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Epidemiologic Approaches to Investigating Pathogen Spillover and Spread  

Across Diverse Systems 

 

ABSTRACT 

Rapid ecological changes have led to an increase in pathogen spillover risk between 

different host species, including between animals and humans. Spillover occurs when pathogens 

are transmitted to a new species which had previously not encountered the disease. The process 

of spillover and subsequent spread of a pathogen in a new host population can include three to 

four phases, which are often circular: 1) maintenance of disease in a reservoir host, 2) initial 

spillover into a novel host due to high-risk interactions, and 3) rapid pathogen spread causing an 

epidemic in the new, immunologically naïve host population, which can potentially be followed 

by 4) maintenance of disease in the new host. Disease dynamics in these phases of emergence 

are explored in three unique systems with relevance to both animal and human health. 

In chapter 1, animal-human interfaces with risk of pathogen spillover were characterized 

along wildlife “supply chains” in Africa and Asia, to guide prevention efforts that will preempt 

spillover events. Observational surveys of sites along the wildlife supply chain were conducted 

by the PREDICT Consortium to characterize the settings in which wild animals are sourced, 

traded, and sold. Questionnaires were also administered to hunters and supply chain workers to 

assess their exposure to zoonotic disease and any spillover prevention measures implemented. 

Findings from this study inform community education efforts regarding zoonotic pathogen 

transmission, wildlife trade policies, and biosecurity and PPE guidelines. 

In chapter 2, the efficacy of behavior changes to mitigate the expansion of an emerging 

epidemic are evaluated in the months immediately following a spillover event. The progenitor 
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virus of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was likely introduced 

into humans by a wildlife host, then adapted to spread human-to-human, causing a global 

pandemic in the span of a few months. The efficacy of social distancing was evaluated at the 

state level during the first two months of the pandemic in the United States by examining the 

relationship between daily SARS-COV-2 case incidence and human community mobility. Lag 

times between decreases in mobility and case counts were measured, and social distancing was 

found to be most effective when put into place early in an epidemic. These findings inform 

management of emerging infectious disease outbreaks by identifying areas where social 

distancing was the most effective in reducing disease transmission (e.g., indoor public spaces 

such as workplaces and transit station), and the expected time frame between behavioral changes 

and measurable changes in disease incidence.  

In chapter 3, factors contributing to the maintenance of disease were investigated in the 

decades following spillover from reservoir host to novel host species. Endangered Peninsular 

bighorn sheep (Ovis canadensis nelsoni) have suffered population declines due to infectious 

diseases introduced from domestic sheep (the original reservoir host), which now circulate 

within bighorn sheep herds in the absence of continued spillover. Demographic and geographic 

risk factors for pathogen exposure in individual bighorn sheep were examined, and the impact 

that pathogen exposure has on adult survival and lamb recruitment was measured at the herd 

level. These results will inform targeted management and conservation of bighorn sheep as they 

face the compounding challenges of disease, habitat loss, and climate change. 

The factors contributing to pathogen spillover and spread are highly complex, 

necessitating the study of these pathways in many diverse systems. The research presented here 

provides insights into the maintenance, spillover, and control of pathogens across select host 
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species and ecological systems. The animal-human interfaces identified at live animal markets 

will help us identify targets for surveillance of pathogens with pandemic potential in the pre-

emergence setting, and guide local education and mitigation measures to prevent spillover. 

Implementing rapid behavior changes such as social distancing can slow the spread of a newly 

introduced pathogen in the absence of other control measures, such as vaccination. The impact of 

introduced pathogens on bighorn sheep survival and reproduction may be compounded by 

increasing temperature and decreasing precipitation, which can be expected to worsen due to 

climate change. These interwoven threats necessitate the longitudinal monitoring of bighorn 

sheep survival and systematic, range-wide surveillance of disease prevalence and food/water 

resources to guide conservation strategies. These findings can be extrapolated to other systems, 

so we are better prepared to identify, prevent, and respond to future emerging pathogens. 
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INTRODUCTION:  

Surveillance strategies for detection of pathogen spillover and spread 

 

Pathogen emergence, spillover, and spread are related and overlapping terms describing 

how a pathogen might expand the diversity or geographic extent of its host range. An 

“emerging” pathogen is one that has recently appeared in a new host species, or rapidly increased 

in either incidence or geographic area within an established host [1]. Pathogen “spillover” occurs 

when a pathogen is introduced into a new host species, then subsequently spreads within that 

population. This can occur when a pathogen originated in animals but adapted to infect humans 

(“zoonotic spillover”), wildlife contracts a disease from humans (“reverse zoonosis”), or when 

pathogens move from one animal host species to another animal host (“cross-species 

transmission”) [2–4]. The risk of these emergence and spillover events involves a web of factors 

including host and pathogen biology, spatial distribution and contact rates among hosts, 

landscape ecology, and disease dynamics [5]. Host interactions which could potentially transmit 

pathogens increase with perturbations of ecosystems, including expansion of agriculture, habitat 

loss and encroachment of human infrastructure into natural habitats, movement of wild and 

domestic animals, and loss of biodiversity [1,6,7]. 

The introduction of a novel infectious disease can have devastating effects on naive host 

populations. Introduced disease in wildlife have resulted in subsequent epidemics that have 

caused the decline of native populations to the point of being listing as endangered by the 

International Union for Conservation of Nature (IUCN), with notable examples including 

chytridiomycosis (Batrachochytrium spp.) in amphibians, white-nose syndrome 

(Pseudogymnoascus destructans) in bats, plague (Yersinia pestis) in black footed ferrets 
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(Mustela nigripes), and avian malaria (Plasmodium relictum) in native Hawaiian forest birds [8–

11]. Zoonotic spillover from wildlife into humans has resulted in the rapid development of large 

scale pandemics caused by influenza viruses, coronaviruses, and Ebola virus [12–15]. The 

spillover of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from its wildlife 

reservoir resulted in the declaration of a global pandemic within four months of the virus being 

identified, and has since caused widespread and devastating effects on human health and 

economies [16]. Cross-species transmission from domestic animals to wildlife has also been 

observed, such as domestic dogs (Canis lupus familiaris) transmitting rabies and canine 

distemper to African carnivores, and domestic cattle (Bos taurus) introducing Brucella abortus 

to North American wild elk (Cervus elaphus) and bison (Bison bison) [17–19]. The impacts of 

introduced disease can be critical in endemic and immunologically isolated species, especially 

those which are small in number due to previous population declines or limited geographic 

distribution, such as those living on islands [20,21]. 

Concurrent threats such as climate change, habitat loss, and anthropogenic disturbances 

can alter cross-species infectious disease transmission through changes in species abundance and 

distribution, host contact rates, toxin exposure, and stress [1]. The fragmentation of wildlife 

habitat directly increases the risk of cross-species pathogen transmission by increasing the access 

of humans and domestic animals to wildlife habitat and driving wildlife into human-occupied 

landscapes [22,23]. These external variables can combine with infectious disease to increase 

physiologic stress, which has been linked to changes in gene expression and immune function, 

increased susceptibility to and shedding of pathogens, and more severe clinical disease in 

multiple species [24–28]. Diligent surveillance for emerging pathogens, and monitoring for the 

changing impacts of known pathogens, due to ecological changes is important for preserving 
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wildlife health and preventing future epidemics of zoonotic pathogens, such as Ebola virus and 

SARS-CoV-2 [29,30]. 

The number of emerging infectious diseases has increased steadily over the past 80 

decades, and the majority of emerging zoonotic diseases have originated in wildlife [31,32]. 

Preventing zoonotic spillover includes the early detection of pathogens in wildlife reservoirs and 

identification of interfaces where spillover to humans or domestic animals may occur. This often 

requires organized, proactive surveillance programs because wildlife health is much less 

frequently observed compared to that of domestic animals and humans, but the detection of 

pathogens before and immediately after spillover is critical for mitigation efforts to be effective. 

The World Organization for Animal Health (OIE) considers wildlife pathogen 

surveillance to be the “single most important component of a national wildlife health 

programme” [33]. The epidemiologic role of surveillance in wildlife disease is to record and 

analyze the presence of disease over time, as an ongoing process, in order to make management 

interventions [34]. Ideally, surveillance systems provide early detection of disease before it 

becomes a population threat. The prevention of epidemics and associated host population 

declines are most effective when a disease is detected early, before a large proportion of animals 

have been infected. This means monitoring apparently healthy populations is imperative, 

although it can often be a challenge to fund and support these programs over the long term.  

Disease surveillance systems are classically split into active and passive strategies [34]. 

Active systems often involve the capture of animals for sample collection and application of 

tracking technologies such as radio transmitters [35]. This allows researchers to target a 

representative sample of the population, allows for longitudinal monitoring of survival, and the 

timely detection of mortalities. Active surveillance is often utilized for high consequence 
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pathogens, such as those of economic or public health importance [36]. These active systems 

generally involve more time, money, and resource investment and are often more invasive, 

potentially putting animals at greater risk for negative consequences. However, active 

surveillance can also include non-invasive techniques such as scat collection, hair snares, and 

field cameras. These non-invasive tools provide less detailed information on the individual 

animals being sampled, and are often used for evaluating population rather than individual health 

[35]. Passive systems include syndromic surveillance using data from patients presenting to 

hospitals or rehabilitation centers, and opportunistic sampling, such as collection of animals 

killed on roads or the sampling of animals killed by hunters [34,37].  

Regardless of the type of surveillance system utilized, there are inherent challenges to the 

detection of disease in wildlife. Free-ranging wildlife can be difficult to capture and handle, with 

some species being dangerous to humans or particularly prone to poor outcomes such as capture 

myopathy. Migratory, cryptic, or rare species can be difficult to locate and observe, let alone 

capture, and disease may go undetected in these populations for years [36]. Many animal 

mortalities go undetected due to difficult to navigate terrain or habitats, and the mortalities that 

are observed because the animal was marked and/or died in a human occupied area may be just 

the “tip of the iceberg.” Pathogens which are rare or for which there is no effective diagnostic 

test are particularly difficult surveillance targets. These limitations can lead to biases in our 

measurements of disease metrics such as prevalence, incidence, and case fatality [34].  

The importance of proactive surveillance for wildlife diseases is magnified by the risk of 

pathogen spillover between different host species, including between animals and humans, due to 

rapid ecological disturbances such and climate change and habitat fragmentation [38]. Spillover 

occurs when pathogens are transmitted to a new species which had previously not encountered 
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the disease. The process of spillover and subsequent spread of a pathogen in a new host 

population can include three to four phases, which are often circular: 1) maintenance of disease 

in a reservoir host, 2) initial spillover into a novel host due to high-risk interactions, and 3) rapid 

pathogen spread causing an epidemic in the new, immunologically naïve host population, which 

can potentially be followed by 4) maintenance of disease in the new host. These phases can be 

adapted to different wildlife-pathogen systems, such as the “infect-shed-spill-spread” cascade, 

whereby wildlife pathogens are amplified in reservoir hosts then spillover into humans or 

domestic animals (or vice versa) as a result of anthropogenic land-use changes [38]. Disease 

dynamics in these phases of pathogen emergence and spillover are explored in three unique 

systems with relevance to both animal and human health. 

Surveillance in the pre-emergence, pre-spillover setting 

Expansion of pathogens into new host species or geographic ranges can result in 

epidemics due to the large number of immunologically naive hosts available for infection. 

However, not every spillover or emergence event results in an epidemic. For example, animal 

pathogens may occasionally infect an individual or small group of humans, but the pathogen will 

not spread through the human population unless the pathogen mutates to readily transmit human-

to-human [5,39]. Proactively testing a wide range of hosts to detect of these single spillover or 

early emergence events increases our knowledge of the classes of pathogens which most readily 

infect new host species and gives us a temporal advantage in responding to epidemics while case 

numbers are still small. The disadvantage of this strategy is that it is time, labor, and resources 
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intensive and will produce a large proportion of negative test results if healthy, non-clinical 

individuals are sampled. 

Targeted surveillance for pathogens in the original reservoir host has been used as an 

early warning system for potential spillover events in several host-pathogen systems. Testing 

wild birds for West Nile Virus (WNV) has been used for decades to predict outbreaks of human 

cases. One study found that molecular detection of WNV in wild birds was found to precede the 

onset of human cases by >3 months, and detection of dead crows preceded molecular detection 

of WNV in birds by several months [40]. This information can help direct early prevention 

methods to minimize transmission, such as mosquito control measures, months in advance of 

human outbreaks. However, surveillance of the reservoir host is most useful when there are 

symptomatic or dead animals which can be easily identified for sampling, and is less efficient in 

asymptomatic hosts that necessitate widespread population sampling to detect a pathogen. Rabies 

is a global zoonotic pathogen for which several domestic and wild animal hosts serve as 

reservoirs. Human exposure usually happens through contact with wildlife or an unvaccinated 

domestic animal, therefore testing of these animal hosts has become a key component of rabies 

surveillance systems worldwide, providing information on the local burden of disease and risk of 

human exposure [41,42]. A recently developed “Wildlife Morbidity and Mortality Event Alert 

System” utilizes machine learning to monitor a network of wildlife rehabilitation organizations 

and detect unusual elevations in wildlife morbidity and mortality due to specific clinical 

syndromes [37]. This system generates alerts of possible pathogen emergence or local outbreaks, 
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which can identify at-risk taxa and direct targeted diagnostic testing to identify the pathogenic 

cause of the increase in morbidity/mortality.  

The concurrent, proactive sampling of humans and animals for pathogens at sites with 

animal-human interfaces improves the likelihood that a pathogen will be detected prior to a 

spillover event, or during the early phases of emergence. There are three sampling strategies 

which may improve the efficiency of animal-human interface sampling. The first is to target 

high-risk species which have been shown to harbor pathogens of zoonotic or epidemic potential, 

such as bats, rodents, non-human primates, carnivores, and ungulates [43]. This method would 

not detect pathogens moving through intermediate host taxa that are not sampled because they 

are considered lower risk, such as has been seen with SARS-CoV-1 in civets [44]. The second 

strategy is to sample multiple host species, but test only for high-risk pathogen groups which 

have historically caused pandemics, such as coronaviruses and influenza viruses [45]. This 

strategy would miss other pathogen groups which may spillover less commonly or unexpectedly. 

The third is to have humans self-present for testing if they feel ill, especially with certain disease 

syndromes which are commonly associated with zoonotic disease, such as febrile illness [46,47]. 

This method would not detect a pathogen until after the initial spillover event into humans, 

limiting response options. All of these methods would increase the detection sensitivity of high-

risk pathogen groups while decreasing the resources necessary for surveillance, but narrow the 

range of hosts or pathogens which are monitored. 

The first chapter of this dissertation addresses the need for proactive surveillance prior to 

spillover occurring. Animal-human interfaces with risk of pathogen spillover were characterized 

along wildlife “supply chains” in Africa and Asia, to guide prevention efforts that will preempt 

spillover events. Site surveys and worker questionnaires were conducted at sites along the 
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wildlife supply chain where wild animals are sourced, traded, and sold. Study sites were selected 

according to a stratified sampling design across countries, with a second layer of judgement 

sampling determining the exact sites chosen within each country based on local knowledge of 

interfaces between animals and humans. This design maximized the chances for sampling an 

interface where circumstances for pathogen spillover may be present, while still sampling a 

variety of countries which may differ based on local ecology, host species present, and cultures 

driving the wildlife trade. 

Post-spillover surveillance and implications for early epidemic control 

Immediately following a successful spillover event, a pathogen can spread rapidly in the 

new, immunologically naïve host population to which it has adapted, causing an epidemic [4]. 

The magnitude of this initial spread can determine the morbidity and mortality impact the disease 

will have on the new host, as well as the probability that the disease will become established, or 

endemic, in the new host population. For example, diseases introduced into areas with a low host 

density or a high proportion of vaccinated hosts have a higher risk of “fadeout,” or pathogen 

extinction due to inadequate transmission [48–50]. The control of this initial spread is therefore a 

key point in epidemic response [51]. Often, the control measures immediately available at the 

start of an epidemic of novel disease (for which vaccination is not yet available) are primarily 

non-pharmaceutical, behavioral changes that reduce the number of potentially disease-

transmitting contacts among hosts.  

Reductions in close contacts among hosts have been demonstrated to slow the 

transmission of directly transmitted, human pathogens such as influenza [52]. Quantifying social 

behaviors such as close contacts can be difficult, but recent advances in mobile phone global 

positioning system (GPS) technology has allowed us to examine contact rates among humans in 



 

 9 

a remote, anonymous way. In wildlife, these contacts can be measured using proximity loggers. 

Proximity loggers utilize low power, ultra-high frequency (UHF) radio transmitters and receivers 

to record when two devices come within a preset distance of one another, creating reciprocal 

records of social encounters between animal dyads. These records can include the date, time, and 

duration of an encounter between two specific animals, or between an animal and a stationary 

receiver “base station.” Proximity loggers are an advance on traditional telemetry technologies 

because they are more likely to detect all encounters between a pair of hosts, compared to 

traditional methods implemented during the analysis phase, such as designating an “encounter” 

as when two GPS collared animals came within a specified geographic distance of one another 

during a specified time window. However, encounters are not always recorded identically 

between proximity loggers due to differences in device sensitivity and/or external factors such as 

terrain, and decisions regarding how to resolve these discrepancies during data processing can 

lead to under or overestimates of the frequency and duration of encounters [53]. 

The ability to directly measure host contact rates is a huge benefit to understanding 

disease dynamics and informing models of disease transmission. Research measuring contact 

rates among female elk (Cervus canadensis) in Wyoming using proximity loggers found that 

interaction rates varied with herd size in a pattern between what would be predicted by 

traditional frequency or density-dependence models [54]. Combined proximity and VHF 

transmitters have been used to measure the relationships among animal density, home range 

overlap, and contact rates in Channel Island foxes (Urocyon littoralis), which then informed 

spatially explicit simulation models of early pathogen spread immediately after an introduction 

event, to evaluate epidemic prevention tools such as vaccination [48,49,55]. The simultaneous 

use of proximity loggers on cattle, white tailed deer (Odocoileus virginianus), raccoon (Procyon 
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lotor), Virginia opossum (Didelphis virginiana), and stationary base stations identified seasonal 

differences in both indirect contact rates around food/water sources and direct contacts between 

individuals that could impact the interspecific transmission of bovine tuberculosis 

(Mycobacterium bovis) [56].  

The efficacy of reductions in social contacts to mitigate the expansion of an emerging 

epidemic immediately following spillover to a new host were evaluated in the second chapter of 

this dissertation, in the context of the COVID-19 pandemic. The progenitor virus of severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2; the viral cause of COVID-19) was likely 

introduced into humans by a wildlife host, then adapted to spread human-to-human, rapidly 

causing a global pandemic in the span of a few months. Due to limited testing capabilities during 

the first months of the pandemic, testing was initially restricted to symptomatic individuals who 

fit the Centers for Disease Control and Prevention COVID-19 case definition [57]. This 

syndromic surveillance increased the positive predictive value of testing despite the disease still 

being quite rare within the general population. The negative consequence of this strategy was 

that community transmission in the USA went largely undetected during the early pandemic 

period because asymptomatic or mildly symptomatic people, or those not self-presenting, were 

not sampled. The efficacy of social distancing to reduce SARS-CoV-2 transmission, despite 

these testing limitations, was evaluated during the first two months of the pandemic in the United 

States by examining the relationship between daily SARS-COV-2 case numbers and human 

community mobility, as measured by anonymized location data aggregated from individual 

mobile phones. 

Surveillance for pathogens in reservoir hosts during the pre- or post-spillover phase 
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 During the pre-spillover phase, “reservoir hosts” (or “maintenance hosts”) are those in 

which a pathogen circulates in the population due to sustained transmission among individuals 

[58]. Reservoir hosts have often evolved with their pathogens so that they suffer relatively minor 

disease in comparison to the effects a pathogen might have on a new host [4]. After spillover and 

the initial epidemic, a pathogen may subsequently become established (or “endemic”) in the new 

host and circulate without continued spillover from the original source host. In these cases, the 

new host may become a maintenance host, but often experiences variable morbidity and 

mortality due to its lack of co-evolution with the pathogen, potentially resulting in host 

population declines. This has been seen in the spillover of simian immunodeficiency virus 

(which is associated with little to no disease in the primate reservoirs) into humans, which 

mutated into human immunodeficiency virus and is now well established in human populations 

globally, despite causing severe and fatal disease (acquired immunodeficiency syndrome) 

without pharmaceutical interventions [4].   

 Endemic pathogens do not necessarily infect or clinically affect all subgroups in a 

population equally. Evaluating differences in risk of exposure and clinical disease is a key part of 

maintenance host surveillance to aide in management and monitoring for changes in disease 

distribution or prevalence [35]. In wildlife, the best way to elucidate these differences in risk is 

often to capture a representative sample of each stratum of interest, such as different 

demographic and geographic groups. Direct capture of animals for sampling is ideal for 

performing comprehensive health exams and detecting all stages of exposure and infection (i.e., 

pre-symptomatic, symptomatic, recovered but seropositive). Due to logistical and financial 

constraints, it is often not feasible to sample an entire wildlife population or sample consistently 

every year. These sampling limitations may underestimate the prevalence of diseases that 



 

 12 

differentially impact under-sampled strata, are rare, cause short outbreaks in the intervening 

years between sampling, or would result in a lower chance of an animal being sampled (such as 

those with high mortality rates and short periods of shedding or seropositivity). 

An alternative strategy would be the targeted surveillance of high-risk groups, which can 

be especially helpful in detecting rare diseases. Pathogen detection can be maximized by 

sampling animals that have a high likelihood of exposure, such as those which have contact with 

reservoir hosts or are exhibiting clinical signs of disease [35]. Certain species of waterfowl have 

been targeted for highly pathogenic avian influenza virus sampling based on data showing that 

they have higher rates of viral shedding or mortality [59]. Testing for chronic wasting disease 

may also prioritize sampling of animals showing clinical signs consistent with the disease, such 

as neurologic abnormalities or emaciation [60]. Capturing obviously sick or debilitated animals 

for disease sampling is more likely to result in pathogen detection, inform on which pathogens 

are likely to cause symptomatic disease, and enable swift interventions, where appropriate. 

However, this targeted sampling of symptomatic animals would not enable the calculation of 

accurate prevalence estimates for the population as a whole, resulting in biased estimates of 

disease burden. 

Diseases that cause readily visible, physical changes could be monitored non-invasively 

via remote camera surveillance. Candidate diseases include those which cause alopecia, 

nasal/ocular discharge, muscle wasting, lameness, and large abscesses. Camera traps have been 

used to monitor mange in several different wildlife species from feral hogs (Sus scrofa) to 

Iberian wolves (Canis lupus) and to quantify the severity of giraffe skin disease in Tanzanian 

giraffes (Giraffa camelopardalis) [61–64]. Cameras facilitate range-wide syndromic surveillance 

at sites which are difficult for field personnel to access, and can provide prevalence estimates of 
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symptomatic disease in almost real-time compared to intermittent range-wide sampling. 

However, there are limitations to the sensitivity and specificity of cameras for disease detection 

since the absence of lesions in photographs does not necessarily indicate the absence of disease, 

and different pathogens may result in a similar clinical presentation. Cameras have been used 

effectively to monitor the advancing front of Tasmanian devil facial tumor disease, a highly 

transmissible tumor of the soft tissues of the face and oral cavity [65]. However, the absence of 

lesions in photographs does not necessarily indicate the absence of disease, as tumors can be 

located within the oral cavity and not visible on photographs. Similarly, scar tissue can look very 

similar to tumors and histopathology is sometimes the only way to definitively diagnose a lesion 

as devil facial tumor disease. 

Factors contributing to the maintenance of disease were investigated in the decades 

following spillover from reservoir host to novel host species in the third chapter of this 

dissertation. Endangered Peninsular bighorn sheep (Ovis canadensis nelsoni) have suffered 

population declines due to pneumonia caused by pathogens which originated in domestic sheep 

(Ovis aries; the original reservoir host) but now circulate within bighorn sheep herds in the 

absence of continued spillover. This chapter explores demographic and geographic risk factors 

for bighorn sheep exposure to several pathogens, and measures the impact that pathogens had on 

adult survival and lamb recruitment at the herd level.  

The Peninsular Mountains are divided into nine “recovery regions,” defined for bighorn 

sheep population management [66]. Bighorn sheep from each recovery region are captured 

approximately every two years and adult females are preferentially captured [67]. This results in 

a cross-sectional, roughly two-stage stratified cluster design, whereby the population is stratified 

by recovery region, then adult females are randomly sampled within each region. This design is 
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appropriate for establishing range-wide and region-specific prevalence estimates of disease, but 

is subject to biases, such as over or underestimating the prevalence of pathogens in lambs or 

males due to smaller sample sizes in these groups. 

A subset of bighorn sheep are also collared with radio-transmitters. The monitoring of 

these transmitters facilitates longitudinal monitoring for estimates of population survival and 

mortality rates, and the prompt detection and collection of mortalities. Necropsy of carcasses 

provide a wealth of information, including cause of death, but this information only allows 

reactive management responses, not proactive prevention. Necropsy would have a higher 

probability of detecting high consequence pathogens which contributed to the cause of death, 

whereas pathogens detected during live captures would be more likely to cause disease that an 

animal had/could survive. 

 Bighorn sheep may also play a role as the reservoir host for several pathogens they share 

with sympatric species, bringing us full circle to the first phase of pathogen spillover: 

maintenance of disease in a reservoir host. Bighorn sheep pathogens examined in this chapter 

which also circulate in other local hosts include: 1) Orbivirus spp. is transmitted by Culicoides 

spp. biting midges and can infect sympatric ruminant species such as mule deer (Odocoileus 

hemionus), domestic sheep, and domestic cattle [68]. 2) Anaplasma spp. is vectored by various 

tick species and has been detected in local mule deer (California Department of Fish and 

Wildlife, Wildlife Investigations Laboratory, unpublished data) [69]. 3) Toxopasma gondii and 

Leptospira spp. are both transmitted through environments contaminated with urine or feces and 

infect a range of hosts from felids to ungulates [68,70,71]. Although the first introduction of 

these pathogens into or from bighorn sheep populations has not been established, bighorn sheep 
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share several pathogens with other host species and may play a role in maintaining these 

pathogens in the ecosystem. 

Summary 

The accelerating pace of habitat fragmentation, biodiversity loss, and host/pathogen 

translocations has resulted in an increasing number of pathogen spillover events in recent 

decades. Many of these spillover events result in the subsequent establishment of pathogens in 

novel hosts, often causing population declines in those secondary hosts. Wildlife pathogen 

surveillance must be tailored to the host and pathogen species of interest, but also to the phase of 

spillover and spread. Detection probabilities will vary among the pre-spillover, initial epidemic, 

and post-spillover maintenance phases based on the prevalence and distribution of disease. For 

example, disease prevalence may be high in the original reservoir host, but extremely low in the 

novel host immediate after spillover and before it has been widely transmitted. This variation 

necessitates different surveillance strategies for each phase of disease spillover and spread. The 

surveillance strategies reviewed here can be adapted to a range of species and systems, allowing 

researchers to collect the data needed to identify, prevent, and respond to future emerging 

pathogens.   
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Characterization of animal-human interfaces with risk of pathogen spillover along wildlife 
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Abstract 

The global trade of wildlife, including the removal and transportation of animals from their 

natural habitat into large trade networks, enables close contact of diverse host species in crowded 

conditions that can facilitate pathogen spillover. To characterize the settings in which wild 

animals are sourced, traded, and sold, we conducted observational surveys of sites along the 

wildlife “supply chain” from source to sale, and administered questionnaires to hunters and 

supply chain workers in 23 countries in Africa and Asia. We collected data regarding animal taxa 

and husbandry, biosecurity, demographics, education, concerns about disease, and the use of 

personal protective equipment (PPE). The most frequently observed conditions that could 

potentiate pathogen spillover included the presence of animal waste (blood, tissue, excreta), 

multiple taxa housed together, not disinfecting animal crates/equipment or removing sick/dead 

animals, and a lack of veterinary care, handwashing facilities, and PPE use. Among hunters and 

supply chain workers, self-reporting of PPE use was higher if individuals were concerned about 

disease, had higher levels of education (hunters only), worked in a small market, hunted 

carnivores and pangolins, or hunted for personal use at home. Gloves, masks, and gowns/aprons 

were the least frequently used PPE, while shoes/boots were the most common. This paper 

utilizes a variety of local environmental and behavioral data to characterize high-risk interfaces 

for potential pathogen emergence and spillover along the wildlife supply chain. Our findings can 
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inform community education efforts regarding zoonotic pathogen transmission, wildlife trade 

policies, and biosecurity and PPE guidelines. 

 

Significance Statement 

The risk of zoonotic disease spillover from animals is increasingly recognized as a major threat 

to human health, with several recent human epidemics/pandemics traced back to pathogens 

originating in wildlife hosts. The global wildlife supply chain is associated with animal 

movements that increase the risk of pathogen transmission within and among species. We 

characterized interfaces with the potential for pathogen emergence and spillover along wildlife 

supply chains in Africa and Asia. We identified behaviors around animal husbandry, biosecurity, 

and PPE use that may potentiate pathogen spillover, and show that education about wildlife 

diseases may improve PPE use among hunters and supply chain workers. These findings can be 

used to guide mitigation efforts for the prevention of pathogen transmission and spillover. 
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Introduction 

The risk of pathogen transmission among species is increasingly recognized as a major 

threat to human and animal population health at a global level. The number of emerging 

infectious disease (EID) events has increased steadily since 1940 (1), with zoonotic pathogens 

causing 56% of human infectious disease outbreaks globally between 1980 and 2013 (3) and an 

estimated >70% of all zoonotic EIDs found in humans having wildlife origins (1, 2). The World 

Bank estimates that from 1997 to 2009, ≥$80 billion was spent globally to respond to outbreaks 

of just six emerging zoonotic diseases (4). Recognition of the increasing threat that zoonotic 

diseases pose to human and animal health, food security, and economic stability has contributed 

to the growing One Health perspective, which addresses the interdependence of the health of 

humans, animals, and their shared environments. Perhaps no disease has demonstrated the 

interconnectedness of global health so explicitly as COVID-19, a viral respiratory disease caused 

by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The progenitor of SARS-

CoV-2 is suspected to have originated in bats (5–8), with its introduction to humans possibly 

linked to habitat loss and wildlife movement (9). After adapting to humans, SARS-CoV-2 spread 

rapidly person-to-person and was declared a global pandemic by the World Health Organization 

in March 2020 (10). SARS-CoV-2 has had widespread and devastating effects on human health, 

national economies, and the way current human societies are structured, bringing the basic 

principles of zoonotic disease and epidemiology to worldwide consciousness.  

Recent large-scale epidemics in humans have been traced back to pathogens that 

originated in animals and infected humans through a combination of ecological opportunity and 

cross-species transmission, a process referred to as “zoonotic spillover.” These epidemics have 

been caused by a variety of viruses, including influenza viruses, coronaviruses (severe acute 
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respiratory syndrome [SARS-CoV-1], Middle East respiratory syndrome [MERS-CoV]), Ebola 

virus, and Nipah virus (11–15). Wildlife can also contract diseases from humans through 

“reverse zoonosis or “anthropozoonoses;” for example, humans have transmitted respiratory 

viruses to wild mountain gorillas (Gorilla beringei beringei) (16, 17). In addition, cross-species 

transmission events (excluding humans) occur relatively frequently when infectious agents move 

from one animal host species to another, via shared ecological niches or mediated via 

anthropogenic disturbance, with the potential to continue circulating within the new host 

population. For example, domestic dogs (Canis lupus familiaris) have spread rabies and canine 

distemper to African carnivores (18, 19). These zoonotic and interspecies transmission events are 

more likely to occur at “high-risk interfaces” where the frequency and duration of contact 

between the pathogen reservoir and naive species is increased (20–22). These risky contacts 

increase with perturbations of ecosystems, including expansion of agriculture, habitat loss and 

encroachment of human infrastructure into natural habitats, movement of wild and domestic 

animals, and loss of biodiversity (9, 23, 24). Additionally, the number of zoonotic viruses in 

mammalian species is positively associated with declines in wildlife population size due to 

exploitation by humans and decreases in habitat area or quality (25, 26). 

Overexploitation and overconsumption of wildlife are major threats to biodiversity, and 

the global wildlife trade (legal and illegal) is increasingly recognized for its negative impacts on 

wildlife populations, ecosystem integrity, and public health (27–30). Free-ranging wildlife is 

harvested for subsistence needs such as food and traditional medicines, and luxury uses such as 

clothing, jewelry, art, and the live animal trade for exotic foods and pets (27, 31, 32). Research 

shows that 23 – 36% of all bird, mammal, and amphibian species used for food or medicine are 

threatened with extinction (33), and the global wildlife trade has caused a 61.6% decline in 
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species abundance worldwide, with local species extirpations observed in 16.4% of populations 

examined (29). While the traditional use of wildlife for subsistence involves limited hunting and 

transport of animals within a local community, the consumption of wild animal products have 

become increasingly commercialized through developments in transportation infrastructure, the 

migration of people and their cultural preferences (for food, pets, clothing, medicine, and 

ornaments), and the globalization of trade (31, 32). The national and international trade networks 

that transport animals and their byproducts (31, 34) have reduced species abundance by 66 - 

76%, whereas localized trade often has had more limited impacts (29). These reductions in 

biodiversity do not just threaten species survival, but also have far reaching impacts on planetary 

health through the loss of critical ecosystem services such as pollination, the availability of food 

and pharmaceutical compounds, and disease regulation (35, 36). 

The entire wildlife “supply chain” from source to sale mixes potential hosts and 

pathogens in high-risk interfaces which may facilitate disease transmission (Figure 1). The 

supply chain can be classified into three primary “nodes,” which include “source,” “transit,” and 

“sale.” A “source” node is the origin of an animal and can include natural habitat where they are 

hunted or farms where they are raised. Natural areas tend to be wildlands or rural, while farms 

are typically peri-urban and located along trade routes to supply urban markets. Animals are then 

moved through “transit” nodes where they are transported by distributors and wholesalers, often 

at high densities and with multiple species together. “Sale” sites are markets and other locations 

(including on the worldwide web) where animals and their byproducts are sold to the end 

consumer. This often includes the mixing of several different taxa of live and dead animals from 

a wide geographic area. The commercial wildlife trade routes can be extensive, with animals 

often being moved internationally from point of origin to point of sale. The scale and reach of the 
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wildlife trade allows for animal species that would not normally co-occur in nature to interact 

and potentially exchange pathogens. For example, wildlife markets in Lao People's Democratic 

Republic (Lao PDR) are sites where wildlife are both sold alive and slaughtered on site, animals 

of many different taxa are housed together or in close proximity, and wildlife is often displayed 

in close contact with other foods such as fresh produce (37). In Cameroon, wildlife are usually 

killed by hunters at the site where they were captured before the wild meat is brought to open air 

markets (38). Many governments discourage but do not prohibit the sale of wild meat, and 

vendors might accommodate local policies by selling wildlife on the edges of markets (or 

“underground”), in substandard hygiene and biosecurity conditions (37, 38). Generally, source 

sites are associated with varying degrees of deforestation, agricultural development, loss of 

biodiversity, and other ecological disturbances that have been associated with the amplification 

of pathogens, while transit and sale sites are areas of increased cross-species pathogen 

transmission and zoonotic spillover risk due to high levels of contact among host species and 

deficient sanitation (39–42). 

The extraction of wild species from their natural habitats and movement while still alive 

through commercial trade networks is of special concern with respect to the transmission and 

movement of zoonotic viruses. The live wild animal trade has the potential to facilitate pathogen 

transmission via dense and unhygienic animal housing conditions, and the close contact of 

multiple host species and people during the capture, transport, and slaughter of animals. (25, 43). 

Live animal markets and other components of the wildlife trade, such as the exotic pet industry, 

have been directly linked to zoonotic spillover and outbreaks in several species. 

Chytridiomycosis was introduced into native amphibian species globally through contact with 

non-native species imported via the trade in amphibians for research and exotic pets, resulting in 
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drastic population declines of endemic species (44, 45). Severe acute respiratory syndrome 

(SARS-CoV-1) was transmitted from masked palm civets (Paguma larvata) to humans at live 

animal markets, ultimately resulting in a pandemic following widespread human-to-human 

transmission (46, 47). Interestingly, one study found very low seroprevalence (mean = 10%) of 

SARS-CoV-1 in civets at the farms where they were bred, but a seroprevalence of up to 78% at 

live animal markets where they were sold (46). This serologic evidence, combined with genetic 

data suggesting bats as the natural reservoir of the SARS-CoV-1 progenitor (48), suggests that 

civets were an intermediate host and their infection resulted from the mixing of multiple 

competent host species at animal markets and/or the amplification of SARS-CoV-1 within the 

civets as they moved through the supply chain. Similarly, SARS-CoV-2 is most closely related to 

coronaviruses found in bats in China, but ecological, epidemiological, and genetic evidence do 

not support these viruses being the direct progenitor (49). A recent investigation into of the 

origins of SARS-CoV-2 suggests there may have been an intermediate host between bats and 

humans, although this potential intermediate host species has not yet been identified (49).  

People working in the wildlife supply chain have potentially high occupational exposure 

to zoonotic pathogens, and cases of disease could be substantially under-reported in communities 

with limited access to healthcare. Hunters who trap free-ranging wildlife and butchers who 

prepare animal carcasses for consumption have very close contact with animal tissues, blood, 

and excrement that are common routes for pathogen transmission (42, 50). The close and 

frequent contact between numerous host species and people along this supply chain (many of 

which would not interact in a natural setting) in areas contaminated with the bodily fluids of live 

animals is an ideal setting for the spillover of pathogens (37). Of particular concern, viruses with 



 

 29 

the greatest host plasticity (capable of infecting the most diverse range of host species) have been 

transmitted through contact with wild animals kept as pets or sold at these types of markets (51).  

The wildlife supply chain poses a direct threat to human and animal health, both locally 

and globally, through the potential for disease spillover events that can propagate into human 

epidemics and wildlife epizootics. Yet, direct studies to quantify this risk across diverse wildlife 

trade systems and value chains around the world are lacking. Here we assemble the largest 

dataset to date of human behavioral and ecological risk factors for pathogen spillover within the 

global wildlife trade network. We gathered data from sites along wildlife supply chains in Africa 

and Asia, with a special focus on sites where wildlife was sold for food, to identify differences in 

the presence of factors that may facilitate zoonotic amplification and spillover across continents, 

seasons, urbanization gradient, and the node of the supply chain. We also investigated factors 

associated with the use of personal protective equipment (PPE) use in hunters and supply chain 

workers to inform risk mitigation in these activities. 

 

Results 

Characterization of sites in the wildlife supply chain  

The level of urbanization varied significantly across the nodes of the wildlife supply 

chain (p < 0.001; Figure 3). Source nodes (n = 34) were more commonly rural (58.8%, n = 20) 

and less commonly peri-urban (20.6%, n = 7) or urban (20.6%, n = 7; p = 0.007). Sale nodes (n = 

73) were more commonly urban (57.5%, n = 42) and less commonly peri-urban (23.3%, n = 17) 

or rural (19.2%, n =14; p < 0.001). Transit nodes (n = 25) were most often at rural sites (72.0%, 

n = 18) and rarely at peri-urban (12.0%, n = 3) or urban (16.0%, n = 4 sites; p < 0.001). 
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Animal blood and dead tissues were present at 54.8% (n = 69/126) of sites (Figure 2) and 

were more common at urban sites (OR = 30.68, 95% CI = 1.29 – 868.56) and points of sale 

nodes (OR = 44.20, 95% CI = 2.17 – 1,220.64; Table S1). Animal urine and feces were 

commonly observed (78.6%, n = 99/126; Figure 2), and observed more frequently in Asia 

compared to Africa/Middle East (OR = 24.78, 95% CI = 2.92 – 344.49) but less commonly at 

transit nodes compared to source nodes (OR = 0.02, 95% CI = 0.00 – 0.28; Table S1). Continent, 

season, urbanization, and node of the supply chain were not significant predictors of drinking 

water being unprotected (31.0%, n = 39/126) or shared with animals (24.6%, n = 31/126), or 

bathing water being shared with animals (48.4%, n = 61/126; Figure 2, Table S1).  

The removal of sick or dead animals was not observed at most sites (73.8%, n = 93/126; 

Figure 2), but was missing less often from sites in Asia compared to Africa/Middle East (OR = 

0.02, 95% CI = 0.00 – 0.13) and missing from sale nodes less often than source nodes (OR = 

0.02, 95% CI = 0.00 – 0.21; Table S1). There were no significant predictors of the disinfection of 

animal crates and equipment (Table S1), which was an uncommon practice and absent from 

85.7% (n = 108/126) of study sites overall (Figure 2). Handwashing facilities were absent from 

54.0% (n = 68/126; Figure 2), and were missing less often from sites in Asia compared to 

Africa/Middle East (OR = 0.01, 95% CI = 0.00 – 0.09) (Table S1).  

Multiple taxa were housed together at 69.0% (n = 87/126) of sites sampled, and wild and 

domestic taxa were housed together in cages or pens at 7.1% (n = 9/126) of sites. Veterinary care 

was absent at 73.8% (n = 93/126) of sites (Figure 2, Table S1). Continent, season, urbanization, 

and node along the supply chain did not predict any of these factors (Table S1). 

All site characterization model results (percentage of sites, sample sizes, odds ratios, and 

95% confidence intervals) can be found in Table S1. 
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Characterization of animal taxa in the wildlife supply chain  

Although sites were chosen because they were previously identified as part of the wildlife 

supply chain, wildlife species were not observed at every site. Wildlife taxa were observed alive 

or freshly slaughtered at 45.2% (n = 57/126) of sites, and dead at 46.8% (n = 59/126) of sites. 

Results from all logistic regression models below (odds ratios and credible intervals) predicting 

the presence of animal taxa can be found in Table S1. 

For wildlife observed alive or slaughtered on site, non-human primates (10.3%, n = 

13/126) were less common in Asia than Africa/Middle East, and more common at urban sites 

compared to rural sites. Wild birds (29.4%, n = 37/126) were more common in Asia and at urban 

sites. Ungulates (8.7%, n = 11/126) were less common at Asian study sites. Continent, season, 

urbanization, and node along the supply chain did not predict the presence of rodents/shrews 

(19.0%, n = 24/126), bats (9.5%, n = 12/126), or pangolins (7.9%, n = 10/126) observed alive or 

slaughtered on site in this study. Carnivores were not observed at enough study sites (4.0%, n = 

5/126) to perform regression analysis. 

Among wildlife carcasses identified, rodents/shrews (36.5%, n = 46/126) were more 

common at transit nodes, and bats (16.7%, n = 21/126) were less common at sale nodes 

compared to source nodes. Non-human primates (27.0%, n = 34/126) and pangolins (14.3%, n = 

18/126) were both less common at study sites in Asia and more common at transit nodes 

compared to source nodes across Asia and Africa/Middle East. Carnivores (11.1%, n = 14/126) 

were more common at peri-urban sites compared to rural sites. Ungulates (23.8%, n = 30/126) 

were less common in Asia and more common at sale nodes. The presence of wild birds (13.5%, n 

= 17/126) was not associated with continent, season, urbanization, or node along the supply 

chain. 
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For domestic animals observed alive or slaughtered on site, poultry/fowl (65.1%, n = 

82/126) were more commonly observed at study sites in Asia compared to sites in Africa/Middle 

East. Goats/sheep (50.0%, n = 63/126) and camels (13.5%, n = 17/126) were observed less 

frequently at transit nodes and dogs/cats (22.2%, n = 28/126) were observed less frequently at 

sale nodes compared to source nodes. Continent, season, urbanization, and node along the supply 

chain were not significant predictors of the presence of swine (21.4%, n = 27/126) or 

cattle/buffalo (45.2%, n = 57/126). Horses were not observed at enough study sites (4.0%, n = 

5/126) to perform regression analysis.  

Among domestic animal carcasses identified, poultry/fowl (35.7%, n = 45/126) were 

more commonly observed at study sites in Asia and sale nodes compared to source nodes. 

Goats/sheep (38.9%, n = 49/126) were more common at urban sites compared to rural sites, and 

sale nodes compared to source nodes. Camels (7.1%, n = 9/126) were less common at Asian sites 

and during the wet season, but more common at urban sites and sale nodes. Cattle/buffalo 

(47.6%, n = 60/126) were more common in Asia, at urban sites, and at both transit and sale 

nodes, compared to source nodes. Dogs and cats (7.9%, n = 10/126) were more common at sites 

in Asia. Continent, season, urbanization, and node along the supply chain were not significant 

predictors of the presence of swine (31.7%, n = 40/126). Horses were not observed at enough 

study sites (1.6%, n = 2/126) to perform regression analysis. 

Use of protective equipment among supply chain workers 

Among people working in the wildlife supply chain, 30% (n = 159/530) of individuals 

reported wearing any type of PPE at work, and this was more common if they reported being 

worried about disease (OR = 8.04, 95% CI = 4.36 – 15.11; Table S2). People were less likely to 

report use of PPE (of any type) if they were in Asia compared to Africa/Middle East (OR = 0.06, 
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95% CI = 0.00 – 0.74) or worked at large markets compared to small markets (OR = 0.23, 95% 

CI = 0.05 – 0.94; Table S2). Gender, education level, selling live animals, housing multiple 

species together in one enclosure overnight, and the taxa sold were not significant predictors of 

PPE use in this study. Because animal taxonomic orders were not significant predictors of PPE 

use in preliminary models, animal taxa were collapsed into “wildlife” and “domestic” groups in 

the final model, which were also not significant. The duration of time a person had worked at a 

site was also not a significant predictor of PPE use. 

Of the 159 individuals (28 females, 131 males) in the supply chain who reported using 

PPE, shoes or boots were used by 71.1% (n = 113), protective clothing was used by 40.9% (n = 

65), gowns/aprons were used by 9.4% (n = 15), gloves were used by 17.0% (n = 27), and masks 

were used by 12.6% (n = 20). One quarter of people reported using any type of PPE while 

handling animals (25.2%, n = 40) and half reported always using their PPE while they were 

working (51.6%, n = 82). Of the 331 (35 females, 296 males) total supply chain workers who 

reported slaughtering an animal in the past year, 28.7% (n = 95/331, 15 females, 80 males) 

reported using PPE and 30.5% of those (n = 29/95, all males) reported using PPE specifically 

while slaughtering or butchering animals.  

Use of protective equipment among hunters 

Among hunters, 28.7% (n = 286/995) of individuals reported using PPE, which was more 

likely if they were worried about disease (OR = 2.24 95% CI = 1.45 – 3.49) or had had a primary 

(OR = 2.09, 95% CI = 1.17 – 3.76), secondary (OR = 2.36, 95% CI = 1.28 – 4.44), or tertiary 

(OR = 2.74, 95% CI = 1.16 – 6.41) school education (Table S3). Hunters were less likely to 

report PPE use in Asia compared to Africa/Middle East (OR = 0.33, 95% CI = 0.12 – 0.81; Table 

S3). Hunters who hunted for home use were more likely to use PPE (OR = 2.13, 95% CI = 
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1.02 – 4.58), while hunting for the purposes of sale or nuisance wildlife control was not 

associated with PPE use (Table S3). Hunters were also more likely to use PPE if they reported 

hunting carnivores (OR = 1.85, 95% CI = 1.05 – 3.33) or pangolins (OR = 2.65, 95% CI = 

1.36 – 5.23) in the past year, but less likely to use PPE if they hunted wild birds (OR = 0.60, 

95% CI = 0.38 – 0.94; Table S3). There was no association between PPE use and the hunting of 

rodents/shrews, bats, non-human primates, birds, or ungulates (Table S3). Gender and experience 

with an outbreak of dead wild animals in the previous year were also not significant predictors of 

PPE use (Table S3). 

Of the 286 hunters (11 females, 275 males) who reported using PPE, shoes or boots were 

used by 95.8% (n = 274), protective clothing was used by 36.4% (n = 104), gowns/aprons were 

used by 2.8% (n = 8), gloves were used by 9.4% (n = 27), and masks were used by 3.8% (n = 

11).  

Approximately one third of hunters reported using PPE while handling animals (27.0%, n 

= 77/285) and 64.9% (n = 185/285) always used PPE while they were working (groups 

overlapped). Of the 803 hunters (71 females, 732 males) who reported slaughtering an animal in 

the past year, 31.8% (n = 255/803, 8 females, 247 males) reported using PPE and 15.4% (n = 

39/254, all males) of those reported using PPE while slaughtering or butchering animals. Sample 

sizes differ among groups because one respondent did not answer all follow-up questions 

regarding the specific types and circumstances of their PPE use. 

 

Discussion  

This study describes the distribution of risk factors for zoonotic pathogen spillover along 

the wildlife supply chain in Africa/Middle East and Asia, especially at sites where wildlife was 
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sold for food. Overall, we found limited biosafety practices or biosecurity measures 

implemented, which raises concerns around the potential for disease transmission in these 

settings. Coinciding with this, we identified several common conditions that may facilitate 

zoonotic disease emergence, including housing multiple taxa together, the presence of live or 

freshly slaughtered animals, and the presence of animal blood, tissues, and excreta. Certain 

conditions were more common at urban sites and point-of-sale nodes, raising additional concerns 

for the risk of pathogen transmission among a wide variety of species and spillover to humans at 

locations with high population densities.  

Housing multiple taxonomic orders of wildlife together was very commonly observed at 

sites sampled in this study, perhaps due to logistical and space constraints in resource-poor 

settings and a possible lack of knowledge regarding the increased risk this behavior holds for 

cross-species disease transmission. This practice increases the risk of cross-species pathogen 

transmission through close contact among different species and contamination with bodily fluids 

such as respiratory excretions. Even when animals of different species or orders were separated 

into different cages, these cages were often placed extremely close together or stacked on top of 

one another, potentially allowing animals to be in effective contact. While wild and domestic 

species were not frequently observed housed together (only 7% of sites), inter-species contact 

between caged and free-roaming animals was likely possible. At many markets, domesticated 

species roamed freely and local free-ranging wildlife, such as rodents and birds, could interact 

with caged animals for sale (52). In addition, wildlife found together within the supply chain 

were often species that would not come into close contact naturally based on non-overlapping 

ecological niches (37, 53). Previous work quantifying wildlife at markets in Lao PDR found a 

wide range of wildlife taxonomic groups present in the same market, many of which were 
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capable of harboring zoonoses of significance to humans (36 zoonotic pathogens previously 

documented in the mammalian species alone) (37). For both wild and domestic animals, the 

transit node of the supply chain is a bottleneck where animals housed at high densities have close 

contact, enabling opportunity for transmission of pathogens that have been pre-adapted or are 

evolving adaptations to zoonotic transmission. Separating animals by species and only housing 

animals together if they were captured in the same location would mitigate cross-species 

transmission risk but would be hard to implement in resource poor settings and without 

significant investment in education campaigns.    

Both urban sites and sale nodes were areas with relatively high human densities, and sale 

nodes tended to be sites where multiple species were housed at markets after being transported 

from various source locations, increasing the possibility of a species encountering a new 

pathogen to which that species has not been previously exposed. Observed patterns, such as 

animal blood/tissues being more common at sale nodes relative to source nodes, might have been 

impacted by the inclusion of both natural areas and farms as source nodes, even though these 

areas can differ greatly in their level of urbanization, species present, and animal slaughtering 

activities performed. Future work could explore finer scale differences among source nodes 

which may impact disease amplification and zoonotic spillover at these sites.  

Although there were no specific predictors of unprotected drinking water or 

drinking/bathing water being shared among humans and animals, both practices were observed at 

least once at one-quarter to one-half of sites. Our analysis did not measure changes in the 

proportion of time that water sources are shared, but these behaviors were consistently observed 

across seasons, continents, and human densities, which is of concern given the potential for 

water-borne pathogen transmission (54).  
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The proper use of PPE can prevent disease transmission by limiting contact with 

infectious materials during close contact with animals and while cleaning animal tissues and 

excreta (55). The use of PPE can act as a harm reduction practice in occupations with high 

zoonotic disease exposure while the primary goal of reducing high-risk, unstainable wildlife 

trade is concurrently addressed. The greater PPE use reported among people with higher levels 

of education and those concerned about disease suggests that education regarding the health risks 

of working with animals may increase its use among hunters and supply chain workers. 

However, we cannot rule out the possibility of response bias in interviewees’ responses to 

questions regarding their personal use of PPE. Although we did not detect gender differences in 

PPE use, we may not have had the power to detect gender differences due to the interviewee pool 

was heavily skewed towards males. 

Among supply chain workers, working in a large market reduced the likelihood of PPE 

use. This could be related to a culture of apathy towards PPE, e.g., in larger markets with more 

workers, a person is more likely to become accustomed to co-workers not using PPE and not 

suffering any apparent ill effects. Studies of human healthcare workers have found that a strong 

“safety culture” (the use of PPE by supervisors and peers) and enforcement of regulations were 

important in maintaining positive reinforcement to encourage personnel to consistently use PPE 

(56–58). Markets may be able to create a “safety culture” by employing strong public education 

campaigns to encourage voluntary PPE use (e.g., radio commercials, posters in markets, direct 

outreach), setting PPE requirements for vendors, and enlisting the support of local public health 

groups to provide PPE to workers. 

Gloves, masks, and gowns/aprons were the least frequently utilized types of PPE across 

all groups. Shoes/boots were the most common PPE used, but these are also the least likely to 
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protect a user from exposure to a pathogen and may contaminate homes and other locations if not 

adequately disinfected. Determining the type of PPE that people have access to and are willing to 

consistently use is an important part of establishing recommendations for various professions. 

For example, the long-term durability of shoe/boots may be one reason they were more 

commonly utilized than single-use, disposable PPE such as masks and gloves which must be 

continuously repurchased. While increasing the use of PPE and biosafety practices may be 

beneficial from a health perspective, these are also products/procedures that may be costly or 

difficult for people to obtain, such as clean water and soap for handwashing. We recommend 

incorporating discussions about practical and sustainable forms of PPE for a given occupation, 

including those which can be safely reused and which low-cost alternatives may be effective 

(e.g., reusable cloth masks vs. disposable surgical masks), as part of educating communities 

about zoonotic disease, occupational disease exposures, and forms of high-risk contacts with 

animals.   

PPE use was also consistently lower at study sites sampled in Asia. This may reflect a 

true difference in PPE use, either due to cultural norms or monetary/logistical access to supplies, 

or may reflect inconsistences in data collection, definitions, or biased sampling across sites. Fine-

scale patterns of PPE use may have been masked by the types of sites sampled in this study or 

the granularity of the data. We may observe a general increase in PPE use now that the public 

has become more aware of the role wildlife play in disease transmission in light of the SARS-

CoV-2 pandemic, the global adoption of masking, and the awareness of zoonotic disease risk 

from live animal markets.  

Many species observed in the wildlife supply chain were hunted and/or traded illegally, 

according to local and international wildlife protection laws and trade regulations, including the 
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Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) (37, 

53, 59–61). Some species observed in the wildlife supply chain are also undergoing significant 

population declines and are listed as near threatened, vulnerable, or endangered by the 

International Union for Conservation of Nature (IUCN) Red List of Threatened Species (62), 

contributing to local and global reductions in biodiversity and ecosystem resilience (21, 22, 63). 

A recent study found that among mammals listed as threatened by the IUCN (n = 1,125 

examined), 54.8% were experiencing population declines due to exploitation or reductions in 

habitat area or quality, and these species were also predicted to host a greater number of zoonotic 

viruses compared to species listed as threatened for other reasons (25). If wildlife populations 

continue to rapidly decline due to habitat loss and exploitation by humans, two of the primary 

causes of species decline worldwide, their role in the spillover of zoonotic pathogens may 

increase as well.  

Despite the impacts that unregulated hunting and commercial sale of wildlife have on 

biodiversity and conservation, wildlife are still a critical, locally available, and culturally 

important food source for many communities across the globe (64–67). Until access to 

sustainable food and income is secure and the demand for exotic pets and wildlife-derived 

products declines, our findings could inform community education efforts regarding zoonotic 

pathogen transmission risk and the development of PPE adoption campaigns informed by the 

behavioral evidence. High risk interfaces along the wildlife supply chain identified in this study 

could be modified to reduce the risk of cross-species transmission and zoonotic spillover to 

humans by 1) eliminating the sale of live animals and high-risk taxa at markets, 2) housing 

animals together only if they are of the same species and from the same location, 3) cleaning and 

disinfecting equipment and slaughter facilities, 4) increasing the use of highly effective PPE such 
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as gloves and masks, and 5) securing year-round sources of clean water for drinking and 

handwashing. These guidelines apply to domestic as well as wildlife species. As the global 

community calls for changes to the way wildlife is traded and consumed in light of the SARS-

CoV-2 pandemic, nuanced and targeted policy changes that can be adapted based on local 

community needs, traditions, and conditions, will be important to conserve wildlife while also 

avoiding unintended consequences such as impacts to food security and sustainability of 

livelihoods (66).   

 

Materials and Methods 

Characterization of sites in the wildlife supply chain  

We identified sites along wildlife supply chains in Africa and the Middle East 

(“Africa/Middle East”) and Asia and Southeast Asia (“Asia”) where there were animal-human 

interfaces with potential for pathogen spillover, with a special focus on sites where wildlife was 

sold for consumption. These were sites where epidemiologic conditions, such as a high level of 

close contact between humans and wild animals at markets where live wildlife were for sale, 

could facilitate cross-species disease transmission or zoonotic spillover.  

Sites along the wildlife supply chain (n = 126) were visited between July 2015 and 

November 2018 by trained observers, with the goal of visiting each site at least once during the 

wet and dry season of each year (Figure 4). During each visit, observers used standardized 

survey forms to record the season (wet or dry), node along the supply chain (source, transit, 

sale), and local urbanization gradient (rural, peri-urban, urban). They also recorded the presence 

of risky behaviors and circumstances related to zoonotic spillover: wild and domestic animal 

taxa present, if multiple taxa were housed together, if wild and domestic taxa were housed 
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together, if a veterinarian cared for animals at the site, biosecurity measures (handwashing 

facilities, removal of sick or dead animals from live animal settings, disinfection of animal crates 

and equipment), presence of animal waste (urine and/or feces, tissue and/or blood), and if human 

drinking and bathing water sources were unprotected or shared with animals. Wild taxa observed 

were categorized as rodents/shrews, bats, non-human primates, birds, carnivores, ungulates, and 

pangolins. Domestic taxa observed were categorized as poultry/other fowl, goats, sheep, 

cattle/buffalo, camels, swine, dogs/cats. The condition of wildlife taxa (live, dead) was also 

recorded and aggregated based on zoonotic risk; animals present alive and/or slaughtered on site 

were grouped together, and animals present dead and intact and/or sold in parts (“dead”) were 

grouped together. 

Site visits resulted in 562 observation events across 61 sites in 13 African/Middle Eastern 

countries (Cameroon, Democratic Republic of the Congo, Egypt, Ethiopia, Ghana, Guinea, 

Republic of Côte d'Ivoire, Jordan, Kenya, Republic of the Congo, Sierra Leone, Tanzania, 

Uganda) and 65 sites in eight Asian countries (Bangladesh, Cambodia, Indonesia, Lao People's 

Democratic Republic [Lao PDR], Myanmar, Nepal, Thailand, Vietnam).  

Of the 126 sites sampled, six of them included multiple nodes (source, transit, sale) of the 

wildlife supply chain. To evaluate the relationship between urbanization and node of the supply 

chain without resampling by season, we aggregated the study sites by urbanization and node 

only, resulting in a total of 132 unique site events. Comparisons between node and urbanization 

classifications were made using chi-square or Fisher’s exact test (to accommodate small cell 

sizes) with significance at p ≤ 0.05 in the R programming language (69). 

Observation event data for the 126 sites were aggregated separately based on season, 

node of the wildlife supply chain, and urbanization into 169 “site events” used for regression 
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modeling. When sites were visited and characterized multiple times (i.e., more than one 

observation per site), a risk characteristic was considered “present” if the characteristic was 

observed at least once on any visit. These site event data informed Bayesian, multilevel, logistic 

regression models testing the association of continent, season, node of the supply chain, and 

urbanization (predictors) with the presence of the zoonotic risk characteristics listed above 

describing animal husbandry, animal waste, biosecurity, and taxa present (outcomes). Regression 

models were only performed for outcome variables with ≥9 events observed across the 169 site 

events to avoid inaccurate estimates due to lack of outcome variability.  

Use of protective equipment in the wildlife supply chain 

People within the wildlife supply chain were interviewed regarding their contact with 

animals and PPE use if they hunted, trapped, or fished wild animals (hunters), or if they traded 

wild/domestic animals or owned a business in a market (wildlife supply chain workers, including 

markets). Interviewees were selected if they reported hunting or market/supply chain 

involvement associated with a given site but were not always recruited within markets 

themselves. Interview questions for both groups came from standardized behavioral risk 

questionnaires that were administered by local researchers in the interviewee’s native language. 

Data were collected from a total of 530 supply chain workers (83 females, 447 males) 

from 29 sites in nine countries in Africa and the Middle East (317 workers; Republic of Côte 

d'Ivoire, Ghana, Cameroon, Republic of the Congo, Democratic Republic of the Congo, Kenya, 

Tanzania, Egypt, and Jordan) and 27 sites in six countries in Asia and Southeast Asia (213 

workers; Nepal, Bangladesh, Cambodia, Indonesia, Myanmar, and Vietnam) between June 2016 

and September 2018 (Figure 4).  
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Data were collected from 995 hunters (127 females, 868 males) from 64 sites in 10 

countries in Africa (477 hunters; Cameroon, Democratic Republic of the Congo, Egypt, Ghana, 

Republic of Côte d'Ivoire, Kenya, Senegal, Sierra Leone, Tanzania, Uganda) and 77 sites in nine 

countries in Asia and Southeast Asia (518 hunters; Bangladesh, Cambodia, India, Indonesia, Lao 

PDR, Myanmar, Nepal, Thailand, Vietnam) between September 2016 and December 2018 

(Figure 4).  

Responses from human surveys informed Bayesian, multilevel, logistic regression 

models testing for factors associated with the use of PPE. The outcome variable was whether or 

not an individual reported owning any PPE used for work (including gloves, masks, 

gowns/aprons, clothing, and shoes/boots), and predictive covariates of interest included 

continent, gender (female, male; as observed by the interviewer), highest level of education 

completed (none, primary school, secondary school, college/university/professional school 

[“tertiary”]), whether or not the person was worried about outbreaks of animal disease at the 

local market, if the person had experienced an outbreak of dead wild animals in the previous 

year, the size of the market as measured by the number of people working at the site (“small” = 

≤1,000 people, “large” = >1,000 people), the duration of time the person had worked at the 

market (≤5 years or >5 years), the purpose of hunting wild animals (consumption or use of 

animal products at home, sale of live animals or animal products, culling or live trapping and 

translocation of nuisance animals), and the animal taxa hunted or sold within the past year. Wild 

taxa included rodents/shrews, bats, non-human primates, birds, carnivores, ungulates, and 

pangolins. Domestic taxa included poultry/other fowl, goats, sheep, cattle/buffalo, camels, swine, 

dogs/cats.  
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Follow-up questions included which specific types of PPE were used (gloves, masks, 

gowns/aprons, clothing, shoes/boots), in what circumstances this PPE was used (always while at 

work, while handling animals, while slaughtering or butchering animals), and if the individual 

had slaughtered an animal in the past year.  

Model building 

All regression models were performed using the “brms” package (70, 71) in the R 

programming language (69). Continent, country, and site name were controlled for as a nested 

random intercept to account for resampling by geographic location. Weakly informative priors 

[Normal(0, 2.5)] were selected for the intercept and beta parameters in order to account for 

complete or quasi-separation of data (72), and each model contained four chains with 10,000 

iterations each. The 95% highest density interval was used as the credible interval (CI). Model 

parameters were included if they were considered biologically important (such as gender and 

season) or were associated with both the model outcome and other model parameters 

(confounders) according to bivariate comparisons. Bivariate comparisons were made using chi-

square or Fisher’s exact test (to accommodate small cell sizes) with significance at p ≤ 0.05. 

Adjusted p-values for multiple comparisons were calculated using the Holm’s correction (73). 

Animal taxa were modeled individually, then collapsed into broader “wildlife” and “domestic” 

groups if individual taxa were not significant predictors of PPE use. 
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Figure 1. Schematic illustrating the wildlife supply chain through which wildlife and their byproducts mix as they move from source 
to sale. Animals shown in black are wildlife taxa, animals show in white are domestic taxa.
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Figure 2. Barplot showing the proportion of study sites (n = 126) along the wildlife supply chain 
at which a given risk characteristic was observed at least once. Data were collected from sites 
across 21 countries in Africa/Middle East and Asia between July 2015 and November 2018. 
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Figure 3. Sankey network plot illustrating the distribution of study sites (n = 126) among nodes 
along the wildlife supply chain (source, transit, sale) and local urbanization (rural, peri-urban, 
urban). Some study sites (n = 6) were comprised of multiple nodes of the supply chain, resulting 
in a total of 132 elements being included in the figure. The width of the nodes (vertical bars) and 
links (horizontal lines) are proportional to the number of observations in each category.
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Figure 4. Map depicting the distribution of site observations and human interviews along the 
wildlife supply chain in Africa and Asia. Sites along the wildlife supply chain (source, transit, 
sale) were visited by trained observers who used standardized survey forms to record the 
presence of risky behaviors and circumstances related to zoonotic spillover, including animal 
husbandry and taxa present, animal waste, and biosecurity. Site visits resulted in 562 observation 
events across 61 sites in 13 African/Middle Eastern countries and 65 sites in eight Asian 
countries between July 2015 and November 2018. People within the wildlife supply chain were 
interviewed regarding their contact with animals and personal protective equipment use if they 
hunted, trapped, or fished wild animals (hunters), or if they worked within the wildlife supply 
chain. Data were collected from a total of 530 supply chain workers from 29 sites in nine 
countries in Africa and the Middle East and 27 sites in six countries in Asia and Southeast Asia 
between June 2016 and September 2018. Data were collected from 995 hunters from 64 sites in 
10 countries in Africa and 77 sites in nine countries in Asia and Southeast Asia between 
September 2016 and December 2018. 
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CHAPTER 2:  

 

The impact of social distancing on early SARS-CoV-2 transmission in the United States 

 

 

Style formatted for Zoonoses and Public Health 
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SUMMARY 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral pathogen that quickly 

became a global pandemic in the winter of 2020. In response, governments issued social 

distancing orders to minimize transmission by reducing community contacts. We tested the 

efficacy of this social distancing at the state level during the first two months of the pandemic in 

the United States. We utilized data on daily SARS-COV-2 case numbers and human community 

mobility (anonymized, aggregated cellphone location data stratified into six categories used as an 

index of social distancing), the date of government-issued social distancing orders, 

demographics, urbanization, and public transportation. We implemented cross-correlation to 

identify lag times between declines in mobility and SARS-CoV-2 cases. Incorporating state-

specific lag times, we tested for associations between case counts and mobility metrics using 

Bayesian multilevel models. Decreased mobility around grocery stores/pharmacies, 

retail/recreation locations, transit stations, and workplaces were correlated with decreases in 

SARS-CoV-2 cases with significant lag times of ≥21 days. Social distancing orders were 

associated with fewer cumulative SARS-CoV-2 cases when they were put in place earlier. 

Community mobility had already started declining prior to most social distancing orders, 

especially the more restrictive orders implemented later in the pandemic. Social distancing is an 

important tool that has been implemented throughout the pandemic to decrease SARS-CoV-2 

transmission, although with significant social and economic impacts. Our results suggest that 

declines in cases were observed several weeks subsequent to implementation of social distancing 

measures, and that implementing social distancing earlier could potentially minimize the 

duration of time these policies need to be in effect. Our findings can inform ongoing 

management of this pandemic and other emerging infectious disease outbreaks by identifying 
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areas where reductions in mobility are associated with reduced disease transmission, and the 

expected time frame between behavioral changes and measurable population outcomes.  

 

KEYWORDS 

severe acute respiratory syndrome; COVID-19; coronavirus; social distancing; epidemic; 

pandemic  

 

IMPACTS 

• Reductions in community mobility around workplaces, transit stations, retail/recreation 

locations, and grocery store/pharmacies was associated with subsequent declines in SARS-

CoV-2 cases, but these declines in cases occurred after lag times of three weeks or more. 

Parks visitation was not associated with SARS-CoV-2 case numbers. 

• Mobility metrics declined prior to government-issued social distancing orders, but early 

implementation of these orders was correlated with lower cumulated SARS-CoV-2 cases. 

• Social distancing can be an effective epidemic response tool to slow transmission while 

developing other control measures, such as vaccinations.  
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INTRODUCTION 

A novel betacoronavirus emerged in December 2019 in Wuhan, Hubei province, China, where it 

caused a cluster of severe respiratory disease and pneumonia cases. It spread rapidly across the 

globe and was declared a pandemic by the World Health Organization in March 2020 (World 

Health Organization, 2020). The virus, named “severe acute respiratory syndrome coronavirus 2” 

(SARS-CoV-2) caused the disease “COVID-19” (Coronaviridae Study Group of the 

International Committee on Taxonomy of Viruses, 2020) and now been confirmed in nearly 

every country in the world and infected nearly 210 million people (Johns Hopkins Coronavirus 

Resource Center, 2021). 

The SARS-CoV-2 virus is highly contagious, with a basic reproductive number of 3.14 

(95% CI = 2.69 – 3.59; calculated as a pooled estimate) (Hussein et al., 2021). Person-to-person 

transmission is the driver of the current pandemic (Chan et al., 2020). Airborne transmission of 

respiratory secretions during close contact is currently believed to be the primary method of 

spread, although the role of other routes are still being investigated (Karia et al., 2020). The most 

common symptoms in people are fever, cough, and fatigue but a range of other symptoms are 

being identified that affect other organ systems (Grant et al., 2020). Due to high rates of pre-

symptomatic and asymptomatic viral shedding (Li et al., 2020; Moghadas et al., 2020) 

transmission often occurs before infection is confirmed through diagnostic testing, posing 

challenges for contact tracing and quarantine.  

The first positive case of SARS-CoV-2 in the United States of America (USA) was 

confirmed by the Centers for Disease Control and Prevention (CDC) on January 20, 2020 

(Holshue et al., 2020) and all 50 states reported cases by mid-March 2020. Due to limited testing 

capabilities during the first months of the pandemic, testing was initially limited to individuals 
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with fever and lower respiratory tract symptoms who also had a history of travel from China or 

close contact with a laboratory-confirmed SARS-CoV-2 patient within 14 days of symptom 

onset (Patel, 2020). Due to these limitations, community transmission in the USA went largely 

undetected during the early pandemic period. 

To slow SARS-CoV-2 spread while testing capabilities increased, every state government 

in the USA instituted some kind of social distancing order (SDO) during March and April 2020. 

These SDOs varied in their scope, level of intensity, and timing. Not all states enforced every 

type of SDO either; for example, only 38 states had instituted stay-at-home orders by April 30. 

This variation in the timing and location of SDOs provided an opportunity to investigate the 

impact of social distancing measures on the spread of SARS-CoV-2 at the state level.  

Minimizing close contacts through social distancing is a key tool to rapidly decrease the 

propagation of directly transmitted pathogens, especially emerging infectious diseases for which 

vaccines are not yet available. Social distancing has limited the transmission of other infectious 

diseases, such as influenza (Fong et al., 2020), especially when distancing is instituted early in an 

epidemic and across a large proportion of the population (Kelso et al., 2009). However, 

widespread social distancing has significant impacts on livelihoods, social interactions, mental 

wellbeing, and economies worldwide (Bonaccorsi et al., 2020; Brodeur et al., 2020; Fitzpatrick 

et al., 2020; Nicola et al., 2020; Rajkumar, 2020). Due to these far-reaching consequences, there 

is a need for critical scientific examination of the effectiveness of social distancing, especially 

during the early phases of response when strict social distancing would be most effective, but the 

epidemic potential of an emerging disease is not yet well characterized.  

We hypothesized that social distancing, as measured by reductions in movement, resulted 

in subsequent declines in daily SARS-CoV-2 case incidence at the state level during the first two 
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months of the pandemic in the USA. We expected that these case declines would occur after a 

temporal delay that varied by state, related to the timing of SDOs and the degree of mobility 

reduction achieved. We expected that the effect of social distancing on transmission was 

mediated by other factors that also increase contact among people, such as population size, 

number of people living in dense urban areas, and public transportation use.  

 

MATERIALS AND METHODS 

Data Collection 

The daily count of new SARS-COV-2 cases were reported by state public health websites 

and compiled by the COVID Tracking Project (The Atlantic Monthly Group, 2020d). Most states 

reported only laboratory confirmed cases but nine states combined these with “probable” cases, 

defined as symptoms consistent with SARS-COV-2 and a history of exposure to a SARS-CoV-2 

patient or travel to an area with high SARS-COV-2 prevalence, per the CDC case definition 

(Council of State and Territorial Epidemiologists, 2020). Both probable and confirmed cases, as 

reported by each state, were included in case incidence counts for modeling. Polymerase chain 

reaction (PCR) was the only diagnostic test widely available at the beginning of the pandemic 

(The Atlantic Monthly Group, 2020a), which reflects current or very recent infection. Some 

states began combining antibody test results (indicating previous infection) together with PCR 

test results in early May 2020 (The Atlantic Monthly Group, 2020c). We ended the study period 

ended on April 30, 2020 in order to better represent case incidence and not include previous 

infections. Each state entered the study on the first date they reported cumulative results from 

≥10 tests (minimum date: February 29, 2020). 
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Inadequate testing during the early weeks of the epidemic resulted in apparent under-

detection of cases. However, the relative trends of the epidemic curves are still useful for 

examining transmission patterns among states and correspond to similar trends in 

hospitalizations and deaths. Although hospitalization and mortality due to SARS-CoV-2 may be 

less likely to go undetected than infections, these measures are affected by additional 

confounders, such as comorbidities, disease severity, and discrepancies in access to health care. 

Case counts are therefore a more appropriate index of new infections because they are more 

tightly associated temporally with transmission events. 

State-issued SDOs (Institute for Health Metrics and Evaluation, University of 

Washington., 2020) included the closure of educational facilities, large gathering restrictions, 

initial closures of any businesses, closure of all nonessential businesses, and stay-at-home orders. 

Cumulative SARS-COV-2 cases in each state on the date a SDO went into effect was used as an 

index of how early social distancing was implemented relative to when the pandemic arrived in 

each state, with fewer cases indicating that an SDO was enacted earlier.  

Human movement (“mobility”), in the form of anonymized location data aggregated from 

individual mobile phones (Google LLC, 2020), was used as an index of dynamic changes in 

social distancing over time. “Baseline” was the median amount of movement for a particular day 

of the week summarized over January 3 – February 6, 2020 and represented “normal” mobility 

immediately prior to the pandemic. Mobility after February 6 was calculated as the proportionate 

change in daily mobility relative to baseline for each day of the week. Mobility data were 

stratified by six different location categories: parks, residential areas (e.g. houses, apartments), 

grocery stores and pharmacies, retail and recreation, transit stations, and workplaces. Residential 
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measurements were quantified as the average number of hours that a person spent at their 

residence, while all other categories were the number of visitors to a given type of location.  

We accounted for non-time varying, state-level variables that may influence disease 

transmission. These include population size (U.S. Census Bureau, 2019) and density 

(people/km2) (U.S. Census Bureau, 2020); annual number of airplanes passengers (Bureau of 

Transportation Statistics, 2018c) and trips on public transportation (“transit ridership") (Bureau 

of Transportation Statistics, 2018b); number of airports (Bureau of Transportation Statistics, 

2020); proportion of the population: in poverty (Semega et al., 2019), without health insurance 

(Edward R. Berchick et al., 2019), classified as an essential worker or healthcare worker (United 

Way of the National Capital Area, 2020) and using public transportation for commuting (Bureau 

of Transportation Statistics, 2018a); and proportion of the population living in areas classified as 

urban (densely developed areas with ≥2,500 people), an urban cluster (2,500 – 50,000 people), or 

an urban area (≥50,000 people) (U.S. Census Bureau, 2018a). Race/ethnicity was measured as 

the proportion of the population self-identifying as Black, Indigenous American, 

Hispanic/Latino, or any “non-White” race (groups were not mutually exclusive) (U.S. Census 

Bureau, 2018b, 2018c). Covariates that were not proportions were scaled to range from 0 – 1 but 

retain the relative differences between values. 

Data Analyses 

Data evaluation and statistics were performed in R version 4.0.4 (R Core Team, 2021). 

Seven-day centered means (moving windows) were generated for the daily count of new SARS-

CoV-2 cases and mobility values to smooth out variation related to the day of the week (e.g. case 

reporting was lower and parks mobility was higher on weekends) (The Atlantic Monthly Group, 

2020b). This resulted in in 53 ± 4 days (mean ± SD) of data per state. We used case numbers 
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rather than another disease metric, such as proportion of positive tests, because these metrics 

would have shown a false decrease in disease burden during the first weeks of the pandemic due 

to the number of daily tests performed increasing exponentially at a much faster rate relative to 

the number of cases. 

At the start of the pandemic when case numbers were increasing and mobility was 

starting to decline, these variables were negatively correlated. This correlation switched to 

positive as case numbers started to decline in some states. Lag times between reductions in 

mobility and initial declines in new cases were calculated using cross-correlation between case 

counts and mobility. Two independent measures were considered: 1) the number of days until 

the inflection point from negative to positive correlation (“minimal correlation”), which is 

hypothesized to be the amount of time it took for social distancing to contribute to initial declines 

in case numbers, and 2) the number of days until the maximum positive correlation, which could 

reflect the time it took for social distancing efforts to have maximal effects on case incidence.  

The extent of social distancing that occurred prior to government-issued restrictions was 

calculated as the proportionate change in mobility that had already occurred on the day an SDO 

was put into place, relative to the maximum change in mobility each state achieved over the 

entire study period.  

To test for associations between non-time varying, state-level predictors and pandemic 

severity, we implemented a Bayesian, negative binomial regression with a log link and no 

random effects. For these “cumulative case models,” the outcome was the cumulative count of 

cases in each state on April 30. We tested for associations between predictors using Spearman’s 

rank correlation, and correlated variables (significant at p < 0.05) were not included in the same 

model. Models were compared using leave-one-out cross-validation information criterion (LOO 
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IC) using the “loo” package (Vehtari et al., 2017, 2020). The predictor(s) in the top model was 

use in the next phase of modeling.  

To test for associations between mobility and case counts, we implemented a Bayesian, 

multilevel, negative binomial regression with a log link. For these “mobility models,” the 

outcome was the daily count of SARS-CoV-2 cases and the predictor was daily mobility. 

Mobility was lagged by the number of days until maximum positive correlation as identified by 

cross-correlation analysis; this lag was unique for each state. We included random intercepts for 

each state to account for resampling, and random slopes based on the number of days since a 

state entered the study to account for temporal autocorrelation between case numbers. Model 

building included running models with just mobility predictors, then adding the non-time varying 

predictor(s) from the top cumulative case model(s). Multiple mobility categories were not 

included together in the same models since they represented interrelated behaviors (for example, 

as workplace mobility declined due to more people working from home, residential mobility 

inherently increased concurrently). Models containing the same mobility predictors were 

compared using LOO IC (Vehtari et al., 2017, 2020). 

Regression models were performed using the “brms” package (Bürkner, 2017, 2018). 

Weak priors were selected for the intercept [Normal(0, 10)], beta [Normal(0, 1)], and shape 

[Gamma(0.01, 0.01)] parameters and each model contained four chains with 10,000 iterations 

each. The 95% highest density interval was used as the credible interval (CI).  

 

RESULTS 

We demonstrate a strong positive association between social distancing in the form of 

reduced community mobility and decreases in SARS-CoV-2 case counts at the state level. 
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Specifically, decreased movement around grocery stores/pharmacies, retail/recreation locations, 

transit stations, and workplaces were associated with decreases in SARS-CoV-2 cases with 

significant lag times of 38 – 41 days. When put into place earlier, SDOs were associated with 

fewer cumulative cases, but community mobility had already began declining before SDOs were 

issued. 

Trends in community mobility 

Mobility for grocery stores/pharmacies showed a small spike of 18% (median) over 

baseline during the first three weeks of March in all states except Hawaii, corresponding to 

people shopping in preparation for stay-at-home orders and anticipated shortages. Mobility for 

grocery stores/pharmacies then declined to a maximum of 19% below baseline (median) and 

plateaued by April. Mobility in residential areas increased during the middle two weeks of 

March then plateaued to a maximum 18% above baseline (median), reflecting people staying at 

home more often. Mobility around parks was highly variable for all states and over time, with no 

consistent pattern, likely because many states had less restrictive policies regarding the use of 

outdoor spaces. The minimum use of parks ranged from 68% below to 20% above baseline 

(Figure 1, Supplemental Table 1, Supplemental Figure 1). 

Mobility around retail/recreation locations, transit stations, and workplaces were 

extremely correlated (R2 = 0.88 – 0.90, p ≤ 0.001). Mobility in these categories declined in near 

parallel to a maximum of 46%, 48%, and 46% below baseline, respectively (median; Figure 1, 

Supplemental Table 1, Supplemental Figure 1). These categories represent areas that were 

avoided as the public became aware of the pandemic and were commonly closed when SDOs 

took effect. 
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Mobility started changing across all states and mobility categories at the beginning of the 

study, very often before SDOs were implemented (Supplemental Figure 1). Social distancing 

orders that tended to occur earlier (e.g., large gathering restrictions, closure of educational 

facilities and initial businesses) had more variability in the degree of mobility reduction that had 

already occurred at the time they were instituted (Supplemental Figure 2A-C). Nonessential 

services tended to be closed later (March 17 – April 3), by which time 33 of 34 states had already 

reached ≥70% of the maximal change in residential mobility, ≥60% of the maximum change in 

retail/recreational mobility, ≥60% of the maximal change in transit station mobility, and ≥69% of 

the maximal changes in workplace mobility (Supplemental Figure 2D). By the time of stay-at-

home orders (March 19 – April 7), 100% of 38 states had already reached ≥70% of the maximal 

change in residential mobility, ≥60% of the maximum change in retail/recreational mobility, 

≥68% of the maximal change in transit station mobility, and ≥69% of the maximal changes in 

workplace mobility (Supplemental Figure 2E). Parks and grocery stores/pharmacies were not 

included in this analysis due to these categories having more variable patterns of use during the 

time period in which SDOs were enacted. Four SDOs were not enacted by every state: gathering 

restrictions (enacted by 49 states), stay-at home orders (enacted by 38 states), any business 

closure (enacted by 47 states), and closure of non-essential services (enacted by 34 states). 

Temporal correlation between mobility and case count 

Grocery stores/pharmacies, transit stations, retail/recreation locations, and workplaces 

generally had a negative correlation with cases at the start of the study when mobility was 

declining and cases were increasing. Minimal correlation occurred after a 21 – 23-day lag and 

maximal positive correlation peaked after a 38 – 41-day lag (median; Supplemental table 2, 

Supplemental Figure 3A-D). Residential mobility initially had a positive correlation with cases, 
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peaking after a two-day lag and minimal correlation occurring after a 23-day lag when cases 

were declining but residential mobility had plateaued and remained high (Supplemental table 2; 

Supplemental Figure 3E). Parks mobility had variable correlations with cases numbers, both 

between states and over time, with most states having undulating cross correlation curves as park 

use fluctuated (Supplemental table 2; Supplemental Figure 3F).  

The associations of mobility with SARS-CoV-2 cases 

Significant positive associations with cumulative SARS-CoV-2 case counts were 

detected for population size and density, population in poverty, population living in any type of 

urban center, population commuting on public transportation, transit ridership, number of 

airports, airline passengers, and the number of SARS-CoV-2 cases on the day the following 

SDOs were enacted: educational facility closure, stay-at-home orders, initial business closure, 

and nonessential services closure (Supplemental table 3). The top cumulative case model 

contained the population living in an urban area (! = 36.47, 95% CI = 10.83 – 107.26) and the 

number of airports (! = 1.68, 95% CI = 1.30 – 2.22, R2 Bayes = 0.3, LOO IC = 741.1), and these 

variables were included in mobility models (Supplemental Table 3).  

Once urban area and airports were controlled for, lagged mobility around grocery 

stores/pharmacies (! = 2.25, 95% CI = 2.02 – 2.51), retail/recreation locations (! = 1.46, 95% CI 

= 1.32 – 1.62), transit stations (! = 1.46, 95% CI = 1.32 – 1.66), and workplaces (! = 1.72, 95% 

CI = 1.51 – 1.97) had positive associations with daily SARS-CoV-2 case count (Figure 2; 

Supplemental table 4). Parks were not associated with case count (! = 1.04, 95% CI = 0.90 – 

1.20). Models had very similar point estimates and LOO IC values regardless of whether urban 

area and the number of airports were included (Supplemental table 4). 
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Mobility around residential areas was also positively associated with case count but the 

point estimates, 95% CI, and LOO IC were extremely large (! = 80,515,75.63, 95% CI = 

5,488,097.66 – 11,874,990.68, LOO IC = 24,601.4; Figure 2; Supplemental table 4). These 

unrealistic estimates were due to case numbers continuing to increase exponentially as the 

residential mobility curve plateaued once people were spending a peak number of hours at home.  

We expect that increased time spent at home would not be a predictor of cases but rather a public 

reaction to increasing case numbers, although more time spent at home could in turn contribute 

to eventual reductions in overall community transmission.  

 

DISCUSSION  

This study is unique in incorporating data at daily timesteps to demonstrate that 

reductions in mobility specifically around grocery store/pharmacies, retail/recreation locations, 

transit stations, and workplaces are associated with subsequent declines in SARS-CoV-2 cases. 

These are areas with a high degree of mixing among people from different households and 

minimizing these interactions can be expected to slow the transmission of SARS-CoV-2. Our 

results support other studies using complimentary techniques to show that decreases in SARS-

CoV-2 cases are associated with social distancing and/or the implementation of SDOs 

(Courtemanche et al., 2020; Dave et al., 2020; Friedson et al., 2020; Matrajt & Leung, 2020). 

Social distancing is a tool that can be implemented rapidly (compared to vaccine development) 

but is economically and socially costly, and unlikely to end an epidemic when used as a solitary 

strategy. This is especially true in the face of highly contagious and rapidly mutating pathogens, 

as demonstrated by the spread of highly transmissible SARS-CoV-2 variants (Washington et al., 

2021).  



 

 69 

The inflection point of correlation between SARS-CoV-2 cases and mobility occurred 

three weeks after initial reductions in mobility, and it took five to six weeks to see maximum 

correlation. These lag times are supported by previous work using difference-in-difference and 

synthetic control approaches to estimate that it took >3 weeks for cumulative cases counts to 

decline substantially after stay-at-home orders were put in place (Dave et al., 2020; Friedson et 

al., 2020). Lags between mobility and case detection may be due to several biological, logistical, 

and social factors. The virus incubation period, delays and limits to testing, and pre-symptomatic 

or asymptomatic transmission events would all contribute to delays in case detection after 

infection. Decreasing mobility will decrease new transmission events, but daily case counts may 

not decline immediately due to recently acquired infections which will continue to be detected as 

people start to feel ill and get tested. Although reductions in mobility can reduce new infections 

between households, the increased amount of time that people spend at home may increase 

within-household transmission secondary to household members being in close contact more 

often (Leclerc et al., 2020). Anticipated lag times, adjusted for evolving changes in testing 

availability, should be communicated to the public to manage expectations about the expected 

duration of social distancing interventions. 

Lag times could be reduced through multiple mechanisms. Widely available testing early 

during an epidemic will provide individuals with the information they need to make informed 

decisions about personal behaviors such as isolation and quarantine. There is likely a feedback 

loop between the public perception of growing case numbers leading to declines in mobility, 

with these reductions in mobility subsequently leading to declines in case numbers. The 

directionality of this two-way interaction between behavior and disease transmission likely 

changed over the course of our study period. If the goal is to motivate timely changes in public 
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behaviors to reduce disease transmission, increased transparency and public communication 

regarding current epidemic conditions might also increase the speed and degree of mobility 

reduction prior to government guided SDOs.  

Indeed, we found that the public had already started reducing their mobility by the time 

state-level SDOs were put into place, especially the more restrictive orders that occurred later in 

the pandemic. This is supported by event study regression analysis that found no effect of state-

level stay-at-home orders on social mixing indices, and emergency declarations accounted for 

only 12% of social mixing reductions after 5 days, though this increased to 45% after 20 days 

(Gupta et al., 2020). This lack of state-level SDO impact may reflect unmeasured local 

ordinances and/or individual behavior changes in response to news coverage of the pandemic. 

Cancellation of popular events may have encouraged the public to alter their behavior ahead of 

SDOs, such as the cancellation of the remainder of the National Basketball Association season 

on March 11 in response to a player testing positive for SARS-CoV-2. However, our results 

demonstrate that SDOs were relatively more effective when put into place earlier, when there 

were fewer people infected, similar to work that found early adoption of stay-at-home orders 

resulted in the largest declines in SARS-CoV-2 cases (Dave et al., 2020).  Despite this mixed 

support for direct effects, SDOs likely encouraged the public to continue social distancing by 

reinforcing the severity of the pandemic threat to public health and reducing opportunities for 

activities outside the home.  

Important non-pharmaceutical interventions to control SARS-CoV-2 transmission were 

implemented concurrently or subsequently to SDOs, such as the use of facial coverings, staying 

>6 feet apart, and frequent hand washing. These actions have reduced transmission of SARS-

CoV-2 and other pathogens (Chu et al., 2020; Fong et al., 2020; Lyu & Wehby, 2020) and public 
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awareness of these recommended interventions increased over time (Lin et al., 2020), although 

there was geographic and demographic variation in compliance (Fisher, 2020). Use of non-

pharmaceutical interventions and declines in mobility are likely not independent, and there could 

have been additive or multiplicative interactions among these behaviors.  

The non-time varying, state-level variables represented different but overlapping aspects 

of population density and clustering, all of which had positive correlations with case numbers, 

although likely for different reasons. For example, larger airports, especially those with a high 

number of international routes, could lead to higher risk of initial seeding of disease into a state, 

whereas numerous urban centers may contribute to sustained disease transmission once 

introduced. There can also be complicated relationships between urbanization, poverty, race, and 

health care access, as demonstrated by urbanization mediating the association between human 

immunodeficiency virus (HIV) prevalence and poverty levels, and racial/ethnic disparities in 

HIV prevalence being reduced once poverty was controlled for (Mackey et al., 2021; Vaughan et 

al., 2014; Walton & Willyard, 2020). Although we controlled for these factors in our modeling, 

they did not greatly improve model fit, demonstrating that most of the variability in the data was 

explained by the mobility parameters and state-level groupings. Although this association 

between higher human densities and more SARS-CoV-2 cases is intuitive, some areas with high 

population densities, such as Taiwan, have been largely successful in controlling their outbreaks 

through proactive testing and contact tracing, strict social distancing, widely available face 

masks, and limited international travel (Wang et al., 2020). 

Park mobility was not significantly associated with SARS-CoV-2 cases, likely because 

people could utilize these areas while still physically distancing. Recent evidence demonstrates 

that outdoor spaces are low risk for SARS-CoV-2 transmission and support the use of outdoor 
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spaces to support physical and mental wellbeing during the pandemic (Bulfone et al., 2021; 

Leclerc et al., 2020).  

Mobile phone data provides a wealth of information but also introduces potential biases if 

there are different mobility behaviors between people who have mobile phones compared to 

those who do not. Mobile phone use in the USA is high, with 81% of people owning a 

smartphone, but smartphone use was lower among older age groups and lower education and 

income levels (Taylor & Silver, 2019), groups which were disproportionally impacted by SARS-

CoV-2 (Killerby et al., 2020; Leclerc et al., 2020).  

This study demonstrates that social distancing, in the form of mobility reductions, is 

associated with subsequent declines in SARS-CoV-2 cases, albeit with significant lag times of 

three weeks or more. This decline, in combination with the fact that our study showed that the 

public made significant mobility reductions prior to state-level SDOs, highlights the importance 

of early and accurate public health communication to inform individuals of preventative 

measures they can personally implement, especially in the absence of government-mandated 

guidelines. Social distancing is likely to be most effective when done proactively at the start of 

an epidemic, which should be communicated to the public to encourage support and compliance 

with SDOs. Social distancing can be an effective epidemic response tool to slow transmission 

while developing testing and hospital capacity, quarantine protocols, and pharmaceutical 

interventions, such as vaccinations.  
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FIGURES 
 
Figure 1: Maximum proportional change in mobility compared to baseline (baseline = 0) for each 
state, over the course of the study period (February 29 – April 30, 2020). Mobility was measured 
as one of five categories based on the type of locations used by the public: grocery and pharmacy 
locations, retail and recreation locations, transit stations, workplaces, and residential areas (e.g. 
houses, apartments). Residential mobility increased over the course of the study period (positive 
values relative to baseline), while all other mobility categories decreased (negative values 
relative to baseline). Note: Parks were not included in this figure because mobility around parks 
was highly variable and fluctuated erratically over time for all states. 
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Figure 2: Plot of predictions from the final six “mobility models,” each testing the association 
between reductions in community mobility (as measured by anonymized location data 
aggregated from mobile phones) and the daily number of new severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) cases. Each model measured mobility in one of six categories 
based on the type of locations used by the public: parks, grocery stores and pharmacies, 
residential areas (e.g. houses, apartments), retail and recreation locations, transit stations, and 
workplaces. The proportion of the population living in an urban area and the number of airports 
were also controlled for as covariates. The state was used as a random intercept and the number 
of days since a state entered the study was used as the random slope.   



 

 77 

 
  



 

 78 

REFERENCES  
 Bonaccorsi, G., Pierri, F., Cinelli, M., Flori, A., Galeazzi, A., Porcelli, F., Schmidt, A. L., 

Valensise, C. M., Scala, A., Quattrociocchi, W., & Pammolli, F. (2020). Economic and 
social consequences of human mobility restrictions under COVID-19. Proceedings of the 
National Academy of Sciences, 117(27), 15530–15535. 
https://doi.org/10.1073/pnas.2007658117 

Brodeur, A., Gray, D. M., Islam, A., & Bhuiyan, S. (2020). A Literature Review of the 
Economics of Covid-19 (SSRN Scholarly Paper ID 3636640). Social Science Research 
Network. https://papers.ssrn.com/abstract=3636640 

Bulfone, T. C., Malekinejad, M., Rutherford, G. W., & Razani, N. (2021). Outdoor transmission 
of SARS-CoV-2 and other respiratory viruses: A systematic review. The Journal of 
Infectious Diseases, 223(4), 550–561. 

Bureau of Transportation Statistics. (2018a). Commute mode. https://cms.bts.gov/commute-mode 
Bureau of Transportation Statistics. (2018b). State transportation by the numbers. 

https://cms.bts.gov/content/state-transportation-numbers 
Bureau of Transportation Statistics. (2018c). U.S. airline traffic by airport. 

https://cms.bts.gov/us-airline-traffic-airport 
Bureau of Transportation Statistics. (2020). Part 139 Airports. https://cms.bts.gov/part-139-

airports 
Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal 

of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01 
Bürkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R package brms. The R 

Journal, 10(1), 395–411. 
Chan, J. F.-W., Yuan, S., Kok, K.-H., To, K. K.-W., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. 

C.-Y., Poon, R. W.-S., Tsoi, H.-W., Lo, S. K.-F., Chan, K.-H., Poon, V. K.-M., Chan, 
W.-M., Ip, J. D., Cai, J.-P., Cheng, V. C.-C., Chen, H., … Yuen, K.-Y. (2020). A familial 
cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-
person transmission: A study of a family cluster. The Lancet, 395(10223), 514–523. 
https://doi.org/10.1016/S0140-6736(20)30154-9 

Chu, D. K., Akl, E. A., Duda, S., Solo, K., Yaacoub, S., Schünemann, H. J., Chu, D. K., Akl, E. 
A., El-harakeh, A., Bognanni, A., Lotfi, T., Loeb, M., Hajizadeh, A., Bak, A., Izcovich, 
A., Cuello-Garcia, C. A., Chen, C., Harris, D. J., Borowiack, E., … Schünemann, H. J. 
(2020). Physical distancing, face masks, and eye protection to prevent person-to-person 
transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. 
The Lancet, 395(10242), 1973–1987. https://doi.org/10.1016/S0140-6736(20)31142-9 

Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. (2020). 
The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-
nCoV and naming it SARS-CoV-2. Nature Microbiology, 5(4), 1–9. 
https://doi.org/10.1038/s41564-020-0695-z 

Council of State and Territorial Epidemiologists. (2020). Standardized surveillance case 
definition and national notification for 2019 novel coronavirus disease (COVID-19) 
(Interim-20-ID-01; CSTE Position Statement(s), p. 10). 
https://wwwn.cdc.gov/nndss/conditions/coronavirus-disease-2019-covid-19/case-
definition/2020/ 



 

 79 

Courtemanche, C., Garuccio, J., Le, A., Pinkston, J., & Yelowitz, A. (2020). Strong social 
distancing measures in the United States reduced the COVID-19 growth rate. Health 
Affairs, 10.1377/hlthaff.2020.00608. https://doi.org/10.1377/hlthaff.2020.00608 

Dave, D. M., Friedson, A. I., Matsuzawa, K., & Sabia, J. J. (2020). When do shelter-in-place 
orders fight COVID-19 best? Policy heterogeneity across states and adoption time 
(Working Paper No. 27091; Working Paper Series). National Bureau of Economic 
Research. https://doi.org/10.3386/w27091 

Edward R. Berchick, Jessica C. Barnett, & Rachel D. Upton. (2019). Health insurance in the 
United States: 2018 (No. P60-267(RV); Current Population Reports, p. 44). U.S. Census 
Bureau. https://www.census.gov/data/tables/2019/demo/health-insurance/p60-267.html 

Fisher, K. A. (2020). Factors associated with cloth face covering use among adults during the 
COVID-19 pandemic—United States, April and May 2020. Morbidity and Mortality 
Weekly Report, 69(28), 933–937. https://doi.org/10.15585/mmwr.mm6928e3 

Fitzpatrick, K. M., Harris, C., & Drawve, G. (2020). Fear of COVID-19 and the mental health 
consequences in America. Psychological Trauma: Theory, Research, Practice, and 
Policy, 12(S1), S17. https://doi.org/10.1037/tra0000924 

Fong, M. W., Gao, H., Wong, J. Y., Xiao, J., Shiu, E. Y. C., Ryu, S., & Cowling, B. J. (2020). 
Nonpharmaceutical measures for pandemic influenza in nonhealthcare settings—Social 
distancing measures. Emerging Infectious Diseases, 26(5), 976–984. 
https://doi.org/10.3201/eid2605.190995 

Friedson, A. I., McNichols, D., Sabia, J. J., & Dave, D. (2020). Did California’s shelter-in-place 
order work? Early coronavirus-related public health effects (Working Paper No. 26992; 
Working Paper Series). National Bureau of Economic Research. 
https://doi.org/10.3386/w26992 

Google LLC. (2020). Google COVID-19 community mobility reports. 
https://www.google.com/covid19/mobility/ 

Grant, M. C., Geoghegan, L., Arbyn, M., Mohammed, Z., McGuinness, L., Clarke, E. L., & 
Wade, R. G. (2020). The prevalence of symptoms in 24,410 adults infected by the novel 
coronavirus (SARS-CoV-2; COVID-19): A systematic review and meta-analysis of 148 
studies from 9 countries. PLOS ONE, 15(6), e0234765. 
https://doi.org/10.1371/journal.pone.0234765 

Gupta, S., Nguyen, T. D., Rojas, F. L., Raman, S., Lee, B., Bento, A., Simon, K. I., & Wing, C. 
(2020). Tracking public and private responses to the COVID-19 epidemic: Evidence from 
state and local government actions. In NBER Working Papers (No. 27027; Working 
Paper). National Bureau of Economic Research. 
https://ideas.repec.org/p/nbr/nberwo/27027.html 

Holshue, M. L., DeBolt, C., Lindquist, S., Lofy, K. H., Wiesman, J., Bruce, H., Spitters, C., 
Ericson, K., Wilkerson, S., Tural, A., Diaz, G., Cohn, A., Fox, L., Patel, A., Gerber, S. I., 
Kim, L., Tong, S., Lu, X., Lindstrom, S., … Washington State 2019-nCoV Case 
Investigation Team. (2020). First case of 2019 novel coronavirus in the United States. 
The New England Journal of Medicine, 382(10), 929–936. 
https://doi.org/10.1056/NEJMoa2001191 

Hussein, M., Toraih, E., Elshazli, R., Fawzy, M., Houghton, A., Tatum, D., Killackey, M., 
Kandil, E., & Duchesne, J. (2021). Meta-analysis on serial intervals and reproductive 
rates for SARS-CoV-2. Annals of Surgery, 273(3), 416–423. 
https://doi.org/10.1097/SLA.0000000000004400 



 

 80 

Institute for Health Metrics and Evaluation, University of Washington. (2020). COVID-19 
projections. https://covid19.healthdata.org/projections 

Johns Hopkins Coronavirus Resource Center. (2021). COVID-19 Map. Johns Hopkins 
Coronavirus Resource Center. https://coronavirus.jhu.edu/map.html 

Karia, R., Gupta, I., Khandait, H., Yadav, A., & Yadav, A. (2020). COVID-19 and its modes of 
transmission. SN Comprehensive Clinical Medicine, 2(10), 1798–1801. 
https://doi.org/10.1007/s42399-020-00498-4 

Kelso, J. K., Milne, G. J., & Kelly, H. (2009). Simulation suggests that rapid activation of social 
distancing can arrest epidemic development due to a novel strain of influenza. BMC 
Public Health, 9(1), 117. https://doi.org/10.1186/1471-2458-9-117 

Killerby, M. E., Link-Gelles, R., Haight, S. C., Schrodt, C. A., England, L., Gomes, D. J., 
Shamout, M., Pettrone, K., O’Laughlin, K., & Kimball, A. (2020). Characteristics 
associated with hospitalization among patients with COVID-19—Metropolitan Atlanta, 
Georgia, March–April 2020. Morbidity and Mortality Weekly Report, 69(25), 790. 

Leclerc, Q. J., Fuller, N. M., Knight, L. E., CMMID COVID-19 Working Group, Funk, S., & 
Knight, G. M. (2020). What settings have been linked to SARS-CoV-2 transmission 
clusters? Wellcome Open Research, 5, 83. 
https://doi.org/10.12688/wellcomeopenres.15889.2 

Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., & Shaman, J. (2020). Substantial 
undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-
CoV-2). Science, 368(6490), 489–493. https://doi.org/10.1126/science.abb3221 

Lin, Y.-H., Liu, C.-H., & Chiu, Y.-C. (2020). Google searches for the keywords of “wash hands” 
predict the speed of national spread of COVID-19 outbreak among 21 countries. Brain, 
Behavior, and Immunity, 87, 30–32. https://doi.org/10.1016/j.bbi.2020.04.020 

Lyu, W., & Wehby, G. L. (2020). Community use of face masks and COVID-19: Evidence from 
a natural experiment of state mandates in the US. Health Affairs, 39(8), 1419–1425. 

Mackey, K., Ayers, C. K., Kondo, K. K., Saha, S., Advani, S. M., Young, S., Spencer, H., Rusek, 
M., Anderson, J., & Veazie, S. (2021). Racial and ethnic disparities in COVID-19–related 
infections, hospitalizations, and deaths: A systematic review. Annals of Internal 
Medicine, 174(3), 362–373. 

Matrajt, L., & Leung, T. (2020). Evaluating the effectiveness of social distancing interventions to 
delay or flatten the epidemic curve of coronavirus disease. Emerging Infectious Diseases, 
26(8), 1740–1748. https://doi.org/10.3201/eid2608.201093 

Moghadas, S. M., Fitzpatrick, M. C., Sah, P., Pandey, A., Shoukat, A., Singer, B. H., & Galvani, 
A. P. (2020). The implications of silent transmission for the control of COVID-19 
outbreaks. Proceedings of the National Academy of Sciences, 117(30), 17513–17515. 
https://doi.org/10.1073/pnas.2008373117 

Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., Agha, M., & Agha, R. 
(2020). The socio-economic implications of the coronavirus pandemic (COVID-19): A 
review. International Journal of Surgery, 78, 185–193. 
https://doi.org/10.1016/j.ijsu.2020.04.018 

Patel, A. (2020). Initial public health response and interim clinical guidance for the 2019 novel 
coronavirus outbreak: United States, December 31, 2019 – February 4, 2020. Morbidity 
and Mortality Weekly Report, 69(5), 140–146. 
https://doi.org/10.15585/mmwr.mm6905e1 



 

 81 

R Core Team. (2021). R: a language and environment for statistical computing. R Foundation 
for Statistical Computing. https://www.R-project.org/ 

Rajkumar, R. P. (2020). COVID-19 and mental health: A review of the existing literature. Asian 
Journal of Psychiatry, 52, 102066. https://doi.org/10.1016/j.ajp.2020.102066 

Semega, J., Kollar, M., Creamer, J., & Mohanty, A. (2019). Income and poverty in the United 
States: 2018 (No. P60-266; Current Population Reports, p. 88). U.S. Census Bureau. 
https://www.census.gov/data/tables/2019/demo/income-poverty/p60-266.html 

Taylor, K., & Silver, L. (2019). Smartphone ownership is growing rapidly around the world, but 
not always equally (p. 47). Pew Research Center. 
https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-
rapidly-around-the-world-but-not-always-equally/ 

The Atlantic Monthly Group. (2020a). Data definitions. The COVID Tracking Project. 
https://covidtracking.com/about-data/data-definitions 

The Atlantic Monthly Group. (2020b). Data FAQ. The COVID Tracking Project. 
https://covidtracking.com/about-data/faq 

The Atlantic Monthly Group. (2020c). Position statement on antibody data reporting. The 
COVID Tracking Project. https://covidtracking.com/blog/antibody-data-reporting 

The Atlantic Monthly Group. (2020d). The COVID Tracking Project. The COVID Tracking 
Project. https://covidtracking.com/ 

United Way of the National Capital Area. (2020). U.S. States with the most essential workers. 
https://unitedwaynca.org/stories/us-states-essential-workers/ 

U.S. Census Bureau. (2018a). 2010 census urban area lists record layouts. 
U.S. Census Bureau. (2018b). 2018 American Community Survey 1-year estimates, Hispanic or 

Latino origin by race, Table B03002. 
https://data.census.gov/cedsci/table?q=hispanic&g=0100000US.04000.001&hidePreview
=true&tid=ACSDT1Y2018.B03002&t=Hispanic%20or%20Latino&vintage=2018&moe
=false&tp=false 

U.S. Census Bureau. (2018c). 2018 American Community Survey 1-year estimates, race, Table 
B02001. 
https://data.census.gov/cedsci/table?table=DP05&tid=ACSDT1Y2018.B02001&g=01000
00US.04000.001&lastDisplayedRow=29&vintage=2018&cid=S0201_001E&hidePrevie
w=false&moe=true&tp=true&t=Race%20and%20Ethnicity 

U.S. Census Bureau. (2019). State population totals and components of change: 2010-2019. 
https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html 

U.S. Census Bureau. (2020). State area measurements and internal point coordinates. 
https://www.census.gov/geographies/reference-files/2010/geo/state-area.html 

Vaughan, A. S., Rosenberg, E., Shouse, R. L., & Sullivan, P. S. (2014). Connecting race and 
place: A county-level analysis of white, Black, and Hispanic HIV prevalence, poverty, 
and level of urbanization. American Journal of Public Health, 104(7), e77–e84. 
https://doi.org/10.2105/AJPH.2014.301997 

Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., Bürkner, P., Paananen, T., & Gelman, A. 
(2020). loo: Efficient leave-one-out cross-validation and WAIC for Bayesian models 
(2.3.1) [R package]. 

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-
one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432. 
https://doi.org/10.1007/s11222-016-9696-4 



 

 82 

Walton, T. W., & Willyard, K. A. (2020). Small area health insurance estimates: 2018 (No. P30-
07; Current Population Reports, p. 13). US Census Bureau. 
https://www.census.gov/library/publications/2020/demo/p30-07.html 

Wang, C. J., Ng, C. Y., & Brook, R. H. (2020). Response to COVID-19 in Taiwan: Big Data 
Analytics, New Technology, and Proactive Testing. Journal of the American Medical 
Association, 323(14), 1341–1342. https://doi.org/10.1001/jama.2020.3151 

Washington, N. L., Gangavarapu, K., Zeller, M., Bolze, A., Cirulli, E. T., Schiabor Barrett, K. 
M., Larsen, B. B., Anderson, C., White, S., Cassens, T., Jacobs, S., Levan, G., Nguyen, 
J., Ramirez, J. M., Rivera-Garcia, C., Sandoval, E., Wang, X., Wong, D., Spencer, E., … 
Andersen, K. G. (2021). Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in 
the United States. Cell, 184(10), 2587-2594.e7. https://doi.org/10.1016/j.cell.2021.03.052 

World Health Organization. (2020). Coronavirus Disease 2019 (COVID-19) Situation Report—
51 (p. 9). 

 
  



 

 83 

CHAPTER 3:  

 

Epidemiology of infectious pathogens in endangered Peninsular bighorn sheep  

(Ovis canadensis nelsoni) 

 

 

Style formatted for Biological Conservation 

  



 

 84 

Abstract 

Peninsular bighorn sheep (Ovis canadensis nelsoni) are found exclusively in Southern California 

and Baja Mexico. They are federally endangered due to multiple threats, including introduced 

infectious disease. From 1981 – 2017, we conducted surveillance for 16 infectious pathogens and 

estimated population sizes, adult survival, and lamb recruitment. We used mixed effects 

regression models to assess the impact of disease at the individual and population levels. 

Pathogen infection/exposure prevalence varied both spatially and temporally. Our findings 

indicate that the primary driver of exposure to a pathogen is the region in which an animal was 

captured, implying that transmission is driven by local ecological or behavioral factors. Higher 

Mycoplasma ovipneumoniae seropositivity was associated with lower lamb recruitment, 

consistent with lambs having high rates of pneumonia-associated mortality. This may be slowing 

population recovery, although there was no association between M. ovipneumoniae and adult 

survival. Orf virus seroprevalence was positively associated with adult survival in the previous 

year, suggesting that transmission is density dependent. Population size within a region was 

positively associated with adult survival. Network analyses identified three groups of pathogens 

that bighorn sheep tended to be co-infected with/co-exposed to, and these groups differed by 

mode of transmission. Peninsular bighorn sheep are recovering from small population sizes in a 

habitat of environmental extremes, compounded by introduced disease. Our research can help 

inform future targeted management and conservation of this population. 

 

Key Words 

bighorn sheep; Ovis canadensis nelsoni; Peninsular Range; endangered species; epizootic 

pneumonia; Mycoplasma ovipneumoniae  
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Highlights 

• Peninsular bighorn sheep are federally endangered 

• Pathogens associated with epidemic pneumonia are of concern  

• Mycoplasma ovipneumoniae exposure was associated with lower lamb recruitment 

• Orf virus exposure prevalence was higher following years of high adult survival  

• Population size was associated with higher adult bighorn sheep survival  
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1. Introduction 

Pneumonia epidemics are a source of mortality and decreased lamb recruitment in 

bighorn sheep (Ovis canadensis) throughout their range (Besser et al., 2013; DeForge et al., 

1982; Nolen, 2010). Pneumonia was originally introduced to bighorn sheep through contact with 

domestic sheep (Foreyt and Jessup, 1982) but can be maintained by carrier bighorn sheep for 

years without continued spillover from domestic animals (Raghavan et al., 2016), causing 

intermittent epidemics and suppressing recruitment (Cassirer et al., 2018). Bighorn sheep 

pneumonia is a disease complex involving co-infection with infectious pathogens, environmental 

and immune factors, and host behavior and movement (Besser et al., 2013; Wobeser, 2007). 

Recent research indicates that Mycoplasma ovipneumoniae infection can cause pneumonia by 

decreasing respiratory immune function and allowing colonization by other pathogens (Besser et 

al., 2014, 2012; Dassanayake et al., 2010). Numerous management tools including vaccination, 

population reduction, and supplemental feeding have failed to prevent or control pneumonia 

outbreaks in bighorn sheep (Cassirer et al., 2018, 2001; Ward et al., 1999) but recent efforts to 

test and remove chronic M. ovipneumoniae carriers demonstrate promising results, including 

improved lamb survival (Garwood et al., 2020). 

Peninsular bighorn sheep (Ovis canadensis nelsoni) reside in the Peninsular Ranges of 

southern California and Baja Mexico, and are currently considered a genetically distinct 

metapopulation of desert bighorn sheep (Buchalski et al., 2016). Peninsular bighorn sheep were 

listed as federally endangered in 1998 due to a multitude of population threats, including habitat 

loss and fragmentation, infectious disease, predation, and drought (US Fish and Wildlife Service, 

2000). The Peninsular metapopulation has been steadily increasing in size from ~300 at the time 
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of listing to ~900 in 2016; however, infectious disease continues to threaten survival and 

recruitment (Colby and Botta, 2019).  

Bighorn sheep behavior plays a role in the transmission and maintenance of disease. The 

Peninsular bighorn sheep metapopulation consists of at least 19 herds that inhabit the desert 

slopes, alluvial fans, and washes of the Peninsular Ranges (Colby and Botta, 2019). While most 

individuals within each herd are philopatric, a subset of ewes and rams will disperse to 

neighboring herds on a seasonal basis (Bighorn Institute, 2018; Buchalski et al., 2015; Colby and 

Botta, 2019). The Peninsular mountains are divided into nine “recovery regions” defined for 

bighorn sheep population management (US Fish and Wildlife Service, 2000) (Figure 1). 

Historically, these recovery regions roughly corresponded to different herds (Rubin et al., 1998) 

but some regions now contain multiple overlapping herds and inter-regional movements are 

regularly observed (Bighorn Institute, 2018; Colby and Botta, 2019). 

Bighorn sheep movements are driven by food and water availability, which are especially 

scarce in drought years. California has had chronically low rainfall for several decades, including 

a severe drought from 2012 – 2016 that significantly reduced the surface water available for 

wildlife in desert ecosystems where bighorn sheep are found (U. S. Geological Survey, 2017). 

Bighorn sheep congregate in high densities at natural and artificial watering holes and urban 

areas where irrigation and landscaping provide resources (Bighorn Institute, 2018; Colby and 

Botta, 2019)  (Figure 1). This co-mingling of animals from different herds, age classes, and 

disease statuses increases the risk of pathogen transmission, and higher density herds are 

associated with an increased risk of respiratory disease outbreaks (Esther S Rubin et al., 2002).  

Bighorn sheep are an important model for risk factors that promote disease transmission 

within and among host species in a desert ecosystem that is evolving with climate change. The 
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multifactorial nature of pneumonia in bighorn sheep also makes them a model for identifying 

risk factors for disease exposure that are relevant to other species.  

The goal of our research is to identify key epidemiologic factors driving the prevalence of 

disease in bighorn sheep, with special attention paid to pathogens associated with epidemic 

pneumonia. We aim to: 1) Estimate pathogen prevalence by age, sex, and recovery region; 2) 

Identify demographic and geographic predictors of pathogen infection/exposure in individual 

bighorn sheep; and 3) Identify associations between pathogen infection/exposure prevalence and 

adult survival and lamb recruitment. 4) Identify groups of pathogens that co-occur together 

within individual bighorn sheep. 

 

2. Methods 

2.1 Pathogen infection and exposure prevalence 

We collected blood from wild-caught Peninsular bighorn sheep (735 individuals; 844 

sampling events) from 1981 – 2017 and tested them for infection or exposure to up to 15 

pathogens, including: Anaplasma spp., bluetongue virus (BTV), bovine herpesvirus-1, bovine 

respiratory syncytial virus (BRSV), bovine viral diarrhea virus types 1 and 2, Brucella ovis, 

Chlamydia spp., epizootic hemorrhagic disease virus (EHDV), Leptospira spp., Mycoplasma 

ovipneumoniae, ovine progressive pneumonia virus, orf virus, parainfluenza-3 virus (PI-3), and 

Toxoplasma gondii (Table 1).  

Nasal/pharyngeal swabs were also collected from a subset of sheep (316 individuals; 349 

sampling events) and tested for combinations of M. ovipneumoniae via polymerase chain 

reaction (PCR), Pasteurellaceae spp. via culture, and PI-3 via virus isolation (VI) to detect active 

infection (or very recent exposure). Virus isolation was also performed on blood to test for BT 
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and EHDV, but all other blood tests measured antibodies and more likely indicated previous 

exposure (Table 1). “Prevalence” hereafter refers to the proportion of positive tests, indicating 

infection or exposure depending on the test used.  

BTV and EHDV are both orbiviruses and cross-react on agar gel precipitin (AGP) and 

agar gel immunodiffusion (AGID), so we created an “Orbivirus spp.” group which included 

animals positive for BTV and/or EHDV via AGP/AGID. We classified animals as exposed to 

BTV only if they tested positive on the more specific competitive enzyme-linked immunosorbent 

assay (cELISA). We classified animals as exposed to EHDV only if they were positive on 

AGP/AGID and negative on BTV cELISA, although this calculation excluded animals exposed 

to both viruses so was not included in modeling.  

We did not include Leptospira spp. serovars in analyses due to cross-reaction on the 

modified agglutination test, and an animal was considered positive if any serovar was detected. 

Age, sex, and recovery region were recorded at the time of capture. Age was usually 

recorded categorically based on dentition and horn growth rings, with lambs and yearlings 

grouped together and all other ages categorized as adults. The dataset was heavily skewed 

towards adult females (73.2%, n = 618/844) since they were the target population for radio-

collaring and are the reproductive base of the population (Colby and Botta, 2019). Most 

individuals were only captured once (n = 641). 

We calculated the overall prevalence of each pathogen across the entire study for each 

diagnostic test type, then stratified by age, sex, and recovery region. We tested for differences 

among two groups using a Fisher’s exact test and among ≥3 groups using a one-way analysis of 

variance (significance at p ≤ 0.05). These calculations only included samples from first capture 
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events to eliminate re-testing errors. All statistics were performed in R version 4.0.4 (R Core 

Team, 2021). 

 Annual adult survival rates for each recovery region were previously calculated by 

California Department of Fish and Wildlife and Bighorn Institute using Kaplan Meier estimates 

from radio-collared bighorn sheep, modified to allow for staggered entry of new animals 

(Bighorn Institute, 2018; Colby and Botta, 2019; Ostermann et al., 2001). The ratio of lambs to 

ewes (lamb:ewe; an index of lamb survival to ~3 – 9 months) for each recovery region was 

estimated from field observations made during range-wide helicopter surveys, waterhole counts, 

or ground observations (Bighorn Institute, 2018; Colby and Botta, 2019).  

2.2 Pathogen impacts on survival and reproduction 

We created “population-level models” using Bayesian, multilevel, ordered beta 

regression to test for associations between adult survival rates or lamb:ewe ratios (outcomes), 

and pathogen prevalence, population size, and meteorologic covariates. The unit of analysis was 

the year-recovery region unit, and the random intercept was recovery region. We selected weakly 

informative priors for the intercept and beta parameters [Normal(0, 5)], and the phi parameter 

[exp(0.1)] (Kubinec, 2020). Lamb:ewe ratios, population size, and meteorologic covariates were 

scaled so values ranged from 0 – 1 but the relative differences between values were maintained. 

The prevalence of each pathogen was calculated for each year-recovery region unit (i.e., 

“2010 – San Jacinto Mtns”) for which ≥5 samples were tested (all capture events included). 

Models included individual pathogen prevalence and combinations of respiratory pathogens (M. 

ovipneumoniae, BRSV, and PI-3) as covariates, and we tested prevalence lag times of -1-year to 

+2-years. 
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We included annual population size estimates for each recovery region as a model 

covariate. We interpolated missing data by averaging values for years t-1 and t+1, but only 

where estimates were missing for a single year.  

Temperature and precipitation for each recovery region were included to control for 

meteorologic factors that may influence survival and reproduction. Rasters of daily meteorologic 

data (4x4 km resolution) were extracted from the “gridMET” dataset (Abatzoglou, 2013) using R 

package “climateR,” then cropped by the geographic extent of each region and aggregated 

temporally as described below, resulting in a single summary value for each year-recovery 

region unit.  

Temperature was calculated as the average of daily maximum temperatures (Celsius) 

from June – September for year t, which have historically been the hottest months in the 

Peninsular Range (Rubin et al., 2000; Turner et al., 2004). 

Precipitation in the Peninsular Range is bimodal, with the largest volume and most 

consistent rains occurring November – February, and more variable monsoons occurring July – 

September (Rubin et al., 2000). We calculated annual precipitation as the sum of daily 

precipitation (centimeters) from November of year t-1 through October of year t. We also 

aggregated precipitation annually for winter (November – April) and summer (May – October). 

Winter corresponded to the winter rains and bighorn sheep gestational and peak birthing period, 

while summer corresponded to the summer monsoons, post-lambing, and the rut (Colby and 

Botta, 2017; Rubin et al., 2000; Esther S Rubin et al., 2002).  

2.3 Individual risk factors associated with pathogen exposure or infection 

We created “individual-level models” using Bayesian, multilevel, logistic regression to 

evaluate the impact of age, sex, and recovery region on an animal’s risk of pathogen 
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infection/exposure. Reference groups were adults, males, and the San Jacinto Mountains. The 

unit of analysis was the individual animal, and the random intercept was animal ID (all capture 

events included). We selected weakly informative priors [Normal(0, 2.5)] for the intercept and 

beta parameters to account for complete or quasi-separation of data (Ghosh et al., 2018).  

For all regression models, we evaluated bivariate relationships between covariates with 

Spearman’s rank correlation (significance at p ≤ 0.05) and built models in R package “brms” 

(Bürkner, 2018, 2017). Models contained four chains with 10,000 iterations each. We calculated 

point estimates as the median value of the posterior and used the 95% highest density interval as 

the credible interval (CI). We only included models with ≥5 observations per covariate in results. 

We compared models with the same number of observations using leave-one-out cross-

validation information criterion (LOO IC) in the “loo” package (Vehtari et al., 2020). Appendix 

A contains heatmaps illustrating model variables by year and recovery region.  

2.4 Pathogen co-occurrence network 

We identified groups of pathogens to which an individual was co-infected/co-exposed 

using social network methods. Since the diagnostic tests used can indicate infection or previous 

exposure, we use “co-occurrence” to mean that an animal was infected with a pair of pathogens 

during its life, but perhaps not concurrently. We generated a weighted, undirected pathogen 

network from the proportion of samples that were positive for two pathogens, given that they 

were tested for both pathogens (antibody tests or direct measures of infection; first capture events 

only). Centralization, density, and degree centrality were used to describe how tightly pathogens 

clustered (package “sna”) (Butts, 2008). We calculated network modularity using the fast greedy 

modularity optimization algorithm (package “igraph”) (Clauset et al., 2004). We converted the 

hierarchical community structure to a dendrogram to illustrate relative rates of co-occurrence 
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among pathogens (package “ape”) (Paradis and Schliep, 2019) and visualized the network in 

Gephi (Bastian et al., 2009).  

 

3. Results 

3.1 Pathogen infection and exposure prevalence 

A total of 735 first-capture samples were collected from 1981 – 2017. Pathogen and 

antibody prevalence estimates can be found in Table 1, including stratifications by age, sex, and 

recovery region. Not all diagnostic tests were performed in every year or recovery region. 

The most common pathogen exposures detected were orf virus (71.8%), M. 

ovipneumoniae (cELISA, 60.2%), Anaplasma spp. (49.7%), Chlamydia spp. (42.8%), BRSV 

(39.3%), EHDV (serum virus neutralization [SVN], 24.4%), Orbivirus spp. (21.6%), PI-3 

(hemagglutination inhibition [HI], 21.2%), and T. gondii (18.0%). Prevalence of active infections 

were lower than antibody tests for M. ovipneumoniae (PCR, 12.0%), PI-3 (VI, 11.4%), and 

EHDV (VI, 0.0%). All other pathogens were relatively uncommon or absent (Table 1). 

Pasteurellaceae spp. are common commensal organisms of bighorn sheep (Ward et al., 

1997; Wild and Miller, 1991), and we found that all samples cultured at least one species. 

Pasteurella multocida was not detected from first capture events, although the beta-hemolytic 

form was detected in one sample from a recaptured animal.  

We detected multiple Leptospira serovars, including: Leptospira interrogans serovars 

bratislava (19.2%, n = 10/52), pomona (1.6%, n = 5/316), icterohaemorrhagiae (0.3%, n = 

1/316), and canicola (1.3 %, n = 4/316); Leptospira kirschneri serovar grippotyphosa (5.7%, n 

= 18/316); Leptospira borgpetersenii serovar hardjo (1.6%, n = 5/310).  
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Males had higher rates of exposure to BRSV (p = 0.01), while females had higher 

exposure to T. gondii (p < 0.001) and Orbivirus spp. (p = 0.03). Lambs/yearlings tested positive 

for exposure to orf virus more often than adults (p = 0.03). There were differences among 

recovery regions in the prevalence/exposure of Anaplasma spp. (p < 0.001), BRSV (p < 0.001), 

B. ovis (p < 0.001), Chlamydia spp. (p < 0.001), Leptospira spp. (p = 0.001), M. ovipneumoniae 

(PCR, p = 0.04), orf virus (p < 0.001), PI-3 (HI; p < 0.001), T. gondii (p = 0.02), BTV (cELISA; 

p = 0.01), EHDV (SVN, p = 0.01; AGP/AGID, p = 0.04), Orbivirus spp. (p = 0.001), and B. 

trehalosi beta-hemolytic (p < 0.001).  

All pathogens showed temporal changes in prevalence over the course of the 36-year 

study period (Appendix A). Common pathogens, such as M. ovipneumoniae (cELISA) and 

Chlamydia spp., were consistently present across the entire study period and all regions. BRSV, 

PI-3, and orf virus were more variable, sometimes ranging from 0% to 100% in the span of one 

year. B. ovis was only detected in the 1990s. M. ovipneumoniae (PCR) and BRSV showed 

increasing prevalence over time.  

3.2 Pathogen impacts on reproduction 

To evaluate which pathogens may affect bighorn sheep survival and reproduction, we 

performed regression modeling with the following pathogens as covariates (which had enough 

datapoints for modeling): Anaplasma spp., BTV (cELISA), BRSV, Chlamydia spp., orf virus, 

Leptospira spp., M. ovipneumoniae (PCR, cELISA), Orbivirus spp., and PI-3 (HI).  

The bivariate relationship between adult survival and lamb:ewe ratios with population 

size, temperature, and precipitation were tested using correlations and univariable regression 

models (recovery region as a random effect) as the first step in model building. Population size 

was positively correlated (R2 = 0.34, p < 0.001) and significantly associated (ß = 2.9, 95% CI = 
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1.7 – 4.1) with adult survival, but the directionality of this relationship could not be determined 

by this study. There was no relationship between population size and lamb:ewe ratios using 

correlation (R2 = 0.01, p = 0.90) or regression modeling (ß = 0.5, 95% CI = -0.4 – 1.4). 

Temperature and precipitation were not correlated with either adult survival (R2 = -0.04 – 0.1, p 

≥ 0.15) or lamb:ewe ratios (R2 = 0.04 – 0.08, p ≥ 0.33), and were also not associated with either 

outcome using univariate regression models (Appendix C). Despite this lack association, 

meteorologic covariates were included in population-level regression model building to test if 

they improved model fit because they have been previously established as important factors in 

bighorn sheep survival and reproduction. 

M. ovipneumoniae exposure (cELISA) was negatively associated with lamb:ewe ratios in 

the current year (no lag) in models including population size (ß = -1.2, 95% CI = -2.2 – -0.3; 

Appendix E), population size and temperature (ß = -1.1, 95% CI = -2.1 – -0.1; Appendix F), 

population size and annual precipitation (ß = -1.2 , 95% CI = -2.3  – -0.2; Appendix G), 

population size and summer precipitation (ß = -1.2, 95% CI =  -2.2 – -0.2; Appendix H), and 

population size and winter precipitation (ß = -1.3 , 95% CI =  -2.3 – -0.2; Appendix I). In these 

models, population size and meteorologic covariates were not associated with lamb:ewe ratios.  

Leptospira spp. had a positive association with lamb:ewe ratios after a 2-year lag both as 

a single covariate (ß = 2.7, 95% CI = 0.08 – 5.1; Appendix D) and in models with population 

size (ß = 2.7, 95% CI = 0.07 – 5.2; Appendix E), but there were not enough observations to 

include meteorologic variables.  

Lamb:ewe ratios were not associated with other pathogens (alone or in combination), 

population size, temperature, or precipitation (Appendix D-I). The inclusion of population size 
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and summer temperature improved model fit in 20.6% (n = 7/34) of models. LOO IC standard 

errors overlapped for all other models. 

3.3 Pathogen impacts on survival  

The prevalence of orf virus was positively associated with adult survival in the previous 

year (-1 year lag; ß = 1.6, 95% CI = 0.4 – 2.9; Appendix D). This relationship persisted with the 

addition of population size (ß = 1.2, 95% CI = 0.0 – 2.5; Appendix E), and both population size 

and annual precipitation (ß = 1.2, 95% CI = 0.0 – 2.4; Appendix G) as covariates.  

In the current year (no lag), PI-3 was associated with increases in survival once other 

covariates were accounted for: population size (ß =  1.8, 95% CI = 0.2 – 4.1; Appendix E), 

population size and temperature (ß =  1.8, 95% CI = 0.3  – 3.9; Appendix F), population size and 

annual precipitation (ß = 1.8 , 95% CI = 0.2  – 4.0; Appendix G), population size and summer 

precipitation (ß = 1.5, 95% CI =  0.1 – 3.7; Appendix H), and population size and winter 

precipitation (ß = 1.8 , 95% CI =  1.2 – 4.1; Appendix I). In these models, population size was 

also positively associated with survival rates, but meteorologic covariates were not.  

No other pathogens were significant predictors of adult survival (alone or in combination) 

regardless of lag time (Appendix D). Population size was associated with higher survival rates in 

22.4% (n = 51/228) of models across all pathogens (Appendix E-I). Higher summer temperatures 

were associated with lower survival rates in only 5.4% (n = 2/37) models, and higher summer 

precipitation was associated with higher survival rates in 18.9% (n = 7/37) models (Appendix H). 

Annual and winter precipitation were not significantly associated with survival in any models 

(Appendices G, I). The inconsistency in the significance of population size and meteorologic 

variables across models was likely because each model contained a different dataset; samples 

were not tested for every pathogen and survival rates and lamb:ewe ratios were not available for 
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every year-recovery region unit. The inclusion of population size and summer temperature 

improved model fit in 21.6% (n = 8/37) of models. LOO IC standard errors overlapped for all 

other models. 

Several covariates showed temporal trends over the 36-year study period. Population size 

was positively correlated with year across all recovery regions (R2 = 0.67, p < 0.001), reflecting 

overall sustained growth of the population over time. Temperature was positively correlated with 

year (R2 = 0.18, p <0.001), while annual (R2 = -0.14, p = 0.008), summer (R2 = -0.17, p = 0.002), 

and winter (R2 = -0.13, p = 0.02) precipitation were negatively correlated with year. Increasing 

temperature and decreasing precipitation are consistent with the effects of global climate change. 

3.4 Individual risk factors associated with pathogen exposure or infection 

To evaluate pathogen infection/exposure risk factors, we performed regression modeling 

for the following pathogens (which had enough positive test results for modeling): Anaplasma 

spp., BTV (cELISA), BRSV, B. ovis, Chlamydia spp., Leptospira spp., M. ovipneumoniae (PCR 

and cELISA), Orbivirus spp., orf virus, PI-3 (HI), and T. gondii (Figure 2, Appendix B).  

Odds of exposure to M. ovipneumoniae (by cELISA) were higher in the northern Santa 

Rosa Mountains and Vallecito Mountains (OR = 3.6 and 2.9, respectively), compared to the San 

Jacinto Mountains. Age, sex, and recovery region were not significant predictors of M. 

ovipneumoniae active infection (PCR). 

BRSV and PI-3 had similar distributions, with most recovery regions having higher odds 

of exposure compared to the San Jacinto Mountains (OR = 4.4 – 45.4; Figure 2). Females were 

less likely to be exposed to BRSV than males (OR = 0.5). 

Orbivirus spp. had higher odds of exposure in females (OR = 3.2) and lower odds of 

exposure in the northern half of the range (Figure 2). The northern San Ysidro Mountains, in the 
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middle of the range, had higher odds BTV exposure (OR = 8.2). The discrepancies in risk 

between BTV and Orbivirus spp. are likely due to the Orbivirus spp. models including animals 

exposed to EHDV and/or BTV and being slightly skewed towards more EHDV positives 

because cELISA replaced AGP/AGID as the test for BTV in 1993.  

Bighorn sheep were more likely to be exposed to B. ovis in the southern half of the range, 

including the northern (OR = 21.1) and southern San Ysidro Mountains (OR = 10.1), and Carrizo 

Canyon (OR = 9.5). These positive samples were limited to 1990 – 1997, with 17 of 24 positive 

results occurring in 1992 in the northern San Ysidro Mountains and Carrizo Canyon. Carrizo 

Canyon, the southernmost recovery region, also had higher odds of exposure to orf virus (OR = 

3.0).  

Anaplasma spp. and Chlamydia spp. had patchy geographic distributions. The risk of 

exposure to Anaplasma spp. was lower in the northern Santa Rosa Mountains (OR = 0.14) and 

higher in the northern San Ysidro Mountains (OR 8.7). Odds of exposure to Chlamydia spp. 

were higher in the central Santa Rosa Mountains (OR = 6.4) but lower in the bordering northern 

and southern Santa Rosa Mountains (OR = 0.1 in both). 

Exposure to Leptospira spp. was also scattered, with higher exposure odds in the 

southern Santa Rosa Mountains (OR = 5.5) and southern San Ysidro Mountains (OR = 7.2).  

Females (OR = 11.1) and animals in the northern Santa Rosa Mountains (OR = 15.1) had 

higher odds of being exposed to T. gondii.  

3.5 Pathogen co-occurrence network 

Network analyses revealed three groups of pathogens which co-occurred together in 

individual sheep more often within a group than between groups (Figures 3, 4) and roughly 

clustered by mode of transmission. All pathogens co-occurred with many other pathogens (mean 



 

 99 

= 13, range = 7 – 15) and group clustering was weak, as evidenced by low modularity (0.07), 

low centralization (0.01), and high density (0.86). 

Pathogen Group A included directly transmitted pathogens, including the three 

respiratory pathogens. Group B included pathogens transmitted by Culicoides spp. biting midges 

(BTV, Orbivirus spp.) (Ruder et al., 2015) or indirectly through the environment (Leptospira 

spp., T. gondii) (Adler and de la Peña Moctezuma, 2010; Dubey, 2009; Ruder et al., 2015). 

Pathogen Group C included the directly transmitted Pasteurellaceae spp. and tick-vectored 

Anaplasma spp. Interestingly, Anaplasma spp. is vectored by the ixodid tick Dermacentor 

hunteri; adult ticks are found almost exclusively on bighorn sheep or in their preferred habitats 

(Crosbie et al., 1997; Crosbie and Boyce, 1998), although less host-specific ticks may also play a 

role in transmission. 

 

4. Discussion 

4.1 Pathogen impacts on survival and reproduction 

Higher M. ovipneumoniae exposure (cELISA) was associated with lower lamb recruitment in 

the same year, although the same relationship did not hold true for active M. ovipneumoniae 

infections (PCR). Bighorn sheep infected with M. ovipneumoniae can die, clear the infection, or 

become carriers that persistently or intermittently shed the bacteria (Cassirer et al., 2013). After 

the initial epidemic, adult M. ovipneumoniae PCR prevalence tends to be low because most 

animals stop shedding after <1 year, although some animals can test positive for >3 years 

(Plowright et al., 2017). M. ovipneumoniae seropositivity (cELISA) is likely a better indicator of 

past disease exposure, although it represents a less specific time period than PCR. Increased 

lamb mortality is associated with the presence of even a few ewes shedding M. ovipneumoniae 
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and epidemics of pneumonia affect lamb survival and recruitment to a greater degree than adult 

survival (Cassirer et al., 2013; Manlove et al., 2014; Monello et al., 2001; Plowright et al., 2013). 

Although M. ovipneumoniae may be slowing population recovery through declines in 

reproduction/recruitment, the extinction risk of Peninsular bighorn sheep is inversely related to 

adult female survival (Esther S. Rubin et al., 2002), which was not found to be associated with 

M. ovipneumoniae infection/exposure in this study. However, the negative association between 

lamb:ewe ratios and M. ovipneumoniae may impact longer term herd health and growth. 

 Exposure to orf virus was positively associated with adult survival in the previous year, 

suggesting that this directly-transmitted pathogen is more common in years with higher bighorn 

sheep density resulting from high survival the previous year. This is consistent with the southern 

recovery region having both the highest orf virus exposure risk and the largest population, with 

~256 individuals among four herds (Colby and Botta, 2019). Although contagious ecthyma (the 

disease caused by orf virus) is generally self-limiting and resolves within a few months, it can 

lead to secondary infections and mortality in animals that are young or have co-morbidities 

(Colby and Botta, 2018; Jones et al., 2018; Michelsen and Smith, 2009). Immunity is variable, 

with infectious carrier states and rapid reinfections observed in domestic sheep (Lewis, 1996; 

Nandi et al., 2011). This means the virus may not fadeout due to herd immunity, especially in 

larger herds. The absence of a negative association between orf virus exposure and survival or 

lamb:ewe ratios in subsequent years suggests this pathogen is not currently affecting population 

growth. However, as herds continue to grow and co-mingle among regions, the cumulative 

effects of co-morbidities may begin to play a role in population recovery.  

Antibody prevalence of PI-3 and population size were associated with higher adult 

survival, consistent with PI-3 causing low mortality and circulating widely in large herds. PI-3 
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generally causes subclinical to mild respiratory signs as a sole agent in domestic sheep, but 

predisposes the respiratory tract to fatal secondary bacterial pneumonia, especially from 

Pasteurellaceae spp. (Woolums et al., 2009). This was demonstrated experimentally in bighorn 

sheep, where inoculation with PI-3 and respiratory syncytial virus resulted in mild pneumonia, 

but subsequent inoculation with M. haemolytica resulted in fatal pneumonia in four of four 

animals (Dassanayake et al., 2013). We did not have enough Pasteurellaceae spp. data to 

evaluate this association directly, but the pathogen network showed relatively low co-occurrence 

of PI-3 and Pasteurellaceae spp. (0.3% – 1.5% of samples). 

Leptospira spp. was associated with higher lamb:ewe ratios, but only after a 2-year lag. 

Leptospira spp. is shed in urine, with transmission primarily occurring through contact with 

contaminated water, food, and soil. (Adler and de la Peña Moctezuma, 2010). Leptospirosis has 

been increasing globally (Vijayachari et al., 2008) and seroprevalence in Peninsular bighorn 

sheep has historically ranged from 0 – 20% (DeForge et al., 1997, 1982). The most biologically 

plausible explanation for this association is that Leptospira spp. exposure and reproduction are 

both associated with water availability (Wehausen et al., 1987) but through different ecological 

mechanisms and temporal time scales. 

The lack of associations in this study between exposure to other pathogens and adult 

survival and lamb recruitment may have been due to data limitations resulting from the shifting 

priorities and capabilities of this multi-decade recovery project. Most of the diagnostic tests in 

this study measured previous exposure and we do not know the duration of seropositivity for 

many of these diseases. A seropositive animal may have been infected with a pathogen years 

prior to sampling and subsequently recovered, and our results might differ if we measured 

clinical disease, active infections, or directly observed lamb survival in the first few months of 
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life. Using recovery region as the unit of analysis may have masked herd-level differences, such 

as in the central Santa Rosa Mountains where there are “wild” and “urban” herds which utilize 

different habitats and have different pathogen exposure risks. Carrizo Canyon is a large region 

with four herds that have access to different topography, water sources, and forage quality. More 

importantly, disease-induced mortality is a multifactorial process that includes variables not 

included in our models. These include immune suppression due to comorbidities or physical 

stressors, variability in pathogen virulence, and dynamic behaviors such as contact during the 

lambing season or at water sources. 

We found a positive relationship between population size and adult survival but could not 

establish the directionality of this relationship.  Larger population sizes may be the result of 

improving survival rates as the population recovered, or there may be a survival benefit to larger 

groups, such as vigilance against predators.  

There were trends towards higher survival rates with lower peak summer temperatures 

and higher summer rainfall, once population size and pathogen prevalence were controlled for, 

but these findings were inconsistent due to differences in datasets among models. Previous work 

found positive associations between precipitation and desert bighorn sheep reproduction and 

lamb survival (Bender and Weisenberger, 2005; Wehausen et al., 1987). It is possible that 

increasing temperatures and decreasing precipitation could start playing a larger role in bighorn 

sheep population sustainability as climate change alters weather patterns in the region, especially 

given the changes we expect these climactic variables to have on vegetation quality (Epps et al., 

2004; Hess et al., 2008). Although modeling suggests that desert bighorn sheep living in drier 

mountain ranges at lower elevation are more likely to go extinct in the face of climate change 

(Epps et al., 2004), low elevation habitat in the Peninsular ranges appears to be better quality and 
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preferred by bighorn sheep, especially in drier years and during the lamb-rearing season. 

Unfortunately, work evaluating a subset of the Peninsular Mountains (overlapping with recovery 

regions 3 – 9) over the same time period as this study (1984 – 2017) found similar increases in 

mean annual summer temperature and decreases annual precipitation (Octobert-1 to Septembert), 

and determined that these changes were associated with widespread declines in perennial 

vegetation cover, with a stronger magnitude of effect at the lower elevations (<500 m) often 

preferred by bighorn sheep (Hantson et al., 2021).  

4.2 Geography is a greater risk factor for pathogen infection/exposure than demographics 

The primary risk factor for individual bighorn sheep pathogen infection/exposure was 

recovery region, which is likely a proxy for local ecological and behavioral factors. The northern 

Santa Rosa and Vallecito Mountains had higher odds of exposure to M. ovipneumoniae, BRSV, 

and PI-3, and both areas have relatively scarce natural water sources but high numbers of 

artificial ponds and guzzlers which could increase contact rates (Figure 1). The northern Santa 

Rosa mountains also have higher odds of T. gondii exposure, which could be related to fecal 

contamination of limited water sources where animals gather (Dubey, 2009), including irrigated 

golf courses. The need to utilize the same limited resources could spread disease through 

increased direct contacts and environmental contamination. In contrast, Coyote Canyon had 

some of the lowest disease risk and has six major riparian areas with year-round surface water 

that are utilized by two herds in this region, with little golf course use. There is also 

topographical and habitat variation within recovery regions, with the eastern areas of the 

southern Santa Rosa Mountains, Vallecito Mountains, and Carrizo Canyon being extremely xeric 

compared to the western areas. Previous work found that Peninsular bighorn sheep had higher 

exposure to multiple pathogens compared to other California populations, and the frequency of 
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exposure to ≥2 pathogens was higher at the northern latitudes within the range (Elliott et al., 

1994).  

  Behavioral observations and genetic data has demonstrated a strong matrilineal structure 

between bighorn sheep herds, but within a herd animals generally associated freely (Boyce et al., 

1999). This social structuring, with more contact among animals within a herd compared to 

between herds, could explain geographic differences in pathogen exposure through lower contact 

rates between herds/regions limiting transmission. There may also be differences in immune 

response, as bighorn sheep with lower heterozygosity in a locus within the Major 

Histocompatibility I gene complex are more likely to be persistent carriers of M. ovipneumoniae 

(Plowright et al., 2017), although there is little evidence of reduced genetic diversity in 

Peninsular bighorn sheep, despite previous population declines (Buchalski et al., 2015). 

Geographic variation in these biotic and abiotic factors could affect the health of bighorn 

sheep differentially between regions, with additive or multiplicative effects on an individual’s 

fitness. Further research into the fine scale variation of these factors across the Peninsular Range 

can help direct future bighorn sheep management. 

Age was not a significant predictor of an animal’s pathogen status, perhaps because 

lambs and yearlings were categorized together. Also, sampling generally happened in the fall, 

while most lambs are born in the spring. Many lambs that contract pathogens on high-density 

lambing grounds will die by ~4 months of age (Cassirer et al., 2018). This timing may have 

introduced a bias towards sampling lambs that were not exposed to disease. Similarly, the 

relatively low numbers of both lambs/yearlings (11.0%, n = 81/735) and males (19.6%, n = 

144/735) may have decreased our power to detect differences among groups.  

4.3 Bighorn sheep harbor numerous pathogens and co-infections/exposures are common 
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Bighorn sheep epidemic pneumonia is a complex disease process involving multiple 

infectious pathogens, environmental and immune factors, and host behaviors (Besser et al., 

2013). We found that respiratory pathogens were relatively common in Peninsular bighorn 

sheep, and the pathogen co-occurrence network showed that pathogens examined in this study 

are widespread, with most sheep being exposed to/infected with multiple pathogens throughout 

their lives. Overall, very few pathogen pairs were never detected together. These pathogens may 

have never infected the same animal, or temporal changes in diagnostic testing may have 

precluded the detection of certain pathogens pairs. There are also potential biases towards 

detecting less virulent pathogens with higher survival rates and those which induce long-lasting 

antibodies.  

M. ovipneumoniae exposure was detected across almost all years and recovery regions 

for which it was tested, demonstrating that the first spillover event from domestic sheep occurred 

prior to 1990 when testing began (and before the population was listed as endangered in 1998). 

Several pathogens, including BRSV, PI-3, and Pasteurellaceae spp., were also present starting in 

the first year of testing (1983, 1981, and 2001, respectively). Although we found limited 

evidence for population-level effects of pathogens other than M. ovipneumoniae, the long-term 

circulation of multiple pneumonia-associated pathogens may have a subclinical effect on 

population performance or exacerbate concurrent, non-disease stressors.  

Bighorn sheep do not appear to gain protective cross-immunity against different strains of 

M. ovipneumoniae after infection (Cassirer et al., 2017), and different M. ovipneumoniae strains 

have been associated with varying levels of bighorn sheep morbidity/mortality (Besser et al., 

2017). To date, 23 M. ovipneumoniae samples from Peninsular bighorn sheep have been 

genotyped using multi-locus sequence typing, and two ovine strains have been identified. One 
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strain, most closely related to bighorn sheep samples from the nearby Orocopia Mountains, is 

found throughout all recovery regions (Cassirer et al., 2018). A second strain, most similar to 

samples from Joshua Tree National Park, was identified in 2020 from sheep in two northern 

recovery regions (San Jacinto Mountains, central Santa Rosa Mountains; California Department 

of Fish and Wildlife, unpublished data). Continued monitoring and strain typing of PCR positive 

samples will be important to determine if this second strain will spread to the southern portions 

of the recovery zone. Infection with a novel strain may lead to new outbreaks of pneumonia and 

all age class mortality.  

 

5. Conclusions 

Peninsular bighorn sheep are recovering from critically small population sizes in an 

ecosystem which includes natural and urban habitats at the environmental extreme of what most 

species can survive. This paper demonstrates that M. ovipneumoniae is associated with lower 

lamb recruitment and identified recovery regions with elevated risk of pathogen 

infection/exposure to guide future management. Changes in bighorn sheep behavior and 

distribution in response to environmental changes, such as drought and anthropogenic 

development, may play a role in the maintenance or amplification of disease, especially in areas 

where bighorn sheep congregate in high-density groups, such as around limited water sources. 

Long-term, consistent, range-wide pathogen testing and population surveys will be critical to 

advance our understanding of pathogen transmission and the role of disease in Peninsular 

bighorn sheep population recovery. Consideration of environmental factors, such as the number 

and location of water sources and the impact the distribution of these resources has on bighorn 
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sheep contact rates and disease transmission, will also be important to adjust management 

strategies in the face of climate change and disease risks.  
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7. Tables 
 
Table 1. Summary of pathogen infection/exposure prevalence in Peninsular bighorn sheep across the entire study period (1981 – 

2017), stratified by sex, age, and recovery region. Estimates only include samples from the first capture event for each individual. 

Fractions represent the number of positive tests over the number of tests performed. Sample sizes within each stratification level may 

not sum to the same totals as in the “overall” column because age and sex were not available for all samples. Bolded text indicates 

significant differences (p ≤ 0.05) among groups within a stratification level (i.e., females vs. males). “S” = southern, “C” = central, 

“N” = northern, AGP = agar gel precipitin, AGID = agar gel immunodiffusion, CA = card agglutination, CF = complement fixation, 

ELISA = enzyme-linked immunosorbent assay, cELISA = competitive ELISA, IFA = immunofluorescence assay, HI = 

hemagglutination inhibition, LA = latex agglutination, MAT = modified agglutination test, PCR = polymerase chain reaction, SVN = 

serum virus neutralization, VI = virus isolation, NT = not tested.  

   
Overall Sex Age Recovery Region 

Pathogen Test 
type 

  Female Male Lamb or 
yearling 

Adult San 
Jacinto 
Mtns 

N. Santa 
Rosa 
Mtns 

C. Santa 
Rosa 
Mtns 

S. Santa 
Rosa 
Mtns 

Coyote 
Canyon 

N. San 
Ysidro 
Mtns 

S. San 
Ysidro 
Mtns 

Vallecito 
Mtns 

Carrizo 
Canyon 

Anaplasma 
spp. 

CA 49.7% 
(158/318) 

55.4% 
(41/74) 

48.1% 
(117/243) 

51.0% 
(148/290) 

34.6% 
(9/26) 

42.9% 
(12/28) 

29.8% 
(14/47) 

48.3% 
(14/29) 

29.6% 
(8/27) 

57.1% 
(20/35) 

77.1% 
(27/35) 

65.9% 
(29/44) 

48.5% 
(16/33) 

45.0% 
(18/40) 

Bovine 
herpesvirus-1 

SVN 0.6% 
(3/537) 

1.6% 
(2/129) 

0.2% 
(1/407) 

0.6% 
(3/469) 

0.0% 
(0/66) 

0.0% 
(0/51) 

3.0% 
(3/100) 

0.0% 
(0/57) 

0.0% 
(0/32) 

0.0% 
(0/45) 

0.0% 
(0/51) 

0.0% 
(0/49) 

0.0% 
(0/45) 

0.0% 
(0/107) 

Bovine 
respiratory 
syncytial virus 

IFA 39.3% 
(259/659) 

28.9% 
(37/128) 

41.9% 
(222/530) 

39.9% 
(236/592) 

34.8% 
(23/66) 

12.1% 
(8/66) 

48.7% 
(38/78) 

37.0% 
(30/81) 

72.9% 
(43/59) 

43.8% 
(21/48) 

28.1% 
(18/64) 

44.1% 
(26/59) 

40.0% 
(30/75) 

34.9% 
(45/129) 

Bovine viral 
diarrhea virus 
type-1 

SVN 0.7% 
(4/541) 

0.8% 
(1/129) 

0.7% 
(3/411) 

0.4% 
(2/472) 

3.0% 
(2/67) 

0.0% 
(0/51) 

1.0% 
(1/101) 

0.0% 
(0/57) 

0.0% 
(0/32) 

0.0% 
(0/45) 

0.0% 
(0/54) 

0.0% 
(0/49) 

0.0% 
(0/45) 

2.8% 
(3/107) 

Bovine viral 
diarrhea virus 
type-2  

SVN 0.0% 
(0/83) 

0.0% 
(0/17) 

0.0% 
(0/65) 

0.0% 
(0/76) 

0.0% 
(0/7) 

0.0% 
(0/7) 

0.0% 
(0/4) 

NT NT 0.0% 
(0/7) 

0.0% 
(0/9) 

0.0% 
(0/12) 

0.0% 
(0/2) 

0.0% 
(0/42) 

Brucella ovis  ELISA 5.0% 
(23/459) 

2.5% 
(3/118) 

5.9% 
(20/340) 

5.3% 
(21/399) 

3.4% 
(2/59) 

0.0% 
(0/38) 

0.0% 
(0/87) 

0.0% 
(0/50) 

0.0% 
(0/26) 

5.3% 
(2/38) 

16.3% 
(7/43) 

10.9% 
(5/46) 

0.0% 
(0/38) 

9.7% 
(9/93) 
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Overall Sex Age Recovery Region 

Pathogen Test 
type 

  Female Male Lamb or 
yearling 

Adult San 
Jacinto 
Mtns 

N. Santa 
Rosa 
Mtns 

C. Santa 
Rosa 
Mtns 

S. Santa 
Rosa 
Mtns 

Coyote 
Canyon 

N. San 
Ysidro 
Mtns 

S. San 
Ysidro 
Mtns 

Vallecito 
Mtns 

Carrizo 
Canyon 

Chlamydia 
spp. 

CF 42.8% 
(199/465) 

45.7% 
(53/116) 

41.7% 
(145/348) 

43.4% 
(179/412) 

36.5% 
(19/52) 

48.8% 
(20/41) 

17.0% 
(9/53) 

71.4% 
(40/56) 

12.9% 
(4/31) 

38.1% 
(16/42) 

30.8% 
(16/52) 

42.6% 
(20/47) 

42.2% 
(19/45) 

56.1% 
(55/98) 

Leptospira 
spp.  

MAT 12.1% 
(38/313) 

10.5% 
(8/76) 

12.7% 
(30/237) 

12.7% 
(35/275) 

8.1% 
(3/37) 

3.2% 
(1/31) 

9.1% 
(6/66) 

5.4% 
(2/37) 

30.8% 
(8/26) 

16.0% 
(4/25) 

10.0% 
(3/30) 

33.3% 
(8/24) 

6.5% 
(2/31) 

9.3% 
(4/43) 

Mycoplasma 
ovipneumoniae 

PCR 12.0% 
(38/316) 

13.5% 
(5/37) 

11.9% 
(33/278) 

11.8% 
(34/288) 

14.3% 
(4/28) 

13.3% 
(4/30) 

5.9% 
(2/34) 

3.1% 
(1/32) 

15.2% 
(5/33) 

7.7% 
(2/26) 

0.0% 
(0/30) 

20.0% 
(6/30) 

23.8% 
(10/42) 

13.6% 
(8/59) 

cELISA 60.2% 
(336/558) 

63.0% 
(68/108) 

59.5% 
(267/449) 

60.3% 
(307/509) 

58.3% 
(28/48) 

55.6% 
(30/54) 

71.2% 
(42/59) 

58.1% 
(36/62) 

55.8% 
(29/52) 

48.9% 
(22/45) 

56.7% 
(34/60) 

50.0% 
(25/50) 

71.0% 
(49/69) 

64.5% 
(69/107) 

Ovine 
progressive 
pneumonia 
virus 

AGID 0.0% 
(0/186) 

0.0% 
(0/48) 

0.0% 
(0/138) 

0.0% 
(0/170) 

0.0% 
(0/14) 

0.0% 
(0/26) 

0.0% 
(0/36) 

0.0% 
(0/9) 

0.0% 
(0/12) 

0.0% 
(0/13) 

0.0% 
(0/17) 

0.0% 
(0/21) 

0.0% 
(0/18) 

0.0% 
(0/34) 

Orf virus CF 71.8% 
(319/444) 

77.2% 
(71/92) 

70.4% 
(247/351) 

73.6% 
(295/401) 

57.1% 
(24/42) 

70.3% 
(26/37) 

62.8% 
(49/78) 

50.0% 
(23/46) 

84.2% 
(32/38) 

69.2% 
(27/39) 

83.7% 
(36/43) 

82.2% 
(37/45) 

63.6% 
(28/44) 

82.4% 
(61/74) 

Parainfluenza-
3 virus 

VI 11.4% 
(4/35) 

8.3% 
(1/12) 

13.0% 
(3/23) 

4.5% 
(1/22) 

23.1% 
(3/13) 

0.0% 
(0/2) 

20.0% 
(4/20) 

NT NT NT NT NT NT 0.0% 
(0/13) 

HI 21.2% 
(152/717) 

20.7% 
(29/140) 

21.4% 
(123/576) 

22.2% 
(141/635) 

12.5% 
(10/80) 

1.5% 
(1/66) 

32.5% 
(38/117) 

9.9% 
(8/81) 

30.5% 
(18/59) 

8.9% 
(5/56) 

12.3% 
(8/65) 

19.4% 
(12/62) 

35.4% 
(29/82) 

25.6% 
(33/129) 

Toxoplasma 
gondii  

LA 18.0% 
(16/89) 

43.5% 
(10/23) 

9.1% 
(6/66) 

18.5% 
(15/81) 

14.3% 
(1/7) 

20.0% 
(4/20) 

37.0% 
(10/27) 

NT NT NT 5.9% 
(1/17) 

7.7% 
(1/13) 

NT 0.0% 
(0/12) 

Bluetongue 
virus 

VI 3.3% 
(3/91) 

0.0% 
(0/25) 

4.5% 
(3/66) 

1.4% 
(1/72) 

11.1% 
(2/18) 

0.0% 
(0/16) 

5.0% 
(2/40) 

NT 0.0% 
(0/4) 

0.0% 
(0/5) 

NT NT 0.0% 
(0/5) 

4.8% 
(1/21) 

cELISA 10.4% 
(60/576) 

13.9% 
(15/108) 

9.6% 
(45/467) 

11.1% 
(58/523) 

3.8% 
(2/52) 

8.0% 
(4/50) 

5.2% 
(3/58) 

3.7% 
(3/81) 

8.5% 
(5/59) 

5.4% 
(3/56) 

22.9% 
(11/48) 

12.3% 
(7/57) 

18.3% 
(15/82) 

10.6% 
(9/85) 

VI 0.0% 
(0/22) 

0.0% 
(0/8) 

0.0% 
(0/14) 

0.0% 
(0/12) 

0.0% 
(0/10) 

NT 0.0% 
(0/18) 

NT NT NT NT NT NT 0.0% 
(0/4) 
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Overall Sex Age Recovery Region 

Pathogen Test 
type 

  Female Male Lamb or 
yearling 

Adult San 
Jacinto 
Mtns 

N. Santa 
Rosa 
Mtns 

C. Santa 
Rosa 
Mtns 

S. Santa 
Rosa 
Mtns 

Coyote 
Canyon 

N. San 
Ysidro 
Mtns 

S. San 
Ysidro 
Mtns 

Vallecito 
Mtns 

Carrizo 
Canyon 

Epizootic 
hemorrhagic 
disease virus 

SVN 24.4% 
(10/41) 

36.4% 
(4/11) 

20.0% 
(6/30) 

29.2% 
(7/24) 

17.6% 
(3/17) 

NT 18.9% 
(7/37) 

NT NT NT NT NT NT 75.0% 
(3/4) 

AGP/ 
AGID 
(BTV 
cELISA 
neg) 

5.3% 
(25/474) 

5.8% 
(5/86) 

5.2% 
(20/387) 

5.8% 
(25/430) 

0.0% 
(0/43) 

16.3% 
(7/43) 

1.9% 
(1/54) 

4.0% 
(2/50) 

5.7% 
(3/53) 

4.2% 
(2/48) 

2.7% 
(1/37) 

6.0% 
(3/50) 

7.9% 
(5/63) 

1.3% 
(1/76) 

Orbivirus spp. AGP/ 
AGID 

21.6% 
(145/670) 

29.0% 
(38/131) 

19.9% 
(107/538) 

22.5% 
(134/595) 

15.1% 
(11/73) 

30.6% 
(19/62) 

31.9% 
(37/116) 

7.5% 
(4/53) 

12.1% 
(7/58) 

9.8% 
(5/51) 

21.5% 
(14/65) 

17.7% 
(11/62) 

20.3% 
(15/74) 

25.6% 
(33/129) 

Mannheimia 
haemolytica 
betahemolytic 

culture 85.0% 
(119/140) 

80.6% 
(29/36) 

86.5% 
(90/104) 

83.3% 
(105/126) 

100.0% 
(14/14) 

70.0% 
(7/10) 

85.7% 
(18/21) 

87.0% 
(20/23) 

100.0% 
(12/12) 

90.0% 
(9/10) 

83.3% 
(15/18) 

82.4% 
(14/17) 

76.5% 
(13/17) 

91.7% 
(11/12) 

Mannheimia 
haemolytica 
nonhemolytic 

culture 23.6% 
(33/140) 

22.2% 
(8/36) 

24.0% 
(25/104) 

23.8% 
(30/126) 

21.4% 
(3/14) 

0.0% 
(0/10) 

23.8% 
(5/21) 

34.8% 
(8/23) 

25.0% 
(3/12) 

10.0% 
(1/10) 

33.3% 
(6/18) 

17.6% 
(3/17) 

11.8% 
(2/17) 

41.7% 
(5/12) 

Bibersteinia 
trehalosi 
betahemolytic 

culture 12.1% 
(17/140) 

2.8% 
(1/36) 

15.4% 
(16/104) 

12.7% 
(16/126) 

7.1% 
(1/14) 

0.0% 
(0/10) 

0.0% 
(0/21) 

0.0% 
(0/23) 

0.0% 
(0/12) 

30.0% 
(3/10) 

38.9% 
(7/18) 

0.0% 
(0/17) 

29.4% 
(5/17) 

16.7% 
(2/12) 

Bibersteinia 
trehalosi 
nonhemolytic 

culture 77.9% 
(109/140) 

77.8% 
(28/36) 

77.9% 
(81/104) 

78.6% 
(99/126) 

71.4% 
(10/14) 

90.0% 
(9/10) 

90.5% 
(19/21) 

82.6% 
(19/23) 

83.3% 
(10/12) 

50.0% 
(5/10) 

61.1% 
(11/18) 

94.1% 
(16/17) 

64.7% 
(11/17) 

75.0% 
(9/12) 

1
1
0
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8. Figures  
 

  

Water	sources

Artificial	-	guzzler

Artificial	-	pond

Natural	-	seep	or	spring

Natural	-	tenaja

Riparian	habitat

Bighorn	sheep	herd	home	ranges

Golf	course	communities

Recovery	region	boundaries



 

 112 

Figure 1. Map of the study area within the Peninsular Ranges of southern California, USA. Map 
depicts recovery region boundaries, bighorn sheep herd home ranges, golf course communities 
bordering or within bighorn sheep habitat, and major water sources. Major riparian areas have 
perennial or intermittent creeks and relatively large amounts of vegetation, including canopy 
cover and a dense understory. These areas are also utilized by deer and sometimes mountain 
lions. Artificial ponds and guzzlers provide year-round water through municipal sources or by 
collecting rainwater then delivering them to a drinking area. Guzzlers tend to be elevated, while 
ponds are at ground level and therefore vulnerable to contamination by rain run-off and/or 
animal excrement. Natural seeps and springs are small point sources of water at ground level that 
contain variable quantities and quality of water throughout the year. Tenajas are small rock 
depressions that hold water at the bottom of drainages, tend to be poor water quality, and are not 
dependable during the summer months. Golf course communities shown are those that bighorn 
sheep utilize on a regular basis; they are in urban areas where human-wildlife conflict is likely, 
but also have highly nutritious forage and many dependable water sources such as ponds, creeks, 
canals, reservoirs, and swimming pools.  
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Figure 2. Forest plots demonstrating the relationship between pathogen status (positive, negative) 
and Peninsular bighorn sheep age (lamb/yearling, adult), sex (male, female), and recovery region 
(categorical, n = 9). Reference categories were adults (for age), males (for sex), and the San 
Jacinto Mountains (for recovery region). Numbers and white circle represent the log odds of 
testing positive for a pathogen, relative to a reference category, using Bayesian, multilevel, 
logistic regression models. Log odds <0 (blue) indicate a lower risk of testing positive for a 
given pathogen, and log odds >0 (red) indicate a higher risk of testing positive for a given 
pathogen, relative to the reference category. Thick bars represent the 80% credible interval, and 
thin bars represented the 95% credible interval. A covariate was a significant predictor of 
pathogen status if the 95% credible interval did not cross 0.   
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Figure 3. A weighted, undirected network of infectious pathogens that co-occurred together 
within an individual bighorn sheep. Node (circle) size is relative to the number of other 
pathogens that node is linked too (larger nodes are linked to more pathogens). Edge (lines) width 
is relative to the proportion of bighorn sheep samples which were positive for a pair of 
pathogens, given that both pathogens were tested for. The colors of the nodes identify which 
group a pathogen belongs to, based on network modularity. The color of the edges is determined 
by the group assignment of the nodes they connect. B. ovis = Brucella ovis, M. ovi = 
Mycoplasma ovipneumoniae, T. gondii = Toxoplasma gondii, cELISA = competitive enzyme-
linked immunosorbent assay, PCR = polymerase chain reaction, BH = beta-hemolytic, NH = 
non-hemolytic.  
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Figure 4. Dendrogram generated from a weighted, undirected network of infectious pathogens 
that co-occurred together within individual bighorn sheep. The branching structure of the tree 
was determined by the pair-wise weights between pathogens, calculated as the proportion of 
bighorn sheep samples that were positive for both pathogens, given that they were tested for both 
pathogens (larger weights result in shorter branch lengths between pathogens). The colors of the 
pathogen names designate which group a pathogen belongs to, as identified by network 
modularity. 
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CONCLUSION 

The research presented in this dissertation evaluates methods of surveillance, prevention, 

and control of disease across diverse host-pathogen systems. These systems represent different 

phases of pathogen spillover and spread, including the prevention of spillover into a novel host 

due to high-risk interactions, the subsequent epidemic in the new host population, and 

maintenance of disease in the reservoir and/or new host species (Figure 1). Each of these phases 

has unique challenges when it comes to the detection and control of disease due to the variation 

in the prevalence and distribution of disease as pathogens are introduced and spread within new 

hosts.  

Major findings and recommendations 

The animal-human interfaces identified at global animal markets will help us design 

targeted surveillance programs for pathogens with pandemic potential in the pre-emergence 

setting and guide local mitigation efforts to prevent spillover from occurring. The significance of 

education and concern about disease outbreaks in models of personal protective equipment (PPE) 

use is encouraging data to support the potential effectiveness of community outreach and training 

programs, both to increase PPE use and to reduce other behaviors which put people at risk for 

contracting zoonotic pathogens, such as housing live animals together. The global wildlife 

supply chain was examined in 23 countries, each with unique cultural preferences and traditions, 

taxa involved, and extent of their geographic impacts. The specific recommendations made must 

be adapted to these individual situations, in collaboration with local colleagues. However, some 

general recommendations that can be made from this study include: 1) reduce the presence of 

live wildlife within the supply chain; 2) eliminate the housing of live animals together, especially 

those from different taxa or geographic areas; 3) improve animal husbandry by disinfecting 
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cages and removing animal byproducts, especially in areas where there is a large degree of 

mixing of different species (i.e., point-of-sale nodes); and 4) educate hunters, supply chain 

workers, and consumers on the pathways for zoonotic spillover to encourage them to support 

behavior changes such as using PPE and modifying the way they handle animals. 

We found that social distancing due to SARS-CoV-2 occurred prior to government issued 

guidelines, emphasizing the importance of timely and accurate public health communication. 

This result becomes even more important when combined with our finding that social distancing 

is likely to be most effective when done proactively at the start of an epidemic while case counts 

are still relatively low. Social distancing can be an effective epidemic response tool to slow 

disease transmission while developing other pandemic control measures that may not be readily 

available for a novel virus that has just spilled over into humans, including diagnostic testing, 

quarantine protocols, and vaccinations. The public showed that they can make behavioral 

modifications (such as social distancing) rapidly, even before official “lock-downs” were 

instituted, which demonstrates the importance of clearly communicating evolving research in a 

manner that is accessible to the public so they can participate in pandemic mitigation efforts.  

The significance of recovery region as a risk factor for bighorn sheep pathogen exposure 

indicates that there are ecological factors that vary with geography and contribute to the 

continued exposure of bighorn sheep to pathogens which have become established post-spillover. 

Although using recovery region as the unit of analysis precluded further detailed investigation of 

these factors, it suggests that there is a spatial component to pathogen exposure which could be 

investigated with finer scale evaluation of bighorn sheep movements (e.g., using radio-collar 

location data) and the ecology of the region (e.g., the placement of artificial water sources). The 

trends we observed towards higher temperatures and lower precipitation over time, which can be 
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expected to worsen with climate change, also raise concerns about the role these factors will play 

as additional stressors compounding the effects of infectious disease. Systematic surveillance and 

monitoring of bighorn sheep pathogens, population performance, and environmental resources 

and stressors will be key to long-term bighorn sheep conservation, given the multifactorial nature 

of the threats to their population. 

Data limitations and recommendations for future work 

A lack of variability in the presence or absence of risk characteristics along the wildlife 

supply chain (Chapter 1) led to uncertainty around estimates due to small sample sizes in some 

model strata. Some risk variables were extremely common (or almost always absent) within 

certain strata of categorical model covariates (e.g., continent, node of the supply chain), leading 

to separation of data for regression modeling (i.e., the outcome variable is completely separated 

by a predictor variable, with the outcome only [or mostly] occurring within one level of the 

predictor). This lack of variation and small sample sizes among some strata resulted in wide 

confidence intervals of up to several hundred-fold difference between the upper and lower ends 

of the range. Surveying additional sites would address this problem by increasing the chances 

that we would observe uncommon circumstances, thereby increasing the sample size within each 

level of model covariates and resolving the separation of data between outcomes and predictors. 

Sampling additional sites would also improve how well our dataset represented the regions 

across which conclusions were being drawn from model results. Site characterization surveys 

were conducted at 1 – 28 sites in each country, and by visiting more sites per country, we can 

ensure that we are capturing the full range of risk interfaces to fully inform risk mitigation. 

Additionally, by categorizing a risk characteristic as present or absent based on whether the 

characteristic was observed at least once, we lost the ability to include information on how often 



 

 125 

a variable was present or absent. Ensuring that each study site was visited multiple times (ideally 

the same number of times in both the wet and dry seasons) would allow us to calculate the 

proportion of visits in which a risk characteristic was observed and provide a finer scale of detail 

on the true occurrence of how frequently risky variables were present.  

Differences among states in defining a SARS-CoV-2 case (Chapter 2) was a data 

limitation resulting from the uncoordinated efforts of individual states to rapidly respond to an 

emerging pandemic with limited testing resources. While most states reported cases as only those 

that were laboratory verified, a small subset included probable cases that fit the CDC case 

definition based on exposure and clinical signs. These differences in data definitions may have 

influenced some of the inter-state variation in estimates we measured. In addition, our study 

period ended on April 30, 2020 because some states began combining antibody and polymerase 

chain reaction test results in their reported case counts after this date. One of the lessons learned 

from the SARS-CoV-2 pandemic should be that early epidemic response requires coordinated 

efforts and transparent communication among jurisdictions regarding the methods used for basic 

data collection such as case counts. The prevalence of disease in one state can impact the burden 

of disease in other states, and effective epidemic response necessitates that each state is 

measuring and reporting their data in a consistent way. Ideally, this would include recording the 

most detailed data possible about patients, including the diagnostic test type and/or exposure 

history used to classify a person as a SARS-CoV-2 case.  

Bighorn sheep (Chapter 3) are a long lived and wide-ranging species, and estimation of 

long-term population trends requires detailed sampling across multiple demographic, temporal, 

and geographic strata. The overall conservation efforts of Peninsular bighorn sheep have been 

managed by multiple agencies over the 36-year study period, which resulted in inconsistencies in 
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the data collected and sparse data across some strata, including: years where not all recovery 

regions were sampled, different numbers of sheep sampled from each region, and variable gaps 

of time between sampling events. These sampling inconsistencies led to small sample sizes in 

some model strata which resulted in wide confidence intervals and uncertainty around some 

estimates. Ideally, sampling would occur frequently enough to detect small outbreaks or 

introductions of disease and be stratified by recovery region in a systematic way, perhaps scaling 

the number of animals sampled by the population size of each region and obtaining a 

representative sample of animals from each herd within a region. By sampling the entire range 

frequently and on the same schedule, we would have more data points with which to evaluate the 

impact of factors that may affect disease prevalence or population performance, such as 

precipitation and other ecological variables. However, this level of monitoring is not often 

available for wildlife conservation projects, especially projects on species with such a large 

geographic range. The best approach could be combining intermittent range-wide disease 

sampling, targeted sampling of symptomatic or high-risk individuals, and continuous, 

longitudinal monitoring of marked animals. Range-wide sampling and testing for pathogens 

annually would be ideal to detect changes in pathogen prevalence on the same time scale as 

changes in survival, reproduction, or climatic and environmental variables. If surveys must be 

conducted less frequently, they could be supplemented with targeted sampling of symptomatic 

animals observed at year-round monitoring sites, such as water holes, to detect introductions or 

epidemics of disease between range-wide surveys. In addition, a subset of animals should be 

continuously radio-collared and monitored for estimation of survival rates and timely collection 

of mortalities for necropsy to identify causes of mortality. This multipronged approach would be 
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more labor and resource intensive, but also more likely to catch an introduction or epidemic of 

disease than less frequent, scattered sampling.  

Summary 

Together, these chapters provide novel insights into the maintenance, spillover, and 

control of pathogens across a range of host-pathogen and ecological systems. The research 

presented in this dissertation is the first to investigate associations between Mycoplasma 

ovipneumoniae exposure and shedding and the population health of bighorn sheep in the 

Peninsular Ranges, was among the first to quantify the relationship between social distancing 

and SARS-CoV-2 pandemic control, and assembled the largest dataset to date of human 

behavioral and ecological risk factors for pathogen spillover within the global wildlife trade 

network. The risk of pathogen spillover and spread involves a web of factors including host and 

pathogen biology, spatial distribution and contact rates among hosts, and landscape ecology. 

Quantifying these risk factors is complicated by the fact that they often vary across temporal and 

spatial scales, from the local distribution of bighorn sheep herds to the state-to-state differences 

in social distancing to the global diversity in the wildlife supply chain. This dissertation explores 

disease dynamics in the pre-spillover, initial epidemic, and post-spillover maintenance phases 

across three unique systems at different spatial scales, with relevance to both animal and human 

health. The challenges and risk factors identified can provide a foundation that will help inform 

the design of future surveillance systems and disease management efforts.  
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Figure 1: The process of spillover and subsequent spread of a pathogen in a new host population 
can include three phases, which are often circular: 1) spillover of disease from reservoir host to a 
novel host due to high-risk interactions (Chapter 1), and 2) rapid pathogen spread causing an 
epidemic in the new, immunologically naïve host population (Chapter 2), which can be followed 
by 3) maintenance of disease in the new host (Chapter 3). 
 




