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Speaking without vocal folds using a
machine-learning-assisted wearable
sensing-actuation system

Ziyuan Che1,2, Xiao Wan1,2, Jing Xu 1, Chrystal Duan1, Tianqi Zheng1 &
Jun Chen 1

Voice disorders resulting from various pathological vocal fold conditions or
postoperative recovery of laryngeal cancer surgeries, are common causes of
dysphonia. Here, we present a self-powered wearable sensing-actuation sys-
tem based on soft magnetoelasticity that enables assisted speaking without
relying on the vocal folds. It holds a lightweightedmass of approximately 7.2 g,
skin-alike modulus of 7.83 × 105Pa, stability against skin perspiration, and a
maximum stretchability of 164%. The wearable sensing component can
effectively capture extrinsic laryngeal muscle movement and convert them
into high-fidelity and analyzable electrical signals, which can be translated into
speech signals with the assistance of machine learning algorithms with an
accuracy of 94.68%. Then, with thewearable actuation component, the speech
could be expressed as voice signals while circumventing vocal fold vibration.
We expect this approach could facilitate the restoration of normal voice
function and significantly enhance the quality of life for patients with dys-
functional vocal folds.

Voice, as the carrier wave of speech signals in human communication,
is a vital component that underpins social interaction and artistic
propagation. It serves as the melody of our speech and infuses our
daily-articulated thoughtswith expression, emotion, intent, andmood.
Due to its significance in fostering integration between individuals and
their communities, disorders with vocal folds, the essential voice-
generating organ of humans, have a pronounced and objectionable
impact. Voice disorders are generally defined as the condition
where the malfunction of the laryngeal mechanism causes a person’s
voice quality, pitch, and loudness to differ from those of a population
with similar demographic characteristics1–4. Under clinical circum-
stances, voice disorders result from assorted pathological conditions,
including vocal fold polyps5, keratosis6,7, vocal fold paralysis8,9, vocal
fold nodules10,11, and adductor spasmodic dysphonia12,13. Moreover,
artificialmedical interventions like laryngeal cancer surgeriesmay also
cause temporary dysphonia due to the loss of control of vocal fold-
related muscles14–16. Specifically, 29.9% of the general population had

at least one voice disorder during their lifetime, 7% are currently
undergoing voice problems, and 7.2% of employed participants
reported missing work days due to voice disorder17. Despite the pre-
valenceof voicedisorders across all ages anddemographic groups and
the effectiveness of therapeutic approaches such as voice therapy and
surgical interventions, the recovery time can be burdensome18–23.
Patients often require a recovery phase of threemonths to a year, with
a postoperative period of absolute voice rest10,24–30. Existing solutions,
such as handheld electrolarynx devices or alternatives like the “talk
box” device and tracheoesophageal puncture procedures, can be
inconvenient, uncomfortable, or invasive31–34. Therefore, there is a
pressing need to develop a wearable, noninvasive medical device
capable of assisting patients in communicating during the pre- and
post-treatment recovery of voice disorders.

Existing research on medical devices using flexible loudspeakers
and wearable throat sensors made from materials like polyvinylidene
fluoride (PVDF)35–38, gold nanowires39, or graphene40,41, has shown
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potential for aiding communication during recovery from vocal fold
disorders. PVDF emerges as a pristine thermoplastic fluoropolymer,
notable for its exceptional non-reactivity42. A distinguishing feature of
PVDF is its piezoelectric property, adeptly converting mechanical
oscillations into precise voltage signals43,44. While this piezoelectric
property offers certain advantages, the material selection for piezo-
electric sensors remains limited, often constraining the design and
functionality of devices tailored for specific applications. Also, even
though piezoelectric materials present actuation abilities, the driving
voltage would induce safety concerns for wearable bioelectronics. In
parallel, gold nanowires and graphene have gained recognition for
their superior conductivity and inherent flexibility. These character-
istics make them ideal candidates for crafting resistive sensors, which
can swiftly measure the resistance changes in response to mechanical
stresses. However, these resistive sensors, including those made from
gold nanowires, typically require an external power source for sensing,
adding to the complexity and potential bulkiness of the wearable
system. Furthermore, despite their impressive attributes, the inherent
non-stretchable nature of thesematerials poses a significant limitation.
They predominantly detect vertical throat movements, often
neglecting the parallel deformation that occurs during phonation,
which involves a complex interplayof various laryngealmuscle groups.
These muscles, including extrinsic45–49 and platysma50,51 muscles, con-
tribute to throat movement during phonation and are particularly
important for patients with voice disorders who cannot use their vocal
folds45,46,52. Additionally, non-stretchable materials can affect comfort
and adhesiveness. And other issues of those materials such as lack of
water (perspiration) resistance and temperature rise, can lead to
operational problems.

Here, we present a wearable and self-powered sensing-actuation
system based on soft magnetoelasticity as a fundamentally new plat-
form technology for assisted speaking without vocal folds. The system
allows patients to articulate sentences solely through muscle move-
ments associated with regular speech or lip-synching. The sensing
component of the system detects the extrinsic laryngeal muscle
movements without the vibration of vocal folds. To enhance the sen-
sitivity, we designed the kirigami structure of the sensor with enlarged
unit horizontal and vertical deformation, thus generating high-quality
electrical signals for downstream processing. These electrical signals
are fed to a pre-trained machine-learning model that converts throat
movement into voice signals. The system exhibits high sensitivity, a
quick response time of 40ms, a lightweight mass of 7.2 g, and pos-
sesses a skin-alike modulus of 7.83 × 105 Pa, ensuring accuracy and
wearing comfort. Furthermore, a stretchability of 164% for horizontal
deformation detection enhances adhesive attachment of the device to
the throat, contributing to precise movement detection, tackling the
crucial issue of capturing omnidirectional mechanical deformation.
Themagnetoelastic property of the material enables both sensing and
actuation in one soft and stretchable system.The system is intrinsically
waterproof since the magnetic field is not attenuated by water,
ensuring durability and functionality even in the presence of heavy
perspiration. Towards practical application, we have demonstrated
that the wearable sensing-actuation system is able to perform daily
language transmissions and clear output of voice with an accuracy of
94.68%. These results establish the foundation for a potential solution
to voice disorders by facilitating voice usage in patients with voice
disorders during their recovery period, offering opportunities to
enhance their overall quality of life.

Results
Design of the wearable sensing-actuation system
A thin, flexible, and adhesive wearable sensing-actuation system was
attached to the throat surface, as shown in Fig. 1a, for speakingwithout
vocal folds. This system comprises two symmetrical components: a
sensing component (located at the bottom part of the device)

converting the biomechanical muscle activities into high-fidelity elec-
trical signals and an actuation component using the electrical signals
to produce sound (located at the upper part of the device), as shown in
Fig. 1b. Both components consist of a polydimethylsiloxane (PDMS)
layer (~200μm thick) and a magnetic induction (MI) layer made of
serpentine copper coil (with 20 turns and a diameter of ~67μm). The
serpentine configuration of the coil ensures the flexibility of the device
while maintaining its performance, as discussed in Supplementary
Note 1. The symmetrical design of the device enhances its user-
friendliness. The middle layer of the device is the shared magneto-
mechanical coupling (MC) layer, made of magnetoelastic materials
consisting of mixed PDMS and micromagnets. The MC layer, with a
thickness of approximately 1mm, is fabricated with a kirigami struc-
ture to enhance the device’s sensitivity and stretchability (see Fig. S1).
The entire system is small, thin (~1.35 cm3, with a width and length of
~30mm and a thickness of ~1.5mm), and lightweight (~7.2268 g) (see
Fig. S2 and Supplementary Table S1).

Multidirectional movement of laryngeal muscles sets the sig-
nificance of capturing laryngeal muscle movement signals in a three-
dimensional manner. Moreover, the learning process of phonation
maybeheterogeneous acrosspopulations: different peoplemayadopt
a variety of muscle patterns to achieve identical vocal movements45,53.
Such complexity ofmusclemovement requires the device to be able to
capture the deformation of muscles not horizontally or vertically
alone, but rather in a three-dimensional way. Figure 1c illustrates the
movement of the muscle fiber during two stages, i.e., expansion and
contraction. During the expansion phase, the muscle relaxes and
elongates in the x- and y-axis. On the other hand, during the contrac-
tion phase, the muscle shortens in the x- and y-axis while thickening in
the z-axis through the increase in muscle fiber bundle diameters.
Figure 1d, e demonstrates the device’s response in the x-, y-axis, and z-
axis, respectively. During the expansion phase, the kirigami-structured
device expands in surface area with slight deformation in the z-axis.
Conversely, during the contraction phase, the device opposes defor-
mation in the x- and y-axis and undergoes deformation in the z-axis.
Thus, the device captures the muscle movement across all three
dimensions by measuring the corresponding deformation, which
generates the change of magnetic flux density followed by the induc-
tion of an electrical signal in the MI layer. Supplementary Note 2 fur-
ther demonstrates the response of the device to the omnidirectional
laryngeal movements and how the kirigami structure ensures the
sensing performance.

The key defining characteristic of this system (MC layer) is based
on themagnetoelastic effect, which refers to a change in the magnetic
flux density of a ferromagnetic material in response to an externally
applied mechanical stress, which was discovered in the mid-19th
century54. It has been observed in rigidmetals andmetal alloys such as
Fe1−xCox

54, TbxDy1−x Fe2 (Terfenol-D)55, and GaxFe1−x (Galfenol)
56. His-

torically, these materials received limited attention within the bioe-
lectronics domain for several reasons: the magnetization variation of
magnetic alloys within biomechanical stress ranges is limited; the
necessity for an external magnetic field introduces structural intri-
cacies; and a significantmechanical modulusmismatch exists between
magnetic alloys and human tissue, differing by six orders of magni-
tude. However, a breakthrough occurred in 2021 when the pro-
nouncedmagnetoelastic effect was observed in a soft matter system57.
This system exhibited a peak magnetomechanical coupling factor of
7.17 × 10−8 T Pa−1, representing an enhancement up to fourfold com-
pared to traditional rigidmetal alloys, underscoring its potential in soft
bioelectronics. Functionally, the MC layer converts the mechanical
movement of extrinsic laryngeal muscle into magnetic field variation,
and the copper coils transfer the magnetic change into electrical sig-
nals based on electromagnetic induction, operating in a self-powered
manner. While additional power management circuits are essential for
processing and filtering the signals, the initial sensing phase is
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autonomous and does not rely on an external power supply. After
recognition through the machine learning model, the voice signal is
output through the actuation system (Fig. 1a).

The signal conversion through the giant magnetoelastic effect in
soft elastomers can be explained at both the micro and atomic scales.
At the microscale, compressive stress applied to the soft polymer
composite causes a corresponding shape deformation, leading to
magnetic particle-particle interactions (MPPI), including changes in
the distance and orientation of the inter-particle connections. The
horizontal rotation of each subunit in the kirigami structure (Fig. 1d)
and vertical bending deformation (Fig. 1e) create a micro change of
magnetic density. In detail, as shown in Fig. 1f, in a subunit of the
kirigami structure, deformation-induced angle shift φ generates a
concentration of stress and MPPI in between each single unit of the
kirigami structure. At the atomic scale, mechanical stress also induces
magnetic dipole-dipole interactions (MDDI), which results in the
rotation and movement of magnetic domains within the particles. As
shown in Fig. 1g, a torque was made on each magnetic nanoparticle,
and the shift of angle θ generates the change inmagnetic flux density.
The photo of the device design is presented in Fig. 1h, i as the x-, y-axis,
and z-axis response in the expansion phase; and in Fig. 1j, k as in the
contraction phase. Fig. 1h, j describes the expansion and contraction in
the x-y plane, and Fig. 1i, j describes the corresponding z-axis con-
traction and expansion. Such structural design also displays a series of

appealing features, including high current generation, low inner
impedance, and intrinsic waterproofness, which will be presented in
the following sections.

Standard characterization
Our present work compares previous approaches based on PVDF and
graphene for flexible voice monitoring and emitting, as shown in
Fig. 2a and Supplementary Table S335–37,58–62. The device developed in
this work has a similar acoustic performance, with a frequency range
covering the entire human hearing range. However, it has a much
lower driving voltage (1.95 V) and a Young’s modulus of 7.83 × 105 Pa.
As shown in Fig. S3, it exhibits the stress-strain curve and testing photo
of the material with and without the kirigami structure, which lowered
Young’smodulus from2.59 × 107 Pa to 7.83 × 105 Pa. This result ensures
a higher comfort level while wearing as the modulus of the device is
very close to that of the human skin. Notably, the device we developed
has two unique features of stretchability and water resistance, which
ensure the detection of horizontal movements, wearing comfort and
resistance to respiration. Additionally, the device does not have the
issue of temperature rising during use, preventing unexpected low-
temperature scalding of users. Subsequently, several standard tests
establish the sensing features of the device and its efficacy in out-
putting voice signals. To enhance the stretchability of the device, a
kirigami structure was fabricated onto the MC layer of the device. The
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unit design of the structure is shown in Fig. S4, and the stretchability
with regards to the parameters of the kirigami unit design is exhibited
in Fig. S5. Such an approach not only enhances the stretchability of the
device to a maximum of 164% with Young’s modulus at the level of
100 kPa but also realizes isotropy. Furthermore, the structure enlarges
the horizontal deformation of the device under unit pressure, gen-
erating a higher current output and enhanced detectable signals of
extrinsic muscle contraction and relaxation, as shown in Figs. S6 S7.
The change in sensitivity brought by the structure on the vertical axis
was also tested, and an elevation can be observed, as shown in Figs. S8
S9. Moreover, isotropy prevents the device from being disturbed by
random and uneven body movements in use. Thus, there are no
requirements on wearing orientation which elevates user-friendliness
as revealed in Figs. S10 S11.

The stretchable structure of the device was leveraged to examine
its sensitivity with respect to deformation degrees, as depicted in
Fig. 2b. The sensitivity curve demonstrated consistency under varying
strains, with a minor change observed under maximum strain (164%).
This change could be attributed to the reduction in the MC layer’s
thickness due to deformation, which in turn decreases the magnetic
flux density under the same pressure level, resulting in lower current
generation. The device’s response curve under different frequencies

and forces of the shaker was tested, as shown in Fig. S12. We have also
validated that the electric output of the device is not due to the tri-
boelectricity in Supplementary Note 363. The device’s inherent flex-
ibility and stretchability facilitate tight adherence to the throat,
yielding a high signal-to-noise ratio (SNR) and swift response time
(Fig. 2c). In addition to the kirigami structure design parameters, other
factors influencing the device’s sensitivity, response time, and SNR
were also evaluated. Fig. S13 illustrates that an increase in coil turns
results in longer response times and lower SNR due to the increased
total thickness of the copper coils. This thickness impedes the mem-
brane’s deformation during vibrations, leading to longer response
times and lower signal quality. We have further investigated the
increase of thickness with the coil turn ratios in Supplementary
Table S2. As the number of coil turns escalates, there’s a direct cor-
relation with the likelihood of copper wires stacking. Consequently, a
significant number of samples exhibit thicknesses approximating 2 or
3 layers of copper (134 μm and 201 μm, respectively). This stacking
effect amplifies the average coil thickness as the number of turns
increases.However, this augmentation isn’t strictly linear. For instance,
the propensity for overlapping is less pronounced for turn ratios of 20
and 40. In contrast, for turn ratios exceeding 60, a clear trend emerges
where the likelihood of overlapping increases with the number of
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turns. The relationship between the sensing performance and nano-
magnetic powder concentrations of the MC Layer is presented in
Fig. S14. A semi-linear relationship was observed, with highermagnetic
nanoparticle concentration generating a stronger magnetic field and,
consequently, higher current output. The influence of varying PDMS
ratios in the sensing membrane on the performance of the sensor is
delineated in Fig. S15. An increase in the PDMS ratios was found to
extend the response times and decrease the SNR while having a neg-
ligible effect on the sensitivity curve. The augmentation in PDMS ratios
leads to a softer membrane, which is prone to deformation at a slower
rate. Consequently, devices with higher PDMS ratios exhibit heigh-
tened sensitivity to noise-generating deformations, albeit at a reduced
response time. The influence of thickness on sensing performancewas
tested in Fig. S16, with thicker membranes resulting in quicker
response times and a fluctuating SNR. Lastly, the impact of the MC
layer’s thickness was tested in Fig. S17. A thicker MC layer had no
influence on response time but reduced SNR. We’ve consolidated the
results of each optimization factor in Fig. S18, providing a clear over-
view of the primary variables influencing each performance metric.
After considering the sensing performance, weight, and flexibility of
the device, the current parameters were determined. The device’s
durability with these parameters was evaluated in Fig. S19, where the
device underwent continuous working for 24,000 cycles with a shaker
under a frequency of 5Hz, with no observable degradation in the
current generation.

The acoustic performance of the actuation system of the device is
examined firstly with a focus on its sound pressure level (SPL) at dif-
ferent distances. The results, presented in Fig. 2d, show that larger
outputmagnification led to a higher SPL at all tested positions. Even at
a distance of 1 meter, the typical distance during normal conversa-
tions, the device provided an SPL of over 40dB, which is above the
lower limit of normal speaking SPL (40–60dB)64. We also tested the
device’s SPL at different angles and compared its performance with
those of previous works on acoustic devices (Fig. S20, Supplementary
Table S3). The device’s performance across various frequencies was
tested and presented in Fig. 2e, which indicates that it could provide
sound with SPL louder than normal speaking loudness across the
entire human hearing range64. The resonance point in the figure indi-
cates the frequency at which the device has relatively the largest
loudness output under the same signal strength as other adjacent
frequencies. Further investigation into the SPL regarding frequency
under different strains revealed that the first few resonance points
tended to have the largest acoustic output across the frequency range
(Fig. S21). Since the device under one strain has multiple resonance
points that change non-linearly with deformation, investigating the
change of every resonance point is complicated. Therefore, we only
investigated the first resonance point (FRP) in Fig. 2f because of its
complexity and our interest in the highest output. According to Fig. 2e
and Fig. S22, the voice output at each strain was above the normal
talking threshold across the whole human hearing range. Figure 2f
revealed a right shift of FRP of the device as the deformation gets
larger, enabling the device to adjust its best output performance under
different usage scenarios. Our device can adjust its best output per-
formance by simply changing the deformation degree, thus creating a
unique output setting for each individual and realizing user adapt-
ability. More details about the right shift of FRP are shown in Fig. S23.

We also tested the influence of introducing the kirigami design
into the device, as presented in Fig. 2g. The results show that the
parameter of the kirigami design had a negligible impact on the sen-
sing and acoustic performance, further supporting the decision to use
this design due to its impact on flexibility (Fig. S5). Additional factors
influencing the acoustic performance of the actuation system were
evaluated, and the final parameters were determined based on both
performance and the device’s mass/flexibility. Fig. S24 explores the
impact of coil turn ratios on the SPL produced by the device. It was

observed that an increase in coil turns led to a decrease in SPL, likely
due to the weight of the additional coil impeding membrane vibration
and subsequently reducing SPL. The relationship between SPL and the
PDMS ratio of the actuatormembranewas examined in Fig. S25. As the
ratio increased, the membrane softened, leading to a decrease in the
generated SPL. The dampening effect of a softer membrane hindered
vibration and sound generation, resulting in a semi-linear decrease.
Fig. S26 presents the relationship between SPL and magnetic powder
concentrations. The device’s SPL increased with the addition of higher
amounts of magnetic powder in the MC layer, plateauing after a ratio
of 4:1. The effect of varying MC layer thickness on SPL is shown in
Fig. S27. A sharp increase in the device’s SPL was observed as the MC
layer’s thickness increased from 0.5mm to 1mm. However, the
increase slowed and eventually plateaued as the MC layer became
thicker. Finally, the SPL under different actuator membrane thick-
nesses was tested in Fig. S28. The device’s SPL increased as the PDMS
membrane (vibrating membrane) thickness increased from 100 to
200μm but decreased when the membrane became thicker. The
weight of thicker membranes may dampen the vibration and reduce
the loudness produced by the device. Regarding the acoustic output
quality of the device, Fig. 2h displays the waveform of the commercial
loudspeaker and our device at the maximum (164%) strain at the fre-
quency of 1100Hz. The device reproduced the voice signal accurately,
even under maximum deformation, with only slight distortion. The
distortion was further explained in the spectrogram of Fig. 2i, which
shows that a noise of around 1400Hz was generated in the output of
our device but not strong enough to significantly distort the signal.
Output of other strains was tested in Fig. S29, a similar distortion of
less extent can be observed with less strain. In the final phase of our
study, we evaluated the water resistance of our device. The waveform
of the device outputting an identical voice signal segment under water
and in air is depicted in Fig. S30. The waveforms are notably similar,
with no significant signal distortion observed. A slight loss of the
high-frequency component, without major signal attenuation, is
evident in the frequency domain (Fig. S31). The device demonstrated
consistent performance even after being submerged in water for an
accelerated aging test with a duration of 7 days (Fig. S32). The sound
pressure level (SPL) in relation to distance underwater is presented in
Fig. S33. A correlation was observed between the depth of the device
underwater and the sound output, with deeper submersion resulting
in lower output. However, the device could produce an output
exceeding 60 dB when placed 2 cm underwater at a distance of
20 cm. The SPL of the device in relation to frequency underwater is
illustrated in Fig. S34. Despite the attenuation of high-frequency
components underwater, the device consistently delivered an SPL
above the normal speaking range (60dB) across the entire human
hearing range. These results suggest that our device, as a wearable,
can effectively withstand conditions of perspiration, damp environ-
ments, and rain exposure.

Laryngeal muscle movement signal acquisition
After obtaining the preliminary standard test results, we focused on
collecting laryngeal muscle movement signals using our wearable
sensing component. The experiment is schematically illustrated in
Fig. 3a. The analog signal generated by the vibration of the extrinsic
laryngeal muscles (Sternothyroid muscle, as shown in Fig. 3a) was
collected by the sensor and then passed through an amplifier and a
low-pass filter exhibited in Fig. 3b. The digital signal of the laryngeal
muscle movements was output and collected for further analysis. The
sensitivity and repeatability of the device were tested in Fig. 3c with
two successive different throat movements. The device was able to
generate distinguishable and unique signals for each different throat
movement, indicating its feasibility to detect and analyze different
laryngeal movement properties. Furthermore, the device responded
consistently to one throat movement, as demonstrated by the
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participant’s continuous two throat movements. In addition, larger
throat muscle movements, such as coughing or yawning, generated
larger peaks, while longer movements, such as swallowing, generated
longer signals. We also conducted experiments to test the device’s
functionality under different conditions. In Fig. 3d, we asked the par-
ticipant to voicelessly pronounce the same word (“UCLA”) under dif-
ferent conditions, including standing still, walking, running, and
jumping. The device was able to discern the unique and repeatable
feature syllable wave shape of each word, with only slight differences
made by the participants with different pronouncing paces each time.
Thus, the wearable device was able to function without being influ-
enced by the user’s bodymovements, even during strenuous exercise.
Finally, to test the signal quality and accuracy acquired by purely
the laryngeal muscle movement, we performed examinations to
compare normal speaking and voiceless speaking, as shown in Fig. 3e.
The five successive signals of participant saying “Go Bruins” with and
without vocal fold vibration were compared in Fig. 3f and g, respec-
tively. Both tests generated consistent signals, and the syllables of each
word were represented with distinguishable waveforms. Comparing
the test results of normal speaking and speaking voicelessly, we
observed only a slight loss of maximum amplitude in the signal of
speaking voicelessly. This could be explained by the fact that the
vibration of vocal folds requires more and stronger muscle move-
ments, thus generating stronger signals. Furthermore, a clear loss of
high-frequency components in voiceless signals compared to the sig-
nals with vocal fold vibrationwas observed in Fig. 3h, i after the Fourier
transform of both signals across frequencies. This finding was con-
sistent with our hypothesis that the high-frequency part of the vibra-
tion generated by intrinsic muscles and vocal folds is absent in
voiceless signals, leaving a smoother yet distinguishable waveform.

Hence, the device was proven to capture recognizable and unique
signals with laryngeal muscle movements for further analysis.

Assisted speaking without vocal folds
With generated data of laryngeal muscle movement, a machine-
learning algorithmwas employed to classify the semanticalmeaning of
the signal and select a corresponding voice signal for outputting
through the actuation component of the system. A schematic flow
chart of the machine-learning algorithm is presented in Fig. 4a. The
algorithm consists of two steps: training and classifying a set of n
sentences for which assisted speaking is required. Firstly, the filtered
training datawas fed to the algorithm formodel training. The electrical
signal of each of the n sentences was compacted into an Nth-order
matrix for feature extraction with principal component analysis (PCA)
(Fig. 4b). N is determined by the sampling window, which is the length
of the longest sentence’s signal. PCA is applied to remove redundancy
and prepare the signal for classification. Multi-class support vector
classification (SVC) was chosen as the classification algorithm with the
decision function shape of “one vs. rest”. For each sentence to be
classified, the rest of the n-1 sentences were considered as a whole to
generate a binary classification boundary to discriminate the target
sentence. A brief illustration of the support vector machine (SVM)
process is depicted in Fig. 4c. The margin of the linear boundary
between two target data groups undergoes a series of optimizing
processes and was set to the largest with support vectors. Details of
PCA and multi-class SVC are discussed in Methods. After the classifier
was trained with pre-fed training data, it was used for classifying newly
collected laryngeal musclemovement signals. The real-time data were
fed to the classifier, and the class (which sentence) of the signal was
output for voice signal selection. Subsequently, the corresponding
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voiceless (lower, red). Enlarged waveform of participant pronouncing “Go Bruins!”
with vocal fold vibration (f) and voiceless (g). Amplitude-frequency spectrumof the
signal with vocal fold vibration (h) and voiceless (i).
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pre-recorded voice signal was played by the actuation component,
realizing assisted speaking.

A brief demonstration was made with five sentences that we had
selected for training the algorithm (S1: “Hi Rachel, how you are doing
today?”, S2: “Hope your experiments are going well!”, S3: “Merry
Christmas!”, S4: “I love you!”, S5: “I don’t trust you.”). Each participant
repeated each sentence 100 times for data collection. The resulting
contour plot in Fig. 4d shows an example of the classification result,
with the red dots indicating the target sentence and the yellow dots
indicating the others. A probability contour was drawn to classify
whether a newly input sentence point belonged to the target sentence
or not. With the trained classifier, the laryngeal movement signal was
recognized for the corresponding sentence that the participantwished
to express. To test the robustness and user-adaptability of the algo-
rithm, the devicewas testedwith eight participants, each repeating the
sentence 120 times in total, with 100 repeats selected for the training
set and 20 separated as the testing set. Of the 100 repeats, 20 were
selected as the validation set. Figure 4e shows the validation and
testing results of seven out of the eight participants, while Fig. 4f, g
presents a detailed illustration of the confusion matrix of the 8th

participant for the validation and testing sets, respectively. Even
slightly lower than the validation set, each participant’s testing set
achieved more than 93% accuracy. Figure S35 shows the detailed
confusion matrix of both the validation and testing set and the accu-
racy of every other participant. The overall prediction accuracy of the
model was 94.68%, and it worked well with different participants. Each
participant’s voice signal was played by the actuation component,
realizing the demonstration in Fig. 4h. The left panel shows themuscle
movement signal transferred into the correct voice signal, with the
waveform shown in the right panel. Further, we extended our analysis
to validate the practical usability of the device for vocal output after
the selection of the accurate voice signal by the algorithm. As
demonstrated in Fig. 4i, an evaluation of the SPL and temperature of
the deviceduring use by the participant revealed no significant drop in
SPL or rise in temperature, even after an extended working period of
40min. This suggests the device’s durability in voice output and safe
usage. In Fig. 4j, we display the SPL of the device as it produces voice
signals for seven participants, both with and without sweat. We noted
consistent performance by the device across different participants,
with no evident signal attenuation despite the presence of
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Fig. 4 | Machine-learning-assisted wearable speaking without vocal folds.
a Flow chart of the machine-learning-assisted wearable sensing-actuation system.
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nents analysis (PCA) applied to the muscle movement signal captured by the sen-
sor. Yellow indicates one sentence, and red indicates another one. c Optimizing
process of data classification after PCA with support vector machine (SVM) algo-
rithm. d Contour plot of the classification results with SVM, class “1,” indicating
100% possibility of the target sentence, dotted lines are the possibility boundaries
between the target sentence and the others. e Bar chart exhibiting 7 participants’
accuracy of both validation set and testing set. f Confusion matrix of the 8th par-
ticipant’s validation set with an overall accuracy of 98%. g Confusion matrix of the
8th participant’s testing set with an overall accuracy of 96.5%. h Demonstration of

the machine-learning-assisted wearable sensing-actuation system in assisted
speaking. The left panel shows themusclemovement signal captured by the sensor
as the participant pronounces the sentence voicelessly, while the right panel shows
the corresponding output waveform produced by the system’s actuation compo-
nent. i The SPL and temperature trends over time while the device is worn by
participants; no notable temperature increase or SPL decrease was seen for up to
40min. jThe device’s SPL outputs participant-specific sound signals, bothwith and
without sweat presence. Each participant was asked to repeat testing ofN = 3 times
for both scenarios. Data are presented as mean values ± SD. The p-value between
dry and sweaty state is calculated to be 0.818, indicating no significant difference in
the device’s performance under the two cases. k The device’s SPL across various
conversation angles while done by the participant. Created with BioRender.com.

Article https://doi.org/10.1038/s41467-024-45915-7

Nature Communications |         (2024) 15:1873 7



perspiration. Finally, Fig. 4k illustrates the device’s SPL during voice
output at various normal conversation angles while worn by the par-
ticipant. The device demonstrated reliable sound performance across
all angles, thereby enabling assisted speaking in multiple real-life sce-
narios. In conclusion, the device can convert laryngeal muscle move-
ment into voice signals, providing patients with voice disorders with a
feasible method to communicate during the recovery process.

Discussion
In this work, we have developed a wearable sensing-actuation system
for assisted speaking without the need for vocal folds based on mag-
netoelastic effects in a soft matter system. The device could translate
the laryngeal muscle movement into voice signals, enabling speech
without using the vocal fold. We have tested and confirmed several
attractive features of the device, including a light weight of 7.2 g, high
stretchability of 164%, skin-alikemodulus of 7.83 × 105 Pa, a high SNRof
17.5, quick response time of 40μs, excellent sound producing quality,
andwater resistance. In addition, the device has been proven to detect
unique, distinguishable signals of each syllabus from the laryngeal
muscle movement without losing any essential waveform character-
istics for downstream analysis. With the assistance of a machine
learning algorithm, the device can classify the semantic content of the
movement signal and select the corresponding voice signal for out-
putting through the actuation component. Our device offers a com-
pelling solution for patients with voice disorders to communicate.

Methods
Human subject study
In total of 8 participants were recruited in the experiment testing
device performance through a questionnaire among UCLA students.
Among these, 4 participants are female and4 aremale, and the average
age is 21 years old. The gender information is obtained based on the
self-reporting method of the participant. Gender and other bio-
graphical information are not relevant to the human study conducted
in our experiment. Each participant is compensated with a gift card of
$25. All participating subjects of this research are informed, and writ-
ten consent of all participants was obtained before the study. The
speaking without vocal folds using a machine-learning-assisted wear-
able sensing-actuation system was conducted in compliance with all
the ethical regulations under a protocol (ID: 20-001882) that was
approved by the Institutional Review Board (IRB) at the University of
California, Los Angeles.

Fabrication of the MC Layer and the kirigami structure
The neodymium–iron–boron (NdFeB, Magnequench) magnetic pow-
der with the following properties is used in the study: Particle Size
(D50), 5μm; Residual Induction (Br): 898–908 mT, 8.98–9.08 kG;
Energy Product (BH) max: 120–128 kJ/m3, 15.0–16.0 MGOe; Intrinsic
Coercivity (Hci): 700–740 kA/m, 8.8–9.3 kOe; Magnetizing Field to
>95% Saturation (Min.): Hs ≥ 1600 kA/m, ≥20.0 kOe; Coercive Force
(Hc): 515 kA/m, 6.5 kOe. The magnetic powder is evenly mixed with
polydimethylsiloxane substrate (PDMS, Sylgard 184). The PDMS is
fabricated with its elastomer base and its curing agent mixed at a ratio
of 15:1. Subsequently, the weight ratio of the magnetic powder and
mixed PDMS is measured to be 4:1. Next, the as-prepared magnetic
paste is poured into a 3D-printed mold (polylactic acid, PLA) of
30 * 30 * 1mm (length, width, height) and transferred to an oven set at
70 °C for over 4 h. The cured MC layer was then removed from the
mold and magnetized by an impulse magnetizer (IM-10–30, ASC Sci-
entific) with an induced angle of 45° to the magnetization direction at
an impulse voltage of 350 V. The magnetized MC membrane is then
positioned in a laser cutter (ULTRA R5000, Universal Laser System).
The desired kirigami pattern is designed using AutoCAD software and
subsequently uploaded to the laser cutter. To ensure precision and
depth, the laser cutter is programmed to repeatedly trace the same

pattern without repositioning the MC membrane. This iterative pro-
cess ensures that the cuts progressively deepen until they fully pene-
trate the membrane, culminating in the desired kirigami structure.

Fabrication of serpentine-shaped-coil, sensing, and actuation
membrane
A serpentine-shaped 3D printed mold is used to twine a copper coil
with a diameter of 67μmand a spacing of 22.3 ± 2.14μm.The coil used
in our final device design is 20 turns with a thickness of 147.3μm. A
sensing and actuation membrane is fabricated by scraping poly-
dimethylsiloxane (PDMS) (10:1) onto a glass slide. The completed
copper coil is then placed onto the glass slide before the membrane is
cured at a temperature of 70 °C for over 4 h. Themembrane is carefully
removed from the glass slide with a razor blade. PDMS is then applied
to the edges of the MC layer and the two membranes. The top and
bottommembranes are attached to theMC layer, and the entire device
is cured in an oven for another 4 h until complete.

Electrical performance measurement
The current signal of the device ismeasured by a current Stanford low-
noise current preamplifier (model SR570) with the following para-
meters, including (1) Gain Mode: We selected the “LOW NOISE” mode
to ensure the most accurate and noise-free measurements. (2) Sensi-
tivity: This was adjusted to “2 × 100μA/V”, which allowed us to capture
even minute variations in the current. (3) Filter Frequency: We
employed a “Lowpass 6 dB” filter set at “100Hz”. This setting was
chosen to filter out any high-frequency noise that could interfere with
our measurements. (4) Input Offset: This was set to “NEG”with a value
of “1 × 10μA” to account for any inherent offset in the preamplifier.

Sweat simulation test
To evaluate the device’s resilience and performance under sweaty
conditions, we employed an artificial sweat surrogate (Biochemazone
Inc., Artificial Sweat BZ320). The consistent composition of artificial
sweat ensured uniformity across all tests. The procedure for sweat
simulation and device testing includes (1) Skin Preparation: Each par-
ticipant’s throat area wasmeticulously cleaned using an alcohol pad to
eliminate any natural oils or residues. After this, the areawas driedwith
a tissue pad to ensure the complete removal of residual alcohol.
(2) Initial Sweat Application: A calibrated spray bottle was utilized to
evenly apply 0.5ml of artificial sweat solution onto the cleaned skin
area, simulating a layer of sweat. (3) Device Attachment: Post the
artificial sweat application, the device was carefully affixed to the
treated skin surface, ensuring optimal contact. (4) Secondary Sweat
Application: To further mimic sweat exposure, an additional 0.5ml of
artificial sweat solution was sprayed directly onto the device’s surface.
(5) Settling Period: Participants were then instructed to remain sta-
tionary for a duration of 5min. This interval was crucial to assess any
potential infiltration of the artificial sweat solution into the device.
(6) Data Collection: Following the settling period, the device’s per-
formance metrics were recorded under simulated sweat conditions.

Machine-learning algorithm
Principle component analysis is used in this study to reduce the
redundancy of the data and prepare data for further classification. For
each throat movement signal Xi, it was inputted as a Nth order matrix,
where N represents the longest sentence’s time multiplied by the
sampling point selected. In this case, N equals 4 s multiplied by the
sampling rate of 100, equaling 4000. The detailed theory of PCA can
be found in ref. 65.Multi-class support vectormachines are used in this
study for classifying throat movements. The detailed theory of SVM
can be found in ref. 66. SVM is a binary classification model, with its
basic model being a linear classifier with the largest interval defined in
the feature space. In this study, a “one vs. rest” strategy is adopted for
multi-class classification. With our data set of N different features
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(sentences in this case), for each target featureX (Xhere represents the
target sentence), the rest of N − 1 features are regarded as a whole
group Y. Subsequently, SVM is applied to create a linear binary
between X vs Y, thus distinguishing X from the rest of the features. The
same procedure is conducted for every other feature in the dataset,
and a classifying boundary is set as “one vs. rest”. When the data from
the testing set is inputted, these boundaries are used to determine
which feature this new signal belongs to, thus realizing multi-class
classification.

Statistics and reproducibility
No statistical method was used to predetermine the sample size. No
data were excluded from the analyses. The experiments were not
randomized. The investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the
article and its supplementary files. Any additional requests for infor-
mation can be directed to, and will be fulfilled by, the corresponding
authors. Source data are provided with this paper and can be found at
DOI: 10.6084/m9.figshare.24784107. Source data are provided in
this paper.

Code availability
Codes are available from the corresponding authors upon request.
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