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Resource managers must often make difficult choices in the face of imperfectly observed 
and dynamically changing systems (e.g. livestock, fisheries, water and invasive 
species). A rich set of techniques exists for identifying optimal choices when that 
uncertainty is assumed to be understood and irreducible. Standard optimization 
approaches however cannot address situations in which reducible uncertainty applies 
to either system behavior or environmental states. The adaptive management literature 
overcomes this limitation with tools for optimal learning, but has been limited to highly 
simplified models with state and action spaces that are discrete and small. We overcome 
this problem by using a recently developed extension of the Partially Observable 
Markov Decision Process (POMDP) framework to allow for learning about a 
continuous state. We illustrate this methodology by exploring optimal control of bovine 
tuberculosis in New Zealand’s cattle. Disease testing—the control variable—serves to 
identify herds for treatment and provides information on prevalence, which is both 
imperfectly observed and subject to change due to controllable and uncontrollable 
factors. We find substantial efficiency losses from both ignoring learning (standard 
stochastic optimization) and from simplifying system dynamics (to facilitate a typical, 
simple learning model), though the latter effect dominates in our setting. We also find 
that under an adaptive management approach, simplifying dynamics can lead to a belief 
trap in which information gathering ceases, beliefs become increasingly inaccurate and 
losses abound. 

 

Uncertainty and change are two hallmarks of natural resource management. The dual challenges of 
imperfect knowledge and a dynamically changing system are present in a wide range of settings, 
including fisheries, forests, water and livestock disease control to name a few. Where uncertainty is 
reducible, it is also natural to incorporate learning into management, an approach that has been called 
adaptive management (Walters, 1986, Walters, 1974, Walters and Hilborn, 1976). Although the term 
adaptive management is sometimes used only to apply to learning about system behavior, we adopt a 
more inclusive use of the term that applies to learning about both the behavior and the state of a 
dynamic system (i.e. encompassing both structural and observational uncertainty). We use adaptive 
management broadly in this paper to include any situation in which management choices are updated 
when new information becomes available that changes beliefs concerning imperfectly observed 
features of a system. Examples of adaptive management applied to uncertain system dynamics include 
management with learning about a water pollution threshold (Bond and Loomis, 2009), the 
persistence likelihood of a particular species (Chades, et al., 2012), the invasive species infestation 
rates of agricultural imports from different exporters (Springborn, 2014), fish survivorship 
(Springborn and Sanchirico, 2013), the population dynamics of a harvested population (Johnson, 
2011, U.S. Fish and Wildlife Service, 2013) and the parameters governing a generic payoff process in 
an economic environment (Wieland, 2000). Each of these examples involves learning about an 
unobserved model component that is time invariant (e.g. a fixed biological or economic parameter). 

Until recently however, this approach was, for the most part, limited to situations with a small 
number of discrete state levels. A recently developed approach (Zhou, et al., 2010) extends the 
POMDP approach to continuous variables using an approximation method known as “density 
projection” for achieving model tractability. The method was applied to a situation in which a fixed 
model parameter was uncertain in Springborn and Sanchirico (2013); here it is applied to a situation in 
which an uncertain state variable is changing over time.  
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This continuous state POMDP approach is well suited to problems of control of infectious 
disease or invasive species. Typically the true prevalence of an infection is unknown, making 
planning difficult. This is especially true when testing for the presence of disease is costly and/or 
subject to implementation constraints due to limited personnel and equipment. Previous literature has 
identified a number of ways to determine optimal strategies or a good rule of thumb for identifying 
affected individuals or units. For example in the context of bTB (Gramig and Horan, 2011) and 
sudden oak death (Mbah and Gilligan, 2010), authors have assumed that managers know the true level 
of prevalence with certainty and the purpose of testing is solely to identify which particular units are 
infected and should be treated. Similarly, in Filipe, et al. (2012) and Atallah, et al. (2014) the purpose 
of testing is to identify which management units (e.g. spatial cell or individual grape vine) are infected 
for treatment. Although these two studies do not assume that true prevalence is known, in both cases 
the testing strategy does not depend on the overall prevalence in the system.2 Testing serves a dual 
role however; in addition to identifying which units are infected it also provides information about the 
extent of the infection. In this paper, we account for the value of information in both identifying 
individuals to treat and in honing beliefs about uncertain prevalence for optimal endogenous learning.  

The problem of using monitoring to better understand a dynamically changing system state, 
specifically the extent of an invasive infestation, was examined in Haight and Polasky (2010) (and 
extended in Fackler and Haight (2014)). The authors use a POMDP approach but the set of possible 
states was discrete and limited to three levels. Other similarly constrained examples include Regan, et 
al. (2006) and Regan, et al. (2011). To date most studies that apply adaptive management to problems 
involving either structural or observational uncertainty have assumed that the underlying uncertain 
variables are discrete. When the underlying source of uncertainty involves a continuous variable 
difficulties arise if a conjugate family or belief distributions is not available. Recently a projection 
approach has been developed to overcome this difficulty. It was applied first to wildlife management 
in Moore (2008) and put on a rigorous footing in Zhou, et al. (2010). The projection approach was 
applied to a structural uncertainty problem in Springborn and Sanchirico (2013) and is currently being 
developed in another study involving observational uncertainty in fisheries management by Kling, et 
al. (2016). This optimal learning approach has not yet been applied to problems of infectious disease 
monitoring and control, and more specifically given uncertainty over prevalence.  

In this paper we use the continuous POMDP approach to determine an optimal strategy for 
testing cattle herds that are potentially infected with bovine tuberculosis (bTB). bTB is an infectious 
and potentially fatal disease of both animals and humans that persists throughout much of the world, 
including the United Kingdom, Japan, Mexico, much of Central and South America, as well as much 
of Asia and Africa (Cousins, 2005). Our numerical application is based on bTB control efforts in New 
Zealand, where the disease has been rigorously studied over its long history. 

The disease has remained endemic in New Zealand’s cattle herds since 1893 (de Lisle, 1993). 
Controlling spread and permanent eradication is encumbered by abundant disease vectors (e.g. the 
brushtail possum and ferrets) and subtle clinical signs that cause infections to remain subclinical 
(unobservable) to both herd owners and managers until the very late stages of decline, resulting in 
substantial uncertainty regarding true prevalence across herds (Morrison, et al., 2000). In New 
Zealand, the central animal health authority3 applies tuberculin skin tests to identify latently infected 

                                                            
2 In Atallah, et al. (2014), the level of testing is responsive to prevalence, in part. Diseased grape vines in a 
vineyard are divided between those that are costlessly observed (infective), those that can be observed only with 
testing (exposed-detectable) and those that cannot be observed (exposed-undetectable). The testing choice is the 
number and configuration of vines neighboring an infective vine that is to be tested. This choice is not 
responsive to overall prevalence, however the number of tests overall is proportional to the number of infective 
vines, and thus to the subset of the overall prevalence that is costlessly observable. 
3 The Animal Health Board (AHB) delegates administrative duties to other public and private entities. 
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herds. Once identified, infected herds are placed under quarantine and those animals within the herd 
that test positive are selectively culled. Test results provide value both in identifying infected herds 
(through avoiding further infections and speeding recovery (without immunity)) and in providing 
information about prevalence, which can be used to enhance future management decisions. 

Disease control problems typically involve both substantial uncertainty and clear 
opportunities for learning about disease prevalence. For example, Shea, et al. (2014) examine passive 
adaptive management of foot-and-mouth disease and provision of measles vaccinations. Under their 
passive learning approach information arrival is assumed to be independent of the management 
decision. Learning is highly stylized— it occurs exogenously in one time step, is perfect (the manager 
learns the truth with certainty) and costless. The decision problem is also highly simplified—control is 
chosen in just two stages with the first control decision made under model uncertainty and the second 
with perfect information. In contrast, in our model learning does not perfectly resolve uncertainty, 
occurs repeatedly over time, and is determined endogenously based on an explicit balancing of costs.  

Our results show that both incorporating learning and accounting for the nature of the moving 
target (transmission) have implications for efficiency and interact in interesting ways to determine 
optimal policy. While both provide improvements in outcomes, the gains from considering 
transmission exceed those from learning. We find that a manager who ignores learning can hold more 
accurate beliefs about true disease prevalence than a manager who learns but ignores transmission. 
We also find that focusing on learning at the expense of incorporating transmission leaves the 
manager at risk of falling into a belief trap where overly optimistic beliefs go uncorrected and 
prevalence takes off. We discuss in the conclusions how these results might shift if perturbations to 
the unobserved underlying state are less unidirectional than occurs with disease transmission. Overall, 
the results show the potential pitfalls of ignoring one or both of these components, especially the 
moving target element.  

We begin below by specifying a model of disease prevalence, spread, testing and control. 
Then we describe in detail how belief dynamics are made to incorporate both learning from testing 
and movement in the true underlying unobserved state. Finally we specify the economic decision 
problem in a dynamic programming framework and present results from the numerical application. 
 
 
Methods 
We adapt the approach of Gramig and Horan (2011) for modeling transmission and control of bTB in 
cattle populations within a particular region to account for the uncertainty regarding prevalence that 
may be resolved through testing. The modeling approach makes use of a metapopulation framework, 
which describes the number of facilities within each health and economic state or “compartment” and 
the system-wide dynamics governing movement between the compartments. Following Gramig and 
Horan, between-herd transmission occurs via animal movements within the region. We extend the 
transmission model to explicitly include infection from non-farm disease vectors (e.g. possums and 
ferrets). The unit of observation is the herd and the focus is on between-herd (rather than within-
heard) disease dynamics. 

Gramig and Horan use testing to identify infected herds for treatment but ignore the value of 
testing information for understanding overall prevalence, which they assume is known. Within our 
modeling framework, test results are used to identify herds for treatment and provide information 
regarding the unknown prevalence. We model the management problem as a Markov decision process 
(MDP) in which the manager chooses a level of testing conditional on the current state. We introduce 
Bayesian learning to model a common feature of disease control problems: the manager is uncertain 
regarding the true prevalence. The manager may use test results to (partially) resolve this uncertainty.  

When system state variables are not perfectly observed, the optimization problems can be cast 
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in a POMDP framework (Fackler and Haight, 2014). The earliest example of applying a POMDP 
approach to such optimization problems was completed by Lane (1989), who models learning about 
fish stock levels in different patches through harvest levels. In previous models that use this approach 
simplifying assumptions are imposed for tractability. In particular states are assumed to fall into a 
small number of discrete levels (e.g. 2-3) and the belief distribution is taken to be a discrete 
probability distribution over these levels.  
For many problems using a small number of discrete states does not provide enough flexibility for 
good management. If the uncertain variable is treated as continuous one can instead represent the 
belief distribution using a convenient family of density functions. The original but uncertain variable 
can then be replaced by the parameters of that density function (e.g. the mean and variance of a 
normal distribution). One difficulty that arises in using this approach is that for many problems the 
updated (posterior) belief distribution does not have a convenient functional form, i.e. the prior belief 
and the system dynamics do not represent a conjugate pair (Schlaifer and Raiffa, 1961). Later in this 
section we describe how we build on a recently developed approach (Zhou, et al., 2010) that extends 
POMDP methods to allow for continuous variables and addresses the issue of non-conjugacy using 
projection methods.  

At the core of the decision problem, the manager chooses the level of testing to apply within a 
single period given beliefs regarding prevalence, an understanding of the underlying physical 
dynamics and expectations of how information may be used to improve the efficiency of future testing 
choices. The time-span of a single period is defined as one month. We assume the following order of 
events as depicted on the left side of figure 1: at the beginning of the period, the manager selects the 
number of herds to test and observes the results; movement controls are imposed on those herds found 
to be infected; new infections occur and some fraction of facilities recover from movement control 
status; and then payoffs accrue when the period ends. 

In figure 1, we also illustrate the combined dynamics for Bayesian belief updating and changes 
in herd health or management status. At the beginning of each period, a set of N herds is divided into 
three subsets: S  herds are susceptible, I  herds are latently infected and M  herds have been 
identified as infected and are already under movement controls. Both N and M  are observed and 
known to the manager. Gramig and Horan (2011) assume that the division of remaining herds 
between S  and I  is observed, i.e. the proportion of uncontrolled herds that are latently infected, 

( )/ ,= +p I S I  is known with certainty. Under this assumption, the value of testing is limited to the 
identification of infected herds. We relax this assumption to capture the notion that the true level of 
disease prevalence is typically not known with certainty such that testing also serves as a tool for 
monitoring. Next, we describe the dynamics of the true (unobserved) level of prevalence and then 
specify a model for capturing the manager’s beliefs and learning. 

As depicted in figure 1, after testing a  herds and observing K  positive tests, the true number 
of herds in each health and trade status group is given by: 

  

( )= − −
= −
= +
= −









S S a K
I I K

M M K
RT a K

  (1)  

During testing, the susceptible population decreases by the number of “recently tested”, ,RT  herds 
that test negative ( ),−a K  the infected group decreases by the number that test positive ( )K  and the 
movement control group increases by the number that test positive. We also relax Gramig and 
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Figure 1:  Dynamics for testing, Bayesian belief updating, herd management, transmission and 
recovery over one period 
 
Horan’s assumption that testing outcomes are deterministic: We model K  as a binomial random 
variable conditional on a  trials and a “success” probability given by the unknown prevalence, .p  We 
assume that testing is perfect, which is not a strong assumption at the herd level in this  context.4 After 
testing, the true prevalence of bovine tuberculosis in the − N M  herds not in movement control is 
 

 =
+





 

Ip
S I

  (1) 

After testing, new infections result from trade between the remaining susceptible herds, ,S  and the 

remaining latently infected herds, ,I  and some fraction of herds in movement control recover. The 
physical or compartmental dynamics are captured in the following system of equations: 
 

 
( )

'
'

' 1

β α γ
β α
γ

− − + +=
= + +
= −

   



 







S Sp S M RT
I I Sp S

M

S

M
  (2) 

                                                            
4 Norby, et al. (2005) show that herd-level specificity is approximately 1 for herds with greater than 150 cattle. 
In our numerical case study, described in detail below, the average herd size is greater than 200. 
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where the prime modifier denotes state variables at the end of the current period (and beginning of the 
next), β  is the herd-to-herd transmission coefficient,5 α  is the exogenous vector-to-herd 
transmission coefficient and γ  is the recovery rate of infected herds under movement controls.6,7 
Herds transition from infected to susceptible only if they are placed under movement controls. We 
assume that the number of new infections in each period,  ,i  is a deterministic function of the number 
of susceptible and infected facilities. New infections arise from two different sources and we denote 
these separate process as 1i  and 2 ,i  where 1 2.= +i i i  First, we employ the common frequency-

dependent transmission function for new infections, ( )1 / ,β β== +   

Sp SI S Ii  where β  accounts for 

the joint probability of interaction and infection.8,9 Second, infections may arise when susceptible 
herds come into contact with infected disease vectors such as possums and ferrets. We model 
exogenous infections as a time-invariant process that depends only on the number of susceptible 
herds, 2 .α= i S   Because our emphasis is on learning-by-doing we focus on the choice of testing and 

assume that vector (e.g. possum) management, and thus ,α  is constant. Incorporating 2i  is important 
since it reflects the reality that the disease can be managed but not fully eradicated from the larger 
system, which has strong implications for optimal control. In the system of equations in (1) – (3), 
infection risk is endogenous since infections are driven by true prevalence which is reduced when the 
management choice of testing level ( )a  identifies and selectively culls animals within infected herds
( ).K  Because infected animals within a herd are culled and replaced with new (susceptible) stock, 
when herds do “recover” they do not become immune (as in some disease applications) but rather 
transition back to susceptible status.10 

We assume that the manager knows the functional form of transmission dynamics but does 
not directly observe the actual changes in the underlying number of susceptible and infected herds 
which determine prevalence. 

 

Learning and information dynamics 

                                                            
5 As discussed by Reeling and Horan (2015), private investment in biosecurity could lead to a time varying beta 
term that responds to the perceived prevalence. Gramig and Horan (2011) find that private investment in 
biosecurity is, however, negligible when public testing levels lie within a range that is relevant for this paper.    
6 In reality it might be the case that the probability of infection for recently tested herds is lower than the overall 
prevalence. To account for this, in part, we assume that recently tested herds are not part of the new 
transmission process for one period. Note that infections with respect to S  (Equation 2.3) exclude recently 
tested herds (Equation 2.1). 
7 γ  is known with certainty, and α  and β  are known and certain to managers that account for disease 
transmission. 
8 This functional form is a departure from Gramig and Horan’s choice of the density dependent or mass-action 
transmission function: .SIβ   While the mass-action or density dependent transmission function performs well as 
a representation of within-herd disease transmission (Barlow, et al., 1997, McCallum, et al., 2001), the 
frequency-dependent transmission function is more appropriate for infection resulting from the trade of a finite 
number of animals (Cross, et al., 2013). The true transmission function that accounts for all forms of 
transmission likely lies between these two functional forms – density dependent at the local scale and frequency 
dependent at a regional scale. 
9 It is straightforward to extend this system to allow for stochastic transmission. For example, instead of 
replacing 1i  in Equation (7) with the deterministic value ,Spβ   we could assume that ( )1 ,~ .i Bin Spβ 

   
10 Animals do not develop immunity to bovine tuberculosis independent of a vaccination, even if effectively 
treated. 
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We model uncertainty and learning with respect to infection prevalence using Bayesian updating. At 
the beginning of each period, the manager has initial beliefs regarding the proportion of facilities not 
under movement controls that are latently infected. Let g  represent a probability density function 
characterizing beliefs over the true level of prevalence, .p   We model these beliefs using a beta 
distribution because p  lies on the unit interval, the beta distribution is relatively flexible and the 
shape parameters used to define the distribution may be updated based on testing results in 
straightforward way. The probability density function of a beta distribution is typically specified in 
terms of two shape parameters, s  and ,f  for a given value of the unknown state: ( ;Betag p ,s f ).  We 
assume that the number of positive tests is a binomial random variable that depends on the number 
tests, ,a  and the unobserved true prevalence: ~ Bin( , ).K a p 11 While the process is one of sampling a 
finite population without replacement (hypergeometric sampling), the binomial assumption is a 
reasonable and tractable approximation when the number of tests is small relative to the population 
(Brunk, et al., 1968). 

Given our assumptions regarding a beta distribution and binomial sampling, beliefs are 
updated using Bayes rule, with posterior beliefs given by ( ;Betag p ,s f | , ) =a k ( ;Betag p s ,+K f

)+ −a K  (Gelman, et al., 2014). For our purposes, it will be convenient to specify beliefs in terms of 
transformed parameters, specifically the mean E[p] µ≡ = +/ ( )s s f  and =C .s f+  The latter 
parameter is sometimes referred to as a “sample size” or “concentration” parameter since with 
Bayesian updating it grows by the number of observations.  

 
 .= +C C a   (3) 

This convenient relationship results from the fact that the s parameter increases by the number of 
positive test results, ,K  and the parameter f  increases by the number of negative results, ,−a K  
during Bayesian updating.12 Their sum, therefore, increases by the number of tests, ,a  independent of 
the results. 

The updating process for µ  is given by: 
 

 .µµ +
=



C K
C

  (4) 

Conditional on initial beliefs ( ), ,µ C  after testing and observing results ( , )a K  posterior updated 

beliefs are given by ( ) ( ); , | , ; , .µ µ= 

  Beta BetaC pg gp a K C   

In addition to updating beliefs with new information as above, beliefs must also be adjusted to 
reflect the fact that the true level of prevalence changes according to the disease transmission and 
recovery dynamics in the system of equations in (3). In the parlance of control theory the former is an 
observation update in which the beliefs about the current state are updated using new observable 
information whereas the latter is a time update in which the beliefs about the future state are computed 
by combining the beliefs about the current state (the prior) with the transition model (the likelihood). 
Next, we derive an expression for the transmission dynamics of the true, unobserved prevalence p  

                                                            
11 In our application testing rates are almost always below 10%. The binomial approximation of a 
hypergeometric process becomes problematic when testing rates are consistently above this value. 
12 This updating process relies on an assumption of perfect testing. We illustrate how to adjust the Bayesian 
updating step to incorporate imperfect testing in the Appendix. 
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and derive the implied transmission dynamics of the belief state variables, µ  and .C  First, we 

rearrange Equation (2) to express I  as a function of p  and known values: 

 ( ) ( )= + = − − 

 I S I p N M a p   (5) 

Using equations (2), (3) and (6), end-of-period prevalence can be expressed as a function of p  and 
known values: 

 
( )

( )( ) ( )( )21

'

1

β α

α β α β
γ

′ + + +
= =

′ ′ ′ ′+ − −
− −

= + + − −
− − +

=
  





 

I I i I Sp Sp p
S I N M N M

N M a p p
N M K

  (6) 

In Equation (7), the true end of period prevalence is increasing in p  since it sets the pre-transmission 
starting point and this value (along with α and )β determines new infections. 

 
Approximating belief dynamics using density projection 

Accounting for the fact that the true unobserved state is not fixed (as commonly assumed in learning 
models) but rather a moving target—according to the dynamics for p  in Equation (7)—results in 
end-of-period beliefs that are not standard beta like the prior, but a quadratic transformation of a beta 
random variable. This loss of conjugacy (i.e. a prior and end-of-period distribution in the same family) 
presents a challenge for solving the decision model (described below). Beliefs given by a beta 
distribution can be fully characterized by two state variables for the two hyper-parameters ( ), ,µ C  but 
an analogous set of parameters are not readily identifiable for the quadratic beta function. Extending 
simple learning models to account for biophysical realities as we have done here has led to similar 
challenges in other resource management contexts. For example, in a fisheries model (Springborn and 
Sanchirico, 2013) show how this challenge of lost conjugacy can be overcome using a belief 
approximation approach known as density projection. 

Density projection has been applied in the Bayesian empirical literature (e.g. Chen and Shao 
(1997)), the broader optimal control literature outside of economics (e.g. Maybeck (1982) and Zhou, 
et al. (2010)) and only recently in resource management (Springborn and Sanchirico, 2013). The 
approach involves approximating the true end-of-period distribution with a proxy that is close to the 
true distribution and in the same family as the prior. For our problem, this entails using a beta 
distribution to approximate the true distribution. The practical challenge is then to identify the best 
approximate to the true distribution. This is achieved by identifying parameters of the approximate 
distribution that minimize the Kullback-Leibler (KL) divergence between the true and approximate 
distributions. Zhou, et al. (2010) show that for distributions in the exponential family (including the 
beta), this approach is equivalent to matching the sufficient statistics of the true and approximate 
distributions. 

We select the belief parameters of the approximate distribution to equate the sufficient 
statistics of the true and approximate distributions: 

 

 
( ) ( ) ( )

( ) ( )( ) ( )
ˆ ˆˆE ln '

ˆ ˆˆE ln 1 ' 1

ψ µ ψ

ψ µ ψ

  − 

 −  − −

=

 =

p C C

p C C
  (7) 
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where ψ  is the digamma function and µ̂  and Ĉ  represent the posterior shape parameter values that 
most closely fit a standard beta to the true distribution. The left-hand-sides of the equations in (8) 
represent the geometric means of the true distribution, which are numerically evaluated as follows: 
 

 
( )( ) ( )

( )( ) ( )

1

0
1

0

E ln( ') ln ' ; ,

E l

[ ] g d

[ ]n(1 ') ln 1 ' g d; ,

µ

µ− −

=

=

∫
∫



   



   

Beta

Beta

p p p p C p

p p p p C p
  (8) 

We integrate over ,p instead of directly over ,p using Equation (7) and the post-Bayesian updating 
distribution for p  specified by Equations (4) and (5). In the case of imperfect testing, Betag  would be 
replaced by a posterior distribution that is no long conjugate (i.e. not beta).13 The right-hand-sides of 
the equations in (8) are closed-form expressions for the geometric means of the approximating beta 
distribution. The sufficient statistic conditions in (8) are similar to the well-known conditions solved 
for maximum likelihood (ML) estimates of the beta distribution with the difference being that in ML 
the left-hand terms are given by the sample statistics generated using a data set (Nguyen, 2004). 

In figure 2, we present an example of the combined Bayesian and physical updating. Suppose 
that initially the manager does not know if prevalence is low or high and has a relatively high degree 
of uncertainty 0.5, 3( ).µ = =C  Next, suppose that a single test is conducted with a negative result 
( 1, 0).= =a K  After Bayesian updating, the belief distribution shifts sharply to the left (the negative 
test suggests a lower prevalence in this case) and beliefs become more concentrated given the 
additional information 0.38, 4.( ).1µ = = C  Finally, the true prevalence changes given physical 
dynamics: the belief distribution shifts back to the right (since there are new infections and no 

recoveries here) ˆˆ 0.39, 4.1( ).µ = =C  Even in cases where the physical dynamic effect is modest, over 
a long time horizon accumulated error from failing to account for these physical dynamics is likely 
substantial. 

The projected end of period beliefs presented in figure 2 closely track the actual distribution of 
beliefs, showing that the density projection approach approximates the true beliefs well. 
 

The economic decision problem 

We consider a manager who selects a level of testing, ,a  in each period to maximize the present value 
of the stream of expected profits. This optimal policy is a function of the current state of the system 
given by the number of herds in movement control and beliefs on prevalence: ,{ , }.µ=X CM  To 
simplify the problem, we examine the case in which any herds found to be infected are placed under 
movement controls for the remainder of the period in which they were found to be infected and 
reenter the pool of susceptible herds in the next period , 1.γ =  This implies that ' 0= =M M  and 

.=M K  

                                                            
13 See Appendix for an expression of the posterior distribution when testing is imperfect, i.e. involves false 
positives and false negatives. 



11  

 
Figure 2: An example of updating an initial belief distribution using a single negative 
test result (a = 1, K = 0) and then again to account for physical dynamics 

 
We generally follow Gramig and Horan (2011) in formulating the manager’s payoff function. 

First, owners are assumed to be homogeneous except in the health and movement control status of 
their herd. Second, a susceptible herd generates profit from production independent of livestock trade, 

0π  (e.g. from meat or dairy products). The baseline profit is deflated by direct production losses 
experienced when infected animals are present (i.e. if latently infected or under movement controls) 
and further losses result when the herd manager is unaware that infected animals are present (i.e. if 
latently infected). Third, managers experience gains from trade of magnitude 1π  if they are not under 
movement controls. Fourth, the coefficients of the quadratic testing and linear cleanup costs (or 
removing infected animals) are ω  and ,r  respectively. True (unobserved) welfare from animal 
production in a period is thus given by 

 
 ( ) ( ) 2

0 1( ) ' .'π δφ δ π ω= + − − −+ +W X S N aMM rKI   (9) 

The parameters δ  and φ  capture losses from infection: 1δ <  is the proportion of 0π  remaining for a 
herd if infected, and 1φ <  is an additional discount factor from being unaware of infection. 

In the case of complete within-period recovery ( ),1γ =  Equation (10) may be rewritten as 
 

 ( ) 2
0 1'(X) S' ,π δ π ω= + + −−I N aW rK   (10) 

where .δ φδ=  Expected welfare conditional on an action and state is given by 
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The dynamic optimization problem is specified by the Bellman equation and state transition 
dynamics:  
 

{ }

( )
( )

max EJ( ')

, , determined by Bayesian            
s.t.   

' , , updating and density projec

( ) EW(

tion

) ρ

µ

=

′  
 
  

+a X

X a K
C X

J X X

a K

                                             (12) 

where [ ]0,1ρ ∈  is a discount factor.14 

 

Disentangling the effects of learning and state dynamics 
The full management model specified in (13) incorporates two innovations yet to be combined in 
disease management models: (1) Bayesian learning, which facilitates accounting for the future value 
of current investment in information, and (2) adjustment for transmission dynamics to account for 
expected changes in the unobserved underlying state. In order to disentangle the implications of these 
two components, we also consider three alternative manager types which omit one or both of these 
elements. All four manager types account for recovery of herds under movement controls, because 
there would otherwise be no incentive to test. We outline the four manager types and the 
distinguishing features of the how they handle information in figure 3. For ease of reference, we 
denote the full model manager type as Bayesian with transmission, B_T. The non-Bayesian with 
transmission manager type, NB_T, treats current uncertainty about prevalence as fixed but accounts 
for new infections due to transmission. The Bayesian with no transmission manager type, B_NT, 
bases beliefs on testing but does not account for new infections. Finally, the non-Bayesian with no 
transmission manager type, NB_NT, treats current uncertainty regarding prevalence as fixed and 
ignores the potential for new infections. 

Assessing the alternative manager types above also facilitates a comparison between the full 
model we propose (B_T) and existing approaches in two strands of the management literature, which 
also correlate with observed management approaches. These comparisons are summarized in the final 
column of figure 3. The NB_T approach is indicative of the approach taken in previous bio-economic 
models of disease, where uncertainty regarding disease prevalence—and the opportunity to reduce 
that uncertainty—has typically been ignored (e.g. Bicknell, et al. (1999) and Gramig and Horan 
(2011)). Management decisions therefore ignore the value of information regarding prevalence 
provided by testing, i.e. managers do not account for the way in which current testing provides 
knowledge that improves future decisions. The value of testing is attributable exclusively to 
prevalence reduction. The NB_T manager considered here does acknowledge uncertainty over 
prevalence but, in keeping with the literature just described, forgoes the opportunity to update that 
imperfect information about prevalence using test results. Thus, this manager type represents the 
standard non-learning stochastic optimization approach to resource management. The NB_T manager 
type is the closest approximation to the current regulatory strategy that infrequently changes 
background testing rates over larger areas in responses to unanticipated changes in prevalence. 

                                                            
14 In cases where 0γ ≠ the number of facilities under movement controls change according to the equation of 
motion: ( )( )0 1 .M KM γ += −  
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Figure 3: Overview of manager types with implications for updating and policy analogs 

 
The second strand of related literature focuses on adaptive resource management, which spans 

from early foundations in ecology (Walters and Hilborn, 1978) to more recent applications in resource 
economics (e.g. Springborn (2014)). Fully optimal adaptive management models account for the 
expected value of information when choosing current actions, given the capacity to update beliefs and 
improve future decisions. In the present disease management context, this would imply ignoring the 
role of transmission, and treating initial prevalence as a fixed and unknown parameter.15 The B_NT 
manager type thus emulates the approach of the bulk of adaptive management literature to date, which 
simplifies system dynamics to maintain conjugacy and thus complexity in belief dynamics. This 
manager is also historically relevant as it (imperfectly) represents New Zealand’s disease management 
approach in the late 1970’s, when disease spread was severely underestimated (due to the delayed 
onset of clinical symptoms  and an ignorance about the important role disease vectors in transmission) 
(TBfree New Zealand, 2015). The manager in this example was very sensitive to information (i.e. 
negative test results) and unable or unwilling to acknowledge biophysical realities.    

Lastly, the NB_NT manager neither utilizes Bayesian learning nor accounts for transmission. 
This manager is the least sophisticated of the alternatives and only accounts for changes in beliefs 
about prevalence resulting from recovery of herds identified as infected (as do all others). The 
NB_NT manager provides a “naïve” benchmark from which to compare the incremental 
improvements from Bayesian adaptive management and accounting for the moving target dynamic 
created by transmission. 
 

                                                            
15 bTB transmission had historically been ignored because it spread and manifested slowly, and vector 
transmission was poorly understood.  



14  

Case study: Bovine Tuberculosis in New Zealand 
We apply our methodology to the problem of managing bTB infections in a subgroup of herds within 
the Waikato region of New Zealand. Waikato – among other regions of New Zealand – has struggled 
with bTB monitoring and control since the end of the nineteenth century, when it became a 
notifiable16 disease, due to the expansive nature of its livestock production and abundance of vector 
populations. We consider a system that includes 100 herds where a maximum of 25 herds may be 
tested in a given month.17 Furthermore, parameter estimates were selected from the economic and 
epidemiological literature to characterize producer profits, testing and cleanup costs and transmission. 
Parameter choices and their sources are provided in table 1 in the Appendix. We solve the full 
problem specified in (13) and for each of the alternative manager types using value function iteration 
(Judd, 1998).  

We estimate the value function over a discrete grid of points selected from the continuous 
domain of the state space given by the hyper-parameters. Grid points were selected with higher 
density over regions for which value function nonlinearity was pronounced, specifically for values of 
C  near the bottom of its range ( )2=C  and values of µ  near each bound of its unit interval range. 

While C  is technically unbounded from above, further increases in concentration beyond 40 or 50 
had very little effect on optimal policy, thus this parameter was bounded at 61. 

 
Results 
Policy functions for each of the four manager types are presented in figure 4. These results depict 
optimal testing rates conditional on the current belief state, represented by µ  and .C  Corresponding 
solutions for the value functions are presented in the Appendix. One of our over-arching questions is, 
which of the two key components—accounting for Bayesian learning or the moving target dynamic—
has a more pronounced effect on optimal actions and payoffs? From figure 4 we see that, relative to 
the baseline (NB_NT), accounting for transmission (NB_T) clearly leads to a more striking change in 
policy than accounting for learning (B_NT). This indicates that optimal management responds more 
strongly to the prospect of new infections than to the opportunity to learn. Accounting for 
transmission has the expected impact of increasing optimal testing—when the manager accounts for 
the fact that infected herds generate further infections, the value of their identification through testing 
increases. 

As expected, optimal testing is increasing in expected prevalence, ,µ  for all manager types, 
until the upper bound on testing is reached. In the other dimension, optimal testing is only sensitive to 
concentration (confidence) at low levels of .C  The direction of this effect depends on the manager 
type and .µ  It is surprising that optimal testing (information seeking) is increasing as uncertainty 
falls in some situations. In adaptive management models it is typical for the level of the informative 
action to be decreasing as confidence grows: as uncertainty falls, so does the value of additional 
information. Counter to these expectations, optimal testing under B_T is weakly increasing as 
confidence grows, as indicated by convex curvature in figure 4, suggesting a precautionary testing 
approach. Hauser and Possingham (2008) find that such precautionary approaches may exist in the 
short and medium time horizons. This result can be understood by considering the baseline model 

                                                            
16 Notifiable livestock diseases are defined as those that must be reported to the relevant government agency. 
Diseases are generally categorized as notifiable if they pose substantial risk to other livestock producers or 
consumers of animal products. 
17 25 (out of 100 herds) tests per month represents a high upper-bound. Herds identified as infected and placed 
under movement controls are only tested at six month intervals, suggesting that at most approximately 17% of 
facilities are being tested in a given month (TBfree New Zealand, 2014). 
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(NB_NT) and the incremental effects of incorporating Bayesian learning (B_NT) and transmission 
(NB_T). From the baseline results (NB_NT) we observe testing rates that are increasing in C  over 
much of the domain, showing that the surprising outcome is driven in part simply by the direct effect 
of accounting for uncertainty over prevalence (irrespective of its effect on transmission and the 
opportunity to reduce uncertainty). Second, as noted above, transmission has pronounced effect on 
policy, here serving to expand the domain over which convex curvature shows optimal testing that is 
increasing in C  (see NB_T in figure 4). 

Ultimately as we move from the NB_T to B_T policy function, only the bottom left corner 
(low confidence and expected prevalence) displays convex curvature attributable to the Bayesian 
learning component. While the value of information effect again suggests that testing should be 
decreasing in confidence, here we see the opposite. This likely emerges due to less of a need for 
precaution when taking an adaptive approach—with Bayesian learning (B_T), if true prevalence turns 
out to be high, this will be learned and policy adjusted accordingly. In contrast, the NB_T manager 
knows that he will not be aware of any such a deviation from expectations and thus compensates 
accordingly (with higher testing). Overall, we see that accounting for both Bayesian learning and the 
moving target dynamic is crucial for developing intuition and because they interact in a complex 
fashion. 

 
 
Figure 4: Policy functions (optimal testing rates, given by shading) for each man- ager type, 
over the belief space specified by expected prevalence (µ, horizontal axis) and concentration 
(C, vertical axis) 

Policy functions are informative but ultimately only provide a snap-shot of the immediate response to 
a particular belief state. To evaluate differences in the dynamic paths of key variables—testing, 
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prevalence, beliefs and welfare—we use Monte Carlo simulations governed by each of the four 
manager types. 
 

Policy comparison 
To simulate, we must first specify an initial belief distribution that is shared by each manager type. 
Because a learning methodology is of most interest when uncertainty is moderate to high and since 
most disease systems of interest feature a relatively low prevalence, we specify initial beliefs for all 
manager types as 0 0.1,µ =  and 0 5.=C  In the Appendix we present results for other initial belief 
distributions which yield qualitatively similar results. In each of 5,000 Monte Carlo simulations, the 
true initial prevalence, 0 ,p  is drawn randomly from the initial belief distribution. This process for 
random selection of the initial, unobserved underlying state follows from the assumption that initial 
beliefs reflect uncertainty but are not biased. We simulate the system over a 30 year time horizon. In 
each period, the manager considers beliefs, chooses the testing level, responds to the results, 
transmission occurs and payoffs accrue. The repetition of this sequence generates dynamic paths for 
testing intensity, true prevalence and any divergence or convergence between expected and true 
prevalence. Averages for each of these series across Monte Carlo simulations are shown in figure 5 
for each manager type. Since changes in these particular variables are small after a decade, figure 5 
presents the first 10 years. Estimates of testing, prevalence, average belief error after 10 year and 
cumulative welfare after 30 years for each of the manager types are provided in the Appendix in table 
2. 

Figure 5a shows a consistent ordering in the average rate of testing after the first two years: 
NB_T > B_T > B_NT > NB_NT.18,19 These testing rates are statistically significantly different after 
two and 10 years based on a Wilcoxon rank-sum test (p 0.01).<  As expected, the NB_NT manager 
tests least since transmission and the value of information are ignored. On average in the beginning of 
the time window, the B_T manager pursues moderate testing: more than the B_NT manager (to 
account for prevalence growth via transmission) but less than the NB_T manager (given the greater 
need of the non-learner to be precautionary).20 In the latter periods, the B_T manager is able to sustain 
low prevalence with average testing rates slightly lower than those of the B_NT manager. 

The ordering of testing intensities above predictably inverts to determine the ordering of 
average prevalence (figure 5b), and these differences were statistically significant (p 0.01).<  The 
NB_T and B_T managers test sufficiently to suppress prevalence; the B_NT and NB_NT managers 
fail to suppress prevalence. The suppression achieved by the B_T and NB_T managers is plausible. 
There exist numerous cases outside of New Zealand where eradication has been achieved,21 while 
New Zealand eradication or near-eradication has been achieved in pockets where the natural vector of 
reintroduction (possum populations) are low (TBfree New Zealand, 2013). It may seem 
counterintuitive that both testing and prevalence are higher on average under NB_NT than B_NT for 
the first year and a half. This dynamic emerges because under B_NT learning occurs from the outset, 
error in beliefs falls relative to NB_NT, and testing is responsive—elevated for simulations with high 
                                                            
18 After the 10th year, the B_T manager conducts slightly fewer tests than the B_NT manager.  
19 Note that while the NB_T manager consistently exceeds a 10% testing rate, it also does not use the binomial 
approximation during learning.  
20 Note that the NB_T manager is not precautionary by design but rather, in seeking an optimal policy under 
uncertainty that is not expected to attenuate under Bayesian learning, the manager responds to the ever-present 
possibility of high prevalence with a level of testing that is precautionary, relative to other managers. 
21 For example, Australia has been able to sustain eradication since 1997 with only minor violations and the 
United States has been able to maintain disease free status in all but a few regions (Animal Health Australia, 
2015, USDA-APHIS, 2015).  
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initial prevalence and reduced in the opposite case. This adaptive response allows B_NT to achieve 
great reduction in prevalence with less testing, on average. 

While it might not be surprising that suppression is not achieved with the least savvy 
approach (NB_NT), a question arises as to why the B_NT manager fails to achieve strong control of 
the disease. Insight comes from considering the evolution of how wrong each manager’s beliefs are, 
on average. In figure 5c we present the average absolute belief error (i.e. difference between expected 
and actual prevalence) for each manager type. The NB_NT manager falsely concludes that early 
testing and treatment permanently suppress the disease: testing falls, transmission takes off, beliefs are 
not updated and error is large. Bayesian learning on its own provides an escape from this trap but only 
partially. The B_NT manager is consistently overly optimistic with respect to future prevalence (since 
transmission is ignored). Learning partially corrects for this consistent dynamic bias. As a result 
B_NT management allows for a substantial prevalence. 

The shortcomings of the B_NT model are compounded by its own special trap. In some 
problematic cases (approximately 28% of simulations with our selected prior distribution), the B_NT 
manager observes results that rapidly cause beliefs to converge on an extremely low prevalence. 
Ignoring transmission, the B_NT manager believes a state of permanent near-eradication has been 
achieved. Testing ceases and prevalence takes off, leading to infection of all herds. The B_NT 
manager fails to correct course given the particular form of this trap in which informative testing is 
deemed no longer necessary. This is of course an extreme case—in reality with ubiquitous infection, 
such a strategy would eventually be challenged. However, it highlights the danger of developing 
management models in which the complexity of system dynamics have been ironed out in order to 
simplify or make tractable an adaptive management approach. 

As shown in figure 5c, we find that the non-learning strategy NB_T actually shows less error 
in beliefs than the Bayesian learning strategy B_NT. This result arises as follows. The NB_T manager 
compensates for irreducible uncertainty and transmission with higher testing than the others. This 
effectively suppresses long-run prevalence to a very low level across a wide range of true initial 
prevalence starting points. Because the NB_T manager expects and achieves a very low prevalence 
level, there is very little room for error in beliefs regarding prevalence. We find that in what little error 
there is, the NB_T manager believes prevalence to be worse than truth and so continues to act with 
sufficient aggression to keep prevalence tamped down. If it was infeasible to achieve a low prevalence 
level, the NB_T manager would likely not be able to maintain such a limited error in beliefs. 
 From a methodological perspective, this reduction in error provides additional evidence that 
that our projection approach, which minimizes KL-divergence, serves to improve the accuracy of 
beliefs. To our knowledge, there does not exist intuition for an acceptable range for the KL-
divergence statistic, and defining “high” divergence is subjective. We are ultimately concerned with 
the effectiveness of the approach for updating a manager’s beliefs such that they are more informative 
about the underlying truth. The average absolute belief error (AAE) of the B_T manager consistently 
falls over time, to 0.033 after 2 years and 0.022 after 5 years. The consistently lower AAE of the B_T 
relative to the B_NT manager reflects the improved accuracy of beliefs from learning and accounting 
for a moving target using density projection.  
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Figure 5: Average outcomes over Monte Carlo simulations for (a) testing rates, (b) prevalence 
levels and (c) absolute belief error (i.e. difference between expected and actual prevalence) for 
each manager type 
 

Welfare comparison 

The efficiency of public control of infectious disease is ultimately informed by the long-run 
cumulative welfare that is provided, as measured by producer profits, which are reduced by infection, 
and testing and cleanup costs22 in this case. The trajectories of the average across Monte Carlo 

                                                            
22 The central role of testing in this paper motivated a more thorough examination of our specification of testing 
costs. A 50% increase or decrease in testing costs did not qualitatively change our results, including ordering of 
testing levels, prevalence and welfare. The NB_T manager maintains a precautionary testing approach even at 
high test costs. 
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simulations of the cumulative profits accrued through year [ ]0,30∈t  are shown in figure 6. Because 
the absolute scale of the vertical axis depends on the application of interest and time horizon, we show 
the percent difference between each of the manager types and the NB_NT manager (the 0 line 
indicates performance equal to NB_NT). 

As expected, the testing choices of the B_T manager yield the highest cumulative value in the 
medium and long-run, while the NB_NT manager realizes the lowest. For the other manager types 
(B_NT and NB_T), more substantial gains are realized from an acknowledgment of epidemiological 
factors than through the use of information to update beliefs. These differences are all statistically 
significant (p 0.01).<  This difference is largely driven by consistent under-testing among managers 
that ignore transmission (B_NT and NB_NT) relative to those managers that do account for 
transmission (B_T and NB_T), which leads to significantly higher levels of costly prevalence. 

The B_T manager pursues moderate testing on average: more than the B_NT manager in the 
early stages to account for prevalence growth (via transmission) but less than the NB_T manager 
since any long-run growth in prevalence is identified, prompting an increase in testing. The B_T 
testing on average leads to low prevalence and yields higher welfare than the alternatives, and is the 
first-best alternative. 

The NB_NT manager is consistently over-optimistic about prevalence (given the singular 
direction of transmission and an inability to update beliefs through learning), under-tests, and as a 
result experiences significant losses to productivity. By construction, this is the least savvy of the four 
managers, and is used as a baseline to show relative welfare gains. However, it should be noted that 
the NB_NT approach may yield larger profits in the short-run (due to low testing expenditures) than 
the other three alternatives. 

Ex ante, the relative magnitudes of the welfare gains from learning or accounting for 
transmission are unclear, particularly given the substantial uncertainty in this example. Transmission 
dynamics allow for more accurate accounting for the future value of testing and control, while 
learning reduces uncertainty and updating may partially compensate for the downward bias from 
omitting transmission. For this application, we find that accounting for transmission (or more 
generally, the upward shift in the state variable caused by physical dynamics) is more important than 
Bayesian learning. However, this may be largely attributable to the manager’s ability to drive the 
prevalence to very low levels, and a Bayesian learning approach may be more desirable in contexts in 
which the state variable consistently takes on intermediate values. 

The shortcomings of the B_NT model are compounded by problematic scenarios in which the 
manager rapidly moves to a belief that prevalence is low or zero.23 Failing to account for 
reintroduction or transmission leads to a non-negligible propensity for the B_NT manager to believe a 
state of permanent eradication has been achieved. Under this belief, it is optimal to cease testing, 
which eliminates any possibility of updating beliefs. The disease subsequently takes off, leading to 
infection of all herds and a severe reduction of producer profits. As acknowledged earlier the 
similarities between this subset of results and the historical example of public management failure 
lead us to acknowledge it rather than discard it as unrealistic or problematic.  

The NB_T manager compensates for irreducible uncertainty with higher testing in each belief 
state than the others. On average, the response is overly aggressive (relative to B_T), but has the 
benefit of suppressing prevalence to compensate for uncertainty. This aggressive level of testing has 

                                                            
23 Experiencing the illusion of permanent eradication is more likely when the initial concentration of beliefs 
( )0
C  is small, the initial expected prevalence ( )0µ s small, the randomly chosen initial prevalence is low ( )0p  

and early testing yields more negative results than expected ( K  is a random variable). See the Appendix for a 
discussion of an extended set of initial beliefs that highlight this relationship. 
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two additional benefits. First, it leads to a lower average prevalence than the testing schedule used by 
the B_T manager in the long-run. Figure 5b shows that the average prevalence experienced by the 
B_T manager is lower in the first 2-3 years, but experiences a slightly higher prevalence thereafter. 
Second, it ensures the accuracy of the expected prevalence. Figure 5c shows that, on average, for B_T 
and NB_T the absolute differences between expected and actual prevalence are comparable after the 
first few years. However, the raw residuals generated by the NB_T model (not shown) have a positive 
bias, indicating a consistent overestimate of prevalence. 

 

 
Figure 6: Average percentage increase in the present value of cumulative profits (relative to the 
NB_NT baseline) 

Over the 30 year time span, the gains from either Bayesian learning or accounting for 
transmission are substantial (approximately 16% and 28%, respectively). Additionally, introducing a 
consideration of epidemiological forces to the B_NT manager results in substantial improvements 
(approximately 21 percentage points). The incremental gain from introducing Bayesian learning to a 
manager who already considers epidemiological forces yields a more modest welfare improvement 
(approximately 9 percentage points). 

As shown in figure 5, the B_T and NB_T managers effectively drive prevalence to low levels. 
However, the more moderate and adaptive strategy of the B_T manager leads to welfare 
improvements, which are primarily accrued in the first few years of the program. The average present 
value of cumulative profits realized by the B_T manager exceed those realized by the NB_T manager 
within the first year. This gap continues to grow throughout the remaining periods. This consistent 
divergence suggests that there are continual gains to accounting for learning even after those variables 
shown in figure 5 reach consistent values. 

The managers that do not account for transmission (B_NT and NB_NT) consistently under-
test, providing short-run cost savings at the cost of dampened long-run producer profits attributable to 
infections. This undesirable outcome is inevitable for the NB_NT manager, but may be avoided the 
B_NT manager if the trap of ceasing testing is avoided. For those simulations in which the B_NT 
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manager continues to test in each period, the testing rate remains below but is substantially closer to 
that selected by B_T manager. These simulations result in less severe under-testing, and substantially 
higher cumulative profits. The interested reader can see a supplementary appendix online for a 
scenario ( )0 00.1, 61µ = =C  in which the all of B_NT simulations avoid the trap of ceasing testing. 

To alleviate concerns that the gains realized from accounting for information through 
Bayesian learning are driven by outliers as opposed to more broadly-based improvements, in figure 7a 
we present the proportion of simulations in which the present value of cumulative profits realized by 
the B_T manager exceeds those realized by the NB_T manager over a 30 year period. We also show 
in figure 7b the distribution of the percentage differences in the present value of cumulative profits 
between the B_T and NB_T models by year 30. 

 

 
Figure 7: (a) Proportion of Monte Carlo simulations in which the present value of 
cumulative profits realized by the B_T manager type exceed those realized under NB_T by 
year t; (b) percentage difference in the present value of cumulative profits realized by the 
B_T versus NB_T manager type after 30 years across Monte Carlo simulations 

The fraction of Monte Carlo simulations for which B_T outperforms NB_T is initially close to 0.5 
(i.e. reflects random test results), but grows throughout the time horizon. The monotonicity of the path 
and large value in the final period suggests that the welfare dominance of B_T over NB_T is not 
driven in Monte Carlo simulation by a few extreme differences, but rather a consistent increase in 
performance: in 98.7% of the simulations B_T outperforms NB_T. 

Additional evidence supporting the theory that B_T consistently outperforms NB_T is 
provided in the histogram shown in figure 7b. The bulk of simulations (approximately 98.7%) lie in 
the positive domain, and the distribution of these differences is single-peeked. The p-value associated 
with a t-test and a Wilcoxon rank-sum test for the hypothesis that the mean of the present value of the 
cumulative profits for the B_T manager is greater than that for the NB_T manager are both <0.01. 
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Discussion and conclusion 
In this article, we develop practical modeling tools for adaptive management of resource systems that 
are not only uncertain but also in flux. The integration of learning and accounting for dynamics 
facilitates assessment of adaptive management when an important state is both uncertain and changing 
over time. This methodology advances a previously unexplored application in disease management, 
providing insights into the value of adaptive control and a warning against smoothing over important 
physical dynamics. Potential inaccuracies arising from incomplete specification of the physical 
dynamics also highlight the importance of accurate estimates of key physical and economic features 
when managing infectious diseases. 

This research contributes to a broader literature at the intersection of traditional resource 
management under uncertainty (without learning) and adaptive management. The true, underlying 
conditions of resource systems are often imperfectly observed. In this context, we find that 
incorporating (1) learning and (2) an understanding of the true physical dynamics have important, 
interdependent effects on optimal management and payoffs. In the context of endemic disease 
management, it is more costly to ignore physical dynamics (transmission) than it is to ignore learning. 
Furthermore, abstracting away from underlying system dynamics to focus on learning can lead to 
consistent error in beliefs and even belief traps in which temporary management success ends 
information gathering, which in turn allows for the system to deteriorate, unbeknownst to managers. 
Our findings on the relative costs of ignoring learning versus physical dynamics should be generalized 
beyond disease systems with caution. Ignoring perturbations (like transmission) that push the 
unobserved state in a particular direction is likely to be more problematic than ignoring perturbations 
that are less unidirectional.  

The current, less responsive broad-based disease testing strategy of New Zealand is an artifact 
of historical technological limitations, which reduced the opportunities to learn and adapt. Managers 
have needed to provide clear, concise guidelines, while tabulation of information from producers has 
been challenging and slow. These restrictions have, however, been reduced through New Zealand’s 
investment in infrastructure, making cost reductions from and adaptive approach feasible. 
Specifically, recently developed data collection and existing information provision systems (National 
Animal Identification and Tracing System and TBfree New Zealand) allow for the necessary rapid 
communication between regulators and producers. This paper provides evidence that a more 
responsive approach to broad-based disease testing would be welfare enhancing if the cost savings 
exceed the costs of implementing a more complex management scheme. 

The welfare gains realized from accounting for transmission—even in the absence of Bayesian 
learning—provide additional evidence supporting Gramig and Horan’s (2011) call for high-quality 
estimates and information to model disease. Gramig and Horan note the absence of rigorous 
epidemiological studies linking herd management and trade to disease spread, which leads modelers 
to use simplified and potentially erroneous transmission functions. Our results indicate that the use of 
inaccurate estimates of key transmission parameters leads to inefficient testing—even when a 
manager learns and accounts for transmission—attributable to incorrect assessments of future disease 
spread and erroneous beliefs about prevalence. 

This approach could be extended to incorporate additional epidemiological and economic 
realism. Several such extensions were identified throughout the article: adding stochasticity to the 
transmission function; allowing herds to remain under movement controls for longer periods; 
introducing risk aversion; and expanding system scale (i.e. the number of herds). Further, less-
straightforward extensions would require additional theoretical development. For example, in reality 
the unobserved state dynamics (e.g. transmission function) may not be well understood and an object 
for learning in its own right. Incorporating additional data sources in the decision process would more 
realistically model the learning process and would allow managers to avoid Bayesian traps.  
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Appendix 
Bayesian updating under imperfect testing 
In the context of bTB in New Zealand’s cattle, the large average herd size implies a negligible 
probability of false negatives for all infected animals within an average herd. Furthermore veterinary 
pathologists can rule out false positives during necropsy. However, herd-level specificity and 
sensitivity may be less than 1 for other diseases or for bTB in other settings. For example we expect 
lower testing precision if herd sizes are small or diagnostic technology is imprecise.  
 When imperfect testing is present, the simple Bayesian updating rules used in (4) and (5) no 
longer hold. Instead we obtain a posterior distribution, ,impg  that is no longer beta and thus the prior is 

no longer conjugate. To derive impg  we revise the likelihood function portion of the posterior to adjust 

for inaccuracies.  
The probability of observing a positive test result under imperfect testing 
 

( ) ( )( ; , ) 1 1 ,= ⋅ + − ⋅ −p TPR TNR TPRp p TNRp     (13) 

depends on the true prevalence, ,p the true positive rate, ,TPR  and the true negative rate .TNR  The 
probability of observing K  positive tests result from a  tests is still binomial but with success 
parameter ( )⋅p :  
 

( ) ( )Pr | , ( ) ( ) 1 ( ) ,− 
= − 
 

a KKp
a

K a p p
K

pp p     (14) 

where the parameters of ( )⋅p  have been suppressed for simplicity. The posterior distribution given by 
Bayes’ rule is proportional to the product of the likelihood function and the prior (beta) distribution: 
 

       ( ) ( ) ( )( )1 11| a, ( | a, ) ( ) 1 1( ) ,µµ− − −−  − −∝ ≡    
     

a K CK C
imp p K g p K p p p pg p p   (15) 

 
where p  has been replaced with p  to indicate beliefs over post-testing prevalence. Since this 
expression no longer simplifies to one that is proportional to a beta distribution, we do not have the 
convenience of a conjugate prior. However, the true posterior after testing can be calculated 

numerically as ( )
1

0
| a, ( | a, ) ( | a, )= ∫   imp p K g p K g p K dpg  and substituted for ( )⋅betag in the density 

projection step found in (9). 
 Imperfect testing also changes the efficacy of targeted controls that follow positive test 
results. While the forms of these changes are context-specific, they amount to fewer herds being 
returned to the susceptible population for bTB. Rather than K herds being returned, only *K TPR  are 
successfully restored. ( )1−K TPR  are treated without any actual change in health status. 
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Parameter estimates used in simulation 
 
Table 1: Parameter Estimates Used in Numerical Analysis 
 
Parameter Symbol Value Source(s) 
Transmission Rate β  0.1 Porphyre (2008) and TBfree New 

Zealand (2013) 
Vector 
transmission rate 

α  3.9E-5 (TBfree New Zealand (2013)) 

Baseline profits 
0π  $11,168 Beef & Lamb New Zealand (2014); 

International (2013)  and  TBfree New 
Zealand (2013) ; Ministry of Primary 
Industries (2012); Statistics New Zealand 
(2012) 

Production losses 
from infection 

1 δ−   0.65 Bicknell, et al. (1999) 

Testing cost per 
herd 

ω  $3.52 Rosvear and Ulrich (2010) 

Cleanup cost per 
herd 

r  $7.04 Rosvear and Ulrich (2010) 

Monthly discount 
factor 

ρ  0.997 Office of Management and Budget 
(2003) 

 
Table 1 provides the essential parameters used during our numerical analysis, described in the Results 
section. Because a direct estimate of the herd-to-herd transmission rate was not available for New 
Zealand, we estimate a rate as follows. Given an estimated annual rate of replacement per facility at 
21%  (Porphyre, 2008)    and an average herd size of 259 (LIC International and TBfree New Zealand, 
2013, Statistics New Zealand, 2012), the average monthly influx of new animals to a facility is 
estimated at 4-5. Facilities identified as infected have an average of approximately 15 reactor animals 
are present (TBfree New Zealand, 2013). A high estimate of the probability of transmission 
(conditional on trade with an infected facility) is given by assuming that all replacement animals are 
purchased externally, infected individuals are no less likely to be traded, and one or more infected 
animals in trade guarantees transmission. In that case, the probability of transmission—as given by 
one minus the hypergeometric density of zero infected animals in a trade of four to five animals—is 
0.21-0.26. This is likely an over-estimate since infected animals are less likely to be selected for trade, 
one infected animal in a trade does not guarantee infection of the new herd and buyers may take 
precautionary measures. If we roughly account for these factors by assuming that the number of 
infected animals that are truly candidates for trade is about half of infected individuals, we arrive at 
the transmission rate used of 0.1. 
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Value function 
Only the value function for the B_T manager is represented in figure 8 which shows the present 
value of a stream of expected profit in each possible belief state. The value functions for the other 
managers follow similar patterns, but which differ slightly based on how expectations about future 
profits are developed. The optimized objective function shown is associated with the policy function 
shown in figure 4a in the main text. 

 
Figure 8: Value function for all values of µ and C for the B_T manager 

The value function follows a predictable pattern. Most saliently, expected profits are 
decreasing in expected prevalence, .µ  When information is scarce (i.e. C  is small), expected value 
is increasing in ,C  suggesting a direct value to the precision of the prevalence estimate. This value is 
attributable primarily to more efficient testing strategies, and to a manager’s ability to rule out high 
prevalence scenarios. 

The other managers’ value functions follow similar patterns with an important difference. 
The decision makers that do not account for transmission experience higher expected profits because 
their expectations fail to capture losses due to future disease spread. 
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Testing and outcome estimates 
Table 2. Mean and standard deviation (in parentheses) for variables depicted in Figures 5a-5c 
(testing level, prevalence and belief error) and Figure 6 (profit increase) after the terminal 
period in each figure (year 10 or 30)  
 Manager type 
Variable B_T NB_T B_NT NB_NT 
Tests  
(year 10) 

5.2 11.0 5.2 3.0 
(2.6) (0) (3.7) (0) 

Prevalence (year 
10) 

0.0085 0.0042 0.27 0.53 
(0.020) (0.014) (0.32) (0.28) 

Belief error (year 
10) 

0.013 0.034 0.21 0.51 
(0.010) (0.0071) (0.34) (0.26) 

Profit increase* 
(year 30) 

41.44 32.20 20.55 - 
(21.80) (20.88) (30.01) - 

* Average percentage increase in the present value of cumulative profits relative to the NB_NT 
baseline 
 
Table 2 contains means and standard deviations for each of the action and outcome variables 
represented in the terminal periods of figures 5 and 6: testing, prevalence and belief error after 10 
years and the percentage increase from the baseline (NB_NT) after 30 years. Statistics for each 
manager type are calculated across the 5,000 Monte Carlo simulations. Note that testing for the non-
learning mangers is zero because their testing strategies area not responsive to observed differences in 
testing outcomes.  
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