
UC Irvine
UC Irvine Previously Published Works

Title
Cacophony: Building a resilient Internet of things

Permalink
https://escholarship.org/uc/item/83j8610n

Journal
First Monday, 20(8)

ISSN
1396-0466

Authors
Brock, John
Patterson, Donald J

Publication Date
2015

DOI
10.5210/fm.v20i8.6130

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/83j8610n
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

Title: Cacophony: Building a Resilient Internet of Things

Author: John Brock

Affiliation: Department of Computer Science University of California,

Irvine, Irvine, CA, USA

Email: jhbrock@ics.uci.edu

Contact Author: Donald J. Patterson

Affiliation: Department of Informatics, Department of Computer Science

University of California, Irvine, Irvine, CA, USA

Email: djp3@ics.uci.edu

Abstract:

The proliferation of sensors in the world has created increased

opportunities for context-aware applications. However, it is often

cumbersome to capitalize on these opportunities due to the difficulties

inherent in collecting, fusing, and reasoning with data from a

heterogeneous set of distributed sensors. The fabric that connects

sensors lacks resilience and fault tolerance in the face of

infrastructure intermittency. To address these difficulties, we

introduce Cacophony, a network of peer-to-peer nodes (CNodes), where

each node provides real-time predictions of a specified set of sensor

data. The predictions from each of the Cacophony prediction nodes can be

used by any application with access to the web. Creating a new CNode

involves three steps: (1) Developers and domain-knowledge experts, via a

simple web UI, specify which sensor data they care about-possible

mailto:jhbrock@ics.uci.edu
mailto:djp3@ics.uci.edu

sources of sensor data include stationary sensors, mobile sensors, and

the real-time web. (2) The CNode automatically aggregates data from the

relevant sensors in real time using a JXTA-based peer-to-peer network.

(3) The CNode uses the aggregated data to train a prediction model via

the Weka machine-learning library (Hall, 2009). Real-time predictions

made by the CNode are then made publicly available to applications that

wish to use data from a CNode’s particular set of sensors. The real-time

predictions themselves can also be used recursively as sensor data,

enabling the creation of CNodes that make predictions based on other

CNodes.

1 Introduction

Advancements in manufacturing efficiencies and the subsequent

reduction in prices of sensors have caused their deployment to rapidly

increase. From barometers on cell-phones and motion sensors on light

switches in offices, to seismographs in civil infrastructure and smart

meters in homes, physical sensors are proliferating. In order to

facilitate system maintenance and the analysis of data, many of these

sensors are connected to apps and to Internet services. At the same

time, software, both simple and sophisticated, is being used to create

“virtual” sensors; for example, geographic sentiment analysis derived

from Twitter feeds that capture the mood of a city (Kouloumpis, Wilson,

Moore, 2011), and search engine aggregations that identify disease

outbreaks (Ginsberg, 2009). While the spread of sensors has created

increased opportunities for context-aware applications and is tightly

coupled with the Internet of Things (Atzori, Iera, Morabito,2010), there

is little accommodation for redundancy in the face of sensor failure or

disconnection. As a result, it is difficult to use the opportunities

afforded by the scale of this trend when also faced with a future of

intermittent infrastructures. There are difficulties inherent in

discovering, collecting, fusing, and reasoning with data from the

heterogeneous set of distributed infrastructures. Statistical machine

learning offers a rich set of techniques for reasoning from large

amounts of data, such as that provided by ubiquitous sensors. However,

applying these techniques can be difficult because understanding the

nuances of machine learning is difficult (Domingos, 2012). Domain

expertise is essential to most successful machine learning projects

because an expert’s experience and insight is critical to choosing which

algorithms to use, which data should and should not form the input to

the statistical model, and how the structure of that data and the

learning algorithms interrelate. This is assuming that you can even find

the relevant data in a form that is amenable to automatic processing.

Unfortunately, this expertise is needed over and over again because

there is not currently an easy way to make the details of successful

models publicly available in a ready-to-use form. There is no large,

dedicated public catalogue of trained predictive models from which

application developers or researchers can pick-and-choose for their own

applications, or upon which they can easily improve. This duplication of

effort causes the effective use of sensors to lag far behind their

deployment as duplicate teams “reinvent the wheel”. In the face of these

trends and challenges, we introduce Cacophony, a network in which

computational processes, or “nodes”, provide value-added services for

networked physical and virtual sensors. Cacophony exists on a peer-to-

peer network to provide resiliency against single-point failures that

would otherwise prevent access to underlying sensors and provides

services to substitute for the sensor if it becomes completely

unreachable. Such services include:

• Predictions: Based on historical observations of sensors and

concurrent observations of related sensors (“features” in machine

learning parlance), future sensor values can be estimated.

• Robustness: In the presence of sensor failure or sensor in-

accessibility, Cacophony can provide current estimates of a sensor’s

values based on historical observations and related sensors.

• Transparency: By asking for the configuration of a node, anyone

can evaluate the basis on which predictions are made.

• Improvement: By minimally modifying the configuration of an

existing node and then using it as the basis for a new node, predictive

models can accommodate new domain knowledge and new input sensors as

features. This can be done with less expertise than initially creating

the model may have required.

• Homogeneity: By creating a consistent interface to sensors on the

Internet of Things, Cacophony nodes support developers in the creation

of applications; applications only need to implement a single connection

to the Cacophony network in order to find any relevant sensor data.

• Scaling: By virtue of using a decentralized peer-to-peer

approach, Cacophony supports extremely large resilient networks of

sensors.

In this paper, we give an overview of the Cacophony architecture

and user interface, followed by descriptions of two context-aware

applications that leverage Cacophony.

2 Network Architectures

At a high-level, Cacophony is a peer-to-peer network of nodes and a

directory for discovering these nodes. A Cacophony prediction node

(CNode) is a predictor for some sensor value known as the “target”. Each

node regularly retrieves information (known as “features”) from some set

of sensors, and uses that information to create a learning model for

predicting the target. Ground truth is obtained by reading text values

from a web page or RESTful web service. The learning model is made

available via the CNode’s web interface, both on a webpage and through a

REST API. In addition to the CNodes, the Cacophony network includes at

least one directory node. This directory node provides a public list of

the known CNodes, along with relevant information, such as what the

CNode is predicting and what sensors it is using to make predictions.

This list helps users determine if a certain value is already being

predicted, or if they need to make a new CNode to predict the desired

value.

2.1 Creating and Configuring a New CNode

Launching a CNode process creates new CNodes. A new node can be

configured de novo, or it can be instructed to copy the configuration of

an existing CNode. In either case, configuration can be performed

through REST API calls to the running node or via a web interface

provided by the node.

If the CNode is being configured de novo via the web interface

(i.e., it is not copying the configuration of an existing node), a user

first finds a source containing the ground truth for whatever values he

or she wants to predict (for example, if the user wants to predict the

temperature, he or she must find a webpage that is regularly updated

with the temperature). Then, on the CNode’s configuration webpage, the

user inputs the URL of the ground truth webpage. This will load the

ground truth webpage inside the CNode configuration webpage. Once the

ground truth page has loaded, the user simply clicks on the desired

piece of data, and the CNode records the XPath of that element, i.e.,

the element’s location in the Document Object Model (DOM). The user then

selects other sources of data from a list of existing CNodes provided by

the Cacophony directory as features from which the model is trained.

The XPath specifies a text element, but it is possible that the ac-

tual target or feature of interest is a substring of what is found at

the given XPath. Therefore, if the XPath alone is not precise enough to

extract the desired target or feature, the user can supplement it with a

regular expression.

If a new CNode is not being configured from scratch, the user can

initialize it with the configuration of an existing CNode. The user

simply needs to specify the address of the existing node within the

peer-to-peer network of CNodes, and the new node will automatically

retrieve the appropriate configuration information. This would be a way

to rapidly create a sensor that is similar to another existing sensor,

or to incorporate changes into the design of an existing sensor in an

effort to get better statistical performance.

2.2 Network Protocols

Communication within the Cacophony network is accomplished via

p2p4java1, which is a modification of JXTA (an open source peer-to-peer

protocol originally developed by Sun Microsystems). p2p4java offers

several advantages over alternative network protocols. For example,

consider a smartphone on some wireless carrier’s network: we wish to

make this phone’s sensor readings available to a CNode. One naïve

approach is to run a web server on the phone that provides the sensor

values via a REST API. However, wireless carriers typically use

firewalls and network address translation (NAT), which can make it

impossible to access this web server from the greater Internet.

Fortunately, JXTA offers a solution via relay peers, which enable

communication with devices that are behind NATs or firewalls. p2p4java

enables this functionality to be extended to Android phones so that a

background application on the phone can declare itself a JXTA peer,

enabling a CNode to contact it for sensor data.

CNodes can retrieve predictions from other CNodes via the p2p4java

network, i.e., a new CNode can use an existing CNode’s predictions as

features. In this way, the Cacophony nodes can form a directed graph,

where outputs (predictions) from some nodes are used as inputs

1 https://github.com/djp3/p2p4java

https://github.com/djp3/p2p4java

(features) for other nodes. JXTA and our p2p4java extensions are open-

source, operate on desktop and Android platforms, and feature advanced

cryptographic security.

Internally, Cacophony uses the peer-to-peer network for

reliability, robustness, and decentralization. However, HTTP is used by

the Cacophony network to retrieve sensor data from the rest of the web

and to make predictions available to applications that don’t participate

in the peer-to-peer network. Each node in the Cacophony network includes

a lightweight web server, which serves a webpage for making

configuration changes and for displaying status information. The web

server also supports a RESTful service for supplying predictions.

2.3 Retrieving Sensor Data and Generating Predictions

On a regular basis, each Cacophony prediction node loads the ground

truth’s webpage to check for changes. If the ground truth’s value has

changed, the CNode then also retrieves the feature values. Retrieved

data is stored in an SQLite database along with all of the previously

retrieved values. All of this data is used to train a predictive model

via the Weka machine learning library. Whenever a CNode retrieves new

sensor data, that node updates its model internally.

Real-time predictions based on the updated model are publicly

available to any applications with access to the web, under the Inter-

net of Things SOA model (Atzori, Iera, Morabito, 2010). Notably, the

predictions themselves can also be used as sensor data, enabling the

creation of CNodes that make predictions based on other CNodes. In order

to prevent loops from creating endless fetching of data, basic caching

functions are supported that limit the rate at which features are

fetched and predictions are calculated.

In addition to just creating a node using the shared configuration

of another node, CNodes can be configured to also share their stored

data. This is critical for newly created CNodes, since machine learning

algorithms can only produce reasonable predictions once a sufficient

amount of training data have been accumulated. Sharing data supports

rapid bootstrapping of CNodes.

Note that since users are able to clone and modify whichever CNodes

are making the best predictions, an iterative evolutionary process

results: the most accurate CNode can be observed and then cloned to

create multiple new CNodes, and those clones can then be modified

incrementally in an attempt to create a more accurate CNode. In

principle, this process can be done automatically, but this is still in

the realm of future work. Even as a manual process, this enables the

accuracy of CNodes to increase over time.

See Figure 1 for a diagram of the Cacophony network.

Figure 1: A diagram of the Cacophony network showing the flow of sensor
data, predictions, and CNode metadata. Dashed lines are predictions

being retrieved from a CNode.

3 Related Work

One class of applications that Cacophony was built to support is

context-aware applications. Issues of reusability and abstraction when

building context-aware applications were previously addressed by Salber

with the Context Toolkit (Salber, Dey, Abowd, 1999). Cacophony builds on

their ideas by specifying more specific support for machine learning,

providing a mechanism for scaling, and developing an implementation that

supports modern smartphones.

Previous work by Heer, et al., on the liquid project addressed ways

to create a scalable, distributed system for supporting context-aware

computing (Heer et al., 2003). Streaming database research inspired

their work. Cacophony, in contrast, is designed to function within

existing web protocols. In Cacophony, creating a node that collects data

from a sensor requires a user to specify how the data can be found. This

requires identifying a location on the Internet where the data resides.

For example, if the data is embedded in a webpage, a URL and an HTML-

path query (or more generally an XPath query) are needed to retrieve the

desired data; these parameters need not be entered explicitly by the

user, but can be inferred from user interface actions. There is a large

body of programming by demonstration (Paynter, 1996) research that is

directly relevant to this process of automatically extracting queries in

response to user actions. Several systems have already been built that

use programming by demonstration to construct screen-scraping

information agents. For example, Bauer, et al., built a system to

extract text from a webpage based on guidance by the user (Bauer,

Dengler, Paul, 2000; Bauer et al., 2000). The system allowed a user to

create information agents for retrieving text from webpages, and used

programming by demonstration so that the user did not need to manually

specify the exact behavior of these information agents. Their system was

also robust enough to handle significant changes to a webpage’s layout.

When the system could not recover from a change to a webpage’s layout,

it would alert the user, who could then provide new examples to the

information agent. The Internet Scrapbook was another system using

programming by demonstration to retrieve text from webpages (Sugiura,

Koseki, 1998) The user specified which part of a webpage he or she was

interested in by copying the text in the desired portion to the

Scrapbook page. Text from different webpages could appear on the

Scrapbook page, and would reflect updates to the source webpages.

Cacophony incorporates these ideas into its configuration (and

maintenance) process.

Alba, et al., also describe various ways for retrieving data from

the web, such as screen scrapers and APIs (Alba, Bhagwan, Grandison,

2008). When performing screen scraping, there are several ways to refer

to part of a webpage, such as the relative positions of elements,

regular expressions, and XPath expressions. The Internet Scrapbook used

the relative positions of elements, by analyzing the location of headers

relative to other text (Sugiura, Koseki, 1998). Regular expressions are

a useful way to refer to part of a webpage, but it is easy to under

specify or over specify the expression. If the regular expression is too

vague, parts of the webpage may be retrieved other than the portion that

was desired. If the regular expression is too specific, slight changes

in the webpage’s text may result in nothing being retrieved.

Fortunately, fairly reliable techniques exist for automatically

generating regular expressions based on user input, such as blockwise

grouping and alignment (Fernau, 2005). XPath expressions pose problems

similar to those posed by regular expressions. XPath expressions can be

too vague or else overly specific; specifying the appropriate XPath

falls under an area of research known as XPath containment (Vion-Dury,

Layaïda, 2003). For simplicity, we rely on XPath expressions to specify

a feature on a webpage, and require that the feature be directly inside

an HTML element with a unique ID attribute.

Baldauf et al., when discussing various context-aware systems, make

a distinction between physical sensors, virtual sensors, and logical

sensors (Baldauf, Dustdar, Rosenberg, 2007) Physical sensors are

typically hardware sensors that capture simple physical measurements,

such as temperature or acceleration. Virtual sensors report data based

on software systems; Baldauf and Dustdar provide the example of using

event location entries in an electronic calendar system to determine a

person’s location (as opposed to using a physical sensor such as a GPS

device). Logical sensors provide data based on a combination of data

from physical and virtual sensors. Cacophony can consume information

from all three types of sensors as long as the sensor’s output is

available via an HTTP request. Predictions made by Cacophony can be

further built upon as they themselves form virtual sensors and/or

logical sensors.

4 User Interface

The CNodes themselves, once they are configured and running,

require no UI for collecting and processing data to generate pre-

dictions. Cacophony provides a “directory” user-interface tool as a

means for people to search for CNodes, to ensure their CNodes are up and

running, and to discover CNodes whose sensor data might serve as inputs

for their own CNodes’ predictions. To accomplish these tasks one needs

to know what CNodes exist and what data they provide.

4.1 Methodology

The directory is itself a peer on the p2p4java network. The

directory collects information, both passively and actively, about

CNodes in the network. As a passive collector, the directory receives

information from CNodes that optionally and periodically announce their

existence. Each CNode has a default Cacophony directory with which it

can register, but in general, anyone can operate his or her own

directory. The directory compares the name of any registering CNode

against a list of known CNodes. If no match is found, the directory

queues the CNode name in order to retrieve additional information when

resources are available. Similar to a web-crawler, the directory visits

each CNode in this queue and sends a message requesting the CNode’s

configuration. The directory parses and indexes all relevant information

from this configuration file. Of special note are any CNodes that serve

as features, as these extend the frontier of CNodes known by the

directory. Any unknown newly discovered CNodes are added to a queue for

future crawling. Since CNodes are not required to register themselves

and any attempts to register are “best effort”, this active crawling

serves as a compliment to passively waiting for registrations. Finally,

known CNodes are revisited periodically to retrieve any updates to their

configuration or dependencies.

4.2 Collection of CNode Properties

We categorize the CNodes based on the configuration data retrieved

from the CNode registration and crawling. This includes its name on the

JXTA network, its features, and metadata about the CNode. Predictions

have an associated Java data type (from Weka) and an optional

qualitative description. Additionally, the metadata includes machine

learning algorithm selections, associated options, guidance on polling

frequency, database size and information about node health. Predictions

can represent a wide variety of data for example: network throughput, in

bytes, for a border router at 137.164.24.49; a barometric reading, in

mbars, from 33.684167 to -117.7925; blood sugar levels, in mmol/L, of

John Smith; or the NASDAQ Composite index in dollars. The relationships

between CNodes are recorded as the flows of predictions from one CNode

to another.

4.3 Visualizing the Cacophony Network

Once the directory node has collected information about CNodes, it

can provide a visualization showing interrelationships between CNodes

and the classification of each CNode. The CNode network is visualized as

a directed graph, where a node represents each CNode, and an information

flow from one CNode to another is represented as a directed edge. The

visualization enables one to quickly understand CNode relationships, to

gauge the complexity of the network, and to recognize potential

configuration errors.

4.4 Finding CNodes

A CNode may be found through a variety of means. The CNode

representations can be directly manipulated via the UI or searched for

by address structure or attribute. The address structure of a CNode is a

URL in the form of p2p://<device_name>/<semanticpath>/<cnode>, entering

the device name will highlight all CNodes contained therein or entering

the full address will display the CNode itself. Any of the attributes

described previously can be searched in a parametric fashion. All CNodes

which match the query are highlighted.

4.5 Interacting with CNodes

When a CNode is selected, various actions are possible: retrieving

the current prediction or making future predictions, cloning the CNode,

observing current node operational health (such as load and fetching

frequency), and displaying configuration attributes. Retrieving the

current prediction returns the selected CNode’s most recent prediction.

Cloning a CNode outputs a configuration file and the necessary data for

making a duplicate CNode. Displaying configuration attributes returns

the extended properties not already shown in the UI. Additional features

may include retrieving past predictions or retrieving the values used to

produce the current prediction.

5 Monitoring Decentralized Infrastructure

One proposed application of Cacophony is to use it to monitor

alternative decentralized infrastructures (ADIs). Small-scale attempts

to create alternative infrastructures (food, energy, water, etc.) enjoy

few of the economies of scale of centralized infrastructure (e.g.,

rooftop gardening vs. agribusiness), but larger efforts typically

require more inputs (such as fertilizer and pesticides) that eventually

create expensive externalities. Decentralized efforts, however,

currently tend to be isolated, inefficient activities that do not

address regional, community-based needs. Cacophony could be used to help

these ADIs scale up and be operated with intelligent, computer-based

management. Resilient, open-source software can be used to help merge

these small-scale efforts into a more integrated, regional forms.

Initial prototypes of this software have been developed but

substantial work is still needed in order to allow it to monitor real-

world alternative infrastructures. What follows are some examples of how

Cacophony could support alternative infrastructures.

Organization of Existing Sensors: This project does not seek to

deploy new sensors, but to integrate existing sensors into a network. In

the pairing process of a Cacophony node with an underlying sensor, the

sensor is exposed to the rest of the network with a consistent data

interface (e.g., API). The node/sensor pairs become searchable through a

directory and the complexity of gathering data from now-exposed sensors

is greatly reduced. Examples of sensors that we have targeted include

smart-meters on homes, electric current sensors on solar panels,

irrigation system operational status, micro-weather stations, and smart-

phone/wearable sensors.

Intermittency Tolerance: The CNodes communicate using a peer-to-

peer networking protocol that is itself resilient to intermittency, but

also, as a result, supports continued monitoring in the face of partial

infrastructure outages.

Scaling: By using a decentralized peer-to-peer network, the CNodes

support extremely large networks of sensors. We are designing based on

incorporating approximately 10,000 sensor values into our deployment,

many focused on geographic specializations.

Analytics: By incorporating statistical modeling of the sensor

values, CNodes can be given predictive analytics that enable them to

function on par with utility-grade infrastructures.

Operator Reflection: Consistent, reliable access to decentralized

sensor systems coupled with high quality user-interfaces will enable

alternative infrastructure owner/operators insight into how to manage

their ADIs more effectively.

Research Data: Through monitoring of sensors, we will be able to

collect empirical data that can influence future designs.

Applications that are built on top of Cacophony will be able to

harvest information from a network of sensors-including physical

stationary sensors, mobile and worn sensors, and virtual or physical

social sensors and will provide richer insights and potentially support

novel use cases.

6 Conclusions

In this paper we have introduced the architecture and vision for

Cacophony, a resilient distributed machine-learning layer for the

Internet of Things. Cacophony provides value-added services to existing

sensors that are accessible on the web. These services include system

architecture enhancements such as sensor robustness, interface

homogeneity, and scalability. They also include data-oriented services

such as historical sensor logging, statistical analysis of data, and

predictive estimates of future readings.

An important administrative tool that Cacophony supports is a

directory that functions like a web search engine for Cacophony-managed

sensors. Through this directory, people and applications can discover

and monitor what sensor data is available on the Cacophony network. With

this knowledge, new services can be created and existing services can be

incrementally improved.

We developed Cacophony in response to a practical need to support

open-source applications that needed to leverage wider portfolios of

sensor data than were previously available. For example, previous

research supported the automatic inference of context descriptions from

the sensors on a single device. Cacophony has allowed us to write

applications that determine the context of an infrastructure from a wide

range of sensors that span many devices, administrative domains, and

intended uses.

In the future we hope to provide more support to users who would

like to create their own CNodes in the Cacophony network. This includes

automatic inferring of features for target predictions, user interface

enhancements for launching CNodes, and broader deployments in support of

a variety of applications. Network effects make Cacophony increasingly

valuable as the number of sensors available on the Cacophony network

increases.

7 Acknowledgments

Portions of this work were funded by grants from the University of

California, Irvine’s Center for Organizational Research.

References

A. Alba, V. Bhagwan, and T. Grandison, 2008. “Accessing the deep web:
when good ideas go bad”. In: Companion to the 23rd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2008, October 19-13, 2007, Nashville, TN, USA. Ed.
by Gail E. Harris. ACM, 2008, pp. 815–818. at
http://doi.acm.org/10.1145/1449814.1449871

L. Atzori, A. Iera, and G. Morabito, 2010. “The Internet of Things: A
survey”. In: Comput. Netw. 54 (15 2010), pp. 2787–2805. ISSN: 1389-1286.
at http://dx.doi.org/10.1016/j.comnet.2010.05.010

M. Baldauf, S. Dustdar, and F. Rosenberg, 2007. “A survey on context-
aware systems” In: IJAHUC 2.4 (2007), pp. 263–277.

M. Bauer, D. Dengler, and G. Paul, 2000. “Instructible information
agents for Web mining”. In: IUI. 2000, pp. 21–28 at
http://doi.acm.org/10.1145/325737.325758

M. Bauer et al., 2000. “Programming by Demonstration for Information
Agents”. In: Commun. ACM 43.3 (2000), pp. 98– 10 at
http://doi.acm.org/10.1145/330534.330547

P. Domingos, 2012. “A few useful things to know about machine learning”.
In: Commun. ACM 55.10 (Oct. 2012), pp. 78– 87 at
http://doi.acm.org/10.1145/2347736.2347755

H. Fernau, 2005. “Algorithms for Learning Regular Expres- sions”. In:
Algorithmic Learning Theory, 16th International Conference, ALT 2005,
Singapore, October 8-11, 2005, Pro- ceedings. Ed. by Sanjay Jain, Hans-
Ulrich Simon, and Et- suji Tomita. Vol. 3734. Lecture Notes in Computer

http://doi.acm.org/10.1145/2347736.2347755
http://doi.acm.org/10.1145/330534.330547
http://doi.acm.org/10.1145/325737.325758
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://doi.acm.org/10.1145/1449814.1449871

Science. Springer, 2005, pp. 297–311 At
http://dx.doi.org/10.1007/11564089_24

J. Ginsberg et al., 2009. “Detecting influenza epidemics using search
engine query data”. In: Nature 457.7232 (Feb. 2009), pp. 1012–1014. URL:
http://dx.doi.org/10.1038/nature07634

M. Hall et al.,2009. “The WEKA data mining software: an up- date”. In:
SIGKDD Explor. Newsl. 11 (1 2009), pp. 10–18 at
http://doi.acm.org/10.1145/1656274.1656278

J. Heer et al.,2003. “liquid: Context-Aware Distributed Queries”. In:
Ubicomp. Ed. by Anind K. Dey, Albrecht Schmidt, and Joseph F. McCarthy.
Vol. 2864. Lecture Notes in Computer Science. Springer, 2003, pp. 140–
148 at http://dx.doi.org/10.1007/978-3-540-39653-6_11

E. Kouloumpis, T. Wilson, and J Moore, 2011. “Twitter sentiment
analysis: The good the bad and the omg!” In: ICWSM 11 (2011), pp. 538–
541 at https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2857

G.W. Paynter, 1996. “Generalising programming by demonstration”. In:
Computer-Human Interaction, 1996. Proceedings., Sixth Australian
Conference on. 1996, pp. 344–345 at
http://dx.doi.org/10.1109/OZCHI.1996.560161

D. Salber, A. K. Dey, and G. D. Abowd, 1999. “The context toolkit:
aiding the development of context-enabled applications”. In: CHI. Ed. by
Marian G. Williams and Mark W. Altom. Pittsburgh, Pennsylvania, United
States: ACM Press, 1999, pp. 434–441 at
http://doi.acm.org/10.1145/302979.303126

A. Sugiura and Y. Koseki, 1998. “Internet Scrapbook: Automating Web
Browsing Tasks by Demonstration”. In: ACM Symposium on User Interface
Software and Technology. 1998, pp. 9–18 at
http://doi.acm.org/10.1145/288392.288395

J-Y. Vion-Dury and N. Layaïda, 2003. “Containment of XPath expressions:
an inference and rewriting based approach”.In: Proceedings of the
Extreme Markup Languages, 2003 Conference, 4-8 August 2003, Montréal,
Quebec, Canada at
http://www.mulberrytech.com/Extreme/Proceedings/html/2003/Vion-
Dury01/EML2003Vion-Dury01.html

http://www.mulberrytech.com/Extreme/Proceedings/html/2003/Vion-Dury01/EML2003Vion-Dury01.html
http://www.mulberrytech.com/Extreme/Proceedings/html/2003/Vion-Dury01/EML2003Vion-Dury01.html
http://doi.acm.org/10.1145/288392.288395
http://doi.acm.org/10.1145/302979.303126
http://dx.doi.org/10.1109/OZCHI.1996.560161
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2857
http://dx.doi.org/10.1007/978-3-540-39653-6_11
http://doi.acm.org/10.1145/1656274.1656278
http://dx.doi.org/10.1038/nature07634
http://dx.doi.org/10.1007/11564089_24

	References

