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Abstract

Estimating a local source approximation for the ultraviolet background radiation in
cosmological settings using Lambda Iteration

by

Tayler Quist

After the epoch of reionization, Lyman continuum radiation permeate the universe. Im-

mediately after reionization (redshifts z≈ 3−7), the influence of the cosmic Ultraviolet

(UV) background on the Intergalactic Medium (IGM) and the Circumgalactic Medium

(CGM) is important to understand. We focus on building a 1D radiative transfer algo-

rithm using the Accelerated Lambda Iteration scheme and the Lambda Iteration scheme

to solve the time-independent radiative transfer equation. This approach captures the

dynamics of radiation fields, and the convergence, accuracy, and mathematical limita-

tions of these schemes are thoroughly tested. We then expand the algorithm to include a

4th order Runge-Kutta scheme to trace the fraction of Hydrogen atoms between the UV

background and the center of a massive galaxy. In our calculations, the UV background

dominates the ionization of the IGM and CGM near our example star-forming galaxy.
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1 Introduction

When dealing with the fluid dynamics of extragalactic systems, the fluxes of energy

and momentum carried by the radiation field can be significant or, depending on scale,

dominant [1]. It is important to implement radiation hydrodynamics (RHD) instead of

pure hydrodynamics in regions where the local dynamics are radiation dominated or

where radiation contributes significantly to the dynamics. In this thesis we specifically

focus on the early, matter dominated universe just after the epoch of reionization. Cos-

mic reionization refers to the ionization of the neutral intergalactic medium (NIM). The

NIM referred to here is the combination of Hydrogen and Helium distributed across the

universe. In the very early universe, small fluctuations in matter density caused cer-

tain regions to collapse and form the first stars and galaxies (i.e. luminous sources).

According to sources from Rosdahl & Teyssier 2015 [2] radiation hydrodynamics are

important in the feedback from supernovae and AGN. The uneven distribution of gas

also corresponded to the creation of ”radiation sinks” where the gas density is thick

enough to absorb the radiation and prevent further propagation [3]. Prominent radia-

tion sinks include cold gas and dust found in objects like nebulae. When these feedback

mechanisms are modeled via pure hydrodynamics there can be a disconnect between

cosmological simulation results and observations. For example simulations that have

modeled the influence of radiation solved from “first principles” using RHD have been

capable of conquering a number of problems including the overcooling issue that causes

over-compact galaxies which are inconsistent with observations [2].

It is important to point out that stars and galaxies are not the only notable sources of

radiation in the young universe. Today we detect a microwave signal that is almost uni-

form from every direction, commonly known as the Cosmic Microwave Background

(CMB) [4] [5]. Although scientists detect this signal as a microwave frequency to-
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day, the frequency of the CMB has not been constant throughout time [6]. There are

other radiation backgrounds, and during the epoch of reionization and shortly after the

epoch (between a redshift of z = 3 and z = 7) the ultraviolet light (UV) from star form-

ing galaxies provided a source or large-scale heating for the NIM [7]. Since the UV

background is a large-scale source in the era of interest it is included in our main test

experiment.

There have been a variety of numerical models that have used RHD to model the era of

interest [8] [9] [10] [11] [12] [13]. We aim to develop an initial 1D radiative transfer

model that, in the future, can be extended to a full 2D and 3D algorithm that couples to

the 3D hydrodynamics produced by the parallelized, cosmological code Cholla [14].

The goal of this thesis is to produce a code that uses a higher order approximation to

solve the equation of radiative transfer for 1D problems and 2D and 3D problems with

spatially symmetric properties. We then use this code to study how the variations in

brightness of the UV background affect the ionization of Hydrogen gas between a mas-

sive galaxy and the UV background. This allows us to gather further insight about the

period after the epoch of reionization.

We start this thesis off by introducing the radiative transfer equation and other relevant

equations in Section 2. We then discuss details about the numerical methods used in the

code including the Accelerated Lambda Iteration scheme (ALI), the Lambda Iteration

scheme (LI), a 4th order Runge-Kutta solver, and the method of Short Characteristics

in Section 3. We then perform a series of test calculations used to check the accuracy

and convergence of the code in Section 4. Section 5 discusses the details and setup of

the cosmological experiment. The results of this experiment are presented in Section

6. Finally Section 7 wraps up our study with a conclusion and summary of the main

take-away points.
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2 Mathematical Formalism

2.1 The Formal Radiative Transfer Equation

The formal RT equation captures the mathematical and physical understanding of the

spatial and time-sensitive variables contributing to changes in the specific intensity.

The specific intensity is a frequency dependent brightness that is affected by objects

that emit or absorb radiation (photons). This derivation is guided by the method found

in Section 2.1 of Petkova & Springel 2009 [15].

We must consider the photon distribution function (PDF) (Fν ) which is a variable that

depends on time (t), the spatial coordinate (x), and the photon momentum (p) for a

specific frequency or frequency bin (ν). The momentum of a photon is given by the

following equation.

p =
hν

c
a(t)n̂ (1)

Where h is the Planck constant, n̂ is the direction in which the photon is propagating

(which still varies in 1D), and a(t) is the time-dependent cosmological scale factor.

This scale factor accounts for the accelerating expansion of the universe that directly

decreases the energy of a photon due to the elongation of its wavelength.

In order to have a conservative and differentiable system we must enforce that the PDF

remain unaltered along the trajectories of the system [16] [17]. Thus by Liouville’s

theorem the following equation describes the phase-space continuity relation for the

PDF.
∂Fν

∂ t
+

∂ (ẋFν)

∂x
+

∂ (ṗFν)

∂p
= (emission − absorption) (2)

The emission and absorption terms represent the photon emission and absorption pro-

cesses.

Taking the photon distribution function (equation 1) and integrating it with respect to
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all possible momenta and spatial directions determines the total number of photons at a

given time in the section of interest within the universe (Nν ).

Nν =
∫

Fν(t,x,p)dxdp (3)

This PDF is also used to determine the specific intensity Iν . Before defining the relation

between Iν and Fν , we must mathematically define the specific intensity. The specific

intensity can be used to define the energy of a photon per frequency interval dν , in the

area dA, over the angle dΩ, in time interval dt [18].

dEν = IνdνdΩdAdt (4)

Iν has units of (erg cm−2 s−1 Hz−1 rad−2). Using the energy equation (equation 4) we

can relate Fν to Iν by noting that d3 p = p2 d p dΩ and d3x = c dt dA and integrate

with respect to momentum and distance (the 1D spatial dimension) with respect to

frequency, solid angle, area, and time [15] [18].

Iν = hνFν

d3xd3 p
dνdΩdAdt

=
h4ν3

c2 Fν (5)

Rearranging the specific intensity definition (equation 5) to solve for Fν and then plug-

ging it into the conservation equation (equation 2) results in the full RT equation.

1
c

∂ Iν

∂ t
+

n
a

∂ Iν

∂x
− H

c
(ν

∂ Iν

∂ν
−3Iν) = jν −κν Iν (6)

Where n is a unit direction vector, κν is the absorption coefficient (cm2 g−1), and jν

is the spontaneous emission coefficient (known as the emissivity) (erg cm−3 s−1 Hz−1

rad−2). c is the speed of light (cm s−1), H = ȧ
a is the Hubble expansion rate, and ȧ is
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the time derivative of the cosmological scale factor.

Note that the 3D version of equation 6 has three spatial variables, a time variable, a

frequency variable, and directional angles. This poses a computational barrier in terms

of setting up a mesh grid and is even computationally limiting when dealing with the

1D case. Therefore moment-based approximations are used to simplify the problem

for cosmological simulations [15]. For this study we used the non-dimensional, time-

independent transfer equation to solve for the specific intensity [1]. Where αν is the

extinction coefficient (i.e. the opacity) (cm−1) which depends on the absorption coeffi-

cient (the mass-weighted opacity) and particle density (cm−3). Sν is the source function

with the same units as the specific intensity (erg cm−2 s−1 Hz−1 rad−2). We dive into

the numerical details of the source function in Section 2.2.

∂ Iν

∂x
= αν(Sν(x)− Iν(x)) (7)

Since we numerically approximate the solution to equation 7 within each iteration of

the algorithm (numerical details in Section 3) the other variables that depend on the

specific intensity also needed to be updated each iteration. This translates to updating

two specific intensity values per grid cell per iteration due to the two sources. Since

the propagation of radiation is different for the galaxy and the UV background we must

calculate them separately. However there can only be one source function representing

the environment that takes into account both specific intensity values at each grid point.

Thus we use the average specific intensity value. The mean specific intensity is formally

defined for a amount of sources in the following equation.

Jν =
1
a

a

∑
k=1

Ik
ν (8)
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This moment-based approximation becomes very simple when using the Eddington

approximation [19], which we adopt in our 1D simulations.

In the next subsection we show how the source function and the other variables depend

on the average specific intensity and what they physically mean.

2.2 Mean Specific Intensity and Source Function

This section introduces three new variables: the source function (Sν ), the thermal source

function (Planck Function) (Bν ), and the photon destruction probability (εnu).

In the case of local thermodynamic equilibrium (LTE), the source function is identical

to the Planck Function. The Planck Function is generally a measurement of the amount

of energy present in a thermal radiation field by a particular wavelength (or frequency)

per area per steradian [20].

Bν(T ) =
2hν3

c2
1

e
hν

kBT −1
(9)

Where h is the Planck constant with a value of h = 6.6162e− 27 (cm2gs−1) , c is the

speed of light in cm
s , kB is the Boltzmann constant in erg

K , and T is the temperature in

Kelvin of the object of interest.

When the process of photon scattering is present, the source function will depend on

the local thermal emission and the mean intensity. In this case the definition of the

Planck Function above does not capture all of the necessary physics to compute the

source function.

The photon destruction probability εν is a dimensionless quantity shaped by how promi-

nent the absorption opacity αabs
ν is in comparison with the total opacity [19]. The total

opacity considers not only the absorption opacity but also the scattering opacity αsc
ν of
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the medium. We can write the photon destruction probability in the following way.

εν =
αabs

ν

αabs
ν +αsc

ν

(10)

The quantity εν is a fraction whose values are restricted between 0 and 1. If the ab-

sorption opacity is large relative to the scattering opacity, then a photon traveling along

a random path is most likely be absorbed rather than scattered. This quantity then acts

as the quenching mechanism for the propagating radiation. Equation 10 is not the only

way to define the photon destruction probability. In Section 3.3 we give an alternative

definition based the number of ionized and neutral atoms in the local area, a quantity

that is tracked within the simulation.

We have now defined all of the variables that the source function is dependent on.

Logically the source function is formulated by taking into account the thermal source

function, the brightness (i.e. specific intensity), and the percentage of photons that are

getting quenched at a particular radius.

Sν = ενBν +(1− εν)Jν (11)

For all of our test cases and our main experiment we assume the Planck Function (Bν )

is in local thermodynamic equilibrium thus Bν = 1.

In the next section we walk through how to approximate an unknown specific intensity

value for a massive galaxy in the epoch of interest.

2.3 Specific Intensity Calculation for an Early Galaxy

For the astrophysical experiment (Section 5) we need to calculate the specific intensity

value for the center of our galaxy at redshift z∼ 3. In this section we walk through the
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mathematical steps for the calculation.

First we needed to determine the rate Q0 at which photons are released from a source.

For galaxies, this rate depends on a number of physical factors and the details of these

factors are discussed in Section 5.2.1. Our first estimate for the photon production

rate is based on the values originated by the code and case studies produced by [21]

and [22]. For star forming galaxies they estimated star formation rates to lie between

Q0 ≈ 1053 1
s − 1053.7 1

s . In our calculations, we experimented with star formation rates

corresponding to slightly smaller values ranging from Q0 = 1052.6 1
s - 1053.4 1

s as shown

in Section 4.1. The photon production rate is used to compute the luminosity in the

hydrogen-ionizing spectrum. Luminosity is the rate of energy produced by these pho-

tons and is the backbone to defining the specific intensity. We calculated the luminosity

by multiplying the photon production rate by the energy of each photon. We are work-

ing with neutral Hydrogen and so the ionizing energy is 13.6eV (which we converted

into erg).

Q0 · Ephoton = LLα (12)

Equation 12 is the luminosity for the Lyman Continuum. We then needed to make it

frequency dependent in order to get the specific luminosity (equation 13).

LLα

νphoton
= Lspeci f ic (13)

The photon frequency (νphoton) must be within the range of frequencies corresponding

to UV light.

In order to convert a specific luminosity into a specific intensity we need the brightness

per area per solid angle. In order to compute the area we first compute what the distance

across each numerical grid cell is. The grid spans a physical distance of approximately

8



Variable Q0 Ephoton xcell Igalaxy

Value 1052.6 2.1787x10−11 1.9197x1021 2.8x10−16

Units 1
s erg cm erg

s Hz cm2 ster

Table 1: List of values and the respective units used in the calculation to determine the
specific intensity of the galaxy.

622 kpc. This means that the distance across each cell is dependent on the number of

grid points specified by the user. We ran the experiment on a grid containing 1,000 grid

points and thus the value is xcell ≈ 0.622 kpc. Since we focused on the grid cell centers,

rather than the grid points, we only needed to know half of the distance covered by an

entire grid cell.
1
2

xcell = xcenter (14)

We then use this length as a radius to calculate the area of the sphere around the center

of the cell.

4πx2
center = A (15)

We are solely interested in looking at the area per solid angle of this sphere so we must

divide by 4π .
A

4π
= Aster (16)

Finally we can make the conversion from specific luminosity to specific intensity by

dividing the specific luminosity by the area per solid angle.

Lspeci f ic

Aster
= Igalaxy (17)

Table 1 displays all of the quantitative values for equation 12 and equation 14 for a

grid resolution of 1000. The next section covers our methodologies for numerically

computing the radiation field.
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3 Numerical Methods

3.1 Overview of Different Methods

There are a variety of methods used in the large number of numerical RT solvers. In

order to choose which method to use we discuss the definition and traits few common

methods below.

One numerical scheme uses discrete ordinate methods that encompass ray coupling

and cell coupling methods such as the one found in [23]. The ALI and LI schemes

mentioned above fall into this category. These schemes have historically been go-to

methods and can be constructed to solve multidimensional problems such as with the

Multilevel Accelerated Lambda Iteration (MALI) [24]. These schemes involve inte-

grating the time-independent transfer equation at each time step making them more

computationally expensive relative to other well-known methods.

Another method utilizes ”closure relations” for the RT moment equations. The M1 clo-

sure scheme falls into this category [1] [15] [19]. This scheme assigns and integrates

a hierarchy of angular moments where the zero order moment is assigned a relation to

the second order moment to create a closed set of equations. The integrations and re-

lations are defined within the Variable Eddington Tensor (VET) [1]. However the VET

is computed from the formal solution of the time-dependent transfer equation at every

time step like the ALI and LI schemes [1].

The final category of interest is the Monte Carlo method. This is a brute-force solver

and one example can be presented by [25]. Although this method can stand alone, it

can also be used to solve for the VET in place of using a ray tracing method for solving

the M1 closure relations mentioned above [19].

We focus on the computational details of the LI and ALI ray tracing scheme. As men-

tioned above integrating the time-independent transfer equation must be performed at
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every step. The method used to perform this numerical integration is up to the model-

ers’ discretion. In the next section we discuss our chosen numerical method.

3.2 The Method of Short Characteristics

Recall that we are working with a linear, ordinary differential equation (equation 7).

The general form of this type of equation is seen in equation 18 below.

y′ = g(x)− p(x) y (18)

Where g(x) and p(x) are coefficients that depend on the independent variable x. The

general solution to this type of ODE can be written as follows.

µy =
∫

µg(x) dx (19)

Where µ is the factor of integration and can be written in terms of the coefficient p(x)

(equation 20).

µ = e
∫

p(x) dx (20)

When applied to radiative transfer, the solution can be approximated by utilizing the

Method of Short Characteristics. The Method of Short Characteristics (MSC) approxi-

mates a new specific intensity value (at one grid point) by using the neighboring specific

intensity values, the optical depth, and the surrounding source term values. We imple-

ment this method by following the the work done by Dullemond & Turolla 2000 [26]

(D&T00) and Kunasz & Auer 1988 [27] (K&A88). The algorithm presented by D&T00

is similar to Busche & Hillier 2000 [28], and the work of K&A88 is the backbone of

DSJ12 [19]. It is valuable to explicitly mention that JSD12 and DSJ12 [1] [19] both use

the method of short characteristics for integrating the time-dependent transfer equation
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Figure 1: Illustrating where each value comes from when using the MSC in 1D in order
to estimate the value of the specific intensity at point P. The arrow denotes the direction
the integration (also the direction of the ray).

to compute the VET for RHD applications. This motivated us to choose this method

because we want to extend our algorithm to be a full RHD solver in the future.

We will discuss how to solve for the different components of equation 21, which is the

MSC numerical solution to equation 7.

Ik(P) = e−τ Ik(D)+Sinterp (21)

The first step is to populate the grid with the respective initial and boundary conditions

for the source term, mean intensity, and specific intensity values. We then calculate

the interpolated source term from equation 21 by using the neighboring source term

values (equation 22). Note that a visualization of how the MSC works can be seen in

Figure 1 which displays the virtual grid space used, the location of the source terms, and

specific intensity values needed to update the values at point P. Equation 22 defines the

full parametric form of the quadratic Bézier interpolation used to calculate the influence

of the surrounding source terms on the new specific intensity value.

Sinterp = Sk(D)(1− t)2 +2(1− t)t Sk(P)+Sk(U)t2 (22)
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Sk(D),Sk(P),Sk(U) are the source term values at points D, P, and U respectively as

shown in Figure 1. Parameter t defines the interpolation coefficients. For our exper-

iment the source term coefficients solely depend on on the optical depth at points D,

P, and U . The three terms in equation 22 are fully defined in equations 24-29. For

our particular application, the derivation of these constants is long and tedious but the

details can be followed in Olson & Kunasz 1987 [29].

Sinterp = dSk(D)+ pSk(P)+uSk(U) (23)

d = e0 +
e2− (2∆τ +∆τi+1)e1

∆τ(∆τ +∆τi+1)
(24)

p =
(∆τ +∆τi+1)e1− e2

∆τ∆τi+1
(25)

u =
e2−∆τe1

∆τi+1(∆τ +∆τi+1)
(26)

e0 = 1− e−∆τ (27)

e1 = ∆τ− e0 (28)

e2 = ∆τ
2−2e1 (29)

In equations 24-29, ∆τi is the change in optical depth for grid cell i, located between

grid points i− 1
2 (the sequentially previous grid point) and the grid point at i+ 1

2 (which

is the current grid point). Note that the i− 1
2 grid point will be defined by the direction

of integration. The quantity ∆τi+1 is the change in optical depth between the current

grid point i+ 1
2 and the ”next” grid point i+ 3

2 . Grid point i+ 3
2 will also be defined

by the direction of integration. Figure 2 aids in visualizing the labels assigned to each

relevant grid point and grid cell for the two possible directions of integration in 1D.

We integrate equation 20 in both of these directions for our test experiments and as-
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Figure 2: Solving for the solution to the TI transfer equation at point P involves inte-
gration from two different directions. The + direction is represented by (a) and the −
direction is represented by (b). Grid cell and grid point locations can be represented by
i. Any whole integer (eg i = 0,1,2, ...) represents a grid cell location, while grid points
are rational numbers that are a factor of 1

2 (eg i = 1
2 ,

3
2 , ...). The direction of integration

is shown by the arrow and translates to the following rays: (a) I+ ray (b) I−(P) ray.
The labels D, P, and U are point labels associated with the different coefficients used
in the interpolation.

trophysical experiment. Since we are working with two directions, and therefore two

rays pointing in each direction, we used the two-stream approximation (Section 4.2) as

one of our main test experiments. This experiment is used to verify the accuracy and

precision of our algorithm.

Since the coefficients in equations 24-29 differ for each direction of integration, we

assign a + and − value to each ray therefore designating the direction of integration

respectively. The coefficients corresponding to each + and− ray are listed in equations

30-35. Equations 30-35 can be expanded to a higher number of rays.
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I+
i+ 1

2
= I+

i− 1
2

e−∆τi−1 +d+ Si− 1
2
+ p+ Si+ 1

2
+u+ Si+ 3

2
(30)

e+0 = 1− e−∆τi, e+1 = ∆τi− e+0 , e+2 = ∆τ
2
i −2e+1 (31)

d+= e+0 +
e+2 − (2∆τi +∆τi+1)e+1

∆τi(∆τi +∆τi+1)
, p+=

(∆τi +∆τi+1)e+1 − e+2
∆τi∆τi+1

, u+=
e+2 −∆τie+1

∆τi+1(∆τi +∆τi+1)

(32)

I−
i+ 1

2
= I−

i+ 3
2

e−∆τi+1 +u− Si− 1
2
+ p− Si+ 1

2
+d− Si+ 3

2
(33)

e−0 = 1− e−∆τi+1, e−1 = ∆τi+1− e−0 , e−2 = ∆τ
2
i+1−2e−1 (34)

d−= e−0 +
e−2 − (2∆τi +∆τi+1)e−1

∆τi+1(∆τi +∆τi+1)
, p−=

(∆τi +∆τi+1)e−1 − e−2
∆τi∆τi+1

, u−=
e−2 −∆τi+1e−1

∆τi(∆τi +∆τi+1)

(35)

This concludes the discussion of the integration of the time-independent transfer equa-

tion that is performed each iteration until convergence is reached. The next section

discusses how we utilize the result from the converged iterations of the MSC.

3.3 Hydrogen Ion Fraction and Photon Destruction Probability

The Hydrogen ion fraction (QHII ) is the ratio of ionized Hydrogen atoms to the total

number of Hydrogen atoms. The Hydrogen ion fraction is a critical quantity when con-

sidering the evolution of the specific intensity for a variety of reasons.

Ionized Hydrogen atoms scatter photons and non-ionized atoms absorb photons. Thus

tracking QHII is a different way of measuring the scattering and absorption of photons.

This allows us to use QHII to define the photon destruction probability (i.e. the opacity)

rather than using Iν .

As discussed in Section 3.2, the opacity has the ability to prevent radiation from prop-

agating due to the opacity’s dependence on the gas density. Density depends on the

temperature of the gas. If the gas is hot it is thinly spread out across a specified space
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causing the density to be sparse. Making it harder for photons to interact with the

atoms. If the gas is hot enough to be ionized, or if a fraction of the gas is ionized,

once again the photons do not interact with these atoms. This happens due to the fact

they are not capable of absorbing photons. In either of these cases, photons are able

to travel a larger distance, or all the way through the gas. On the contrary, if the gas

is cold then the atoms are closer together (more dense) and acted like a net catching

and absorbing photons quickly. Very few photons, or none of the photons, are able to

penetrate through the entirety of the gas. Therefore QHII also influences the density of

the Hydrogen gas between the two sources which in turn affect the opacity and optical

depth across the grid.

QHII increases or decreases based on the strength of the specific intensity and the den-

sity. It evolves based on the linear, constant coefficient, ordinary differential equation

listed below [14].

Q̇HII =
ṅion

〈nH〉
QHII

trec
(36)

ṅion is the ionizing photon rate ( photons
s ). 〈nH〉 is the hydrogen number density (cm−3).

Finally trec is the intergalactic medium recombination time. Recombination time is the

time it takes an ionized nucleus to recombine with an electron. The equations for each

of these variables are listed below in equations 37 - 40. QHII varies from grid cell to

grid cell since the gas within the distance covered by one grid cell can be ionized while

its neighbor has neutral gas. This is a limit to a computational grid; all of the gas in the

grid cell is considered ionized even if physically only a portion of the gas in the grid

cell is ionized.

〈nH〉= ρXp (37)
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Xp is the fraction of the gas that is made of Hydrogen which is the same as the fraction

of Hydrogen in the Universe at this redshift (Xp = 0.76).

ṅion = Jν

4πξion

L
(38)

L =
1

CHII(1−QHII)〈nH〉σν

(39)

CHII is the recombination clumping factor for the intergalactic medium at a redshift

of z = 3 and T = 20,000K [30] and a value of CHII = 3. σν is the photoionization

cross section of Hydrogen atoms and has a value of σν = 7.91x10−18 cm2. ξion is the

ionization photon production efficiency approximated from [21] and [22] to be ξion =

1025.25 erg
Hz .

trec =
1

CHII αB(T )(1+ YP
4XP

)〈nH〉(1+ z)3
(40)

Where αB(T ) is the recombination coefficient with a value of αB(T ) = 2.6x10−16 cm3

s .

YP is the fraction of Helium in the universe at this redshift and has a value of YP =

1−XP = 0.24.

At each iteration we update the quantity of QHII by solving the ODE in equation 36. We

solve this ODE by using the 4th order Runge-Kutta numerical algorithm. The details

and steps of the numerical scheme are found in Section 3.5.

Once the value of QHII is known across the grid we can set the values of the photon de-

struction probability εν . This is simply a modification to equation 10 since QHII can be

used to define the opacities of a medium. It is logical that the photon destruction prob-

ability depends on the fraction of ionized Hydrogen atoms (due to reasons discussed

above). The new definition of εν is found in equation 41 below. This is the definition
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that is used in the numerical algorithm.

εν =
σν(1−QHII)

σν(1−QHII)+σT QHII

(41)

σT is defined as the Thomson cross section with a value of σT = 0.66524587158e−24

cm2. σnu is the photoionization of Hydrogen and is defined as σnu = 7.91e−18.

The final variables discussed in Section 3.4 below are updated each iteration and are

essential for solving for the new value of the specific intensity.

3.4 Extinction Coefficient and Optical Depth

The extinction coefficient, α , which has units of cm−1, measures how penetrable the

medium is. The quantity α is directly correlated with the density, the Hydrogen ion

fraction, and a quantum mechanical correction factor for electron energy transitions

(known as the Gaunt factor) [31]. Once QHII has been updated α can be updated using

the following formula.

α = (1−QHII)σνρ (42)

We then integrate the updated extinction coefficient (equation 42) between two grid

points to obtain the change in optical depth (τ) for the respective grid cell. The optical

depth is another crucial quantity for tracking RT. Every time the optical depth is up-

dated the Hydrogen gas gets moved around and chemically altered due to the affect and

evolution of the radiation between the sources. The following equation is the formal

definition of the optical depth.

∆τ = α∆x (43)

∆x is a spatial coordinate usually in units of cm and can be converted to any other

distance measurement such that it cancels out the units of the extinction coefficient.
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When initializing the optical depth we did not use equation 43, but instead used the

specified density profile to calculate it. The density field information we used came

from the hydrodynamics code CHOLLA [14]. Once the density field was set for each

grid point, we used the following equations to calculate the column density of each cell.

The column density (µρ ) is then used to solve for the optical depth.

µρ = ρ∆x (44)

∆τ = µρσν (45)

The density in equation 44 has already been converted to comoving units. This was a

standard for any relevant variable being used in RT calculation.

The first half of Section 3 has covered all of the physical variables that are used in

the numerical computation to solve equation 7. In Section (3.5 and Section 3.6) we

describe the algorithm branches that use all of the equations mentioned in order to

build the solver desired. These branches include the 4th order Runge-Kutta solver that

evolves the Hydrogen ion fraction and solving the source function interpolation for

equation 22 to name a couple.

The next section dives into the details of the Runge-Kutta numerical ODE solver.

3.5 Updating the Ionized fraction of Hydrogen Atoms using Runge-

Kutta

This section discusses the update of the fraction of Hydrogen ions between the two

sources in the astrophysical experiment. We assume that the entirety of the gas is neu-

tral at the start of the simulation. As the iterations evolve, the sources ionize the gas due

to the propagation of photons throughout the gas. The equation describing the ioniza-
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tion is a constant coefficient, linear, first order, ordinary differential equation (ODE). A

general, analytic solution is known for this type of ODE. We chose to use the 4th order

Runge-Kutta algorithm to evolve and solve for the value of the Hydrogen ion fraction.

In general Runge-Kutta methods are iterative and generate accurate approximate so-

lutions to ODEs. The family of Runge-Kutta methods use both explicit and implicit

schemes that vary in precision [32].

For this experiment we use the explicit 4th order Runge-Kutta scheme (known from

here as RK4). Explicit methods are less stable than implicit schemes. However, for our

experiment we are solving a linear ODE and thus an explicit scheme will perform well.

3.5.1 RK4 Equations

The ODE equation that solves for the ion fraction of Hydrogen can be found in its full

form above (equation 36). We can write this same equation in a more condensed form

(equation 46).
dQHII

dt
= f (QHII, t), QHII(0) = 0 (46)

Where QHII is the ion fraction and t is time. Equations 47 and 48 define the set of

equations, specific to the RK4 method, that produces the numerical approximation to

equation 46.

K1 = h f (QHIIn, tn)

K2 = h f (QHIIn +
h
2
, tn +

K1
2
)

K3 = h f (QHIIn +
h
2
, tn +

K2
2
)

K4 = h f (QHIIn +h, tn +K3)

(47)

QHIIn+1 = QHIIn +
K1
6

+
K2
3

+
K3
3

+
K4
6

(48)
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Note that n associated with any variable denotes the previous value of a variable

and n+ 1 represents the updated value of the variable. For example, if we are trying

to compute the value of QHII1, (n+ 1 = 1) the following values are used: QHII0 =

QHII(t0) where t0 = 0 when n = 0.

3.5.2 RK4 Algorithm Steps

Similar to the steps of the ALI and LI schemes Section (3.6) the goal is to solve for the

value of the ion fraction at each grid point until convergence is reached. The following

steps describe the process in which the RK4 method is integrated into the algorithm.

1. Create a separate subroutine that defines the differential equation being solved.

This is equation 36 for our experiment.

2. Take the value of the ion fraction at the current grid cell and plug it into the ODE

(equation 36). This produces a value for the rate of change of the ion fraction

(and is referred to as the current value of the ODE). Take the current value of

the ODE and the ion fraction and plug them into the set of equations listed in

equation 47 to solve for each K value.

3. Use the current value of the ODE and all of the K values to solve for the updated

(n+1) value of the ODE by plugging them into equation 48.

4. Repeat steps two and three to for each value of the ion fraction across the grid.

This calculation is a key component for tracking the evolution of the effects from

radiative transfer and is a critical part of the focus in Section 6. Studying the evolution

of the Hydrogen ion fraction with time produces interesting physical insight that cannot

be provided by solely tracing the value of the source function or the specific intensity.
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3.6 Details of the LI and ALI methods

The LI scheme is a direct, iterative method that takes fewer computational steps per

iteration than the ALI algorithm. However the LI method takes more iterations than the

ALI method to reach convergence around the correct solution. The LI method struggles

in computationally intensive regimes and the method may not converge around the cor-

rect solution at all. The instability can also occur if the values of the initial conditions

are too large or small from the value of the actual solution. This poses a problem for

the situations where the solution is unknown. This would cause extra initial analytic

work. These are all challenges that the ALI scheme overcomes.

Certain physical regimes allow the algorithms to perform equally well in terms of ac-

curacy, but the LI scheme is still takes more iterations to reach the solution. However

in the situations where the physical regime has a low photon destruction probability

(where the LI scheme cannot obtain the solution) the ALI method can rapidly converge

around the accurate solution. On the contrary there are also situations where the ALI

scheme breaks down due to its own mathematical limits caused by the method used to

accelerate the convergence of the source function. In these situations it is necessary to

rely on the direct computation of the LI scheme so long as the physical regime is within

its computational range. Overall the strengths and weaknesses of these two algorithms

are complimentary to each other. This makes it important to have both algorithms avail-

able to cover a wider variety of computational problems.

We constructed our code such that it incorporates both the ALI and LI scheme. In Sec-

tion 4.2-4.4 we discuss and compare the performance of each scheme on certain test

problems and confirm that the algorithm is performing correctly before exploring the

test problem which is unknown.
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3.6.1 The LI scheme

As mentioned above the LI scheme is a straightforward method that only computes the

variables required to numerically solve equation 7. There is no external method brought

in to accelerate the convergence of one or more of the variables. This is a positive

highlight of this method since there are no other computational limitations imposed by

any external method. The down side to the LI scheme is that it is slower and has its own

computational limit. It cannot handle physically complex computations (e.g. when the

photon destruction probability is low). Having this method on-hand within the code is

proving to be useful for our cosmological test problem discussed in Section 5.

The following steps describe the numerical LI method.

1. Set the Planck Function across the grid. For our experiment Bν = 1 for the entire

calculation. This can be done at a later step, but this is one of the only variables

that did not need to be updated every iteration and thus can be handled first.

2. Initialize the density array of the Hydrogen gas at each grid point. This can be

done by iterating through the grid and set each grid cell individually or read in

the density profile from an external file. For the astrophysical problem we read

in a text file.

3. Compute the column density at each grid cell using equation 44.

4. Compute the change in optical depth for each grid cell using the column density

equation 45.

5. Set the interpolation coefficients equations 31, 32, 34, and 35.

6. Set the values of the Hydrogen ion fraction for each grid point by solving equa-

tion 36 using RK4 numerical scheme (discussed in Section 3.5). Initially we
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set QHII = 0 everywhere for our experiment but then the Hydrogen ion fraction

is computed by using the RK4 scheme to iterate until convergence at each grid

point.

7. Compute the value of εν across the grid using equation 41. If QHII = 0 then

εν = 1 everywhere.

8. Use the method of short characteristics (equation 30 and equation 33) to find

the approximate solution for the specific intensity at each grid point for each of

the two rays (I+ and I−). If this is the initialization set the values according to

specified initial and boundary conditions or read in a text file.

9. Set the values of Jν across the grid using equation 8. If this is the first iteration

and there are no boundary or initial values specified; Jν can be set to be zero

everywhere, or another logical initial guess can be determined.

10. Set the values of the source function using equation 11. Note that if Bν = 1,

εν = 1, and Jν = 0 then the source function is Sν = 1 everywhere.

11. Repeat steps (3) - (10) until Sν have converged and thus an equilibrium state has

been reached.

The next two sections review the details of the steps to the ALI scheme. First we

discuss the numerical algorithm that ”Accelerates” the convergence around a solution.

3.6.2 The ALI Tridagonal Scheme

We first discuss the accelerated process of the ALI scheme that differentiates it from the

LI scheme. The ALI scheme fixes the convergence issue that the LI scheme has. This is

done by updating the source function twice each time we update one grid cell compared
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to the progression seen in the iterations of the LI scheme. Each scheme updates the

source function by using equation 11. Then the ALI scheme uses this updated source

term value and passes into a tridiagonal matrix solver that then solves for an even newer

source term value. The tridiagonal matrix is built from the interpolation coefficients

(equation 31 and equation 34) which depend on the change in optical depth between

each grid point. This indicates that the tridiagonal matrix has to be updated every

iteration. Even though there are extra numerical steps, the computational run time

is reduced. Computational run time is reduced because fewer iterations are required

to find convergence around the accurate source function. This acceleration prevents

the source term from converging around values that are lesser in value than the actual

solution. The details about the tridiagonal matrix are presented in below. This processes

follows the lecture notes created by C.P. Dullemond for a graduate course. These notes

follow the method presented by Olson, Auer, and Buchler 1986 [33].

In order to accelerate the convergence of the source function additional numerical steps

are taken every iteration. Since the source term is dependent on Jν , we must re-write

how we calculate Jν . Jν now must be an interpolated value given by equation 49. Recall

that the specific intensity values are estimated using the MSC interpolation definitions

of the two specific intensity values given by equations 30-35 that are then plugged into

equation 8 (the definition of Jν ).

Jν =
1
2
[(I+

i− 1
2
e−∆τi−1 + I−

i+ 3
2
e−∆τi+1) +

(d+ Si− 1
2
+d− Si+ 3

2
) +

(p+ Si+ 1
2
+ p− Si+ 1

2
) +

(u+ Si+ 3
2
+u− Si− 1

2
)]

(49)
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The contributions from the source function steer the magnitude of Jν . This allows us to

approximate Jν to be solely dependent on the values of the source function. The most

computationally efficient way to save the interpolated values of Jν across the grid is by

creating a matrix. We then recognize that this matrix is an operator (known from here as

the Λ operator) containing the interpolation coefficients. The interpolation coefficients

operate on the source function as a vector (representing the values across the 1D grid).

The operator definition of Jν is simply a condensed, linear algebra form of equation

49. If we are to extend our interpolation approximation beyond the third order the

matrix operator would no longer be tridiagonal. This causes the accelerated part of the

ALI scheme to become more computationally intensive. This more intense method still

leads to the rapid convergence of the source term values.

Jν = Λ[Sν ] (50)

The following equations provide the definition of the lower diagonal Λa, diagonal Λb,

and upper diagonal Λc components of the Λ operator. If a higher order approximations

gets used, the other matrix components are filled in using the interpolation equations.

Λa =
1
2
(d++d−) (51)

Λb =
1
2
(p++ p−) (52)

Λc =
1
2
(u++u−) (53)

The operator definition of Jν , equation 50, can be plugged into equation 11 allowing

the source term to be explicitly dependent on the Λ operator (equation 54. This is an

explicit relation because equation 11 is by definition solving for the updated value of
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the source term at the current grid point. While the Λ operator contains the previous

value of the source term at the current grid point. Therefore you can use the ’old’ source

term value to find the ’new’ source term value at the current grid point. However since

this is a higher order approximation the neighboring source terms will be taken into

account when calculating the newer source term value.

Sn+1
ν = ενBν +(1− εν)Λ[Sn

ν ] (54)

The updated value of the source function at the current grid point is denoted as Sn+1
ν

while the old value of the source function at the same grid point Sn
ν .

This explicit equation naturally accelerates the convergence around the correct distri-

bution of the source function. We now make equation 54 implicit, meaning that the

source term on the LHS and RHS of the equation is the same value (i.e. Sν = Sν ). In

order to write the numerical progression of the source term in a more coherent way we

re-arrange the implicit form of equation 54 and group the same variables to appear on

same on the same side of the equation. This means that all of the terms with Sν are

combined to appear only on the LHS as seen in equation 55.

[1− (1− εν)Λ]Sν = ενBν (55)

We recognize that our only variable is Sν . Thus the term on the LHS containing Λ can

be considered a coefficient matrix called M. To be clear matrix M is defined in equation

56 below.

M = [1− (1− εν)Λ] (56)
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Plugging in the newly defined coefficient matrix M into equation 54 gives the following

equation.

MSν = ενBν (57)

This is a disguised form of the classic matrix equation Mx = b. Where the solution to

this matrix equation can be written in the following way.

Sν = ενM−1Bν (58)

It is important to notice the matrix inversion that appears in equation 58. Taking the

inverse of a matrix that has a numerical value for each index is complex and computa-

tionally expensive even for small matrices. Therefore we need to make some approxi-

mations to our matrix in order to solve for the solution using the accelerated method.

The first step in making this method computationally feasible is by approximating the

full Λ operator with a new operator Λ∗. A type of matrix that allows matrix multipli-

cation, inversion, and storage to be computationally less expensive. However purely

diagonal matrices do not approximate the full operator in the most robust way nor does

they accurately interpolate the mean specific intensity. They provide a poor set of in-

terpolation equations since neighboring cell values are ignored. The best compromise

is to make a tridiagonal approximate operator that satisfies equation 59 and aligns with

the third order interpolation scheme. Thus we defined the full Λ operator using the

diagonal and tridiagonal operators as follows.

Λ = (Λ−Λ
∗)+Λ

∗ (59)
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Plugging equation 59 into the new value of the source function (equation 54) we obtain

a definition for matrix M∗.

Sν = ενBν +(1− εν)(Λ−Λ
∗)Sν +(1− εν)Λ

∗Sν (60)

(1− (1− εν)Λ
∗)Sν = ενBν +(1− εν)(Λ−Λ

∗)Sν (61)

M∗ = 1− (1− εν)Λ
∗ (62)

Re-writing equation 57 using the definition of M∗ and differentiating the two source

values such that Sn+1
ν on the LHS is different than the value of Sn

ν on the RHS gives

equation 63.

M∗Sn+1
ν = ενBν +(1− εν)(Λ−Λ

∗)Sn
ν (63)

We then solve equation 63 for Sn+1
ν since the goal is to solve for an updated value of

the source function at the current grid point.

Sn+1
ν = [M∗]−1(ενBν +(1− εν)(Λ−Λ

∗)Sn
ν) (64)

Finally we expand the multiplication on the RHS of equation 64 and use equation 50

(the operator definition of Jν ) to obtain equation 65. This is the equation that the tridag-

onal solver uses to accelerate the update of the source term values.

Sn+1
ν = [M∗]−1(ενBν +(1− εν)(Jν −Λ

∗ ·Sn
ν)) (65)

We will discuss the numerical details about how the tridiagonal matrix algorithm solves

equation 65. Although the solver must work through a matrix inversion, the process is

computationally feasible for a tridiagonal matrix.
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The tridiagonal components of matrix M∗ are based on the definitions from Λ∗ (equa-

tions 66-68). Both matrices are defined by the interpolation coefficients (equation 32

and equation 35). To clarify the Λ∗ is the tridiagonal version of Λ thus it can be referred

to as the partial Λ operator.

Λ
∗
a =

1
2
(d++d−) (66)

Λ
∗
b =

1
2
(p++ p−) (67)

Λ
∗
c =

1
2
(u++u−) (68)

M∗a =−(1− εν) ·Λ∗a (69)

M∗b = 1− (1− εν) ·Λ∗b (70)

M∗c =−(1− εν) ·Λ∗c (71)

The multiplication seen in equation 65 is not a dot product but a component-wise cal-

culation. The value of εν and each tridiagonal component Λ∗x is different for each grid

cell.

We incorporate the Thomas algorithm [34] as a subroutine to solve equation 65 effi-

ciently. The Thomas algorithm uses a Gaussian Elimination (GE) and Backward Sub-

stitution scheme specifically designed to work with tridiagonal matrices. Since most

indices of a tridiagonal matrix are zero it greatly simplifies the GE and Backward Sub-

stitution calculation [35]. Writing out the full matrix equation (equation 72) allows us

to gain a perspective on how to define the system of equations that need to be solved by
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the algorithm.
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b00 c01 . . . . . . . . . 0

a10 b11 c12
...

... a21 b22 c23
...

... . . . . . . . . . ...

0 . . . . . . . . . an−2 n−1 bn−1 n−1





x0

x1

...

...

xn−1


=



y0

y1

...

...

yn−1


(72)

After multiplying each component of the LHS of equation 72 out and setting it equal to

the corresponding y-value on the RHS equation we produce equation 73.

(ai−1,i) xi−1 +(bi,i) xi +(ci,i+1) xi+1 = yi (73)

Equation 73 is the general form of the systems of equations and can be confirmed by

[35]. Recall that for the first equation (when i = 0) the lower diagonal value a = 0. For

the final equation (when i = n) the upper diagonal component c = 0.

Equations 74-77) give the definitions and the steps about how to set the upper diago-

nal, lower diagonal, and diagonal components of equation 73. By solving for each of

these compoents we are actually performing the steps necessary for the forward and

backward substitution process for a tridiagonal matrix. The tridiagonal matrix that is

plugged into this algorithm is M∗. The reason for this can be seen clearly by compar-

ing equation 57 to the general linear algebra equation Ax = b that is being solved. In

equation 57 the vector x is equivalent to the vector Sn+1
ν (i.e. x = Sn+1

ν ).

In order to fully understand the numerical steps we discuss the mathematical notation

used. The lower diagonals of the matrix are denoted in a single array called a, the di-

agonals in b, the upper diagonals in c. The solution array (or the vector of x-values)

is denoted as x, and the y-values in y. We are using standard notation such that the ith
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value of an array is denoted as a[i]. The first value in an array is the set to be 0 and the

final value is set to be n−1 where n is the size of our grid and nxn and the size of the

matrix.

1. Define two new arrays, y′ and c′, and initialize them to be zero everywhere. Then

iterate through each element and save each value for the following operation.

This is essentially forward substitution.

For i = 0:

c′[i] =
c[i]
b[i]

y′[i] =
y[i]
b[i]

(74)

For i = 1 : n−2

c′[i] =
c[i]

b[i]− (a[i] · c′[i−1])

y′[i] =
y[i]− (a[i] · y′[i−1])
b[i]− (a[i] · c′[i−1])

(75)

For i = n−1:

y′[i] =
y[i]− (a[i] · y′[i−1])
b[i]− (a[i] · c′[i−1])

x[i] = y′[i]

(76)

2. Once these two new arrays have been set we can then use back substitution to

solve for each value in the x array. Note that the n− 1 value for x has already

been set in the previous step.

For i = n−2 : 0

x[i] = y′[i]− c′[i]∗ x[i−1] (77)
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Notice that the inversion of M∗ has a mathematical limit when the denominator in

equations 74-77 equal zero. This is the only exposed weak point of this algorithm.

However, when M∗ cannot be inverted the LI scheme can be applied so long as the

environment is within its computational limits.

3.6.3 Steps for the ALI Method

Many of the steps used to carry out the ALI scheme overlap with the LI scheme. Hence

why it is convenient for us to include both algorithms in the code.

1. Set the Planck Function across the grid. For our experiment Bν = 1 for the entire

calculation. This can be done at a later step, but this is one of the only variables

that did not need to be updated every iteration and thus can be handled first.

2. Initialize the density array of the Hydrogen gas at each grid point. This can be

done by iterating through the grid and set each grid cell individually or read in

the density profile from an external file. For the astrophysical problem we read

in a text file.

3. Compute the column density at each grid cell using equation 44.

4. Compute the change in optical depth for each grid cell using the column density

equation 45.

5. Set the interpolation coefficients equations 31, 32, 34, and 35.

6. Set the values of the Hydrogen ion fraction for each grid point by solving equa-

tion 36 using RK4 numerical scheme (discussed in Section 3.5). Initially we

set QHII = 0 everywhere for our experiment but then the Hydrogen ion fraction

is computed by using the RK4 scheme to iterate until convergence at each grid

point.
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7. Compute the value of εν across the grid using equation 41. If QHII = 0 then

εν = 1 everywhere.

8. Use the method of short characteristics (equation 30 and equation 33) to find the

approximate solution for the specific intensity at each grid point for each of the

two rays I+ and I−. If this is the initialization set the values according to specified

initial and boundary conditions or read in a text file.

9. Set the values of Jν across the grid using equation 8. If this is the first iteration

and there are no boundary or initial values specified; Jν can be set to be zero

everywhere, or another logical initial guess can be determined.

10. Set the values of the source function using equation 11. Note that if Bν = 1,

εν = 1, and Jν = 0 then the source function is Sν = 1 everywhere.

11. Repeat steps (3) - (10) until the solution has converged and thus an equilibrium

state has been reached.

12. Compute the lower diagonal, diagonal, and upper diagonal values of M∗ by mul-

tiplying the current values of the source function with the operator Λ∗.

13. Use the array of source terms (Sn
ν ) computed in step (11) and M∗ to obtain the

updated values of the source function (Sn+1
ν ) using the tridiagonal solver.

14. Repeat steps (3) - (13) until the solution has converged and thus an equilibrium

state has been reached.
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4 Test Calculations

4.1 Strömgren Sphere

One of the ways to check the numerical accuracy of the propagation of the Hydro-

gen ion fraction, calculated by the RK4 algorithm, is by studying the radius of the

Strömgren sphere. A Strömgren sphere is the spherical volume of fully ionized Hydro-

gen atoms around a source of radiation [36]. The brighter the source of radiation is (the

greater the photon emission rate), the greater the number of ionized Hydrogen atoms,

the greater the radius of the Strömgren sphere. However, the radius of the sphere is

not solely dependent on brightness but also on the density of the Hydrogen gas, the

temperature, the recombination properties of the atom, and the clumping fraction [36].

The most well known definition of the Strömgren sphere radius is stated by Spitzer in

his 1987 book [36]. We use this same definition (equation 78) to guide our calculations.

rss =
3Q

4παB(T )CHII〈nH〉
(78)

The only new variable introduced is in equation 78 is Q which is the emission rate of

photons from the source. The other constants in equation 78 are defined in Section (3.5)

and produce a Strömgren sphere radius in units of cm.

As previously mentioned our astrophysical experiment (Section 5) has two sources; a

galaxy and the UV background. There is a Strömgren sphere surrounding the galaxy be-

cause the galaxy’s emission is approximated to appear from a single area. Since the UV

background is a continuous source there is no Strömgren sphere surrounding its emis-

sion. Based on the chosen redshift of the simulation we can assume certain properties

about the galaxy. Specifically we assume what kind of star formation should be occur-

ring in the galaxy and therefore we can estimate the number of photons emitted from
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the source. Our initial approximation for the photon emission rate is Q= 1053.4 photons
s .

This value is based on the results from a code produced by [21] and [22]. We also need

to approximate the value of the specific intensity for the galaxy. Our initial estimate

comes from [37] and is discussed in further detail in Section 5.2.1.

Since the radius of the Strömgren sphere depends on the density profile of the Hydro-

gen gas we perform a constant density analytical study to estimate the best value for

the specific intensity around the massive galaxy. The gas density is the focus of our

study because our density profile varies greatly across the grid (since it includes a mas-

sive galaxy and IGM gas). Another reason is because equation 78 indicates that the

only non-constant variable that the Strömgren sphere depends on is the hydrogen num-

ber density 〈nH〉. The hydrogen number density depends on the density field as seen

in equation 37. Therefore a constant density study allows us to test our algorithm’s

accuracy on a more simplified problem with a known analytic solution. We also take

advantage of this baseline test to try out different grid resolutions to help optimize ac-

curacy and precision.

Using equation 78 we analytically calculate the radius of the Strömgren sphere for nine

discrete, constant density profiles for Hydrogen gas. The results from this analytic

study are shown in Figure 3.

Figure 3 shows that the Strömgren sphere radius exponentially decays as the thick-

ness of the density field increases. If the constant density field is sparse, the Strömgren

sphere radius is extremely sensitive to density variations. This can be seen by ex-

amining the large difference between the Strömgren sphere radius at ρ = 1e− 8 and

ρ = 1e− 7. Once the constant density field becomes large, the increase in magnitude

still causes the radius of the Strömgren sphere to decrease but difference between the

two radii is less drastic. This can be seen by comparing the value of the Strömgren

sphere radius at ρ = 0.1 and ρ = 1.0. It is important to note that the maximum density
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Figure 3: The analytical Strömgren radii for a variation of constant density fields. All
of the values shown here are within the range of densities presented by the CHOLLA
simulation.
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value of our density field, which occurs at the center of the galaxy, is not included in

this study. Since the Strömgren sphere radius behaves asymptotically for larger density

values we didn’t need to probe through the entire spectrum of our density distribution.

In the next section we discuss the performance of different grid resolutions and their

accuracy in reproducing the analytic Strömgren sphere radius curve seen in Figure 3.

4.1.1 Resolution Study

This study caused us to realize that we needed a finer grid resolution than we had ini-

tially predicted in order to capture the physics of our cosmological experiment. Table

2 below shows the minimum distance that can be resolved for each grid resolution.

This information helps us determine how accurately a 70 point, 200 point, 500 point,

or 1,000 point grid can resolve the analytical Strömgren sphere radius for the given

density value. Table 3 shows the density value, the corresponding Strömgren sphere

radius, and whether the respective grids could theoretically resolve this radius. If the

predicted radius (in kpc) is calculated to be within one grid cell of the analytical value

of the Strömgren sphere radius then that density value falls within the capabilities of

that grid’s resolution. If the distance covered in one grid cell is distinctly greater than

the Strömgren sphere radius then the sphere cannot be resolved. This density does not

fall within the resolution of that grid because that means the ionization starts and ends

inside one grid cell but the physics is not fully captured. Note that none of the grids

tested are able to resolve the Strömgren sphere when the density is equal to ρ = 1e−8

because the radius of the Strömgren sphere is larger than the total distance of our grid.

This defines the lower limit of the density profile for our algorithm. If we were to ex-

tend our study further and test higher density values we would also find the maximum

limit of the density profile for our algorithm.

As seen in Figure 4 the code rarely produces the correct analytic result for each density
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Grid Size 70 200 500 1000
Resolution
(kpc per
cell)

9.01567 3.12604 1.24666 0.62270

Table 2: Resolution of each grid size

Density
( 1

cm3 )
Analytic
rss kpc

70
points

200
points

500
points

1000
points

1 1.50987 NR NR R R
0.1 3.25291 NR R R R
1e-2 7.00818 NR R R R
1e-3 15.0987 R R R R
1e-4 32.5291 R R R R
1e-5 70.0818 R R R R
1e-6 150.987 R R R R
1e-7 325.291 R R R R
1e-8 700.818 NR NR NR NR

Table 3: NR = Not Resolved, R = Resolved. Displaying the resolution capabilities of
the different grids. The simulation dealt with an entire spectrum of density values and
therefore must be able to resolve most of them.

value. Since the variety of resolutions being tested should resolve the Strömgren sphere

radius it caused us to realize that we were using the incorrect value for the brightness

of the galaxy. One of the other main variables that strongly influences the Strömgren

sphere is the photon emission rate which is directly affected by the brightness of the

source. This means that the initial value of the specific intensity given by [37] is not

correct for our astrophysical experiment. This is acceptable because we are working at

a redshift where the brightness of the galaxy and the UV background is disputed over.

In Section 5.2.1 we re-do this study where we vary the value of the brightness of the

galaxy.

Figure 4 shows that the different grid resolutions do not converge to the analytic so-

lution for most density values. However the grid with 1,000 points provides the finest

grid. The finest grid theoretically means that we will be able to resolve density values
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Figure 4: The results of changing the grid resolution when calculating the radius of the
Strömgren sphere compared to the actual analytic solution (blue).

that are larger than the ones listed here. However the 1,000 point grid does resolve the

maximum density value from the density field produced by CHOLLA. Thus we use the

1,000 point grid for the follow-up Strömgren sphere study in Section 5.2.1 and for the

rest of the numerical tests performed in the following sections. These sections test the

convergence and accuracy of the ALI and LI schemes to demonstrate the full range of

capabilities of the algorithm.

4.2 Two-Stream RT Approximation

The first test case involves a monochromatic atmosphere that only varies in the vertical

z direction. This type of problem is known as a plane-parallel atmosphere. This model

approximates the radiation at a certain height based on the incoming and outgoing

fluxes. This setup has been used to model exoplanet atmospheres [38] and NASA
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AMES Mars Climate Modeling Center uses it to model the Martian atmosphere [39].

The details about the atmosphere’s density distribution, extinction coefficient (opacity),

and photon destruction probability are known. This test experiment is presented in a

set of notes given by C.P Dullemond from the Max Planck Institut für Astrophysik

(mentioned above).

α = 105−6z (79)

∆τi =
√

3αi∆z (80)

ε = 0.1, 0.01, 0.001 (81)

Here i denotes the current cell where the optical depth is being measured. The
√

3

comes from the angle at which each ray is set: µ+ = 1
3 and µ− = −1

3 . The opacity

of the atmosphere is the thickest at the ”ground” (z = 0) and the thinnest at the ”top”

(z = 1) with exponential decay in between. Finally the photon destruction probability

is set to be a constant. Recall that the smaller the opacity is the more scattering occurs

which makes for more robust numerical calculations.

A single ”source” is set at ground level (z = 0) and does not vary with time. We use

the time-independent RT equation (equation 7) to propagate the effects of the single,

constant source throughout the atmosphere. To show comparative differences in com-

putational intensity we vary the value of the photon destruction probability (equation

81). These different computational regimes emphasize differences between the com-

putational limits of the ALI and LI schemes. Physical regimes where ε is small makes

the problem computationally impossible for the LI scheme to converge around. While

the ALI scheme can successfully reach convergence around the accurate solution when

the photon destruction probability is low. The results for the ALI and LI scheme are

compared against each other in Figure 5.
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Figure 5: The top (green) panel shows the convergence over 100 iterations of the ALI
scheme while the bottom (black) shows the same 100 iterations of the LI method. ε

decreases in value from left to right across the atmosphere denoted by z.

It is clear from Figure 5 that as ε decreases the calculation becomes more computa-

tionally intensive. The strict LI method (black) is not able to converge to the analytic

solution because of this computational difficulty of having a small ε value. This proves

the fact that the LI method cannot be blindly trusted. The only environment where the

LI scheme is able to obtain the correct solution for the source function over a portion of

the grid is when ε = 0.1. Otherwise the LI method shows a large discrepancy between

its converged solution and the actual solution to the source function.

While the ALI scheme (green) is able to reach the analytic solution within the same

amount of iterations for all three values of ε . It is emphasized that there are limitations

to the ALI method since equations 74 - 76 can have a denominator that is equal to zero,

in which case the LI method must be used. Therefore the ALI method should also not

be blindly trusted.
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4.3 Convergence Check

In Section 4.2 the initial specific intensity at the left boundary is set to one (where the

source is), and the specific intensity values across the grid are set to zero. This is a

simple set of initial conditions which are important to check that the code can reach

converges. If these simple test cases do not converge then the more complex initial and

boundary conditions will not converge. Due to the implementation of both the ALI and

LI schemes our code successfully reached the steady state solution in Section 4.2. The

next step to take for testing the abilities of the algorithm is to make the initial conditions

more complex. One useful way to do this is by using the final, steady state solution as

a set of initial and boundary conditions for another computational run. We will stick to

one value of ε for now, but it this ε value will have to be different than the value used

in the first computational run which reached the steady-state solution.

The accuracy of the steady-state solution of the second computational run can be de-

termined from runs where the initial state is set simply. This test also exercises the

algorithm’s ability to read in a set of initial values for the specific intensity. Then use

these specific intensity values to correctly compute the mean intensity J and the source

function S across the grid (equation 9 and equation 10).

The final trait this convergence test portrays is the algorithm’s ability to vary parameters

like ε or the optical depth with time. This is an important physical application since we

perform an astrophysical setup where the optical depth and the opacity vary over time.

Passing this convergence test gives us confidence that our astrophysical application is

within the algorithm’s capacity.

Figure 6 displays the results of using the final steady-state solution as an initial state

before evolving it further under a new value of epsilon. Note how the behavior of the

source function at z = 0 is the greatest difference between the solution in Figure 6 and

43



Figure 6: An example where a steady state solution for ε = 0.1 is then used to set the
initial state for ε = 0.001 and convergence is achieved.

the solutions shown in Figure 5. Note that the initial boundary conditions for the spe-

cific intensity are to be I+ = 1 = I−, thus making J = 1, for all of the experiments

performed in Figure 5. In contrast there is no specified initial boundary value for J. J is

computed based off of equation 10. Due to the the source function’s heavy dependency

on the value of J the boundary value for S is also less than one.

Even with the distinct initial boundary value the ALI algorithm converged within 100

iterations to the expected solution. This scheme displays computational ease when

computing a solution for ε = 0.1 and ε = 0.001. Having the ability to start in a com-

putationally easy domain and move to a computationally complex regime is a crucial

component to solving real world problems.

Up until this point all of the test cases have been run while ε has been held constant.

However for the astrophysical experiment ε is spatially variant. It is thus essential to

prove that the algorithm can be efficient in this regime too.
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4.4 Spatially-varying ε

The last test case, before applying the algorithm to a cosmological setting, involves

varying ε across the grid. Briefly mentioned in the previous subsection, the smaller the

value of ε the more computationally expensive the calculations per iteration becomes.

If ε ≈ 1 then a large number of photons, or all of the photons (ε = 1), are annihilated

rapidly and thus radiation is not propagated through the medium. On the contrary

if ε << 1 then a significant amount of photons propagate through the medium thus

making the problem non-trivial. Having a discrepancy between ε at the left and right

boundaries is realistic when considering cosmological settings.

For this test case we set the discrepancy of ε between the boundary values to be ε <<

1 and ε < 1. This is computationally complex enough to reveal any problems with

convergence. The results of the simulation are shown in Figure 7 below.

Figure 7 shows that there are no convergence problems for the ALI scheme when ε

is spatially variant. The algorithm is able to reach convergence for the final solution

within 100 iterations. This allows us to conclude that there are no problems with the

code in this computational regime.

This completes the fundamental test calculations needed to check the accuracy and

precision of the algorithm. The next section describes the experimental set up and

details of the astrophysical problem.

5 Experiment

5.1 Physical Overview

We investigate the dynamics of RT between a luminous galaxy and the UV background

radiation field in the early universe at a redshift of z = 3. In between the galaxy and the
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Figure 7: The converged solution where ε = 0.001 at depth z = 0 and varied linearly
across the grid until reaching z = 1 where ε = 0.1.
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UV background we assume there is a distribution of gas made of Hydrogen and Helium.

The helium gas only absorbs extremely high-energy photons and can be ignored when

calculating the absorption. As a percentage of the Hydrogen gas between the galaxy

and the UV background become ionized, meaning photons are absorbed and emitted,

the specific intensity will also fluctuate. This happens at each time step (equation 7)

thus the radiative influence from the galaxy and the UV background also vary every

time step until equilibrium is reached. This experiment allows us to further understand

the details about how the galaxy and the UV background influence the distribution of

ionized Hydrogen atoms in this time period.

We use a third order approximation and the LI scheme to handle the cosmological

setting. The reasons why the LI scheme is used over the ALI scheme is discussed in

Section 6.1.

5.2 Initial and Boundary Conditions

This experiment required a two-step setup. The first being to set the specific inten-

sity values for our two main sources; the galaxy and UV background. The second is

to obtain a steady state specific intensity distribution caused by the interaction of the

two sources. The radiation emitted from the galaxy and UV background are handled

through two rays (one for each source).

The following go into details about how we initially set the two specific intensity rays

for the galaxy and the UV background as well as the density profile of the Hydrogen

gas within the galaxy and outside of it.
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5.2.1 The Galaxy

The galaxy and the UV background have significantly different specific intensities. We

assumed the central galaxy is star-forming. This means it has O and B stars and a cer-

tain ratio of binary stars. Rather than spreading these sources throughout the galaxy and

treating them individually, we assumed that the majority of the radiation came from the

central source. We increased the value of this central source to adjust for these other

sources. The brightness of galaxies at this redshift can only be estimated theoretically.

Therefore we ended up adjusting the brightness of our galaxy based on the results of

the Strömgren sphere radius study. This allowed us to more accurately produce the

expected amount of emitted photons.

Since we are treating the galaxy as a large point source, then the brightness throughout

the rest of the galaxy must be less than this central value. For our simulation the specific

intensity of the center of the galaxy sets our left boundary condition. Recall equation

17 defines the specific intensity based off of the specific luminosity. The specific lumi-

nosity falls off with respect to radius as 1
radius2 . Therefore the specific intensity values

across the grid should attenuate in a similar fashion. Figure 8 shows the initial distribu-

tion of the normalized and attenuated specific intensity for the galaxy.

For now we disregard the dimensional value of the specific intensity and just use a

value of 1 at the center of the galaxy (Figure 8). The rest of the specific intensity val-

ues are also dimensionless across are simply attenuated by a factor of 1
radius2 . Before

any dimensional calculation is made the specific intensity is converted back into the

appropriate dimensional value. Now that the attenuation of the specific intensity curve

is correctly implemented for the galaxy we need to re-visit the Strömgren sphere exper-

iment.

Recall that the specific intensity of the galaxy needs to be adjusted to produce a reason-
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Figure 8: Displaying the 1
x2 decay of the specific intensity for a massive galaxy. The

center of the galaxy lies at x = 0 kpc which is the brightest and main source of the
specific intensity. The y-axis is the normalized specific intensity coming just from the
galaxy across the grid.
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Figure 9: The plot on the left shows how the results from the varying specific intensity
values to solve for the radius of the Strömgren sphere compared with the analytic result
with only a log scale on the x-axis. The plot on the right shows the log-log version of
the plot on the left.

able photon production rate. To our knowledge the code we have written and applied to

this environment is unique and therefore we cannot just copy certain aspects of previous

computational work. Thanks to [21] and [22] we had a good starting value. Nonethe-

less in order to match the theoretical Strömgren sphere analytic calculation we needed

to deviate from their predictions. We start off by using the given value (from the sources

above) for the photon production rate (Q0 = 1053.4 1
s ). This produces a specific inten-

sity value of I ≈ 10−17 erg
sHzcm2ster . When we use this value for the brightness we do not

produce a sufficient number of photons to accurately calculate the Strömgren sphere ra-

dius for our physical regime. This was confirmed by Figure 3. Thus we incrementally

increase the value of the galaxy’s brightness until we reproduce a close approximation

to the analytical curve within an acceptable range of accuracy. The best value for the

specific intensity at the center of the galaxy is I+ = 3x10−16 erg
cm2 s Hz ster as shown in

Figure 9.

By changing the value of the specific intensity at the center of the galaxy we are able to

more accurately calculate the radius of the Strömgren sphere. This test guides towards

50



producing a more accurate model of the galaxy with the given gas distribution.

The main criteria used to determine the best value of the specific intensity is to not

overestimate the analytical value of the Strömgren sphere radius for each density. This

is the case because any overshoot is going to be exaggerated by our algorithm due to

the resolution of each grid cell. Therefore it is clear to see from Figure 9 that the value

of I ≈ 3e−16 erg
sHzcm2ster is the closest in value to the analytical solution without over-

estimating the radius at any density. The photon production rate from the galaxy is thus

Q0 = 1052.6 1
s . This is a reasonable rate because it does not significantly diverge from

the values presented the published code produced by ([21] and [22]).

The UV background does not behave like the galaxy. We are viewing the galaxy and

UV radiation background from the comoving frame. Meaning that we, the observer, are

moving with the expansion of the universe. This makes the universe and background

radiation appear isotropic [40]. Thus the UV radiation uniformly radiates rather than

falling off as a power law like the galaxy. The details about initializing the UV back-

ground can be found in Section 5.2.2 below.

5.2.2 The UV Background

The galaxy is assumed to radiate X-rays or other high frequency light due to the star

formation in the gas-rich environment. The light from the galaxy is thus more ener-

getic than the radiation coming from the UV Background. Puchwein et al 2019 [37]

found that the UV background has a uniform specific intensity value of I = 10−22

ergcm−2s−1Hz−1rad−2. This value is calculated based on observations and theoretical

results. The specific intensity of the UV background is five orders of magnitude smaller

than the center of the galaxy. The specific intensity of the right boundary is set by the

UV background. The rest of the specific intensity values across the grid are also set

at this constant value. This is the case because the fluctuations in brightness among
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the UV background are minuscule and insignificant for the scale and resolution of the

simulation.

Now that the two sources and the respective specific intensity rays have been set, the

only other component that needs to be determined is the distribution of the hydrogen

gas. The gas distribution and composition for a massive galaxy the IGM at a redshift

of z = 3 is different than the observations made today at z = 0. Thus we turn to the

output from a cosmological code that studies the evolution of matter and dark matter

from an even earlier time period to obtain an accurate distribution of gas for the galaxy

and IGM.

5.2.3 Density Field

Bruno Villasenor, a PhD student in the astronomy and astrophysics department at

UCSC, has done extensive work on modeling the hydrodynmaics of large scale struc-

ture of gas and dark throughout the history of the universe using the open source code

called CHOLLA [14]. From one of his three dimensional simulations Bruno is able

to extract a one dimensional density skewer through a massive galaxy at z = 3. The

total distance covered by the skewer is 50 Mpc
h . We only used a portion of this skewer

and limited it to span 623 kpc. This density information is then read into our code,

converted into the desired units, and translated into the comoving frame. The structure

from Bruno’s simulation does not take into account any affects from radiation so the

initial gas density consists of neutral hydrogen. We then center the galaxy on the left

boundary of our numerical grid. The density profile throughout our computational do-

main is shown in Figure 10.

Figure 10 agrees with our physical intuition that the density concentration at the cen-

ter of a galaxy is several orders of magnitude larger than the gas within the IGM. More

specifically the gas within the galaxy is comparable to molecular cloud densities. While
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Figure 10: The initial density distribution of Hydrogen gas from the center of the mas-
sive galaxy (at x= 0 kpc) to the uniform UV background (at x= 630 kpc). This distribu-
tion came from a snapshot from a hydrodynamic evolution simulation from CHOLLA.

the gas outside of the galaxy is on the atomic cloud density scale.

The extinction coefficient and optical depth (equation 42 and equation 45 respectively)

can then be initialized from this density distribution. Once the photons begin to prop-

agate from the two sources, they alter certain portions of the density field. Different

parts of the density profile morph at different rates due to uneven density distribution of

the gas (Figure 10). This causes inhomogeneous ionization. As inhomogeneous ioniza-

tion occurs the change in the density distribution causes the extinction coefficient and

optical depth to also change making the density a time sensitive variable.

In order to capture the evolving density field on our 1,000 point grid we had to inter-

polate the given density field. The original density profile from CHOLLA had its own

resolution and did not contain 1,000 density points over the desired distance. To per-

form this interpolation, we use a built in function in Python (Python3 numpy.interp()).
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Figure 11: Comparing the interpolation of the density field to the true distribution. The
left, red plot shows the comparison for 500 grid points. The left, orange plot shows the
resulting field for 1,000 grid points.

Originally the 623 kpc density field was defined on 70 grid points. We then tested the

accuracy of the interpolation function by examing the detail of the density field for 500

and 1,000 grid points. The results of the density interpolation comparison are shown

below in Figure 11.

Figure 11 shows that the built-in interpolation function does a good job whether we are

considering hundreds or one thousand of points. There is only a slight deviation from

the true density field located at the rapid density decline from the galactic center for

both grid resolutions points. The built in function uses a piecewise linear interpolating

method. This method connects straight lines between each of the given data points. The

linear equations produced by these straight lines are used to estimate the interpolated

values [41].

This gives us more confidence in using the 1,000 point grid to better resolve evolution

of the ionized Hydrogen atoms, capture the morphology of the density distribution, and
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determine the specific intensity to a greater accuracy. The finer grid is more compu-

tationally expensive, but this is the necessary to capture the physics of the RT in this

astrophysical experiment.

5.3 Reaching a Steady State

There is one last step that must be taken before studying the evolution of radiation from

the galaxy and the UV background. The specific intensity throughout the grid must

be properly initialized for each radiation source separately. This initialization involves

reaching an equilibrium state by evolving each source separately over a long period of

time and setting ε = 1 (the photon destruction probability). Due to the initial distri-

bution of the specific intensity the specific intensity can still evolve even if the source

function is zero for each grid value (equation 21). According to equation 21 the specific

intensity values across the grid will decay at a rate driven by the optical depth at each

grid cell.

Figure 12 shows the results of the two computational runs that determine the steady-

state specific intensity values for the galaxy and UV background.

As seen in Figure 12 the steady-state distribution of the specific intensity significantly

differs from the initial arrangement of the specific intensity values for the galaxy and

the UV background (Figure 8 and Section 5.2.2).

For the galaxy the 1
x2 specific intensity attenuation effect has been quenched. This

makes sense due to the rapid deterioration of the specific intensity values as the dis-

tance from the galaxy’s central point is increased. The specific intensity decreases

rapidly due to the large optical depth values within the galaxy due to the opaque Hy-

drogen gas.

As for the UV background; the left and right boundaries are held at constant, small spe-
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Figure 12: The normalized specific intensity distribution across the grid after a steady
state has been reached across the grid between the galaxy and the UV background.
The top blue plot shows the normalized specific intensity values from the galaxy. The
bottom purple plot shows the values of the normalized specific intensity values from
the UV background.
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cific intensity values. Due to these small-scale specific intensity values the intermediate

specific intensity values will be even closer to zero. This is the case because the UV

background is not very bright compared to the galaxy.

Reading in these steady-state specific intensity values as to initial conditions across the

grid allows us to set the average specific intensity Jν . We then set the ion fraction is zero

at each grid point, since the gas starts off neutral. The photon destruction probability is

calculated based on the ionization state of the gas (equation 41) which means it has a

value of one everywhere. This forces the source function to be equal to one everywhere

as well (equation 11). This concludes the initialization of all of our variables.

5.4 Escape Fraction

Even though the galaxy and the UV background are treated as independent radiation

sources the effects from their radiation on the Hydrogen gas are combined. The galaxy

produces hydrogen ionizing photons that propagate through the galactic gas. These

photons interact with and ionize the galactic gas, but not all of it. Some of these photons

escape the galaxy. The percentage of photons that escape the galaxy and interact with

the IGM is known as the escape fraction fesc. The escape fraction is critical to include in

cosmological simulations according to [42]. The value of the hydrogen escape fraction

has been widely argued to fall within a broad range of values between 1% - 100% [43];

[44]; [45]; [46]; [47].

There are many variables that affect the escape fraction but according to [46] and [30]

the mass of the galaxy and the redshift are among the strongest influences. Since we

are testing a high mass galaxy at a moderately low redshift value we should use a

lower escape fraction value. This comes from knowing that low-mass galaxies at higher

redshifts indicate a larger escape fraction value [42].
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Figure 13: How the hydrogen ion fraction changes when the value of the escape fraction
is varied and both the galaxy and UV background are turned on.

At this point we hypothesize that the escape fraction is the main influence for ionizing

the gas just outside of the galaxy. Before accounting for the escape fraction we assume

that the radiation propagating from the center of the galaxy may not make it all the way

through to the edge of the galaxy because of the high density values. The radiation

from the UV background may be too dim to influence the gas just outside of the galaxy.

Therefore this patch of gas may remain neutral unless the escape fraction is included.

There is a dispute over the value of the escape fraction at this redshift. Hence we vary

the value of the escape fraction and compare its affects on ionizing the Hydrogen gas

just outside of the galaxy. Figure 13 shows these results.

The goal of Figure 13 is to help guide us in picking a value of fesc that ionizes a portion

of the gas outside of the galaxy (deemed to be at 100 kpc). However Figure 13 shows
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that the gas just outside the galaxy is all ionized regardless of the value of the escape

fraction.

This makes us realize that the escape fraction is not going to be the main influence

on the ionization of the gas just outside of the galaxy. Figure 13 is showing the result

of the galaxy radiating at a specific intensity value of I+ = 3e− 16 erg
sHzcm2ster and the

UV background radiating at I− = 10−22 erg
sHzcm2ster . The galactic source is not bright

enough to ionize all of the gas within the galaxy (Figure 13) therefore the galaxy is

not responsible for ionizing the outer galactic gas and beyond. Instead the brightness

of the UV background is responsible for ionizing all of the gas outside of the galaxy

and partially within the galaxy. Based on these results, we maintain a constant escape

fraction ( fesc = 0.1) while varying the UV background’s specific intensity value. This

should allow us to find the limit at which the UV background is and is not ionizing the

entirety of the gas just outside the edge of the galaxy.

6 Test Experiment Results

6.1 ALI vs LI Scheme

We ran the cosmological simulation using both the ALI and LI algorithms. At certain

grid cells the change in optical depth is zero. This affects the tridiagonal solver coeffi-

cients (equations 74-76) greatly by causing certain calculations to divide by zero. This

prevents the ALI scheme from completing the calculation needed to update the source

function. This forced us to only use the LI scheme for producing all of the data for the

rest of the results. The value of the photon destruction probability did not limit the LI

scheme for this experiment.
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6.2 UV Background Specific Intensity

The value predicted by Puchwine et al 2019 [37] which is I− = 1022 erg
sHzcm2 led to the

almost all of the gas within the galaxy and all of the gas in the IGM to be ionized. This

ionization occurs because the brightness of the UV background is able to penetrate

through the IGM to the outer limits of the galaxy. The outer limits of the galaxy have a

lower density and therefore the photons have the ability to continue propagating further

into the galactic gas. This caused the UV background radiation to drive the ionization

within most of the galactic gas. We vary the brightness of the UV background to find

the threshold at which the outer galactic gas region becomes fully ionized. Figure 14

shows the evolution of the different values for I−.

The transition region where the mean specific intensity is dominated by the galaxy ver-

sus the UV background is extremely sensitive to the value of I− and changes rapidly

around I− ≈ 2.95× 10−25 erg
sHzcm2 (Figure 14). If I− is too intense then the UV back-

ground ionizes the intermediate gas and the gas within the galaxy from the outside-in.

For smaller I− values there is a region in the intermediate density structure, outside the

region ionized by the main galaxy, where the gas can become neutral (this region could

be referred to as the ”outer circumgalactic medium”). Figure 15 shows the transition

between the circumgalactic medium when it is neutral to when it is ionized due to the

UV background.

The density profile that characterizes the outer circumgalactic medium is shown in Fig-

ure 16. This nonlinear density clump is ionized if the UV background is dominating

the overall radiation field (i.e. is dominating the mean specific intensity). Otherwise

this portion of the density profile remains neutral if the UV background is not domi-

nating the mean specific intensity. This means that the gas on the outer-most edges of

the galaxy is more affected by radiation coming from external sources rather than the
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Figure 14: Demonstrating how the mean intensity changes when varying I− between
10−24 and 10−25. The legend is scaled to be read as the following; 10−24 = 10 and
3×10−25 = 3 and so on for all of the values listed.
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Figure 15: The resulting Hydrogen ion fraction while varying I− between 10−24 and
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Figure 16: The density profile of hydrogen gas for the outer circumgalactic medium
around the galaxy.

internal galactic source.

7 Conclusion

The brightness of the UV background is the main controlling factor in dominating the

radiation field responsible for ionizing the galactic gas and the gas within the IGM. This

is the case even when the escape fraction is taken into consideration. During the epoch

of reionization (which occurs at redshift z = 7) the UV background was brighter than

the values produced by our results. This could mean that the ionization processes that

occurred at that time could have been strongly driven by the brightness of the uniform

background radiation.
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The algorithm created is successful in terms of accurately calculating an astrophysical

problem and various other (smaller) test calculations. The algorithm has the flexibility

to use either the LI or ALI scheme. This allows the algorithm to handle a wide variety

of problems such as the atmospheric problem presented in Section 4.2 and the cosmo-

logical problem in Section 5.

The algorithm also has flexibility in the design to include extra calculations of inter-

est such as the Runge-Kutta ODE solver shown in Section 3.5. This process follows

the propagation of the ionization of hydrogen atoms which becomes key when analyz-

ing unknown astrophysical questions. The code also successfully tracks specific the

specific intensity values for multiple sources and their combined effects on the test

environment.
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