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Abstract. A finite classical polar space of rank n consists of the totally isotropic subspaces
of a finite vector space equipped with a nondegenerate form such that n is the maximal
dimension of such a subspace. A t-Steiner system in a finite classical polar space of rank n
is a collection Y of totally isotropic n-spaces such that each totally isotropic t-space is
contained in exactly one member of Y . Nontrivial examples are known only for t = 1
and t = n−1. We give an almost complete classification of such t-Steiner systems, showing
that such objects can only exist in some corner cases. This classification result arises from
a more general result on packings in polar spaces.
Keywords. Association schemes, codes, polar spaces, Steiner systems
Mathematics Subject Classifications. 51E23, 05E30, 33C80

1. Introduction

A t-Steiner system is a collection Y of n-subsets of a v-set V such that each t-subset of V
is contained in exactly one member of Y . The long-standing existence question for t-Steiner
systems has been settled recently: it was shown in [Kee14] and [GKLO16] that, for all t ⩽ n and
all sufficiently large v, a t-Steiner system exists, provided that some natural divisibility conditions
are satisfied.

It is well known that combinatorics of sets can be regarded as the limiting case q → 1 of
combinatorics of vector spaces over the finite field Fq. Indeed, following [Cam74] and [Del78],
a t-Steiner system over Fq is a collection Y of n-dimensional subspaces (n-spaces for short) of
a v-space V over Fq such that each t-space of V is contained in exactly one member of Y . It is
remarkable that, in the nontrivial case 1 < t < n < v, Steiner systems over Fq are only known
for a single set of parameters [BEO+16], namely for (t, n, v) = (2, 3, 13) and q = 2.

We may consider these objects as q-analogs of Steiner systems of type An−1, as V together
with the action of GL(n, q) is of this type. We study q-analogs of Steiner systems in finite vector
spaces of types 2A2n−1, 2A2n, Bn, Cn, Dn, and 2Dn+1 (using the notation of [Car93]). In each
case, the space V (defined over Fq2 for 2A2n−1 and 2A2n) is equipped with a nondegenerate
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form and the relevant groups are U(2n, q2), U(2n+1, q2), O(2n+1, q), Sp(2n, q), O+(2n, q),
and O−(2n+ 2, q), respectively. The notation is chosen such that the maximal totally isotropic
subspaces of V , called generators, have dimension n (see Table 2.1). A collection of all totally
isotropic subspaces with respect to a given form is a finite classical polar space (or just polar
space) of rank n and we denote this space by the same symbol as the type of the underlying
vector space. A t-Steiner system (of n-spaces) in a polar space P of rank n is a collection Y of
generators in P such that each totally isotropic t-space of V is contained in exactly one member
of Y . These objects are sometimes called regular systems or 1-regular systems in the literature.

A 1-Steiner system in a polar space is known as a spread, whose existence question has
been studied for decades (see [Seg65], [Dye77], [Tha81], [Kan82b], [Kan82a], [CCKS97], for
example), but is still not fully resolved (see [HT16, § 7.4] for the current status). The only other
known nontrivial t-Steiner systems in polar spaces occur for t = n − 1 in Dn and equal one of
the two bipartite halves of Dn (see Section 2), which are the two orbits under SO+(2n, q) acting
on the generators of Dn [Tay92, Thm. 11.61].

We prove the following classification result.

Theorem 1.1. Suppose that a polar space P of rank n contains a t-Steiner system with 1<t<n.
Then one of the following holds

(1) t = 2 and P = 2A2n or 2Dn+1 for odd n,

(2) t = n− 1 and P = 2A2n or 2Dn+1 for q ⩾ 3, or P = Dn.

Regarding the possible cases that remain in Theorem 1.1, we conjecture that, if a polar
space P of rank n contains a t-Steiner system with 1 < t < n, then t = n − 1 and P = Dn.
The special cases (n, t) = (4, 2) and (n, t) = (5, 3) in Theorem 1.1 were recently proved
in [CMPS22] and the results in the cases t = n − 1 are essentially known (see Case (C1) in
Section 4). All other cases appear to be new. In fact we prove a result on packings that is
stronger than Theorem 1.1 in most cases.

An elementary counting argument shows that the size of a t-Steiner system in a polar space
necessarily equals the total number of totally isotropic t-spaces divided by the number of t-spaces
contained in a generator. Our proof of Theorem 1.1 is based on the fact that a set Y of generators
in a polar space is a t-Steiner system if and only if Y has the correct size and dimU∩W < t for all
distinctU,W ∈ Y . Accordingly we define a d-code in a polar spaceP to be a set of generators Y
of P , such that n− dimU ∩W ⩾ d for all distinct U,W ∈ Y (here (U,W ) 7→ n− dimU ∩W
agrees with the subspace metric used by coding theorists). Our main result, Theorem 3.1 and
Corollary 3.4, is a bound on the size of a d-code in a polar space, which is sharp up to a constant
factor in many cases. The bound is obtained using the concept of an association scheme and
the powerful method of linear programming. It is then not hard to show that in most cases the
bound is too small for a t-Steiner system to exist, eventually leading to Theorem 1.1. Numerical
evidence suggests that in all cases remaining in Theorem 1.1 the linear programming bound
in the corresponding association scheme equals the size of the corresponding putative Steiner
system. Hence it seems that entirely new techniques are required to deal with the remaining
cases.
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We organize this paper as follows. In Section 2 we recall relevant facts about association
schemes in general and about association schemes arising from polar spaces in particular. In
Section 3 we obtain bounds on the size of d-codes and in Section 4 we show that, in most cases,
these bounds are smaller than the size of a corresponding Steiner system. Some corner cases
will be treated separately.

2. The association schemes of polar spaces

We start this section with some basic facts about association schemes. For further information,
we refer to [Del73], [BI84], [BCN89], and [BBIT21]. We will then introduce polar spaces and
their associated association schemes.

A (symmetric) association scheme (X, (Ri)) with n classes is a finite set X together
with n+ 1 nonempty relations R0, R1, . . . , Rn such that

(A1) R0 is the identity relation and all n+ 1 relations partition X ×X ,

(A2) each relation is symmetric, that is, if (x, y) ∈ Ri, then (y, x) ∈ Ri,

(A3) for every pair (x, y) ∈ Rk, the number of z ∈ X with (x, z) ∈ Ri and (z, y) ∈ Rj is a
constant pkij depending only on i, j, and k, but not on the particular choice of (x, y).

Let (X, (Ri)) be an association scheme with n classes. For each relation Ri, the adjacency
matrix of the graph (X,Ri) is denoted by Di (with D0 being the identity matrix). The complex
vector space spanned by the matricesD0, D1, . . . , Dn is a commutative matrix algebra of dimen-
sion n+ 1, called the Bose–Mesner algebra of the association scheme. There exists a unique
basis of minimal idempotent matrices E0(= 1/|X|J), E1, . . . , En for this algebra, where J de-
notes the all one matrix. A change of bases yields the existence of unique real numbers Pi(k)
and Qk(i) such that

Di =
n∑

k=0

Pi(k)Ek and Ek =
1

|X|

n∑
i=0

Qk(i)Di.

The numbers Pi(k) and Qk(i) are called P -numbers and Q-numbers of the association scheme
(X, (Ri)), respectively. Write vi = Pi(0) and µk = Qk(0), which are called valencies and
multiplicities of the association scheme, respectively. Indeed Pi(k) is an eigenvalue of the graph
(X,Ri), each column of Ek is a corresponding eigenvector, and the rank of Ek equals µk. In
particular vi is the valency of the graph (X,Ri). The P - and Q-numbers satisfy

µkPi(k) = viQk(i) for all i, k = 0, 1, . . . , n (2.1)
1

|X|

n∑
k=0

Pi(k)Qk(j) = δij for all i, j = 0, 1, . . . , n, (2.2)

where δij denotes the Kronecker δ-function.
An association scheme is called P -polynomial with respect to the ordering R0, R1, . . . , Rn

if there exist polynomials fi ∈ R[x] of degree i and distinct real numbers y0, y1, . . . , yn such that
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Pi(k) = fi(yk) for all i, k = 0, 1, . . . , n. Similarly an association scheme is calledQ-polynomial
with respect to the ordering E0, E1, . . . , En if there exist polynomials gk ∈ R[x] of degree k and
distinct real numbers z0, z1, . . . , zn such that Qk(i) = gk(zi) for all i, k = 0, 1, . . . , n.

Next we will introduce polar spaces. Let V be a vector space over a finite field with p el-
ements equipped with a nondegenerate form f . A subspace U of V is called totally isotropic
if f(u,w) = 0 for all u,w ∈ U , or in the case of a quadratic form, if f(u) = 0 for all u ∈ U .
A finite classical polar space with respect to a form f consists of all totally isotropic subspaces
of V . It is well known that all maximal (with respect to the dimension) totally isotropic spaces in
a polar space have the same dimension, which is called the rank of the polar space. The maximal
totally isotropic spaces are called generators. A finite classical polar space P has the parame-
ter e if every (n−1)-space in P lies in exactly pe+1+1 generators. Up to isomorphism, there are
exactly six finite classical polar spaces of rank n, which are listed together with their parameter e
in Table 2.1. We refer to [Cam92], [Tay92], [BCN89, § 9.4], [Bal15, § 4.2], and [HT16, § 5.1]
for further background on polar spaces. (We emphasize that, in this paper, the term dimension is
used in the usual sense as vector space dimension, not as projective dimension sometimes used
by geometers.)

name form type group dim(V ) p e

Hermitian Hermitian 2A2n−1 U(2n, q2) 2n q2 −1/2

Hermitian Hermitian 2A2n U(2n+ 1, q2) 2n+ 1 q2 1/2

symplectic alternating Cn Sp(2n, q) 2n q 0

hyperbolic quadratic Dn O+(2n, q) 2n q −1

parabolic quadratic Bn O(2n+ 1, q) 2n+ 1 q 0

elliptic quadratic 2Dn+1 O−(2n+ 2, q) 2n+ 2 q 1

Table 2.1: List of all six finite classical polar spaces.

Let X consist of all generators of a polar space of rank n and define the relations

Ri = {(U,W ) ∈ X ×X : dim(U ∩W ) = n− i} for i = 0, 1, . . . , n. (2.3)

Then (X, (Ri)) is an association scheme with n classes (see [BI84, § 3.6], [BCN89, § 9.4],
[BBIT21, § 6.4], for example). It is well known that

|X| =
n∏

i=1

(1 + pi+e). (2.4)

Defining the q-binomial coefficient [
n

k

]
q

=
k∏

j=1

qn−j+1 − 1

qj − 1
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for nonnegative integers n, k, the P -numbers of (X, (Ri)) are given by [Sta80, (8.1)], [Sta81,
Prop. 2.4]

Pi(k) = vi

[
n

k

]−1

p

i∑
ℓ=0

(−1)ℓ
[
n− i

k − ℓ

]
p

[
i

ℓ

]
p

pℓ(ℓ−i−e−1), (2.5)

where
vi = p(

i+1
2 )+ie

[
n

i

]
p

(2.6)

are the valencies.1 Note that (2.3) and (2.5) impose an ordering on E0, E1, . . . , En, which we
refer to as the standard ordering.

The P -number Pi(k), given in (2.5), is a polynomial of degree i in p−k, known as a q-
Krawtchouk polynomial. The association scheme (X, (Ri)) is thus P -polynomial with respect
to the ordering R0, R1, . . . , Rn. Moreover it is well known that (X, (Ri)) is also Q-polynomial
with respect to the ordering E0, E1, . . . , En.

We shall need the P -numbers also in a different form. We define the q-Pochhammer symbol

(a; q)0 = 1, (a; q)n =
n−1∏
i=0

(1− aqi)

for a positive integer n and a real number a and the q-hypergeometric function rϕs by

rϕs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣ q, z) =
∞∑
ℓ=0

(a1; q)ℓ · · · (ar; q)ℓ
(b1; q)ℓ · · · (bs; q)ℓ

(−1)(1+s−r)ℓq(1+s−r)(ℓ2) zℓ

(q; q)ℓ
.

The P -numbers can now be written as [Sta80, (8.1)]

Pi(k) = vi 3ϕ2

(
p−k, p−i,−p−n−e−1+k

0, p−n

∣∣∣∣ p; p) . (2.7)

We close this section by noting that Dn gives rise to another association scheme, called the
bipartite half of Dn, in the following way. Let X be the set of generators of Dn and define two
generators in X to be equivalent if the dimension of their intersection has the same parity as n.
This induces two equivalence classes, X1 and X2, and each pair (Xi, (R2j)0⩽j⩽⌊n

2
⌋) is a P - and

Q-polynomial association scheme [BCN89, § 9.4.C], denoted by 1
2
Dn. Since e = −1 for Dn,

this also shows that X1 and X2 are (n− 1)-Steiner systems in Dn.

3. Codes in polar spaces

Let (X, (Ri)) be a P - and Q-polynomial scheme with n classes. We say that a subset Y of X is
a d-code if no pair (x, y) ∈ Y × Y lies in one of the relations R1, . . . , Rd−1. In particular, if X

1It should be noted that p is assumed to be odd in [Sta80] and [Sta81]. However all parameters of the association
scheme, as well as Pi(k) are polynomials in p, and hence the expression for Pi(k) holds for all p.
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is the set of generators in a polar space of rank n and Ri is given in (2.3), then a subset Y of X
is a d-code if n− dimU ∩W ⩾ d for all distinct U,W in Y .

The main goal of this section is to obtain upper bounds on the size of d-codes in the latter
cases. To do so, we associate with each subset Y of X two tuples of rational numbers. The inner
distribution of Y is the tuple (A0, A1, . . . , An), where

Ai =
|(Y × Y ) ∩Ri|

|Y |
.

We then have A0 = 1 and
∑n

i=0Ai = |Y |. Note that A1 = · · · = Ad−1 = 0 if and only if Y is a
d-code. The dual distribution of Y is the tuple (A′

0, A
′
1, . . . , A

′
n), where

A′
k =

n∑
i=0

Qk(i)Ai. (3.1)

Since Q0(i) = 1, we obtain A′
0 = |Y |. Moreover we have

A′
k ⩾ 0 for all k = 0, 1, . . . , n (3.2)

(see [Del73, Thm. 3.3], for example).
To derive bounds for d-codes in polar spaces, we begin with bounds for d-codes in 2A2n−1

and the bipartite half 1
2
Dn of Dn in Theorem 3.1. We proceed in this way because by taking

a different Q-polynomial ordering for 2A2n−1 and studying 1
2
Dn instead of Dn, we can express

the resulting Q-numbers by q-Hahn polynomials. This allows us to treat 2A2n−1 and 1
2
Dn in a

unified way. We will then use the bounds in 2A2n−1 and 1
2
Dn to establish bounds for codes in

the remaining polar spaces. We write

(b, c) =


(−q,−1) for 2A2n−1

(q2, 1/q) for 1
2
Dm if m is even

(q2, q) for 1
2
Dm if m is odd,

(3.3)

and (x)i = (x; b)i in what follows.

Theorem 3.1. Let X be the set of generators in 2A2n−1 or 1
2
Dm, where n = ⌊m/2⌋ in the case

of 1
2
Dm, and let Y be a d-code in X with 1 ⩽ d ⩽ n. Then we have

|Y | ⩽ |X|(q)d−1

(qcbn)d−1

,

where d is required to be odd in the case of 2A2n−1. For even d in 2A2n−1, we have

|Y | ⩽ |X|(q)d−1

(qcbn)d−1

(bn−d+2 − 1) + q bn+d−2−1
qbd−2−1

(bn−d+1 − 1)

(bn−d+2 − 1) + q bn+d−2−1
bn+d−1−1

(bn−d+1 − 1)
.

Moreover these bounds also hold for d-codes in association schemes with the same P - and Q-
numbers as 2A2n−1 or 1

2
Dm.
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To prove Theorem 3.1, we first write the Q-numbers of 2A2n−1 and 1
2
Dm as q-Hahn polyno-

mials. There exist different definitions for these polynomials. We will use the definition given
in [KLS10, § 14.6]. The q-Hahn polynomial of degree k in the variable q−x with the parameters
n,A,B,C is given by

3ϕ2

(
q−x, q−k, Aqk

q−n, C−1B−n

∣∣∣∣ q; q) =
∑
ℓ⩾0

(q−x; q)ℓ(q
−k; q)ℓ(Aq

k; q)ℓ
(q−n; q)ℓ(C−1B−n; q)ℓ(q; q)ℓ

qℓ

for k = 0, 1, . . . , n.
The association scheme 2A2n−1 is Q-polynomial with respect to two different orderings: the

standard ordering E0, E1, . . . , En and E0, En, E1, En−1, E2, En−2, . . . [CS86]. We continue to
use Pi(k) and Qk(i) to denote the P - and Q-numbers with respect to the standard ordering and
we use P ′

i (k) and Q′
k(i) to denote the P - and Q-numbers with respect to the second ordering.

Then Pi(k) is given in (2.5) and P ′
i (k) is given by [CS86]

P ′
i (2k) = Pi(k) for i = 0, . . . , n and k = 0, 1, . . . ,

⌊n
2

⌋
,

P ′
i (2k + 1) = Pi(n− k) for i = 0, . . . , n and k = 0, 1, . . . ,

⌊n− 1

2

⌋
.

By applying the quadratic transformation for hypergeometric functions (see [KLS10, (1.13.28)],
for example)

4ϕ3

(
A2, B2, C,D

ABq1/2,−ABq1/2,−CD

∣∣∣∣ q; q) = 4ϕ3

(
A2, B2, C2, D2

A2B2q,−CD,−CDq

∣∣∣∣ q2; q2) (3.4)

to Pi(k) and Pi(n− k) given in (2.7), we obtain

P ′
i (k) = vi 3ϕ2

(
(−q)−i, (−q)−k, (−q)−2n+k−1

(−q)−n,−(−q)−n

∣∣∣∣−q;−q

)
.

Next we treat 1
2
Dm. In this case we still denote by Pi(k) and Qk(i) the P - and Q-numbers

of Dm and by P ′
i (k) and Q′

k(i) the P - and Q-numbers of 1
2
Dm. As in Theorem 3.1,

put n = ⌊m/2⌋. From [CS86] we find that

P ′
i (k) = P2i(k) for i, k = 0, 1, . . . , n.

Applying (3.4) to P2i(k) given in (2.7) yields

P ′
i (k) = v2i 3ϕ2

(
q−2i, q−2k, q−2m+2k

q−m, q−m+1

∣∣∣∣ q2; q2) .

In summary, the P - and Q-numbers of 2A2n−1 and 1
2
Dm are given by

P ′
i (k) = v′i 3ϕ2

(
b−i, b−k, q−1c−1b−2n+k

b−n, c−1b−n

∣∣∣∣ b; b) (3.5)
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2A2n−1
1
2
Dm

v′i qi
2[n

i

]
q2

q(
2i
2)
[
m
2i

]
q

µ′
k

µk/2 for k even
µn−(k−1)/2 for k odd

µk

Table 3.1: Valencies and multiplicities occurring in (3.5) and (3.6).

and

Q′
k(i) = µ′

k 3ϕ2

(
b−i, b−k, q−1c−1b−2n+k

b−n, c−1b−n

∣∣∣∣ b; b) , (3.6)

where the parameters b and c are stated in (3.3) and the remaining values are given in Table 3.1.
Hence in both cases Q′

k(i) is given by the q-Hahn polynomial of degree k in b−i.
Before we prove Theorem 3.1, we record the following identity whose proof is deferred to

the appendix.

Lemma 3.2. Let X be the set of generators in 2A2n−1 or 1
2
Dm, where we put n = ⌊m/2⌋ in the

latter case. Let Q′
k(i) be given in (3.6). Then we have

n∑
k=0

bk(n−j)

[
n− k

n− j

]
b

(qcbn−k)n−j

(q)n−j

Q′
k(i) = |X|

[
n− i

j

]
b

for all i, j = 0, 1, . . . , n.

Now we prove Theorem 3.1.

Proof of Theorem 3.1. Suppose that Y is a d-code in 2A2n−1 or 1
2
Dm. Let (A0, A1, . . . , An) and

(A′
0, A

′
1, . . . , A

′
n) be the inner and dual distribution of Y , respectively, in terms of the orderings

imposed by the P - and Q-numbers given in (3.5) and (3.6). From (3.1) and Lemma 3.2 we
obtain for all j = 0, 1, . . . , n,

j∑
k=0

bk(n−j)

[
n− k

n− j

]
b

(qcbn−k)n−j

(q)n−j

A′
k =

n∑
i=0

Ai

j∑
k=0

bk(n−j)

[
n− k

n− j

]
b

(qcbn−k)n−j

(q)n−j

Q′
k(i)

= |X|
n∑

i=0

Ai

[
n− i

j

]
b

. (3.7)

First assume that d is odd in the case of 2A2n−1. Since A1 = · · · = Ad−1 = 0 and
[

n−i
n−d+1

]
b
= 0

for i ⩾ d, we find from (3.7) with j = n− d+ 1 that

n−d+1∑
k=0

bk(d−1)

[
n− k

d− 1

]
b

(qcbn−k)d−1

(q)d−1

A′
k = |X|

[
n

d− 1

]
b

A0.
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Since A0 = 1 and A′
0 = |Y |, we obtain

n−d+1∑
k=1

bk(d−1)

[
n− k

d− 1

]
b

(qcbn−k)d−1

(q)d−1

A′
k =

[
n

d− 1

]
b

(
|X| − (qcbn)d−1

(q)d−1

|Y |
)
. (3.8)

Recall that A′
k ⩾ 0. For 2A2n−1, the sign of (qcbn−k)d−1/(q)d−1 is (−1)(d−1)(n−k+1) and the

sign of
[
n−k
d−1

]
b

is (−1)(d−1)(n−k−d+1). Since d is odd, both signs are thus positive. Hence all
summands on the left-hand side of (3.8) are nonnegative implying

|Y | ⩽ |X|(q)d−1

(qcbn)d−1

,

as required.
Now consider 2A2n−1 for even d. Put

xk = bk(d−1)+d−2 (b
n−k+1)d−1(b

n)d−2

(q)d−1(q)d−2

[
n− k

d− 1

]
b

[
n− 1

d− 2

]
b

,

yk = bk(d−2)+d−1 (b
n−k+1)d−2(b

n)d−1

(q)d−2(q)d−1

[
n− k

d− 2

]
b

[
n− 1

d− 1

]
b

.

Use (3.7) with j = n− d+ 1 and j = n− d+ 2 to obtain

n−d+2∑
k=0

(xk − yk)A
′
k

= |X|bd−2 (b
n)d−2

(q)d−2

([
n− 1

d− 2

]
b

[
n

d− 1

]
b

+ q

[
n− 1

d− 1

]
b

[
n

d− 2

]
b

bn+d−2 − 1

qbd−2 − 1

)
. (3.9)

Next we show that the summands on the left-hand side are nonnegative. The sign of
[
m
ℓ

]
b

is (−1)ℓ(m−ℓ) and the sign of (bm)ℓ/(q)ℓ is (−1)mℓ. Hence we have sign(xk) = (−1)k and
sign(yk) = −1, which implies that the left-hand side of (3.9) equals

n−d+2∑
k=0

((−1)k|xk|+ |yk|)A′
k.

From
xk

yk
= bk−1 (b

n−k−d+2 − 1)(bn−k+d−1 − 1)

(bn+d−2 − 1)(bn−d+1 − 1)
,

we find that |xk| ⩽ |yk| for all k ⩾ 1. Therefore the left-hand side of (3.9) can be bounded from
below by (x0 − y0)A

′
0, which is also positive. Since A′

0 = |Y |, we thus find from (3.9) that

|Y | ⩽
|X|bd−2 (b

n)d−2

(q)d−2

([
n−1
d−2

]
b

[
n

d−1

]
b
+ q
[
n−1
d−1

]
b

[
n

d−2

]
b

bn+d−2−1
qbd−2−1

)
(
bd−2 (b

n+1)d−1(bn)d−2

(q)d−1(q)d−2

[
n

d−1

]
b

[
n−1
d−2

]
b
− bd−1 (b

n+1)d−2(bn)d−1

(q)d−2(q)d−1

[
n

d−2

]
b

[
n−1
d−1

]
b

) .
We can now deduce the second inequality of the theorem after elementary manipulations. This
completes the proof.
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In what follows we use Theorem 3.1 to obtain bounds for d-codes in the remaining polar
spaces 2A2n, Bn, Cn, Dn, and 2Dn+1. To do so, we write

α(n, d) =

( n∏
i=1

(1 + q2i−1)

)( d−1∏
i=1

1 + (−q)i

1− (−q)n+i

)
ε(n, d),

where ε(n, d) = 1 for odd d and

ε(n, d) =
((−q)n−d+2 − 1) + q (−q)n+d−2−1

q(−q)d−2−1
((−q)n−d+1 − 1)

((−q)n−d+2 − 1) + q (−q)n+d−2−1
(−q)n+d−1−1

((−q)n−d+1 − 1)

for even d, and

β(m, d) =


(

m−1∏
i=1

(1 + qi)

)(
d−1∏
i=1

1− q2i−1

1− qm+2i−2

)
for even m(

m−1∏
i=1

(1 + qi)

)(
d−1∏
i=1

1− q2i−1

1− qm+2i−1

)
for odd m.

Observe that, using (2.4), the bounds in Theorem 3.1 for 2A2n−1 and 1
2
Dm equal α(n, d)

and β(m, d), respectively.
We make the following observation about d-codes in Dn if d is even.

Proposition 3.3. Every d-code in Dn with even d and 2 ⩽ d ⩽ n induces a d
2
-code in 1

2
Dn of

the same size.

Proof. Recall that the set of generators in Dn is partitioned into two equivalence classes X1

and X2, where two generators lie in the same class if and only if the dimension of their intersec-
tion has the same parity as n. Let Y be a d-code in Dn with even d and 2 ⩽ d ⩽ n. For each
y ∈ Y , choose an (n− 1)-space contained in y. Since d > 1, every two such (n− 1)-spaces are
distinct and the dimension of their intersection is at most n − d. Since e = −1 for Dn, each of
these (n − 1)-spaces lies in exactly two generators—one from X1 and one from X2. Let Ŷ be
the set of all generators in X1 corresponding to the chosen (n− 1)-spaces. Then we have

dim(x ∩ y) ⩽ n− d

for all x, y ∈ Ŷ since dim(x ∩ y) must have the same parity as n. Hence Ŷ ⊆ X1 is a d
2
-code

in 1
2
Dn with |Y | = |Ŷ |, as required.

We can now derive bounds for codes in all polar spaces.

Corollary 3.4. Let P be a polar space of rank n and let Y be a d-code in P with 1 ⩽ d ⩽ n.
Put δ = ⌈d/2⌉.

(a) If P = 2A2n−1, then |Y | ⩽ α(n, d).

(b) If P = 2A2n, then |Y | ⩽ α(n+ 1, d).
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(c) If P = Bn or Cn, then |Y | ⩽ β(n+ 1, δ).

(d) If P = Dn and d is odd, then |Y | ⩽ 2β(n, δ).

(e) If P = Dn and d is even, then |Y | ⩽ β(n, δ).

(f) If P = 2Dn+1, then |Y | ⩽ β(n+ 2, δ).

Proof. The bound in (a) follows directly from Theorem 3.1 by using (2.4).
A d-code in Dn induces δ-codes in each of the two bipartite halves of Dn, so it is at most

twice as large as a δ-code in 1
2
Dn. Theorem 3.1 then gives (d) and Proposition 3.3 implies (e).

In the cases of Bn and Cn, one obtains a new association scheme with the classes

R0, R1 ∪R2, R3 ∪R4, . . . .

This new association scheme has the same P - and Q-numbers as 1
2
Dn+1 [IMU89]. Therefore

the size of a d-code in Bn or Cn is at most the upper bound for a δ-code in 1
2
Dn+1 given in

Theorem 3.1, which yields (c).
To establish the remaining cases (b) and (f), note that 2Dn+1 and 2A2n arise by intersect-

ingBn+1 and 2A2n+1, respectively, with a hyperplane. Hence 2Dn+1 can be embedded intoBn+1

and 2A2n can be embedded into 2A2n+1. Note that Bn+1 and 2A2n+1 are of rank n+ 1 and each
generator in 2Dn+1 or 2A2n becomes an n-space in Bn+1 or 2A2n+1 under these embeddings.
In Bn+1 and 2A2n+1, every n-space is contained in exactly pe+1+1 = q+1 generators. For each
embedded element of Y , we choose one of these q + 1 generators giving a subset Ỹ of Bn+1

or 2A2n+1. Then Ỹ is also a d-code and (c) implies (f) and (a) implies (b).

We also have the following more useful bounds on α(n, d) and β(n, d).

Lemma 3.5. For 1 ⩽ d ⩽ n, we have

α(n, d) <

{
14
5
qn(n−d+1) for odd d

14
5
qn(n−d+2) for even d,

(3.10)

and

β(n, d) <

{
5
2
q(n−1)(n−2d+2)/2 for even n

5
2
qn(n−2d+1)/2 for odd n.

(3.11)

To prove Lemma 3.5 we use the identity

x− 1

y − 1
⩽

x

y
for y ⩾ x > 1 (3.12)

and the following lemma.

Lemma 3.6. Let n ⩾ 1 and q ⩾ 2 be integers. Then we have
n∏

i=1

(
1 +

1

qi

)
<

5

2
,

n∏
i=1

(
1 +

1

q2i

)
<

7

5
and

n∏
i=1

(
1 +

1

q2i−1

)
< 2. (3.13)
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Proof. We use 1 + x < exp(x) to obtain
n∏

i=1

(
1 +

1

qi

)
<

(
1 +

1

q

)
exp

(
1

q(q − 1)

)
⩽

(
1 +

1

q

)
exp

(
1

q

)
.

Applying (1 + x) exp(x) < 5
2

for all x ∈ [0, 1
2
] yields the first inequality. Using a similar

approach gives us
n∏

i=1

(
1 +

1

q2i

)
< exp

(
1

q2 − 1

)
⩽ exp

(
1

3

)
<

7

5
,

and
n∏

i=1

(
1 +

1

q2i−1

)
< exp

(
q

q2 − 1

)
⩽ exp

(
2

3

)
< 2,

as required.

We can now prove Lemma 3.5.

Proof of Lemma 3.5. For β(n, d) and even n, use (3.12) and (3.13) to obtain

β(n, d) <

(
n−1∏
i=1

qi
(
1 +

1

qi

))
q(−n+1)(d−1)

⩽
5

2
q(n−1)(n−2d+2)/2.

The bound for β(n, d) and odd n can be obtained similarly. For α(n, d), we write

α(n, d) =

( n∏
i=1

(1 + q2i−1)

)( d−1∏
i=1

qi + (−1)i

qn+i − (−1)n+i

)
(−1)(n+1)(d−1)ε(n, d). (3.14)

We have

d−1∏
i=1

qi + (−1)i

qn+i − (−1)n+i
=


d−1
2∏

i=1

(q2i+1)(q2i−1−1)
(qn+2i−(−1)n)(qn+2i−1+(−1)n)

for odd d

qd−1−1
qn+d−1+(−1)n

d−2
2∏

i=1

(q2i+1)(q2i−1−1)
(qn+2i−(−1)n)(qn+2i−1+(−1)n)

for even d.

(3.15)

Using (3.12) and (3.13), we obtain for each r ⩾ 1,
r∏

i=1

(q2i + 1)(q2i−1 − 1)

(qn+2i − (−1)n)(qn+2i−1 + (−1)n)
⩽

r∏
i=1

(q2i + 1)(q2i−1 − 1)

(qn+2i + 1)(qn+2i−1 − 1)

⩽
r∏

i=1

q−2n

(
1 +

1

q2i

)
<

7

5
q−2nr.



combinatorial theory 3 (1) (2023), #11 13

Substitute into (3.15) to give

d−1∏
i=1

qi + (−1)i

qn+i − (−1)n+i
<

{
7
5
q−n(d−1) for odd d

7
5
q−n(d−2) qd−1−1

qn+d−1+(−1)n
for even d.

(3.16)

From (3.13) we have
n∏

i=1

(1 + q2i−1) =
n∏

i=1

q2i−1

(
1 +

1

q2i−1

)
< 2qn

2

. (3.17)

Substitute (3.16) and (3.17) into (3.14) to obtain

α(n, d) <

{
14
5
qn(n−d+1) for odd d

14
5
qn(n−d+2) qd−1−1

qn+d−1+(−1)n
(−1)(n+1)(d−1)ε(n, d) for even d.

(3.18)

For even d, we have

(−1)(n+1)(d−1)ε(n, d) =
q qn+d−2−(−1)n

qd−1−1
(qn−d+1 + (−1)n)− (−1)n(qn−d+2 − (−1)n)

(qn−d+2 − (−1)n) + q qn+d−2−(−1)n

qn+d−1+(−1)n
(qn−d+1 + (−1)n)

=
q (qn+d−2−(−1)n)(qn−d+1+(−1)n)

(qd−1−1)(qn−d+2−(−1)n)
− (−1)n

q (qn+d−2−(−1)n)(qn−d+1+(−1)n)
(qn+d−1+(−1)n)(qn−d+2−(−1)n)

+ 1

<
qn+d−1 + (−1)n

qd−1 − 1
, (3.19)

using (3.12), so that (3.18) gives the required bound for α(n, d).

We close this section by discussing the sharpness of the bounds in Corollary 3.4. For a vector
space V , let Pn(V ) be the set of n-spaces of V . Define a mapping

v : Fn×n
p → Pn(F2n

p )

A 7→
{(

x

Ax

)
: x ∈ Fn

p

}
.

It is well known [BCN89, § 9.5.E] that, after an appropriate choice of the form, v(A) is in 2A2n−1

if and only if A is Hermitian, v(A) is in Cn if and only A is symmetric and v(A) is in Dn if and
only if A is alternating, namely skew-symmetric with zero main diagonal (as before, p = q2

for 2A2n−1 and p = q otherwise). The mapping v satisfies

n− dim(v(A) ∩ v(B)) = rank(A−B)

for all A,B ∈ Fn×n
q , so in particular v is injective. Accordingly define a subset Z of Fn×n

q

to be a d-code if rank(A − B) ⩾ d for all distinct A,B ∈ Z. Such objects were studied
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in [Sch18], [Sch20], and [DG75], for Hermitian, symmetric, and alternating matrices, respec-
tively.

In particular from [Sch18] and the injection v we find that, for odd d, there exists a d-code Y
in 2A2n−1 satisfying |Y | = qn(n−d+1). In view of Lemma 3.5, this shows that the bound in
Corollary 3.4 (a) for odd d is sharp up to a constant factor. Likewise from [Sch20] we find that,
for odd d, there exists a d-code Y in Cn satisfying

|Y | =

{
q(n+1)(n−d+1)/2 for even n

qn(n−d+2)/2 for odd n,

showing that the bound in Corollary 3.4 (c) forP = Cn and odd d is sharp up to a constant factor.
Since Bn and Cn are isomorphic for even q (see [BBIT21, § 6.4], for example), the same is true
when P = Bn and q is even. From [DG75] we find that, for even d, there exists a d-code Y
in Dn satisfying

|Y | =

{
q(n−1)(n−d+2)/2 for even n and even q

qn(n−d+1)/2 for odd n.

Since a d-code is trivially also a (d − 1)-code, this shows that the bound in Corollary 3.4 (d)
and (e) is sharp up to a constant factor except possibly when n is even and q is odd. In all other
cases one can obtain constructions of d-codes in a similar fashion, showing that the remaining
bounds in Corollary 3.4 are met up to a small power of qn.

4. Nonexistence of Steiner systems in polar spaces

We now prove Theorem 1.1. The proof is split into the following cases:

(C1) t = n− 1 and P = 2A2n,
2Dn+1 for q = 2 or P = 2A2n−1, Bn, Cn,

(C2) P = Dn with 1 < t < n− 1,

(C3) P = Bn or Cn with t = 2 and even n or 2 < t < n− 1,

(C4) P = 2Dn+1 with t ∈ {2, 3} and odd n or 3 < t < n− 1, but (n, t) ̸∈ {(7, 4), (8, 5)},

(C5) P = 2A2n−1 with 1 < t < n− 1,

(C6) P = 2A2n with t = 2 and even n, or 2 < t < n− 1 except for (n, t) = (6, 3),

(C7) t = 2 and P = Bn or Cn for odd n > 3 or P = 2Dn+1 for even n > 3,

(C8) P = 2Dn+1 with t = 3 and even n > 4,

(C9) P = 2Dn+1 with (n, t) = (7, 4) or (8, 5), or P = 2A2n with (n, t) = (6, 3).

The case (C1) is essentially known [Van11, p. 160] and a proof is sketched below for com-
pleteness. The cases (C2)–(C6) will follow from Theorem 3.1 and Corollary 3.4. The cases
(C7)–(C9) are some corner cases, which need special treatment.

We begin with a sketch for a proof of (C1).
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Proof of (C1). By taking the elements of an (n−1)-Steiner system in a polar space of rank n that
contain a fixed isotropic 1-space v and taking the quotient by v, one obtains an (n− 2)-Steiner
system in a polar space of the same type but rank n− 1. This reduces the existence question to
2-Steiner systems in rank 3 or 1-Steiner systems, namely spreads, in rank 2. There are no spreads
in B2 for odd q, 2A4 for q = 2, and 2A5 for all q [HT16, § 7.4] and there are no 2-Steiner systems
in 2D4 for q = 2 [Pan98] and C3 for all q [Tho96], [CP03]. Since Bn and Cn are isomorphic
if q is even (see [BBIT21, § 6.4], for example), there are also no 2-Steiner systems in B3 for
even q.

To prove (C2)–(C6), we recall that the number of totally isotropic t-spaces in a polar space
of rank n is [

n

t

]
p

t−1∏
i=0

(1 + pn−i+e)

(see [BCN89, Lem. 9.4.1], for example). Since every generator contains exactly
[
n
t

]
p

subspaces
of dimension t, the size of a t-Steiner system is thus given by

t−1∏
i=0

(1 + pn−i+e). (4.1)

If Y is a t-Steiner system, then the intersection of two distinct members of Y can have dimension
at most t−1, and so a t-Steiner system is an (n− t+1)-code. Henceforth we write d = n− t+1
and let B denote the corresponding bound of a d-code in Corollary 3.4. We denote the size of
an (n− d+ 1)-Steiner system by S, hence

S =
n−d∏
i=0

(1 + pn−i+e), (4.2)

and in particular
S ⩾ p

1
2
(n−d+1)(n+d+2e). (4.3)

We set R = B/S and show that R < 1.

Proof of (C2). In this case we assume that P = Dn and 2 < d < n. Use Corollary 3.4 (d)
and (e), (4.3), and (3.11) to obtain

R <


5
2
q

1
2
(d−2)(d−n) for even n and even d

5q
1
2
(d−1)(d−n−1) for even n and odd d

5
2
q

1
2
(d−2)(d−n−1) for odd n and even d

5q
1
2
(d−1)(d−n−2) for odd n and odd d.

(4.4)

If n and d have the same parity, then (4.4) implies R < 1. If n and d have a different parity,
then (4.4) implies R < 1, except when (n, d) = (4, 3). In the latter case, Corollary 3.4 (d)
and (4.2) give

R =
2

1 + q2
< 1.

This completes the proof.
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Proof of (C3). In this case we assume that P = Bn or Cn and 2 < d < n − 1 or d = n − 1 is
odd. Use Corollary 3.4 (c), (4.3), and (3.11) to obtain

R <


5
2
q

1
2
(d(d−1)−(n+1)(d−2)) for even n and even d

5
2
q

1
2
(d(d+1)−(n+1)(d−1)) for even n and odd d

5
2
q

1
2
(d(d−1)−n(d−2)) for odd n and even d

5
2
q

1
2
(d(d+1)−n(d−1)) for odd n and odd d.

It is the readily verified that R < 1, except if (i) d = 4 and n = 6, 7, or (ii) d = 3 and n = 6, 7,
or (iii) d = n − 2 is odd, or (iv) d = n − 1 is odd. For (i) and (ii), Corollary 3.4 (c) and (4.2)
imply that R equals (1 + q3)/(1 + q4) and 1/(1 + q4), respectively, giving R < 1 in both cases.
For (iii), Corollary 3.4 (c) and (4.2) imply that

R =

( n−2∏
i=1

(1 + qi)

)( n
2
−1∏

i=1

1− q2i−1

(1− q
n
2
+i)(1 + q

n
2
+i)

)

=
1

1 + qn−1

( n
2∏

i=1

(1 + qi)

)( n
2
−1∏

i=1

1− q2i−1

1− q
n
2
+i

)

<
5

2

q

1 + qn−1
< 1,

using (3.12), (3.13), and n ⩾ 4. Similarly, for (iv), we deduce

R <
5

2

q

1 + qn−2
< 1,

which completes the proof.

Proof of (C4). In this case we assume that P = 2Dn+1 and 2 < d < n− 2 or d = n− 2 is odd
or d = n − 1 is even, but (n, d) ̸∈ {(7, 4), (8, 4)}. Use Corollary 3.4 (e), (4.3), and (3.11) to
obtain

R <


5
2
q

1
2
(d(d+1)−(n+1)(d−2)) for even n and even d

5
2
q

1
2
(d(d+1)−(n+1)(d−1)) for even n and odd d

5
2
q

1
2
(d(d+1)−(n+2)(d−2)) for odd n and even d

5
2
q

1
2
(d(d+1)−(n+2)(d−1)) for odd n and odd d.

Then R < 1, except for (i) d = 3 and n = 5, 6, or (ii) d = 4 and n = 9, 10, or (iii) d = 6
and n = 9, 10. Corollary 3.4 (e) and (4.2) imply that, in the respective cases, R equals

1 + q3

1 + q4
,

(1 + q3)(1− q8)

1− q12
,

(1− q8)(1 + q5)

1− q14
.

In all cases we have R < 1, as required.
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Proof of (C5). In this case we assume that P = 2A2n−1 with 2 < d < n. Use Corollary 3.4 (a),
(4.3), and (3.10) to obtain

R <

{
14
5
q(d−1)(d−n−1) for odd d

14
5
q(d−1)(d−n−1)+n for even d.

Then R < 1, except for (n, d) = (5, 4). In the latter case we find from Corollary 3.4 (a), (3.14),
(4.2), and (3.19) that

R <
q8 − 1

q3 − 1

3∏
i=1

(q2i−1 + 1)
qi + (−1)i

q5+i + (−1)i

=
(q4 − 1)(q5 + 1)

(q7 + 1)(q3 − 1)
⩽ 2q−1 ⩽ 1,

as required.

Proof of (C6). In this case we assume that P = 2A2n with 2 < d < n− 1 or d = n− 1 is odd,
where the case (n, d) = (6, 4) is excluded. Use Corollary 3.4 (b), (4.3), and (3.10) to obtain

R <

{
14
5
q(d−1)(d−n−2)+2d−1 for odd d

14
5
qd(d−n−1)+2n+2 for even d.

(4.5)

For odd d, it follows R < 1, except when (n, d) = (4, 3). In the latter case we find from
Corollary 3.4 (b) and (4.2) that

R =
(q4 − 1)(q5 + 1)

(q3 − 1)(q7 + 1)
<

q2 + q−3

q3 − 1
< 1.

If d is even, then (4.5) implies R < 1, except when (n, d) = (8, 6) (recall that we excluded
(n, d) = (6, 4)). In this case we find from Corollary 3.4 (b), (3.14), and (4.2) that

R =

( 6∏
i=1

(1 + q2i−1)

)( 4∏
i=1

qi + (−1)i

q9+i + (−1)i

)
q5 − 1

q14 − 1
ε(9, 6)

with

ε(9, 6) =
q5 + 1 + q q13+1

q5−1
(q4 − 1)

q5 + 1 + q q13+1
q14−1

(q4 − 1)

=
q14 − 1

q5 − 1

q18 − q14 + q10 + q5 − q − 1

q19 + q18 − q − 1

<
q14 − 1

q5 − 1

1

q
.



18 Kai-Uwe Schmidt, Charlene Weiß

This gives

R <
1

q

( 6∏
i=1

(1 + q2i−1)

)( 4∏
i=1

qi + (−1)i

q9+i + (−1)i

)
=

1

q

(q8 − 1)(q7 + 1)(q9 + 1)

(q5 − 1)(q6 + 1)(q13 − 1)

< q−3 q
7 + 1

q5 − 1
< 1,

using (3.12), which completes the proof.

Now it remains to prove the corner cases (C7)–(C9). In these cases we show that the dual
distribution of the Steiner system has a negative entry, which contradicts (3.2). In what follows,
all inner and dual distributions (in particular those in 2A2n−1) are determined with respect to the
standard orderings imposed by (2.3) and (2.5). We require the following result on the inner and
dual distributions of t-Steiner systems.

Proposition 4.1. Let X be the set of generators in a polar space of rank n, let t be an integer
satisfying 1 ⩽ t ⩽ n, and suppose that Y is a t-Steiner system in X . Let (Ai) and (A′

k) be the
inner distribution and dual distribution of Y , respectively. Then we have

An−i =
t−1∑
j=i

(−1)j−ip(
j−i
2 )
[
j

i

]
p

[
n

j

]
p

(
t−1∏
ℓ=j

(1 + pn−ℓ+e)− 1

)

for all i = 0, 1, . . . , n− 1 and A′
1 = A′

2 = · · · = A′
t = 0.

To prove Proposition 4.1 we use the following counterpart of Lemma 3.2 for the Q-numbers
of the association scheme of polar spaces, for which we give a proof in the appendix.

Lemma 4.2. Let X be the set of generators in a polar space of rank n and let Qk(i) be the
corresponding Q-numbers given by (2.5) and (2.1). Then we have

n∑
k=0

pk(n−j)

[
n− k

n− j

]
p

n−j∏
ℓ=1

(1 + pℓ−k+e)Qk(i) = |X|
[
n− i

j

]
p

for all i, j = 0, 1, . . . , n.

We now prove Proposition 4.1.

Proof of Proposition 4.1. From (3.1) and Lemma 4.2 we find that, for all j ⩾ 0,

j∑
k=0

A′
k p

k(n−j)

[
n− k

n− j

]
p

n−j∏
ℓ=1

(1 + pℓ−k+e) = |X|
n∑

i=0

Ai

[
n− i

j

]
p

. (4.6)
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Since Y is an (n− t+1)-code, we have A0 = 1 and A1 = · · · = An−t = 0 and therefore obtain,
by setting j = t in (4.6),

t∑
k=0

A′
k p

k(n−t)

[
n− k

n− t

]
p

n−t∏
ℓ=1

(1 + pℓ−k+e) = |X|
[
n

t

]
p

.

From A′
0 = |Y | we find that

t∑
k=1

A′
k p

k(n−t)

[
n− k

n− t

]
p

n−t∏
i=1

(1 + pℓ−k+e) =

[
n

t

]
p

(
|X| − |Y |

n−t∏
ℓ=1

(1 + pℓ+e)

)
.

From the expression (2.4) for |X| and the expression (4.1) for |Y |, we see that the right-hand
side is zero. Since A′

k ⩾ 0 by (3.2), we conclude A′
1 = A′

2 = · · · = A′
t = 0. Moreover (4.6)

simplifies to [
n

j

]
p

n−j∏
ℓ=1

(1 + pℓ+e)|Y | = |X|

([
n

j

]
p

+
n∑

i=n−t+1

Ai

[
n− i

j

]
p

)

for j = 0, 1, . . . , t− 1. Using (2.4) and the expression (4.1) for |Y | again, we obtain

t−1∑
i=0

An−i

[
i

j

]
p

=

[
n

j

]
p

(
t−1∏
ℓ=j

(1 + pn−ℓ+e)− 1

)
.

By the inversion formula

k∑
j=i

(−1)j−iq(
j−i
2 )
[
j

i

]
q

[
k

j

]
q

= δik (4.7)

for nonnegative integers i, k (which can be deduced from the q-binomial theorem, for example),
we obtain the desired expression for An−i.

We now prove (C7)–(C9). Henceforth we denote by (Ai) and (A′
k) the inner and dual distri-

bution, respectively, of a putative t-Steiner system Y .

Proof of (C7). We now assume that t = 2 and P = Bn or Cn for odd n > 3 or P = 2Dn+1

for even n > 3. We will show that A′
n−1 < 0 in the first case and A′

n < 0 in the second case.
By (3.1) and (2.1) we have

A′
k

µk

= 1 +
Pn−1(k)

vn−1

An−1 +
Pn(k)

vn
An.

By Proposition 4.1 we have

An−1 = qn−1+e

[
n

1

]
q

and An = (qn+e + 1)(qn−1+e + 1)−
[
n

1

]
q

qn−1+e − 1.
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From (2.5) and (2.6) we find for Bn and Cn that

Pn−1(n− 1)

vn−1

=

[
n

1

]−1

q

(
q−n+1 − q−2n+4

[
n− 1

1

]
q

)
and

Pn(n− 1)

vn
= q−2n+2,

and for 2Dn+1 that

Pn−1(n)

vn−1

= −q−2n+2 and
Pn(n)

vn
= q−2n.

Here we have crucially used the assumed parity of n. For Bn and Cn, we then obtain

A′
n−1

µn−1

= 2− qn − 1

(q − 1)qn−1
− 1

q2n−2
− qn−1 − 1

(q − 1)qn−3
+

(qn + 1)(qn−1 + 1)

q2n−2
.

For n > 3, we have

2− qn − 1

(q − 1)qn−1
− 1

q2n−2
=

q2n−1 − 2q2n−2 + qn−1 − q + 1

(q − 1)q2n−2

<
q2n−1 − 2qn+1 + qn−1 − q + 1

(q − 1)q2n−2

=
qn−1 − 1

(q − 1)qn−3
− (qn + 1)(qn−1 + 1)

q2n−2

and thereforeA′
n−1 < 0 ifP = Bn orCn, which completes the proof in the first case. For 2Dn+1,

we obtain

A′
n

µn

= 1− qn − 1

(q − 1)qn
− 1

q2n
− (qn − 1)q2

(q − 1)qn
+

(1 + qn+1)(1 + qn)

q2n
.

For n > 2, we have

1− qn − 1

(q − 1)qn
− 1

q2n
=

q2n+1 − 2q2n + qn − q + 1

(q − 1)q2n

<
q2n+1 − 2qn+2 + qn − q + 1

(q − 1)q2n

=
(qn − 1)q2

(q − 1)qn
− (1 + qn+1)(1 + qn)

q2n
,

and therefore A′
n < 0 in the case P = 2Dn+1. This completes the proof.

Proof of (C8). We now assume P = 2Dn+1 for t = 3 and even n > 4. As in (C7) we compute

A′
n−1(q − 1)2(q + 1)

2µn−1

= −q(q + 1)(1− q2−n)(1− q4−n) + q5−3n(1 + q−2),

from which it is readily verified that A′
n−1 < 0, as required.
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Proof of (C9). As in (C7) we compute the following. For P = 2D8 and t = 4, we have

A′
6

µ6

= −2q−5(q + 1)2(q2 + 1)(q3 + q + 1) < 0,

for 2D9 and t = 5, we have

A′
7

µ7

= −2q−5(q + 1)4(q2 − q + 1)(q2 + 1)2 < 0,

and for 2A12 and t = 3, we have

A′
5

µ5

= −q−7(q + 1)3(q2 − q + 1)(q4 − q3 + q2 + 1) < 0.

In all cases we obtain the required nonexistence of t-Steiner systems.

A. Appendix: Identities for the Q-numbers

We now prove Lemmas 3.2 and 4.2. We will frequently use the identity[
k

j

]
q

[
j

i

]
q

=

[
k

i

]
q

[
k − i

j − i

]
q

without specific reference.

Proof of Lemma 4.2. Let Pi(k) be as in (2.5) and Qk(i) be the corresponding Q-number, deter-
mined by (2.1). We will prove

n∑
i=0

[
n− i

j

]
p

Pi(k) = pk(n−j)

[
n− k

n− j

]
p

n−j∏
ℓ=1

(1 + pℓ−k+e). (A.1)

By multiplying (A.1) with Qk(ℓ), taking the sum over k, and using (2.2), we obtain the identity
in the lemma. It remains to prove (A.1). For all i, j = 0, 1, . . . , n, we have

n∑
i=0

[
n− i

j

]
p

Pi(k) =
n∑

i=0

i∑
ℓ=0

(−1)ℓ
[
n

k

]−1

p

[
n− i

j

]
p

[
n− i

k − ℓ

]
p

[
n

i

]
p

[
i

ℓ

]
p

pℓ(ℓ−i−e−1)+(i+1
2 )+ie

=
n∑

i=0

i∑
ℓ=0

(−1)ℓ
[
n

k

]−1

p

[
n− i

j

]
p

[
n

ℓ

]
p

[
n− ℓ

k − ℓ

]
p

[
n− k

i− ℓ

]
p

pℓ(ℓ−i−e−1)+(i+1
2 )+ie.

Interchanging the order of summation by putting m = i− ℓ gives us

n∑
i=0

[
n− i

j

]
p

Pi(k) =
n−k∑
m=0

(
k∑

ℓ=0

(−1)ℓp(
ℓ
2)
[
k

ℓ

]
p

[
n−m− ℓ

j

]
p

)[
n− k

m

]
p

p(
m
2 )+m(e+1). (A.2)
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To evaluate the inner sum, we use the q-Chu–Vandermonde identity[
x+ y

z

]
p

=
x∑

i=0

pi(y−z+i)

[
x

i

]
p

[
y

z − i

]
p

, (A.3)

where x, y, z are integers. Applying the inversion formula (4.7) to (A.3) reveals that

x∑
ℓ=0

(−1)ℓp(
ℓ
2)
[
x

ℓ

]
p

[
x− ℓ+ y

z

]
p

= px(y−z+x)

[
y

z − x

]
p

.

Put x = k, y = n− k −m and z = j to obtain

k∑
ℓ=0

(−1)ℓp(
ℓ
2)
[
k

ℓ

]
p

[
n−m− ℓ

j

]
p

= pk(n−m−j)

[
n− k −m

j − k

]
p

.

Substitute into (A.2) to give

n∑
i=0

[
n− i

j

]
p

Pi(k) =
n−k∑
m=0

pk(n−m−j)

[
n− k −m

j − k

]
p

[
n− k

m

]
p

p(
m
2 )+m(e+1)

=

(
n−j∑
m=0

[
n− j

m

]
p

p(
m
2 )+m(e+1)−km

)
pk(n−j)

[
n− k

j − k

]
p

. (A.4)

Applying the q-binomial theorem

k∑
i=0

q(
i
2)
[
k

i

]
q

zi =
k−1∏
i=0

(1 + zqi)

to the sum on the right-hand side of (A.4) leads to the identity (A.1).

To prove Lemma 3.2, we require some identities involving the q-Pochhammer symbol. For
a real number a and nonnegative integers n, k, we have[

n

k

]
q

=
(q−n; q)k
(q; q)k

(−1)kqkn−(
k
2) (A.5)

(a2; q2)k =(a; q)k(−a; q)k (A.6)
(a; q)2k =(a; q2)k(aq; q

2)k (A.7)
(a; q)n+k =(a; q)n(aq

n; q)k (A.8)

(a; q)n−k =
(a; q)n

(a−1q1−n; q)k
(−a)−kq(

k
2)−nk+k for a ̸= 0. (A.9)

These identities can be found in [KLS10], for example.
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Proof of Lemma 3.2. Let P ′
i (k) and Q′

k(i) be as in (3.5) and (3.6), respectively. To simplify
notation, we set a = q−1c−1b−2n. Recall that (x)i = (x; b)i. We will show that

n∑
i=0

[
n− i

j

]
b

P ′
i (k) = bk(n−j)

[
n− k

n− j

]
q

(a−1b−n−k)n−j

(q)n−j

. (A.10)

Multiplying (A.10) with Q′
k(ℓ), taking the sum over k, and using (2.2) we obtain the identity in

the lemma. It remains to prove (A.10). First we rewrite the valencies v′i, given in Table 3.1, such
that we have a similar form for P ′

i (k) in both association schemes. For 2A2n−1, we use (A.5) and
(A.6) to obtain

v′i = qi
2

[
n

i

]
q2

= (−1)iqi
2−2(i2)+2ni ((−q)−n;−q)i(−(−q)−n;−q)i

(−q;−q)i(q;−q)i

= (−1)i(−q)(
i
2)+i+ni

[
n

i

]
−q

(−(−q)−n;−q)i
(q;−q)i

.

For 1
2
Dm, we use (A.5) and (A.7) to obtain

v′i = q(
2i
2)
[
m

2i

]
q

= q2im
(q−m; q2)i(q

−m+1; q2)i
(q2; q2)i(q; q2)i

.

For even m = 2n, we have

v′i = (−1)iq2in+2(i2)
[
n

i

]
q2

(q−2n+1; q2)i
(q; q2)i

and for odd m = 2n+ 1, we obtain

v′i = (−1)iq2in+2i+2(i2)
[
n

i

]
q2

(q−2n−1; q2)i
(q; q2)i

.

Hence, in all cases, we can write

v′i = (−q)icib(
i
2)+ni

[
n

i

]
b

(c−1b−n)i
(q)i

.

Now, from the expression (3.5) for P ′
i (k), we obtain

n∑
i=0

[
n− i

j

]
b

P ′
i (k) =

n∑
i=0

[
n− i

j

]
b

(−q)icib(
i
2)+ni

[
n

i

]
b

(c−1b−n)i
(q)i

3ϕ2

(
b−i, b−k, abk

b−n, c−1b−n

∣∣∣∣ b; b)
=

[
n

j

]
b

∑
i,ℓ⩾0

[
n− j

i

]
b

(−q)icib(
i
2)+ni+ℓ (c

−1b−n)i(b
−i)ℓ(b

−k)ℓ(ab
k)ℓ

(q)i(b−n)ℓ(c−1b−n)ℓ(b)ℓ
.

From (A.5) we have[
n− j

i

]
b

(b−i)ℓ
(b)ℓ

= (−1)ℓb(
ℓ
2)−iℓ

[
n− j

ℓ

]
b

[
n− j − ℓ

i− ℓ

]
b

,
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and therefore
n∑

i=0

[
n− i

j

]
b

P ′
i (k) =

[
n

j

]
b

∑
ℓ⩾0

(−1)ℓb(
ℓ
2)+ℓ

[
n− j

ℓ

]
b

(b−k)ℓ(ab
k)ℓ

(b−n)ℓ(c−1b−n)ℓ
Sℓ, (A.11)

where
Sℓ =

∑
i⩾0

(−q)icib(
i
2)+i(n−ℓ)

[
n− j − ℓ

i− ℓ

]
b

(c−1b−n)i
(q)i

.

By interchanging the order of summation and then applying (A.8), we obtain

Sℓ =
n−ℓ∑
i=0

(−q)i+ℓci+ℓb(
i+ℓ
2 )+(i+ℓ)(n−ℓ)

[
n− j − ℓ

i

]
b

(c−1b−n)i+ℓ

(q)i+ℓ

=
n−ℓ∑
i=0

(−q)i+ℓci+ℓb(
i+ℓ
2 )+(i+ℓ)(n−ℓ)

[
n− j − ℓ

i

]
b

(c−1b−n)ℓ(c
−1b−n+ℓ)i

(q)ℓ(qbℓ)i
.

Using (A.5), this sum becomes

Sℓ = (−q)ℓcℓb(
ℓ
2)−ℓ2+nℓ (c

−1b−n)ℓ
(q)ℓ

n−ℓ∑
i=0

(qcb2n−j−ℓ)i
(b−(n−j−ℓ))i(c

−1b−n+ℓ)i
(b)i(qbℓ)i

= (−q)ℓcℓb(
ℓ
2)−ℓ2+nℓ (c

−1b−n)ℓ
(q)ℓ

2ϕ1

(
b−(n−j−ℓ), c−1b−n+ℓ

qbℓ

∣∣∣∣ b; qcb2n−j−ℓ

)
.

The hypergeometric function 2ϕ1 can be evaluated by using the q–Chu–Vandermonde identity

2ϕ1

(
b−k, x
y

∣∣∣∣ b; ybkx
)

=
(x−1y)k
(y)k

(see [KLS10, (1.11.4)], for example), which implies that

Sℓ = (−q)ℓcℓb(
ℓ
2)−ℓ2+nℓ (c

−1b−n)ℓ(qcb
n)n−j−ℓ

(q)ℓ(qbℓ)n−j−ℓ

.

Substitute into (A.11) to obtain
n∑

i=0

[
n− i

j

]
b

P ′
i (k) =

[
n

j

]
b

∑
ℓ⩾0

qℓcℓbnℓ
[
n− j

ℓ

]
b

(b−k)ℓ(ab
k)ℓ(qcb

n)n−j−ℓ

(b−n)ℓ(q)ℓ(qbℓ)n−j−ℓ

. (A.12)

From (A.8) we have

(qbℓ)n−j−ℓ =
(q)n−j

(q)ℓ
(A.13)

and from (A.9) we find that

(qcbn)n−j−ℓ =
(qcbn)n−j

(q−1c−1b−2n+1+j)ℓ
(−qcbn)−ℓb(

ℓ
2)−(n−j)ℓ+ℓ. (A.14)
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By substituting (A.13) and (A.14) into (A.12) and using (A.5), we have

n∑
i=0

[
n− i

j

]
b

P ′
i (k) =

[
n

j

]
b

∑
ℓ⩾0

(−1)ℓb(
ℓ
2)−(n−j)ℓ+ℓ

[
n− j

ℓ

]
b

(b−k)ℓ(ab
k)ℓ(qcb

n)n−j

(b−n)ℓ(q)n−j(q−1c−1b−2n+1+j)ℓ

=

[
n

j

]
b

(qcbn)n−j

(q)n−j

∑
ℓ⩾0

bℓ
(b−(n−j))ℓ(b

−k)ℓ(ab
k)ℓ

(b)ℓ(b−n)ℓ(q−1c−1b−2n+1+j)ℓ

=

[
n

j

]
b

(qcbn)n−j

(q)n−j
3ϕ2

(
b−(n−j), b−k, abk

b−n, q−1c−1b−2n+1+j

∣∣∣∣ b; b) .

The hypergeometric function 3ϕ2 on the right hand side can be computed via the q–Pfaff–
Saalschütz formula

3ϕ2

(
b−i, x, y

z, xyz−1b1−i

∣∣∣∣ b; b) =
(x−1z)i(y

−1z)i
(z)i(x−1y−1z)i

(see [KLS10, (1.11.9)], for example). Note that qcbn = a−1b−n. Therefore, we obtain

n∑
i=0

[
n− i

j

]
b

P ′
i (k) =

[
n

j

]
b

(b−(n−k))n−j(qcb
n−k)n−j

(q)n−j(b−n)n−j

.

Applying (A.5) to
[
n
j

]
b
=
[

n
n−j

]
b

and using (A.5) one more time leads to the identity (A.10).
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