drift

wave-zonal flow solitons. The role of such dissipative resonant coupling of zonal

flows in the soliton solutions in drift wave-zonal flow system will be pursued in a

future publication.

As a caveat, we note that the analysis presented here was concerned with

a single coherent structure. Differently put, we considered coherent trapping.

In contrast, as a complementary case, we can also have turbulent trapping, in

which case structures form, but also break apart, leading to incoherent granular

fluctuations[21, 32, 33, 89, 38]. While the analysis with the granulation requires a

statistical treatment, rather than consideration of displacement of a single struc-

ture, the role of the granulation in driving relaxation is quite similar to the role of

drift holes discussed here. Namely, the granulation evolves in time via dynamical

friction due to the quasi-neutrality constraint, and can extract free energy even

when plasmas are linearly stable. The granulation can also drive zonal flow by

scattering polarization charge.

Taken together, we conclude that structures which form with either coher-

ent or turbulent trapping are important players in relaxation in turbulent plasmas.

Structures can directly extract free energy, which leads to profile relaxation. Struc-

tures (even a single structure) also can excite zonal flows, and possibly toroidal

flows. These findings are in sharp contrast to profile relaxation and flow genera-

tion by quasi-linear drift wave turbulence, a paradigm which is often assumed in

the fusion community.
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The paradigm presented here may be applied to several issues in tokamak

phenomenologies. As an example, we here discuss the application of this paradigm

to the phenomenology of ‘No Man’s Land.’ ‘No Man’s Land’ is a region that

connects the tokamak core region to the tokamak edge-pedestal region(Fig.3.10).

An issue in the phenomenology of ‘No Man’s Land’ is that while the turbulence

level is observed to increase from the core to the edge region, most theoretical

predictions based on the local gradient driven instabilities cannot reproduce the

observed turbulence profile. In particular, most theoretical predictions reproduce

the core turbulence level, while the prediction of the turbulence level deviates from

the observed level in the ‘No Man’s Land’ region. Here we argue that structures

may enhance the turbulence level in the ‘No Man’s Land’ region as follows. At the

tokamak edge, a strong perturbation can nucleate structures such as density blobs

or holes[64, 65] (Fig.3.10). Once formed, the blob propagates down the gradient,

while the hole can propagate up the gradient. So, the hole can propagate inward

from the edge and bombard the ‘No Man’s Land’ region. As discussed above,

since such incoming holes can tap free energy stored in the local gradient, such

incoming holes can increase the turbulence level in ‘No Man’s Land’ by feeding

off the local gradient drive. Of course, the density holes may be self-regulated by

zonal flows due to the total charge conservation. If this is the case, the fluctuation

level associated with the density holes will be controlled, in part, by the collisional

damping of zonal flows, 〈δn2
hole〉 ∝ νd. Since νd typically increases towards the

edge, it seems that even with the zonal flow coupling the fluctuation drive by the

incoming hole structures becomes increasingly important in ‘No Man’s Land’.

The paradigm presented here may be also applied to several other relevant

issues, such as i) anomaly of electron heat transport in the linear ohmic regime

with large electron drift velocity[90], where linear eigenmodes of interest (current

driven drift waves) are predicted to be marginal[91], ii) intrinsic rotation drive,

where structure driven turbulence may leads to a source of residual stress and acts

as a heat engine[36] to convert radial inhomogeneity to rotation, and iii) energetic

particle confinement where strong wave-particle resonance is expected[92]. These

are pursued in future publications.
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Figure 3.10: Incoming structures and turbulence in ‘No Man’s Land’

3.A Maxwell-Boltzmann hole and axisymmetric

solution

The axisymmetric (∂y = 0) solution of the GK Poisson equation with

the Maxwell-Boltzmann hole is analyzed. This solution physically describes an

anisotropic E × B vortex extended in y direction. As such, the solution so ob-

tained may be viewed as a ‘zonal’; however, we note that a finite k‖ 6= 0 is required

for a non-trivial parallel dynamics, including adiabatic electron response as well

as electron trapping. Given the caveat, we refer the axisymmetric solution as

the ‘quasi’-zonal hole. Now, the axisymmetric condition ∂y = 0 reduces the GK

Poisson equation to a 1D problem by reducing the screening length to

λ̂−2 = ρ−2
s (3.58)
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In this case, the screening is determined solely by adiabatic electrons. Note the

screening feedback of zonal flow is absent here. Now, to proceed further, we also

assume a small hole (E + |e|φm)/τ � 1. In this case, the GK Poisson equation

reduces to a 1D, albeit nonlinear, equation

∂2
x

|e|φ
Te
− 1

ρ2
s

|e|φ
Te

∼= − 1

ρ2
s

4
√

2

3
〈fe〉0vthe

Te
τ

( |e|φ
Te
− |e|φm

Te

)3/2

(3.59)

With dimensionless variables

w ≡
(

16
√

2

15
〈fe〉0vthe

Te
τ

)2
|e|φ
Te

, ξ ≡ x

ρs
(3.60)

we have

∂2
ξw − w +

5

4
(w − wm)3/2 = 0 (3.61)

We seek for a localized solution with w, ∂ξw → 0 as ξ → ±∞. We also set wm = 0

hereafter, which fix the trapping energy to zero (i.e. E < −|e|φm = 0 for trapping).

Interestingly, Eq.(3.61) can be viewed as the equation of motion for a point particle

with nonlinear spring constant. The analogy is clear if we take ξ as time and w as

a displacement. Then, we can see that Eq.(3.61) is the equation of motion with

the nonlinear spring constant 1− 5/4w1/2. To gain an insight into the ‘trajectory’

produced by Eq.(3.61), it is useful to note ‘energy’ is conserved:

∂

∂ξ

[
1

2

(
∂w

∂ξ

)2

− 1

2
w2 +

1

2
w5/2

]
= 0 (3.62)

or (
∂w

∂ξ

)2

+ V (w) = 0 (3.63)

where V (w) = −w2+w5/2 is the Sagdeev potential[93]. V (w) is plotted in Fig.3.11.

From the figure, we can see that V (w) has a trough which allows a localized, bound

solution for the electrostatic potential w. The solution is obtained via quadrature
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as follows. The energy conservation yields

ξ = ±
∫ w

w0

dw′√
w′2 − w′5/2

(3.64)

where w0 is the value of potential at ξ = 0, which is a maximum and w0 = 1 from

Fig.3.11. The integral can be performed by setting w′ = sin4 θ′, leading to

w = sech4

(
ξ

4

)
(3.65)

The quasi-zonal solution w is a localized potential in x, with the spatial extent of

∼ 4ρs. Note w > 0, which is amenable to electron trapping. By its construction,

Eq.(3.65) can be thought of as a soliton solution of GK-Poisson system, while it

differs from usual solitons, such as ion acoustic solitons, in that the amplitude and

the spatial extent is independent.
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Figure 3.11: Sagdeev Potential V (w).
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Chapter 4

Relaxation and transport in

gyrokinetic drift wave turbulence

with zonal flow

4.1 Introduction

Turbulent relaxation and transport are important issues for fusion plasmas.

Conventionally, the relaxation process is thought to begin with free energy stored in

plasma inhomogeneity being released by linear instability of drift waves. Transport

or mean field evolution due to the instability is usually described via a quasilinear

calculation[27], which assumes a spectrum of eigenmodes only, and thus treats

turbulence as an ensemble of waves[10]. In terms of dimensionless numbers, this

conventional approach is valid for Kubo number K ≡ ṽτc/∆c � 1 where ṽ is the

typical velocity, τc is the correlation time, ∆c is the correlation length. Despite

usual practice, the conventional approach is not compatible with the mixing length

theory[10] predictions - which are standard estimates for saturation levels - since

in the saturated state we expect from mixing length theory that ṽ ∼ ∆c/τc, so

turbulence is characterized by K ∼ 1. Moreover, K & 1 can result for turbulence

with non-mode like fluctuations such as vortices, eddys, blobs etc with τL & τcir

(Fig.4.1), where τL ∼ τc is a life time of field pattern and τcir ∼ ∆c/ṽ is an eddy

85
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circulation time. Thus, since turbulence is often in a state with K > 1 or at least

K ∼ 1, turbulence driven relaxation and transport should be analyzed in such

regimes. There exist attempts[94, 95] to characterize transport in such a case;

however, they usually study transport for a given, fixed spectrum of turbulence,

without linking the structures inherent to K & 1 with the turbulence dynamics.

Since transport necessarily evolves profiles which in turn evolves turbulence, we

need a self-consistent model of turbulent transport for K & 1.

For K & 1, kinetic plasma turbulence models, such as 1D Vlasov or gy-

rokinetic (GK) models used heavily in the fusion community, exhibit the existence

of phase space structures. In the 1D Vlasov plasmas, K & 1 corresponds to the

state where the effect of particle trapping is important, since the Kubo number

can be recast as K = ṽτc/∆c ∼ τac/τb where τ−1
ac = |dω/dk − ω/k|∆k is the auto-

correlation time of a packet and τ−1
b ∼ ṽ/∆c ∼ k

√
(qφ/m) is bounce frequency

of particles trapped in potential trough (for 1D Vlasov models). Particle trapping

leads to formation of phase space structures, such as BGK eddys[19], phase space

holes[20, 96, 97], clumps or granulations[21, 96, 97], etc, which can be important

players for relaxation and transport. As argued by Dupree[22] and Kadomtsev[98],

phase space structures can emit a wake of waves via Cerenkov emission, an effect

which necessarily appears as dynamical friction in the phase space density evolu-

tion equation (Fig.4.2). In this view, the emission is treated much like that from

a test particle[30] and the emitting structure is viewed as a kind of macro parti-

cles, albeit one with a finite lifetime. Thus, turbulence driven mean field evolution

equation is altered from a pure diffusive type to a Lenard-Balescu type, with both

diffusion and dynamical friction entering the evolution of 〈f〉 (Table 4.1). The

mean field evolution has been applied to current carrying Vlasov plasma, and the

origin of anomalous resistivity has been linked to momentum exchange mediated

by structures[22], in addition to the conventional approach based on waves[28].

The formation of structures[34, 96, 97] and its effect on transport[32, 33]

are also discussed for inhomogeneous phase space turbulence, which is relevant

to the problems in confined plasma transport. The ideas of phase space density

granulation and dynamical friction are applied to collisionless ITG turbulence[33].



87

K � 1 coherent structure

τcir&%
'$

6

τL →∞

K ∼ 1 granulation

&%
'$

6
τcir

��
��

6��
��

6

τL�	 @R

Figure 4.1: K � 1 and K ' 1

i-
a
a
a

a
a

!
!
!

!
!

Figure 4.2: Cerenkov emission and wake.

In that analysis, the authors argued that the relaxation process inherently produces

ion phase space density granulations, which then experience dynamical friction via

the wake effect due to Cerenkov emission. The dynamical friction due to dissipative

electrons is found to cause anomalous transport of ion energy and particles. On the

other hand, the dynamical friction due to polarization charge is not included in that

analysis, as the authors naively thought that the mixing of ion guiding center phase

space is not coupled to polarization charge mixing; 〈ṽrδfi〉 ∼ 〈ṽrñGC,i〉 ∼ 〈ṽr∇2
⊥φ̃〉

and 〈ṽr∇2
⊥φ̃〉 ∼ Re

∑
k ikθk

2
⊥|φ̃|2k → 0.

However, we do know that the polarization charge flux is tied to Reynolds

Table 4.1: Turbulence with waves v.s. turbulence with structures

Turbulence with waves Turbulence with structures

Fluctuations Eigenmode Non-mode like
Drift wave, ... BGK eddy, Clump, Hole, ...

Instability Growth of mode Growth of structure
Mean Evolution Quasilinear diffusion Diffusion

+ Dynamical friction, Drag
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force via the identity[35, 71], 〈ṽr∇2
⊥φ̃〉 = ∂r〈ṽrṽθ〉, which usually is non-zero. The

analysis of the reference[33] overlooked the envelope and zonal flow scale. The

issue may be clarified by noting that there are several spatial scales inherent to

drift wave turbulence, which are:

• Mode fluctuation scale lc ∼ k−1
r , where lc is the typical correlation scale and

kr is the mode wave number

• Fluctuation spatial envelope scale of fluctuation ∆env, where

∆env ∼ (|φ̃k|2
′
/|φ̃k|2)−1

• Avalanche size ∆ava, where ∆ava > lc. An avalanche involves intermittent

interaction of several neighboring fluctuation envelopes.

• Profile scale, Lf where Lf ≡ (〈f〉′/〈f〉)−1

Usually k−1
r < ∆env . ∆ava < Lf . Since the wake has a finite spatial extent,

Fig.4.2, it naturally introduces an effective envelope scale to the fluctuation dy-

namics. The envelope scale can also be set by mode propagation and absorption

points, the excitation profile, plasma profile curvature, etc. The envelope de-

pendence alters the radial variation of the fluctuations from ∂rφ̃ ∼ ikrφke
ikrr to

∂rφ̃ ∼ (ikr + ∂R)φk(R)eikrr, where |ikr| � |∂R| and r, R are associated with fast

fluctuation variation and slow envelope variation respectively. Hence the envelope

dependence replaces kr → kr− i∂R, which effectively can be thought of as an Imkr.

This leads to Imk2
⊥ 6= 0 and thus 〈ṽr∇2

⊥φ̃〉 6= 0. This is plausible since the envelope

variation also implies a non-zero Reynolds force, ∂r〈ṽrṽθ〉. Thus, by accounting

for the slow envelope variation, dynamical friction appears from the polarization

charge, which induces direct zonal flow coupling to relaxation and transport by

phase space density granulation. We note that ∆ava could also be a relevant scale

for zonal flow variation[99]; however, we do not further consider avalanching here.

In this paper, we discuss relaxation and transport in inhomogeneous phase

space turbulence with zonal flow in the limit K & 1. We consider a simple
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Figure 4.3: Envelope modulation

model[100] for GK drift wave turbulence:

∂tf + vd∂yf + {φ, f} = C(f) (4.1a)

αe(φ− 〈φ〉y)− ρ2∇2
⊥φ =

2

neq
√
π

∫ ∞
0

dE
√
Ef − 1 (4.1b)

with heat flux Q matched according to:

Q = −χcoll〈T 〉′ +
2√
π

∫
dE
√
EE〈Ṽrδf〉 (4.1c)

where χcoll is a collisional thermal conductivity. The model describes basically

2D drift wave dynamics, with a trapped particle precession resonance. Parallel

acceleration is annihilated by bounce averaging, which enables us to focus on pure

spatial mixing due to E × B drift. Eq.(4.1a) is bounce averaged kinetic equation

for trapped ions. vd = vd,0E/Ti is an energy dependent magnetic precession drift

velocity[101]. The Poisson bracket accounts for E × B convection. Eq.(4.1b) is

GK Poisson equation[39, 40], which accounts for polarization charge. Although

the model is very simplified as compared to the full GK description, it does con-

tain a minimal representation of all the relevant effects we need here. Namely,

polarization charge introduces zonal flow coupling to the model, since any mixing

of f leads to the mixing of ∇2φ, which in turn leads to Reynolds forcing via the

Taylor identity[35]; 〈ṽrδfi〉 ∼ 〈ṽrñGC,i〉 ∼ 〈ṽr∇2
⊥φ〉 = ∂r〈ṽrṽθ〉. Also, K & 1 is

easily possible in the model, since the correlation time for particle and spectra can
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become long, i.e. since

∆(ω − ωd) ∼= ∆kθ

∣∣∣∣ dωdkθ − ω

kθ

∣∣∣∣ (4.2)

then τac ∼ (|dω/dkθ − ω/kθ|∆kθ)−1. Given the weakly dispersive nature of long

wavelength drift wave turbulence, it is very easy to have long τac and thus Kubo

number K = τacṽ/∆c & 1 is possible. Hence phase space structure formation can

be expected in this model.

In the remainder of the paper, we consider the two different limits of the

model described above, K � 1 and K ∼ 1. First we consider the strongly resonant

limit for K � 1, which is applicable when a single structure can form(Fig.4.1).

In this strongly resonant limit, we show that a phase space structure, as well

as a wave, carries a pseudomomentum[83], and can exchange it with the zonal

flow. To see this, we consider the growth of a single structure in the ion phase

space density, in the presence of electrons and polarization charges. There, based

on the invariance of the total dipole moment, we show that a single ion phase

space density structure cannot avoid zonal flow coupling. The pseudomomentum

associated with structures is identified as the negative of the kinetic wave activity

density, −
∫
dE
√
E〈δf 2

i 〉/〈f〉′|0. The structure growth equation with zonal flow is

shown to be closely related to the Charney-Drazin (C-D) theorem[74, 16, 71] for

potential vorticity (PV) conserving quasigeostrophic (QG) system, which is the

fundamental momentum constraint for a system with turbulence and zonal flows.

This is due to the fact that even single structure dynamics is necessarily tightly

coupled to zonal flows.

Then we move to the limit K ∼ 1, where structures can form but also break

up(Fig.4.1), thus forming a statistical ensemble of granulations[21, 30, 32, 33].

Granulations are similar to fluid eddys, albeit in phase space, and constitute an

incoherent part of fluctuations which enters relaxation and transport process as

dynamical friction. We consider the dynamics of granulation and its effect on

transport, in the presence of zonal flow coupling. The dynamics is described by a
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statistical theory based on the 2 point correlation:(
∂

∂t
+ T (1, 2)

)
〈δf(1)δf(2)〉 = P (1, 2) (4.3a)

Here 〈δf(1)δf(2)〉 is phase space density correlation function, called ‘phasetrophy’

[30], since it is analogous to enstrophy in QG turbulence. T (1, 2) determines the

life time of correlation due to relative streaming, ṽE×B scattering, and collisions.

P (1, 2) ∼ −〈ṽrδf〉〈f〉′ is the production of phasetrophy due to the relaxation

process. In the following analysis, we show that production due to polarization

charge introduces zonal flow coupling to the statistical granulation dynamics. The

granulation evolution with zonal flow is compared to the C-D theorem for the QG

system. We argue that the granulation evolution equation with zonal flow takes

the form of the prey equation in the general predator-prey system. Thus, as other

DW-ZF turbulence systems, granulations and zonal flows also form a self-regulating

system in phase space. We also derive the transport flux associated with the

granulation induced relaxation process. The mean field evolution is extracted from

P (1, 2) by noting that df/dt = 0 and d/dt〈δf 2〉 = −∂t〈f〉2. For drift turbulence,

∂t〈f〉 = −∂r〈ṽrδf〉 = −∂r[−D∂r〈f〉+ F 〈f〉] (4.3b)

Here D is analogous to the familiar quasilinear diffusion term, and F is the dy-

namical friction term, which arises from granulation. We show that dynamical

friction due to zonal flow is non-zero. Specifically, dynamical friction accounts for

the contribution to P (1, 2) from the fluctuation Reynolds work on the zonal flow.

The remainder of the paper is organized as follows. In section II, single

structure growth is formulated with zonal flow and linked to the C-D momentum

theorem. Section III treats the case of multiple structures, using statistical theory.

Phase space density granulation evolution is formulated in the presence of zonal

flow. The connection of the result to C-D momentum theorems, as well as the

implications for transport, are discussed. Section IV presents conclusions and

discussion.
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Figure 4.4: The growth of hole. Since df/dt = 0, a hole can grow by moving
against background gradient. Here we consider a localized hole around (x0, E0),
with the extent ∆x and ∆E.

4.2 Single phase space structure and zonal flow

In this section, we discuss the interaction between a single phase space

structure and zonal flows, a situation which corresponds to the limit K � 1. In this

limit, particle trapping becomes important and a coherent structure, such as a hole

or a blob, emerges. Such a structure can grow when the background distribution

has a gradient due to inhomogeneity, since total f must be conserved along a

trajectory; for example, a hole in phase space can grow when propagating up

a background mean gradient(Fig.4.4). In the following, we consider the structure

growth dynamics[20, 34] and show that a structure is dynamically coupled to zonal

flow since radial transport and thus growth of a structure necessitates a flux of

polarization charge, so as to maintain charge balance.

Here, we consider the structure dynamics in the model[100] described above:

(∂t + vD∂y)f + { c
B
φ, f} = C(f) (4.4a)

δni
n0

+ ρ2
s∇2
⊥
qφ

Te
=
δne
n0

(4.4b)

The first equation is a bounce kinetic equation for the guiding center ion distri-

bution, with an energy dependent drift velocity[101] vD = v̄DĒ where Ē ≡ E/Ti
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and the Poisson bracket {φ, f} ≡ ∂xφ∂yf − ∂yφ∂xf . Note that magnetic trapping

does not allow correlated particles to disperse in the parallel direction. The second

equation is the Gyrokinetic Poisson equation[39, 40], which includes polarization

charge. Given the weakly dispersive character of long wave length drift waves in

the model, the correlation time τac ∼ (|dω/dkθ − ω/kθ|∆kθ)−1 can become long.

For example if ω =
√
εω∗/(1 + ρ2

sk
2
⊥), we have:

τac ∼
(

2
√
εk2
θρ

2
s

(1 + k2
⊥ρ

2
s)

2
v∗∆kθ

)−1

(4.5)

Then we easily see that τac can be long for drift waves with kθρ < 1, even if

the k spectrum is broad, i.e. ∆kθρ ∼ 1. Hence, the Kubo number can be large

K = τacṽ/∆c � 1 for this model. In this limit with strongly coherent resonances,

it seems likely that a coherent structure, such as hole, blob or clump, can form[96,

97](Fig.4.1).

Given the possibility of structure formation, we consider the dynamics of

a fluctuation δf((x − x0)/∆x, (E − E0)/∆E), which is localized in a phase space

point (x0, E0) with an extent ∆x and ∆E, Fig.4.4. Here x0 is the location of a

structure we are considering and E0 is the energy at resonance, i.e. ω− ω̄dĒ0 = 0.

∆x ∼ ∆c is size of a structure in radial direction and the width in velocity space

∆E is estimated from ω̄d∆Ē ∼ τ−1
circ ∼ ṽE/∆c, so ∆Ē ∼ ṽE/(ω̄d∆c).

A structure in phase space can grow as depicted in Fig.4.4, whose dynamics

is described by δf 2 evolution[20, 34]. Since Eq.(4.4a) can be written as df/dt =

C(f), it implies df 2/dt = 2fC(f). Writing f = f0 + δf and assuming ∂tδf/δf �
∂tf0/f0, the δf 2 evolution is obtained as

∂t

∫
d3v〈δf 2

i 〉 = −2
d

dt

∫
d3v〈δfifi,0〉+ 2〈fC(f)〉 (4.6a)

Here, f0 includes the background mean distribution 〈f〉 as well as the depletion

due to the structure. δf is a perturbation. 〈...〉 denotes an ensemble average, which

corresponds to the zonal average in y direction here. As in Fig.4.4, the distortion

δf((x− x0)/∆x, (E −E0)/∆E) is localized around a phase space point. Then we
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expand f0 about that point as

fi,0 = fi,0(x0, E0) + (x− x0)
∂〈fi〉
∂x

∣∣∣∣
(x0,E0)

+ ... (4.6b)

Note that the expansion is only carried out in x here. This reflects the fact that

in Eq.(4.4a) energy is not scattered by turbulence, since the bounce averaged v‖Ẽ‖

vanishes, i.e. dE/dt = (e/mi)〈v‖Ẽ‖〉b = 0 where 〈...〉b =
∫
dl/v‖(...)/

∫
dl/v‖ is

a bounce average. Using the expansion, the structure evolution equation now

becomes

∂t

∫
d3v
〈δf 2

i 〉
2

= −〈ṽrñi〉
∂〈f〉
∂x

∣∣∣∣
0

+ 〈fC(f)〉 (4.6c)

where the subscript 0 denotes a location of the structure in phase space (x0, E0),

d(x− x0)/dt = ṽr and
∫
d3vδfi = ñi. Eq.(4.6c) relates the distortion of the mean

dstribution to the growth of the perturbation. Note that the structure growth,

Eq.(4.6c), differs from the drift hole growth derived in an earlier study[34] in that; i)

structure growth here is decoupled from velocity space scattering; and ii) structure

growth here is coupled to zonal flow generation. The first difference is trivial,

since we are dealing with a bounce kinetic equation here, so there is no parallel

acceleration. The second, more physically relevant difference arises since the net

dipole moment of the structure, including polarization charge, is conserved[20],∫
dx
∑

α qαnα(x)x. In other word, since quasi-neutrality including polarization

charge is maintained 〈ṽrñi〉 = 〈ṽrñe〉 − 〈ṽrñpol〉 and 〈ṽrñpol〉 ∼ 〈ṽr∇2
⊥φ̃〉 ∼ ∂r〈ṽrṽθ〉

via the Taylor identity[35], ion structure growth is intrinsically coupled to zonal

flow growth via flux of polarization charge. This gives

∂t

∫
d3v

〈δf 2
i 〉

2∂〈fi〉/∂x|0
=− 〈ṽrñe〉+

n0

ωc,i
∂r〈ṽrṽθ〉+

〈fC(f)〉
∂〈fi〉/∂x|0

(4.6d)

which clearly states that the single structure growth cannot decouple from zonal

flow evolution. Note that zonal flow coupling here appears through polarization

charge flux, for the same reason as zonal flow coupling in QG turbulence appears

through vorticity flux[35].
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In Eq.(4.6d), the particle flux appears in the right hand side. Then, one

may ask how we reconcile Eq.(4.6d) with heat flux drive. This may be resolved by

going back to Eq.(4.6a) and by taking E moment of δf 2. This leads to

∂t

∫
d3vE〈δf 2

i 〉 = −2〈ṽrT̃i〉
∂〈f〉
∂x

∣∣∣∣
0

+ 2

∫
d3vE〈fC(f)〉 (4.7)

where 〈ṽrT̃i〉 ≡
∫
d3vE〈ṽrδfi〉. Eq.(4.7), together with heat balance equation Q0 =

−χneo〈Ti〉′ +
∫
d3vE〈ṽrδfi〉, describes energetics of the system.

The structure evolution, Eq.(4.6d), reveals a momentum constraint for the

interaction between a single phase space structure and zonal flow. Using the mo-

mentum balance ∂t〈vθ〉+ ∂r〈ṽrṽθ〉 = −ν〈vθ〉 gives

∂

∂t

(
n0

ωc,i
〈vθ〉+

∫
d3v
〈δf 2

i 〉
2〈fi〉′|0

)
=− 〈ṽrñe〉 − n0

ν

ωc
〈vθ〉+

〈fC(f)〉
∂〈fi〉/∂x|0

(4.8)

Hence, we see that up to constant factors
∫
d3v〈δf 2

i 〉/(∂〈fi〉/∂x)|0 can be thought of

as a generalized momentum associated with fluctuation, namely the pseudomomen-

tum of a single phase space structure which accounts for the zonal momentum of

the structure. Eq.(4.8) states that a structure growth in phase space is dynamically

coupled to zonal flow to conserve zonal momentum. At stationary state, electron

flux can sustain a flow against collisional drag, 〈vθ〉 = −(ωc/ν)〈ṽrñe〉/n0; localized

ion structure scatters electrons and can pump zonal flow growth. The statement

that a single localized structure in phase space can drive zonal flow should be re-

garded as interesting, in light of the total absence of the familiar wave interaction-

based mechanisms of zonal flow generation, such as inverse cascade[102], the Rhines

mechanism[78], modulational instability[17], etc. Indeed, Eq.(4.8) supports the no-

tion that PV transport or mixing and one direction of symmetry are all that is

required for zonal flow generation[103].

At this point, it is interesting to compare Eq.(4.8) to the Charney-Drazin

momentum theorem for a potential vorticity conserving, quasigeostrophic turbu-
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Table 4.2: Comparison of quasi-geostrophic system and gyrokinetic system

QG system GK system

‘Potential PV, q = ∇2
⊥φ+ F (φ, n) GK Poisson, Pol Charge

Vorticity’
∫
d3vf + ρ2

s∇2
⊥φ = g(φ, ne, ...)

Conservation of PV dq/dt = ∂tq + {q, φ} = 0 df/dt = ∂tf + {f,H} = 0
Circulation Γ =

∮
(V + 2Ωa sin θ)dl Γ =

∮
v · dx

Kelvin’s Thm. Yes Yes (Lynden-Bell, ’67)
C-D Theorem Yes Yes for non-resonant limit

Yes for resonant limit

lence. The theorem[71] is proved for the Hasegawa-Wakatani system[73]

∂

∂t

{〈δq2〉
2〈q〉′ + 〈vθ〉

}
= −〈ṽrñe〉 − ν〈vθ〉 −

1

〈q〉′
(
∂

∂r

〈
ṽr
δq2

2

〉
+D0〈(∇δq)2〉

)
(4.9)

Here q = n−ρ2
s∇2
⊥(eφ/Te), 〈δq2〉/〈q〉′ is the wave activity density or the negative of

pseudomomentum[83], D0 is a diffusivity of potential vorticity, and ν is a collisional

drag on flow. Pr = 1 was assumed. As 〈δq2〉/〈q〉′ ∼ −|v∗|−1
∑

k(1 + ρ2
sk

2
⊥)2|φ̂|2k ∼

−∑k kθ(Ek/ωk), which is recognizable as the negative of the wave momentum

density, the theorem states a momentum constraint for self-regulating DW-ZF

turbulence system. Now each term in Eq.(4.8) has its counterpart in Eq.(4.9).

The kinetic analogue of wave activity density, 〈δf 2
i 〉/〈f〉′|0, can be contrasted to

wave activity density 〈δq2〉/〈q〉′. The both terms are related to the momentum of

fluctuations, although −〈δf 2
i 〉/〈fi〉′|0 is the momentum of a phase space structure

in the presence of strong wave-particle interaction. Particle flux and zonal flow drag

appear in both equations. The underlying physics which unifies the two different

systems is the conservation of ‘potential vorticity’, which consists of generalized

or extended fluid vorticityt; for QG system PV consists of fluid vorticity plus the

‘planetary’ part related to β or v∗; for GK system it consists of polarization charge

plus electron density. This ultimately follows from the Kelvin’s theorem[104] for

the conservation of total circulation, which underpins the Charney-Drazin theorem

for flow momentum and a generalized pseudomomentum. See Table 4.2 for the

comparison.



97

We note, though, Eq.(4.8) defines the pseudomomentum of phase space

structure and is not a mere mathematical transcription of the Charney-Drazin

theorem for QG system to another structurally similar system, i.e. the GK sys-

tem. The extension of the theorem to the kinetic system is subtle, since ki-

netic system has a singularity from wave-particle resonance, with no counter-

part in the QG system. The subtlety becomes apparent when we try to phys-

ically interpret the kinetic wave activity density, 〈δf 2〉/〈f〉′. Of course, in the

non-resonant limit, the kinetic wave activity density corresponds to the nega-

tive of pseudomomentum associated with waves, as δfk ' (−ṽr,k〈f〉′)/(−iωk)
and

∫ √
EdE〈δf 2〉/〈f〉′ ∼

∫ √
EdE

∑
k〈f〉′(k2

θ |φ̃|2k)/ω2
k ∼ −

∑
k(Ek/ωk)kθ where

Ek is the wave energy density. In the resonant limit, however, we cannot physi-

cally interpret the kinetic wave activity density based on the comparison between

GK and QG turbulence. The above discussion of the ion structure growth re-

veals −
∫ √

EdE〈δf 2
i 〉/〈fi〉′|0 as the pseudomomentum associated with phase space

structure, and extends the interpretation of the kinetic wave activity density∫ √
EdE〈δf 2〉/〈f〉′ to the case of resonant particles. This also suggests the ro-

bustness of the C-D momentum theorem: the momentum theorem holds, in both

QG and GK systems, in the both non-resonant and resonant limit.

4.3 Multi-structures in phase space and zonal

flow

In this section, we move from the problem of a single structure to the prob-

lem of multi-structures and discuss aspects of relaxation and transport in phase

space turbulence for K ∼ 1, where structures can form but also break, leading

to formation of incoherent granular fluctuations in phase space. To formulate

transport with such fluctuation, we first consider a model to characterize gran-

ularity of phase space density, which leads us to the calculation of phase space

density correlation[21, 33] 〈δf(1)δf(2)〉. Note that 〈...〉 is defined as the average

over x+ = (x1 + x2)/2 in this section. As discussed in the last section, a single

structure in phase space interacts with zonal flow; hence it is plausible to expect
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multi-structure or granulation to also interacts with the zonal flow. In the follow-

ing, we derive the time evolution of phase space density granulation and show that

granulation is dynamically coupled to zonal flow via production. This coupling is

due to zonal momentum exchange in the δf 2 production process and is not simply

due to usual effects of shear suppression, cross phase modification, etc. Then we

turn to transport calculation due to phase space density granulation. Since phase

space density granulation interacts with zonal flow, the zonal flow leaves a foot-

print in granulation driven transport. In the following, we argue that zonal flow

introduces a novel effect in transport via dynamical friction.

4.3.1 Model and its dielectric function

The model we utilize here[33] consists of bounce averaged kinetic equations

for ions and electrons (σ = i, e)

(
∂

∂t
+ vD(E)

∂

∂y
+ vE · ∇+ νσeff

)
δhσ =

∂

∂t

qσφ̃

Tσ
〈fσ〉 − ṽExB · ∇〈fσ〉 (4.10a)

and the Gyrokinetic Poisson equation[39, 40]

δne
n0

=
δni
n0

+ ρ2
i∇2
⊥
qφ̃

Ti
(4.10b)

Here δh is the non-adiabatic part of distribution function fluctuation, δfσ =

−(qσφ̃/Tσ)〈fσ〉 + δhσ, vD(E) = v̄DĒ where Ē = E/Ti is the drift due to mag-

netic field curvature and inhomogeneity, and a Krook operator was used, C(δfσ) =

−νσeffδhσ. Electrons are assumed to be dissipative with the energy dependent col-

lision frequency[101] νeff (E) = (νe/ε0)Ēe
−3/2

where Ēe ≡ E/Te. ε0 is the inverse

aspect ratio. We note that a singularity associated with the electron collision

frequency at Ē = 0 does not cause any problem in the calculation performed in

the manuscript, as its inverse i.e. Ē3/2(νe/ε0)−1 appears as the relevant quan-

tity, and is manifestly non-singular. Specifically, the electron frequency appears

in Imεe ∝
∫ √

ĒdĒĒ3/2e−Ē(νe/ε0)−1(...) which can be integrated analytically. See

appendix A for the calculation. We also note that the strong electron collisions
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(νe/ε0 � ω∗e, 1/τc) smears out electron granulation formation, as the propaga-

tor for trapped electron becomes gkω = i(ω − ωD,eĒe + i/τc + iνe/ε0Ē
−3/2
e )−1 '

(νe/ε0)Ē
3/2
e . Thus the electrons are laminar in this model and we focus on the ion

granulation dynamics. The model we use here is quite general - 2D ion guiding

center advection, polarization charge in GK Poisson equation, and precession drift

resonance. It is arguably the simplest model of GK drift wave turbulence with

wave-particle resonance effects.

In the later calculation, we need the plasma response function, or plasma

dielectric for the model. This is given by (See Appendix A for the derivation.)

ε̂(k, ω) =
Ti
Te

+ ρ2
i k

2
⊥ + 1− P

∫
d3v

ω − ωi∗(E)

ω − ω̄DĒ − kθ〈vE〉(r)
〈fi〉

+ iImεi + iImεe + iImεpol (4.11a)

where ωσ∗ (E) ≡ (kθcTσ〈fσ(E)〉′)/(qσB〈fσ(E)〉) = kθv
σ
∗ (1 + ησ(Ē − 3/2)), vi∗ ≡

−(ρi/|Ln|)vthi, ve∗ = (ρs/|Ln|)cs, and P denotes the principle part of the integral.

The first term is from adiabatic electrons. The second term is from polarization

charge. The second line includes ion contribution from adiabatic passing and

trapped populations. The imaginary part of the dielectric is

Imεi =
√

2ε0
2√
π

√
Ēresπ

ω − ωi∗(Ēres)
|ω̄D|

e−Ēres (4.11b)

Imεe =
4√
π

√
2ε0

νe/ε0

Ti
Te

(ω − ωe∗(1 +
3

2
ηe)) (4.11c)

Imεpol = −2ρ2
i kr∂r (4.11d)

where Ēres ≡ (ω − kθ〈vθ〉′(r − r0))/ω̄D. Imεi arises from the resonance between

waves and toroidal ion precession. Note that shear flow alters the resonant fre-

quency ω̄DĒ → ω̄DĒ + kθ〈vθ〉′(r − r0). Imεe comes from collisional dissipation

in electrons. Imεpol originates from an envelope coupling via modulation, i.e.

kr → kr − i∂r, where ∂r captures the envelope variation of the fluctuation spec-

trum, which is slow compared to kr (Fig.4.3). As in Fig.4.2, granulations produce a

wake with a spatial extent, which contributes to the slow envelope variation. This
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envelope introduces two different scales in the fluctuation; a micro-scale which is

characterized by mode wave number kr and an envelope variation which is cap-

tured by the derivative acting on the slow scale envelope, ∂r. The confluence of the

two different radial scales leads to kr → kr − i∂r and εpol ∼ k2
⊥ ∼ k2

r − 2ikr∂r, so

Imεpol ∼ −2kr∂r. Noting the role of polarization charge in single structure dynam-

ics and the dynamical friction F ∝ Imε, we will see that the envelope coupling term

Imεpol introduces zonal flow coupling to the mean field evolution via F ∼ Imεpol.

Note also that the plasma dielectric is now an operator, since Imεpol ∝ ∂r. Also,

hereafter it is understood that r − r0 = x.

4.3.2 Derivation of phasetrophy evolution

In this section, we derive the time evolution equation for phase space density

correlation[21] 〈δh(1)δh(2)〉. Phase space density correlation can be compared to

several physical quantities, Fig.4.5. Phase space density correlation 〈δh2〉 can be

thought of as ‘potential enstrophy’ in phase space or ‘phasetrophy’[30], since phase

space density f in the GK system is similar to the potential vorticity q in the QG

system (Table4.2). Following the analogue between the QG and the GK system,

the phasetrophy gives the kinetic wave activity density, which is closely related to

the fluctuation pseudomomentum. Alternatively, phase space density correlation

evolution 〈δf(1)δf(2)〉 is also related to the fluctuation entropy in kinetics, i.e.

s =
∫ √

EdE〈δf 2〉/〈f〉.
〈δh(1)δh(2)〉 evolution is derived as follows[21, 30, 33]. Upon multiplying

δh(2), adding the equation with 1 and 2 exchanged, introducing the relative co-

ordinate y− ≡ y1 − y2, and averaging over x+ = (x1 + x2)/2, Eq.(4.10a) for ions

gives

∂

∂t
〈δh(1)δh(2)〉+ vrel

∂

∂y−
〈δh(1)δh(2)〉+ T (1, 2) + C(1, 2) = P (1, 2) (4.12)
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Figure 4.5: Relation of ‘phasetrophy’ 〈δf(1)δf(2)〉 to other physical quantities

Here the terms in the lefthand side are

vrel ≡ v̄D(Ē1 − Ē2) + 〈vE〉′(x1 − x2) (4.13a)

T (1, 2) ≡ 〈δh(2)ṽE×B(1) · ∇δh(1)〉+ (1↔ 2) (4.13b)

C(1, 2) ≡ 〈δh(2)νeff (1)δh(1)〉+ (1↔ 2) (4.13c)

(1↔ 2) denotes the term with the arguments 1 and 2 exchanged. vrel is the relative

velocity of particles at two different points in phase space. T (1, 2) is the triplet

term which describes the decorrelation process due to nonlinear ṽE×B scattering.

C(1, 2) is the collisional cut-off. After a closure calculation[33] of the triplet term,

the lefthand side of Eq.(4.12) reduces to(
∂

∂t
+ v̄DE−

∂

∂y−
+ 〈vE〉′x−

∂

∂y−
− ∂

∂x−
·Drel ·

∂

∂x−

)
〈δh(1)δh(2)〉+ C(1, 2)

(4.14)

where Drel is the relative diffusion matrix

Drel =
∑
kω

{1− cos(k · x−)}〈ṽE×BṽE×B〉kωRe
i

ω − kθv̄DĒ − kθ〈vE〉′x+ i/τc

(4.15)
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The relative streaming of the magnetic drift, zonal flow shear, the relative diffusion,

and C(1, 2) together determine an effective life time of correlation. In the limit of

1 → 2, since vrel → 0 and Drel ∝ k2
⊥x

2
− → 0, the lifetime is determined by the

collisional cut-off.

The righthand side of Eq.(4.12) is

P (1, 2) ≡−
〈
ṽrE×B(1)δh(2)

〉
〈fi(1)〉′ +

〈
δh(2)∂t

qφ̃(1)

Ti

〉
〈fi(1)〉+ (1↔ 2)

(4.16a)

P (1, 2) is the production of phasetrophy due to transport and relaxation. Note that

the first term in the production P (1, 2) has a generic form expected for production,

namely flux 〈ṽrδf〉 times gradient 〈f〉′. In terms of Fourier components, we have

P (1, 2) =Re
∑
kω

(−iω + iωi∗(1))

〈
qφ̃(1)

Ti
δh∗(2)

〉
kω

eik·x−〈fi(1)〉+ (1↔ 2) (4.16b)

where x− ≡ x1 − x2, ωi∗(1) ≡ (kθcTi〈fi(1)〉′)/(qB〈fi(1)〉) = kθv
i
∗(1 + ηi(Ē − 3/2)),

vi∗ ≡ −(ρi/|Ln|)vthi and 〈...〉kω is the Fourier spectrum of a correlation function,

i.e. 〈f(x1, t1)g(x2, t2)〉 =
∑

kω〈fg〉kωeik·x−−iωt− . As δh = δhc + δ̃h, the production

term consists of two parts, namely coherent and incoherent production[22, 98,

30](Fig.(4.6)). The coherent part originates from a response of phase space density

fluctuation to potential fluctuation φ̃, namely δhckω ∼ R(k, ω)φ̃kω. The incoherent

part originates from granulation δ̃h. While moving through plasmas, granulations

or macro-particles in phase space can emit wave wakes via Cerenkov processes

(Fig.4.2). These wakes are in turn absorbed by plasma. This process effectively

produces a macro-particle wake and induces dynamical friction on ion phase space

density granulations. This in turn produces incoherent production, P̃ ∝ Imε. We

calculate both coherent and incoherent production in the following(Fig.(4.6)).

To calculate the production term due to the coherent response, we need

δhckω, the part of δh phase-coherent with fluctuation potential. δhckω can be calcu-
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P (1, 2)�
��*
HHHj

P c(1, 2)

P̃ (1, 2) ∝ Imε ��
��*

-HHHHj

P̃i ∝ Imεi

P̃e ∝ Imεe

P̃pol ∝ Imεpol

Figure 4.6: List of terms to be calculated

lated as a response to φ̃kω from Eq.(4.10a) as

δhckω =gkω(−iω + iωi∗)

(
qφ̃

Ti

)
kω

〈fi〉 (4.17)

where gkω ≡ (−iω+iω̄DĒ+ikθ〈vE〉′x+1/τc)
−1 is a propagator, and 1/τc comes from

resonance broadening[105] due to the nonlinear E×B scattering, so τ−1
c ∼ k2

⊥D⊥

and D⊥ =
∑

kω Regkω(c/B)2〈φ̃2〉kω. Note that in the weak turbulence limit of

1/τc < ω, Regkω → πδ(ω − ω̄DĒ − kθ〈vE〉′x), which is the expression we use later

to obtain the net ion phasetrophy production, Eq. (4.28). This is essentially the

linear response. Then using the expression for δhckω gives

P c(1, 2) ≡Re
∑
kω

(−iω + iωi∗(1))

〈
qφ̃(1)

Ti
δhc∗(2)

〉
kω

〈fi(1)〉eik·x− + (1↔ 2)

(4.18a)

=
∑
kω

(ω − ωi∗(1))(ω − ωi∗(2))Regkω(2)

〈
qφ̃(1)

Ti

qφ̃∗(2)

Ti

〉
kω

× 〈fi(1)〉〈fi(2)〉eik·x− + (1↔ 2) (4.18b)

→2
∑
kω

(ω − ωi∗(E))2〈fi〉2Regkω lim
1→2

〈
qφ̃(1)

Ti

qφ̃∗(2)

Ti

〉
kω

(4.18c)

where in the last line we took the limit of 1 → 2. This term corresponds to the

production due to diffusive flux of phase space density by ṽE×B scattering. This
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can be checked, for ω − ωi∗ ∼ kθρivthi〈f〉′/〈f〉,

P c ∼ 2
∑
kω

v2
thiRegkωk

2
θρ

2
i

〈(
qφ̃

Ti

)2〉
kω

〈fi〉′2 = 2D〈fi〉′2 (4.18d)

Here D ≡∑kω v
2
thiRegkωk

2
θρ

2
i

〈
(qφ̃/Ti)

2
〉
kω

is the diffusion coefficient due to E×B
scattering. Eq.(4.18d) is the familiar quasi-linear result.

Note that the spectrum 〈φ̃2〉kω is not arbitrary here; 〈φ̃2〉kω is produced

by granulation 〈δ̃h2〉kω via Cerenkov emission. The potential fluctuation is self-

consistently calculated[21] by solving the quasi-neutrality condition via the GK

Poisson equation

ε̂(k, ω)
qφ̃kω
Ti

=

(
δ̃ni
n0

)
kω

(4.19)

where (δ̃ni/n0)kω =
∫
d3vδ̃hkω may be thought of as the emission by incoherent

granulation. The quasi-neutrality condition can be solved with the help of Green’s

function defined by

ε̂(x)G(x, x′) = δ(x− x′), (4.20)

which yields

qφ̃kω(x)

Ti
=

∫
dx′G(x, x′)

δ̃nkω(x′)

n0

=

∫
dx′d3vG(x, x′)δ̃hkω(v, x′) (4.21a)

Note that Eq.(4.21a) is only valid for nearly steady state with saturated waves,

since in that case the homogeneous or eigenvalue solution of the quasi-neutrality

condition, i.e. ε(k, ωk) = 0 with φ̃k ∼ e−iωkt, is damped so only the inhomogeneous

solution due to the incoherent emission remains in Eq.(4.21a). Given that caveat,

the self-consistent spectrum is obtained as〈
qφ̃(1)

Ti

qφ̃∗(2)

Ti

〉
kω

=

∫
dx′1dx

′
2d

3v1d
3v2G(x1, x

′
1)G∗(x2, x

′
2)〈δ̃h(x′1,v1)δ̃h

∗
(x′2,v2)〉kω

Eq.(4.22) suggests that the self-consistent spectrum at x depends on the gran-
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ulation fluctuations at different locations x′1, x′2. Note that in the local limit

G(x, x′) = ε−1(k, ω)δ(x − x′) and Eq.(4.22) reduces to a familiar form 〈φ̃2〉kω ∼
〈δ̃n2〉kω/|ε(k, ω)|2.

With the self-consistent spectrum, the coherent production can be rewritten

as

lim
1→2

P c(1, 2) = 2
∑
kω

(ω − ωi∗(E))2〈fi〉2Regkω

×
∫
dx′1dx

′
2d

3v1d
3v2G(x1, x

′
1)G∗(x2, x

′
2)〈δ̃h(x′1,v1)δ̃h

∗
(x′2,v2)〉kω (4.22)

A form which is more useful for the later calculation is obtained by relating k, ω

spectrum to k spectrum via the orbit propagator[21, 33, 30]

〈δ̃h(1)δ̃h
∗
(2)〉kω ∼= 2πδ(ω − ω̄DĒ2 − kθ〈vE〉x2)〈δ̃h(1)δ̃h

∗
(2)〉k (4.23)

Upon integrating over energy, we obtain

lim
1→2

P c(1, 2) = 2
∑
kω

(ω − ωi∗(E))2〈fi〉Regkω

×
√

2ε0
2√
π

2π

|ω̄D|
e−Ē

∫
dx′1dx

′
2G(x, x′1)G∗(x, x′2)

×
√
Ēres(x′2)

〈
δ̃n(x′1)

n0

δ̃h
∗
(x′2, Ēres(x

′
2))

〉
k

(4.24)

Note that Eq.(4.24) is not as simple as its local limit

lim
1→2

P c(1, 2) = 2
∑
kω

(ω − ωi∗(E))2〈fi〉Regkω

×
√

2ε0
2√
π

2π

|ω̄D|
e−Ē

√
Ēres

|ε(k, ω)|2

〈
δ̃n

n0

δ̃h
∗
(Ēres)

〉
k

(4.25)

The difference arises from zonal flow coupling. In the presence of zonal flows, the

plasma dielectric becomes an operator via envelope coupling Imεpol ∝ ∂r and the

resonance is altered from δ(ω − ω̄DĒ) to δ(ω − ω̄DĒ − kθ〈vE〉′x). The modified

resonance functions introduce a spatial integral (via inversion of the operator using
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a Green’s function) and space dependent velocity integral Jacobian
√
Ēres(x).

These, then, form an ‘non-local’ influence kernel.

Now we turn to the calculation of the production term due to incoherent,

granular fluctuations;

P̃ (1, 2) ≡Re
∑
kω

(−iω + iωi∗(1))

〈
qφ̃(1)

Ti
δ̃h
∗
(2)

〉
kω

〈fi(1)〉eik·x− + (1↔ 2) (4.26a)

Expressing the potential fluctuation in terms of the incoherent fluctuation and

inserting a unit operator ε̂∗(x)
∫
dx′G∗(x, x′) = 1 gives

P̃ (1, 2) =Re
∑
kω

(−iω + iωi∗(1))〈fi(1)〉eik·x−

∫
dx′1dx

′
2G(x1, x

′
1)ε̂∗(x2)G∗(x2, x

′
2)

×
〈
δ̃n(x′1)

n0

δ̃h
∗
(x2)

〉
kω

+ (1↔ 2)

→− 2
∑
kω

(ω − ωi∗(E))〈fi(E)〉

×
∫
dx′1dx

′
2G(x, x′1)Imε̂(x)G∗(x, x′2)

〈
δ̃n(x′1)

n0

δ̃h
∗
(x)

〉
kω

(4.26b)

As noted above, P̃ (1, 2) is directly proportional to Imε. As Imε = Imεi + Imεe +

Imεpol, P̃ (1, 2) consists of pieces from ions, electrons, and polarization charges. We

calculate each piece in the following(Fig.4.6).

We start by calculating ion induced incoherent production. This term is

related to drag on phase space density exerted by ions - i.e. granulations emit waves

via Cerenkov emission, while waves are in turn absorbed by ions, ∝ Imεi. This

leads to a drag on ion phase space density granulations, and incoherent production.

Using the expression for Imεi and noting[33]〈
δ̃n(1)

n0

δ̃h
∗
(2)

〉
kω

=

〈
δ̃n(1)

n0

δ̃h
∗
(2)

〉
k

2πδ(ω − ω̄DĒ2 − kθ〈vE〉′x2) (4.27a)
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gives

P̃i = −2
∑
kω

(ω − ωi∗(E))2〈fi(E)〉
√

2ε0
2√
π

√
Ēres

π

|ωD|

× e−Ēres2πδ(ω − ω̄DĒ − kθ〈vE〉′x)

×
∫
dx′1dx

′
2G(x, x′1)G∗(x, x′2)

〈
δ̃n(x′1)

n0

δ̃h
∗
(x)

〉
k

(4.27b)

In the local limit we have:

P̃i =− 2
∑
kω

(ω − ωi∗(E))2〈fi(E)〉
√

2ε0
2√
π

√
Ēres

π

|ωD|

× e−Ēres2πδ(ω − ω̄DĒ)
1

|ε(k, ω)|2

〈
δ̃n

n0

δ̃h
∗
〉
k

(4.27c)

The incoherent production by ions Eq.(4.27b) and the coherent production

Eq.(4.24) adds to give an effective coherent production Pi,i ≡ P c + P̃i:

Pi,i =2
∑
kω

(ω − ωi∗(E))2〈fi(E)〉2RegkωSkω (4.28)

where

Skω ≡
√

2ε0
2√
π

2π

|ω̄D|

(
2πTi
mi

)3/2 ∫
dx′1dx

′
2G(x, x′1)G∗(x, x′2)

×
{√

Ēres(x′2)

〈
δ̃n(x′1)

n0

δ̃h
∗
(x′2, Ēres(x

′
2))

〉
k

−
√
Ēres(x)

〈
δ̃n(x′1)

n0

δ̃h
∗
(x)

〉
k

}
(4.29)

Here Skω is the effective fluctuation spectrum, shifted by the incoherent production

contribution, as can be seen in the subtraction in the curly bracket. In the absence

of the incoherent production contribution, Skω → 〈(qφ̃/Ti)2〉kω. The net produc-

tion Eq.(4.28) takes the form of coherent production - the incoherent contribution

is rescaled into the coherent part. This may be viewed as a renormalization of



108

coherent production due to self-feedback from ion incoherent production(Fig.4.7)

- i.e. ‘bare’ coherent production P c produces δ̃h
2

which acts back through the

incoherent ion production term P̃i. Physically speaking, we may understand this

as a self-field due to phase space density; while a test ion phase space density is

scattered by ṽE×B, it also produces a self-field φ̃self ∼ ε−1(k, ω)
∫
d3vδ̃htest. The

self-field, in turn, is coupled to other ions, which leads to absorption ∝ Imεi.

Through the coupling, the test ion phase space density feels the effect of the other

ions as dynamical friction due to Cerenkov emission, thus leading to the renormal-

ization of the ṽE×B scattering of test phase space density. This can be expressed

as a net ‘renormalized’ production Pi,i ∼ 2D̄〈f〉′2 where

D̄ ≡
∑
kω

v2
thiRegkωk

2
θρ

2
iSkω (4.30)

is a ‘renormalized’ diffusion coefficient. Of course, if we turn off the self-feedback

from the incoherent production, D̄ reduces to a ‘bare’ diffusion coefficient D̄ →∑
kω v

2
thiRegkωk

2
θρ

2
i

〈
(qφ̃/Ti)

2
〉
kω

.

Note that we do not have the cancelation between the coherent and in-

coherent parts as found in analyses with effectively 1D resonance dynamics[33],

δ(ω − ω̄DĒ). Here, the resonance function is δ(ω − ω̄DĒ − kθ〈vE〉′x) and thus

2D with (E, x). In 2D, E and x can change their value while ω̄DĒ + kθ〈vE〉′x
unchanged, as in a (E, x)→ (E ′, x′) scattering event. In contrast, in 1D, Ē cannot

change its value while ω̄DĒ is unchanged. This leaves initial state = final state, so

relaxation is impossible and thus the like-species production must vanish. Indeed,

by turning off zonal flow in the resonance dynamics in Eq.(4.28), we can recover

the 1D result:

P c + P̃i ∝ δ(ω − ω̄DĒ − kθ〈vE〉′x)Skω

→ δ(Ēres − Ē)

{
e−Ē

〈
δ̃n

n0

δ̃h
∗
(Ēres)

〉
k

− e−Ēres

〈
δ̃n

n0

δ̃h
∗
(E)

〉
k

}
→ 0

(4.31)

Thus the cancellation is a special case and an artifact of the 1D resonance dynamics.
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]]

Figure 4.7: Renormalization of coherent production

Now we consider the calculation of other components in the incoherent

production term(Fig.4.6). The incoherent production due to electrons arises from

the coupling of ion phase space density to electrons via Imεe (i.e. drag). Here, ion

phase space granulation emits waves via Cerenkov emission, while waves are, in

turn, collisionally dissipated by electrons, Imεe ∝ ν−1
e . This leads to drag on phase

space density and incoherent production by electrons:

P̃e = −2
∑
kω

(ω − ωi∗(E))〈fi(E)〉Imεe

×
∫
dx′1dx

′
2G(x, x′1)G∗(x, x′2)

〈
δ̃n(x′1)

n0

δ̃h
∗
(x)

〉
kω

(4.32a)

This term reduces to the result which was derived earlier[33] by going to the local

limit G(x− x′) = ε−1(k, ω)δ(x− x′), relating the k, ω spectrum to the k spectrum

via the orbit propagator, and utilizing the frequency ordering ωi∗ > ω:

P̃e =4π
∑
k

ωi∗(
ηi

ηi,cr(Ē)
− 1)〈fi(E)〉 Imεe

|ε(k, ω̄DĒ)|2

〈
δ̃n

n0

δ̃h
∗
〉
k

(4.32b)

where ηi,cr ≡ (3/2− Ē)−1 is an energy dependent threshold for the onset of the ion

transport driven by granulations. This term was utilized to calculate anomalous

transport of ion heat and particles[33].

Incoherent production also arises from polarization charge. While mov-

ing through phase space, an ion granulation leaves a wake with a spatial extent

(Fig.4.2). The resulting spatial envelope of the fluctuation spectrum necessarily is

coupled to the polarization charge via Imεpol ∝ ∂r. This leads to a wake drag on
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the phase space macro-particle and thus incoherent production by the polarization

charge coupling:

P̃pol = −2
∑
kω

(ω − ωi∗(E))〈fi(E)〉
∫
dx′1dx

′
2G(x, x′1)

× (−2ρ2
i kr∂r)G

∗(x, x′2)

〈
δ̃n(x′1)

n0

δ̃h
∗
(x)

〉
kω

(4.33a)

Noting that polarization charges correspond to fluid vorticity and introduces zonal

flow coupling in the single structure growth, we expect that P̃pol induces zonal flow

coupling in the multi -structure case. To see the connection to zonal flow, we go to

the local limit

P̃pol ' −2
∑
kω

(ω − ωi∗(E))〈fi(E)〉(−2ρ2
i kr)

1

|ε(k, ω)|2

〈
δ̃n

n0

∂rδ̃h
∗
〉
kω

(4.33b)

Since it contains kθkr weighed by spectrum via ωi∗ ' kθv
i
∗, Eq.(4.33b) resembles

the Reynolds stress. To show the Reynolds stress connection explicitly, and for the

sake of simplicity, we take ω − ωi∗(E) ' −kθvi∗, divide P̃pol by 〈f〉, and integrate

P̃pol over velocity space, which yields

∫
d3v

P̃pol
2〈fi〉

' −
∑
kω

vi∗kθρ
2
i kr

|ε(k, ω)|2∂r
〈
δ̃n

n0

∫
d3vδ̃h

∗
〉
kω

= −
∑
kω

vi∗kθρ
2
i kr∂r

〈
qφ̃

Ti

qφ̃∗

Ti

〉
kω

=
vi∗
v2
thi

∂r〈ṽrṽθ〉 (4.33c)

Hence, we see that the incoherent production via polarization charge induces zonal

flow coupling to the granulation dynamics, and clearly links production to the

Reynolds force.

Relative magnitude of P̃pol, for example to P̃e (the latter leads to anomalous

ion heat and particle transport[33]), can be evaluated as

P̃pol

P̃e
∼ krkθ

k2
θ

ηe
1 + 3ηe/2

νe

ε
3/2
0 ωc,i

LTe
Lenv

(4.34)
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Here the bar denotes spectral average, i.e. (...) ≡ ∑
kω(...)〈φ̃2〉kω/

∑
kω〈φ̃2〉kω,

Lenv is the scale length of envelope variation. Setting Lenv ∼
√
ρiLTe , typical of

mesoscales, we have

P̃pol

P̃e
∼ krkθ

k2
θ

ηe
1 + 3ηe/2

νe/ε0
vthi/LTe

1

ε
1/2
0

√
ρi
LTe

(4.35)

Here typically krkθ/k2
θ ∼ ηe/(1 + 3ηe/2) ∼ O(1). While

√
(ρi/LTe) is small, it is

multiplied by ε
−1/2
0 > 1 and (νe/ε0)/(vthi/LTe) > 1 (by the frequency ordering for

electron collisions). Then we can see that P̃pol/P̃e can easily be order unity and

thus P̃pol should be included in the analysis. This is especially true around a ion

barrier region where the gradients are steep.

In summary, we obtained the evolution equation for phasetrophy as(
∂

∂t
+ τ−1

L

)
lim
1→2
〈δh(1)δh(2)〉 = lim

1→2
P (1, 2) (4.36)

where τ−1
L is

τ−1
L lim

1→2
〈δh(1)δh(2)〉 = lim

1→2

(
vrel

∂

∂y−
〈δh(1)δh(2)〉+ T (1, 2) + C(1, 2)

)
(4.37)

where vrel = v̄DĒ−+ 〈vE〉′x−, T (1, 2) is the triplet term defined by Eq.(4.13b) and

C(1, 2) is the collision term defined by Eq.(4.13c). The key difference between τ−1
L

and P (1, 2) is their small scale behavior. As 1 → 2, τ−1
L approaches to a small

value which is determined by collisions, τ−1
L → 2νeff〈δh2〉 where a Krook operator

C(1, 2) = νeff〈δh(1)δh(2)〉 is used for the purposes of estimation. As 1 → 2,



112

P (1, 2) remains finite and the total production is

lim
1→2

P (1, 2) ≡ Pi,i + Pi,e + Pi,pol (4.38a)

Pi,i = 2
∑
kω

(ω − ωi∗(E))2〈fi〉2RegkωSkω (4.38b)

Pi,e = −2
∑
kω

(ω − ωi∗(E))〈fi〉
Imεe
|ε(k, ω)|2

〈
δ̃n

n0

δ̃h
∗
〉
kω

(4.38c)

Pi,pol = −2
∑
kω

〈fi〉
2vi∗ρ

2
i krkθ

|ε(k, ω)|2

〈
δ̃n

n0

∂rδ̃h
∗
〉
kω

(4.38d)

where Skω is the spectrum defined by Eq.(4.29). Pi,i is renormalized coherent

production. Pi,e is due to the coupling of the ion wake to electron dissipation. Pi,pol

is from the coupling of the ion wake to polarization charge. This term introduces

a novel zonal flow effect into granulation dynamics. This new effect is different

from the conventional zonal flow effects such as shearing suppression of turbulence

or cross-phase modification[106]. Indeed, this effect is akin to a reduction of the

production term by scattering of momentum (and energy) to the zonal flow.

4.3.3 Phase space density granulation and zonal flows:

Connection to the momentum theorem in

quasigeostrophic system and its consequences

The phasetrophy evolution derived in the above can be put in a form where

zonal flow coupling is more apparent. In doing so, we divide phasetrophy evolution

by 〈f〉 and integrate over velocity space to obtain(
∂

∂t
+ τ−1

L

)∫
d3v
〈δh2〉
2〈f〉 =

∫
d3v

Pi,i + Pi,e + Pi,pol
2〈f〉 (4.39)

where 〈δh2〉 ≡ lim1→2 〈δh(1)δh(2)〉. Pi,pol term introduces zonal flow coupling as

discussed above. Utilizing the expression for Pi,pol gives

∂

∂t

∫
d3v
〈δh2〉
2〈f〉 =

∫
d3v

Pi,i + Pi,e
2〈f〉 +

vi∗
v2
thi

∂r〈ṽrṽθ〉 − τ−1
L

∫
d3v
〈δh2〉
2〈f〉 (4.40)
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Thus, as in the single structure limit, phase space density granulation evolution is

also dynamically coupled to zonal flows.

Eq.(4.40) has the same structure as the fundamental momentum constraint

in QG system, namely the C-D momentum theorem. For comparison, below we

re-write the C-D theorem for the Hasegawa-Wakatani system in a similar form:

∂

∂t

〈δq2〉
2〈q〉′ = −〈ṽrñe〉+ ∂r〈ṽrṽθ〉 −

1

〈q〉′
(
∂

∂r

〈
ṽr
δq2

2

〉
+D0〈(∇δq)2〉

)
(4.41)

∂

∂t

∫
d3v
〈δh2〉
2〈f〉 =

∫
d3v

Pi,i + Pi,e
2〈f〉 +

vi∗
v2
thi

∂r〈ṽrṽθ〉 − τ−1
L

∫
d3v
〈δh2〉
2〈f〉 (4.42)

Each term in Eq.(4.41) has a clear counterpart in Eq.(4.42). The phasetrophy

〈δh2〉 is the counterpart of potential enstrophy 〈δq2〉. Pi,i and Pi,e represent the

effect of relaxation, thus leading to flux of both particles and heat. This clearly

corresponds to the particle flux in the momentum theorem for the Hasegawa-

Wakatani system. The lifetime of phasetrophy τL is analogous to the lifetime of

enstrophy via turbulence spreading[107] and viscous dissipation of 〈δq2〉.
As a consequence, a similar statement as the non-acceleration theorem[74]

by Charney and Drazin follows; in the absence of production and dissipation of

phase space density granulation, stationary granulation cannot accelerate flow

against frictional drag. This in turn implies that if we have any production or

dissipation of phase space density granulation, we must have a corresponding ad-

justment of the flow, and vice versa.

The coupled system of phase space density granulation and zonal flow shows

a self-regulating behavior, as Eq.(4.40) and the momentum balance equation for

zonal flow form a type of predator-prey system:

∂

∂t

∫
d3v
〈δh2〉
2〈f〉 =

∫
d3v

Pi,i + Pi,e
2〈f〉 +

vi∗
v2
thi

∂r〈ṽrṽθ〉 − τ−1
L

∫
d3v
〈δh2〉
2〈f〉 (4.43a)

∂

∂t
〈vθ〉 =− ∂r〈ṽrṽθ〉 − ν〈vθ〉 (4.43b)

which clearly has the same structure as the familiar predator-prey model[17, 55]:

∂tε = γLε− αV ′2ε−∆ω(ε)ε (4.44a)
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∂tV
′2 = αV ′2ε− νcolV ′2 (4.44b)

where ε is the turbulence intensity, V ′2 is flow shear, γL is linear growth rate of a

mode, α represents a coupling between flow and fluctuations, ∆ω is a decorrelation

rate, νcol is the collisional drag on the flow. Then, by comparison, Eq.(4.43a) can

be viewed as the equation for prey, which here is the phasetrophy. The prey are

produced by mean field relaxation due to Pi,i and Pi,e. Death of prey occurs due

to the granulation dispersion τ−1
L and due to coupling to the predator, namely the

zonal flow ∂r〈ṽrṽθ〉. Eq.(4.43b) is the equation for the predator. The predator is

pumped by consuming the prey, such as phase space density granulations which

drive the Reynolds stress. The predator-prey system here may be compared to the

kinetic predator-prey system derived based on entropy balance[36]. Ultimately, the

both systems are derived from the dynamics of the same quantity, namely phase

space density correlation δf 2, which is the fundamental quantity.

The coupled system of granulations and zonal flows can lead to non-trivial,

finite intensity state with zonal flow coupling, namely the zero production state.

In a weakly collisional system, zonal flows allow a stationary state with zero total

production:

0 ∼=
∫
d3v

Pi,i + Pi,e
2〈f〉 +

vi∗
v2
thi

∂r〈ṽrṽθ〉 (4.45)

The zero production state is of practical interest, since mean field evolution is

also vanishes, ∂t〈f〉 ∼ Ptot ' 0. Access to the zero production state requires the

balance of the relaxation drive Pi,i+Pi,e with the zonal flow drive Pi,pol ∼ ∂r〈ṽrṽθ〉.
In turn, in the zero net production state a stationary zonal flow can be sustained

against collisional drag:

〈vθ〉 =
1

ν

v2
thi

vi∗

∫
d3v

Pi,i + Pi,e
2〈f〉

' −ωc,i
ν

〈ṽrñe〉
n0

+
1

ν

v2
thi

vi∗

∫
d3v

Pi,i
2〈f〉 (4.46)
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where we used ∫
d3v

Pi,e
2〈f〉 '

∫
d3v
∑
kω

kθv
i
∗

Imεe
|ε(k, ω)|2

〈
δ̃n

n0

δ̃h
∗
〉
kω

= − vi∗
vthi

1

ρi

〈ṽrñe〉
n0

(4.47)

Eq.(4.46) can be compared to the stationary zonal flows in the Hasegawa-Wakatani

system and GK system in the single structure limit. The close correspondence is

evident. In each system, electron flux can support stationary zonal flow against

collisional drag.

4.3.4 Transport

Since 2P = ∂t〈δf 2〉 ' −∂t〈f〉2, the production term is related to the

mean field evolution and transport. The transport flux can be extracted from

the phasetrophy production term, lim1→2 P (1, 2) ∼ −〈ṽrδf〉〈f〉′, as:

J(r) ≡ 〈ṽrδf〉 = Ji,i + Ji,e + Ji,pol (4.48a)

Ji,i =
∑
kω

(ω − ωi∗(E))〈fi(E)〉kθρivthiRegkωSkω (4.48b)

Ji,e = −
∑
kω

kθρivthi
Imεe
|ε(k, ω)|2

〈
δ̃n

n0

δ̃h
∗
〉
kω

(4.48c)

Ji,pol = −
∑
kω

kθρivthi
(−2ρ2

i kr)

|ε(k, ω)|2

〈
δ̃n

n0

∂rδ̃h
∗
〉
kω

(4.48d)

where Skω is the spectrum defined by Eq.(4.29). Ji,i is the flux which arises from the

net ion production Pi,i. Ji,i is the diffusive part of the total flux, as Ji,i ' −D̄〈fi〉′

for ω < ω∗. Here D̄ =
∑

kω v
2
thiRegkωk

2
θρ

2
iSkω is the renormalized diffusivity. Ji,i

simplifies in certain limits. If we neglect the effect of incoherent fluctuations and

retain the spectrum only due to eigenmodes, Ji,i reduces to the quasilinear flux:

Ji,i ' −
∑
k

ρ2
sk

2
θc

2
sRegk

∣∣∣∣∣qφ̃Te
∣∣∣∣∣
2

k

〈f〉′ (4.49)
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If we go to the local limit, we have Ji,i → 0 corresponding to Pi,i → 0. The net

Ji,i ∝ D̄ ∝ Pi,i arises from the non-cancelation between the coherent and the ion

incoherent productions.

Ji,e is the dynamical friction which originates from the ion wake drag on

the electrons. Here dissipative non-adiabatic electrons are assumed, Imεe ∝ ν−1
e .

Ji,e is utilized to explain the anomalous transport of ion heat and particles due to

ion clumps[33].

Ji,pol is the novel piece here, which originates from polarization charge and

describes zonal flow coupling. Ji,pol may be understood as a zonal flow induced

collisionless friction[37] exerted on the ion phase space density. Note that Ji,pol

algebraically competes against other fluxes. The competition can lead to a satu-

rated state with the zero total flux J(r) = 〈ṽrδf〉 = Ji,i + Ji,e + Ji,pol ' 0, which

corresponds to the zero net production state discussed above. Here, transport sup-

pression is achieved by the competition between relaxation and Reynolds work, i.e.

Eq.(4.45). This is different from the conventional view of transport suppression

by zonal flow shearing. Moreover, retaining dynamical friction is essential to the

recovery of this effect.

4.4 Conclusions

In this paper, we present a theory for relaxation and transport in collision-

less GK turbulence with zonal flow. This theory treats the effects of both phase

space structures and zonal flows. The principal results of the paper are:

1. In the strongly resonant limit for K � 1, the growth of even a single local-

ized structure in phase space is seen to be strongly coupled to zonal flows.

−
∫ √

EdE〈δf 2〉/〈f〉|0 is identified as the zonal pseudomomentum carried by

the phase space structure. The net invariance of total dipole moment was

used to reveal the zonal flow coupling in the structure growth equation. The

foundation of this is the conservation of zonal momentum between phase

space fluid and zonal flow. The resultant expression, Eq.(4.8), is shown to

be closely related and very similar to the Charney-Drazin theorem for the
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Hasegawa-Wakatani system, a fundamental momentum constraint in quasi-

geostrophic systems.

2. For K ∼ 1, a statistical theory of granulation evolution and mean field (〈f〉)
evolution was formulated in the presence of zonal flows. In particular:

(a) Zonal flow coupling in the granulation dynamics is introduced by the

production due to polarization charge mixing. The production due to

polarization charge arises due to envelope coupling, which can be intro-

duced by the spatial variation intrinsic to the wake emitted by granu-

lation. Other processes, such as mode propagation and absorption etc,

can contribute to the envelope structure. The production due to the

polarization charge, necessarily coupled via the GK Poisson equation,

is explicitly related to Reynolds force, Eq.(4.33c).

(b) The coupled system of granulations and zonal flow form a type of self-

regulating, kinetic predator-prey system, Eq.(4.43a) and (4.43b). The

coupling allows the system to achieve an finite amplitude state of van-

ishing production, by balancing granulation induced production due to

∇T relaxation with the Reynolds work which produces the zonal flow.

(c) The mean field evolution is calculated and various contributions to the

transport fluxes are given, including the diffusive flux as well as dynam-

ical friction. Dynamical friction arises from the zonal flow, Eq.(4.48d).

The dynamical friction competes against other fluxes algebraically. This

is similar to the effect of zonal flow in the predator-prey system and is

different from the conventionally invoked zonal flow effects on transport,

namely cross phase modification and simple amplitude suppression.

Throughout the paper, the quantity which plays the central role is the phase

space density correlation 〈δf(1)δf(2)〉. 〈δf(1)δf(2)〉 is the fundamental correla-

tion, as we can easily translate or relate 〈δf(1)δf(2)〉 to other physical quanti-

ties, including the pseudomomentum of phase space turbulence, the fluctuation en-

tropy, and the fluctuation phasetrophy 〈δf 2〉 which is similar to potential enstrophy,

Fig.4.8.
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Phase space density correlation

〈δf(1)δf(2)〉

�
�
�	

Kinetic wave activity density∫ √
EdE〈δf 2〉/〈f〉′|0

→ pseudomomentum

@
@
@R

Fluctuation entropy∫ √
EdE〈δf 2〉/〈f〉

Figure 4.8: Relation of ‘phasetrophy’ 〈δf(1)δf(2)〉 to other relevant physical
quantities

As 〈δf 2〉 is closely related to different quantities, its time evolution can

also be interpreted in several ways. The evolution of 〈δf 2〉 can be related to the

momentum conservation constraint for phase space turbulence, which is similar

to the Charney-Drazin momentum theorem for QG turbulence. Alternatively, the

evolution of 〈δf 2〉 can be related to the entropy balance equation with production

from relaxation drive, destruction from Reynolds work, and 〈δf 2〉 coupling to small

scale dissipation. See Table.4.3. In either case, GK turbulence and zonal flows

are coupled via dynamical friction due to polarization charge and so form a self-

regulating system.

The coupled system derived in this paper for describing GK turbulence and

zonal flow conserves energy and zonal momentum. The momentum conservation

is via dynamical friction due to zonal flow and sets a fundamental constraint on

the modeling of GK turbulence and zonal flow generation. Thus, any GK model

which includes zonal flow generation must also include dynamical friction, oth-

erwise momentum and energy are not conserved between fluctuation and flows.

Then, for example, we see that the usual quasilinear description of GK turbulence

production and transport is not compatible with a proper description of zonal flow

generation.

A similar behavior to the predator-prey type system described here is ob-

served in the recent computational work[108] on the entropy transfer between
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ITG/ETG and zonal flow. The non-local transfer of entropy between drift wave

and zonal flow described in the work can be then understood as a simple variant

of the well known zonal flow shearing feedback in the predator-prey system. In-

deed, it has long been known that large scale shears produces non-local potential

enstrophy transfer to small scales in QG systems[78]. Then, it is no surprise that

large scale shear produces non-local entropy (closely related to phasetrophy, akin

to potential enstrophy) transfer to small scales in GK systems.

In the related vein, nonlocality in physical space or transport is an impor-

tant unresolved issue. The most clear physical process which underpins nonlocality

is avalanching, process akin to coupled topplings of neighboring cites in a sand-

pile, which has also been observed in GK simulations. This paper does not treat

avalanching. We note, however, that the response to phase space density gran-

ulations is intrinsically non-local, i.e. Eq.(4.22), and so can serve as a seed in

granulation formation.

This paper sets forth the basic theory of relaxation in a system with gran-

ulations which also couple to zonal flows. The next step in this program is to

solve the coupled phase space density correlation and zonal flow equations, i.e.

Eqs (4.36) and (4.43b). This forthcoming work will examine possible wave and/or

granulation driven relaxation processes, and the zonal flow effects on each of these.

Special attention is focused on subcritical processes.

Finally, we point out that the paradigm considered here, namely relaxation

and transport in the presence of phase space structures and zonal flows, is not only

applicable to collisionless ITG turbulence but is also of interest in the context of en-

ergetic particle mode (EPM). Indeed, formation of structures in EPM is likely[69].

A key physical point here is that EPM excitation is due to precession resonance,

which is rather coherent[109]. As a consequence, the mode localizes there the drive

is strongest. Thus, a description in terms of screened macro-particles seems quite

natural. Also, zonal flow generation in energetic particle induced Alfven turbu-

lence has also been reported[110]. Thus, the framework presented here should be

applicable to a self-consistent description of transport in EPM turbulence as well.

This will be pursued in the near future.
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4.A Appendix: derivation of plasma dielectric

Here we derive the plasma dielectric for the trapped ion mode model used

in Section III. The derivation is standard; we linearize the kinetic equation and

require a quasi-neutrality. The frequency ordering of interest here is

ωti, ωbi > ωi∗ > ω ∼ ωDi > νieff ,

ωte, ωbe > νeeff > ωe∗ > ω.

where ωt is the transit frequency, ωb is the bounce frequency, ω∗ is the diamagnetic

frequency, ωD is a frequency due to magnetic drift, νeff = νc/ε0 is effective collision

frequency and ε0 is the inverse aspect ratio. In the above frequency ordering, the

linear calculation yields density perturbation as

(
δni
n0

)
kω

=− qφ̃kω
Ti

+

∫
d3v

ω − ωi∗(E)

ω − ω̄DĒ + kθ〈vE〉(r)
qφ̃kω
Ti
〈fi〉+

(
δ̃ni
n0

)
kω

(4.50)(
δne
n0

)
kω

=
qφ̃kω
Te

+ i

∫
d3v

ω − ωe∗(E)

νe/ε0
Ē3/2 qφ̃kω

Te
〈fe〉 (4.51)

where ωσ∗ (E) ≡ (kθcTσ〈fσ(E)〉′)/(qσB〈fσ(E)〉) = kθv
σ
∗ (1 + ησ(Ē − 3/2)), vi∗ ≡

−(ρi/|Ln|)vthi, and ve∗ = (ρs/|Ln|)cs. The ion density perturbation consists of two

parts, as phase space density δh consists of two pieces, δh = δhc+δ̃h. δhc is a phase-

coherent response to fluctuation potential, φ. This term, upon velocity integral,

gives the ion density perturbation which is proportional to fluctuation potential.

δ̃h is an incoherent part which describes granulation effect. This leads to the

last term in the ion density perturbation, (δ̃ni/n0)kω ≡
∫
d3vδ̃hkω. For electrons,

the non-adiabatic response is retained from a phase shift due to collisions. On

substituting the density perturbations into the Gyrokinetic Poisson equation, we

have

ε̂(k, ω)
qφ̃kω
Ti

=

(
δ̃ni
n0

)
kω

(4.52)
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where

ε̂(k, ω) =
Ti
Te

+ ρ2
i k

2
⊥ + 1− P

∫
d3v

ω − ωi∗(E)

ω − ω̄DĒ − kθ〈vE〉(r)
〈fi〉

+ iImεi + iImεe + iImεpol (4.53)

P denotes the principle part of the integral. The imaginary part of the dielectric

is defined as

Imεi ≡
∫
d3v(ω − ωi∗(E))πδ(ω − ω̄DĒ − kθ〈vE〉(r))〈fi〉

=
√

2ε0
2√
π

√
Ēresπ

ω − ωi∗(Ēres)
|ω̄D|

e−Ēres (4.54)

Imεe ≡
∫
d3v

ω − ωe∗(E)

νe/ε0
Ē3/2 Ti

Te
〈fe〉

=
4√
π

√
2ε0

νe/ε0

Ti
Te

(ω − ωe∗(1 +
3

2
ηe)) (4.55)

Imεpol ≡ −2ρ2
i kr∂r (4.56)

where Ēres ≡ (ω − kθ〈vE〉(x))/ω̄D.

The dispersion relation is obtained by setting Reε(k, ω) = 0:

Ti
Te

+ ρ2
i k

2
⊥ + 1− P

∫
d3v

ω − ωi∗(E)

ω − ω̄DĒ − kθ〈vE〉(r)
〈fi〉 = 0 (4.57)

For ω > ω̄DĒ, we have:

Ti
Te

+ ρ2
i k

2
⊥ + 1−

√
2ε0

(
1− ωi∗

ω

)
= 0 (4.58)

and thus

ω = ωk = −
√

2ε0ω
i
∗

1 + ρ2
i k

2
⊥ + Ti/Te −

√
2ε0

(4.59)
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4.B Appendix: derivation of zonal flow evolution

equation

The mean vorticity evolution is obtained by taking time derivative of mean

quasi-neutrality (Here 〈...〉 is the zonal average):

∂

∂t

(〈
ρ2
s∇2
⊥
eφ

Te

〉)
=
∂

∂t

(〈ne〉
n0

− 〈ni〉
n0

)
(4.60)

=

∫
d3v(∂t〈fe〉 − ∂t〈fi〉) (4.61)

The evolution of mean fσ is

∂t〈fσ〉 = −∂r〈ṽrδfσ〉 (4.62)

Combining these, we obtain:

∂

∂t

(〈
ρ2
s∂

2
r

eφ

Te

〉)
= − ∂

∂r

〈
ṽr

(
δne
n0

− δni
n0

)〉
(4.63)

Using quasi-neutrality, we have:

∂

∂t

(〈
ρ2
s∂

2
r

eφ

Te

〉)
= − ∂

∂r

〈
ṽrρ

2
s∇2
⊥
eφ̃

Te

〉
(4.64)

The righthand side contains the flux of vorticity, which is Reynolds forcing via the

identity[35, 71] 〈ṽrφ∇2
⊥φ̃〉 = ∂r〈ṽrṽθ〉. By integrating radially once, we obtain

∂t〈vθ〉 = −∂r〈ṽrṽθ〉 (4.65)

As shown by F. L. Hinton and M.N. Rosenbluth[111], zonal flow is damped by

collisions in the time scale τ ∼ ε0τii where τii ∼ 1/νii. We model the effect by

adding a collisional drag on the flow

∂t〈vθ〉 = −∂r〈ṽrṽθ〉 − ν〈vθ〉 (4.66)



123

where ν = νii/ε0. We note that ν is different from the collisional damping of fluctu-

ation used in the text, namely C(δhi) = −νiδhi and C(δhe) = −(νe/ε0)Ē−3/2δhe.

We also note that here the collisional drag was added in an ad hoc manner in

the zonal flow evolution Eq.(4.66). This effect may be recovered systematically by

retaining a bounce averaged collision operator in Eq.(4.62). Explicitly, by retaining

the collision term in Eq.(4.62), we see that the vorticity evolution equation (for

zonal flow) becomes

∂

∂t

(〈
ρ2
s∂

2
r

eφ

Te

〉)
= − ∂

∂r

〈
ṽrρ

2
s∇2
⊥
eφ̃

Te

〉
+

∫
tr

d3v{Ce(〈fe〉)− Ci(〈fi〉)} (4.67)

where (...) is the bounce average and the velocity integrals are limited to trapped

electron and ions respectively. Following the argument by Hinton[111], we replace

the ion collision integral by a collisional frictional damping ν = νii/ε0 of the ax-

isymmetric (n = m = 0) zonal potential,

∂

∂t

(〈
ρ2
s∂

2
r

eφ

Te

〉)
= − ∂

∂r

〈
ṽrρ

2
s∇2
⊥
eφ̃

Te

〉
− ν

〈
ρ2
s∂

2
r

eφ

Te

〉
(4.68)

which leads to Eq.(4.66). Electron collisional effects are negligible, as that species

is nearly Maxwellian for zonal modes.
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Chapter 5

Summary and discussion

In this thesis, phase space dynamics was studied and applied to understand

problems in tokamak phenomenology. The model of phase space dynamics has a

mathematical structure which is similar to that of potential vorticity dynamics in a

quasi-2D system. Based on the comparison, mean squared fluctuation phase space

density was interpreted as (potential) enstrophy in phase space, and was called as

phasetrophy [30]. The phasetrophy was further related to fluctuation entropy, as

well as the pseudomomentum of phase space structures.

Macroscopic consequences of the phase space dynamics were discussed as

well. The evolution of fluctuation entropy was utilized to characterize flow genera-

tion by heat flux driven turbulence. In particular, fluctuation entropy was applied

to describe tokamak as a heat engine system, where a heat is converted to a macro-

scopic flow. A figure of merit of the tokamak engine was introduced as efficiency

of the flow generation process. The efficiency was defined as ratio of entropy pro-

duction via heat input to entropy destruction via toroidal flow generation. The

efficiency was proportional to the temperature gradient and inversely proportional

to the safety factor q (and hence the plasma current). These parameter dependen-

cies were similar to experimental scaling properties of tokamak intrinsic rotation.

Being collisionless, one characteristic of the phase space dynamics is that

it involves wave-particle resonance. Once such resonance becomes strong enough,

structures in phase space can form and impact macroscopic relaxation processes. It

was shown that a single phase space structure (an electron drift hole) can extract
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free energy and can relax plasma profiles. The free energy release by, and growth of,

the electron drift hole was quite different from those of linear electron drift waves, in

that the electron drift hole growth was nonlinear and triggered by ion dissipation.

The difference allowed subcritical growth of the electron drift hole. This makes the

electron drift hole more efficient in tapping free energy than electron drift waves,

since growth can occur even when the electron drift waves are predicted to be

stable or weakly unstable. It was also shown that the electron drift hole can drive

zonal flows. The fact that a single phase space structure can drive zonal flows

suggests that familiar concepts of zonal flow generation, such as inverse cascade,

Rhine’s mechanisms, modulational instability, etc. are useful but not fundamental.

Rather, here it is phase space density mixing (related to potential vorticity mixing)

that is responsible for the zonal flow generation in tokamaks.

The dynamics of multi-structures in phase space (granulation) was discussed

as well. The granulation can drive transport, whose effect enters transport flux

as dynamical friction. The granulation was also coupled to zonal flow, since the

granulation has to scatter polarization charge to satisfy the quasi-neutrality con-

dition. The coupled evolution of the granulation and zonal flow was formulated as

a momentum theorem, where the kinetic pseudomomentum described the momen-

tum of the structures. The implication of the coupled evolution in macroscopic

relaxation and transport is that the zonal flow reduces transport by exerting dy-

namical friction. Transport reduction via dynamical friction by zonal flows is a

fundamentally new effect.

The analysis presented here with phase space structures transcends the con-

ventional quasilinear analysis of tokamak turbulence and transport. Such struc-

ture driven relaxation and transport can play a role in tokamak phenomenology,

in particular when linear eigenmodes or waves are stable or weakly unstable. Such

structure driven turbulence can possibly explain the transport level in a region

that connects the tokamak core and edge (so-called ‘No Man’s Land’), where the

quasi-linear analysis cannot explain the observed transport level.
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