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Abstract:

The proliferation of sensors in the world has created increased 

opportunities for context-aware applications. However, it is often 

cumbersome to capitalize on these opportunities due to the difficulties 

inherent in collecting, fusing, and reasoning with data from a 

heterogeneous set of distributed sensors. The fabric that connects 

sensors lacks resilience and fault tolerance in the face of 

infrastructure intermittency. To address these difficulties, we 

introduce Cacophony, a network of peer-to-peer nodes (CNodes), where 

each node provides real-time predictions of a specified set of sensor 

data. The predictions from each of the Cacophony prediction nodes can be

used by any application with access to the web. Creating a new CNode 

involves three steps: (1) Developers and domain-knowledge experts, via a

simple web UI, specify which sensor data they care about-possible 
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sources of sensor data include stationary sensors, mobile sensors, and 

the real-time web. (2) The CNode automatically aggregates data from the 

relevant sensors in real time using a JXTA-based peer-to-peer network. 

(3) The CNode uses the aggregated data to train a prediction model via 

the Weka machine-learning library (Hall, 2009). Real-time predictions 

made by the CNode are then made publicly available to applications that 

wish to use data from a CNode’s particular set of sensors. The real-time

predictions themselves can also be used recursively as sensor data, 

enabling the creation of CNodes that make predictions based on other 

CNodes.



1 Introduction 

Advancements in manufacturing efficiencies and the subsequent 

reduction in prices of sensors have caused their deployment to rapidly 

increase. From barometers on cell-phones and motion sensors on light 

switches in offices, to seismographs in civil infrastructure and smart 

meters in homes, physical sensors are proliferating. In order to 

facilitate system maintenance and the analysis of data, many of these 

sensors are connected to apps and to Internet services. At the same 

time, software, both simple and sophisticated, is being used to create 

“virtual” sensors; for example, geographic sentiment analysis derived 

from Twitter feeds that capture the mood of a city (Kouloumpis, Wilson, 

Moore, 2011), and search engine aggregations that identify disease 

outbreaks (Ginsberg, 2009). While the spread of sensors has created 

increased opportunities for context-aware applications and is tightly 

coupled with the Internet of Things (Atzori, Iera, Morabito,2010), there

is little accommodation for redundancy in the face of sensor failure or 

disconnection. As a result, it is difficult to use the opportunities 

afforded by the scale of this trend when also faced with a future of 

intermittent infrastructures. There are difficulties inherent in 

discovering, collecting, fusing, and reasoning with data from the 

heterogeneous set of distributed infrastructures. Statistical machine 

learning offers a rich set of techniques for reasoning from large 

amounts of data, such as that provided by ubiquitous sensors. However, 



applying these techniques can be difficult because understanding the 

nuances of machine learning is difficult (Domingos, 2012). Domain 

expertise is essential to most successful machine learning projects 

because an expert’s experience and insight is critical to choosing which

algorithms to use, which data should and should not form the input to 

the statistical model, and how the structure of that data and the 

learning algorithms interrelate. This is assuming that you can even find

the relevant data in a form that is amenable to automatic processing. 

Unfortunately, this expertise is needed over and over again because 

there is not currently an easy way to make the details of successful 

models publicly available in a ready-to-use form. There is no large, 

dedicated public catalogue of trained predictive models from which 

application developers or researchers can pick-and-choose for their own 

applications, or upon which they can easily improve. This duplication of

effort causes the effective use of sensors to lag far behind their 

deployment as duplicate teams “reinvent the wheel”. In the face of these

trends and challenges, we introduce Cacophony, a network in which 

computational processes, or “nodes”, provide value-added services for 

networked physical and virtual sensors. Cacophony exists on a peer-to-

peer network to provide resiliency against single-point failures that 

would otherwise prevent access to underlying sensors and provides 

services to substitute for the sensor if it becomes completely 

unreachable. Such services include: 

• Predictions: Based on historical observations of sensors and 



concurrent observations of related sensors (“features” in machine 

learning parlance), future sensor values can be estimated. 

• Robustness: In the presence of sensor failure or sensor in- 

accessibility, Cacophony can provide current estimates of a sensor’s 

values based on historical observations and related sensors. 

• Transparency: By asking for the configuration of a node, anyone 

can evaluate the basis on which predictions are made. 

• Improvement: By minimally modifying the configuration of an 

existing node and then using it as the basis for a new node, predictive 

models can accommodate new domain knowledge and new input sensors as 

features. This can be done with less expertise than initially creating 

the model may have required. 

• Homogeneity: By creating a consistent interface to sensors on the

Internet of Things, Cacophony nodes support developers in the creation 

of applications; applications only need to implement a single connection

to the Cacophony network in order to find any relevant sensor data. 

• Scaling: By virtue of using a decentralized peer-to-peer 

approach, Cacophony supports extremely large resilient networks of 

sensors. 

In this paper, we give an overview of the Cacophony architecture 

and user interface, followed by descriptions of two context-aware 

applications that leverage Cacophony. 



2 Network Architectures

At a high-level, Cacophony is a peer-to-peer network of nodes and a

directory for discovering these nodes. A Cacophony prediction node 

(CNode) is a predictor for some sensor value known as the “target”. Each

node regularly retrieves information (known as “features”) from some set

of sensors, and uses that information to create a learning model for 

predicting the target. Ground truth is obtained by reading text values 

from a web page or RESTful web service. The learning model is made 

available via the CNode’s web interface, both on a webpage and through a

REST API. In addition to the CNodes, the Cacophony network includes at 

least one directory node. This directory node provides a public list of 

the known CNodes, along with relevant information, such as what the 

CNode is predicting and what sensors it is using to make predictions. 

This list helps users determine if a certain value is already being 

predicted, or if they need to make a new CNode to predict the desired 

value. 

2.1 Creating and Configuring a New CNode 

Launching a CNode process creates new CNodes. A new node can be 

configured de novo, or it can be instructed to copy the configuration of

an existing CNode. In either case, configuration can be performed 

through REST API calls to the running node or via a web interface 

provided by the node. 



If the CNode is being configured de novo via the web interface 

(i.e., it is not copying the configuration of an existing node), a user 

first finds a source containing the ground truth for whatever values he 

or she wants to predict (for example, if the user wants to predict the 

temperature, he or she must find a webpage that is regularly updated 

with the temperature). Then, on the CNode’s configuration webpage, the 

user inputs the URL of the ground truth webpage. This will load the 

ground truth webpage inside the CNode configuration webpage. Once the 

ground truth page has loaded, the user simply clicks on the desired 

piece of data, and the CNode records the XPath of that element, i.e., 

the element’s location in the Document Object Model (DOM). The user then

selects other sources of data from a list of existing CNodes provided by

the Cacophony directory as features from which the model is trained. 

The XPath specifies a text element, but it is possible that the ac-

tual target or feature of interest is a substring of what is found at 

the given XPath. Therefore, if the XPath alone is not precise enough to 

extract the desired target or feature, the user can supplement it with a

regular expression. 

If a new CNode is not being configured from scratch, the user can 

initialize it with the configuration of an existing CNode. The user 

simply needs to specify the address of the existing node within the 

peer-to-peer network of CNodes, and the new node will automatically 

retrieve the appropriate configuration information. This would be a way 

to rapidly create a sensor that is similar to another existing sensor, 



or to incorporate changes into the design of an existing sensor in an 

effort to get better statistical performance. 

2.2 Network Protocols 

Communication within the Cacophony network is accomplished via 

p2p4java1, which is a modification of JXTA (an open source peer-to-peer 

protocol originally developed by Sun Microsystems). p2p4java offers 

several advantages over alternative network protocols. For example, 

consider a smartphone on some wireless carrier’s network: we wish to 

make this phone’s sensor readings available to a CNode. One naïve 

approach is to run a web server on the phone that provides the sensor 

values via a REST API. However, wireless carriers typically use 

firewalls and network address translation (NAT), which can make it 

impossible to access this web server from the greater Internet. 

Fortunately, JXTA offers a solution via relay peers, which enable 

communication with devices that are behind NATs or firewalls. p2p4java 

enables this functionality to be extended to Android phones so that a 

background application on the phone can declare itself a JXTA peer, 

enabling a CNode to contact it for sensor data. 

CNodes can retrieve predictions from other CNodes via the p2p4java 

network, i.e., a new CNode can use an existing CNode’s predictions as 

features. In this way, the Cacophony nodes can form a directed graph, 

where outputs (predictions) from some nodes are used as inputs 

1 https://github.com/djp3/p2p4java
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(features) for other nodes. JXTA and our p2p4java extensions are open-

source, operate on desktop and Android platforms, and feature advanced 

cryptographic security. 

Internally, Cacophony uses the peer-to-peer network for 

reliability, robustness, and decentralization. However, HTTP is used by 

the Cacophony network to retrieve sensor data from the rest of the web 

and to make predictions available to applications that don’t participate

in the peer-to-peer network. Each node in the Cacophony network includes

a lightweight web server, which serves a webpage for making 

configuration changes and for displaying status information. The web 

server also supports a RESTful service for supplying predictions. 

2.3 Retrieving Sensor Data and Generating Predictions 

On a regular basis, each Cacophony prediction node loads the ground

truth’s webpage to check for changes. If the ground truth’s value has 

changed, the CNode then also retrieves the feature values. Retrieved 

data is stored in an SQLite database along with all of the previously 

retrieved values. All of this data is used to train a predictive model 

via the Weka machine learning library. Whenever a CNode retrieves new 

sensor data, that node updates its model internally. 

Real-time predictions based on the updated model are publicly 

available to any applications with access to the web, under the Inter- 

net of Things SOA model (Atzori, Iera, Morabito, 2010). Notably, the 

predictions themselves can also be used as sensor data, enabling the 



creation of CNodes that make predictions based on other CNodes. In order

to prevent loops from creating endless fetching of data, basic caching 

functions are supported that limit the rate at which features are 

fetched and predictions are calculated. 

In addition to just creating a node using the shared configuration 

of another node, CNodes can be configured to also share their stored 

data. This is critical for newly created CNodes, since machine learning 

algorithms can only produce reasonable predictions once a sufficient 

amount of training data have been accumulated. Sharing data supports 

rapid bootstrapping of CNodes. 

Note that since users are able to clone and modify whichever CNodes

are making the best predictions, an iterative evolutionary process 

results: the most accurate CNode can be observed and then cloned to 

create multiple new CNodes, and those clones can then be modified 

incrementally in an attempt to create a more accurate CNode. In 

principle, this process can be done automatically, but this is still in 

the realm of future work. Even as a manual process, this enables the 

accuracy of CNodes to increase over time. 

See Figure 1 for a diagram of the Cacophony network. 





Figure 1: A diagram of the Cacophony network showing the flow of sensor
data, predictions, and CNode metadata. Dashed lines are predictions

being retrieved from a CNode.

 



3 Related Work

One class of applications that Cacophony was built to support is 

context-aware applications. Issues of reusability and abstraction when 

building context-aware applications were previously addressed by Salber 

with the Context Toolkit (Salber, Dey, Abowd, 1999). Cacophony builds on

their ideas by specifying more specific support for machine learning, 

providing a mechanism for scaling, and developing an implementation that

supports modern smartphones. 

Previous work by Heer, et al., on the liquid project addressed ways

to create a scalable, distributed system for supporting context-aware 

computing (Heer et al., 2003). Streaming database research inspired 

their work. Cacophony, in contrast, is designed to function within 

existing web protocols. In Cacophony, creating a node that collects data

from a sensor requires a user to specify how the data can be found. This

requires identifying a location on the Internet where the data resides. 

For example, if the data is embedded in a webpage, a URL and an HTML-

path query (or more generally an XPath query) are needed to retrieve the

desired data; these parameters need not be entered explicitly by the 

user, but can be inferred from user interface actions. There is a large 

body of programming by demonstration (Paynter, 1996) research that is 

directly relevant to this process of automatically extracting queries in

response to user actions. Several systems have already been built that 

use programming by demonstration to construct screen-scraping 

information agents. For example, Bauer, et al., built a system to 



extract text from a webpage based on guidance by the user (Bauer, 

Dengler, Paul, 2000; Bauer et al., 2000). The system allowed a user to 

create information agents for retrieving text from webpages, and used 

programming by demonstration so that the user did not need to manually 

specify the exact behavior of these information agents. Their system was

also robust enough to handle significant changes to a webpage’s layout. 

When the system could not recover from a change to a webpage’s layout, 

it would alert the user, who could then provide new examples to the 

information agent. The Internet Scrapbook was another system using 

programming by demonstration to retrieve text from webpages (Sugiura, 

Koseki, 1998) The user specified which part of a webpage he or she was 

interested in by copying the text in the desired portion to the 

Scrapbook page. Text from different webpages could appear on the 

Scrapbook page, and would reflect updates to the source webpages. 

Cacophony incorporates these ideas into its configuration (and 

maintenance) process. 

Alba, et al., also describe various ways for retrieving data from 

the web, such as screen scrapers and APIs (Alba, Bhagwan, Grandison, 

2008). When performing screen scraping, there are several ways to refer 

to part of a webpage, such as the relative positions of elements, 

regular expressions, and XPath expressions. The Internet Scrapbook used 

the relative positions of elements, by analyzing the location of headers

relative to other text (Sugiura, Koseki, 1998). Regular expressions are 

a useful way to refer to part of a webpage, but it is easy to under 



specify or over specify the expression. If the regular expression is too

vague, parts of the webpage may be retrieved other than the portion that

was desired. If the regular expression is too specific, slight changes 

in the webpage’s text may result in nothing being retrieved. 

Fortunately, fairly reliable techniques exist for automatically 

generating regular expressions based on user input, such as blockwise 

grouping and alignment (Fernau, 2005). XPath expressions pose problems 

similar to those posed by regular expressions. XPath expressions can be 

too vague or else overly specific; specifying the appropriate XPath 

falls under an area of research known as XPath containment (Vion-Dury, 

Layaïda, 2003).  For simplicity, we rely on XPath expressions to specify

a feature on a webpage, and require that the feature be directly inside 

an HTML element with a unique ID attribute. 

Baldauf et al., when discussing various context-aware systems, make

a distinction between physical sensors, virtual sensors, and logical 

sensors (Baldauf, Dustdar, Rosenberg, 2007) Physical sensors are 

typically hardware sensors that capture simple physical measurements, 

such as temperature or acceleration. Virtual sensors report data based 

on software systems; Baldauf and Dustdar provide the example of using 

event location entries in an electronic calendar system to determine a 

person’s location (as opposed to using a physical sensor such as a GPS 

device). Logical sensors provide data based on a combination of data 

from physical and virtual sensors. Cacophony can consume information 

from all three types of sensors as long as the sensor’s output is 



available via an HTTP request. Predictions made by Cacophony can be 

further built upon as they themselves form virtual sensors and/or 

logical sensors. 

4 User Interface

The CNodes themselves, once they are configured and running, 

require no UI for collecting and processing data to generate pre- 

dictions. Cacophony provides a “directory” user-interface tool as a 

means for people to search for CNodes, to ensure their CNodes are up and

running, and to discover CNodes whose sensor data might serve as inputs 

for their own CNodes’ predictions. To accomplish these tasks one needs 

to know what CNodes exist and what data they provide. 

4.1 Methodology 

The directory is itself a peer on the p2p4java network. The 

directory collects information, both passively and actively, about 

CNodes in the network. As a passive collector, the directory receives 

information from CNodes that optionally and periodically announce their 

existence. Each CNode has a default Cacophony directory with which it 

can register, but in general, anyone can operate his or her own 

directory. The directory compares the name of any registering CNode 

against a list of known CNodes. If no match is found, the directory 

queues the CNode name in order to retrieve additional information when 

resources are available. Similar to a web-crawler, the directory visits 

each CNode in this queue and sends a message requesting the CNode’s 



configuration. The directory parses and indexes all relevant information

from this configuration file. Of special note are any CNodes that serve 

as features, as these extend the frontier of CNodes known by the 

directory. Any unknown newly discovered CNodes are added to a queue for 

future crawling. Since CNodes are not required to register themselves 

and any attempts to register are “best effort”, this active crawling 

serves as a compliment to passively waiting for registrations. Finally, 

known CNodes are revisited periodically to retrieve any updates to their

configuration or dependencies. 

4.2 Collection of CNode Properties 

We categorize the CNodes based on the configuration data retrieved 

from the CNode registration and crawling. This includes its name on the 

JXTA network, its features, and metadata about the CNode. Predictions 

have an associated Java data type (from Weka) and an optional 

qualitative description. Additionally, the metadata includes machine 

learning algorithm selections, associated options, guidance on polling 

frequency, database size and information about node health. Predictions 

can represent a wide variety of data for example: network throughput, in

bytes, for a border router at 137.164.24.49; a barometric reading, in 

mbars, from 33.684167 to -117.7925; blood sugar levels, in mmol/L, of 

John Smith; or the NASDAQ Composite index in dollars. The relationships 

between CNodes are recorded as the flows of predictions from one CNode 

to another. 



4.3 Visualizing the Cacophony Network 

Once the directory node has collected information about CNodes, it 

can provide a visualization showing interrelationships between CNodes 

and the classification of each CNode. The CNode network is visualized as

a directed graph, where a node represents each CNode, and an information

flow from one CNode to another is represented as a directed edge. The 

visualization enables one to quickly understand CNode relationships, to 

gauge the complexity of the network, and to recognize potential 

configuration errors. 

4.4 Finding CNodes 

A CNode may be found through a variety of means. The CNode 

representations can be directly manipulated via the UI or searched for 

by address structure or attribute. The address structure of a CNode is a

URL in the form of p2p://<device_name>/<semanticpath>/<cnode>, entering 

the device name will highlight all CNodes contained therein or entering 

the full address will display the CNode itself. Any of the attributes 

described previously can be searched in a parametric fashion. All CNodes

which match the query are highlighted. 

4.5 Interacting with CNodes 

When a CNode is selected, various actions are possible: retrieving 

the current prediction or making future predictions, cloning the CNode, 

observing current node operational health (such as load and fetching 



frequency), and displaying configuration attributes. Retrieving the 

current prediction returns the selected CNode’s most recent prediction. 

Cloning a CNode outputs a configuration file and the necessary data for 

making a duplicate CNode. Displaying configuration attributes returns 

the extended properties not already shown in the UI. Additional features

may include retrieving past predictions or retrieving the values used to

produce the current prediction. 

5 Monitoring Decentralized Infrastructure 

One proposed application of Cacophony is to use it to monitor 

alternative decentralized infrastructures (ADIs). Small-scale attempts 

to create alternative infrastructures (food, energy, water, etc.) enjoy 

few of the economies of scale of centralized infrastructure (e.g., 

rooftop gardening vs. agribusiness), but larger efforts typically 

require more inputs (such as fertilizer and pesticides) that eventually 

create expensive externalities. Decentralized efforts, however, 

currently tend to be isolated, inefficient activities that do not 

address regional, community-based needs. Cacophony could be used to help

these ADIs scale up and be operated with intelligent, computer-based 

management. Resilient, open-source software can be used to help merge 

these small-scale efforts into a more integrated, regional forms. 

Initial prototypes of this software have been developed but 

substantial work is still needed in order to allow it to monitor real- 

world alternative infrastructures. What follows are some examples of how



Cacophony could support alternative infrastructures. 

Organization of Existing Sensors: This project does not seek to 

deploy new sensors, but to integrate existing sensors into a network. In

the pairing process of a Cacophony node with an underlying sensor, the 

sensor is exposed to the rest of the network with a consistent data 

interface (e.g., API). The node/sensor pairs become searchable through a

directory and the complexity of gathering data from now-exposed sensors 

is greatly reduced. Examples of sensors that we have targeted include 

smart-meters on homes, electric current sensors on solar panels, 

irrigation system operational status, micro-weather stations, and smart-

phone/wearable sensors. 

Intermittency Tolerance: The CNodes communicate using a peer-to-

peer networking protocol that is itself resilient to intermittency, but 

also, as a result, supports continued monitoring in the face of partial 

infrastructure outages. 

Scaling: By using a decentralized peer-to-peer network, the CNodes 

support extremely large networks of sensors. We are designing based on 

incorporating approximately 10,000 sensor values into our deployment, 

many focused on geographic specializations.

Analytics: By incorporating statistical modeling of the sensor 

values, CNodes can be given predictive analytics that enable them to 

function on par with utility-grade infrastructures. 



Operator Reflection: Consistent, reliable access to decentralized 

sensor systems coupled with high quality user-interfaces will enable 

alternative infrastructure owner/operators insight into how to manage 

their ADIs more effectively. 

Research Data: Through monitoring of sensors, we will be able to 

collect empirical data that can influence future designs. 

Applications that are built on top of Cacophony will be able to 

harvest information from a network of sensors-including physical 

stationary sensors, mobile and worn sensors, and virtual or physical 

social sensors and will provide richer insights and potentially support 

novel use cases. 

6 Conclusions 

In this paper we have introduced the architecture and vision for 

Cacophony, a resilient distributed machine-learning layer for the 

Internet of Things. Cacophony provides value-added services to existing 

sensors that are accessible on the web. These services include system 

architecture enhancements such as sensor robustness, interface 

homogeneity, and scalability. They also include data-oriented services 

such as historical sensor logging, statistical analysis of data, and 

predictive estimates of future readings. 

An important administrative tool that Cacophony supports is a 

directory that functions like a web search engine for Cacophony-managed 



sensors. Through this directory, people and applications can discover 

and monitor what sensor data is available on the Cacophony network. With

this knowledge, new services can be created and existing services can be

incrementally improved. 

We developed Cacophony in response to a practical need to support 

open-source applications that needed to leverage wider portfolios of 

sensor data than were previously available. For example, previous 

research supported the automatic inference of context descriptions from 

the sensors on a single device. Cacophony has allowed us to write 

applications that determine the context of an infrastructure from a wide

range of sensors that span many devices, administrative domains, and 

intended uses. 

In the future we hope to provide more support to users who would 

like to create their own CNodes in the Cacophony network. This includes 

automatic inferring of features for target predictions, user interface 

enhancements for launching CNodes, and broader deployments in support of

a variety of applications. Network effects make Cacophony increasingly 

valuable as the number of sensors available on the Cacophony network 

increases. 
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