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From trivial to topological paramagnets:
The case of Z, and Z3 symmetries in two dimensions
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Using quantum Monte Carlo simulations, we map out the phase diagram of Hamiltonians interpo-
lating between trivial and non-trivial bosonic symmetry-protected topological phases, protected by
Zo and Z3 symmetries, in two dimensions. In all cases, we find that the trivial and the topological
phases are separated by an intermediate phase in which the protecting symmetry is spontaneously
broken. Depending on the model, we identify a variety of magnetic orders on the triangular lattice,
including ferromagnetism, v/3 x v/3 order, and stripe orders (both commensurate and incommen-
surate). Critical properties are determined through a finite-size scaling analysis. Possible scenarios
regarding the nature of the phase transitions are discussed.

I. INTRODUCTION

The Landau-Ginzburg-Wilson (LGW) paradigm for
classifying phases of matter, based on their symme-
try and its subsequent breaking [1, 2], has been chal-
lenged by the discovery of symmetry-protected topolog-
ical (SPT) phases [3-9]. Of particular interest are SPT
phases that arise due to strong correlations, generalizing
the free fermion band-structure classification of topologi-
cal insulators to generic interacting systems. SPT phases
sharing the same protecting symmetry display identical
physical properties in the bulk and are indistinguishable
by symmetry-based probes such as local order parame-
ters. Instead, the distinction between trivial and nontriv-
ial SPT phases is more subtle and manifests itself through
properties like string order parameters, edge states, en-
tanglement spectrum, strange correlators, etc. [3-12].
Well known examples include the Haldane phase of odd-
integer Heisenberg chains [8, 9, 13—-19] and the bosonic
integer quantum Hall phases in two dimensions [20-27],
among others.

While the topological classification of SPT phases is
by now fairly well-established [3-9], our understanding
of quantum phase transitions involving them is still lack-
ing. Such transitions are expected to give rise to novel
quantum critical behavior, going beyond the LGW pre-
dictions. In that respect, phase transitions between
SPT phases and the more familiar symmetry-broken, or-
dered states [28-37] as well as transitions between triv-
ial and nontrivial SPT phases [24, 27, 38—49] have both
attracted tremendous attention. Previous works have
mostly considered transitions between SPT phases that
are protected by continuous symmetries and uncovered
remarkable relations with deconfined quantum critical-
ity [27, 42-44, 46, 49-51]. However, the study of mi-
croscopic models with discrete symmetry groups has re-
mained relatively scarce [34, 39, 45, 52-54].

In the absence of an overarching theoretical frame-
work of SPT criticality, one must resort to exact nu-
merical methods to determine their properties in specific
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FIG. 1. Quantum phase diagram for the Hamiltonians (2.3).
For each symmetry (Z3 and Z), the Hamiltonian interpo-
lates between the parent Hamiltonian of a paramagnet at
a = 0, the Hamiltonian of a non-trivial SPT at a = 1, and
the Hamiltonian of another non-trivial SPT (called SPT’) for
a = —1. The only difference between SPT and SPT’ is a
minus sign in front of the parent Hamiltonian, which con-
fers a non-trivial weak 0D index to SPT’. In all cases, the
transition from the trivial to the SPT phases happens via an
intermediate symmetry-breaking phase, where the protecting
symmetry is spontaneously broken. The Z3 model at positive
and negative a as well as the Zs model for a < 0 are studied
in this paper. The other case of the Zs model with o > 0
was thoroughly studied in Ref. 55. See Tab. I for a more
quantitative summary of our findings.

cases. In that regard, in dimensions D > 1, exact diag-
onalization and Density Matrix Renormalization Group
(DMRG) techniques [56, 57] are restricted to small sys-
tem sizes, which typically do not allow studies of long-
wavelength universal properties. Also, in many cases,
quantum Monte Carlo techniques are plagued by the nu-
merical “sign problem” rendering the statistical errors
uncontrolled [58]. Therefore, identifying concrete lattice
models that exhibit transitions involving SPTs and that
are amenable to an unbiased numerical solution is desir-

able.

In this paper, we numerically investigate the phase di-
agram of two different models that interpolate between
trivial and topological paramagnets, protected by Z, and



73 symmetries, see also Ref. 55. Crucially, the interpola-
tion does not explicitly break the protecting symmetry,
and since it connects two distinct phases of matter, we ex-
pect a quantum phase transition to occur along the way.
This can happen either through a single transition point
separating the two phases or a two-step transition via
an intermediate phase, which spontaneously breaks the
protecting symmetry. In all cases studied in this work,
we find that the latter scenario is realized, giving rise to
an intermediate magnetically ordered phase, see Fig. 1.
Interestingly, in certain cases, magnetic order is accom-
panied by additional broken symmetries, such as lattice
translations or point group symmetries.

The rest of the paper is organized as follows: In Sec. II,
building on several exactly solvable models of SPT phases
[59, 60], we construct a family of one-parameter Hamilto-
nians, which interpolate between trivial and topological
SPT phases. In Sec. III we present a sign-problem free
quantum Monte Carlo method used to numerically study
these models and discuss the physical observables used
to probe the various emergent phases and phase transi-
tions. We present our numerical results and discuss their
physical interpretation in Sec. IV. Lastly, we summarize
our findings and highlight future research directions in
Sec. V.

II. MODELS

In this section we present two single-parameter Hamil-
tonians, admitting Zy and Z3 symmetries, that interpo-
late between trivial and symmetry-protected topological
phases. The degrees of freedom of our models are Ising
spins residing on the sites of a two-dimensional triangular
lattice, see Fig. 2. A trivial Ising paramagnet is simply
defined by the Hamiltonian,
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where o’

;" are the standard Pauli matrices (07 = +1)
defined on site j, see Fig. 2 (a). The above Hamiltonian
has a unique gapped ground state, given by the product
state [Vgs) = [[; [0F = +1) in the o basis.

On the same lattice, we can also define non-trivial
SPTs with parent Hamiltonians taking the form [3-5, 59—
61]:,

(2.1)

Z,Y,z

Htopo = Zj 0';19]* (22)
Here, 9, is a plaquette operator centered around site j
and involving all its neighbors, as sketched in Fig. 2 (b).
It is diagonal in the computational basis |07, 05,...0%)
with eigenvalues £1 . In a geometry with periodic bound-
ary conditions and with appropriate choices of ¥;, as we
detail in the following subsections, the above Hamilto-
nian has a unique gapped ground state realizing a sym-
metry protected topological phase.

(b) Plaquette term (¢) Three sublattices

(a) On-site term

FIG. 2. The Hamiltonian (2.3) defined on the triangular lat-
tice is made of two distinct parts. (a) The first one (2.1) de-
scribes a trivial gapped Ising paramagnet with on-site terms.
(b) The second part (2.2) describes a topological gapped Ising
paramagnet protected by the Zs Ising spin-flip symmetry,
with plaquette terms involving the six nearest neighbors of
a given lattice site j. See Egs. (2.4) and (2.6) for the mi-
croscopic definitions of the plaquette operator considered in
this work. (c) Different sublattices for the Z3 model on the
triangular lattice geometry considered in this work.

Since the ground states of (2.1) and (2.2) describe a
trivial and non-trivial SPT phases, respectively, then a
quantum phase transition is expected to occur along a
symmetry-preserving path in parameter space that in-
terpolates between the two. Note that the ground states
of Hiopo and —Hiopo have the same strong SPT index,
but a different weak 0-dimensional SPT index [62].

This enables us to study two distinct transitions for
each symmetry group, with the following Hamiltonian,

H(a) = (1= la]) Huws + 0Hiopos (23)
with a € [-1,41]. The transition for « > 0 involves
changing only the strong SPT index. The transition
for @ < 0 involves an additional change in the weak 0-
dimensional SPT index. In the following we give explicit
expressions for the plaquette operators ¥; of Eq. (2.2).

A. 73 model

We first consider an SPT phase protected by a Z3 sym-
metry corresponding to flipping all the spins belonging to
each one of the three sublattices of the triangular lattice,
see Fig. 2 (c). The associated generators of this symme-
try are Ga/g/c = HieA/B/C of.

The plaquette operator is defined as [4, 60, 61],

9 =, (-pra-epu=en,

jkl

(2.4)

To evaluate the above product, one counts the number
of nearest-neighbor spin pairs belonging to the plaquette
surrounding j and both taking the value —1. If the num-
ber of such pairs is odd the product equals —1, and oth-

3
erwise it equals +1. With the above definition for 19522)’

3
we can relate ’HECZ);()) to the trivial paramagnet, H¢yi, by

the following unitary transformation,

’H(Zg) _ (M(Zg))T Hiri u(Zg)’_

topo

(2.5)



Here, U%2) = (=1)N2-—~ is a diagonal (in the computa-
tional basis) unitary operator, where No___ counts the
number of triangles with three —1 spins in a given ba-

sis configuration. Importantly, 'HEZEZ commutes with the
Z3 symmetry. The resulting SPT phase corresponds to
a type-1II cocycle and therefore couples non-trivially to
the three different sublattice Ising symmetries. Gauging
the Z3 symmetry gives rise to a non-abelian D4 quantum
double phase [60, 61, 63].

Since U2 = (UE))T, we find that for o > 0, H(av) is
related by a unitary transformation to H(1—«). Further-
more, since —Hopo is related to Heyi by a unitary trans-

formation with unitary operator Z/I(Zg)ni o7, we also
have a duality relating H(a) to H(—1 — a) for a < 0.
In other words, the phase diagram is symmetric about
a = 0.5 for @ > 0 and around o = —0.5 for a < 0.

The above relations are a key property of our model
since, as we show below, in the computational o* basis,
the Hamiltonian is sign-problem free only within the pa-
rameter range a € [—0.5,0.5]. We can, therefore, deter-
mine all physical properties within this range by means
of quantum Monte Carlo simulations and treat the rest
of the phase diagram using the above duality relations.

B. Z2> model

The second model we consider is an SPT phase pro-
tected by a Zy symmetry corresponding to a global Ising
spin flip, 67 — —o7 Vi. In this case, the plaquette oper-
ator takes the form [3-5, 59],

o - 11,

The above product gives a minus sign if the number of
nearest neighbor spin pairs belonging to the plaquette
surrounding j and pointing in the same direction equals
to 2 or 6, and gives a plus sign otherwise. Such pairs can

j3(-1-0kof)

jkl

(2.6)

only come in even numbers (0, 2,4, 6), such that 195-22) is a
Hermitian operator despite the presence of the imaginary
number ¢ in its definition. ’HE(%ZZ) is related to the trivial

paramagnet Hy,; by the following unitary transformation,

Hion = (Zf’“‘”)T o U, (2.7)
Here, Y(#2) = (—1)Now  where Npw counts the num-
ber of domain walls in a given spin configuration. The
number of domain walls is well-defined on the triangular
lattice since each spin configuration defines a unique con-
figuration of closed and non-intersecting domain walls on
the dual honeycomb lattice. We note that /(%2 is diag-
onal in the computational basis. Gauging the Ising sym-
metry in this model realizes the double semion phase [59].

By the same argument as in the Z3 case, we find a du-
ality relating @ and (1 — «) for a > 0, and relating « and
(=1 — a) for a < 0. As before, owing to this symmetry,
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FIG. 3. Example of a quantum Monte Carlo configuration for
the model (3.1) in the SSE formulation. It consists of a basis
state |o0) = |o102...0n) (at index p = 0) and a sequence
S of operators of fixed length M. There are only two types
of operators in our case: Identity I and spin-flip X. Here,
the identity operators have been assigned a lattice site. The
algorithm aims at sampling the configuration space {|o), Sa}.

and we can limit ourselves to calculations in the range
a € [—0.5,0.5] using a sign problem free quantum Monte
Carlo simulations and obtain results for the rest of the
phase diagram using the above duality relations.

III. NUMERICAL METHODS: QUANTUM
MONTE CARLO AND OBSERVABLES

A. Stochastic Series expansion

For convenience, and without loss of generality, we first
rewrite the Hamiltonian (2.3) as

"= ZL X; with X, = —0;7(1—|a\+a19j)7 (3.1)

with N being the total number of lattice sites. In what
follows, we always impose periodic boundary conditions.

Within the stochastic series expansion (SSE) formula-
tion of quantum Monte Carlo, the partition function of
the system at inverse temperature 5 = 1/T reads [64, 65],

2= Y W<J‘ﬁ0(p)‘a> (3.2)
(1)} {5ur} p=0

where the configuration space is defined by all possible
combinations of basis states {|o) = |o1,02,...0n)} and
sequence of operators {Sys} of fixed length M. For a
given sequence of operators S),;, the operators are de-
noted by O(p) with position index p. They can either
be the identity I(p) or X(p), as defined in Eq. (3.1),
see Fig. 3. Spin-flip operators X (p) act on lattice sites
j € [1, N] but its index can be omitted because it is ac-
tually redundant with the sequence Sj; considered, un-
less specified otherwise. The integer n is the number of
non-identity operators in the sequence Sy;. Note that M



should be taken large enough such that n < M is ensured
in practice. One can rewrite the partition function (3.2)

2= > w(lo)Su),

{lo)} {Sm}

(3.3)

where W (|o), Sar) is the weight of a configuration with
a probability P(|o),Sy) = W(|o),Sm)/Z2. We want
to sample these configurations in a Monte Carlo fash-
ion, which supposes that W (|o), Sps) > 0 for all config-
urations, otherwise we end up with the infamous sign
problem [58]. Because the number n of spin-flip op-
erators (3.1) is even to respect the periodicity along
the “operator index axis” (see Fig. 3), this condition
is fulfilled for all the models considered in the range
a € [-0.5,40.5].

There is no known efficient loop or cluster-type up-
dates [66-69] for the models (3.1), and we can only rely
on local moves in the configuration space [70]. This lim-
its the system sizes one can access in practice to a few
hundred lattice sites. Assuming some valid configuration
is defined by {|o), Sas}, the updates that we propose in-
volve changes in the sequence of operators Sy, that will
indirectly involve changes in the basis state |o). There
cannot be two operators with the same index p, and there
can only be an even number of X operators at a given
lattice site j; otherwise, the two states |o) sandwiching
the product of operators in (3.2) would be different. Full
detail on the algorithm implementation are discussed ex-
plained in Appendix A.

Because of the constraints in the different models as
a — £+1/2 (some spin flips are strictly prohibited at o =
+1/2, as explained below), we have found that the SSE
algorithm with local updates gives incorrect results when
one gets very close to a« = £1/2 (by comparing to exact
diagonalization on small system sizes). We believe this is
an ergodicity issue in the SSE configuration space due to
the nature of our updates. Note that this problem does
not concern the data shown in this work since they are
relatively far away from o = 1/2. However, a study of
the Zy model at a@ = 1/2 was necessary in Ref. 55. We
have, therefore, developed a complementary algorithm
specifically to study that case. This algorithm is based
on projective quantum Monte Carlo [71] and does not
suffer from ergodicity issues, see Appendix B.

B. Physical observables

To determine the different quantum phases and phase
transition in each model, we focus primarily on the spin
structure factor associated with the imaginary-time two-
point correlation function,

C’(q7 T) = % ZT e*iq"“<ai(7)03(0)>.

This quantity is readily computed in SSE simulation,
since it is diagonal in the computational basis [64, 72, 73].

(3.4)

4

The equal time correlation function (7 = 0) probes po-
tential spontaneous magnetic order marked by a peak at
a ordering wave vector ¢ = @y qer- Lhe gap A between
the two Zs Ising symmetric sectors is also accessible by
examining the long imaginary time asymptotic decay

C(qorderaT) X exp(iAT) (35)

with 7 € [0,5/2]. Periodic systems of finite size N =
L x L are considered, with the lattice geometry of Fig. 2.
We set the inverse temperature of the SSE algorithm at
B = 4L, which we found to be sufficiently low to probe
the ground state of the models studied.

IV. NUMERICAL RESULTS

There are a total of four cases to be investigated since
there are two different symmetry groups (Z, and Z3%) and
a < 0. A quantum phase transition is expected in all
cases with either a single transition point separating the
two phases or a two-step transition via an intermediate
phase breaking the protecting symmetry. We first turn
our attention to the nature of the transition for the Z3
model at positive and negative « as well as the Z, model
for a < 0. The remaining case of the Zy, model with
a > 0 has already been thoroughly studied by the same
authors [55]. For completeness, we provide a brief ac-
count of its physical properties.

We begin our analysis by probing the equal-time
(7 = 0) two-point correlation function (3.4), depicted in
Fig. 4 (a,b,c) for 12 x 12 lattices, at representative val-
ues of «a, at which order sets in. In all cases, we observe
a clear maximum of intensity at specific wave vectors
Qorder indicating the presence of long-range magnetic
order, as reported in Tab. I. The maximum of intensity
serves as the definition for the order parameter (squared)
that can be systematically analyzed versus system size
and «. For a continuous phase transition, the following
finite-size critical scaling is expected [2, 74],

C(doraers0) X L/ =G [LV (0= a0)],  (41)
with 8 being the order parameter critical exponent, v the
correlation length critical exponent, L the linear system
size, a. the critical point, and G a universal scaling func-
tion. Based on Eq. (4.1) and as explained in App. C,
we determine the position of the critical points o, and
critical exponents 23/v. The results of this analysis are
shown in Fig. 4 (d, e, f). Indeed, we find that after rescal-
ing curves corresponding to different systems sizes cross
at a single point. For all the three cases considered we
estimate 283/v ~ 1.

We now turn our attention to estimating the gap A be-
tween the two Zs Ising symmetry sectors by a numerical
fit of the imaginary-time correlation function to Eq. (3.4)
at qorder close to criticality o ~ a.. The relevant data
set is shown in Appendix D. For a continuous transi-
tion, the expected finite-size scaling of the gap follows
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FIG. 4. (a)(b)(c) Equal-time (7 = 0) two-point correlation (3.4) for the three models considered, (a) the Z3 model with
a > 0, (b) the Z3 model with & < 0 and (a) the Z» model with o < 0, with N = 12 x 12 and inverse temperature 3 = 48,
represented as an intensity map in the Brillouin zone of the triangular lattice. A representative value of « has been chosen
for each model. Intensity peaks are visible at specific wave vector g, ,.qe, reported in Tab. I, and C(g,,qer,0) serves as the
definition for a potential order parameter (squared), studied versus a. (d) (e)(f) Finite-size scaling analysis of C(g,qer,0)
for (d) the Z3 model with a > 0, (e) the Z3 model with o < 0 and (f) the Z> model with o < 0. For a second order phase
transition it is expected to follow the finite-size critical scaling of Eq. (4.1). In the three different cases, we find a single crossing
point of the different system sizes with 23/v ~ 1, as reported in Tab. I (see App. C for information on how we estimated 23/v
and ac). The data corresponds to the average over the different symmetry-related q,,qor Wave vectors.

the form [2, 74],
A(L,ac) ~ L7%,

with z being the dynamical critical exponent. In Fig. 5,
we show the gap versus 1/L, which displays a linear scal-
ing, compatible with z = 1 for each of the models.

In principle, we can independently extract the cor-
relation length exponent v by rescaling the x-axis of
Fig. 4 (d, e, f) using the scaling argument o — L'/" (v —
a¢). Doing so is expected to result in a curve collapse
associated with the scaling function G in Eq. (4.1). How-
ever, the limited system sizes accessible numerically do
not allow for a reliable estimation of v. Thus, we cannot
confidently determine the precise universality classes of
each phase transition. In the following, we discuss sev-
eral possible scenarios describing the various phase tran-
sitions, based on our numerical observations and symme-
try arguments.

(4.2)

A. The Z3 model with o > 0

The peaks at g, qer i the structure factor, see Tab. I,
are consistent with a ferromagnetic phase within each

sublattice A, B and C as displayed in Fig. 6 (see also
Appendix E). One way to understand the emergence of
this phase is to study the Hamiltonian at o = 1/2. At
that value, it is easy to see that certain spin flips become
strictly disallowed, thereby creating a kinetic constraint.
The disallowed spin flips are the ones that would change
the parity of Na___ (the number of triangles with three
—1 spins). The magnetic order close to a = 1/2 should,
therefore, try to maximize the number of flippable spins.
It is easy to see that configurations for which each sub-
lattice forms a perfect ferromagnet have all of their spins
flippable.

Due to the Z3 symmetry, there is no direct coupling
(e.g., 0i0f) between the FM order parameters on each
sublattice: They are only coupled through their energy
density (like in the classical Ashkin-Teller model [75] in
the case of Z2%). If this energy density coupling were
irrelevant, we would expect three decoupled Ising criti-
cal points. However, renormalization group calculations
show that this coupling is relevant, and drives the tran-
sition either to the O(N = 3) universality if N < N, or
to the case of O(N = 3) with cubic anisotropy if N > N,
[76-78]. One would need to access larger system sizes to
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FIG. 5. For the three models considered, A gap versus inverse
linear system size L at a >~ a., extracted by an exponential fit
of the imaginary-time correlation function (3.4). For a second
order phase transition, it is expected to scale according to
Eq. (4.2). For the three models, the linear scaling observed
versus 1/L is compatible with a dynamical exponent z = 1,
when excluding the smallest system size.

Model Z3 (> 0) Z3 (a < 0) Zo (a0 < 0)
27r 27r
Am 2m ' V3
N )
(%% (0. +:2) Ve
Order type FM3 (V3 x V3 ) Com;lfir;s;rate
Qe 0.375(5) —0.467(2) —0.374(2)
28/v 1.00(8) 0.9(1) 1.02(2)
z 1 1 1

TABLE I. The first row indicates the wave vector g, qeo, at
which magnetic order settles in for the different cases, see
Fig. 4. The next second row labels the different ordered
phases. The third row corresponds to our estimates of the
position of the transition point «. for each model. The next
row reports on the value of the combined critical exponents
283/v obtained from the finite-size scaling analysis of the nu-
merical data. See App. C for information on how we estimated
28/v and ac. The last row shows the dynamical exponent z
obtained by the closing of the finite-size gap at criticality.

verify this scenario by extracting the critical exponents
v and B with high precision.

B. The Z3 model with a <0

The peaks at gg,.qep in the structure factor, see Tab. I,
are consistent with a (v/3 x v/3) order within each sub-
lattice [79-81]. This phase breaks translation and the
Zs rotation symmetry of the triangular lattice on top

i
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FIG. 6. Magnetization for one of the ground states of the
FM? phase, which appears for the Z3 model for a > 0. The
other ground states are obtained by flipping all the spins on
one given sublattice (each sublattice is shown in a different
color).

of the Ising spin flip symmetries. Assuming we can
neglect the coupling between the sublattices, we would
find three independent transitions in the XY class with
Z¢ anisotropy [80]. Interestingly, the Zg anisotropy is
predicted to be dangerously irrelevant, leading to an
emergent U(1) symmetry in the ordered phase below a
length scale which diverges as a power of the correlation
length [82]. However, the different sublattices are, in re-
ality, coupled and the impact of this coupling should be
studied in future work.

C. The Z> model with a <0

The ordered phase is a stripe phase that breaks trans-
lation and the Zj rotation symmetry of the triangular
lattice on top of the Zs Ising spin flip symmetry. At
a = —1/2, certain spin flips become disallowed: The
ones that would not change the parity of the number of
domain walls. It is easy to see that a stripe phase of a
period 2 has all of its spins in a flippable configuration,
which is expected from an energetic point of view.

Based on symmetry alone, a simultaneous breaking of
both Ising and the rotational Z3 symmetry must occur
via a first-order transition [83, 84]. In order to recon-
cile this scenario with our evidence for a second order
phase transition, one would need to invoke a weakly first
order transition, with a correlation length (finite at the
transition) that is larger than the system sizes numeri-
cally available. Another possibility is to break Z, and Z3
through two consecutive transitions, with an intermedi-
ate nematic phase [83, 84]. In that case, the Zy breaking
transition would be expected to be in the Ising class, and
would correspond to the transition we observe. Further
work would be needed to distinguish these two scenarios.

D. The Z> model with a >0

The Zs model with o > 0 was thoroughly investigated
in Ref. 55, using the same quantum Monte Carlo methods
(SSE and projective) that have been developed in this
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FIG. 7. Magnetization for one of the ground states of the
(v/3x+/3)? phase, which appears for the Z3 model with a < 0.
The other ground states are obtained by flipping all the spins
on one given sublattice (each sublattice is shown in a different
color). Each sublattice is itself subdivided into three subsub-

lattices (e.g., sublattice A is divided into AA, AB, and AC),
and the magnetization takes a pattern of the type (1, —%, —%)
for these three subsublattices (1 is represented as a big arrow
while —% is represented as a small one). For the particular
ground state shown in the figure, the magnetization has a
simple stripe pattern, but this is not the case for all ground

states.

paper. We provide a brief overview of the main results
for completeness.

Similarly to what we have uncovered in this work, there
is also an intermediate phase that spontaneously breaks
the protecting Ising Zy symmetry, and which displays
stripe order around the wavevector |qorqer] = 27/5. A
jump in the order parameter at a. =~ —0.48 suggests
a first order transition, in agreement with a symmetry-
based Ginzburg-Landau analysis prohibiting a continu-
ous transition for the corresponding gq.4er [85]. Re-
markably, while one might have expected the interme-
diate phase to be gapped and confined, it was found to
be gapless and dual to a deconfined U(1) gauge theory
due to the incommensurability of the stripe pattern, pro-
viding one of the first observation of the “Cantor decon-
finement” scenario in a microscopic model [86-90].

V. CONCLUSION AND PERSPECTIVES

Employing numerical simulations based on stochastic
series expansion quantum Monte Carlo, we have stud-
ied the quantum phase diagram of two Hamiltonians in-
terpolating between trivial and non-trivial paramagnets,
protected by Zs and Z3 symmetries, respectively. In all
cases, we find that the transition happens via an inter-
mediate symmetry-breaking phase, where the protecting
symmetry is spontaneously broken, displays long-range
magnetic order. By performing a finite-size scaling anal-
ysis of the order parameter, we precisely determined the
location of the critical points. The phase diagram of the

FIG. 8. Magnetization for one of the ground state with com-
mensurate stripe order, which appears for the Z> model for
a < 0.

various models that were investigated in this work are
summarized in Fig. 1. Moreover, we computed the gap
A between the two Zo Ising symmetry sectors at criti-
cality, and find that it scales as the inverse linear system
size of the system, compatible with a dynamical exponent
z = 1. We also discussed the different possible scenar-
ios describing the nature of the phase transitions, which
we were not able to single out numerically in the present
study.

Despite the fact that we have developed sign-problem-
free algorithms for the models considered, there is no
known efficient update for sampling the configuration
space such as loop updates or cluster-type updates [66—
69]. Therefore, we can only rely on local updates in the
configuration space [70], limiting the system sizes one
can simulate. Accessing larger system sizes is paramount
in identifying the exact nature of the transitions tak-
ing place in these models, calling for the development
of a better-suited quantum Monte Carlo algorithm. One
could get inspired by the recent progress made for quan-
tum dimer models on the square lattice, also displaying
strong geometrical restrictions [91].

An important follow-up to this work would be to add
terms which frustrate the different magnetic orders, in
order to reach multicritical points at which trivial and
topological paramagnetic phases could potentially have
a direct transition. For example, in the case of stripe
phases, it might be possible to reach a quantum Lifhistz
point at which the stripe wavevector goes continuously
to zero [87, 92-98]. Another possibility is to reach an in-
stance of deconfined quantum critical points, which have
been predicted to occur at the transition between dif-
ferent SPT orders in the presence of continuous symme-
tries [27, 4244, 46, 49-51, 99].

In this work, we have focused on bulk properties of
the system, and thus used periodic boundary conditions.
However, it is important to note that the symmetry of
the phase diagram around « = 1/2 for a > 0 and around
a = —1/2 for @ < 0 applies to bulk properties, but
not to edge properties. In fact, the transitions from a
topological paramagnet to a symmetry-breaking phase is
expected to have anomalous edge properties compared
to the transition from a trivial paramagnet to the same
symmetry-breaking phase. Previous studies on such gap-



less SPT order, also called symmetry-enriched criticality,
has been mostly limited to one dimension [28-37] (except
for Refs. [29, 31, 100] which include higher dimensional
cases). The four models presented here provide an ideal
platform to study these phenomena in higher dimensions.

Finally, the models presented here also provide a way
of studying transitions between discrete gauge theories.
Whereas the trivial paramagnet is dual to the toric code,
the non-trivial SPT phases are dual to the double semion
(in the case of Z2) and the non-abelian D, quantum dou-
ble (in the case of Z3). This gauge description was par-
ticularly useful to study the transition between toric code
and double semion in the case of o > 0 [55]. A gener-
alization of this gauge theory description to the Zs case
for a < 0 and to the Z3 case is left for future work.
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Appendix A: Practical information regarding the
SSE quantum Monte Carlo algorithm

1. Monte Carlo updates

We first discuss the two types of Monte Carlo moves
that we have implemented in order to sample the config-
uration space. They are called the identity and spin-flip
updates.

a. Identity update

For convenience, we also assign a real space position
index j to identity operators. The first update is a change
of real space position j of such an operator to another real
space position i: I;(p) — I;(p). It can be performed as
follows,

1. Run a loop over each operator of the sequence Sy
of the current configuration.

2. If the operator O(p) is not an identity operator, we
move to the next p index.

3. If the operator at position p is an identity, we get
the site j on which it acts on.

4. We then select at random a site i € [1, N].

5. We change with probability one the site on which
I(p) is acting from j to .

Basically, this move should always be accepted since it
does not change the configuration. Indeed, in the defi-
nition (3.2) of the partition function, the identity opera-
tors are not specifically associated to a lattice site. We
only assign them a lattice site in the algorithm because it
makes it much more easier to deal with them, especially
in regards of the other update.

b. Spin-flip update

The second type of update involves two operators at
a time, on different positions p; and p, in the sequence
but at the same position j in real space,

X5 X (p)] = [Lp0) L) (A1)

and

1), Xi(p2)| = | X0, L) (A2)
These updates change the configuration and should be
accepted or refused fulfilling detailed balance. In between
p1 and po at the real space position j, there can be as
many identity operators I; as we want but no X; oper-
ators, otherwise these updates would lead to non-valid
configurations. Note the “periodic boundary condition”
along the p-axis, , as shown in Fig. 3. This update can
be performed as follows:

1. Select a random site j € [1, N]. If the number of
operators in the sequence attached to the selected
site j is smaller than two, cancel the update. Oth-
erwise, continue.

2. In the list of operators attached to the site j, select
one of them at random. We note it O(p1).



3. Get the number of operators Nops acting on site j
between p; and the first operator X; encountered
(the operator at p; is excluded from the count and
the operator X included). If no operator X is en-
countered before going back to pi, the count runs
up to the previous operator to O(py).

4. Select at random with probability 1/N,p,s an oper-
ator with p > p; acting on site j. The position of
this operator is noted ps.

5. To fulfill detailed balance in the selection of p; and
p2, the probability to select them in the configu-
ration before and after the update should be the
same. This is the case in the selection of p; but the
probability to select po depends on the nature of the
operator at po. Consider this: If it is an X operator
then the probability to select it is 1/Nyps. After an
update changing X to I, the probability to select
the identity operator at py will be modified. In the
current scheme, the probability to select it would

be 1/(Nops + Nc’)ps) with Ng ¢ the number of opera-

tors between I;(p2) and the next operator X acting
on site j. To correct this imbalance in the selection
of py if O;(p2) = X;(p2), we cancel this selection

with probablhty, Nops/(Nops + N,

cancel — 1- ops)

6. If the selection is not canceled, we suggest the up-
date according to Eq. (A2).

The probability to accept such an update involves the

ratio of the weights of the configurations after “a” and
before “b”, i.e., Paccept = min(Rp—a, 1), with,
W (loa), S5 )
(A3)

Rya = m.

Specifically, by defining the ratio of matrix elements

Oa . Olo,
 — (e Hoes;, Olow >0, (A4)
(o HOGSE Olow,)

one finds that the acceptance probability of the up-
dates (A1) and (A2) is given by

Rxx_11 = T[(M —n+2)(M —n+ 1)}/(]\75)27

Rrrsxx = 7°<N5)2/[(M —n—1)(M - n>i|a

Rixxr=Rxisix =7,

(A5)

with n the number of non-identity operators before the
update. The N? factor comes from the fact that we label
the identity operators with a lattice site. In practice, the
ratio of matrix elements (A4) can be efficiently computed
since the update only involves a change of two operators
on the same site j at position p; and ps.

2. Initialization and thermalization

We initially start with a configuration only involving
M = 10 identity operators, randomly positioned in real
space. An initial spin configuration |o) is also gener-
ated at random. The thermalization process consists of
running consecutively the identity and spin-flip updates
and increasing the size of the sequence of operators M by
about 10% (by randomly adding identity operators at the
end of the sequence) when n > 0.8 M, with n the number
of non-identity operators. This ensures that n < M in
the following, when updates are performed in order to
get measurements.

Appendix B: Projective quantum Monte Carlo

The basic idea of projective quantum Monte Carlo [71]
lies behind the power method,

|"/)gs>'\‘ lim /Hm|¢>

m——+00

(B1)

with (gs]¢) # 0. This algorithm was used in Ref. [55]
to study the Zs model at a = 1/2.

1. Configuration space

Based on Eq. (B1), we define the following equivalent
of the “partition function” (or normalization) at order
m7

Z(m) = (| H™H™|¢'). (B2)

Choosing for initial state |¢) = [¢') = 3y, |0) and
using the same notation as Eq. (3.1) for the Hamiltonian,
one arrives to,

RPIPICPIE )"

{le)} {le")}

>. (B3)

Expanding the power as the product of all the possible
sequences { S, } of operators X of length 2m, one gets,

i) B

{lo)} {lo)} {S2m}  X;€52m

One can rewrite the partition function (B4) as,

m)= > > 3 W(lo) o) Som).

tlo)} {le)} {S2m}

(B5)

where W (|o),|0’), Sam) is the weight of a con-
figuration with a probability P(|o),|o’),Sam) =
W(lo),|o"), S2m)/Z(m) > 0 for the parameter range
€ [-0.5,40.5].
The configurations have a convenient graphical rep-
resentation: It represents a “snake” of length 2m on a
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FIG. 9. Example of a Monte Carlo configuration in the pro-
jective algorithm: It is a snake of length 2m in the graph
where the vertices are basis states and the edges are single
spin flips. The “head” and the “tail” of the snake are |o')
and |o), respectively. Its “body” consists of all intermediate
basis states connecting |o) to |¢’) by applying the spin flips
of the sequence Sa,.

graph where the vertices are basis states and the edges
are single spin flips. The “head” and the “tail” of the
snake are |o’) and |o), respectively. Its “body” consists
of all intermediate basis states connecting |o) to |o') by
applying the spin flips of the sequence Ss,,,. Including |o)
and |o’), there are (2m + 1) vertices in total, see Fig. 9.

2. Monte Carlo update

The update aims at moving the snake of Fig. 9 on the
graph: It corresponds to translating the whole snake by
one vertex at a time, either by its head or its tail. It can
be implemented as follows,

1. Select the head or the tail of the snake at random
with probability 1/2.

2. Independently of which one has been selected, there
are N spins in |0’) and |o) which can be potentially
flipped. One is selected at random with probability
1/N. The new basis state obtained when applying
the spin flip corresponds to the update proposal,
where the head or the tail will move if it is accepted.

The probability to accept such an update involves the
ratio of the weights of the configurations after “a” and
before “b” the move, i.e., Paccept = min(Rp_a, 1), with,

(0l [Lx,ess, Xilob)

(ool ITx, s, Xilo)

Ry = >0,  (B6)

which can be readily computed since only two operators
X differ between the two sequences S5, and S3,,. Be-
cause a single update is highly local in the configuration
space, we perform 2m of them consecutively in what we
call an actual update for this algorithm.

At o = £1/2, some spin flips become impossible (the
matrix element is strictly zero), while the ones which re-
main possible all have the same matrix element 1. In
practice, one can take advantage of this and slightly
adapt the above algorithm by only suggesting moves of
the head/tail to configurations where the spin is flippable

10

(note that the probability Paccept needs to be modified
accordingly to satisfy detailed balance).

3. Initialization and thermalization

The initialization and thermalization parts of the algo-
rithms increase the length ¢ of the snake until it reaches
the desired value 2m. We typically start with a snake
of length ¢ = 2, generated at random on the graph and
perform a number of updates of the order of the number
of lattice sites (as described above). When this is done,
we symmetrically (with respect to the tail and the head)
increase the length of the snake ¢ — ¢+ 2. The positions
of the new head and tail are selected at random. We
then repeat this whole process until £ = 2m. Although
the the position of the initial snake and the position of
the new head and tail are random, we have to ensure
that the configuration is valid by making sure that the
corresponding operators X; introduced in the sequence
do not lead to zero matrix elements.

Increasing the length of the snake on the fly allows one
to check on whether or not its current size is sufficiently
long to probe the ground state or not (by regularly per-
forming measurements, of the energy for instance), and
adjust m accordingly.

4. Measurements

With the projective algorithm, the measurement of an
observable O takes the form,

(O) = (¢|H™OH™|¢")/Z(m).

From the snake configuration perspective, if O is a diago-
nal observable in the computational basis, it is measured
on the spin configuration positioned in the middle of the
snake. If one wants to measure the energy (H), it can be
achieved by averaging — > (1— ||+ ;) over the head
or tail spin configurations |¢’) and |o).

(B7)

Appendix C: Locating the transitions

We assume a second order phase transition for which
the following finite-size critical scaling is expected at crit-
icality o = a. [2, 74] (see also Eq. (4.1)),

C(gorders 0) X L?%/V ~ constant, (C1)
with 3 the order parameter critical exponent, v the corre-
lation length critical exponent, L the linear system size.
C (qorder,O) is measured in quantum Monte Carlo for
different values of o and linear system sizes L. Both
26/v and a. are unknown. In order to determine them,
we set 203 /v as a parameter and find the value for which
the crossing of the different system sizes is as close as
possible to a single point, which gives a..
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FIG. 10. (a,b,c) Minimum spreading of the crossing points defined in Eq. (C1) between all pairs of linear system sizes in £,
according to Eq. (C2). A minimum is observed in all cases with a drift of its position observed as one removes the smallest
system sizes from the set £. The values of 23/v and a. reported in Tab. I correspond to the minimum considering the largest
system sizes only (violet curves). The error bars that we give reflect the difference with respect to the data set containing all
sizes (see text). For the 73 model at a < 0, we did not take into account N = 3 x 3 as its crossing point with other system
sizes was always leading to outliers.
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FIG. 11. (a,b,c) Fourier transform of the imaginary-time two-point correlation function (3.4) for the Z3 and Zs models at
o~ o, computed at g, ,.qer, Se€ Tab. I. An exponential fit of the data versus imaginary time gives access to the gap A between
the two Zs Ising symmetry sectors for a given finite-size system. The value of the gap is reported in Fig. 5 with a finite-size
critical scaling of the form (4.2).

In practice, we have a set of data corresponding to dif- limited on how far we can go by the total size of £).
ferent system sizes £L = {Lq, Lo, ..., Ln_,..}. We com- Results are plotted in Fig. 10 for the three models con-
pute the (g) possible combinations between them. For sidered, with ¢ showing a well-defined minimum in all

a given value of the exponent, and for each pair, we get cases. The values of 28/v and a, reported in Tab. T cor-
the coordinates of the crossing point between the two  respond to the minimum considering the largest system
curves (T, y.) (we do a linear interpolation between the  sizes only (violet curves). The error bars that we give

different data points). From the resulting list of coor- reflect the difference with respect to the data set con-
dinates {(xc, y.)}, we quantify their spreading by com- taining all sizes. In that sense, this is more of an upper
puting the standard deviation of the euclidean distances bound since we see that the difference between the posi-
de = /22 + Y2, tion of the minima decreases when removing the smallest

system sizes.
o(28/v) =/d2 —d. for a given L. (C2)
We estimate the best exponent 23/v from the minimum  Appendix D: Extracting the gap A between the two

of o and estimate a. as the average over the z. coordi- Ising symmetry sectors
nates for the corresponding best exponent. This method

puts all the system sizes on the same level (the small- The gap A between the two Zs Ising symmetry sec-
est and the largest), but we know that the crossings can  tors, reported in Fig. 5 for different system sizes L x L, is
exhibit some drifts with the system sizes. To that end, indirectly accessed in quantum Monte Carlo by perform-

we repeat the procedure by removing from the set £ the ing an exponential fit o< exp(—AT) of the imaginary-time
smallest system size and the two smallest ones (we are correlation data displayed in Fig. 11. The imaginary time
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FIG. 12. (a,b,c) Binder ratio B of Eq. (E1) for the Z3 model with o < 0 involving the magnetization myx of each sublattice

X € [A, B, (] as defined in Eq. (E2).

7 is defined within the range [0, /2] with inverse tem-
perature 5 = 4L considered. The fit to extract the gap
is only performed over the range showing a genuine ex-
ponential decay.

Appendix E: Binder ratio with individual sublattices
for the Z3 model with a > 0

For the Z3 model with a > 0, in order to check whether
or not ferromagnetic order settles in one, two or the three
sublattices A, B and C (whereas the others remain param-
agnetic), see Fig. 2 (c), we compute the following Binder

ratio,
oty i
B(m) = 2 with m = < mams, (E1)
mn mamgme,

which involves the magnetization of each sublattice inde-
pendently,

3 z
ma =+ ZieA o7 (E2)

It is plotted in Fig. 12 (a, b, ¢) versus «, with a crossing
of the largest system sizes observed in all cases, meaning
that the three sublattices experience long-range ordering.
For B(ma) and B(mamg), the crossing point seems to
happen at a larger « value than for the structure factor
C(qorder, 0) of the main text. However, this is attributed
to the “effectively” smaller system size when considering
the sublattices independently (each account for N/3 lat-
tice sites only), as compared to the other Binder ratio
B(mampmc) or the structure factor since we expect that
ma = C(0,0).
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