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Stochastic fluctuations in reaction–diffusion processes often
have substantial effect on spatial and temporal dynamics
of signal transductions in complex biological systems. One
popular approach for simulating these processes is to divide
the system into small spatial compartments assuming that
molecules react only within the same compartment and jump
between adjacent compartments driven by the diffusion. While
the approach is convenient in terms of its implementation, its
computational cost may become prohibitive when diffusive
jumps occur significantly more frequently than reactions, as
in the case of rapid diffusion. Here, we present a hybrid
continuous-discrete method in which diffusion is simulated
using continuous approximation while reactions are based
on the Gillespie algorithm. Specifically, the diffusive jumps
are approximated as continuous Gaussian random vectors
with time-dependent means and covariances, allowing use of
a large time step, even for rapid diffusion. By considering
the correlation among diffusive jumps, the approximation is
accurate for the second moment of the diffusion process. In
addition, a criterion is obtained for identifying the region
in which such diffusion approximation is required to enable
adaptive calculations for better accuracy. Applications to
a linear diffusion system and two nonlinear systems of
morphogens demonstrate the effectiveness and benefits of the
new hybrid method.

1. Introduction
Many biological systems are subject to stochastic fluctuations
when the copy number of the molecules is relatively small [1,2].
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For spatially inhomogeneous systems that involve both reactions and diffusions, the spatial distributions
of the molecules are important because local copy number fluctuations may result in phenotypic
differences, though the total number of molecules of the relevant species may be high [3].

For a spatially homogeneous system, the Gillespie stochastic simulation algorithm (SSA) tracks each
reaction event and updates the state of the system after each occurrence of reactions [4]. Numerous
methods have been developed to improve the efficiency of this method for cases involving large sizes for
certain species or frequent reactions; examples of such methods include the next reaction method [5],
τ -leaping [6–8], the hybrid methods for simulating fast and slow reactions [9–11] and the adaptive
multi-level simulation algorithm [12].

For a spatially inhomogeneous system, the SSA can be applied by first partitioning the spatial domain
into many compartments. In each compartment, reactions are treated as in the homogeneous case;
however, molecules may jump between adjacent compartments through diffusion [13]. In this approach,
the size of each compartment must be sufficiently small that diffusive jumps occur more rapidly than
reactions and the inhomogeneity inside each compartment can be ignored [14,15]. Also, the time scale
for the molecule to diffuse throughout a compartment should be much faster than the time scale for the
fastest bimolecular chemical reaction [14,16,17].

In the case of frequent diffusive jumps, the spatial SSA may become computationally inefficient.
Consequently, modifications have been made to accelerate the SSA, as in the next sub-volume
method [18] and the null process [19], or to develop a new computational algorithm that optimizes
the search process in the SSA [20], or to approximate diffusion, as in the multinomial simulation
algorithm [21], the diffusive finite state projection method [22] and adaptive algorithms [23,24]. These
approximation methods share a common feature: reaction and diffusion processes are simulated
independently, and the diffusive jumps occur at predetermined time intervals, between which the
reactions are simulated. As a result, the time step depends on the fastest diffusion rate, leading to
excessive computational cost, in particular, for the case of fast diffusion.

Several hybrid methods were developed for solving stochastic reaction–diffusion systems [25–28]. The
most common approach is a spatially hybrid method between the SSA and deterministic approach. Noise
effect in high concentration region is relativity small so deterministic approach such as using partial
differential equations is sufficient to ensure the accuracy of simulations. However, small noise effect in
high concentration region may still result in large fluctuations in low concentration region because of
communication between the regions, so the development of a hybrid method which combines two or
more stochastic approaches without involving any deterministic approach becomes an important and
effective approach.

Here, we introduce a hybrid continuous-discrete method to simulate spatially inhomogeneous
systems with better efficiency and accuracy. As in the Central Limit Theorem, a continuous Gaussian
random variable can be used to approximate the change in the number of molecules introduced by a
large number of independent diffusive jumps. A brief overview of the algorithm is listed below:

1. Calculating the time of the next occurring reaction based on the SSA.
2. Approximating the numbers of diffusive jumps using Gaussian random vectors with time-

dependent means and covariances by assuming no reactions during the period of time.
3. If the approximated number of diffusive jumps at some compartments is large enough, the

approximation is then applied at that locations; otherwise the SSA is applied. Since the number
of diffusive jumps may be different at each time period between reactions, so the locations at
which the approximation is applied are set adaptively over time.

As a result, the updating takes place only when a reaction occurs, and the time step is then determined
by the reaction rates. Because the correlation among diffusive jumps is considered in our method, the
approximation of the diffusion is reliable, and its effect on the reactions is small.

The method is applied to 3 one-dimensional reaction–diffusion systems for morphogen gradients
in addition to a two-dimensional morphogen system. The efficiency of the method improves as the
diffusion coefficients increase or the number of diffusing molecules increases, yielding more than 60%
savings in computational cost compared with the standard spatial SSA. In addition, because of the new
time-adaptive criterion for identifying the region for the diffusion approximation, our hybrid method
allows for zero initial conditions (i.e. an initial state without any molecules) in the simulations, unlike
many other existing stochastic methods, which need to start with a certain level of molecules in order to
obtain good approximations.
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2. Material and methods
2.1. Chemical master equations for spatially inhomogeneous systems
Consider a system along a one-dimensional domain with length L, where N molecular species
{S1, S2, . . . , SN} are involved in the following M reactions {R1, R2, . . . , RM}:

Rj : sr
j1S1 + · · · + sr

jNSN
γj−→ sp

j1S1 + · · · + sp
jNSN.

Here, sr
ji and sp

ji are the stoichoimetric coefficients of the reactant and product species, respectively, and γj
is the macroscopic rate constant of Rj. Although we describe the method on a one-dimensional domain,
it is worth noting that it is easy to extend this method in a higher dimensional domain. The examples in
one- and two-dimensional domains will be discussed in the Simulation results section.

If the system is spatially inhomogeneous, then the domain is partitioned into K identical
compartments with uniform length h, where h = L/K. The subsystem in each compartment is assumed
to be homogeneous. Molecules in different compartments are treated as different species, denoted
by {S11, S12, . . . , Ski, . . . , SKN}, where Ski is the ith species in the kth compartment. The system state is
denoted by

X(t) = (X11(t), X12(t), . . . , Xki(t), . . . , XKN(t)),

where Xki is the number of molecules of Ski.
Only molecules in the same compartment can react. The jth reaction in the kth compartment Rkj is as

follows:

Rkj : sr
j1Sk1 + · · · + sr

jNSkN
γkj−→ sp

j1Sk1 + · · · + sp
jNSkN ,

where γkj is the reaction rate constant of reaction Rkj.
Diffusion is treated as a reaction in which a molecule in one compartment jumps to one of its

neighbouring compartments at a constant rate. Without loss of generality, we assume that only species
S1 diffuses in the algorithm description. Assume that species S1 diffuses with the coefficient D1 with
reflective boundary conditions on the boundary of the domain. Then, the diffusive jumps obey the
following chain reactions:

S11
D1/h2

−−−⇀↽−−−
D1/h2

S21
D1/h2

−−−⇀↽−−−
D1/h2

S31 · · · D1/h2

−−−⇀↽−−−
D1/h2

SN1.

Multiple diffusive species can be easily treated using the same approach, and an example of such a case
is presented in the Simulation results section.

Consider X(t) as a variable x, the probability that the reaction Rkj will fire in the next time interval
[t, t + dt) is akj(x) dt, where akj is called the propensity function of Rkj. The state of the system transfers
from one state to another through reaction firing. The net change of the state of the system caused by one
occurrence of reaction Rkj is denoted as νkj and so

νkj = (0, . . . , 0, sp
j1 − sr

j1, . . . , sp
jN − sr

jN︸ ︷︷ ︸
from ((k−1)N+1)th to kNth

, 0, . . . , 0).

In addition, denote as akL(x) and akR(x) the propensity functions of diffusion jumps JkL : Sk1 → S(k−1)1 and
JkR : Sk1 → S(k+1)1, respectively. Denote as νkL and νkR the net change of the state of the system caused by
JkR and JkL, respectively. As diffusion is treated as mono-molecular reactions, we have

akL(x) = D1

h2 Xk1, for 2 < k ≤ K, and akR(x) = D1

h2 Xk1, for 1 ≤ k < K − 1

and the elements of νiL and νiR equal 1, −1 or 0.
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The chemical master equation (CME) that governs the temporal evolution of the probability density

function p(x, t) that the state of the system is x at time t is as follows:

∂

∂t
p(x, t) = −

K∑
k=2

akL(x)p(x, t) +
K∑

k=2

akL(x − νkL)p(x − νkL, t)

︸ ︷︷ ︸
Left jump

−
K−1∑
k=1

akR(x)p(x, t) +
K−1∑
k=1

akR(x − νkR)p(x − νkR, t)

︸ ︷︷ ︸
Right jump

−
K∑

k=1

M∑
j=1

akj(x)p(x, t) +
K∑

k=1

M∑
j=1

akj(x − νkj)p(x − νkj, t)

︸ ︷︷ ︸
Reaction

. (2.1)

2.2. Diffusion approximation
For most biological systems, the state space and the dimension of the CME are large or infinite, rendering
the CME impossible to solve. The stochastic process underlying the CME can be simulated by the spatial
SSA (details can be found in appendix A). Similar to the existing methods [14–17], the compartment
size is first appropriately chosen such that diffusive jumps are usually more frequent than reactions
because of the assumption of the homogeneity of reactions in each compartment. In the case of frequent
diffusive jumps, the spatial SSA may become computationally inefficient. Here we shall approximate the
diffusion processes using Gaussian random vectors with time-dependent means and covariances.

Given X(t0) = x0 = (x011 , x012 , . . . , x0ki , . . . , x0KN ), let nkL(t) and nkR(t) denote the numbers of leftward
and rightward diffusive jumps of molecules from the kth compartment between time t0 and time t. Under
the assumption that a large number of diffusive jumps occurs between reactions in each compartment,
we can approximate the numbers of diffusive jumps as follows:

nkL(t)
Λ

= φkL(t) + ξkL√
Λ

+ O
(

1
Λ

)
(2.2)

and

n(k−1)R(t)
Λ

= φ(k−1)R(t) + ξ(k−1)R√
Λ

+ O
(

1
Λ

)
, (2.3)

for k = 2, 3, . . . , K. The functions φkL(t) and φkR(t) characterize the macroscopic features of the diffusive
jumps. When the copy number of molecules is large enough, the system of the average of molecule
concentration will approach a deterministic diffusion system. The macroscopic features of the diffusive
jumps are determined by the solution of the deterministic system. The second terms ξkL and ξkR are
real random numbers, measuring the fluctuations around φkL(t) and φkR(t). The means of these random
numbers are zero and the covariances can be determined by the formula presented later in this section.
The constant Λ is the number of molecules per unit concentration in a compartment. For example, if
the concentration 1 µM corresponds to 600 molecules in each compartment, then Λ = 600 µM−1. When
Λ � 1, φkL(t) and φkR(t) are considered to be continuous functions of t.

Let Π (ξ1L, ξ2L, ξ2R, . . . , ξnL, t) be the probability density function of ξ1L, ξ2L, ξ2R, . . . , ξnL at time t. The
function Π for molecule concentrations can be obtained from a rescaling of the probability density
function p, which is for the number of molecules. The formula for Π is as follows:

Π (ξ1L, ξ2L, ξ2R, . . . , ξnL, t) = 1
Λ2n−2 p

(
x0 +

K−1∑
k=1

nkRνkR +
K∑

k=2

nkLνkL, t|x0, t0

)
,

where p(x, t | x0, t0) is the probability density function that the state of the system is x at time t with the
condition X(t0) = x0.
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By performing the standard systematic expansion of the master equation equation (2.1) [29], we obtain

the following equation:

∂Π

∂t
−

√
Λ

(
∂Π

∂ξ1R
,

∂Π

∂ξ2L
, . . . ,

∂Π

∂ξKL

)
·
(

∂φ1R(t)
∂t

,
∂φ2L(t)

∂t
, . . . ,

∂φKL(t)
∂t

)

=
√

Λ

[
−D1

h2 (c011 − φ1R + φ2L)
∂Π

∂ξ1R
− D1

h2

(
c0K1 − φKL + φ(K−1)R

) ∂Π

∂ξKL

− D1

h2

K−1∑
k=2

(c0k1 − φkR − φkL + φ(k+1)L + φ(k−1)R)
∂Π

∂ξkR

−D1

h2

K−1∑
k=2

(c0k1 − φkR − φkL + φ(k+1)L + φ(k−1)R)
∂Π

∂ξkL

]

+ D1

h2

K−1∑
k=1

∂

∂ξkR
(ξkRΠ − ξ(k+1)LΠ ) + D1

h2

K−1∑
k=2

∂

∂ξkR
(ξkLΠ − ξ(k−1)RΠ )

+ D1

h2

K∑
k=2

∂

∂ξkL

(
ξkLΠ − ξ(k−1)RΠ

)+ D1

h2

K−1∑
k=2

∂

∂ξkL
(ξkRΠ − ξ(k+1)LΠ )

+ D1

2h2
∂2

∂ξ2
1R

((
c011 − φ1R + φ2L

)
Π
)+ D1

2h2
∂2

∂ξ2
KL

((c0K1 − φKL + φ(K−1)R)Π )

+ D1

2h2

K−1∑
k=2

∂2

∂ξ2
kR

((c0k1 − φkR − φkL + φ(k+1)L + φ(k−1)R)Π )

+ D1

2h2

K−1∑
k=2

∂2

∂ξ2
kL

((c0k1 − φkR − φkL + φ(k+1)L + φ(k−1)R)Π )

−
K∑

l=1

M∑
j=1

alj

(
Λ

(
c0 +

K−1∑
k=1

φkRνkR +
K∑

k=2

φkLνkL

))
Π + O

(
1√
Λ

)
,

where c0 = (c011 , c012 , . . . , c0KN ) = x0/Λ. Assuming

Λ � 1 and max
1≤j≤M,1≤k≤K

akj � D1

h2 min
1≤k≤K−1

{
∂Π

∂ξkR
,

∂Π

∂ξ(k+1)L

}
, (2.4)

and comparing the order term
√

Λ, we have

∂

∂t

⎛
⎜⎜⎜⎜⎜⎜⎝

φ1R

φ2L

φ2R
...

φKL

⎞
⎟⎟⎟⎟⎟⎟⎠= D1

h2

⎛
⎜⎜⎜⎜⎜⎜⎝

c011 − φ1R + φ2L

c021 − φ2R − φ2L + φ3L + φ1R

c021 − φ2R − φ2L + φ3L + φ1R
...

c0K1 − φKL + φ(K−1)R

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

(φ1R, φ2L, φ2R, . . . , φKL)′ = 0 at t = t0.

Letting

Πs = Π exp

⎛
⎝−

∫ t

t0

K∑
l=1

M∑
j=1

alj

(
Λ

(
c0 +

K−1∑
k=1

φkR(τ )νkR +
K∑

k=2

φkL(τ )νkL

))
dτ

⎞
⎠ (2.5)

and defining the vector variable (y1, y2, y3, . . . , y2K−2)′ = (ξ1R, ξ2L, ξ2R, . . . , ξKR)′, we obtain the following
Fokker–Planck equation:

∂Πs

∂t
= −

∑
i,j

Aij
∂

∂yi
(yjΠs) + 1

2

∑
i,j

Bij(t)
∂2Πs

∂yi∂yj
+ O

(
1
Λ

)
,



6

rsos.royalsocietypublishing.org
R.Soc.opensci.3:160485

................................................
where

A = D1

h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1
1 −1 −1 1
1 −1 −1 1

1 −1 −1 1
1 −1 −1 1

. . .
. . .

. . .
. . .

1 −1 −1 1
1 −1 −1 1

1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

B(t) = D1

h2

⎛
⎜⎜⎜⎜⎜⎜⎝

c011 − φ1R + φ2L
c021 − φ2R − φ2L + φ1R + φ3L

c021 − φ2R − φ2L + φ1R + φ3L

. . .
c0K1 − φKL + φ(K−1)R

⎞
⎟⎟⎟⎟⎟⎟⎠.

So the corresponding covariance matrix is

ρ =
∫ t

0
Y(t)Y−1(τ )B(τ )(Y−1(τ ))′Y(t)′ dτ ,

where Y(t) = exp(At).
This approximation is valid under the assumption (2.4), which is true when the number of

diffusive molecules and the value of diffusion coefficient are large. Overall, we approximate the
numbers of diffusive jumps by obtaining (i) the macroscopic features of the diffusive jumps, Φ :=
(φ1R, φ2L, φ2R, . . . , φKL)′; (ii) the distributions of the fluctuations, Ξ := (ξ1L, ξ2L, ξ2R, . . . , ξKL)′ and (iii) the
probability, PR(t), that no reaction will occur until time t. These three components can be solved as
follows:

1. Φ satisfies the following equations:

dΦ

dt
= AΦ +

(
D1

h2

)
C

and Φ = 0 at t = t0,

⎫⎪⎬
⎪⎭ (2.6)

where C = (x011 , x021 , . . . , x0k1 , . . . , x0K1 )′/Λ. Based on the study of Othmer & Scriven [30], the
eigenvalues and eigenvectors of A can be obtained analytically and used to solve the system
directly.

2. Ξ is a Gaussian random vector with a mean of zero and a covariance of

ρ =
∫ t

0
Y(t)Y−1(τ )B(τ )(Y−1(τ ))′Y(t)′ dτ , (2.7)

where Y(t) = exp(At) and B(t) = diag(∂Φ/∂t) is a diagonal matrix with the diagonal elements
equal to ∂Φ/∂t.

3. PR(t) takes the form

PR(t) = exp

⎛
⎝−

∫ t

t0

K∑
l=1

M∑
j=1

alj

(
x0 + Λ

K−1∑
k=1

φkR(τ )vkR + Λ

K∑
k=2

φkL(τ )νkL

)
dτ

⎞
⎠ ,

where alj is the propensity function of reaction Rlj for l = 1, 2, . . . , K and j = 1, 2, . . . , M.

2.3. Adaptivity of the time step and the spatial partitioning of the compartments
To determine the next time step after time t0, we generate a random number r that is uniformly
distributed in [0, 1] and find t such that PR(t) = r. To update the numbers of diffusive jumps at time t, we
calculate Φ and generate Ξ , a random vector that has a multivariate normal distribution with a mean of
zero and a covariance of ρ. However, because t is chosen as a random number, the interval between t and
t0 might be short; this would allow only a small number of diffusive jumps to occur among compartments
with a low copy number of molecules, leading to poor accuracy of the Gaussian approximation. In such
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compartments where the Gaussian approximation fails due to a low copy number of molecules, we
simulate the diffusive jumps using the SSA method. To determine which compartments fit this criterion,
we compare the Poisson distribution with mean μ to the Gaussian distribution with mean μ and variance
μ. It is known that as μ increases, the difference between the two distributions decreases. For example,
when μ is larger than 10, we have

max
n≥0

∣∣∣∣∣ 1√
2πμ

exp

[
− (n − μ)2

2μ

]
− exp(−μ)μn

n!

∣∣∣∣∣≤ 0.01. (2.8)

Therefore, we apply the SSA method for diffusion in those compartments where the mean number of
diffusive jumps is small (e.g. fewer than 10). For the case in which the amount of species S1 decreases
monotonically towards the Kth compartment in the deterministic model, we use the SSA method in all
compartments with an index larger than or equal to kg(t), which is the smallest integer such that

Λφkg(t)L(t) ≤ TA or Λφkg(t)R(t) ≤ TA, (2.9)

where Λφ approximates the mean value of diffusive jump and TA is the cut-off threshold for determining
the region for the Gaussian approximation. We set TA = 10 to ensure that the absolute difference between
the Poisson and Gaussian distributions is less than 0.01, as seen in (2.8). When TA increases, the SSA is
applied in more compartments and it may increase the CPU time cost in our hybrid method. For two or
more types of diffusive molecules, we can still apply (2.9) as long as the diffusion process of each type of
molecules is independent of each other. As a result, different types of diffusive molecules have different
kg values.

2.4. Algorithm overview
Given x(t0) = x0, we perform the following steps:

1. Generate two independent random numbers r1 and r2 that are uniformly distributed in [0, 1].
2. Find t such that PR(t) = r1

and let

ᾱlj =
∫ t

t0

alj

(
x0 + Λ

K−1∑
k=1

φkR(τ )vkR + Λ

K∑
k=2

φkL(τ )νkL

)
dτ .

3. Evaluate kg using equation (2.9) to determine the compartments for which the SSA method
will be used. If kg = 1, simulate diffusion in all compartments using the SSA method; if kg > 1,
perform the following steps:

(a) simulate diffusion between the kgth compartment and the Kth compartment using the SSA
method, and treat the kgth compartment as a reflective boundary;

(b) calculate Φ and ρ in equation (2.6) and equation (2.7) at time t; remove rows 2kg − 2,
2kg − 1, . . . , 2K − 2 and columns 2kg − 2, 2kg − 1, . . . , 2K − 2 in the matrix ρ, and let ρs be
the remaining submatrix;

(c) generate a (2kg − 3)-variate Gaussian random vector Ξ with a mean of zero and a
covariance of ρs;

(d) evaluate nkL and nkR in equations (2.2) and (2.3) at time t, and update xk1 using nkL and nkR
for 1 ≤ k ≤ kg − 2;

(e) add n(kg−2)R − n(kg−1)L − n(kg−1)R + ΛφkgL to x(kg−1)1, and add n(kg−1)R − ΛφkgL to xkg1; and
(f) round the xk1 values to their nearest non-negative integers.

4. Find the smallest values of m and q such that

q−1∑
l=1

M∑
j=1

ᾱlj +
m∑

j=1

ᾱqj ≥ r2

K∑
l=1

M∑
j=1

ᾱlj.

Then, let the mth reaction occur in the qth compartment, and update x in accordance with
reaction Rqm.

5. Advance the time to t. Then, go back to step 1 until the simulation time reaches the stop criterion.

In this algorithm, the calculations of ᾱlj in step 2 and ρ in step 3(b) are the most computationally
expensive steps among all steps. ᾱlj and ρ can be estimated using simple numerical integration
quadratures such as the trapezoidal rule, which we use in the test cases presented below. In step 3(b),
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Figure 1. Morphogen models used for numerical tests in examples I–IV. (a) Examples I and IV: morphogen system with linear
degradation. (b) Example II: morphogen–receptor system. (c) Example III: morphogen system with two types of diffusive molecules.

Φ can be solved directly and efficiently using the eigenvalues and eigenvectors of A. Negative values
and non-integers may appear in the Gaussian approximation so we round the values to their nearest
non-negative integers in step 3(f). This step may lead to loss of mass. However, the error introduced by
this rounding can be reduced by increasing the number of molecules.

3. Simulation results
In this section, we will compare the performance of the hybrid method and the SSA using different
morphogen models. First a one-dimensional simple morphogen system with different values of diffusion
coefficients is considered. Next, we extend our study to a morphogen–receptor system, a morphogen
system containing two types of diffusive molecules, a two-dimensional morphogen system and a Turing
system to show that the results are consistent with the one-dimensional simple morphogen system we
consider in the first part. All the numerical tests are implemented in Matlab.

3.1. Example I: morphogen system with linear degradation
First, we consider a one-dimensional morphogen system in which morphogens diffuse out from a local
production region and undergo degradation throughout the entire domain (figure 1a). This model was
used to study the stochastic effect on patterning of the Drosophila wing disc [31,32]. The deterministic
dynamics of morphogen concentration [M] can be described by the following PDE system with no-flux
boundary conditions:

∂[M]
∂t

= DM
∂2[M]
∂x2 − dM[M] + V(x),

where DM is the diffusion coefficient, dM is the degradation rate coefficient and V(x) is the production
rate of morphogen. We define the production rate as

V(x) = vM if 0 ≤ x ≤ xpro; V(x) = 0 if xpro < x ≤ xmax.

The one-dimensional domain [0, xmax] is divided into 100 compartments with 2 µm width which is based
on the cell size of the Drosophila wing disc, so that the domain size we consider is xmax = 200 µm. The
initial condition for simulations is [M](0, x) = V(x)/dM. The parameters are listed in table 1.

Figure 2a–d displays the means and standard deviations of the number of morphogens in each
compartment at simulation time 100 s, based on both the SSA and the hybrid method with different
diffusion coefficients DM = 10 µm2 s−1 and DM = 40 µm2 s−1. In the results, 500 simulations were used to
calculate the statistical quantities for each case.
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Figure 2. Simulation results for example I with different values ofDM. In the results, 500 simulationswere used to calculate the statistical
quantities for each case. The parameters are listed in table 1. (a,b) Model with diffusion coefficient 10µm2 s−1: (a) means of the number
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deviations for the simulations with diffusion coefficient 40µm2 s−1. (f ) CPU time costs for two stochastic methods with different values
of diffusion coefficients.

Table 1. List of parameter values used in examples I–IV. The values are based on [32].

parameters definitions values

DM diffusion coefficient of free morphogens 5µm2 s−1 − 40µm2 s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DC diffusion coefficient of morphogen–receptor complexes 5µm2 s−1 − 10µm2 s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vM production rate of morphogens 10−4 µM s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vR production rate of receptors 10−4 µM s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vN production rate of non-signalling receptors 2 × 10−4 µM s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dM degradation rate coefficient of morphogens 10−2 s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dR degradation rate coefficient of receptors 10−4 s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dN degradation rate coefficient of non-signalling receptors 10−4 s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dW degradation rate coefficient of receptors 10−4 s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dC degradation rate coefficient of non-signalling receptors 10−4 s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α1 binding rate coefficient for morphogen–receptor complexes 5 × 10−2 µM s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β1 dissociation rate coefficient for morphogen–receptor complexes 5 × 10−4 µM s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α2 binding rate coefficient for morphogen–non-receptor complexes 5 × 10−2 µM s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β2 dissociation rate coefficient for morphogen–non-receptor complexes 5 × 10−4 µM s−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ΛM number of morphogens per unit concentration in a compartment 1.8 × 104 µM−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ΛR (ΛN) number of receptors (non-receptors) per unit concentration in a
compartment

2 × 102 µM−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xpro size of morphogen production region 14µm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As observed in figure 2a–d, there is good agreement between the results of the two methods
throughout the simulations. For systematic comparison, we calculate the relative differences between
the simulations by the SSA and the hybrid method, (MSSA − MHybrid)/MSSA. Figure 2e shows that the
relative differences of means and standard deviations are less than 0.15 when DM = 40 µm2 s−1. Then we
calculate the averages of CPU time costs in the 500 simulations of each case. Figure 2f shows that the
CPU time cost of the SSA is linearly increasing with the value of DM, and is much higher than the cost
of the hybrid method when DM = 40 µm2 s−1. Although the CPU time cost of the hybrid method is also
increasing with the value of DM, the increasing rate is much lower than the SSA. When the diffusion
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Figure 3. Simulation results for example I with different values of TA in (2.9). In the results, 500 simulations were used to calculate the
statistical quantities for each case. The parameters are listed in table 1 and DM = 40µm2 s−1. (a–b) Model with TA = 5: (a) means
of the number of morphogens and (b) means of the number of morphogens in the region of lower copy number of morphogens.
(c–d) Model with TA = 20: (c) means of the number of morphogens and (d) means of the number of morphogens in the region of lower
copy number of morphogens. (e) Relative differences of means and standard deviations for the simulations with TA = 5 and TA = 20.
(f ) CPU time costs for the hybrid methods with different values of TA.

coefficient DM increases, the morphogen system becomes a diffusion-dominant system that highlights
the advantage of the diffusion approximation which allows a larger time step for each time iteration in
our hybrid method.

Other than changing the value of the diffusion coefficient DM, we test how the value of TA in (2.9)
affects the CPU time cost and the performance of the hybrid method. For the simulations in figure 3,
we apply the setting used in figure 2, but with different values of TA. The simulations in figure 3a–d
show that the accuracy of the hybrid method improves when TA increases. Figure 3e displays that the
relative differences of means and standard deviations between the simulations by the hybrid method
and the SSA decrease significantly in the region of low copy number of molecules when TA increases
from 5 to 20. By contrast, figure 3f shows a trade-off in which the CPU time cost is increasing with the
value of TA.

3.2. Example II: morphogen–receptor system
Here we consider a one-dimensional morphogen–receptor system in which receptors are produced
in the entire region and bind with morphogen to induce morphogen degradation (figure 1b). This
model involves the stochastic effect in a binding process between two kinds of molecules [32,33]. The
deterministic dynamics of three kinds of molecule concentrations (morphogen [M], receptor [R] and
morphogen–receptor complex [W]) can be described by the following PDE system with no-flux boundary
conditions:

∂[M]
∂t

= DM
∂2[M]
∂x2 − α1[M][R] + β1[W] + V(x),

∂[R]
∂t

= −α1[M][R] + β1[W] − dR[R] + vR,

and
∂[W]
∂t

= α1[M][R] − β1[W] − dW[W].

The morphogen production function V(x), the domain and its discretization are defined as in example I.
The initial conditions for simulations are [M](0, x) = V(x)/dM, [R](0, x) = VR/dR and [W](0, x) = 0.
The parameters are listed in table 1.

Figure 4 displays the means and standard deviations of the numbers of morphogens, receptors and
morphogen–receptor complexes in each compartment at simulation time 1000 s, based on both the
SSA and the hybrid method with DM = 5 µm2 s−1. In this case, 200 simulations were used to calculate
the statistical quantities. The means calculated using both stochastic methods agree well with each
other, and the standard deviations are consistent between the two stochastic methods. The simulation
results with DM = 10 µm2 s−1 and DM = 20 µm2 s−1 also have good agreement between the SSA and
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Figure 4. Simulation results for example II. (a) Means of the numbers of morphogens, receptors and morphogen–receptor complexes.
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In this simulation, we take DM = 5µm2 s−1 and the remaining parameters are listed in table 1.

Table 2. CPU time cost of SSA and hybrid methods for examples II–III.

example II example III

DM(µm2 s−1) 5 10 20 5 10 20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DC(µm2 s−1) — — — 5 10 20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CPU time (SSA) 251.6 s 495.5 s 949.8 s 757.0 s 1481.2 s 2868.4 s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CPU time (hybrid) 126.3 s 177.7 s 187.6 s 457.8 s 703.6 s 926.7 s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the hybrid method. For studying time cost, we calculate the averages of CPU time costs in the 200
simulations of each case. Table 2 shows that the CPU time cost of the SSA is much higher than the cost of
the hybrid method when DM = 5 µm2 s−1, 10 µm2 s−1 or 20 µm2 s−1. In particular, the CPU time cost
of the hybrid method is around 20% of that of the SSA when DM = 20 µm2 s−1.

3.3. Example III: morphogen system with two types of diffusive molecules
In this example, we want to study the performance of the hybrid method for the system with two types of
diffusive molecules. Many studies on morphogen system were based on reaction–diffusion models with
only one diffusion term in either free or non-signalling bound-morphogens [31–33]. However, this type
of one-diffusion model is not biologically complete because it is possible to have more than one type of
diffusion transport. Morphogen models with two types of diffusive molecules have been proposed and
studied in [34–36]. Here we consider a morphogen model with both diffusion of free morphogens and
movement of non-signalling morphogen complexes through a ‘bucket brigade’ process [35] (figure 1c).
The deterministic dynamics of five kinds of molecule concentrations (morphogen [M], receptor [R],
non-signalling receptor [N], morphogen–receptor complex [W] and diffusive non-signalling morphogen
complex [C]) can be described by the following PDE system with no-flux boundary conditions:

∂[M]
∂t

= DM
∂2[M]
∂x2 − α1[M][R] + β1[W] − α2[M][N] + β2[C] + V(x),

∂[R]
∂t

= −α1[M][R] + β1[W] − dR[R] + vR,

∂[W]
∂t

= α1[M][R] − β1[W] − dW[W],

∂[N]
∂t

= −α2[M][N] + β2[C] − dN[N] + vN,

and
∂[C]
∂t

= DC
∂2[C]
∂x2 + α2[M][N] − β2[C] − dC[C].
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Figure 5. Simulation results for example III. (a) Means of the numbers of morphogens, receptors, morphogen–receptor complexes,
non-signalling receptors and diffusive non-signalling morphogen complexes. (b) The corresponding standard deviations. In the results,
200 simulations were used to calculate the statistical quantities. In this simulation, we take DM = DC = 5µm2 s−1 and the remaining
parameters are listed in table 1.

Similar to the previous examples, the morphogen production function V(x), the domain and its
discretization are defined as in example I. The initial conditions for simulations are [M](0, x) = V(x)/dM,
[R](0, x) = VR/dR, [W](0, x) = 0, [N](0, x) = VN/dN and [C](0, x) = 0. The parameters are listed in table 1.

Figure 5 reveals that the statistical quantities obtained using the hybrid method agree well with
those obtained using the SSA with diffusion coefficients DM = DC = 5 µm2 s−1 at simulation time 2000 s.
Table 2 displays the CPU cost of the hybrid method is only 60%, 48% and 32% of that of the SSA when
the diffusion coefficients are DM = DC = 5 µm2 s−1, DM = DC = 10 µm2 s−1 and DM = DC = 20 µm2 s−1,
respectively. Our hybrid method works very well for such systems with more than one type of diffusive
molecules.

3.4. Example IV: two-dimensional morphogen system
Here, we study the performance of hybrid method for a two-dimensional morphogen system which is
based on example I (figure 1a). The two-dimensional domain [0, xmax] × [−ymax, ymax] is divided into 250
compartments with uniform dimension 2 × 2 µm, which is based on the cell size of Drosophila wing disc.
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Figure 6. Simulation results for example IV. (a) Means of the numbers of morphogens for the system with DM = 5µm2 s−1 and
DM = 40µm2 s−1. (b) The corresponding standard deviations. (c) CPU time costs for different methods and different values of diffusion
coefficients. In the results, 200 simulations were used to calculate the statistical quantities for each case. Other than the diffusion
coefficient, the remaining parameters are listed in table 1.

The domain size we consider is xmax = 100 µm and ymax = 5 µm. We define the morphogen production
function as

V(x, y) = vM if 0 ≤ x ≤ xpro; V(x) = 0 if xpro < x ≤ xmax. (3.1)

The initial condition for simulations is [M](0, x, y) = V(x, y)/dM. The parameters for this example are equal
to the set we used in example I. Five hundred simulations were used to calculate the statistical quantities.
In this case, the number of morphogens decreases monotonically along the x-axis in the deterministic
model, so the condition (2.9) is applied on x-direction.

Figure 6a,b displays the means and standard deviations of the number of molecules in each 2 µm ×
2 µm compartment at simulation time 10 s, based on both the SSA and the hybrid method with different
diffusion coefficients DM = 10 µm2 s−1 and DM = 40 µm2 s−1. The figures support that the two stochastic
methods have good agreement in two-dimensional simulations. This result is consistent with the one-
dimensional simulations shown in figure 2. The CPU time cost of the SSA is linearly increasing with
the value of DM, and the cost of the hybrid method is around 50% of the SSA when DM = 40 µm2 s−1

(figure 6c).

3.5. Example V: non-monotone pattern
In general, the adaptive method can be applied for some types of non-monotone pattern. Similar to
example I, when the morphogen production region is considered at the centre of the domain as

V(x) = vM if 94 ≤ x ≤ 106; V(x) = 0 otherwise,

in the one-dimensional domain [0, 200], the same setting used in example I can generate a single-peak
solution as in figure 7a. We reformulate the condition (2.9) by considering the largest region [kg1, kg2] near
the peak such that for all j ∈ [kg1, kg2], we have

ΛφjL(t) > TA or ΛφjR(t) > TA. (3.2)



14

rsos.royalsocietypublishing.org
R.Soc.opensci.3:160485

................................................

30 6

5

4

3

2

1

25

20

15

no
. m

or
ph

og
en

re
la

tiv
e 

di
ff

er
en

ce
 (

m
ea

n)

re
la

tiv
e 

di
ff

er
en

ce
 (

s.
d.

)
s.

d.

10

0.20

0.15

0.10

0.05

0

0.10

0.08

0.06

0.04

0.02

0

5

0 50 100 150 200 0 50 100 150 200

50 100
x x

150 200 50 100 150 200

(b)(a)

(c) (d )

hybrid
direct

hybrid
direct
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means for the simulations by the SSA and the hybrid method. (d) Relative differences of standard deviations for the simulations by the
SSA and the hybrid method.

This condition ensures the accuracy of the Gaussian approximation in the region at the centre. Figure 7a,b
displays the means and standard deviations of the number of molecules in each compartment at
simulation time 20 s with D = 40 µm2 s−1. In the results, 500 simulations were used to calculate the
statistical quantities for each case. Figure 7c,d shows that the relative differences of means and standard
deviations between the simulations by the hybrid method and the SSA are less than 0.15. For efficiency,
the CPU time cost of the hybrid method is around 57% of that of the SSA. The adaptive method
can be extended to patterns consisting of multiple peaks if the peaks can be determined by the
deterministic system.

3.6. Example VI: Turing system
In the last example, we consider an activator-substrate Turing system consisting of a short-range
diffusion for the activator and a long-range diffusion for the substrate. The normalized one-dimensional
activator-substrate Turing system [37] can be described by the following two-equation system with the
no-flux boundary conditions:

∂[A]
∂t

= DA
∂2[A]
∂x2 + α[S][A]2 − β[A] + ρA,

∂[S]
∂t

= DS
∂2[S]
∂x2 − α[S][A]2 + ρS,

in 0 ≤ x ≤ 10. The constants DA and DS measure the diffusion coefficients of activators and substrates,
respectively. In order to generate a spatial inhomogeneous steady-state solution, the diffusion coefficient
DA needs to be much less than DS. Here we use DS = 50 and DA = 0.1. For other parameters, we take
α = β = ρS = 1 and ρA = 0.01. The one-dimensional domain [0, 10] is divided into 50 compartments. The
number of molecules per unit concentration in a compartment is ΛA = ΛS = 500. The initial condition for
simulations is the homogeneous steady-state solution [A](0, x) = 1.01 and [S](0, x) = (1.01)−2.



15

rsos.royalsocietypublishing.org
R.Soc.opensci.3:160485

................................................
4000

hybrid
direct

hybrid
direct

3000

2000

no
. a

ct
iv

at
or

s

1000

0 2 4
x x

6 8 10 2 4 6 8 10

400

300

200

no
. s

ub
st

ra
te

s

100

0

Figure 8. Example simulations obtained by the SSA (dashed line)and the hybrid method (solid line) for the one-dimensional activator-
substrate Turing system in example VI. In the hybridmethod, the Gaussian approximation is applied for simulating the diffusion processes
of substrates which have rapid diffusion processes.

The Gaussian approximation is used only for the fast diffusion in substrates. Since the chemical
gradients may not be monotonic in space, the time-adaptive criterion (2.9) is not used in this example,
and instead, the Gaussian approximation for the diffusion process of substrates is applied everywhere
in space. Since the number of substrates is large enough in each compartment, the approximation has a
good accuracy in the entire space.

The study using different methods (figure 8) indicates that two stochastic methods show a similar
pattern for A at t = 10. The averages of CPU time costs in the 500 simulations for different methods
indicate that the SSA costs 5.61 × 103 s for each simulation and the hybrid method costs 2.16 × 103 s,
suggesting a 50% speed-up of the hybrid method.

4. Discussion
We have introduced a new algorithm to accelerate the stochastic simulation of reaction–diffusion
systems. In this hybrid approach, the numbers of diffusive jumps in regions with a high level of
molecules are calculated using Gaussian vectors, whereas the diffusive jumps in regions with a
low level of molecules, along with the reaction events, are simulated using the SSA. Because of
the diffusion approximation, the size of the time step, which predominantly depends on rate of
reactions, can be significantly larger than that allowed by the existing approaches. Thus, the hybrid
method is particularly effective for diffusion-dominant systems. Moreover, the diffusion approximations
for different diffusing species are performed independently, which makes the method particularly
advantageous for application to systems with multiple diffusing species.

To determine the compartments for which the diffusion approximation is applied, we use a
macroscopic quantity that can be easily calculated. In addition, the approximation region can be
adaptively specified in both space and time with a good control of approximation errors. Thus, the
hybrid method is effective in dealing with spatial distributions of molecules that may vary significantly
over time or may not be monotonic in space.

The Gaussian random vector is directly related to the matrix whose non-zero location is determined
by the communication among compartments. The partitioning of a domain with an irregular geometry
may be achieved using existing software (COMSOL or URDME [38]) to enable application to complex
domains. To extend our method for the system incorporating rapid and slow reactions, we can accelerate
the simulation of rapid reactions by coupling our method with the hybrid SSA/τ -Leaping strategy [6] to
create a hybrid diffusion approximation + SSA/τ -Leaping strategy. The overall approach introduced in
this work will be an efficient and accurate algorithm for simulating biological and physical systems in
which number of molecular copies has a large range within the spatial domain and diffusion is dominant
comparing with other types of reactions.
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Appendix A
A.1. Spatial stochastic simulation algorithm
The stochastic process underlying the CME can be simulated by the SSA. In SSA, two random numbers
r1 and r2, that are uniformly distributed in [0, 1], are generated for determining the time and the index
of the next reaction, respectively. The time for the next reaction is t + τ , with

τ = − ln r1

a0(x)
,

where a0(x) is the sum of all propensity functions:

a0(x) =
K∑

k=1

M∑
j=1

akj(x) +
K∑

k=2

akL(x) +
K−1∑
k=1

akR(x).

The index of the next reaction is obtained by finding the smallest m and q such that

q−1∑
k=1

M∑
j=1

akj +
m∑

j=1

aqj ≥ r2a0 (A 1)

or
K∑

k=1

M∑
j=1

akj +
q∑

k=2

akL ≥ r2a0 (A 2)

or
K∑

k=1

M∑
j=1

akj +
K∑

k=2

akL +
q∑

k=1

akR ≥ r2a0. (A 3)

If the condition (A 1) is satisfied, then the reaction Rqm happens and the state of the system is updated
as X(t + τ ) = X(t) + νqm; or if the condition (A 2) is satisfied, then the diffusion jump JqL happens and
the state of the system is updated as X(t + τ ) = X(t) + νqL; or if the condition (A 3) is satisfied, then the
diffusion jump JqR happens and the state of the system is updated as X(t + τ ) = X(t) + νqR.

The simulation repeats the above process until it reaches the stop criterion.
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