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EPIGRAPH

The only way of finding the limits of the possible

is by going beyond them into the impossible.

—Arthur C. Clarke

If you can’t explain it simply,

you don’t understand it well enough.

—Albert Einstein

Any intelligent fool can make things bigger,

more complex, and more violent.

It takes a touch of genius – and a lot of courage –

to move in the opposite direction.

—Albert Einstein
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The advent of cloud computing and the expectation of anytime availability of

user data and services have brought data center design to the forefront of computer

science research. Modern data centers can be massive in size, consisting of hundreds of

thousands of servers and millions of virtualized end hosts. At this scale and complexity,

the underlying network becomes central to data center scalability, efficiency, availability

and fault tolerance.

Given the scale of today’s data center networks, operators typically turn to sym-

metric, highly structured network topologies, sacrificing flexibility for relative simplic-

ity. These topologies tend to have an “all or nothing” tradeoff between fault tolerance

and scalability. Over these topologies, data center operators often run protocols bor-
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rowed from the Internet, an environment that is drastically different from that of the data

center. Because these protocols have not been built for the data center, they can operate

and interact in unexpected and undesirable ways. Moreover, they are generally vetted

by virtue of having survived in the Internet, rather than by formal reasoning. This makes

the management burden associated with configuration, maintenance and error diagnosis

for these protocols substantial, leading to compromised efficiency and availability.

The first contribution of this dissertation is the introduction of a new class of net-

work topologies called Aspen trees. Aspen trees provide the high throughput and path

multiplicity of current data center network topologies while also allowing a network

operator to select a particular point on the scalability versus fault tolerance spectrum.

This addresses the challenge of supporting simultaneous scalability and fault tolerance

in data center networks. Next, the challenge of providing scalable and efficient com-

munication is addressed with the design of ALIAS, a protocol for scalable, automatic

and decentralized addressing and communication in the data center. Finally, this dis-

sertation presents a formalization and proof of correctness of the fundamental building

block of ALIAS, thus enabling feasible configuration and maintenance of ALIAS in the

data center. This combination of tunable topology structure and tailored communication

protocols enables scalable, efficient and fault-tolerant data center communication.
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Chapter 1

Introduction

Today, the term “cloud computing” is a household expression. Users perform

web searches that leverage a data center hosted in the cloud, they store their email and

documents in the cloud, and they stream videos from the cloud to their mobile devices.

The advent of cloud computing along with users’ expectations that services will be re-

sponsive, robust and available anytime has made the data center a key area for computer

science research today. Companies, universities and other large organizations are build-

ing massive data centers to provide new services and to develop new technologies, and

this rapid development pace shows no sign of slowing in the near future. In fact, recent

trends signal that the market for data center construction will nearly double within the

next ten years [12].

A modern data center contains a group of end hosts that communicate and coop-

erate across an interconnect of network elements —switches and routers— to perform

shared tasks. These tasks might comprise the back-end for a company that provides

one or more user-facing services, such as Google’s search engine, email and map ser-

vices [27] or Facebook’s social networking site [24]. Or, a cloud provider might build a

data center for the purpose of renting out nodes to service providers, as is the case with

Amazon’s EC2 Platform [6] and Microsoft’s Windows Azure [52].

An important component of the data center is its network. A data center network

is comprised of the switches and routers, wires, topology layout and network protocols

that together provide an interconnect for end host communication. The characteristics

of this network can be crucial to a data center’s success [2].

1
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1.1 Data Center Networking Today

Today’s data centers have a number of characteristics that give networking re-

searchers a unique set of challenges to face. First and foremost, they can be massive

in size; a modern data center can connect up to hundreds of thousands of end hosts via

an interconnect of tens of thousands of switches and routers. For instance, a recent ar-

ticle estimates the largest data center of Amazon’s EC2 platform to contain upwards of

300,000 hosts [49]. Therefore, scalability is a concern at all levels of the design, in-

cluding physical layout, hardware selection and protocol design. Not only is the current

scalability of the topology important, it is also imperative to keep in mind a data center’s

ability to scale out in order to match future needs. As cloud computing becomes more

popular, service providers increasingly leverage the elasticity and the in-place services

offered by data center providers in order to bring new products to market quickly [7].

Therefore, data centers have to accommodate massive scale now and also be amenable

to significant growth in the future.

An important piece of a data center network is its physical topology, the inter-

connection of its switches and hosts. A variety of different means for interconnecting

massive numbers of end hosts have been proposed. Some layouts are based on fairly

regular structures, such as fat trees [4, 56], hypercube-like designs [3, 14, 29] or other

regular, symmetric constructs [28, 30]. Others designs allow for more varied topologies

and introduce more complicated protocols to accommodate topology discovery and host

connectivity in the face of topological asymmetry [16, 42, 67]. Regardless of the layout

selected, it is imperative that a data center designer utilize care in actually building and

wiring the network, as erroneous cablings and mis-configuration can have disastrous ef-

fects. It is also important to have methods in place to discover and locate wiring errors

and equipment failures when they occur. At the scale of the data center, this can create

a need for specialized protocols even just to present a user-readable view of the current

topology.

Another key characteristic of the modern data center is that each falls within a

single administrative domain. That is, one entity is responsible for all decisions regard-

ing the data center’s hardware (e.g. network elements, end hosts and storage elements),

software and firmware (e.g. communication protocols, distributed applications and oper-
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ating systems) and physical layout. Given this, it is possible to start entirely from scratch

when designing a new data center; an organization can build brand new protocols that

are perfectly tailored to its needs. This can be beneficial in that it provides considerable

flexibility to a data center owner. In fact, more recently, data center operators have been

known to build their own hardware in addition to software, custom operating systems

and networking protocols [23]. However, this flexibility can be a drawback, as not every

data center owner is equipped to build everything from scratch.

To avoid building custom protocols, data center operators frequently borrow ex-

isting protocols from other types of networks, such as the Internet. An example of this is

Ethernet, which for years has been a standard for data center networking. Another exam-

ple is IP, which is used in recent enterprise network designs such as SEATTLE [42] and

VL2 [28]. A difficulty with borrowing protocols from other types of networks is that the

protocols may have been designed for a fairly different environment than that of the data

center. This is compounded by the fact that an ad hoc set of protocols borrowed from

various different networks may exhibit odd or unexpected interactions. The difficulty of

simply borrowing existing protocols and grouping them together in a “plug-and-play”

manner, along with the fact that it is impossible to expect every data center operator to

design all network protocols from scratch, leads to a unique challenge for networking

researchers today. It is time to step back and consider the axes along which data centers

vary, and to develop data center networking protocols that meet the needs of a variety

of different usage models while allowing for the ability to tune these protocols to suit a

particular situation.

1.2 Challenges in Data Center Networking

Modern data center networks are often structured as indirect hierarchical topolo-

gies [66], in which servers connect to the leaves of a multi-stage switch fabric. Such

networks can support hundreds of thousands of servers (and millions of virtual ma-

chines) with tens of thousands of switches [34]. The enormous size of these networks

leads to a number of challenges in data center design.
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In this dissertation, we consider the issues of designing a scalable and fault-

tolerant data center network topology, providing scalable and efficient communication

protocols, and formalizing these protocols in order to reason about their correctness

and performance. Figure 1.1 shows an example of a scalable, fault-tolerant network

topology. Each switch and host in the topology has been assigned an address by our

provably correct and efficient communication protocols.
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Figure 1.1: Data Center Topology with Address Assignments

1.2.1 Scalable, Fault-Tolerant Topologies

One common topology for data center interconnects is a fat tree, or Clos net-

work [4, 19, 47, 56]. The popularity of this topology is in part due of the fat tree’s

support for full bisection bandwidth. In our experience, a key difficulty in the data

center is handling faults in these hierarchical network fabrics.

Despite the high path multiplicity between any pair of end hosts in a traditionally

defined fat tree, a single link failure can temporarily cause the loss of all packets destined

to a particular set of end hosts, thus effectively disconnecting a portion of the network.
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For instance, one link failure at the lowest level of a 3-level, 64-port fat tree tree can

disconnect 32 hosts while a failure at the top level can affect as many as 1,024, or 1.5%,

of the topology’s hosts. This can drastically affect storage applications that replicate

(or distribute) data across the cluster. The storage overhead required to tolerate the loss

of an arbitrary 1% of hosts without rendering all replicas (or pieces) of a data item

inaccessible would be quite expensive, as the item would need to be replicated at more

than 1% of the topology’s hosts. It is crucial then, that re-convergence periods be as

short as possible.

However, the time required for updating network elements to work around fail-

ures and to use alternate paths can be substantial. For instance, the time for global

re-convergence of the broadcast-based routing protocols (e.g. OSPF and IS-IS) used in

today’s data centers [17, 54] can be tens of seconds [48]. As each switch receives a

routing update, its CPU processes the information, calculates a new forwarding table,

determines a new topology, and computes corresponding updates to send to all of its

neighbors. Embedded CPUs on switches are generally under-powered and slow com-

pared to a switch’s data plane [50, 53] and in practice, settings such as protocol timers

can further compound these delays [45]. The processing time at each switch along

the path from a failure to the farthest switches adds up quickly. Packets continue to

drop during this re-convergence period, crippling applications until recovery completes.

Moreover, at the scale of today’s data centers, the control overhead required to broadcast

updated routing information to all nodes in the topology can be significant.

Long convergence times can be unacceptable in the data center, where the high-

est levels of availability are required. For instance, an expectation of 5 nines (99.999%)

availability translates to about 5 minutes of downtime per year, or 30 failures, if each

failure requires a 10 second re-convergence time. A fat tree that supports tens of thou-

sands of hosts has tens or even hundreds of thousands of links. Even a relatively small

64-port, 3-level fat tree has 196,608 links, and in an environment in which switch and

link failures happen quite regularly, restricting the number of acceptable yearly failures

to 30 is essentially impossible.

The first goal of this dissertation is to introduce a class of data center network

topologies that can be tuned with respect to the following characteristics:
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1. The topology should be scalable, using a relatively small interconnect of switches

to connect as many end hosts as possible.

2. It should provide as much bisection bandwidth as possible in support of all-to-all

communication.

3. The topology should retain the path multiplicity of fat trees. If path multiplicity

is to be partially sacrificed in favor of other properties, the costs associated with

providing this multiplicity should decrease correspondingly.

4. Reactions to topology changes should happen as quickly as the hardware will al-

low. In particular, failures should not necessitate global re-convergence of

broadcast-based routing protocols.

1.2.2 Scalable Addressing and Communication

Another key issue in massive scale data center networks is address assignment as

the basis for scalable routing and forwarding protocols. Currently, practitioners typically

look to either Layer 2 or Layer 3 techniques for such address assignment, with starkly

different tradeoffs. At Layer 2, host address assignment is trivial: it simply consists of

the unique MAC address assigned to each network interface at the time of manufacture.

While address assignment is simple, routing and forwarding at Layer 2 require global

knowledge, broadcast and large forwarding tables. Essentially, every switch must track

the location of, and maintain a forwarding table entry for, every host in the network. The

overhead in convergence time for maintaining such global knowledge can be significant.

Worse, the requisite number of forwarding table entries (one per host) far exceeds the

capacity of modern switch hardware [56].

Layer 3 solutions address some of these challenges by assigning hierarchical,

topologically meaningful addresses to end hosts. Through subnetting, hosts topolog-

ically close to one another share a common prefix in their Layer 3 addresses. With

longest prefix matching forwarding, switches need only maintain a single forwarding

table entry for a group of hosts that share the same prefix. At Layer 3, the number

of required forwarding table entries shrinks substantially and is easily accommodated in

switch hardware. However, address assignment now requires centralized and error prone
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manual configuration [36, 38, 62], e.g., configuring DHCP servers and assigning subnet

masks to each switch. Routing protocols still rely on broadcast, limiting scalability and

increasing convergence time.

A number of recent efforts have blurred the distinction between Layer 2 and

Layer 3 protocols, delivering some of the benefits of both. PortLand [56] uses a Lo-

cation Discovery Protocol (LDP) to assign hierarchical addresses to hosts in a fat tree.

LDP assumes a full fat tree structure for correct operation and bases address assignment

on constructs inherent to this structure. A centralized controller handles the more com-

plicated portions of address assignment as well as all routing. DAC [16] allows for more

general topologies but performs all operations in a centralized controller. It also requires

manual configuration initially and prior to planned changes. Additionally, DAC depends

on a user-provided topology blueprint and necessitates that the physical topology match

this blueprint exactly.

The biggest issue with any scheme based on centralized control is that the

switching environment essentially requires an out-of-band control network for bringup

and bootstrapping. That is, centralized control makes it more challenging to physically

combine the data plane with the control plane. Consider the moment at which a switch

first comes up. A centralized control scheme requires that the switch locate and com-

municate with its controller. At data center scale with tens of thousands of switches, the

controller is unlikely to be physically connected to each switch. Hence, there must either

be a second, physically separate control network (of substantial scale and complexity)

or switches must fall back to some complex flooding/broadcast protocol to locate the

central controller.

The second goal of this dissertation is to introduce a labeling and communication

scheme for hierarchical data center networks that provides the following features:

1. Switches should be able to discover the necessary topology information for con-

nectivity and communication, and to select topologically significant addresses

without reliance on centralized components, manual configuration, topology

blueprints or global knowledge.

2. Switches should be able to efficiently locate remote hosts and route packets with-

out using centralized lookup or suboptimal paths.
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3. The topology should quickly converge to global reachability (assuming under-

lying physical connectivity) after arbitrary changes. The effects of a topology

change should be limited to the area immediately surrounding the change.

4. To lower the barrier to adoption, all components should run on existing hardware,

without requiring modifications to end hosts.

1.2.3 Formalizing Label Assignment

A third challenge in the data center is the size and complexity of the underly-

ing network, in terms of configuration and diagnostics. Even when laid out in the most

regular of structures, a data center network can be complex, enormous and incredibly

difficult to manage and maintain. When communication is disrupted, it is often difficult

to pinpoint the source(s) of the problem. One reason for this is that data center networks

rely on numerous different protocols that all cooperate to provide connectivity and com-

munication. The interactions between these protocols are complex and often misunder-

stood, making correct configuration and error diagnosis nearly impossible [36, 38, 62].

Given these challenges, one of our key concerns in the design of ALIAS is to

ensure that the protocol is provably correct. Another goal is to break the protocol down

into small components, each with a clear interface and list of responsibilities. In this

way, it is feasible to reason about the interactions among ALIAS components as well as

those between ALIAS and other inter-operating protocols.

The third goal of this dissertation is to introduce a fundamental building block

protocol for ALIAS that has the following characteristics:

1. To be usable as a basis for ALIAS, the protocol should not rely on any centralized

components, global knowledge or manual configuration.

2. It should enable the scalability of ALIAS to hundreds of thousands of nodes.

3. The protocol should be practical and efficient, with low message overhead and

quick convergence time.

4. It should be robust to miswirings and transient startup conditions and it should

react and stabilize quickly after both failures and planned topology changes.
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5. Finally, simplicity is an important requirement, and the protocol should be prov-

ably correct and easy to reason about for the purposes of configuration and failure

diagnosis.

1.3 Hypothesis

This dissertation aims to show that we can have scalable, efficient and fault-

tolerant communication in hierarchical data center networks, despite the data center’s

scale and complexity. In particular, we argue that with careful topology design and

tailored communication protocols, we can overcome the following three challenges:

1. Building scalable, fault-tolerant topologies that allow network designers to tune

scalability and fault tolerance tradeoffs according to the requirements for a partic-

ular situation.

2. Providing scalable and efficient addressing and communication.

3. Formalizing the underlying protocols and their interactions in order to make con-

figuration and debugging feasible.

In the following section, we discuss our approaches to each of these challenges.

1.4 Contributions

1.4.1 Aspen Trees: Tuning Scalability and Fault Tolerance

To address the first challenge we present a new set of data center topologies that

we coin Aspen trees. These trees are similar to the indirect hierarchical topologies found

in data centers today, but allow for local failure reaction. That is, rather than waiting for

global re-convergence of a broadcast-based protocol such as OSPF, Aspen trees allow

the nodes immediately surrounding a link failure to route in-flight packets around the

failure. To accommodate this, Aspen trees include extra, redundant links as alternate

paths. These extra links take the place of links that would have enabled the topology to

support more end hosts. Thus, these links reduce the scalability of the overall topology.
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Additionally, Aspen trees retain the high bisection bandwidth and path multiplicity of

their fat tree counterparts.

In Chapter 3, we show that Aspen trees can be tuned to have a variety of different

failure reaction properties, each corresponding to a different scalability cost. The ability

to tune scalability and fault tolerance tradeoffs is important as current topologies do not

provide this flexibility, often forcing a data center operator to choose an unnecessarily

high level of one property while nearly entirely sacrificing the other. For instance, a

fat tree topology [19, 47] provides substantial scalability but at the expense of long re-

convergence periods. With Aspen trees, it is possible to create a tree that meets the

requirements of a particular network, at exactly the scalability cost that the network

administrator is willing to pay.

1.4.2 ALIAS: Scalable Addressing and Communication

In Chapter 4, we present ALIAS, a protocol that addresses our second goal of

label assignment as a basis for scalable routing and forwarding in the data center. ALIAS

assigns topologically significant labels to hosts and switches, using commodity switch

hardware in a decentralized, scalable and broadcast-free manner.

We have completed two implementations of ALIAS [73] and we show the pro-

tocol’s correctness via model checking as well as its real-world applicability via our

testbed implementation. Through our implementation and simulations, we show that

ALIAS converges to correct labels quickly, with little control bandwidth and compu-

tational overhead. Most importantly, the forwarding tables used by ALIAS switches

are comparable in size to those in traditional Layer 3 networks, but ALIAS does not

require the centralization or manual configuration necessary for Layer 3 address assign-

ment. This addresses our second goal of providing scalable and efficient addressing and

communication, without reliance on centralized control or manual configuration.

A difference between ALIAS and other addressing schemes is that in ALIAS,

hosts have multiple labels. This is because ALIAS labels reflect a host’s position in

the topology as well as the potentially multiple ways to reach that host. Because this is

a significant departure from current practice, in Chapter 6, we explore a technique for

selecting and using only a single label per host in for ALIAS routing and forwarding.
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1.4.3 The Decider/Chooser Protocol in ALIAS

In Chapter 5, we formalize the smallest instance of the problem being solved by

ALIAS as the Label Selection Problem (LSP). We then introduce the Decider/Chooser

Protocol (DCP), a practical, randomized protocol that solves the Label Selection Prob-

lem. We show the correctness of DCP with respect to the requirements of LSP (and

thus ALIAS) through proofs and via model checking. We then explore the convergence

time of this probabilistic algorithm using simulations and mathematical analysis. We

find that due to the random nature of the algorithm, DCP converges quite quickly, even

when choosing labels from a small domain. Finally, through a series of protocol refine-

ments, we design extensions to DCP in order to support the more complicated features

of ALIAS. We present these refinements as a formal protocol derivation from the basic

version of DCP to a full solution for ALIAS.

Our implementation of ALIAS [73] uses DCP and therefore includes an imple-

mentation of DCP. However, we also completed a full implementation of the basic DCP

and each of its extensions for the purpose of model checking each step of the protocol

derivation [72].

DCP addresses our goal of providing a building block for ALIAS that is scalable,

practical, and free of global knowledge, centralized control and manual configuration.

We show with proofs and model checking that DCP is robust to miswirings and tran-

sient network conditions, and our simulations demonstrate its quick stabilization after

topology changes. Most importantly, our proof of the correctness of DCP and the corre-

sponding derivation of ALIAS give us confidence in the use of ALIAS in modern data

centers.

1.5 Organization

In Chapter 2, we provide the background material relevant to the three compo-

nents of this thesis. We defer discussions of related work for the individual components

to each component’s chapter. We also include listings of symbols used throughout this

dissertation. In Chapter 3, we describe a new class of data center network topologies,

Aspen trees, and provide an algorithm for generating an Aspen tree based on the scala-



12

bility and fault tolerance requirements for a given network. In Chapter 4, we consider the

issue of labeling switches and hosts in a hierarchical data center network. We describe

the concept, motivation, design, implementation and evaluation of ALIAS, a protocol

for labeling and communication in data center networks. Next we formalize and reason

about the key components of ALIAS in Chapter 5, where we show the correctness and

performance of the Decider/Chooser Protocol and use this protocol to derive a solution

for ALIAS. In Chapter 6, we explore changes to the ALIAS protocol in order to support

the selection of a single label per end host. Finally, Chapter 7 summarizes, discusses

future work and concludes the dissertation.
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Chapter 2

Background: Data Center Networks

In this dissertation, we consider challenges surrounding several intertwined as-

pects of data center networking: topology design, scalable communication, fault toler-

ance and management overhead. We introduce each in turn in this chapter.

2.1 Topology

When designing a data center network, one of the primary aspects to consider is

the physical layout of the topology. Because of the size and complexity of modern data

centers, there is often a preference for regular, symmetric topology structures. Sym-

metric structures enable more uniform bandwidth and latency between pairs of hosts

than do their asymmetric counterparts. Frequently, a hierarchical structure is used so

that addresses can be aggregated into shared prefixes for reduced forwarding state (Sec-

tion 2.2). Regardless of the structure of the topology, scalability is a crucial factor. That

is, the bisection bandwidth delivered by the network should increase linearly with the

number of overall ports provided by the interconnect [2].

There are data center and enterprise network designs that do not rely on struc-

tural symmetry. For instance, SEATTLE [42] and DAC [16] both operate over arbitrary

topologies and use distributed location discovery and manually-configured blueprints,

respectively, to work around the lack of regular structure. Jellyfish [67] takes this

a step farther by operating over randomly generated topologies. On the other hand,

DCell [30] is based on a recursive interconnect of switches and hosts, in which both

13
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switches and hosts provide switching for packets moving across the network. Similarly,

in a BCube [29] network, hosts play a switching role in a topology that is somewhat

similar to a generalized hypercube structure [14]. Most frequently, we see data centers

organized hierarchically [4, 13, 18, 28, 47, 56] into two or three layers of switches; a

multi-rooted tree as a common example of this layout.

As shown in Figure 2.1, multi-rooted tree is a graph in which nodes can be

partitioned into levels such that each node belongs to exactly one level. We consider

multi-rooted trees in which a switch connects to switches at its own level or at the levels

above and below. We call connections between switches of the same level peer links.

For the purpose of this dissertation, we will refer to the bottom level of such a tree as

level L0 and we label the remaining levels L1 through Ln, moving up the tree. A second

convention that we adopt is to denote with n the total number of levels of switches

in the tree and with k the number of ports per switch. So, the example of Figure 2.1

shows a tree with n = 3 and k = 6. That is, there are three levels of switches in the tree

(hosts are at L0) and each switch has up to six ports connecting it to its neighbors. The

rightmost column of Figure 2.1 shows the levels for all switches and hosts, and each

node is marked with a globally unique identifier, such as S7 or H15. In a data center, a

MAC address might be used as such a unique identifier.
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Figure 2.1: Multi-Rooted Tree Topology
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In a multi-rooted tree, the number of links between level Li+1 and level Li is

typically less than or equal to that between level Li and level Li−1. This corresponds to

techniques to over-subscribe network bandwidth moving up the topology.

A data center interconnect based on a multi-rooted tree can either be organized

into an indirect or a direct hierarchy [66]. In a direct hierarchy, a host can connect to any

switch in the network whereas in an indirect multi-rooted tree topology, hosts connect

only to leaf switches. The example of Figure 2.1 is an indirect topology. As the indirect

hierarchy is the common case in hierarchical data centers [4, 13, 18, 28, 56], we focus on

this type of topology in this dissertation. In Chapter 4, we design a protocol for scalable

addressing and communication in multi-rooted trees such as those shown in Figure 2.1.

A familiar example of a multi-rooted tree is a fat tree [19, 47], as exemplified by

Figure 2.2. For this tree, n = 3 and k = 4.
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Figure 2.2: Fat Tree Topology

An interesting property of multi-rooted trees, and fat trees in particular, is that

there is often significant path multiplicity between pairs of hosts. That is, any two

hosts have multiple, possibly link-disjoint1, paths via which to reach one another. For

instance, in Figure 2.2, H1 can communicate with H13 using path S1-S9-S17-S15-S7 or

instead via S1-S10-S20-S16-S7.
1This excludes first-hop links.
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We use the term striping to denote the particular pattern of interconnections

between switches at adjacent levels. In Chapter 3, we show that in a fat tree wired via

traditional striping methods, a data packet leaving a particular Ln switch only has a single

downward path towards its destination. This limits the usability of path multiplicity,

prompting our design of a new class of data center network topologies that we call

Aspen trees. These topologies are loosely based on the fat tree and enable fast reactions

to failures by including redundant links.

Addressing and communication are tightly coupled with topology layout and we

discuss these concerns next.

2.2 Addressing and Communication

Another aspect of data center network design is the selection (or development) of

communication protocols. With these protocols, switches determine relevant topology

information and discover routes to remote switches and hosts. This enables end-to-end

communication between hosts in different areas of the network.

Communication relies on the naming or addressing scheme used in a network.

A switch’s (or host’s) address may encode information about the location of the switch

(or host) in the topology, as is the case with an IP address. Alternatively, the network’s

addresses may be flat, giving no location information (e.g. MAC addresses). The com-

munication protocols for a data center network include a mechanism for switches to

locate other switches and hosts, and the design of such an address resolution mecha-

nism depends on the information encoded in a switch or host address. This mechanism

can rely on a centralized component with a global view of the topology or it can be

distributed among the topology’s switches and hosts. For instance, SEATTLE [42] uses

a distributed hash table to form a directory service to look up host’s locations within the

network. In this dissertation, we focus on fully distributed protocols.

Once the addressing scheme and address resolution protocols have been chosen,

the next step in the design of a data center network is to select the routing and forwarding

protocols that enable communication between hosts. In an indirect topology, a host

delivers a packet to its ingress switch, which then moves the packet through the network,
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based on the routing and forwarding protocols, to the destination host’s egress switch.

Hosts do not play a switching role for in-flight packets in an indirect topology.

Many data center networks use routing and forwarding protocols borrowed from

the Internet. For instance, Ethernet (Layer 2) has been one of the standards in data

center networking for years. Spanning tree protocols can be used to discover routes, at

the cost of requiring global knowledge, broadcast and large forwarding tables. In this

case, the MAC addresses assigned to devices out of the box can be used as labels for host

naming and identification. Still, Layer 3 protocols must be used over top of Ethernet to

scale the topology to data center size. Alternatively, solutions such as PortLand [56] and

TRILL [69] can also be used to extend the scalability of Ethernet. Many data centers

use IP-based protocols in order to reduce the amount of forwarding state stored at each

switch. In this case, protocols such as DHCP are used to assign IP addresses such that

hosts physically near one another in the topology have similar addresses through shared

prefixes. This reduces the forwarding state of the network’s switches, as a switch can

refer to a group of hosts via a single shared prefix. Link-state routing protocols such as

OSPF and IS-IS are used to compute a global view of the topology at each switch.

On the other hand, some data center networks use custom routing and forwarding

protocols or even modified versions of existing protocols. The most relevant example to

this dissertation is the up*/down* forwarding introduced by Autonet [65]. In Autonet,

packets travel upwards and then back down a hierarchical topology; these direction re-

strictions are introduced to avoid the occurrence of forwarding loops. More recently,

PortLand [56] adopts an up-down forwarding restriction for the same reason. In fact,

in a multi-rooted tree without peer links, shortest path forwarding often selects iden-

tical paths to those of up*/down* forwarding. When we discuss forwarding in Aspen

trees (Chapter 3), we assume shortest path-style communication, which tends to follow

an up*/down* pattern. Then in Chapter 4, we design a new addressing scheme called

ALIAS that automatically assigns labels to reflect current topology conditions. Though

many communication protocols can interoperate with ALIAS labels, we provide an ex-

ample protocol that accommodates peer links by forwarding with an up*/across*/down*

restriction.
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2.3 Fault Tolerance

Another property of interest in a data center network is the speed with which the

network recovers from topology changes. A topology change can be planned, as is the

case when a new rack of servers is added or when a set of switches is de-commissioned.

A change can also be unplanned, occurring as the result of a link or switch failure or

recovery. Since unplanned changes occur quite frequently in today’s data centers, it is

imperative that the network react and recover in as short a time as possible, with minimal

disruption to ongoing communication sessions.

Routing protocols that rely on all switches having a global view of the topology

can have significant re-convergence time. An example of such a protocol is OSPF,

in which link-state messages are broadcast to every node in the topology, even after

a single link failure. The time to propagate this information to all switches in a large

topology can be substantial. This is further exacerbated in the data center, where the

embedded switch processors used to calculate global topology information are often

slow and under-powered.

On the other hand, some routing protocols allow reactions to failures to occur

locally. For instance, fast failure recovery techniques (FFR) [44] in WANs allow for

local failure reaction. Similarly, with bounce routing techniques, switches located near

a failure cooperate to route in-flight packets around the failure without involving the

packets’ senders. Many networks also incorporate the notion of backup paths [10, 11,

31, 32, 43, 68, 74, 75]. These paths are created either before a new flow is admitted

or on-the-fly after a failure. In many cases, backup paths can significantly reduce the

re-convergence period of a network.

In Chapters 3 and 4, we design new communication protocols that quickly and

efficiently react to failures in Aspen trees and general multi-rooted trees, respectively.

Both leverage the structure of the topology and contain the reaction to only those

switches located near to the topology change.
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2.4 Management

Finally, management overhead is a significant concern in the data center. Most

protocols come with some source of manual configuration. For instance, DAC [16] re-

quires the data center designer to write a blueprint for the topology and to wire the topol-

ogy so that it matches the blueprint exactly. This can prove difficult, if not infeasible,

given the scale and complexity of the data center. On the other hand, protocols that run

over arbitrary topologies without blueprints can also require manual configuration. For

instance, when IP is used with DHCP for address assignment, an administrator has to

configure subnet masks and DHCP servers manually. Moreover, this configuration must

be manually updated for most topology changes. As manual configuration has proven to

be error prone [36, 38, 62] and difficult, there has been a flurry of research recently that

aims to reduce the management burden on the data center operator. In Chapter 4 we in-

troduce ALIAS to remove the manual configuration associated with address assignment

in the data center.

2.5 Nomenclature

As there are a number of several different symbols introduced and used through-

out this dissertation, we provide in Tables 2.1 through 2.5 a complete list for refer-

ence. In some cases, symbols are necessarily overloaded across chapters. Table 2.1

shows symbols used consistently throughout the dissertation. Tables 2.2 through 2.5

give chapter-specific symbols and conventions.
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Table 2.1: Symbols Commonly Used throughout Dissertation

Symbol Usage

n Total number of levels in a tree, zero-based

k Ports per switch in a topology

Li, L f Any levels i or f of a tree, i6= f

L0 Bottom level of a tree

Ln Top (root) level of a tree

s, s′ Any switches in a topology

h, h′ Any hosts in a topology

Sx Switch with unique identifier x

Hx Host with unique identifier x

sx Any switch at level Lx in a tree

hn, hn′ Any hypernodes in a topology
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Table 2.2: Symbols Specific to Chapter 3

Symbol Usage

S Total number of switches at one level in a tree

pi Pods at level Li

mi Member switches in a pod at Li

ri Responsibility of an Li switch

ci Connections from an Li switch to each Li−1 pod

Table 2.3: Symbols Specific to Chapter 4

Symbol Usage

ci Coordinate for a switch at Li

LiHN Hypernode at Li

p Number of peer links permitted for traversal

S Size of a switch’s unique identifier

C Size of a coordinate
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Table 2.4: Symbols Specific to Chapter 5

Symbol Usage

`x Any Lx switch (code listings)

h Hypernode iterator (code listings)

c Any chooser

d Any decider

cx Chooser with unique identifier x

dx Decider with unique identifier x

C Any distributed chooser

C,C+,D Sets of choosers and deciders in proof of DCP correctness

c.me Current choice of chooser c

q Choosers that finish during a round of DCP

m Choosers remaining immediately before a round of DCP

L Size of the DCP coordinate domain

Table 2.5: Symbols Specific to Chapter 6

Symbol Usage

` Any label in the topology

cn−1 Coordinate for a switch at Ln−1

SR
Set of switches that reach some L1 switch

using only suboptimal labels

S`∧R
Set of switches that reach some L1 switch

using both optimal and suboptimal labels
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Chapter 3

Scalability versus Fault Tolerance

in Aspen Trees

In this chapter, we present Aspen trees, a class of data center network topologies

that allow the network designer to tune a multi-rooted tree topology with respect to the

tradeoffs between convergence time and scalability. Our goal with Aspen trees is to

eliminate excessive periods of host disconnection in the data center. It is unrealistic to

limit the number of failures sufficiently to meet the stringent availability requirements

of the data center. Therefore, we consider the problem of drastically reducing the con-

vergence time for each individual failure. We do so by modifying fat tree topologies

to enable local failure reactions. Instead of requiring global OSPF convergence on a

link failure, we send simple failure notification messages to a small subset of switches

located near the failure. This substantially decreases the re-convergence time (by send-

ing small updates over fewer hops) and the control overhead (by involving considerably

fewer nodes and eliminating reliance on broadcast). We choose the name Aspen tree in

reference to a species of tree that survives for years after the failure of redundant roots.

Engineering topologies to support local failure reactions comes with a cost,

namely, the tree supports fewer hosts and accommodates less hierarchical aggregation.

While a reduction in host support decreases the cost efficiency and scalability of a net-

work in a clear way, the effects of reducing hierarchical aggregation may be more sub-

tle. Addressing and communication schemes that leverage hierarchy to create shared

forwarding prefixes are affected by such changes.

24
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In this chapter, we explore the scalability and fault tolerance tradeoffs of build-

ing a highly available large-scale network that can react to failures locally. We give an

algorithm to determine the set of Aspen trees that can be created, given constraints such

as the number of available switches or the requirements for host support. To precisely

specify the fault tolerance properties of these trees, we introduce a Fault Tolerance Vec-

tor (FTV) that quantifies failure reactivity by indicating the quality and locations of

added fault tolerance throughout the tree. We then formalize a tree’s scalability prop-

erties in terms of its FTV. Finally, we present a communication protocol that leverages

added fault tolerance in an Aspen tree. This gives intuition about the relative values (or

suitability to a particular goal) of different Aspen trees with identical scalability costs

and differing FTVs. Finally, we offer recommendations for optimal trees given a set of

requirements and goals.

To add fault tolerance to a tree, we introduce redundant links at one or more

levels of the tree. This leads to a reduction in the number of hops through which routing

updates propagate and thus to a decrease in convergence time. We find that the intro-

duction of these redundant links at a single level of the tree results in a multiplicative

reduction in the same amount to the maximum number of hosts that can be supported by

the tree. That is, we reduce the total number of hosts in the tree by 50% for each level

at which we increase from 0 to 1 the number of link failures tolerable without host dis-

connection. Therefore, adding fault tolerance at every tree level likely comes at too high

a cost, as per-level changes multiply quickly. However, our communication protocol is

designed to leverage even a small increase in a tree’s fault tolerance. In fact, solutions

in which only a single level (the highest in the tree) has additional links prove ideal in

many situations, as they reduce convergence time by 50%, with the lowest possible cost

in terms of host count.

3.1 Failures in Traditional Fat Trees

In a traditional fat tree, a single link failure can be devastating. It can cause all

packets destined to a set of hosts to be dropped while updated routing state propagates to

every node in the topology. For instance, consider a packet traveling from host x to host
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y in the 4-level, 4-port fat tree of Figure 3.1 and suppose that the link between switches

f and g fails shortly before the packet reaches f . f no longer has a downward path to

y and drops the packet. In fact, with the failure of link f−g, the packet would have to

travel through h to reach its destination. For this to happen, x’s ingress switch a would

need to know about the failure and to select a next hop accordingly.
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Figure 3.1: Packet Travel in a 4-Level, 4-Port Fat Tree

This means that in the worst case, information about a single link failure needs

to propagate to all of the lowest level switches of the tree, passing through every single

switch in the process. The overhead of informing so many switches can be significant.

The time for this information to propagate grows with the depth of the tree, and the time

for recalculating routing state and updating forwarding tables can be substantial.

There are alternative routing techniques that avoid packet loss. For instance, a

bounce routing-based technique might send the packet from f to i. Switch i can then

bounce the packet back up to h, which still has a path to g. However, bounce routing

based on local information introduces additional software complexity to support the cal-

culation and activation of extra, non-shortest path entries and to avoid forwarding loops.

Additionally, bounce routing can cause deadlock when combined with flow control pro-

tocols [20, 37].

It is possible to construct a protocol that sends the packet back along its path

to the nearest switch that can re-route around the failed link, similar to the technique

employed by data-driven connectivity (DDC) [50]. In DDC, a packet sent along the

path in Figure 3.1 would travel from f back up to the top of the tree and then down three

levels to a before it could be re-routed towards h.
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Our approach is to offer an alternative to bouncing packets in either direction.

We modify the fat tree by introducing redundancy at a particular level; this allows

switches to handle a failure locally without requiring global convergence of topology

information. These additional redundant links come at a cost in the topology’s scale.

We coin the resulting modified fat trees Aspen trees.

Before describing Aspen trees in detail, we define several key terms. An n-level,

k-port Aspen tree consists of switches at levels 1 through n (written as L1...Ln) and hosts

at level 0 (L0). Each switch has k ports, half of which connect to switches in the level

above and half of which connect to switches below. Switches at Ln have k downward-

facing ports. We group switches at each level Li into pods. A pod includes the maximal

set of Li switches that all connect to the same set of Li−1 pods below, and an L1 pod

consists of a single L1 switch. In a traditional fat tree, there are S switches at levels L1

through Ln−1 and S
2 switches at Ln; we retain this property in Aspen trees. For now, we

do not consider multi-homed hosts, given the associated addressing complications.

3.2 Designing Aspen Trees

In this section, we describe our method for generating trees with varying fault

tolerance properties. Intuitively, our approach is to begin with a traditional fat tree, and

then to disconnect links at a given level and “repurpose” them as redundant links for

added fault tolerance at the same level. By increasing the number of links between a sub-

set of switches at adjacent levels, we necessarily disconnect another subset of switches

at those levels. These newly disconnected switches and their descendants are deleted,

ultimately resulting in a decrease in the number of hosts supported by the topology.

Figure 3.2 depicts a sample of this process pictorially. In Figure 3.2a, L3 switch

s connects to four L2 pods, namely q = {q1,q2}, r = {r1,r2}, t = {t1,t2} and v = {v1,v2}.
To increase fault tolerance between L3 and L2, we decide to provide redundant connec-

tions from s to pods q and r. We first need to free some upward facing ports from q

and r, and we chose the uplinks from q2 and r2 as candidates for deletion because they

connect to L3 switches other than s. Once we have deleted these links from q2 and r2,

we select links to repurpose. Since we wish to increase fault tolerance between s and
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Figure 3.2: Modifying a 3-Level, 4-Port Fat Tree to Have 1-Fault Tolerance at L3

pods q and r, we must do so at the expense of pods t and v, by removing links from s to

pods t and v as shown by the dotted lines in Figure 3.2b. For symmetry, we also include

switch w with s. The repurposed links are then connected to the open upward facing

ports of q2 and r2, leaving the right half of the tree disconnected and ready for deletion,

as shown in Figure 3.2c. At this point, s is connected to each L2 pod via two distinct

switches and can reach either pod despite the failure of on such link. We describe this

tree as 1-fault-tolerant at L3. In general, we use Li fault tolerance to refer to Li-to-Li−1

links.

For a tree with a given depth and switch size, there may be multiple options for

the amount of fault tolerance to add at each level, and fault tolerance can be added to

any subset of levels. Additionally, decisions made at one level may affect the available

options for other levels. In the following sections, we present an algorithm that makes a

coherent set of these per-level decisions throughout an Aspen tree.
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3.2.1 Assumptions

In order to limit our attention to a tractable set of options, we introduce a few

restrictions on the types of trees we wish to generate. First, we consider only trees in

which switches at each level are divided into pods of uniform size. That is, all pods at Li

must be of equal size, though this size may differ from that of the pods at L f : f 6=i. Within

a single level, all switches have equal fault tolerance to pods in the level below, but as

with pod division, the fault tolerance of switches at Li need not equal that of switches at

L f .

3.2.2 Aspen Tree Generation

We begin at the top level of the tree, Ln, and group the switches into a single pod.

We then select a value for the fault tolerance of the connections to the level below, Ln−1.

Next, we move to Ln−1, and divide the Ln−1 switches into pods (based on the selected

Ln values) and choose a value for fault tolerance of the connections to Ln−2 switches.

We repeat this process for each level moving down the tree, terminating when we reach

L1. At each level, we select values according to a set of constraints that ensure that all

of the per-level choices work together to form a coherent topology.

Variables and Constraints

Before presenting the technical details of our algorithm, we first introduce sev-

eral helpful variables and relationships between them. Recall that an Aspen tree has n

levels of switches, and that all switches have exactly k ports. In order for the uplinks

from Li to properly match all downlinks from Li+1, to allow for full bisection bandwidth,

the number of switches at all levels of the tree except Ln must be the same. We denote

this number of switches per level with S. Each Ln switch has twice as many downlinks

(k) as the uplinks of an Ln−1 switch and so for uplinks to match downlinks at these

levels, there are S
2 Ln switches.

At each level, our algorithm first groups switches into pods and then selects a

fault tolerance value to connect to pods below. We represent these choices with four

variables: pi, mi, ri and ci. The first two variables encode pod divisions; pi indicates the
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number of pods at Li, and mi represents the number of members per Li pod. Combining

this with our values for the number of switches at each level, we have the constraint:

pimi = S,1≤ i < n pnmn =
S
2

(3.1)

The other two variables, ri and ci, relate to per-level fault tolerance. ri expresses

the responsibility of a switch and is a count of the number of Li−1 pods to which each Li

switch connects. ci denotes the number of connections from an Li switch s to each of the

Li−1 pods that s neighbors. Since we require (Section 3.2.1) that switches’ fault toler-

ance properties are uniform within a level, a switch’s downward links are spread evenly

among all Li−1 pods that it neighbors. Combining this with the number of downlinks at

each level, we have:

rici =
k
2
,1 < i < n rncn = k (3.2)

Each constraint listed thus far relates to only a single level of the tree. Our

final equation connects values at adjacent levels. Every pod q below Ln must have a

neighboring pod above, otherwise q and its descendants would be disconnected from the

graph. This means that the set of pods at Li:i≥2 must “cover” (or rather, be responsible

for) all pods at Li−1:

piri = pi−1,1 < i≤ n (3.3)

Aspen Tree Generation Algorithm

We now use Equations 3.1 through 3.3 to formalize our algorithm, which is

presented in pseudo code in Listing 3.1. The algorithm calculates values for pi, mi, ri, ci

and S (lines 1-5), using a level iterator and a record of the number of downlinks at each

level (lines 6-7).

We begin with the requirement that each Ln switch connects at least once to each

Ln−1 pod below. This effectively groups all Ln switches into a single pod, so pn = 1

(line 8). We defer calculation of mn until the value of S is determined.

We consider each level in turn from the top of the tree downwards (lines 9, 14).

At each level, we select appropriate values for fault tolerance variables ci and ri (lines

10-11) with respect to constraint Equation 3.2. Alternatively, we could accept as an



31

Listing 3.1: Aspen Tree Generation Algorithm
input : k, n
output: p, m, r, c, S

1 int p[1...n] = 0
2 int m[1...n] = 0
3 int r[2...n] = 0
4 int c[2...n] = 0
5 int S
6 int i = n
7 int downlinks = k

8 p[n] = 1

9 while i≥ 2 do
10 choose c[i] s.t. c[i] is a factor of downlinks
11 r[i] = downlinks÷ c[i]
12 p[i−1] = p[i]r[i]
13 downlinks = k

2
14 i = i−1

15 S = p[1]
16 m[n] = S÷2

17 for i = 1 to n−1 do
18 m[i] = S÷ p[i]
19 if m[i] /∈ Z
20 report error and exit
21 if m[n] /∈ Z
22 report error and exit

input, desired per-level fault tolerance values. In this case, we would set each ci value

by adding 1 to the desired fault tolerance for Li. Based on the value of ri, we use

Equation 3.3 to determine the number of pods in the level below (line 12). Finally, we

move to the next level, updating the number of downlinks accordingly (lines 13-14).

The last iteration of the loop calculates the number of pods at L1. Since each

L1 switch is in its own pod, we know that S = p1 (line 15). We use the value of S

with Equation 3.1 to calculate mi values (lines 16-18). If at any point, we encounter a

non-integer value for mi, we have generated an invalid tree and we exit (lines 19-22).

Note that instead of making decisions for the values of ri and ci at each level,

we can choose to enumerate all possibilities. Rather than creating a single tree, this

generates an exhaustive listing of all possible Aspen trees given k and n.
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Generation Example

We illustrate our algorithm for creating modified topologies with a simple ex-

ample, in which k = 6 and n = 4, using enumeration to generate all possible topologies,

as shown in Table 3.1. We need values for pi, mi, ri and ci for each level of the tree but

L1; these make up the 13 columns of the table. We omit columns for r1, c1 and m1 as L1

switches do not connect to switches below, and m1 = 1.

Table 3.1: Topology Enumeration with k = 6 and n = 4

p4 m4 r4 c4 p3 m3 r3 c3 p2 m2 r2 c2 p1

1 S
2

6 1 6 S
6

3 1 18 S
18

3 1 54

1 3 18

1 3 6 S
6

3 1 18

1 3 6

3 2 3 S
3

3 1 9 S
9

3 1 27

1 3 9

1 3 3 S
3

3 1 9

1 3 3

2 3 2 S
2

3 1 6 S
6

3 1 18

1 3 6

1 3 2 S
2

3 1 6

1 3 2

1 6 1 S

3 1 3 S
3

3 1 9

1 3 3

1 3 1 S
3 1 3

1 3 1

Reading from left to right, we begin with the fact that, regardless of any other

values, p4 = 1 and m4 =
S
2 . We now can make a choice for the fault tolerance between L4

and L3. Since each L4 switch has k = 6 downlinks to spread evenly among lower-level

pods, we have four possibilities for (r4,c4). Each corresponds to a different L4 fault

tolerance. For instance setting r4 = 1 and c4 = 6 generates a topology in which each

L4 switch connects 6 times to a single L3 pod below, whereas setting r4 = 3 and c4 = 2

connects each L4 switch twice to each of 3 L3 pods below. Based on the fact that all L3

pods must be covered by L4 pods (p4r4 = p3, Equation 3.3), the p3 column can be filled

in. We then use Equation 3.1 to populate the m3 column.
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Since each L3 switch has k
2 downlinks to be spread evenly over L2 pods, we

have that r3c3 =
k
2 . We use this to split the table into possible values for r3 and c3, and

continue by using Equations 3.3 and 3.1 to populate the p2 and m2 columns, respectively.

The process for generating values for r2 and c2 is identical for that of r3 and c3, and these

values give us entries for the remaining column, p1.

Now that we have determined values for p1 for each possible topology, we can

use the fact that p1 = S to replace any entries that depend on S with numerical values.

Finally, we remove rows of the chart that include non-integer values for any variables.

Table 3.2 gives our final chart of possibilities for 4-level trees with 6-port switches.

Table 3.2: Replacing S with Numerical Values

(Shaded rows have been cut from table)

p4 m4 r4 c4 p3 m3 r3 c3 p2 m2 r2 c2 p1

1 27 6 1 6 9 3 1 18 3 3 1 54

1 9 6 1 6 3 3 1 18 1 1 3 18

1 9 6 1 6 3 1 3 6 3 3 1 18

1 3 6 1 6 1 1 3 6 1 1 3 6

1 13.5 3 2 3 9 3 1 9 3 3 1 27

1 4.5 3 2 3 3 3 1 9 1 1 3 9

1 4.5 3 2 3 3 1 3 3 3 3 1 9

1 1.5 3 2 3 1 1 3 3 1 1 3 3

1 9 2 3 2 9 3 1 6 3 3 1 18

1 3 2 3 2 3 3 1 6 1 1 3 6

1 3 2 3 2 3 1 3 2 3 3 1 6

1 1 2 3 2 1 1 3 2 1 1 3 2

1 4.5 1 6 1 9 3 1 3 3 3 1 9

1 1.5 1 6 1 3 3 1 3 1 1 3 3

1 1.5 1 6 1 3 1 3 1 3 3 1 3

1 .5 1 6 1 1 1 3 1 1 1 3 1

3.3 Aspen Tree Properties

An Aspen tree generated by the algorithm of Section 3.2 is defined by the set

of per-level values selected for pi, mi, ri and ci; these values determine the per-level
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fault tolerance, the number of switches needed and hosts supported, and the amount of

hierarchical aggregation from one level to the next.

3.3.1 Fault Tolerance

The fault tolerance at each level of an Aspen tree is determined by the number

of connections ci that each switch s has to pods below. If all but one of the connections

between s and a pod q fail, s can still reach q and can route packets to q’s descendants.

Thus the fault tolerance at Li is ci−1.

To express the fault tolerance of a tree as a whole, we introduce the Fault Toler-

ance Vector (FTV). The FTV lists, from the top of the tree down, individual fault toler-

ance values for each level, i.e. <cn−1,...c2−1>. For instance, an FTV of <3,0,1,0>

indicates a five level tree, with 4 links between every L5 switch and each neighboring L4

pod, 2 links between an L3 switch and each neighboring L2 pod, and only a single link

between an L4 (L2) switch and neighboring L3 (L1) pods. The FTV for a traditional fat

tree is <0,...,0>.

Figure 3.3 presents four sample 4-level Aspen trees of 6-port switches, each with

different FTVs. Figure 3.3a lists all possible k = 6, n= 4 Aspen trees, omitting trees that

have a non-integer value for mi at any level (Listing 3.1). At one end of the spectrum,

we have the unmodified fat tree of Figure 3.3b. In this tree, each switch connects via

only a single link to each pod below. On the other hand, in the tree of Figure 3.3c, each

switch connects three times to each pod below, giving this tree an FTV of <2,2,2>.

Figures 3.3d and 3.3e show more of a middle ground, each adding duplicate connections

at exactly one level of the tree.

3.3.2 Number of Switches Needed

In order to discuss the number of switches and hosts in an Aspen tree, we need

a compact way to express the variable S. Recall that our algorithm begins with a value

for pn, chooses a value for rn, and uses this to generate a value for pn−1, iterating down

the tree towards L1. The driving factor that moves the algorithm from one level to the
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Fault

S Switches Hosts

Hierarchical

Tolerance Aggregation

FTV DCC L4 L3 L2 Overall

<0,0,0> 1 54 189 162 3 3 3 27

<0,0,2> 3 18 63 54 3 3 1 9

<0,2,0> 3 18 63 54 3 1 3 9

<0,2,2> 9 6 21 18 3 1 1 3

<2,0,0> 3 18 63 54 1 3 3 9

<2,0,2> 9 6 21 18 1 3 1 3

<2,2,0> 9 6 21 18 1 1 3 3

<2,2,2> 27 2 7 6 1 1 1 1

(a) All Possible 4-Level, 6-Port Aspen Trees

(Bold rows correspond to topologies pictured.)

(b) Unmodified 4-Level 6-Port Fat Tree: FTV=< 0,0,0 > (c) FTV=< 2,2,2 >

(d) FTV=< 0,2,0 > (e) FTV=< 2,0,0 >

Figure 3.3: Examples of 4-Level, 6-Port Aspen Trees
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next is Equation 3.3. “Unrolling” this chain of equations from L1 up, we have:

p1 = p2r2

p2 = p3r3 → p1 = (p3r3)r2

...

pn−1 = pnrn → p1 = (pnrn)rn−1...r3r2

pn = 1 → p1 = rnrn−1...r3r2

∀i : 1≤ i < n, pi =
n

∏
j=i+1

r j

We use Equation 3.2 and the fact that S is equal to the number of pods at L1 to

express S as a function of each level’s ci value:

S = p1 =
n

∏
j=2

r j = rn×
n−1

∏
j=2

r j =
k
cn
×

n−1

∏
j=2

k
2c j

=
kn−1

2n−2 ×
n

∏
j=2

1
c j

To simplify the equation for S, we introduce the Duplicate Connection Count

(DCC), which when applied to an FTV, adds one to each entry (to convert per-level

fault tolerance values into corresponding ci values) and multiplies the resulting vector’s

elements into a single value. The DCC expresses the fault tolerance of a tree in terms

of the number of link-disjoint paths from each Ln switch to each L1 descendant. For

instance, the DCC of an Aspen tree with FTV <1,2,3> is 2× 3× 4 = 24. We rewrite

the equation for S as S = kn−1

2n−2DCC . Figure 3.3a shows the DCCs and corresponding

values of S for each tree, where S is equal to 54 divided by the tree’s DCC.

This compact representation for S makes it simple to calculate the total number

of switches in a tree. Levels L1 through Ln−1 each have S switches and Ln has S
2 switches.

This means that there are (n− 1
2)S switches altogether in an Aspen tree. Figure 3.3a

gives the number of switches in each example tree, using n− 1
2 = 3.5.

3.3.3 Number of Hosts Supported

The most apparent cost of adding fault tolerance to an Aspen tree is the resulting

reduction in the number of hosts supported. In fact, each time the fault tolerance of

a single level is increased by an additive factor of x with respect to that of a minimal
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fat tree, the number of hosts in the tree is decreased by a multiplicative factor of x. To

see this, note that the maximum number of hosts in the tree is simply the number of L1

switches multiplied by the number of downward facing ports per L1 switch. That is,

hosts =
k
2
×S =

kn

2n−1 ×
n

∏
j=2

1
c j

=
kn

2n−1DCC
(3.4)

As Equation 3.4 shows, changing an individual level’s value for ci from the

default of 1 to x > 1 results in a multiplicative reduction of 1
x to the number of hosts

supported. This tradeoff is shown for all 4-level, 6-port Aspen trees in Figure 3.3a and

also in the corresponding examples of Figures 3.3b through 3.3c. The traditional fat

tree of Figure 3.3b has no fault tolerance and a corresponding DCC of 1. Therefore it

supports the maximal number of hosts, in this case, 162. On the other hand, the tree in

Figure 3.3c has a fault tolerance of 2 between every pair of levels. Each level contributes

a factor of 3 to the tree’s DCC, reducing the number of hosts supported by a factor of

27 from that of a traditional fat tree. Increasing the fault tolerance at any single level of

the tree affects the host count in an identical way. For instance, Figures 3.3d and 3.3e

have differing FTVs, as fault tolerance has been added at a different level in each tree.

However, the two trees have identical DCCs and thus support the same number of hosts.

3.3.4 Hierarchical Aggregation

Another property of interest is hierarchical aggregation, that is, how many pods

at Li are folded into each Li+1 pod. While hierarchical aggregation is generally less of

a concern than the number of hosts supported, it may play a role in determining the

efficiency of certain communication schemes. For hierarchical topologies, a labeling

scheme such as those in [56, 73] can be used to enable compact forwarding state. In this

type of labeling scheme, descendant switches below a given Li pod share the same label

prefix, and therefore it is desirable to group as many Li−1 switches together as possible

under a single Li switch. The hierarchical aggregation at Li of an Aspen tree expresses

the number of Li−1 pods to which each Li switch connects, and can be written as mi
mi−1

.

As with host count, there is a direct tradeoff between fault tolerance and hierar-

chical aggregation. This is because the number of downlinks available at each switch

does not change as the fault tolerance of a tree is varied. So if the ci value for a switch s
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is to be increased, the extra links must come from other downward neighbors of s. This

necessarily reduces the number of pods to which s connects below.

It is difficult to provide an equation that directly relates fault tolerance and hierar-

chical aggregation at a single level, because hierarchical aggregation is not a single-level

concept. To increase the hierarchical aggregation at Li ( mi
mi−1

) we must either increase mi

or decrease mi−1. However, this in turn reduces either Li+1 or Li−1 hierarchical aggre-

gation. Because of this, we consider the hierarchical aggregation across the entire tree.

While this does not provide a complete picture, it does give intuition about the trade-

off between fault tolerance and hierarchical aggregation. We measure an Aspen tree’s

overall hierarchical aggregation as the product of its per-level hierarchical aggregation

values:

mn

mn−1
× mn−1

mn−2
× ...× m3

m2
× m2

m1
=

mn

m1
=

S
2

Therefore, overall hierarchical aggregation has an identical dependency on an

Aspen tree’s FTV to that of host count; an additive increase to a level’s ci value results

in a multiplicative reduction in hierarchical aggregation by the same factor. Figure 3.3b

has the maximal possible hierarchical aggregation at each level (in this case, 3) while

Figure 3.3c has no hierarchical aggregation at all. The additional fault tolerance at a

single level of each of Figures 3.3e and 3.3d costs these trees a corresponding factor of

3 in overall aggregation. The values related to hierarchical aggregation for all possible

k = 6, n = 4 Aspen trees are given in Figure 3.3a.

3.4 Leveraging Fault Tolerance:

Routing Around Failures

Recall from the example of Section 3.1 that a minimal fat tree has no choice but

to drop a packet arriving at a switch incident on a failed link. In fact, in Figure 3.1, a

packet sent from host x to host y would be doomed to be lost the instant that x’s ingress

switch a selected b as the packet’s next hop. Extra fault tolerance links allow for this

“dooming” decision to happen later in the packet’s path; this reduces the chances that a

packet will be dropped due to a failure that occurs while the packet is in flight. Moreover,
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keeping the set of switches that need to react close to a failure limits both convergence

time and overhead of the reaction.

Figure 3.4 shows a k = 4, n = 4 Aspen tree, modified from the 4-level, 4-port

fat tree of Figure 3.1 to have an FTV of <0,1,0>, with additional fault tolerance links

between L3 and L2. As described in Section 3.3, this comes at the cost of half of the

hosts in the tree. The added fault tolerance links between L3 and L2 give a packet sent

from x to y an alternate path through h, as indicated by the darkened arrows. If switch

e knows about the failed link between f and g, it can simply route packets towards h

rather than g.

d	
  

e	
   c	
  

g	
  

f	
   h	
  

y	
  

a	
  

b	
  

x	
  

L2	
  

L3	
  

L4	
  

L1	
  

Figure 3.4: 4-Level, 4-Port Aspen Tree with FTV= <0,1,0>

In this example the switch that needs to know about the failure and make al-

ternate routing decisions is relatively far along the packet’s path. In contrast, in the

traditional fat tree of Figure 3.1, knowledge of the failure needs to propagate all the way

back to the sender’s ingress switch. In other words, the addition of fault tolerance links

reduces the set of switches that react to a failure to the ancestors of a switch incident on

the failure, rather than the entire tree. Based on this property, we suggest a protocol for

reacting to failures in Aspen trees with added fault tolerance links (and non-zero FTV

entries).

3.4.1 Communication Protocol Overview

A key reason for the slow convergence of broadcast-based protocols (e.g. OSPF

and IS-IS) in the data center is the need to disseminate topology information to every

possible sender after a single link failure. Each switch performs expensive calculations
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that grow with the size of the topology, and routing updates propagate through a number

of hops proportional to the depth of the tree.

We leverage the existence of added fault tolerance links to drastically reduce this

expense, by considering an insight similar to that of failure-carrying packets [45]: the

tree consists a relatively stable set of deployed physical links, and a subset of these links

are up and available at any given time. Our approach is to allow OSPF to converge for

the full physical topology, and to use separate out-of-band notifications to alert nearby

ancestor switches of transient link failures and recoveries. These ancestors can select

alternate paths to avoid failures, even for packets that are in flight as a failure occurs.

The number of hops across which notifications propagate is smaller, as notifications

move upwards to nearby ancestors rather than up and back down the entire tree. More

importantly, these notifications are much simpler to compute and to process than the

corresponding calculations required for global converge of OSPF. Finally, the number

of switches that react to the failure decreases significantly, reducing the overall control

overhead of re-convergence.

3.4.2 Propagating Failure Notifications

To determine the ancestors that receive a failure notification, we consider the

effect of a link failure along an in-flight packet’s intended path. Shortest path routing

will send packets up and back down the tree, so we consider both the upward and the

downward path segments.

If a link along the upward segment of a packet’s path fails, the path simply

changes on the fly. This is because each of a switch’s upward-facing ports leads to a

potentially different subset of Ln switches. In Section 3.2, we introduced the requirement

that all Ln switches connect at least once to all Ln−1 pods, so all Ln switches ultimately

reach all hosts. As such, a packet can travel upward towards any Ln switch and therefore

its upward path can change on the fly in response to link failure. The switch at the bottom

of the failed link can simply select an alternate upward-facing output port. Therefore,

no failure notifications are necessary to support re-routing of in-flight packets on the

upward segments of their paths.
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The case in which a link fails along the downward segment of a packet’s intended

path is somewhat more complicated. If a failure occurs below a downward-moving

packet’s current location, and if there is added fault tolerance between the packet’s loca-

tion and the failure, then there is an opportunity to re-route around the failure. Consider

a failure that occurs between Li and Li−1 along a packet’s intended downward path.

Fault tolerance properties below Li are not relevant, as the packet needs to be diverted

at or before reaching Li in order to avoid the failure. However, if there is added fault

tolerance at or above Li, nearby switches can route around the failure, according to the

following cases:

1. ci>1: The failed link is at a level with added fault tolerance.

2. ci=1, ci+1>1: The closest added fault tolerance is immediately above the failure.

3. ci=1, c f>1, for some f>i+1: The nearest level with additional links is more than

one hop above.

Case 1: This case corresponds to the failure of link e− f in Figure 3.4. When the packet

reaches switch e, e realizes that the intended link e− f is unavailable and instead uses

its second connection to f ′s pod, through h. By definition of a pod, h has downward

reachability to the same set of descendants as f and therefore can reach the packet’s

intended destination. Since e is incident on the failed link, it does not need to propagate

any notifications.

Case 2: Case (2) corresponds to the failure of link f−g in Figure 3.4. In this case, if the

packet travels all the way to f it will be dropped. But if switch e learns of the failure of

f−g before the packet’s arrival, it chooses the alternate path through f ’s pod member

h. To allow for this, when f notices the failure of link f−g, it should notify any parent

(e.g. e) that has a second connection to f ’s pod (e.g. via h).

Case 3: Finally, Figure 3.5 shows an example of case (3), in which L2 link f−g fails

and the closest added fault tolerance is at L4. Here, the closest switch to f that can

route around the failure is d. Upon a packet’s arrival, d can select the path d−i−h−g,

ultimately reaching the packet’s destination. While the fault tolerance is located further

from the failure in this case than in case (2), the goal is the same: f notifies any ancestor

(e.g. d) with a downward path to another member of f ’s pod.
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Figure 3.5: 4-Level, 4-Port Aspen Tree with FTV= <1,0,0>

To generalize, when a link from Li switch s to Li−1 neighbor t fails, s first de-

termines whether it has non-zero fault tolerance. If so, it subsequently route all packets

intended for t to an alternate member of t’s pod. Otherwise, s passes a notification of

the failure (indicating the hosts that it no longer reaches) upwards. If an ancestor that

receives this notification has alternate paths to these hosts (via an alternate member of

s’s pod), it adjusts its local state accordingly. Otherwise it forwards the notification

upwards. Overall, the complexity of incorporating these notifications is minimal.

3.5 Wiring the Tree: Striping

In Section 3.2, we discussed ways to generate Aspen trees in terms of switch

count and placement, and the number of connections between switches at adjacent lev-

els. Here, we consider the organization of connections between switches, a process we

refer to as striping. We have deferred this discussion until now because of the topic’s

dependence on the techniques described in Section 3.4 for routing around failures.

Striping refers to the distribution of connections between an Li pod and neigh-

boring Li−1 pods. For instance, consider the striping pattern between L3 and L2 in the

3-level tree of Figure 3.6a. The leftmost switch in each L2 pod connects to the leftmost

two L3 switches, whereas the rightmost switch in each L2 pod connects to the rightmost

two L3 switches. On the other hand, Figure 3.6b shows a different connection pattern

for the switches in the rightmost two L2 pods, as indicated with the darkened lines.
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(a) Standard Fat Tree Striping (b) Alternate Striping Option

(c) Disconnected Striping (d) Striping with Parallel Links

Figure 3.6: Striping Examples for a 3-Level, 4-Port Tree

(Hosts are omitted for clarity.)

Striping can affect connectivity, over-subscription ratios, and the effectiveness of

additional fault tolerance links in hierarchical topologies. Some striping schemes even

disconnect switches at one level from pods at the level below. In fact, we made a striping

assumption in Section 3.2 to avoid exactly this scenario, by introducing the constraint

that each Ln switch connects to each Ln−1 pod at least once. The striping scheme in

Figure 3.6c violates this constraint, as the two shaded L3 switches do not connect to

all L2 pods. Striping patterns can include parallel links, as in Figure 3.6d. Each L3

switch connects twice to one neighboring L2 pod, via parallel connections to a single

pod member.

Introducing additional fault tolerance into an Aspen tree increases the number

of links between switches and pods at adjacent levels, thus increasing the set of pos-

sibilities for distributing these connections. Since the techniques of Section 3.4 rely

on the existence of ancestors common to a switch s incident on a failed link and alter-

nate members of s’s pod, a correct striping policy must yield such common ancestors.

Specifically, this is necessary for routing around failures in cases (2) and (3), in which

the fault tolerance at the level of the failure is zero, with non-zero fault tolerance higher

up in the tree.
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In case (2) (Figure 3.4), the additional fault tolerance is immediately above the

failed link. Here, the packet can be successfully re-routed by the common L3 parent

shared by f and h (i.e. e). Had e simply had duplicate parallel connections to f , it

would not been able to route around this failure. In general, there will be a common

parent whenever the striping is not entirely comprised of parallel links between a switch

and each neighboring pod below. That is, it is possible to route around a single failure

between Li and Li−1 if the Li+1 fault tolerance is x, including up to x− 1 parallel links

to an Li pod member and at least one link to alternate member.

Case (3) (Figure 3.5) is more complicated. We again require that switches f and

h have at least one ancestor in common, but this ancestor is further above f and h in

the tree. For re-routing to work correctly, the following striping policy must hold: For

every level Li with minimal connectivity to Li−1, if L f : f>i is the closest fault-tolerant

level above Li, each Li switch s shares at least one L f ancestor a with another member

of s’s pod, t.

3.6 Evaluation

We explore the tradeoffs between convergence time and scalability in Aspen

trees, and consider trees that provide a significant reduction in convergence time at a

reasonable scalability cost.

3.6.1 Convergence versus Scalability

An Aspen tree with added fault tolerance, and therefore an FTV with non-zero

entries, has the ability to react to failures locally. This eliminates the need for global re-

convergence of broadcast-based routing protocols on failure, and instead relies on simple

failure notifications to a small set of switches close to a failure. These messages require

less processing time and travel shorter distances in the tree to fewer nodes, significantly

reducing convergence time and control overhead.

If the fault tolerance at L f is non-zero, then switches at L f can route around

failures that occur at or below L f , provided a switch incident on an Li failure notifies

its L f ancestors to use alternate routes. So, the convergence time for a fault between Li
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and Li−1 is simply the set of network delays and the cost of processing time for each

switch along an ( f−i)-hop path. Adding extra links at the closest possible level L f

above expected failures at Li minimizes this convergence time.

The cost of adding this fault tolerance is in the overall scalability of the tree, both

in terms of host support and hierarchical aggregation. For each level with an FTV entry

x > 0, the maximum possible number of hosts is reduced by a multiplicative factor of
1

x+1 . The tree’s inherent hierarchical aggregation changes identically.

We begin with the small example of k = 6 and n = 4 in order to explain the

evaluation process. For each possible 4-level, 6-port Aspen tree, we consider the FTV

and correspondingly, the distance that updates would have to travel in response to a

failure at each level. For instance if there is non-zero fault tolerance between Li and

Li−1 then the distance for failures at Li is 0 whereas the distance for failures at Li−2 is

2. If there is no area of non-zero fault tolerance above a level, we assume that updated

routing information travels up the tree and back down to L1, as in a traditionally-defined

fat tree. We omit trees for which any of the variables introduced in Section 3.2 are not

integers. We average this propagation distance across all levels of the tree1 to give a

metric for expressing overall convergence time.

We consider the scalability cost of adding fault tolerance, by counting the num-

ber of hosts missing in each Aspen tree as compared to a traditional fat tree with the

same switch size and number of levels. We elected to consider hosts removed, rather

than hosts remaining, so that the compared measurements (convergence time and hosts

removed) are both minimal in the ideal case and can be more intuitively depicted graph-

ically. Figure 3.7 shows this convergence/scalability tradeoff; for each possible FTV

option, the figure displays the average convergence time (in hop count) across all levels,

alongside the number of hosts missing with respect to a traditional fat tree. We normal-

ize the values shown to percentages of the worst case. We omit graphs for hierarchical

aggregation as the relationship to fault tolerance is identical to that of host count.

Thus, we have a spectrum of Aspen trees. At one end of this spectrum is the

tree with no added fault tolerance (FTV = <0,0,0>) but with no hosts removed. At

the other end we have trees with high fault tolerance (all failure reactions are local) but

1We do not include first-hop failures, as our techniques can not help in such situations.
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Figure 3.7: Host Removal and Convergence Time vs. Fault Tolerance

in 4-Level, 6-Port Aspen Trees (Max Hops=5, Max Hosts = 162)

with over 95% of the hosts removed. In the middle we find interesting cases: in these,

not every failure can be handled locally, but those failures that are not handled locally

can be masked within a small and limited number of hops. The convergence times for

these middle-ground trees are significantly reduced from that of a traditional fat tree, but

substantially fewer hosts are removed than for the tree with all local failure reactions.

An interesting observation is that there are often several ways to generate the

same host count, but with different convergence times. This is shown in the second,

third and fourth entries of Figure 3.7, in which the host counts are all 1
3 of that for a

minimal fat tree, but the average update propagation distance varies from 1 to 2.3 hops.

A network designer constrained by the number of hosts to support should select a tree

that yields the smallest convergence time for the required number of hosts. Similarly,

there are cases in which the convergence times are identical but the host count varies,

e.g. FTVs <2,0,0> and <0,2,2>. Both have average update propagation distances of

1, but the former supports 54 hosts and the latter only 18. If constrained to a particular

convergence time, we recommend the tree with the largest number of hosts.

We now examine more realistically sized Aspen trees. In practice, we expect

trees with 3≤n≤7 levels and 16≤k≤128 ports per switch, in support of tens of thousands

of hosts. Figures 3.8a and 3.8b show graphs similar to that of Figure 3.7, for 16-port

trees of depths 4 and 5, respectively. Because of the large number of configuration

options for these values of k and n, we often find that numerous FTVs all correspond to

a single (host count, convergence time) pair. We collapsed all such duplicates into single

entries, and because of this, we removed the FTV labels from the resulting graphs.



47

0%	
  

20%	
  

40%	
  

60%	
  

80%	
  

100%	
  

%
	
  o
f	
  M

ax
im

um
	
  V
al
ue

	
  

Fault	
  Tolerance	
  Vector	
   Convergence	
  Time	
  
Hosts	
  Removed	
  

(a) Host Removal and Convergence Time vs. Fault Tolerance in

4-Level, 16-Port Aspen Trees (Max Hops=5, Max Hosts = 8,192)
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(b) Host Removal and Convergence Time vs. Fault Tolerance in

5-Level, 16-Port Aspen Trees (Max Hops=7, Max Hosts = 65,536)

(Arrows show varying convergence time for single host count value.)
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(c) Convergence Time vs. Host Count in 4-Level, 16-Port Trees
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(d) Convergence Time vs. Host Count in 5-Level,16-Port Trees

Figure 3.8: Convergence vs. Scalability for 4 and 5-Level, 16-Port Aspen Trees
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Figures 3.8a and 3.8b show the same trends as does Figure 3.7, but since there

are more options for generating trees, the results are perhaps more apparent. As we

move from left to right in the bar graphs, we remove more hosts. However, the host

removal bars in the graph resemble step functions; each individual number of hosts

removed corresponds to several different values for average convergence time. We mark

one such step in Figure 3.8b with arrows. In this case, if we are constrained by the

number of hosts to support, we would select the rightmost entry in the corresponding

step, i.e. that with the minimum convergence time.

Figures 3.8c and 3.8d directly compare convergence time and host count in or-

der to provide more intuition about the relationship between the two. Note that for these

figures, the x-axis is in terms of hosts present in the tree and that the figures show nu-

merical values rather than percentages. These graphs show the same trends as those of

Figures 3.8a and 3.8b; convergence time decreases with the number of hosts. This rela-

tionship is non-linear and there are many local minima and maxima along each graph.

A local maximum represents a case in which the host count is similar to that for nearby

points, but convergence time is high. Local maxima therefore correspond to less de-

sirable trees. A similar argument shows that local minima represent (relatively) better

trees.

Figure 3.9 shows trees with larger switches (k = 32 and 64) but with smaller

values for the depth of the tree (n = 3) so as to keep our results in line with the topology

sizes we expect to see in practice. For these graphs, we again collapsed duplicates and

thus had to omit the FTV labels, but since the small number of levels limits the number

of possible trees, there are fewer entries than in the graphs of Figure 3.8. These results

again show that with only modest reductions to host count, the reaction time of a tree

can be significantly reduced.

3.6.2 Recommended Aspen Trees

We showed in Section 3.4 that the most useful and efficient fault tolerance is

both above failures above failures and as close to failures as possible. We formalize

this in terms of the FTV. The most fault-tolerant tree has an FTV with all maximal (and

non-zero) entries. However, an optimal FTV may come at too high of a scalability cost.
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(a) Host Removal and Convergence Time vs. Fault Tolerance in

3-Level, 32-Port Aspen Trees (Max Hops=3, Max Hosts = 8,192)
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(b) Host Removal and Convergence Time vs. Fault Tolerance in

3-Level, 64-Port Aspen Trees (Max Hops=3, Max Hosts = 65,536)

Figure 3.9: Convergence vs. Scalability for 3-Level, 32 and 64-Port Aspen Trees

To enable usable and efficient fault tolerance, in FTVs with non maximal entries it is

best to cluster non-zero values to the left while simultaneously minimizing the lengths

of series of contiguous zeros. For instance, if we can put only two non-zero entries in

an FTV of length 6, the ideal placement would be <1,0,0,1,0,0>. There are at most

two contiguous zeros, so updates propagate a maximum of two hops, and each 0 has a

corresponding 1 to its left, so no failure leads to global re-convergence.

One Aspen tree in particular bears special mention. Given our goal of keeping

fault tolerance at upper tree levels (and towards the left of an FTV), the biggest value-add

with minimal scalability cost is the addition of extra links at the single level of the tree

that can accommodate all failures, i.e. the top level. A tree with only Ln fault tolerance

has an FTV of <1,0,0,...> and a DCC of 2, and therefore supports half as many hosts as

does a minimal fat tree. The average convergence propagation distance is cut in half for

this tree from that of a traditional fat tree, and more importantly, all updates only travel

upward rather than moving upward and then fanning out to all switches in the tree.
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There are pathological tree options in which added fault tolerance can not help,

and therefore is clearly not worth its cost in scalability. In these trees we have bottleneck

pods, i.e. pods with only a single switch, at high levels in the tree. If a failure occurs

immediately below a bottleneck pod, no amount of fault tolerance higher in the tree can

help as there are not alternate pod members to route around the failure. We do not expect

to see such trees in practice.

3.7 Related Work

There are two ways to handle failures in a network. We can structure the network

so that failures only minimally impact service or we can work around them when they

occur. Historically, the approach has been to work around failures, either by re-routing

packets on the fly, or by using pre-computed backup paths.

3.7.1 Alternative Routing Techniques

Bounce routing techniques work around a failure by temporarily sending packets

away from a destination in order to avoid a failed link. For instance, consider a fat tree in

which switch s is connected to pods p and q below. Suppose that s needs to send a packet

through pod p but that its link to p has failed. s can instead bounce the packet through

pod q and back up to one of s’s alternate pod members, so long as the appropriate

connections and striping patterns are in place. This small 3-hop detour easily works

around the failed link.

However, such a detour does not follow shortest path-style routing and intro-

duces the need for additional forwarding logic in order to avoid loops and deadlocks,

especially when combined with flow control algorithms [20, 37]. On the other hand,

engineering the topology to enable local failure reaction avoids the software complexity

and robustness difficulties of bounce routing techniques, but at a cost in scalability.

Failure carrying packets (FCP) [45] eliminate the convergence process after a

failure by allowing data packets to carry failure information. FCPs leverage the fact that

an intradomain ISP network has a set of relatively stable links, in terms of presence, if

not availability. Therefore, if all routers in the topology know the full physical network
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topology, they simply need to learn the set of links not currently available for a given

packet. FCP provide guaranteed eventual delivery of packets if the graph does not be-

come disconnected, which solves the problem of temporary disconnection. However,

the implementation and deployment cost of introducing a new data plane may hinder

the adoption of FCP in the data center, and the paths ultimately taken by packets can be

long.

Data-driven connectivity (DDC) [50] addresses connectivity issues separately

from the more far reaching distributed computations of the control plane (e.g. load

balancing, shortest path calculation) with a scheme somewhat similar to bounce rout-

ing. We share a similar goal to DDC’s “ideal connectivity” in which packets are not

dropped unless the destination is physically unreachable, however we choose orthogo-

nal approaches. In the authors’ evaluation of various topologies, they note that fat trees

lack “resilient nodes” that provide multiple output ports to a destination. In fact, by

modifying fat trees, we effectively increase the average resilience across all nodes.

Multi-path TCP (MPTCP) [60] breaks individual flows into subflows, each of

which may be sent via a different path based on current congestion conditions in the

network. A path that includes a failed link will appear to be congested since a portion of

it offers no bandwidth, and MPTCP will move any corresponding subflows to another

path. A downside of MPTCP is its reliance on host modifications.

The idea behind this work derives from fast failure recovery [44] techniques in

WANs. Our approach is to engineer data center topologies so as to enable FFR for link

failures.

A difficulty with routing techniques that work around failures is that they may

(temporarily) result in long paths, up to 50% longer in the case of DDC. Because we

base our approach on a topology with fixed path lengths, we avoid this issue.

3.7.2 Backup Paths

Another way to improve the fault tolerance of a network is to establish backup

paths for use when a primary path (or link along the path) for a flow fails. Many works

consider this topic in the context of either ad hoc networks or resource allocation for

performance guarantees. Generally, such works fall into two camps. Some advocate as-
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signing backup paths at the start of a flow [31, 32, 43, 68, 75], so that the flow continues

to function after the failure of its primary path and even N−1 of its N backup paths. This

comes at the cost of potentially wasting resources that are reserved for backup paths but

are rarely or never used, as well as the time cost of determining backup paths on flow

entry. Also, for flows with strict performance requirements, it is difficult to pre-compute

appropriate backup paths in the face of dynamic traffic.

On the other hand, some approaches [10, 11, 74] establish a backup path on

the fly at the time of a failure. The downsides of this are the possibility of contention

for new paths upon failure (especially if the failure affects multiple flows that all try

to establish new paths at once), the time to calculate new paths upon failure, and the

fact that recovery is not guaranteed for any given flow. However, this type of solution

does not have the drawback of potentially wasting valuable bandwidth that may never

be needed, nor the time cost of setting backup paths initially.

The authors of [10] and [11] consider dynamically recovering from faults by re-

calculating new routes on the fly. They study this process along several metrics, varying

the portion of the path that is recalculated, the timing of recalculation, and the possi-

bility of retrying recalculation. Their findings show that when one physical link failure

can affect multiple flows, local reaction is faster. This finding supports our belief that

it is ideal to keep the switches that react to a failure as close as possible to the failure

itself. A concern with local re-routing in general is the use of longer paths; the regular

structure of our Aspen trees renders this a non-issue.

The authors of [74] present a hybrid method, calculating backup paths prior to

failure, but admitting flows once a primary path is found without waiting for backup

path calculation to complete. Backup paths are not complete paths, but rather “patches”

that avoid failed links along portions of a path. While this approach differs from ours in

its use of source routing, it is similar in that it enables local failure reaction.

3.7.3 High Performance Computing Topologies

Our topologies derive from the initial presentations of fat trees as non-blocking

architectures for communication in supercomputers [19, 47]. The traditionally defined

fat tree of Figure 3.1 comes from DeHon’s Butterfly Fat-Tree [22]. A number of works
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have extended traditional fat tree topologies by essentially raising ci from 1 to 2 uni-

formly at all levels of the tree. Upfal’s multi-butterfly networks [71] and Leighton et

al’s routing algorithms for these topologies [46] show examples of these subsets of our

topologies, as do Goldberg et al’s splitter networks [26]. These works consider path

existence for message scheduling but none examine the applicability of the topologies

in terms of running real protocols (e.g. IP) over modern switch hardware in today’s data

centers.

3.8 Summary

In this chapter, we introduce a new class of data center topologies called Aspen

trees. Aspen trees are based on fat trees, but are a more general class of multi-rooted

tree topologies in which a network designer can tune the tradeoffs between scalability

and fault tolerance to meet the requirements for a particular situation. The additional

fault tolerance in an Aspen tree comes from redundant links added to a subset of levels

in the tree. These additional links provide alternate paths in the case of one or more link

failures. We present a protocol to generate an Aspen tree, given scalability and fault

tolerance requirements, and we explore the fault tolerance and scalability properties of

several example topologies. Finally, we offer a particular type of Aspen tree that gives

excellent fault tolerance with minimal scalability cost.
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Chapter 4

ALIAS: Scalable, Decentralized Label

Assignment for Data Centers

In this chapter, we present the design and implementation of ALIAS, a scalable,

automatic and decentralized protocol for labeling switches and hosts in a hierarchically

structured data center network. The labels assigned by ALIAS encode both the locations

of switches and hosts within the network as well as the path multiplicity inherent in a

hierarchical topology. As such, these labels form a basis for scalable routing and for-

warding within the data center while simultaneously reducing the management overhead

on the network administrator. ALIAS provides the following features:

• Automatic, decentralized host labeling: Switches learn their positions in the topol-

ogy and automatically group themselves into hypernodes of high connectivity.

Each hypernode (HN) is uniquely numbered among all hypernodes, serving as

the basis for hierarchical label assignment for hosts. This proceeds via pair-wise

message exchange between immediate neighbors, with no reliance on centralized

components, manual configuration, topology blueprints or flooding-based routing

protocols.

• Scalable route discovery: Each switch discovers routes to remote hosts. For dis-

tant switches, it is sufficient to learn the route to the correct hypernode. We dis-

tribute this reachability information using pair-wise (broadcast-free) exchanges

along a hierarchical control path established during the host labeling process.

54



55

• Fault tolerance and rapid convergence: ALIAS converges to a correct host label-

ing with global reachability (assuming appropriate underlying connectivity) after

arbitrary flux in the topology. It limits the effects of topology changes to a small

surrounding portion of the network.

• Unmodified host and switch compatibility: While ALIAS would be simplified

with host support or switch hardware modification, a goal of the work is to lower

the barrier to adoption. As such, ALIAS runs entirely in switch software and

accesses the underlying hardware through standard APIs such as OpenFlow [1].

We evaluate ALIAS through model checking, simulations and practical experi-

ments. We show that ALIAS successfully provides scalable, decentralized data center

addressing and communication while simultaneously reducing the management burden.

4.1 ALIAS

The goal of ALIAS is to automatically assign globally unique, topologically

meaningful host labels that the network can internally employ for efficient forwarding.

We aim to deliver one of the key benefits of IP addressing—hierarchical address as-

signments such that hosts with the same prefix share the same path through the network

and a single forwarding table entry suffices to reach all such hosts—without requir-

ing manual address assignment and subnet configuration. A requirement in achieving

this goal is that ALIAS be entirely decentralized and broadcast-free. At a high level,

ALIAS switches automatically locate clusters of good switch connectivity within net-

work topologies and assign a shared, non-conflicting prefix to all hosts below such pock-

ets. The resulting hierarchically aggregatable labels lead to compact switch forwarding

entries.1 Labels are simply a reflection of current topology; ALIAS updates and reas-

signs labels to affected hosts based on topology dynamics.

1We use the terms “label” and “address” interchangeably.
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4.1.1 Environment

ALIAS overlays a logical hierarchy on its input topology. Within this hierarchy,

switches are partitioned into levels; each switch belongs to exactly one level. Switches

connect predominantly to switches in the levels directly above or below them, though

pairs of switches at the same level (peers) may connect to each other via peer links.

One high-level dichotomy in multi-computer interconnects is that of direct ver-

sus indirect topologies [66]. In a direct topology, a host can connect to any switch in

the network. With indirect topologies, only a subset of the switches connect directly

to hosts; communication between hosts connected to different switches is facilitated by

one or more intermediate switch levels. We focus on indirect topologies because such

topologies appear more amenable to automatic configuration and because they make up

the vast majority of topologies currently deployed in the data center [4, 13, 18, 28, 47,

56, 57]. Figure 4.1 gives an example of an indirect 3-level topology, on which ALIAS

has overlaid a logical hierarchy. In the figure, Sx and Hx denote the unique IDs of

switches and hosts, respectively.
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Figure 4.1: Sample Multi-Rooted Tree Topology

A host with multiple network interfaces may connect to multiple switches, and

will have separate ALIAS labels for each interface. ALIAS also assumes that hosts do

not play a switching role in the network and that switches are programmable (or run

software such as OpenFlow [1]).
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4.1.2 Protocol Overview

ALIAS first assigns topologically meaningful labels to hosts, and then enables

communication over these labels. As with IP subnetting, topologically nearby hosts

share a common prefix in their labels. In general, longer shared prefixes correspond to

closer hosts. ALIAS groups hosts into related clusters by automatically locating pockets

of strong connectivity in the topology—groups of switches separated by one level in the

hierarchy with full bipartite connectivity between them. However, even assigning a

common prefix to all hosts connected to the same leaf switch can reduce the number

of required forwarding table entries by a large factor (e.g., the number of host-facing

switch ports multiplied by the typical number of virtual machines on each host).

Hierarchical Label Assignment

ALIAS labels are of the form (cn−1...c1.H.VM), wherein the first n−1 fields

encode a host’s location within an n-level topology, the H field identifies the port to which

each host connects on its local switch, and the VM field provides support for multiple

VMs multiplexed onto a single physical machine. ALIAS assigns these hierarchically

meaningful labels by locating clusters of high connectivity and assigning to each cluster

(and its member switches) a coordinate. Coordinates then combine to form host labels;

the concatenation of switches’ coordinates along a path from the core of the hierarchy

to a host make up the ci fields of a host’s label.

Prior to selecting coordinates, switches first discover their levels within the hi-

erarchy, as well as those of their neighbors. Switches i hops from the nearest host are

in level Li, as indicated by the L1, L2 and L3 labels in Figure 4.2. Once a switch es-

tablishes its level, it begins to participate in coordinate assignment. ALIAS first assigns

unique H-coordinates to all hosts connected to the same L1 switch, creating multiple

one-level trees with an L1 switch at the root and hosts as leaves. Next, ALIAS locates

sets of L2 switches connected via full bipartite graphs to sets of L1 switches, and groups

each such set of L2 switches into a hypernode (HN). The intuition behind hypernodes

is that all L2 switches in an L2HN can reach the same set of L1 switches, and therefore

these L2 switches can all share the same prefix. This process continues up the hierarchy,

grouping Li switches into LiHNs based on bipartite connections to Li−1HNs.
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Figure 4.2: ALIAS Applied to a Sample Topology: Level and Label Assignments

Finally, ALIAS assigns unique coordinates to switches, where a coordinate is a

number shared by all switches in an HN and unique across all other HNs at the same

level. By sharing coordinates among HN members, ALIAS leverages the hierarchy

present in the topology and reduces the number of coordinates used overall, thus col-

lapsing forwarding table entries. Switches at the core of the hierarchy do not require

coordinates and are not grouped into HNs. L1 switches select coordinates without be-

ing grouped into HNs. Further, we employ an optimization (Section 4.2.2) that assigns

multiple coordinates to an Li switch, one per neighboring Li+1HN.

When the physical topology changes due to a switch, host or link failure, config-

uration changes, or any other circumstances, ALIAS adjusts all label assignments and

forwarding entries as necessary (Sections 4.2.3 and 4.3.3).

Figure 4.2 shows a possible set of coordinate assignments and the resulting host

label assignments for the topology of Figure 4.1; only topology-related prefixes are

shown for host labels. For this 3-level topology, L2 switches are grouped in HNs (as

shown with dotted lines), and L1 switches have multiple coordinates corresponding to

multiple neighboring L2HNs. Hosts have multiple labels corresponding to the L2HNs

connected to their ingress L1 switches.
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Communication

ALIAS’s labels can be used in a variety of routing and forwarding contexts, such

as tunneling, IP-encapsulation or MAC address rewriting [56]. We have implemented

one such communication technique (based on MAC address rewriting) and present here

an example of this communication.

An ALIAS packet’s traversal through the topology is controlled by a combi-

nation of forwarding (Section 4.3.2) and addressing logic (Section 4.2.2) Consider the

topology shown in Figure 4.2. A packet sent from H4 to H2 must flow upward to one of

S7, S8 or S9, and then downward towards its destination. First, H4 sends an ARP request

to its first-hop switch, S13, for H2’s label (Section 4.3.3). S13 determines this label (with

cooperation from nearby switches if necessary) and responds to H4. H4 can then for-

ward its packet to S13 with the appropriate label for H2, for example (1.2.1.0) if H2 is

connected to port 1 of S2 and has VM coordinate 0. At this point, forwarding logic moves

the packet to one of S7, S8 or S9, all of which have a downward path to H2, The rout-

ing protocol (Section 4.3.1) creates the proper forwarding entries at switches between

H4 and the core of the network, so that the packet can move towards an appropriate L3

switch. Next, the packet is forwarded to one of S5 or S6, based on the (1.x.x.x) prefix

of H2’s label. Finally, based on the second field of H2’s label, the packet moves to S2

where it can be delivered to its destination.

4.1.3 Multi-Path Support

Multi-rooted trees provide multiple paths between host pairs, and routing and

forwarding protocols should discover and utilize these multiple paths for good perfor-

mance and fault tolerance. ALIAS provides multi-path support for a given destination

label via its forwarding component (Section 4.3.2). For example, in Figure 4.2, a packet

sent from H4 to H2 with destination label (1.2.1.0) may traverse one of five different

paths.

An interesting aspect of ALIAS is that it enables a second class of multi-path

support: hosts may have multiple labels, where each label corresponds to a set of paths

to a host. Thus, choosing a label corresponds to selecting a set of paths to a host. For



60

example, in Figure 4.2, H2 has two labels. Label (1.2.1.0) encodes 5 paths from

H4 to H2, and label (7.3.1.0) encodes a single H4-to-H2 path. These two classes of

multi-path support help limit the effects of topology changes and failures. In practice,

common data center fabric topologies will result in hosts with few labels, where each la-

bel encodes many paths. Policy for choosing a label for a given destination is a separable

issue; we present some potential methods in Section 4.3.3.

4.2 Protocol

ALIAS is comprised of two components, Level Assignment and Coordinate As-

signment. These components operate continuously, acting whenever topology condi-

tions change. For example, a change to a switch’s level may trigger changes to that

switch’s and its neighbors’ coordinates. ALIAS also involves a Communication Com-

ponent for routing, forwarding, and label resolution and invalidation; in Section 4.3 we

present one of the many possible communication components that might use the labels

assigned by ALIAS.

ALIAS operates based on the periodic exchange of Topology View Messages

(TVMs) between switches. In an n-level topology, individual computations rely on

information from no more than n−1 hops away.

Listing 4.1 gives an overview of the general state stored at each switch, as well

as that related to level assignment. A switch knows its own unique ID and the IDs of its

neighbors (lines 1-2). It also records an indication of whether each neighbor is a host or

switch (line 3). Switches also know their own levels and those of their neighbors (lines

4-5) as well as the types of links (regular or peer) that connect them to each neighbor

(line 6). The values in lines 4-6 of the listing are set by the level assignment protocol

(Section 4.2.1).

4.2.1 Level Assignment

ALIAS level assignment enables each switch to determine its own level as well

as those of its neighbors, and to detect and mark peer links for special consideration by

other components. ALIAS defines an Li switch to be a switch with a minimum of i hops
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Listing 4.1: ALIAS local state
1 UID myId
2 UIDSet nbrs
3 Map(UID→NodeType) types

4 Level level
5 Map(UID→Level) levels
6 Map(UID→LinkType) link_types

to the nearest host. For convenience, in an n-level topology, Ln switches may be referred

to as cores. Regular links connect L1 switches to hosts, and Li switches to switches at

Li±1, while peer links connect switches of the same level.

Level assignment is bootstrapped by L1 switch identification as follows: In addi-

tion to sending TVMs, each switch also periodically sends IP pings to all neighbors that

it does not know to be switches. Hosts reply to pings but do not send TVMs, enabling

switches to detect neighboring hosts. This allows L1 identification to proceed without

host modification. If hosts provided self-identification, then the protocol becomes much

simpler. Recent trends toward virtualization in the data center with a trusted hypervisor

may take on this functionality.

When a switch receives a ping reply from a host, it immediately knows that it is

at L1 and that the sending neighbor is a host, and updates its state accordingly (lines 3-4,

Listing 4.1). If a ping reply causes the switch to change its current level, it may need

to mark some of its links to neighbors as peer links (line 6). For instance, if the switch

previously believed itself to be at L2, it must have done so because of a neighboring L1

switch and its connection to that neighbor is now a peer link.

Based on L1 identification, level assignment operates via a wave of information

from the lowest level of the hierarchy upwards; A switch that receives a TVM from an

L1 switch labels itself as L2 if it has not already labeled itself as L1, and this process

continues up the hierarchy. More generally, each switch labels itself as Li, where i− 1

is the minimum level of all of its neighbors.

On receipt of a TVM, a switch s determines whether the source’s level is smaller

than that recorded for any of its others neighbors, and if so, adjusts its own level as-

signment (line 4, Listing 4.1). It also updates its state for its neighbor’s level and type

if necessary (lines 3,5). If s’s level or that of its neighbor has changed, it detects and
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records any changes to the link types to any of its neighbors (line 6). For instance, if an

L3 switch moves to L2, links to L2 neighbors become peer links. Links to L4 neighbors

are no longer legal but are not disabled, as the L4 neighbors will adjust their level assign-

ments upon receipt of the next TVM from the modified switch. When a switch detects

disconnection from a neighbor, it proceeds in a similar fashion, making any necessary

level changes and updating link types accordingly.

The presence of unexpected or numerous peer links may indicate a miswiring,

or erroneous cabling, with respect to the intended topology. If ALIAS suspects a mis-

wiring, it raises an alert (e.g., by notifying the administrator) but continues to operate.

In this way, miswirings do not bring the system to a halt, but are also not ignored.

ALIAS’s level assignment can assign levels to all switches as long as at least one

host is present. Once a switch learns its level, it participates in coordinate assignment.

4.2.2 Label Assignment

An ALIAS switch’s label is the concatenation of n−1 coordinates,

cn−1cn−2...c2c1, each corresponding to one switch along a path from a core switch to

the labeled switch. A host’s label is then the concatenation of an ingress L1 switch’s

label and its own H and VM coordinates. As there may be multiple paths from the core

switches of the topology to a switch (host), switches (hosts) may have multiple labels.

Coordinate Aggregation

Since highly connected data center networks tend to have numerous paths to

each host, per-path labeling can lead to overwhelming numbers of host labels. ALIAS

creates compact forwarding tables by dynamically identifying sets of Li switches that

are strongly connected to sets of Li−1 switches below. It then assigns to these Li hy-

pernodes unique Li coordinates. By sharing one coordinate among the members of an

LiHN, ALIAS allows hosts below this HN to share a common label prefix, thus reducing

forwarding table entries.

An LiHN is defined as a maximal set of Li switches that all connect to an identical

set of Li−1HNs, via any constituent members of the Li−1HNs. Each Li switch is a

member of exactly one LiHN. L2HN grouping are based on L1 switches rather than
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HNs. In Figure 4.3, L2 switches S5 and S6 connect to same set of L1 switches, namely

{S1,S2,S3}, and are grouped together into an L2HN, whereas S4 connects to {S1,S2},
and therefore forms its own L2HN. Similarly, S7 and S8 connect to both L2HNs (though

via different constituent members) and form one L3HN while S9 forms a second L3HN,

as it connects only to one L2HN below.
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Figure 4.3: ALIAS Hypernodes

Since LiHNs are defined based on connectivity to identical sets of Li−1HNs, the

members of an LiHN are interchangeable with respect to downward forwarding. This is

the key intuition that allows HN members to share a coordinate, ultimately leading to

smaller forwarding tables.

ALIAS employs an optimization with respect to HN grouping for coordinate

assignment. Consider switch S1 of Figure 4.3, and suppose the L2HNs {S4} and {S5,S6}
have coordinates x and y, respectively. Then S1 has labels of the form ...xc1 and ...yc1,

where c1 is S1’s coordinate. Since S1 is connected to both L2HNs, it needs to ensure that

c1 is unique from the coordinates of all other L1 switches neighboring {S4} and {S5,S6}
(in this example, all other L1 switches).

It is helpful to limit the sets of switches competing for coordinates, to decrease

the probability of collisions (two HNs selecting the same coordinate) and to allow for a

smaller coordinate domain. We accomplish this as follows: S1 has two coordinates, one

corresponding to each of its label prefixes, giving it labels of the form ...xc1 and ...yc2.
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In this way S1 competes only with S2 for labels corresponding to HN {S4}. In general,

ALIAS assigns to each switch a coordinate per upper neighboring HN. This reduces

coordinate contention without increasing the coordinate domain size.

Decider/Chooser Abstraction

The goal of coordinate assignment in ALIAS is to select coordinates for each

switch such that these coordinates can be combined into forwarding prefixes. By assign-

ing per-HN rather than per-switch coordinates, ALIAS leverages a topology’s inherent

hierarchy and allows nearby hosts to share forwarding prefixes. In order for an Li switch

to differentiate between two lower-level HNs, for forwarding purposes, these two HNs

must have different coordinates. Thus, the problem of coordinate assignment in ALIAS

is to enable LiHNs to cooperatively select coordinates that do not conflict with those

of other LiHNs that have overlapping Li+1 neighbors. HN members are typically not

directly connected to one another, so this task requires indirect coordination.

To explain ALIAS’s coordinate assignment protocol, we begin with a simple

Decider/Chooser Abstraction (DCA), and refine the abstraction to solve the more com-

plicated problem of coordinate assignment. The basic DCA includes a set of choosers

that select random values from a given space, and a set of deciders that ensure unique-

ness among the choosers’ selections. A requirement of DCA is that any two choosers

that connect to the same decider select distinct values. Choosers make choices and send

these requests to all connected deciders. Upon receipt of a request from a chooser, a

decider determines whether it has already stored the value for another chooser. If not, it

stores the value for the requester and sends an acknowledgment. If it has already stored

the requested value for another chooser, the decider compiles a list of hints of already

selected values and sends this list with its rejection to the chooser. A chooser reselects

its value if it receives a rejection from any decider, and considers its choice stable once

it receives acknowledgments from all connected deciders.

We employ DCA within a single LiHN and its Li−1 neighbors to assign coor-

dinates to the Li−1 switches, as in Figure 4.4a. The members of L2HN {S5,S6} act as

deciders for L1 choosers, S1, S2 and S3, ensuring that the three choosers select unique

L1-coordinates.
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Figure 4.4: Decider/Chooser Abstraction in ALIAS

Recall that as an optimization, ALIAS assigns to each switch multiple coordi-

nates, one per neighboring higher level HN. We extend the basic DCA to have switches

keep track of the HN membership of upward neighbors, and to store coordinates (and

an indication of whether a choice is stable) on a per-HN basis. This is shown in Fig-

ure 4.4b, where each L1 switch stores information for all neighboring L2HNs. The figure

includes two instances of DCA, that from Figure 4.4a and that in which S4 is a decider

for choosers S1 and S2.

Finally, we refine DCA to support coordinate sharing within an HN. Since each

member of an HN may connect to a different set of higher level switches (deciders), it

is necessary that all HN members cooperate to form a distributed chooser. HN mem-
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bers cooperate with the help of a deterministically selected representative L1 switch (for

example, the L1 switch with the lowest MAC address of those connected to the HN).

L1 switches determine whether they represent a particular HN as a part of HN grouping

calculations.

The members of an LiHN, and the HN’s representative L1 switch collaborate to

select a shared coordinate for all HN members as follows: The representative L1 switch

performs all calculations and makes all decisions for the chooser, and uses the HN’s Li

switches as virtual channels to the deciders. LiHN members gather and combine hints

from deciders, passing them down to the representative L1 switch for calculations. The

basic chooser protocol introduced above is extended to support reliable communication

over the virtual channels between the representative L1 switch and the HN’s Li switches.

Additionally, for the distributed version of DCA, deciders maintain state about the HN

membership of their Li neighbors in order to avoid falsely detecting conflicts; a decider

may be connected to a single chooser via multiple virtual channels (Li switches) and

should not perceive identical requests across such channels as conflicts.

Figure 4.4c shows two distributed choosers in our example topology. Choosers

{S1,S4} and {S1,S5,S6} are shaded in light and dark grey, respectively. Note that S7 is a

decider for both choosers while S8 and S9 are deciders only for the second chooser. S2

and S3 play no part in L2-coordinate selection for this topology. (The figure’s numbered

links will be discussed in Section 4.3.2.)

Our implementation does not separate each level’s coordinate assignment into

its own instance of the extended DCA protocol; rather, all information pertaining to

both level and coordinate assignment is contained in a single TVM. For instance, in

a 5-level topology, a TVM from an L3 switch to an L2 switch might contain hints for

L2 coordinates, L3HN grouping information, and L4 information on its way down to a

representative L1 switch. Full details of the Decider/Chooser Abstraction, a proof of

correctness, and a protocol derivation for its refinements are presented in Chapter 5.

Label assignment converges when all switches at L2 through Ln−1 have grouped

themselves into hypernodes, and all L1 through Ln−1 switches have selected coordinates.
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Example Assignments

Figure 4.5 depicts the TVMs sent to assign coordinates to the L2 switches in

Figure 4.4’s topology. For clarity, we show TVMs only for a subset of the switches.

In TVM 1, all core switches disallow the selection of L2-coordinate 3, due to its use

in another HN (not shown). L2 switches incorporate this restriction into their outgoing

TVMs, including their sets of connected L1 switches (TVMs 2a and 2b). S1 is the

representative L1 switch for both HNs , as it has the lowest ID. S1 selects coordinates

for the HNs and informs neighboring L2 switches of their HNs and coordinates (TVMs

3a and 3b.)
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Figure 4.5: Label Assignment: L2-Coordinates

4.2.3 Relabeling

Since ALIAS labels encode paths to hosts, topology changes may affect switch

coordinates and hence host labels. For instance, when the set of L1 switches reachable

by a particular L2 switch changes, the L2 switch may have to select a new L2-coordinate.

This process is coined relabeling.

Consider the example shown in Figure 4.6 where the highlighted link between

S5 and S3 fails. At this point, affected switches must adjust their coordinates. With

TVM 1, S5 informs its L1 neighbors of its new connection status. Since S1 knows the L1
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neighbors of each of its neighboring L2 switches, it knows that it remains the represen-

tative L1 switch for both HNs. S1 informs S4 and S5 of the HN membership changes in

TVM 2a, and informs S6 of S4’s departure in TVM 2b. Since S5 simply left one HN and

joined another, existing HN, host labels are not affected.
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Figure 4.6: Relabeling Example

In some cases, topology fluctuations may cause host labels to change. In fact, the

effects of relabeling (whether caused by link addition or deletion) are determined solely

by changes to the HN membership of the upper level switch incident on the affected link.

Table 4.1 shows the effects of relabeling after a change to a link between an L2 switch

s2 and an L1 switch s1, in a 3-level topology. Case 1 corresponds with the example of

Figure 4.6; s2 moves from one HN to another. In this case, no labels are created nor

destroyed. In case 2, one HN splits into two and all L1 switches neighboring s2 add

a new label to their sets of labels. In case 3, two HNs merge into a single HN, and

with the exception of s1, all L1 switches neighboring s2 lose one of their labels. Finally,

case 4 represents a situation in which an HN simply changes its coordinate, causing all

neighboring L1 switches to replace the corresponding label.

Changes due to relabeling are completely encapsulated in the forwarding in-

formation propagated by ALIAS, as described in Section 4.3.2. Additionally, in Sec-

tion 4.3.3 we present an optimization that limits the effects of relabeling on ongoing

sessions between pairs of hosts.
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Table 4.1: Relabeling Cases

Case

Cause Effects

Previous New
s1

Remaining

HN HN L1 switches

1 Intact Existing None None

2 Intact New + 1 label + 1 label

3 Removed Existing None - 1 label

4 Removed New Swap label Swap label

4.2.4 M-Graphs

There are some rare situations in which ALIAS provides connectivity between

switches from the point of view of the communication component, but not from that

of coordinate assignment. The presence of an M-graph in a topology can lead to this

problem, as can the use of peer links. We consider M-graphs below and discuss peer

links in Section 4.3.4.

ALIAS relies on shared core switch parents to enforce the restriction that pairs

of Ln−1HNs do not select identical coordinates. There are topologies, though, in which

two Ln−1HNs do not share a core and could therefore select identical coordinates. Such

an M-graph is shown in Figure 4.7. In the example, there are 3 L2HNs, {S4}, {S5,S6}
and {S7}. It is possible that S4 and S7 select the same L2-coordinate, e.g., 3, as they do

not share a neighboring core. Since HN {S5,S6} shares a parent with each of the other

HNs, its coordinate is unique from those of {S4} and {S7}. L1 switches S1 and S3 are

free to choose the same L1-coordinates, 1 in this example. As a result, two hosts H1

and H3 are legally assigned identical ALIAS labels, (3.1.4.0), if both H1 and H3 are

connected to their L1 switches on the same numbered port (in this case, 4), and have VM

coordinate 0.

H2 can now see two non unique ALIAS labels, which introduces a routing ambi-

guity. If H2 attempts to forward a packet to H1, it will use the label (3.1.4.0). When

S2 receives the packet, S2 can send this packet either to S5 or S6, since it thinks it is

connected to an L2HN with coordinate 3 via both. The packet could be transmitted to



70

S8	
  
L3	
  

S4	
  
L2	
  	
  
3	
  

S5	
  
L2	
  	
  
2	
  

S1	
  
L1	
  	
  
1	
  

S2	
  
L1	
  	
  
2	
  

S6	
  
L2	
  	
  
2	
  

S3	
  
L1	
  	
  
1	
  

S9	
  
L3	
  

H3	
  

3.1	
  
H2	
  

2.2	
  
H1	
  

3.1	
  

S7	
  
L2	
  	
  
3	
  

Figure 4.7: Example M-Graph

the unintended destination H3 via S6, S9, S7, S3. When the packet reaches S3, S3 is in

a position to verify whether the packet’s IP address matches H3’s ALIAS label, by ref-

erencing a flow table entry that holds IP address-to-ALIAS label mappings. (Note that

such flow table entries are already present for the communication component, as shown

in Section 4.3.3.) A packet destined to H1’s IP address would not match such a flow

entry and would be punted to switch software.2

Because we expect M-graphs to occur infrequently in well-connected data center

environments, our implementation favors a simple “detect and resolve” technique. In

our example, S3 receives the mis-routed packet and knows that it is part of an M-graph.

At this point S3 sends a directive to S7 to choose a new L2-coordinate. This will result

in different ALIAS labels for H1 and H3. Once the relabeling decision propagates via

routing updates, S2 correctly routes H1’s packets via S5. The convergence time of this

relabeling equals the convergence period for our routing protocol, or 3 TVM periods.3

In our simulations we encounter M-graphs only for input topologies with ex-

tremely poor connectivity, or when we artificially reduce the size of the coordinate do-

main to cause collisions. If M-graphs are not tolerable for a particular network, they can

be prevented in two ways, each with an additional application of the DCA abstraction.

2If the L1 switches’ coordinates did not overlap, detection would occur at S7.
3It is possible that two HNs involved in an M-graph simultaneously detect and recover from a collision,

causing an extra relabeling. However, we optimize for the common case, as this potential cost is small
and unlikely to occur.
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For the first method, the set of deciders for a pair of HNs is augmented to include not

only shared parents but also lower-level switches that can reach both HNs. For example,

in Figure 4.7, S2 would be a decider for (and would ensure L2-coordinate uniqueness

among) all three L2HNs. A second method for preventing M-graphs is to assign coor-

dinates to core switches. In this case, core switches group themselves into hypernodes

and select shared coordinates, using representative L1 switches to facilitate cooperation.

Lower level switches act as deciders for these core-HNs. Both of these M-graph pre-

vention techniques increase convergence time, as there may be up to n hops between

a core-HN and its deciders in an n-level hierarchy. Given this cost and because of the

low probability of M-graphs in practice, our implementation uses the detect-and-resolve

solution.

4.3 Communication

Here, we present an example of one of the many communication components

that could operate over ALIAS labels.

4.3.1 Routing

An ALIAS label specifies a ‘downward’ path from a core to the identified host.

Each core switch is able to reach all hosts with a label that begins with the coordinate

of any Ln−1HN directly connected to it. Similarly, each switch in an LiHN can reach

any host with a label that contains one of the HN’s coordinates in the ith position. Thus,

routing packets downward is simply based on an Li switch matching the destination

label’s (i−1)th coordinate to that of one or more of its Li−1 neighbors.

To leverage this simple downward routing, ingress switches must be able to

move data packets to cores capable of reaching a destination. This reduces to a mat-

ter of sending a data packet towards a core that reaches the Ln−1HN corresponding

to the first coordinate in the destination label. Ln−1 switches learn which cores reach

other Ln−1HNs directly from neighboring cores and pass this information downward via

TVMs. Switches at level Li in turn learn about the set of Ln−1HNs reachable via each

neighboring Li+1 switch and inform Li−1 neighboring switches.
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4.3.2 Forwarding

Switch forwarding entries map a packet’s input port and coordinates to the ap-

propriate output port. The coordinate fields in a forwarding entry can hold a number,

requiring an exact match, or a ‘don’t care’ (DC) that matches all values for that coordi-

nate. An Li switch forwards a packet with a destination label matching any of its own

label prefixes downward to the appropriate Li−1HN. If none of its prefixes match, it uses

the label’s Ln−1-coordinate to send the packet towards a core that reaches the packet’s

destination.

Figure 4.8 presents a subset of the forwarding tables entries of switches S7, S4

and S1 of Figure 4.4c, assuming the L1-coordinate assignments of Figure 4.4b and that

S1 has a single host on port 3. Entries for exception cases are omitted for clarity.
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Figure 4.8: Example of Forwarding Table Entries

All forwarding entries are directional, in that a packet can be headed ‘down-

wards’ to a lower level switch or ‘upwards’ to a higher level switch. Directionality

is determined by the packet’s input port. ALIAS restricts the direction of packet for-

warding to ensure loop-free forwarding. The key restriction is that a packet coming

into a switch from a higher level switch can only be forwarded downwards, and that
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a packet moving laterally cannot be forwarded upwards. We refer to this property as

up*/across*/down* forwarding, an extension of the up*/down* forwarding introduced

in Autonet [65].

4.3.3 End-to-End Communication

Recall that ALIAS labels can serve as a basis for a variety of communication

techniques. Here we present an implementation based on MAC address rewriting.

When two hosts wish to communicate, the first step is generally ARP resolution

to map a destination host’s IP address to a MAC address. In ALIAS, we instead resolve

IP addresses to ALIAS labels. This ALIAS label is then written into the destination

Ethernet address. All switch forwarding proceeds based on this destination label. Unlike

standard Layer 2 forwarding, the destination MAC address is not rewritten hop-by-hop

through the network.

Figure 4.9 depicts the flow of information used to establish end-to-end communi-

cation between two hosts. When an L1 switch discovers a connected host h, it assigns to

h a set of ALIAS labels. L1 switches maintain a mapping between the IP address, MAC

address and ALIAS labels of each connected host. Additionally, they send a mapping

of IP address-to-ALIAS labels of connected hosts upwards to all reachable cores. This

eliminates the need for a broadcast-based ARP mechanism. Arrows 1-3 in Figure 4.9

show this mapping as it moves from L1 to the cores.

To support unmodified hosts, L1 switches intercept ARP queries (arrow 4) and

reply if possible (arrow 9). Otherwise, they send a proxy ARP query to all cores above

them in the hierarchy via intermediate switches (arrows 5,6). Cores with the requested

mappings reply (arrows 7,8). The querying L1 switch then replies to the host with an

ALIAS label (arrow 9) and incorporates the new information into its local map, taking

care to ensure proper handling of responses from multiple cores. As a result, the host

will use this label as the address in the packet’s Ethernet header. Prior to delivering a

data packet, the egress switch rewrites the ALIAS label with the actual MAC address of

the destination host, using locally available state information encoded in the hardware

forwarding table.
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Figure 4.9: End-to-End Communication

Hosts can have multiple ALIAS labels corresponding to multiple sets of paths

from cores. However, during ARP resolution, a host expects only one MAC address to

be associated with a particular IP address. To address this, the querying host’s neigh-

boring L1 switch chooses one of the ALIAS labels of the destination host. This choice

could be made in a number of ways; switches could select randomly or could base their

decisions on local views of dynamically changing congestion. In our implementation,

we include a measure of each label’s value when passing labels from L1 switches to

cores. We base a host label’s value on connectivity between the host h and the core of

the network as well as on the number of other hosts that can reach h using this label. An

L1 switch uses these combined values to select a label out of the set returned by a core.

Link additions and failures can result in relabeling. While the routing protocol

adapts to changes, existing flows to previously valid ALIAS labels will be affected due

to ARP caching in unmodified end hosts. Here, we describe our approach to minimize

disruption to existing flows in the face of shifts in the topology. We note however that

any network environment is subject to some period of convergence following a failure.

Our goal is to ensure that ALIAS convergence time at least matches the behavior of

currently deployed networks.
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Upon a link addition or failure, ALIAS performs appropriate relabeling of

switches and hosts (Section 4.2.3) and propagates the new topology view to all switches

as part of standard TVM exchanges. Recall that cores store a mapping of IP addresses-

to-ALIAS labels for hosts. Cores compare received mappings to existing state to de-

termine newly invalid mappings. Cores also maintain a cache of recently queried ARP

mappings. Using this cache, core switches inform recent L1 requesters that an ARP map-

ping has changed (arrows 10-11), and L1 switches in turn send gratuitous ARP replies

to hosts (arrow 12).

Additionally, ingress L1 switches can preemptively rewrite stale ALIAS labels to

maintain connectivity between pairs of hosts during the window of vulnerability when

a gratuitous ARP has been sent but not yet received. In the worst case, failure of certain

cores may necessitate an ARP cache timeout at hosts before communication can resume.

Recall that ALIAS enables two classes of multi-path support. The first class is

tied to the selection of a particular label (and thus a corresponding set of paths) from a

host’s label set, whereas the second represents a choice within this set of paths. For this

second class of multi-path, ALIAS supports standard multi-path forwarding techniques

such as ECMP [35]. Essentially, forwarding entries on the upward path can contain

multiple next hops toward the potentially multiple core switches capable of reaching the

appropriate top-level coordinate in the destination host label.

4.3.4 Peer Links

ALIAS considers peer links between switches at the same level of the hierarchy

as special cases for forwarding. There are two considerations to keep in mind when

introducing peer links into ALIAS: maintaining loop-free forwarding guarantees and

retaining ALIAS’s scalability properties. We consider each in turn below.

To motivate our method for accommodating peer links, we first consider the

reasons for which a peer link might exist in a network. A peer link might be added

1. to create direct connectivity between two otherwise disconnected HNs or cores,

2. to create a “shortcut” between two HNs (e.g., HNs with frequent interaction) or

3. unintentionally.
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ALIAS supports intentional peer links with up*/across*/down* forwarding. In other

words, a packet may travel upwards and then “jump” directly from one HN to another,

or traverse a set of cores, before moving downwards to its destination.

Switches advertise hosts reachable via peer links in their outgoing TVMs. While

the up* and down* components of the forwarding path are limited in length by the

overall depth of the hierarchy, the across* component can be arbitrarily long. To avoid

the introduction of forwarding loops, peer link advertisements include a hop count.

The number of peer link traversals allowed during the across* portion of for-

warding represents a tradeoff between routing flexibility and ALIAS convergence time.

This is due to the fact that links used for communication must also be considered for co-

ordinate assignment, as explored in Section 4.2.4 for M-graphs. Consider the example

of Figure 4.10. In the figure, dotted lines indicate long chains of links, perhaps involving

switches not shown. Since host Hk can reach both other hosts, Hi and H j, switches Si

and S j need to have unique coordinates. However, they do not share a common parent,

and therefore, must cooperate across the long chain of peer links between them to en-

sure coordinate uniqueness. In fact, if a packet is allowed to cross p peer links during

the across* segment of its path, switches as far as 2p peer links apart must not share

coordinates. This increases convergence time for large values of p. Because of this

ALIAS allows a network designer to tune the number of peer links allowed per across*

segment to limit convergence time while still providing the necessary routing flexibility.

Since core switches do not have coordinates, this restriction on the length of the across*

component is not necessary at the core level; cores use a standard hop count to avoid

forwarding loops.

Si	
  

Hj	
  Hk	
  Hi	
  

Sj	
  

Figure 4.10: Peer Link Tradeoff
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It is important that peer links are used judiciously, given the particular style

of forwarding chosen. For instance, supporting shortest path forwarding may require

disabling “shortcut”style peer links when they represent a small percentage of the con-

nections between two HNs. This is to avoid a situation in which all traffic is directed

across a peer link (as it provides the shortest path) and the link is overwhelmed.

4.3.5 Switch Modifications

We engineer ALIAS labels to be encoded into 48 bits to be compatible with ex-

isting destination MAC addresses in protocol headers. Our task of assigning globally

unique hierarchical labels would be simplified if there were no possibility of collisions

in coordinates, for instance if we allowed each coordinate to be 48-bits in length. If we

adopted longer ALIAS labels, we would require modified switch hardware that would

support an encapsulation header containing the forwarding address. Forwarding tables

would need to support matching on pre-selected and variable numbers of bits in en-

capsulation headers. Many commercial switches already include such functionality in

support of emerging Layer 2 protocols such as TRILL [69] and SEATTLE [42].

Our goal of operating with unmodified hosts does require some support from

network switching elements. ALIAS L1 switches intercept all ARP packets from hosts.

This does not require any hardware modifications, since packets that do not match a

flow table entry can always be sent to the switch software and ARP packets need not

necessarily be processed at line rate. We further introduce IP address-to-ALIAS label

mappings at cores, and IP address, actual MAC address and ALIAS label mappings at

L1. We also maintain a cache of recent ARP queries at cores. All such functionality can

be realized in switch software without hardware modifications.

4.4 Implementation

ALIAS switches maintain the state necessary for level and coordinate assign-

ment as well as local forwarding tables. Switches react to two types of events: timer

firings and message receipt. When a switch receives a TVM it updates the necessary lo-

cal state and forwarding table entries. The next time its TVMsend timer fires, it compiles
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a TVM for each switch neighbor as well as a ping for all host neighbors. Neighbors

of unknown types receive both. Outgoing TVMs include all information related to level

and coordinate assignment, and forwarding state, and may include label mappings as

they are passed upwards towards cores. The particular TVM created for any neighbor

varies both with levels of the sender and the receiver as well as with the identity of the

receiver. For instance, in a 3-level topology, an L2 switch sends the set of its neighboring

L1 switches downward for HN grouping by the representative L1 switch. On the other

hand, it need not send this information to cores.

Figure 4.11 shows the basic architecture of ALIAS. We have produced two dif-

ferent implementations of ALIAS, which we describe below.
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Figure 4.11: ALIAS Architecture

4.4.1 Mace Implementation

We first implemented ALIAS in Mace [21, 40]. Mace is a language for dis-

tributed system development that we chose for two reasons; the Mace toolkit includes a

model checker [39] that can be used to verify correctness, and Mace code compiles into

standard C++ code for deployment of the exact code that was model checked.

We verified the correctness of ALIAS by model checking our Mace implementa-

tion. This included all protocols discussed in this chapter: level assignment, coordinate

and label assignment, routing and forwarding, and proxy ARP support with invalidations

on relabeling. For a range of topologies with intermittent switch, host, and network

failures, we verified (via liveness properties) the convergence of level and coordinate

assignment and routing state as well as the correct operation of label resolution and in-

validation. Further, we verified that all pairs of hosts that are connected by the physical
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topology are eventually able to communicate infinitely often (though connectivity may

temporarily be lost due to switch or link failure).

4.4.2 NetFPGA Testbed Implementation

Using our Mace code as a specification, we integrated ALIAS into an Open-

Flow [1] testbed, consisting of 20 4-port NetFPGA PCI-card switches [51] hosted in 1U

dual-core 3.2 GHz Intel Xeon machines with 3GB of RAM. 16 end hosts connect to the

20 4-port switches wired as a 3-level fat tree. All machines run Linux 2.6.18-92.1.18.el5

and switches run OpenFlow v0.8.9r2.

Although OpenFlow is based around a centralized controller model, we wished

to remain completely decentralized. To accomplish this, we implemented ALIAS di-

rectly in the OpenFlow switch, relying only on OpenFlow’s ability to insert new for-

warding rules into a switch’s tables. We also modified the OpenFlow configuration to

use a separate controller per switch. These modifications to the OpenFlow software

consist of approximately 1,200 lines of C code.

4.5 Evaluation

We set out to answer the following questions with our experimental evaluation

of ALIAS:

• How scalable is ALIAS in terms of storage requirements and control overhead?

• How effective are hypernodes in compacting forwarding tables?

• How quickly does ALIAS converge on startup and after faults? How many

switches relabel after a topology change and how quickly does the new infor-

mation propagate?

Our experiments run on our NetFPGA testbed, which we augment with mis-

wirings and peer links as necessary. For measurements on topologies larger than our

testbed, we rely on simulations.



80

4.5.1 Storage Requirements

We first consider the storage requirements of ALIAS. This includes all state used

to compute switches’ levels, coordinates and forwarding tables. For a given number of

hosts, we determined the number of L1, L2 and L3 switches present in a 3-level, 128-port

fat tree-based topology. We then calculated analytically the storage overhead required

at each type of switch as a function of the input topology size, as shown in Figure 4.12.

L1 switches store the most state, as they may be representative switches for higher level

HNs, and therefore must store state on behalf of these HNs.
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Figure 4.12: Storage Overhead for 3-Level, 128-Port Tree

We also empirically measured the storage requirements of ALIAS on our testbed.

L1, L2 and L3 switches require 122, 52 and 22 bytes of storage, respectively, for our

16-switch topology; these results would grow linearly with the number of hosts. Over-

all, the total required state is well within the range of what is available in commodity

switches today. Note that this state need not be accessed on the data path; it can reside

in DRAM accessed by the local embedded processor.

4.5.2 Control Overhead

We next consider the control message overhead of ALIAS. Table 4.2 shows the

contents of TVMs, both for immediate neighbors and for communication with represen-

tative L1 switches. The table gives the expected size of each field, (where S and C are
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the sizes of a switchID and coordinate), as well as the measured sizes for our testbed

implementation (where S = 48, C = 8 bits). Since our testbed has 3 levels, TVMs from

L2 switches to their L1 neighbors are combined with those to representative L1 switches

(and likewise for upward TVMs); our measured results reflect these combinations. Mes-

sages sent downwards to L1 switches come from all members of an LiHN and contain

per-parent information for each HN member; therefore, these messages are the largest.

Table 4.2: Level/Coordinate Assignment Overhead

Sender and
Field

Expected Measured

Receiver Size Size

All-to-All level log(n) 2 bits

To Downward hints kC/2
L3 to L2: 6B

Neighbor dwnwrd_HNs kS/2

To rep. per-parent hints k2C/4
L2 to L1: 28B

L1 switch per-parent dwnwrd_HNs k2S/4

To coord C

Upward HN kS/2
L2 to L3: 5B

Neighbor rep. L1 S

From Rep. per-parent coords kC/2
L1 to L2: 7B

L1 switch HN assignment kS/2

The TVM period must be at least as large as the time it takes a switch to process

k incoming TVMs, one per port. On our NetFPGA testbed, the worst case processing

time for a set of TVMs was 57µs plus an additional 291µs for updating forwarding table

entries in OpenFlow in a small configuration. Given this, 100ms is a reasonable setting

for a TVM cycle at scale. L1 switches send k
2 TVMs per cycle while all other switches

send k TVMs. The largest TVM is dominated by k2S
4 , giving a control overhead of k3S

400
b

ms .

For a network with 64-port switches, this is 31.5Mbps or 0.3% of a 10Gbps link, an

acceptable cost for a routing/location protocol that scales to hundreds of thousands hosts

at 4 levels. This brings out a tradeoff between convergence time and control overhead; a

smaller TVM cycle time is certainly possible, but would correspond to a larger amount

of control data sent per second. It is also important to note that this control overhead is

a function only of k and TVM cycle time; it does not increase with link speed.



82

4.5.3 Compact Forwarding Tables

Next, we asses the effectiveness of hypernodes in compacting forwarding ta-

bles. We use our simulator to generate fully provisioned fat tree topologies with k-port

switches. We then remove a percentage of the links at each level of the hierarchy to

model less than fully-connected networks. We use the smallest possible coordinate

domain that can accommodate the worst-case number of HNs for each topology, and

allow data packets to cross as many peer links as needed, within the constraints of

up*/across*/down* forwarding.

Once the input topology has been generated, we use our simulator to calculate

all switches’ levels and HNs, and we select random coordinates for switches based on

common upper-level neighbors. Finally, we populate forwarding tables with the la-

bels corresponding to the selected coordinates and analyze the forwarding table sizes of

switches.

Table 4.3 gives the parameters used to create each input topology along with the

total number of servers supported and the average number of number of forwarding ta-

ble entries per switch. The table lists values for optimized forwarding tables (in which

redundant entries are removed and entries for peer links appear only when providing oth-

erwise unavailable connectivity) and unoptimized tables (that include redundant entries

for use with techniques such as ECMP). As the tables shows, even in graphs supporting

millions of servers, the number of forwarding entries is dramatically reduced from the

entry-per-host requirement of Layer 2 techniques.

As the provisioning of the tree reduces, the number of forwarding entries ini-

tially increases. This corresponds to cases in which the tree has become somewhat

fragmented from its initial fat tree specification, leading to more HNs and thus more

coordinates across the graph. However, as even more links are deleted, forwarding table

sizes begin to decrease; for extremely fragmented trees, mutual connectivity between

pairs of switches drops, and a switch need not store forwarding entries for unreachable

destinations.
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Table 4.3: Forwarding Entries Per Switch

Topology Info Forwarding Entries

Levels Ports
% Fully Total

Optimized Unoptimized
Provisioned Servers

3

16

100

1024

22 112

80 62 96

50 48 58

20 28 31

32

100

8,192

45 429

80 262 386

50 173 217

20 86 95

64

100

65,536

90 1677

80 1028 1530

50 653 842

20 291 320

4

16

100

8,192

23 119

80 197 246

50 273 307

20 280 304

32

100

131,072

46 457

80 1278 1499

50 2079 2248

20 2415 2552

5 16

100

65,536

23 123

80 492 550

50 886 931

20 1108 1147
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4.5.4 Convergence Time

We measured ALIAS’s convergence time on our testbed for both an initial startup

period as well as across transient failures. We consider a switch to have converged when

it has stabilized all applicable coordinates and HN membership information.

As shown in Figure 4.13, ALIAS takes a maximum of 10 TVM cycles to con-

verge when all switches and hosts are initially booted, even though they are not booted

simultaneously. L3 switches converge most quickly since they simply facilitate L2-

coordinate uniqueness. L1 switches converge more slowly; the last L1 switch to con-

verge might see the following chain of events: (1) L2 switch s2a sends its coordinate to

L3 switch s3, (2) s3 passes a hint about this coordinate to L2 switch s2b that (3) forwards

the hint to its representative L1 switch, which replies (4) with an assignment for s2b’s

coordinate.
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Figure 4.13: CDF of Startup Convergence Times

These 4 TVM cycles combine with 5 cycles to propagate level information up

and down the 3-level hierarchy, for a total of 9 cycles. The small variation in our results

is due to our asynchronous deployment setting.

In our implementation, a TVM cycle is 400µs, leading to an initial convergence

time of 4ms for our small topology. Our cycle time accounts for 57µs for TVM pro-
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cessing and 291µs for flow table updates in OpenFlow. In general, the TVM period

may be set to anything larger than the time required for a switch to process one incom-

ing TVM per port. In practice we would expect significantly longer cycle times in order

to minimize control overhead.

We also considered the behavior of ALIAS in response to failures. As discussed

in Section 4.2.3, relabeling is triggered by additions or deletions of links, and its effects

depend on the HN membership of the upper level switch on the affected link. Figure 4.14

shows an example of each of the cases from Table 4.1 along with measured convergence

time on our testbed. The examples in the figure are for link addition; we verified the

parallel cases for link deletion by reversing the experiments. We measured the time

for all HN membership and coordinate information to stabilize at each affected switch.

Our results confirm the locality of relabeling effects; only immediate neighbors of the

affected L2 switch react, and few require more than the 2 TVM cycles used to recompute

HN membership.
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(Dashed lines are new links.)
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4.6 Related Work

ALIAS provides automatic, decentralized, scalable assignment of hierarchical

host labels. To the best of our knowledge, this is the first system to address all three of

our goals simultaneously.

Our work can trace its lineage back to the original work on spanning trees [58]

designed to bridge multiple physical Layer 2 networks. While clearly ground-breaking,

spanning trees suffer from scalability challenges and do not support hierarchical la-

beling. SmartBridge [61] provides shortest path routing among Layer 2 hosts but is still

broadcast-based and does not support hierarchical host labels. More recently,

Rbridges [59] and TRILL [69] suggest running a full-blown routing protocol among

Layer 2 switches along with an additional Layer 2 header to protect against forwarding

loops.

SEATTLE [42] improves upon aspects of Rbridge’s scalability by distributing

the knowledge of host-to-egress switch mapping among a distributed directory service

implemented as a one-hop DHT. In general, however, all of these earlier protocols target

arbitrary topologies with broadcast-based routing and flat host labels. ALIAS benefits

from the underlying assumption that we target hierarchical topologies.

VL2 [28] proposed scaling Layer 2 to mega data centers using end-host modifi-

cation, and addressed load balancing to improve agility in data centers. However VL2

uses an underlying IP network fabric, which requires subnet and DHCP server configu-

ration, and does not address the requirement for automation.

Most related to ALIAS are PortLand [56] and DAC [16]. PortLand employs a

Location Discovery Protocol for host numbering but differs from ALIAS in that it relies

on a central fabric manager, assumes a 3-level fat tree topology, and does not support

arbitrary miswirings and failures. Also, LDP makes decisions (e.g. edge switch label-

ing and pod groupings) based on particular interconnection patterns in fat trees. This

limits the approach under heterogeneous conditions (e.g. a network fabric that is not yet

fully deployed) and during transitory periods (e.g., when the system first boots). Con-

trastingly, ALIAS makes decisions solely based on current network conditions. DAC

supports arbitrary topologies but is fully centralized and requires that an administrator

manually input configuration information both initially and prior to planned changes.
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Landmark [70] also automatically configures hierarchy onto a physical topology

and relabels as a result of topology changes for ad hoc wireless networks. However,

Landmark’s hierarchy levels are defined such that even small topology changes (e.g. a

router losing a single neighbor) trigger relabeling. Also, routers maintain forwarding

state for distant nodes while ALIAS aggregates such state with hypernodes.

4.7 Summary

In this chapter, we present ALIAS, a protocol that provides scalable, automatic

and decentralized label assignment in the data center. This addresses the difficulties as-

sociated with labeling protocols that rely on centralized coordination, error-prone man-

ual configuration or excessively large forwarding state. We then offer a communication

protocol that efficiently leverages the labels assigned by ALIAS. We show the correct-

ness of our labeling and communication protocols through model checking and we eval-

uate ALIAS via a realistic deployment on our netFPGA testbed. Our evaluation shows

that ALIAS operates with low message overhead and quick convergence time, and that

ALIAS switches have significantly less forwarding state than that of other decentralized

and automatic addressing protocols.
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Chapter 5

A Randomized Algorithm for Label

Assignment in Dynamic Networks

In this chapter, we consider the formalization of ALIAS, so as to reason more

carefully about the protocol’s correctness and performance. We specify the problem

solved by coordinate assignment in ALIAS as a a more general class of problems, that

of label assignment to network elements.

The assignment of labels to network elements is a well-understood problem.

Often, labels can be assigned statically, as with MAC addresses in traditional Layer 2

networks, or by a central authority as in DHCP in Layer 3 networks. When a dynamic,

decentralized solution is required, one can employ a Consensus-based state machine

approach [63]. However, dynamic assignment becomes more complex when the rules

for labels depend on connectivity and when connectivity (and, hence, the labels) can

change over time. As we will show in Section 5.2.1, using a state machine approach

becomes difficult in this case.

As we came to this problem while designing ALIAS (Chapter 4), we have a

number of related requirements. Practical constraints are important. We require a de-

centralized solution because a centralized approach has its own challenges, such as ex-

hibiting a single point of failure. Additionally, at the scale of the data center, establishing

communication between a centralized component and all network elements necessitates

either flooding or a separate out-of-band control network, an undesirable requirement.

As well as being decentralized, our solution needs to scale to hundreds of thousands

88
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of nodes, and to be robust in the face of miswirings. It needs to have a low message

overhead and convergence time, to be robust under transient startup conditions, and to

retain high availability and quick stabilization after failures. Finally, a simple solution

is ideal, since it is important that it can be designed and implemented correctly. This

chapter describes a simple randomized approach that meets our practical goals.

We formally specify the problem of label assignment in and provide a new al-

gorithm, the Decider/Chooser Protocol (DCP), as a solution to this problem. We then

discuss the correctness and performance of DCP and provide a probabilistic analysis

of its convergence time. Next, we extend DCP to solve the issue of automatic label-

ing in data center networks and offer another application of DCP, handoff in wireless

networks. Finally, we provide a full derivation of label assignment in ALIAS from the

basic DCP protocol.

5.1 ALIAS Details

In this section, we present a brief review of ALIAS in order to help the reader to

understand the concepts to follow.

In ALIAS, switches are organized into a multi-rooted tree, with end hosts con-

nected to leaf switches, as shown in Figure 5.1. The ALIAS protocol includes three com-

ponents: Level Assignment, Label Assignment and Communication. First, switches

run a distributed protocol to determine their levels, L1 through Ln, within the tree. They

then select labels that will form the basis for communication. To select labels, switches

first choose coordinates, which are values from a given domain. These coordinates are

then concatenated along paths from the roots of the tree to switches in order to form

switch labels. There may be multiple paths from the top level of the tree to any given

switch, so switches in ALIAS can have multiple labels.1 A host label is formed by

concatenating a host h’s neighboring L1 switch s1’s labels to the number of the port on

which h connects to s1. Finally, once labels have been established, switches communi-

cate with other switches and hosts using these labels as a basis for the ALIAS routing

and forwarding protocols.

1In Section 5.6, we show how ALIAS reduces the number of labels per host.
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Figure 5.1: ALIAS Topology

In this chapter, we consider the problem of assigning coordinates to switches

in ALIAS. In Section 5.2, we describe the requirements of coordinates and labels in

order for ALIAS communication to function properly. We specify the Label Selection

Problem and show how coordinate selection in ALIAS maps to this problem.

5.2 The Label Selection Problem

In the Label Selection Problem (LSP), we consider topologies made up of

chooser processes connected to decider processes, as shown in Figure 5.2. These

chooser and decider processes correspond to nodes at adjacent levels of a multi-rooted

tree in ALIAS. All processes have globally unique identifiers, such as MAC addresses,

chosen from a large address space. Desired is an assignment of labels from a small label

space to choosers such that any two choosers that are connected to the same decider

have distinct labels; this is the key requirement that allows ALIAS communication to

operate over assigned labels.
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Figure 5.2: Label Selection Problem Topology
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More formally, each chooser c has a set c.deciders of deciders associated with

it. We denote c’s current choice of label with c.me, and c.me = ⊥ indicates that c has

not chosen a label.

A chooser c is connected to each decider in c.deciders with a fair lossy link.

Such links can drop messages, but if two processes p and q are connected by a fair lossy

link and p sends m infinitely often to q, then q will receive m infinitely often.

Both decider and chooser processes can crash in a failstop manner (thus going

from up to down) and can recover (thus going from down to up) at any time. We assume

that a process writes its state to stable storage before sending a set of messages. When

a process recovers, it is restored to the state that it was in before sending the last set

of messages: duplicate messages may be sent upon recovery. So, we treat recovered

processes as perhaps slow processes, and assume that duplicate messages can occur.

Figure 5.3 illustrates sets of choosers and the deciders they share, based on the

topology shown in Figure 5.2. For instance, chooser c3 shares deciders d1 and d2 with

choosers c1 and c2 and shares decider d3 with choosers c4 and c5. Because of this, c3

may not select the same label as any of choosers c1, c2, c4 and c5. However, c3 and

c6 are free to select the same label. In fact, the highlighted sub-graphs in Figure 5.3

correspond to the maximal bipartite graphs embedded in the topology.
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Figure 5.3: Choosers and Shared Deciders

We more formally specify LSP with the following two properties:

Progress: For each chooser c, once c remains up, eventually c.me 6=⊥.

Distinctness: For each distinct pair of choosers c1 and c2, once c1 and c2 remain up and

there is some decider that remains up and remains in c1.deciders∩ c2.deciders,

eventually always c1.me 6= c2.me.
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As specified, a chooser does not know when its choice satisfies Distinctness.

Indeed, it is impossible for a chooser to know this without further constraining the prob-

lem. Consider the example in Figure 5.4, where nodes c1 through c3 are choosers and d1

through d4 are deciders. A valid set of choices is c1.me = c3.me = 0 and c2.me = 1. If a

link between c3 and d1 appears—perhaps it is newly added—then, this set of choices is

no longer valid: c1 and c3 now share decider d1 and so c1.me should differ from c3.me.

This could also occur were a new decider d5 to appear that connects to both c1 and c3.

d1	
   d2	
  

c1	
   c2	
  

d3	
  

c3	
  

d4	
  

Figure 5.4: Stability Example

Thus, if an application based on LSP requires a chooser to know that its label will

not change, then one would need to ensure, for example, that new connections between

deciders and choosers cannot be created.

5.2.1 The Label Selection Problem with Consensus

One might be tempted to implement LSP with Consensus, because Consensus

can be used to solve the arbitration problem in Distinctness. In this section, we discuss

the difficulty of solving LSP with Consensus, beginning with a simple example. Assume

the choosers and deciders are connected with a complete bipartite graph. One can im-

plement a Paxos-based state machine in which the choosers implement both the clients

of the state machine and the learners of Paxos, and the deciders implement the proposer

and acceptors of Paxos, as illustrated in Figure 5.5a. A proposer and an acceptor (e.g.

nodes d2 and d3 in the figure) can communicate by relaying via a chooser, selected ran-

domly for each message to ensure liveness in the face of crashed choosers. One can

implement the state machine so that the client (chooser) that submits the first command

is given label 0, the second client is given label 1, etc. Or, one can have each client

c choose a random c.me and send it to the state machine; if c.me has been previously

requested, then c chooses a label that it has not yet learned has been assigned and tries
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again. As long as no more than a minority of the deciders remain down (any number

of choosers can remain down), this protocol implements the Progress and Distinctness

properties of LSP.
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(a) Simple Consensus Example
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(b) Complex Consensus Example

Figure 5.5: Example Consensus Scenarios

If not all choosers have the same set of deciders, then using Consensus becomes

messy. The Paxos state machine approach given above can be used by flooding all

communication, thereby virtually connecting all processes. This has the drawback of

possibly sending excessive messages; the path between any two processes can be as

long as the total number of processes. It also unnecessarily restricts the choices of

choosers not sharing a decider: all choosers’ values will be unique even if they don’t

share deciders.

Another approach, and one that would not add such unnecessary restrictions to

the choices, is to use multiple state machines. Any two choosers that share a decider use

a common state machine to agree on unique labels. For example, consider the scenario

shown in Figure 5.5b. A valid set of choices is c1.me = c3.me = 0 and c2.me = 1. One

could have two Paxos state machines, one with c1,c2,d1,d2 and one with c2,c3,d3,d4.

In this approach, client c2 chooses c2.me at random and sends it to both state machines.

If c2.me has been previously assigned by either state machine, then it chooses another

label and tries again.

This approach has its own set of problems. In this example, if any decider

crashes then the solution is not live, because each instance of Paxos can tolerate only a

minority of failures; with only two deciders, no permanent crashes can be tolerated. In

addition, determining the set of state machines to run is not simple. The set can change

as links and switches fail and recover, which adds further complexity.
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5.3 The Decider/Chooser Protocol

In Section 5.2.1, we showed that using Consensus presents considerable diffi-

culties in the face of dynamic network environments and changing sets of deciders and

choosers. Instead, we develop here the Decider/Chooser Protocol (DCP), which is a

randomized protocol that solves LSP with dynamic sets of deciders and choosers. The

input to DCP is a bipartite graph between a set of choosers and a set of deciders, and the

output is an assignment of labels to choosers such that all choosers have non-⊥ labels

and no two choosers sharing a decider have the same label.

DCP proceeds as follows: A chooser c repeatedly chooses a label me from some

range of labels and sends it to c.deciders, its set of neighboring deciders. If a decider d

has not currently assigned me to another chooser, then it assigns me to c. To accomplish

this, d maintains a table d.chosen of labels that it has accepted from choosers. If me is

not in d.chosen for some other chooser c′, then d sets d.chosen[c] to me and sends a reply

to c indicating that me was accepted. Otherwise, d sets d.chosen[c] to ⊥ (indicating that

d has not assigned a value for c) and sends a reply to c indicating that its choice was

rejected. d includes the set of labels assigned to other choosers in this reply as hints so

c can avoid them when choosing another label.

To guard against difficulties caused by message duplication and reordering, each

chooser attaches a monotonically increasing sequence number with each choice that it

sends to a decider. A deciders d keeps records in d.last_seq[c] of the largest sequence

number seen from each chooser c and ignores messages from c with sequence numbers

less than d.last_seq[c]. This allows us to consider channels between choosers and de-

ciders as fair lossy FIFO channels: if p sends m1 to q and then sends m2 to q, q may

receive m1, m2, both, or neither of these messages, but once it receives m2 it will never

receive m1.

Listing 5.1 gives the decider’s state and its two Actions F and G. Action G was

described in the previous paragraph; Action F executes when decider d first learns that

it is connected to a new chooser c. When this happens, d updates its set d.choosers of

known choosers and initializes d.chosen[c] and d.last_seq[c]. Note that d never removes

a chooser from these tables.
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Listing 5.1: Decider Algorithm
1 set〈Chooser〉 choosers = ...
2 Choice[choosers] chosen = all[⊥]
3 int[choosers] last_seq = all[0]

// when connected to new chooser c
4 F: when new chooser c
5 choosers ← choosers ∪ {c}
6 chosen[c] ← ⊥
7 last_seq[c] ← 0

// respond to a message from chooser c
8 G: when receive 〈s, x〉 from c
9 if s≥last_seq[c]

10 last_seq[c] ← s
11 if ∃ c’ ∈ (choosers \ {c}): chosen[c’] == x
12 chosen[c] ← ⊥
13 else
14 chosen[c] ← x
15 hints ← {chosen[c’]∀ c’ ∈ (choosers \ {c})} \ {⊥}
16 send 〈s, chosen[c], hints〉 to c

Listings 5.2 and 5.3 together give the chooser’s implementation, which includes

its state, communication predicates and routines, and its four Actions A through D. We

separate the chooser’s description into two listings for readability; Listing 5.2 shows

the routines, predicates and state used to implement FIFO channels whereas Listing 5.3

includes the chooser’s actions and related state.

A chooser c stores the set of deciders that it knows exists (c.deciders), the se-

quence number of its current choice (c.seq), the value of its current choice (c.me), hints

of choices to avoid according to each decider d (c.hints[d]), and the most recent se-

quence number acknowledged by each decider d (c.last_ack[d]).

The code makes use of a watchdog timer. The timer provides a variable timeout

that is true iff the timer is unarmed. The operation TO_arm ensures that the timer is

armed (so timeout is false). If TO_arm is not subsequently executed, then timeout

eventually becomes true.

A chooser c has the following routines for communication with deciders:

SendTo(s,x,D): Send choice x with sequence number s to all deciders in D.

ResendTo(D): Resend the last message sent to all deciders in D.
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ReceiveAck(s,d): Receive an acknowledgment from d on sequence number s.

A chooser c also has three macros to represent some of the re-used code related

to channel activities:

HasReceivedAck(d): true iff c has received an acknowledgment from d for its latest

choice.

CurrentChoice(s): true iff sequence number s acknowledges c’s most recent choice.

OldChoice(s): true iff sequence number s acknowledges an obsolete choice.

These predicates and routines appear along with the associated state in List-

ing 5.2. The chooser’s actions and related state are shown in Listing 5.3.

Listing 5.2: Chooser Channel Predicates and Routines (Unbounded Channels)
1 int[deciders] last_ack = all[0]

// ⇐⇒ c has an ack from d for its latest choice
2 boolean HasReceivedAck (d):
3 last_ack[d] == seq

// ⇐⇒ s acknowledges c’s most recent choice
4 boolean CurrentChoice (s):
5 s == seq

// ⇐⇒ s acknowledges an obsolete choice
6 boolean OldChoice (s):
7 s < seq

8 SendTo (s,x,D):
9 foreach d ∈ D do

10 send 〈s,x〉 to d

11 ResendTo (D):
12 foreach d ∈ D do
13 send 〈me,seq〉 to d

14 ReceiveAck (s,d):
15 last_ack[d] ← s

When a chooser needs to select a new value (Action A), it selects one at random,

avoiding potentially unavailable values, and sends this to neighboring deciders. It then

arms the watchdog timer. When the timer fires (Action B), if the chooser’s value has not

yet been denied, it resends this selection on any channels necessary. When a chooser

receives an acknowledgment from a decider (Action C), it stores the decider’s hints if
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they are up-to-date, and records the sequence number for the acknowledgment. If the

message is a rejection, the chooser sets c.me back to undecided so that, via Action A, it

will try again. Finally, when a new decider connects to a chooser and the chooser has

already sent a proposal to other deciders, it sends its choice to the new decider (Action

D). Note that a chooser crashing or recovering has no specific effect in the protocol: a

decider only releases the label it has assigned to a chooser c when c asks for a new label.

A decider d recovering can cause c to send d its latest choice via Action D.

Listing 5.3: Chooser Algorithm: Actions and State (Unbounded Channels)
1 set〈Decider〉 deciders = ...
2 int seq = 0
3 Choice me = ⊥
4 (set〈Choice〉)[deciders] hints = all[ /0]

// when needs to make a choice
5 A: when me == ⊥
6 choices ← domain(Choice) \ {⊥} \ {hints[d]∀ d ∈ deciders}
7 me ← choose from choices
8 seq ++
9 SendTo(seq,me,deciders)

10 TO_arm

// retransmit last msg sent to deciders yet to acknowledge
11 B: when timeout ∧ (me 6= ⊥)
12 ResendTo({d ∈ deciders: ¬HasReceivedAck(d)})
13 TO_arm

// receive response from d
14 C: when receive 〈s, chosen, hint〉 from d
15 ReceiveAck(s,d)
16 if ¬OldChoice(s)
17 hints[d] ← hint
18 if CurrentChoice(s) ∧ (chosen == ⊥)
19 me ← ⊥

// learn of decider d and round is active
20 D: when detect new decider d ∧ (me 6= ⊥)
21 SendTo(seq,me,{d})

This algorithm is not guaranteed to terminate because any pair of choosers can

conflict with one another. For example, let choosers c1 and c2 both choose the yet-

unassigned label x and send it to deciders d1 and d2. Decider d1 may receive c1’s mes-

sage first and d2 may receive c2’s message first. Thus, d1 will reject c2 and d2 will reject

c1. This kind of conflict can continue for an unbounded time. However, as long as the

domain from which a chooser c selects is large enough, there is a significant probabil-
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ity with each choice that c chooses a label x that is different than any label currently

accepted by any decider, and that is different than any label that any other chooser has

currently chosen or will choose before c’s message with x is received by all deciders.

Once this occurs, c’s value will be accepted by all deciders. This, in turn, increases

the chances that another chooser will have its value chosen. Thus, as the running time

tends to infinity, the probability of Distinctness holding tends to 1, as we show in Sec-

tion 5.4.1.

5.3.1 Bounding the Channels

This protocol can be modified so that each chooser c limits the number of mes-

sages in flight to any given decider. Doing so limits the number of conflicting assign-

ments that might occur in the future from some state: this is useful in computing the

expected number of choosers that terminate in a given round (see Section 5.4.1).

We extend both the basic chooser code as well as its channel code to accommo-

date channel bounding. In fact, this extension requires only moderate changes to the

protocol, as we are able to leverage the variable seq that is used to ensure that out-of-

date messages are ignored. We add some simple book-keeping to the chooser’s channel

and some extra logic to the chooser’s Action C. We consider the changes to the channel

code first.

A chooser c stores the most recent sequence number acknowledged by each

decider d (c.last_ack[d]). c also now stores, for each decider d, a set of unacknowl-

edged sequence numbers (c.sent[d]), a tuple of the most recent choice and correspond-

ing sequence number sent to d (c.last_sent[d]), and the sequence number of the most

recent choice it would have sent to d if it were not limited by available channel space

(c.last_choice[d]). The three predicates used for unbounded channels, HasReceivedAck,

CurrentChoice and OldChoice, are modified to make comparisons based on values

stored for a particular decider d. That is, they compare a sequence number s to the se-

quence number of the most recent choice with respect to a decider d (c.last_choice[d])

rather than to a global sequence number seq.
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Choosers also have three new channel predicates:

CanSendTo(d): true iff there is space in the channel from c to d.

SentLatest(d): true iff c has sent its latest choice to d.

RecentAck(s,d): true iff the sequence number s acknowledges c’s most recent message

to d.

Finally, the SendTo, ResendTo and ReceiveAck routines are updated to include

book-keeping and verification, and to send new messages only when there is room in

the channel:

SendTo(s,x,D): Send choice x with sequence number s to all deciders in D, keeping a

copy for retransmission and bounding the channel.

ResendTo(D): Resend the last message sent (if applicable) to all deciders in D.

ReceiveAck(s,d): Receive an acknowledgment from d on sequence number s, update

channel book-keeping variables.

Note that with channel bounding, a chooser maintains the sequence number of

the most recent message sent to a decider d (c.last_sent[d]) as well as that of the most

recent choice of c.me with respect to d (c.last_choice[d]). A chooser may be temporar-

ily unable to send its current choice to d if the channel between the two is full. This

accounts for the subtle difference between the RecentAck and CurrentChoice predi-

cates. Listing 5.4 shows the code for the channel-related predicates and routines when

channels are bounded.

The chooser’s actions change only slightly to accommodate channel-bounding.

Actions A and B rely on the now channel-bounding routines SendTo and ResendTo

for sending messages to deciders. This change is encapsulated in the channel code

(described above). The chooser’s Action C does change; a chooser stores a decider’s

hints only if the decider is responding to the most recent message sent to that decider.

Additionally, if an acknowledgment is out-of-date and may have opened space in the

channel, the chooser resends its current selection. Listing 5.5 shows the updated Action

C. Modified code is shown in black, while unchanged code is grey.
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Listing 5.4: Chooser Channel Predicates and Routines (Bounded Channels)
1 int[deciders] last_ack = all[0]
2 (set〈int〉)[deciders] sent = all[ /0]
3 〈int,Choice〉[deciders] last_sent = all[〈0,⊥〉]
4 int[deciders] last_choice = all[0]
5 int max_in_chan = a non-zero constant

// ⇐⇒ c has an ack from d for its latest choice
6 boolean HasReceivedAck (d):
7 last_ack[d] == last_choice[d]

// ⇐⇒ s acknowledges c’s most recent choice for d
8 boolean CurrentChoice (s,d):
9 s == last_choice[d]

// ⇐⇒ s acknowledges an obsolete choice for d
10 boolean OldChoice (s,d):
11 s < last_choice[d]

// ⇐⇒ there is room in the channel to send to d
12 boolean CanSendTo (d):
13 | sent[d] | < max_in_channel

// ⇐⇒ c has sent its most recent choice to d
14 boolean SentLatest (d):
15 last_sent[d][0] == last_choice[d]

// ⇐⇒ s acknowledges c’s most recent message to d
16 boolean RecentAck (s,d):
17 s == last_sent[d][0]

18 SendTo (s,x,D):
19 foreach d ∈ D do
20 if CanSendTo(d)
21 send 〈s,x〉 to d
22 sent[d] ← sent[d] ∪ {s}
23 last_sent[d] ← (s,x)
24 last_choice[d] ← s

25 ResendTo (D):
26 foreach d ∈ D do
27 if | sent[d] |>0
28 send 〈last_sent[d]〉 to d

29 ReceiveAck (s,d):
30 sent[d] ← sent[d] \ {i: i≤s}
31 last_ack[d] ← s
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Listing 5.5: Chooser Algorithm: Actions and State (Bounded Channels)
1 set〈Decider〉 deciders = ...
2 int seq = 0
3 Choice me = ⊥
4 (set〈Choice〉)[deciders] hints = all[ /0]

// when needs to make a choice
5 A: when me == ⊥
6 choices ← domain(Choice) \ {⊥} \ {hints[d]∀ d ∈ deciders}
7 me ← choose from choices
8 seq ++
9 SendTo(seq,me,deciders)

10 TO_arm

// retransmit last msg sent to deciders yet to acknowledge
11 B: when timeout ∧ (me 6= ⊥)
12 ResendTo({d ∈ deciders: ¬HasReceivedAck(d)})
13 TO_arm

// receive response from d
14 C: when receive 〈s, chosen, hint〉 from d
15 ReceiveAck(s,d)
16 if RecentAck(s,d)
17 hints[d] ← hint
18 if CurrentChoice(s,d) ∧ (chosen == ⊥)
19 me ← ⊥
20 if OldChoice(s,d) ∧ (me 6= ⊥)
21 SendTo(last_choice[d],me,{d})

// learn of decider d and round is active
22 D: when detect new decider d ∧ (me 6= ⊥)
23 SendTo(seq,me,{d})
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5.4 Analysis of the Decider/Chooser Protocol

In this section, we consider the correctness of DCP, first via proof and then by

using model checking software.

5.4.1 Proof of Correctness of DCP

We prove here that DCP implements LSP. We assume that each channel contains

no more than max_in_channel messages (Listing 5.4).

Our proof of correctness uses the following Eventual Delivery lemma:

Lemma 1 (Eventual Delivery). If chooser c sends a message [seq,me] to d, and both

c and d remain uncrashed and connected to each other, then eventually d receives a

message [seq′,me′] from c with seq′≥ seq, and eventually c receives an acknowledgment

from d for a message with a sequence number seq′′ ≥ seq.

Lemma 1 Proof. When c sends [seq,me] to d, it will keep sending messages with some

sequence number seq′ ≥ seq to d via Actions A or B until it receives an acknowledgment

(via Actions G, C) for seq′′ ≥ seq.

Progress Proof. Initially c.me is⊥. This variable is set to a non-⊥ value only by Action

A, and Action A is continuously enabled starting with the initial state. Hence, if c does

not remain crashed, c.me will be set to some non-⊥ value.

Distinctness Proof. A chooser that remains up will execute Action A one or more times.

If it executes Action A a final time, we say that the chooser c’s choice c.me stands: from

that point on, c.me does not change. If c’s value stands and c remains up, then c.me 6=⊥
since, otherwise, Action A is enabled.

We first show that two choosers that share a decider cannot both choose the

same label and have their choices stand. That is, if two choosers’ values c1.me and

c2.me stand, then c1.me 6= c2.me. We then show that with high probability, the choosers

will choose distinct values that stand.

(a) It is impossible for two choosers c1 and c2, both connected to decider d, to

both set c1.me = c2.me = x with x 6=⊥ and have these values stand. This is because c1

will send [seq1,x] to d and c2 will send [seq2,x] to d for some seq1 and seq2. Since both
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leave me at x, neither sends a message with larger sequence numbers. From Lemma 1,

d will eventually deliver both messages, and will reply⊥ to at least one of the choosers.

Again from Lemma 1 the chooser will receive this acknowledgment and set me to ⊥.

(b) Consider some point in the execution of the protocol. Let D be the set of

deciders and C be the set of choosers. Let C+ be the subset of choosers that will choose

again by executing Action A — that is, C\C+ are the choosers whose choices stand.

If a chooser in C+ chooses a value that some decider d has already given to

another process, then it may receive ⊥ from d. There are up to |D|×|C| distinct values

that have already been given by some decider to some chooser. If multiple choosers in

C+ choose the same value, then some decider d they share may send one of them ⊥.

If a chooser c in C+ chooses a value that is in a message m that was sent by

another chooser to a decider d but not yet delivered by d, then d may deliver m before

receiving c’s choice, and thus d will send ⊥ to c. There are up to

|D|×|C|×max_in_channel

distinct values in channels.

Let P(q,m,L) be the probability that if we take m samples with replacement from

a domain of size L, then exactly q of them are distinct. In our case, L corresponds to

the label domain, m to the number of choosers still attempting to select values, and q

to the number of choosers that choose values that will stand as labels because they are

distinct. Let Choice be the domain from which choosers choose. Even if all choosers

pick distinct values, there are up to

|D|×|C|+ |D|×|C|×max_in_channel

values that, if chosen, will result in a chooser receiving ⊥. Thus, the probability that the

choosers in C+ all choose values that stand is at least

P(|C+|, |C+|, |Choice|− |C|×|D|(1+max_in_channel))

In fact, the probability that some choosers choose values that stand is positive. Thus,

with enough choices, C+ will continue to decrease with high probability, until it be-

comes empty.
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5.4.2 Model Checking DCP

We implemented DCP in Mace [21, 40], which is a language for distributed sys-

tem development. The Mace toolkit includes both a model checker [39] that allows one

to verify the correctness of the system and a simulator [41] for testing timed behavior. A

major benefit of Mace is that Mace code compiles into standard C++ code, which allows

one to deploy code that has been model checked.

A few differences between our implementation [72] and the listings of Sec-

tion 5.3 bear special mention. A Mace service contains variables, messages, and code

segments called transitions, which are executed in reaction to four types of events: timer

expiration, message receipt, error indication, and downcalls from applications using the

service. Mace cannot constantly test the guards for the actions shown in our listings;

instead, we determine when each guard may become true and evaluate each guard at all

necessary points (executing the corresponding action if necessary). A decider’s Action

G executes upon receipt of a message from any chooser, whereas Action F executes only

upon receipt of a message from a chooser that has not yet been encountered. The case

for the chooser is more complicated. Action A needs to execute whenever c.me = ⊥.

This can occur initially upon startup of the chooser, upon recovery from a crash (if the

value was not set prior to the crash), and as the result of a rejection message in Action

C. So, the guard for Action A is evaluated at these three times. The guard for Action B is

evaluated when the watchdog timer fires and also upon reset. Action C executes directly

as a result of a message receipt from a decider. The guard for Action D is evaluated

whenever a chooser receives a message from a decider not currently in c.deciders.

Both the Mace model checker and the Mace simulator construct a set of behav-

iors of the program. Mace knows the sources of nondeterminism (in our case, node fail-

ures, UDP packet reordering and loss, and random number generation) and so constructs

all behaviors over which it checks for violations of any safety or liveness property. The

model checker differs from the simulator in how the sets of behaviors are constructed:

the model checker does a breadth first construction while the simulator chooses, at ran-

dom, a value for each nondeterministic event to construct a behavior. Since the tests

cannot be run for an infinite time, each behavior is extended to a maximum depth (set

with a run-time parameter).
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We used the Mace model checker to check the liveness properties Progress and

Distinctness. We considered three types of topologies, all modifications of a 3-level fat

tree.2 We constructed all three topologies by first creating a 3-level fat tree using k-port

switches, with k = 4, 6, 8, 10 and 12, and extracting the bottom two levels of nodes. The

first topology (fat tree-based) consists of this bipartite graph embedded in the lowest two

levels of a fat tree. For our random bipartite topology, we began with the fat tree-based

topology and removed all edges in the graph. We then generated edges between each

lower-level node and a randomly chosen set of k
2 upper-level nodes. Finally, we also

created a complete bipartite graph between the nodes within the fat tree-based topology.

The complete bipartite graph topology imposes the most restrictions on DCP because

all choosers share all deciders: no two choosers can have the same label.

For each topology type, we show that the Progress and Distinctness proper-

ties eventually hold. We also verify the channel bounding aspects of the protocol (see

Section 5.3.1) using safety properties.

5.5 Performance of the Decider/Chooser Protocol

In this section, we consider the performance of DCP, that is, we explore the

time required for an instance of DCP to satisfy Progress and Distinctness. We begin

in Section 5.5.1 by mathematically analyzing DCP and then we simulate its behavior in

Section 5.5.2.

5.5.1 Analyzing DCP Performance

Recall that P(q,m,L) expresses the probability that if we take m samples with

replacement from a domain of size L, then exactly q of them are distinct. In other

words, this value expresses the probability that any given set of choosers will succeed

(and therefore exit the competition) during any given round. Therefore, sequences of

P(q,m,L) values can form probability distributions for the completion of DCP instances.

2We selected a fat tree as a base topology because it arises in the context of ALIAS (Chapter 4).
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P(q,m,L) can be computed as follows. Let S(m) be the set of different sets of

positive numbers that sum to m. For example,

S(6) ={{1,1,1,1,1,1},{1,1,1,1,2},{1,1,1,3},{1,1,4},

{1,5},{1,1,2,2},{1,2,3},{2,4}

{2,2,2},{3,3},{6}}

We use each element of S(m) to denote a configuration of the m choosers. So,

{1,5} represents a configuration of six choosers in which five choose the same label,

and the sixth chooses another label.

Let C(s) be the number of ways the m choosers can be grouped into a configu-

ration s and let T (s,L) be the number of unique ways elements of L can be assigned to

configuration s. That is,

T (s,L) = |s|!×
(

L
|s|

)
=

L!
(L−|s|)!

The probability that m choosers result in configuration s is C(s)×T (s,L)/Lm.

For example, let s = {1,1,2,2}.

C(s) =
(

6
1

)
×
(

5
1

)
×

(4
2

)
2!
×

(2
2

)
2!

= 45

T (s,10) for s = {1,1,2,2} is 5,040 and the probability that the choosers are in

configuration {1,1,2,2} for L = 10 is

45×5040
106 = 0.2268

Finally, let Sq(m) be the subset of S(m) that contain exactly q values of 1. For

example,

S2(6) = {{1,1,4},{1,1,2,2}}

Then we have

P(q,m,L) =
∑s∈Sq(m)C(s)∗T (s,L)

Lm



107

So, P(2,6,10) is

P(2,6,10) =
C({1,1,2,2})×T ({1,1,2,2},10)+C({1,1,4})×T ({1,1,4},10)

106

= 0.2268+0.0108

= 0.2376

That is, just under a quarter of the time, if six choosers choose labels from 0 to 9,

exactly two will end up with labels distinct from all the other chosen labels. Over 95% of

the time that this happens, two other choosers will choose a third label and the remaining

two will choose a fourth label, and under 5% of the time the four remaining choosers

will choose the same label.

To give an idea of the probability of choosing distinct values, Figure 5.6 shows a

plot for P(q,32,L) for L = 32, 64 and 128 (that is, 32 choosers and labels with 5, 6 and

7 bits). With L = 128, the most likely value for q is 26, which would leave 6 choosers

choosing again. When L = 32 (the smallest possible value for L) , the most likely value

for q is 12, which leaves 20 choosers choosing again. This shows how decreasing L

increases the expected convergence time.
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Figure 5.6: P(q,32,L) with L = 32,64,128
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It would be useful to compute an upper bound on the convergence time of DCP,

but it has proven difficult to do so: as more choosers choose values that stand, fewer

values remain for other choosers, but the number of choosers competing for values de-

creases. For the purposes of ALIAS, simulation has been sufficient to show that the

expected convergence time is short.

5.5.2 Simulating DCP Performance

After verifying Progress and Distinctness with the Mace model checker, we

used the Mace simulator to determine how quickly DCP converges over the same three

types of topologies (fat tree-based, random bipartite and complete bipartite). In addition

to the topology type, we varied the number of choosers and deciders3 (|C|) as well as the

size of the domain (|L|) from which the choices are made. We simulated |L|= |C|, which

is the smallest domain that allows for a solution with a bipartite graph, |L|= 1.5|C| and

|L| = 2|C|. For a given number of choosers and deciders, there are 9 possible config-

urations, corresponding to the three topology types and the three label domain sizes.

For each configuration, we simulated 100 different executions (thus giving different val-

ues for the nondeterministic events). Table 5.1 shows the results of these simulations.

Each column gives the percentage of choosers (averaged over 100 executions) that have

converged after a given number of choices.

For the first two types of topologies, most choosers converge within 2 choices,

and only a few require 3-5 choices before settling on a value. For the complete bipartite

graphs, especially when |L| = |C|, it takes longer for all choosers to converge because

each chooser must choose a distinct value. Even so, in most cases over 90% of the

choosers converge with 2 choices and over 99% converge with 4 choices. But, the time

for all to decide under such constraints can sometimes be long. For example, in one

particular execution for the complete bipartite topology with |L| = |C| = 18, the hint

messages to a single chooser were repeatedly dropped, and the chooser chose already-

taken labels for 89 cycles before converging.

3The number of deciders is equal to the number of choosers.
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Table 5.1: Convergence Time of DCP

Topo |C| |L| 1 2 3 4 5 6 7 35 55 89
8 94.13 99.88 100

12 96.38 100
16 95.50 100
18 94.33 99.94 100
27 96.50 99.94 100
36 97.44 100
32 95.38 99.91 100
48 96.56 100
64 97.09 99.94 100
50 97.36 100
75 97.74 100

100 95.54 99.98 100
72 96.01 99.89 100

108 97.43 100
144 98.01 100

8 88.13 98.75 100
12 92.88 100
16 93.88 99.88 100
18 87.89 98.11 99.83 100
27 92.33 99.17 100
36 93.94 99.39 99.94 100
32 84.69 98.16 99.88 100
48 90.16 99.19 99.97 100
64 92.78 99.53 100
50 83.80 97.02 99.62 99.94 100
75 89.58 98.92 99.98 100

100 91.78 99.38 99.98 99.98 100
72 84.19 97.57 99.71 99.96 100

108 89.40 98.81 99.89 100
144 92.40 99.29 99.99 100

8 50.00 70.50 81.00 84.88 86.00 87.88 88.88 99.63 100
12 68.50 91.38 97.75 99.50 99.88 100
16 75.50 96.25 99.25 100
18 32.17 43.44 50.44 53.56 55.11 56.22 57.61 90.56 98.72 100
27 59.94 84.44 95.17 98.83 99.56 99.83 99.89 100
36 68.78 91.33 98.28 99.72 100
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5.6 DCP in Data Center Labeling

In this section, we consider the application of DCP in the context of automatic

label assignment in large-scale data center networks. ALIAS (Chapter 4) operates over

indirect hierarchical topologies [66], in which servers (end hosts) connect to the low-

est level of a multi-rooted tree of switches. Such topologies currently underly many

data center networks [4, 13, 18, 28, 56]. Switches at each level of the hierarchy but the

topmost select coordinates and these coordinates combine to form hierarchically mean-

ingful labels; a label corresponds to a path from the root of the tree to a host. In data

center networks, a key concern is automatic configuration in the face of a dynamically

changing topology, so DCP is well-suited to this environment.
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5.6.1 Distributing the Chooser

Recall that the input to DCP is a bipartite graph of choosers connected to de-

ciders; each chooser and decider resides in a single process. Before we discuss DCP as

a solution for coordinate assignment in ALIAS, we first present an extension to the ba-

sic protocol, in which a logical chooser can be distributed across multiple nodes. These

nodes cooperate to select a single shared label. We will use this extension when we ap-

ply DCP within ALIAS’s multi-rooted trees in Section 5.6.2. A full protocol derivation

appears in Section 5.7.

We begin with the set of nodes that wish to cooperate in order to select a shared

label, and introduce a new type of process for these nodes: the chooser relay. Each

node within the cooperating set functions as a relay, providing a connection from the

distributed chooser to one or more deciders. A distributed chooser’s set of neighboring

deciders consists of the union of all deciders with a direct link to one or more of the

chooser’s relays. We then introduce another type of process, the chooser representative.

Each distributed chooser has exactly one representative, which performs all of the func-

tionality of the chooser (Actions A through D of Listing 5.5), and communicates with

deciders via the chooser’s relays. This representative can be co-located with one of the

relays or it can be a separate node; the only requirement is that it is able to communicate

with all of the chooser’s relays.

The structure of a distributed chooser with a separately located representative is

shown in Figure 5.7. In the figure, the nodes marked d1 through d4 are deciders, and the

dotted lines denote the boundaries of the two distributed choosers. Within Chooser1 and

Chooser2, rel1 through rel5 are relays, and rep1 and rep2 are representatives.

For a distributed chooser C , we denote with Relays(C ) the set of relays in C and

with Repr(C ) the process that represents C . Together, the processes in Relays(C )∪
Repr(C ) make up the distributed chooser C . Similarly, for an individual node r, we

use Relays(r) and Repr(r) to denote the relays and representative of the chooser in

which r participates. In our example of Figure 5.7, the relays and representatives

for the two distributed choosers are as follows: Relays(Chooser1) = {rel1,rel2,rel3},
Repr(Chooser1) = rep1, Relays(rel4) = {rel4,rel5} and Repr(rel4) = rep2.
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Figure 5.7: Distributed Chooser

There are some issues to address in implementing a distributed chooser. The

first is that of communication between the chooser’s representative and its relays. We

support this communication with two queues, Send and Receive:

Send: is a queue of messages stored at each relay r, that implements a virtual channel

from Repr(r) to the deciders. Repr(r) appends a message m to this queue by

sending a message to Relays(r). When a relay receives this message, it adds m to

the end of its own copy of Send. Repr(r) never takes an action based on the value

of Send, and so a relay r need not notify Repr(r) when it removes m from Send.

Receive: is a queue of messages stored at Repr(C ) that accumulates messages sent to

a chooser C from its deciders. A relay r for chooser C appends messages to this

queue by sending them to Repr(r).

These changes only affect the chooser’s actions and channel code slightly; the

SendTo and ResendTo channel functions (Listing 5.4) append to the Send queue rather

than sending messages directly to deciders, and a chooser’s Action C (Listing 5.5) is

triggered by a non-empty Receive queue rather than by direct receipt of a message from

a decider.

A second issue has to do with the connections between a distributed chooser and

a decider: a chooser may be connected to each of its deciders via various subsets of its

relays. Rather than having the representative keep track of which relays are connected

to each decider, it can simply send all messages to all of its relays. Each relay then filters



112

out messages destined to deciders that it does not neighbor. While this increases mes-

sage load, it does not require that a representative keep track of the possibly changing

connections between the relays and deciders. Similarly, since a chooser may connect to

a decider d via multiple relays, it has the option of selecting only a single such relay for

each message sent to d, or it may use any subset of the relays connected to d. This again

represents a tradeoff between message load and complexity.

A third issue has to do with data representation at both the chooser and the

decider. Since a representative may have multiple paths to a given decider via different

relays, it indexes any channel-related variables over both relays and deciders. This is

intuitive, as the relays act as virtual channels between a chooser’s representative and its

deciders. Therefore, channel-related variables should be indexed over the entire channel,

relays and deciders. Also, recall that a decider indexes its chosen and last_seq maps

over choosers. To support distributed choosers, a decider indexes these maps over the

entire chooser, both the relays and the representative.

Finally, changing network conditions may affect connectivity between a

chooser’s representative and its relays, which can cause the representative to change.

Any node that could ever be the representative for a chooser watches the Receive queue

and maintains any channel-related state for that chooser. Such a node also executes a

modified version of Action C (Listing 5.5) that properly updates state upon receipt of an

acknowledgment so that if it subsequently becomes the chooser’s representative, it will

have correct acknowledgment and channel capacity information.

5.6.2 The Decider/Chooser Protocol in ALIAS

Figure 5.8 shows an example multi-rooted tree of switches. In the figure, hosts

have been omitted for space and clarity. Switches are categorized as being at levels

L1 through L3, from the bottom of the tree upwards, and the S1 through S10 notations

indicate switches’ unique identifiers.
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Figure 5.8: Multi-Rooted Tree Topology

In ALIAS, a host h’s label is a pair of coordinates c2c1, where c1 is the coordinate

of the level L1 switch s1 to which h is connected and c2 is the coordinate of a switch at

level L2 that neighbors s1.4 Since there are multiple paths from the root of the tree to

a host h, hosts in ALIAS have multiple labels. ALIAS forwarding sends data packets

to the root of the tree, at which point a packet’s destination label specifies a path to the

destination. This is based on up*/down* style forwarding, as introduced in Autonet [65].

Since switches forward packets downward based on coordinates within the des-

tination label, it follows that any two children of a given switch should have distinct

coordinates; in this way a parent switch can select which child should be the next hop

for any given destination label. This maps nicely to a simple application of simultane-

ous instances of DCP, one per tree level, as we show in Figure 5.9. Each instance of

DCP is used to select coordinates for the instance’s choosers. Since there are two levels

of switches (L1 and L2) that need coordinates, we apply an instance of DCP for each.

In the first instance, all L1 switches act as choosers for their L1-coordinates and all L2

switches act as deciders. In the the second instance, all L2 switches act as choosers for

their L2-coordinates and all L3 switches are deciders.

The application of DCP to ALIAS L2-coordinate assignment shown in Figure 5.9

is simple but not efficient in terms of the number of labels it assigns to each host. To

address this, ALIAS leverages the hierarchical structure of the the topology in order to

allow certain sets of switches located near to one another in the hierarchy to share label

prefixes. This in turn leads to more compact forwarding state, a desirable property in

the data center.
4Top-level switches are not assigned coordinates.
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Figure 5.9: Simple DCP in ALIAS

To enable these shared label prefixes, ALIAS introduces the concept of a hy-

pernode. In an n-level tree, all switches (other than those at Ln) are partitioned into

hypernodes. A hypernode at level Li is defined as a maximal set of Li switches that

connect to an identical set of Li−1 hypernodes below. The base case for this recursive

definition has each hypernode at L1 contain a single switch. For a 3-level tree, the only

interesting hypernodes are made up of L2 switches. Figure 5.8 shows the sample topol-

ogy’s hypernodes with dotted lines.

Consider a packet with destination label c2c1. The coordinate c1 corresponds to

an L1 switch s1 that is connected to the packet’s destination. Since all L2 switches in

a hypernode connect to the same set of L1 switches below, an L3 switch can send the

packet to any switch in an L2 hypernode that neighbors s1. Therefore, the switches in a

hypernode can share a single coordinate, as all are equivalent with respect to forwarding

reachability. Coordinate sharing among hypernode members reduces the number of

labels assigned to an host and increases the efficiency of ALIAS.

To accommodate shared L2-coordinates, we apply the distributed chooser ver-

sion of DCP. Each hypernode corresponds to a single chooser, in which the L2 member

switches are relays. By definition, an L2 hypernode consists of L2 switches that connect

to the same set of L1 switches, and so we are guaranteed to have an L1 switch that can

reach all L2 relays and therefore can act as the chooser’s representative. We select be-

tween a set of possible representatives via any deterministic function, e.g. the L1 switch

with the smallest MAC address.5 Figure 5.10 shows the three distributed choosers for

5In general, it is acceptable to use any deterministic function such that the result is identical at all
decision points of the function.
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our example topology’s L2-coordinate assignment. These choosers consist of relays

{s3} {s4,s5} and {s6}, represented by {s7}, {s8} and {s9}, respectively.
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Figure 5.10: Assigning L2-Coordinates using Distributed Choosers

We have completed a full protocol derivation from Listings 5.1 and 5.5 to a

complete solution for ALIAS coordinate selection, which we present in Section 5.7.

In addition to our Mace implementation of DCP [72], we have also built a second,

slightly different implementation of ALIAS [73].6 We have also model checked our

second implementation with respect to the Progress and Distinctness properties, and

have found through simulation that distributed choosers converge within only a few

choices for the networks tested.

5.6.3 Eliminating M-Graphs in ALIAS

The up*/down* forwarding used by ALIAS separates L1-to-Ln forwarding from

Ln-to-L1 forwarding in an n-level hierarchy. Because of this, a topology that we call an

M-graph can lead to a forwarding ambiguity. When data forwarding follows an up-down

path, two L1 switches must be no more than 2(n−1) hops apart to directly communicate

with one another. An M-graph occurs when two L2 hypernodes hn1 and hn2 do not have

an L3 decider in common, and thus may select the same coordinate, but an host h can

communicate with descendants of both hn1 and hn2.

An example M-graph is shown in Figure 5.11. Each switch is marked with a

unique identifier (S1 through S9) as well as its coordinate if at levels L1 or L2. Each

6Our second implementation does not operate in rounds. Choosers and deciders continuously send
messages, ignoring incoming messages that are redundant with respect to already processed information.
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host is marked with its unique identifier (H1 through H3) and its label (created by con-

catenating ancestor switches’ coordinates). The L2 hypernodes in the figure are {s3},
{s4,s5} and {s6} and they form distributed choosers represented by {s7}, {s8} and {s9},
respectively.
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Figure 5.11: Example M-Graph

Because data forwarding follows an up-down path, s7 and s9 cannot communi-

cate directly with one another. They can, though, both communicate with a third L1

switch s8 (and its neighboring host H2). Since the L2 hypernodes connected to s7 and

s9 ({s3} and {s6}) do not share a parent they can have the same L2-coordinate, in this

case 3. And, since s7 and s9 have no parent in common, they can have the same L1-

coordinate, in this case 1. This is the ambiguity: s8 can communicate with two different

switches, s7 and s9, that may legally be assigned the same label.

In practice, this is not a problem because of the randomness of DCP: ambigu-

ous labels are rarely generated. When ALIAS finds such labels, it follows a simple

detection-and-recovery approach. If desired, though, we can prevent this ambiguity in

two different ways, each involving an application of DCP. First, we can simply add the

set of L1 switches that are 3 hops away from each L2 hypernode to the set of deciders

for that hypernode’s chooser.7 For example, in Figure 5.11, s8 would be a decider for

hypernodes {s3} and {s6}. This removes the possibility of ambiguity by ensuring that

any two hypernodes both reachable from a third L1 switch have distinct labels. This so-

lution increases implementation complexity slightly, because L2 relays are not directly
7More generally, for an Li hypernode, we add to the deciders all L1 switches that are 2n− i−1 hops

from L1.
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connected to all L1 deciders and so send messages to deciders via tunneling or other

similar mechanisms.

Alternatively, one can prevent this ambiguity by assigning coordinates to L3

switches. In our example, the labels of s7 and s9 (and therefore H1 and H3) would

differ in this new coordinate. To do this, L3 switches are grouped into hypernodes based

on connectivity to L2 hypernodes. L3 hypernodes then form distributed choosers, using,

for example, common L1 descendants as representatives. L1 switches reachable in 2

hops from the L3 hypernodes are the deciders for this instance of DCP. This approach

increases the distance between a chooser’s representative and relays. Like the previous

solution, this approach leads to indirect connections between relays and deciders. How-

ever, unlike the first solution, this method introduces the additional complexity and costs

of grouping L3 switches into hypernodes and assigning L3-coordinates. For this reason,

we would favor the former solution.

5.7 From DCP to ALIAS Coordinate Selection

In this section we present the full derivation of the ALIAS protocol (Chapter 4)

from the basic version of DCP. We first review significant ALIAS environment and

details, as well as the basic chooser and decider algorithms. Next, we discuss hypernode

calculation, and we refine the chooser to select multiple coordinates simultaneously.

Finally, we apply the distributed chooser refinement described in Section 5.6.1. We

present our derivation in the context of a 3-level tree. Though our solution extends to

trees of arbitrary depth, we use this limitation for readability.

5.7.1 ALIAS and DCP Review

Recall that ALIAS switches form an indirect hierarchical topology [66] of n

levels, with end hosts connected to switches at the lowest level, L1. Switches select co-

ordinates that are combined to form topologically meaningful labels; coordinates con-

catenate along a path from the root of the tree to an end host in order to form a label for

that end host. Since there are multiple paths from the root of the tree to any given end

host, end hosts have multiple labels.
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ALIAS switches are grouped into hypernodes: Li switches that connect to iden-

tical sets of Li−1 hypernodes form Li-hypernodes that share a single coordinate. Each

switch at L1 is in its own hypernode, and switches at the root of the tree are not grouped

into hypernodes as they do not require coordinates. Each Li switch is a member of ex-

actly one hypernode,8 and Li switches may be connected to Li+1 switches in multiple

Li+1-hypernodes. Coordinate sharing within hypernodes serves to ultimately reduce the

number of labels per end host in ALIAS. In a 3-level topology, only L2 switches are

grouped into hypernodes; L1 hypernodes are trivial, with one L1 switch per hypernode,

and L3 switches are at the root of the hierarchy and do not require coordinate assign-

ments or hypernodes.

We begin our derivation by repeating the basic algorithms for the decider’s ac-

tions (Listing 5.1) and the chooser’s actions (Listing 5.5) and channel code (Listing 5.4),

in Listings 5.6, 5.7, and 5.8, respectively. There is one small change to the chooser’s

channel code: we add routines to clear a chooser’s channel corresponding to a particular

decider, and to copy channel state from one of chooser’s deciders to another. Also, we

replace the null coordinate value ⊥ with −1, as this corresponds to the null value of a

coordinate in the implementation of ALIAS.

5.7.2 Computing Hypernodes

Prior to assigning coordinates, ALIAS hypernodes need to be identified. We

select a representative L1 switch for each Li hypernode via a deterministic function, e.g.

the L1 switch with the smallest UID (in our implementation, MAC address) among those

reachable via (i− 1) downward hops from switches in the hypernode. This L1 switch

functions as a distributed chooser’s representative (Section 5.6).

Listings 5.9 and 5.10 show the actions executed by L2 switches and L1 switches,

respectively, for computing hypernodes and representative L1 switches. In Action P,

each time an L2 switch’s set of neighboring L1 switches changes, it sends this set of

neighboring L1 switches to all of its L1 neighbors.9 An L1 switch stores this set (Action

Q) and computes the sending L2 switch’s hypernode. Regardless of whether they rep-
8The set of Li hypernodes forms a set of equivalence classes over the Li switches in a topology.
9It also sends this set to neighboring L3 switches to facilitate its own hypernode’s coordinate assign-

ment, as explained in Section 5.7.4.
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Listing 5.6: Decider Algorithm
(Repeated from Listing 5.1)

1 set〈Chooser〉 choosers = ...
2 Choice[choosers] chosen = all[-1]
3 int[choosers] last_seq = all[0]

// when connected to new chooser c
4 F: when new chooser c
5 choosers ← choosers ∪ {c}
6 chosen[c] ← -1
7 last_seq[c] ← 0

// respond to a message from chooser c
8 G: when receive 〈s, x〉 from c
9 if s≥last_seq[c]

10 last_seq[c] ← s
11 if ∃ c’ ∈ (choosers \ {c}): chosen[c’] == x
12 chosen[c] ← -1
13 else
14 chosen[c] ← x
15 hints ← {chosen[c’]∀ c’ ∈ (choosers \ {c})} \ {-1}
16 send 〈s, chosen[c], hints〉 to c
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Listing 5.7: Chooser Algorithm: Actions and State
(Bounded Channels, Repeated from Listing 5.5)

1 set〈Decider〉 deciders = ...
2 int seq = 0
3 Choice me = -1
4 (set〈Choice〉)[deciders] hints = all[ /0]

// when needs to make a choice
5 A: when me == -1
6 choices ← domain(Choice) \ {-1} \ {hints[d]∀ d ∈ deciders}
7 me ← choose from choices
8 seq ++
9 SendTo(seq,me,deciders)

10 TO_arm

// retransmit last msg sent to deciders yet to acknowledge
11 B: when timeout ∧ (me 6= -1)
12 ResendTo({d ∈ deciders: ¬HasReceivedAck(d)})
13 TO_arm

// receive response from d
14 C: when receive 〈s, chosen, hint〉 from d
15 ReceiveAck(s,d)
16 if RecentAck(s,d)
17 hints[d] ← hint
18 if CurrentChoice(s,d) ∧ (chosen == -1)
19 me ← -1
20 if OldChoice(s,d) ∧ (me 6= -1)
21 SendTo(last_choice[d],me,{d})

// learn of decider d and round is active
22 D: when detect new decider d ∧ (me 6= -1)
23 SendTo(seq,me,{d})
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Listing 5.8: Chooser Channel Predicates and Routines
(Bounded Channels, Repeated from Listing 5.4)

1 int[deciders] last_ack = all[0]
2 (set〈int〉)[deciders] sent = all[ /0]
3 〈int,Choice〉[deciders] last_sent = all[〈0,-1〉]
4 int[deciders] last_choice = all[0]
5 int max_in_chan = a non-zero constant

// ⇐⇒ c has an ack from d for its latest choice
6 boolean HasReceivedAck (d):
7 last_ack[d] == last_choice[d]

// ⇐⇒ s acknowledges c’s most recent choice for d
8 boolean CurrentChoice (s,d):
9 s == last_choice[d]

// ⇐⇒ s acknowledges an obsolete choice for d
10 boolean OldChoice (s,d):
11 s < last_choice[d]

// ⇐⇒ there is room in the channel to send to d
12 boolean CanSendTo (d):
13 | sent[d] | < max_in_channel

// ⇐⇒ c has sent its most recent choice to d
14 boolean SentLatest (d):
15 last_sent[d][0] == last_choice[d]

// ⇐⇒ s acknowledges c’s most recent message to d
16 boolean RecentAck (s,d):
17 s == last_sent[d][0]

18 SendTo (s,x,D):
19 foreach d ∈ D do
20 if CanSendTo(d)
21 send 〈s,x〉 to d
22 sent[d] ← sent[d] ∪ {s}
23 last_sent[d] ← (s,x)
24 last_choice[d] ← s

25 ResendTo (D):
26 foreach d ∈ D do
27 if | sent[d] |>0
28 send 〈last_sent[d]〉 to d

29 ReceiveAck (s,d):
30 sent[d] ← sent[d] \ {i: i≤s}
31 last_ack[d] ← s

32 ClearChannel (d):
33 last_ack[d]←0
34 sent[d].clear()
35 last_sent[d] ← (0,-1)
36 last_choice[d]←0

37 CopyChannel (d,ref):
38 last_choice[d]←last_choice[ref]
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resent any hypernodes, all L1 switches perform computation to determine the set of L2

hypernodes to which they are connected. An L1 switch runs nearly identical code (omit-

ted for space) when it detects the disconnection of an L2 switch. There is also logic to

ensure that messages are eventually delivered, and that they are delivered in order. This

code is also omitted from the listings for brevity.

Listing 5.9: Hypernode Computation: L2 Switches
1 set〈Switch〉 L1s = ... // corresponds to choosers of Listing 5.6
2 set〈Switch〉 L3s = ...

// when L1 neighbors change
3 P: when detect change in L1s
4 foreach n ∈ {L1s ∪ L3s} do
5 send 〈L1s〉 to n

Listing 5.10: Hypernode Computation: L1 Switches
1 set〈Switch〉 L2s = ... // corresponds to deciders of Listing 5.12
2 (set〈Switch〉)[L2s] L1_sets = all[ /0]
3 (set〈Switch〉)[L2s] HN = all[ /0] // corresponds to HN of Listing 5.12

// on notification from L2 switch
4 Q: when receive 〈L1s〉 from s ∈ L2s
5 L1_sets[s] ← L1s
6 HN[s] ← {s}
7 foreach n ∈ {L2s \ {s}} do
8 if L1_sets[n] == L1_sets[s]
9 HN[s] ← HN[s] ∪ {n}

10 foreach n ∈ HN[s] do
11 HN[n] ← HN[s]

5.7.3 L1-Coordinate Assignment: Basic DCP

In this section, we discuss the assignment of L1-coordinates to ALIAS switches

using DCP. We consider two options for L1-coordinate selection and discuss the trade-

offs associated with each.

Recall that to assign L1-coordinates in ALIAS, we can simply apply DCP, with

L1 switches as choosers and L2 switches as deciders. Note that a single L1 switch may

be participating as a chooser with respect to several different sets of shared deciders.

That is, chooser c1 may share deciders d1 and d2 with chooser c2 and deciders d3 and
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d4 with chooser c3. In fact, these sets of shared deciders correspond exactly to the L2

hypernodes in the topology.

There are two options for L1-coordinate selection in ALIAS. Both satisfy the

Distinctness property of LSP amongst L1 switches:

1. Single L1-Coordinate: On one hand, we can assign a single L1-coordinate c1 to

each L1 switch. In this case, the set of labels for an L1 switch s1 will be of the

form {(c2_1,c1),...,(c2_m,c1)} where c2_1 through c2_m are the L2-coordinates of

each of the m hypernodes to which s1 is connected.

2. L1-Coordinate Per L2 Hypernode: Another option is to assign to s1 multiple

L1-coordinates, one per neighboring L2 hypernode. Here, s1’s label set will be

of the form {(c2_1,c1_1),...,(c2_m,c1_m)}, and s1 will have an L1-coordinate cor-

responding to each neighboring L2 hypernode (and therefore each L2-coordinate

c2_i).

There are tradeoffs between these two options. With option (1), we have a sim-

pler protocol; s1 only needs to select and keep track of one coordinate. However, this

scheme may unnecessarily restrict s1’s coordinate choices, forcing the coordinate do-

main to be larger than necessary. This is because s1 may compete with every other L1

switch in the topology for its coordinate, even if it shares a different set of L2 deciders

with each other L1 switch. Additionally, this scheme may result in extra communication

on topology changes. A topology change that introduces a connection between an L1

switch s1 and L2 switch s2 forces s1 and all of its neighboring L2 switches to rerun DCP.

This could potentially involve all L2 switches in the topology, even those outside of s2’s

hypernode. Option (2) provides the complement of these tradeoffs; it is more complex

to implement, but reduces the required size of the coordinate domain to the largest set

of L1 switches all connected to an L2 hypernode. Additionally, after a topology change,

an L1 switch only needs to communicate with the L2 switches in a single hypernode.

We illustrate these tradeoffs in Figure 5.12. Suppose the dotted link is initially

not present. In this case, regardless of the option used, each L1 switch has only a single

coordinate, as each only connects to one L2 hypernode. Because S5 and S6 do not share

deciders, they are free to have the same coordinate, in this case 7. Initially, S5 has only
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a single label in its set, {3.7}. Suppose that the dotted link now appears, causing S5

to share a decider with S6. Under option (1), S5 will have to select a new coordinate,

and will have to communicate with all neighboring L2 switches (in this example, all L2

switches in the topology) to discover that it cannot select 1 or 7. If it selects x 6=1,7,

its new label set becomes {3.x,4.x}, and the coordinate domain must include at least 3

choices. On the other hand, with option (2), S5 only reselects its coordinate with respect

to hypernode {S3}, and can select a second coordinate that is anything other than 7. S5

only communicates with S3 to accomplish this, and its new label set is {3.7,4.x}, with

x 6=7, giving an overall coordinate domain size of 2.
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Figure 5.12: Two Options for L1-Coordinate Selection

We can implement the first option by simply running a single instance of DCP:

L1 switches take the role of choosers and L2 switches are deciders. This approach uses

the exact algorithms of Listings 5.6 through 5.8. However, because of the tradeoffs dis-

cussed above, ALIAS adopts the second option for L1-coordinate selection; it assigns

to each L1 switch s1, a set of coordinates, one for each of s1’s neighboring L2 hypern-

odes. To implement this, we could run multiple simultaneous instances of DCP at each

L1 switch s1, one instance for each neighboring L2 hypernode, in separate processes

on s1. However, this can be costly in terms of performance. Additionally, hypernode

membership changes may cause complicated interactions between these DCP instances.

Instead, we modify the chooser process to keep track of multiple coordinates at once.

We perform this refinement in two steps.

In the first step, we introduce the concept of per-hypernode coordinates into the

chooser’s actions and state. This is shown in Listing 5.11. Rather than storing just

the set of neighboring deciders (c.deciders of Listing 5.7), a chooser stores the set of

neighboring hypernodes in c.HNs and a map of hypernodes to their member deciders in
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c.deciders. The chooser indexes c.me over its set of neighboring hypernodes, and so all

instances of c.me from Listing 5.7 are replaced with c.me[h] in Listing 5.11. Note that it

is not necessary to index c.seq over hypernodes, because the only requirement of c.seq

is that it increase with each choice; it need not increase by exactly 1.

Listing 5.11: Chooser Algorithm: Actions and State
(Multi-Hypernode Refinement 1)

1 set〈HN〉 HNs
2 (set〈Switch〉)[HNs] deciders =...
3 int seq = 0
4 Choice[HNs] me = all[-1]
5 (set〈Choice〉)[deciders] hints = all[ /0]

// when needs to make a choice
6 A: when ∃ h ∈ HNs: me[h] == -1
7 choices ← domain(Choice) \ {-1} \ {hints[d]∀ d ∈ deciders[h]}
8 me[h] ← choose from choices
9 seq ++

10 SendTo(seq,me[h],deciders[h])
11 TO_arm

// retransmit last msg sent to deciders yet to acknowledge
12 B: when timeout
13 dests ← {deciders[h]∀ h ∈ HNs: (me[h] 6= -1) ∧ (¬HasReceivedAck(h))}
14 ResendTo(dests)
15 TO_arm

// receive response from d
16 C: when receive 〈s, chosen, hint〉 from d
17 choose h ∈ HNs: d ∈ deciders[h]
18 ReceiveAck(s,d)
19 if RecentAck(s,d)
20 hints[d] ← hint
21 if CurrentChoice(s,d) ∧ (chosen == -1)
22 me[h] ← -1
23 if OldChoice(s,d) ∧ (me[h] 6= -1)
24 SendTo(last_choice[d],me[h],{d})

// decider d joins HN h and round is active
25 D: when ∃ d ∈ deciders, h ∈ HNs: (d joins deciders[h])∧ (me[h] 6= -1)
26 choose d’ ∈ deciders[h]: d’ 6= d
27 hints[d] ← /0
28 ClearChannel(d)
29 CopyChannel(d,d’)
30 SendTo(seq,me[h],{d})

The guards and pseudocode for Actions A, B, and D change to incorporate the

notion of a hypernode; when a chooser needs to make a choice for a particular hypern-
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ode, Action A executes, Action B resends to only those hypernodes that require retrans-

mission10, and Action C is updated to determine the hypernode to which the sending

decider belongs. When a chooser learns that a new decider has joined a hypernode, Ac-

tion D executes and uses channel routines CopyChannel and ClearChannel to enable a

new hypernode member to “catch up” with the other members. Here, we define joins as

the moment when d moves from deciders[h1] to deciders[h2], with h1 6= h2 and |h2| ≥ 2.

The refinement above is intuitive, but not directly implementable, as we have

no concrete representation for a hypernode. We address this with our second step in

Listing 5.12, by introducing the following representation: To index a variable over a

hypernode, we index it over all individual member switches of the hypernode. To read a

value of a hypernode (e.g. c.me[h]), we read the corresponding value from any decider

in the hypernode, and to write a value to a hypernode, we write to all members of the

hypernode.

To keep track of neighboring deciders and hypernodes, a chooser c stores the set

of neighboring deciders (c.deciders) and a map of each decider d to the set of deciders

in d’s hypernode (c.HN). While c.me was indexed over hypernodes in Listing 5.11, it is

indexed over all deciders in Listing 5.12. When the value of c.me is to be written for a

particular hypernode, it is written for all deciders in that hypernode, and when it is read,

it is read from a single member of the hypernode. The guard for Action A, the set of

deciders to receive resent messages in Action B, and the operations in Action D are all

updated to accommodate these changes. In Action D, we define“joins” as the moment

at which d moves from HN[d1] to HN[d2], with d1 6= d2 and |HN[d2]| ≥ 2.

Note that hypernode computation runs simultaneously with this instance of DCP,

with L1s of Listing 5.9, L2s of Listing 5.10, and HN of Listing 5.10 corresponding to

choosers (Listing 5.6), and deciders and HN (Listing 5.12) respectively. We transition

to these variable names in our next refinement. Each L2 switch belongs to exactly one

hypernode and therefore participates in exactly one instance of DCP. So, the code for

the decider does not change from that of Listing 5.6 for this refinement. The chooser’s

channel-related code also remains as in Listing 5.8.

10The astute reader may notice that the channel predicate HasReceivedAck operates over a hypernode
rather than a decider. This temporary inconsistency will be resolved in our next refinement.
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Listing 5.12: Chooser Algorithm: Actions and State
(Multi-Hypernode Refinement 2)

1 set〈Switch〉 deciders = ... // corresponds to L2s of Listing 5.9
2 (set〈Switch〉)[deciders] HN = ... // corresponds to HN of Listing 5.9
3 int seq = 0
4 Choice[deciders] me = all[-1]
5 (set〈Choice〉)[deciders] hints = all[ /0]

// when needs to make a choice
6 A: when ∃ d ∈ deciders: me[d] == -1
7 choices ← domain(Choice) \ {-1} \ {hints[d’]∀ d’ ∈ HN[d]}
8 ME ← choose from choices
9 foreach d’ ∈ HN[d] do

10 me[d’] ← ME
11 seq ++
12 SendTo(seq,ME,HN[d])
13 TO_arm

// retransmit last msg sent to deciders yet to acknowledge
14 B: when timeout
15 dests ← {d ∈ deciders: (me[d] 6= -1) ∧ (¬HasReceivedAck(d))}
16 ResendTo(dests)
17 TO_arm

// receive response from d
18 C: when receive 〈s, chosen, hint〉 from d
19 ReceiveAck(s,d)
20 if RecentAck(s,d)
21 hints[d] ← hint
22 if CurrentChoice(s,d) ∧ (chosen == -1)
23 foreach d’ ∈ HN[d] do
24 me[d’] ← -1
25 if OldChoice(s,d) ∧ (me[d] 6= -1)
26 SendTo(last_choice[d],me[d],{d})

// decider d joins d′’s HN and round is active
27 D: when ∃ d, d’ ∈ deciders: (d joins HN[d’]) ∧ (me[d’] 6= -1)
28 me[d] ← me[d’]
29 hints[d] ← /0
30 ClearChannel(d)
31 CopyChannel(d,d’)
32 SendTo(seq,me[d],{d})
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5.7.4 L2-coordinate Assignment: Distributed DCP

We next discuss the assignment of L2-coordinates to L2 hypernodes. We use the

extension of DCP introduced in Section 5.6.1 to allow each L2 hypernode to function as

a distributed chooser, with neighboring L3 switches as deciders. However, before giving

the refinement for this extension, we first consider the necessity of a distributed chooser

for L2-coordinate selection.

A tempting approach is to use one instance of DCP in which L3 switches are

deciders and a single L2 switch from each hypernode is a chooser. However, this does

not work. For example, refer to the network in Figure 5.8 (Section 5.6). There are three

hypernodes: {S3}, {S4,S5}, and {S6}. The L2-coordinate shared by S4 and S5 must be

distinct from that of S3 and that of S6. Thus, whatever implements the chooser for the

hypernode {S4,S5} needs to communicate with the deciders at S1 and at S2. Neither

S4 nor S5 is connected to both deciders, and so S4 and S5 must together implement a

chooser for their hypernode.

Given that we need the cooperation of all L2 switches in a hypernode, we apply

the extension of DCP introduced in Section 5.6.1 for L2-coordinate selection. Recall that

this extension distributes a chooser C into a set, Relays(C ), of processes that all share

a common coordinate as well as a single process, Repr(C ), that performs the choosers

actions. Listings 5.13 and 5.14 contain the chooser’s actions and state for Repr(C ) and

Relays(C ), respectively.

As shown in Listing 5.13 a chooser’s representative maintains the set of L2

switches to which it connects (c.L2relays), the hypernode membership of each neigh-

boring L2 switch (c.HN), and the L3 deciders to which each neighboring L2 switch

connects (c.deciders). Since it will compute a value of c.me to be shared by an entire

hypernode, a representative needs to index c.me over the set of neighboring hypernodes

(in case it represents multiple hypernodes). As in our previous refinement, we index

over hypernodes by writing a value for a hypernode to all of its L2 members and by

reading a hypernode’s value via any of its L2 members. Therefore, c.me is indexed over

the representative’s neighboring L2 switches. The c.hints variable is index similarly.

Action A is triggered by a hypernode with a null value for c.me (indicated by

an L2 switch with a null value). The representative collects all hints for this hypernode,
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Listing 5.13: Chooser Algorithm: Actions and State
(Distributed Chooser, Representative L1 Switch)

1 set〈Switch〉 L2relays
2 (set〈Switch〉)[L2relays] HN = ...
3 (set〈Switch〉)[L2relays] deciders = ...
4 int seq = 0
5 Choice[L2relays] me = all[-1]
6 ((set〈Choice〉)[L2relays] hints = all[ /0]

// when needs to make a choice
7 A: when ∃ l2 ∈ L2relays: me[l2] == -1
8 choices ← domain(Choice) \ {-1} \ {hints[l2’]∀ l2’ ∈ HN[l2]}
9 ME ← choose from choices

10 foreach l2’ ∈ HN[l2] do
11 me[l2’] ← ME
12 seq ++
13 dests ← {d ∈ deciders[l2’]∀ l2’ ∈ HN[l2]}
14 SendTo(seq,ME,l2,dests)
15 TO_arm

// retransmit last message sent to deciders yet to acknowledge
16 B: when timeout
17 foreach l2 ∈ L2relays: me[l2] 6= -1 do
18 dests ← {d ∈ deciders[l2]: ¬HasReceivedAck(d,l2)}
19 ResendTo(dests,l2)
20 TO_arm

// receive response from d
21 C: when ¬Receive.empty()
22 [s,chosen,hint,rep_l1,d,l2] ← Receive.removeHead()
23 ReceiveAck(s,d,l2)
24 if RecentAck(s,d,l2)
25 hints[l2] ← hint
26 if CurrentChoice(s,d,l2) ∧ (chosen == -1)
27 foreach l2’ ∈ HN[l2] do
28 me[l2’] ← -1
29 if OldChoice(s,d,l2) ∧ (me[l2] 6= -1)
30 SendTo(last_choice[d][l2],me[l2],l2,{d})
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selects a new choice for the hypernode, and writes this choice to all of the hypernode’s

L2 members. As in previous version of the protocol, it then updates its sequence num-

ber, determines the deciders that neighbor this hypernode, and sends its choice to the

deciders via the appropriate relays.11 Action B differs slightly from previous version of

the protocol, in that it checks for whether a hypernode has made a choice in a f or loop

rather than in the Action’s guard. This is so the chooser can resend on behalf of all nec-

essary hypernodes in one execution of Action B, rather than only resending for a single

hypernode when the timer fires. Action C is triggered by a non-empty Receive queue

rather than by direct receipt of a message from a decider. The representative does not

run its own copy of Action D, rather all L1 switches run Action D as discussed below.

We next consider the L2 relays of the distributed chooser, as shown in List-

ing 5.14. This listing introduces the two chooser Actions S and R that partially im-

plement the Send and Receive queues between the chooser’s relays and representative.

When a representative sends its choice to a decider, it includes the sequence number, the

choice itself, the current hypernode’s members for which it is choosing, its own identity,

and the decider for which the message is intended. The third and fourth arguments are

new in this refinement and are used at the decider for book-keeping. In Action S, an L2

switch passes the first four parameters to the appropriate decider. When a decider re-

sponds to a representative’s choice, it includes the sequence number, the choice (null if

the message is a rejection), a set of hints, and the representative L1 switch for which the

message is intended. An L2 relay adds the decider’s and its own identities and enqueues

a message on the Receive queue for retrieval by the representative via Action C.

Recall from Section 5.6 that all L1 switches, including non-representatives, exe-

cute a version of of Action D, as shown in in Listing 5.15. Action D captures situations

in which an L1 switch l1 newly represents an L2 relay l2, either because l1 has just be-

come a chooser C ’s representative or because l2 has just joined Relays(C ). Via Action

D, the representative resets and copies the associated state, and then resends choices

to deciders (via relays) as necessary. Non-representative L1 switches also maintain and

read Receive queues for neighboring hypernodes, in Action C′. This is so they have

current channel capacity information should they become a representative in the future.

11The representative includes the L2 switch that triggered this action as an argument for the SendTo
channel routine, so that the routine can determine the appropriate set of relays for the message.
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Listing 5.14: Chooser Algorithm: Actions and State
(Distributed Chooser, L2 Relays)

1 Switch myID

// when data to send
2 S: when ¬Send.empty()
3 [s,x,hn,rep_l1,d] = Send.removeHead()
4 send 〈s,x,hn,rep_l1〉 to d

// when data to receive
5 R: when receive 〈s,chosen,hint,rep_l1〉 from d
6 Receive.append([s,chosen,hint,rep_l1,d,myID])

Listing 5.15: Chooser Algorithm: Actions and State
(Distributed Chooser, All L1 Switches)

// receive response from d
1 C’: when ¬Receive.empty()
2 [s,chosen,hint,l1rep,d,l2] ← Receive.removeHead()
3 if ¬(AmRepL1(l2))
4 ReceiveAck(s,d,l2)

// when AmRepL1(l2) changes or l2’s HN changes
5 D: when ∃ l2 ∈ L2relays: AmRepL1(l2) becomes true ∨
6 ∃ l2, l2’ ∈ L2relays: (l2 joins HN[l2’]) ∧ (me[l2’] 6= -1) ∧(AmRep(l2’))
7 me[l2] ← -1
8 hints[l2] ← /0
9 ClearChannel(l2)

10 if ∃ l2’ ∈ L2relays: (l2 joins HN[l2’]) ∧ (me[l2’] 6= -1) ∧ (AmRep(l2’))
11 CopyChannel(l2,l2’)
12 seq++
13 dests ← {d ∈ deciders[l2’]∀ l2’ ∈ HN[l2]}
14 SendTo(seq,me[l2],l2,dests)

The remainder of the changes to a chooser are in its channel routines and predi-

cates, as shown in Listing 5.16 and 5.17.12 Since a relay provides a virtual channel to

a decider from a representative, the representative indexes all channel variables over the

entire virtual channel, decider and relay. This affects all channel-related variables (sent,

last_sent, last_ack, and last_choice) and the channel-bounding predicates.

The channel code houses the new Send and Receive queues, and the SendTo and

ResendTo routines append to the Send queue rather than sending a message directly to

a decider as in previous versions of the protocol. Note that the SendTo and ResendTo

routines enqueue a message intended for a decider d onto the Send queue of every L2

12The code is separated into two listings due to space constraints.
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switch that reaches d. As discussed in Section 5.6, a distributed chooser’s representative

has the option to send a message to a decider d via:

1. every L2 switch that it neighbors, letting the L2 switches filter unroutable messages

2. all of its neighboring L2 switches that reach d, possibly sending the choice to d

via multiple relays

3. a subset of its neighboring L2 switches that reach d, possibly sending the choice

to d via multiple relays

4. only one of its neighboringL2 switch that reaches d.

These options have tradeoffs between synchronization complexity and message load;

we favor option (2) as a middle ground.

Finally, the ClearChannel function becomes more complicated, as a result of

the fact that we represent a hypernode with its constituent L2 members. Because of this

representation, the channel bounding variables may include entries for decider-L2 switch

pairs (d,l2) for which l2 is not connected to d, but there is some l′2 in l2’s hypernode that

is connected to d. If l′2 leaves the hypernode containing l2, then any (d,l2) values need

to be removed.
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Listing 5.16: Chooser Channel Predicates and Routines, Part 1
(Bounded Channels, Distributed Chooser)

1 int[deciders][L2relays] last_ack = all[0]
2 (set〈int〉)[deciders][L2relays] sent = all[ /0]
3 〈int,Choice〉[deciders][L2relays] last_sent = all [〈0,-1〉]
4 int[deciders][L2relays] last_choice = all[0]
5 int max_in_chan = a non-zero constant

6 queue[L2relays] Send
7 queue[L2relays] Receive

// ⇐⇒ c has an ack from d via l2 for its latest choice
8 boolean HasReceivedAck (d,l2):
9 last_ack[d][l2] == last_choice[d][l2]

// ⇐⇒ s acknowledges c’s most recent choice to d via l2
10 boolean CurrentChoice (s,d,l2):
11 s == last_choice[d][l2]

// ⇐⇒ s acknowledges an obsolete choice sent to d via l2
12 boolean OldChoice (s,d,l2):
13 s < last_choice[d][l2]

// ⇐⇒ there is room in the channel to send to d via l2
14 boolean CanSendTo (d,l2):
15 | sent[d][l2] | < max_in_channel

// ⇐⇒ c has sent its most recent choice to d via l2
16 boolean SentLatest (d,l2):
17 last_sent[d][l2][0] == last_choice[d][l2]

// ⇐⇒ s acknowledges c’s most recent message to d via l2
18 boolean RecentAck (s,d,l2):
19 s == last_sent[d][l2][0]
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Listing 5.17: Chooser Channel Predicates and Routines, Part 2
(Bounded Channels, Distributed Chooser)

1 SendTo (s,x,l2,D):
2 foreach d ∈ D do
3 if CanSendTo(d,l2)
4 foreach l2’ ∈ HN[l2]: d ∈ deciders[l2’] do
5 Send[l2’].append([s,x, HN[l2],myID,d])
6 foreach l2’ ∈ HN[l2] do
7 sent[d][l2’] ← sent[d][l2’] ∪ {s}
8 last_sent[d][l2’] ← (s,x)
9 foreach l2’ ∈ HN[l2] do

10 last_choice[d][l2’] ← s

11 ResendTo (D,l2):
12 foreach d ∈ D do
13 if |sent[d][l2]|>0
14 foreach l2’ ∈ HN[l2]: d ∈ deciders[l2’] do
15 Send[l2’].append([last_sent[d][l2’],HN[l2],myID,d])

16 ReceiveAck (s,d,l2):
17 foreach l2’ ∈ HN[l2] do
18 sent[d][l2’] ← sent[d][l2’] \ {i: i≤s}
19 last_ack[d][l2’] ← s

20 ClearChannel (l2):
21 foreach d ∈ deciders[l2] do
22 last_ack[d][l2] ← 0
23 last_choice[d][l2] ← 0
24 foreach l2’ ∈ L2relays, d ∈ deciders do
25 connects_to_d ← {l2” ∈ HN[l2’]: d ∈ deciders[l2”]}
26 if connects_to_d == /0
27 last_sent.erase(d,l2’)
28 last_choice.erase(d,l2’)
29 last_ack.erase(d,l2’)
30 sent.erase(d,l2’)

31 CopyChannel (l2,ref,D):
32 foreach d ∈ D do
33 last_choice[d][l2] ← last_choice[d][ref]
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For L2-coordinate assignment, the decider becomes more complex as well. A

decider keeps a record of all L2 and L1 switches it has seen (d.L2relays and d.L1reps).

It indexes the choosers that it has seen over d.L2relays and d.L1reps, representing a

chooser via its constituent L2 members (d.chooser). Finally, the decider indexes its

choice variables (chosen, and last_seq) over entire choosers, L2 relays and L1 represen-

tatives. This is necessary because the representative switch for a hypernode can change.

Thus, deciders may maintain duplicate information for a hypernode, namely information

obtained from two different switches claiming to represent that hypernode. Recall from

Section 5.7.2 that an L2 switch sends its current set of neighboring L1 switches to L3

switches when this set changes. As such, a decider d always knows the most recent set

of L1 switches to which a neighboring L2 is connected, and d can compute the current

representative switch for the hypernode and select the appropriate value of d.chosen to

pass to an overlying communication protocol. Deciders employ a similar representation

for hypernodes as do choosers; they simply index over hypernodes by indexing over the

hypernodes’ member switches (as shown in Action G).

A decider may be connected to a chooser via multiple L2 switches, and thus

needs to make a decision on whether to accept a value received via an L2 switch based on

the hypernode of the L2 switch. This adds a small amount of complexity to the decider’s

Action G; A decider compares a requested value x to those held by L2 switches in all

other hypernodes, regardless of the representative switches for those hypernodes. As

such, a decider compares x to chosen[l′2][l
′
1] for any value of l′1. Listing 5.18 shows the

modified decider code.

5.7.5 Derivation Summary

This completes the protocol derivation from the basic DCP to a solution for co-

ordinate selection in ALIAS. L1 switches function as choosers for L1-coordinates (List-

ings 5.8 and 5.12), as potential representatives for L2-coordinate selection (Listings 5.13,

5.15, 5.16, and 5.17) and as hypernode calculators (Listing 5.10). L2 switches act as re-

lays for L2-coordinate selection (Listing 5.14), as deciders for L1-coordinate selection

(Listing 5.6) and as hypernode change notifiers (Listing 5.9). Finally L3 switches are

deciders for L2-coordinate selection (Listing 5.18).
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Listing 5.18: Decider Algorithm
(Distributed Chooser)

1 set〈Switch〉 L2relays = ...
2 set〈Switch〉 L1reps = ...
3 (set〈Switch〉)[L2relays][L1reps] choosers = ...
4 Choice[L2relays][L1reps] chosen = all[-1]
5 int[L2relays][L1reps] last_seq = all[0]

// when connected to new L2 switch
6 F: when new l2 ∈ L2relays with representative l1
7 L2relays ← L2relays ∪ {l2}
8 L1reps ← L1reps ∪ {l1}
9 choosers[l2][l1] ← {l2}

10 chosen[l2][l1] ← -1
11 last_seq[l2][l1] ← 0

// respond to a message from L2 switch l2
12 G: when receive 〈s,x,hn,l1〉 from l2
13 L1reps ← L1reps ∪ {l1}
14 if s≥last_seq[l2][l1]
15 foreach l2’ ∈ choosers[l2][l1] do
16 choosers[l2’][l1] ← hn
17 last_seq[l2’][l1] ← s
18 if ∃ l2’∈ L2relays, l1’∈ L1reps: (l2’/∈ choosers[l2][l1]) ∧ (chosen[l2’][l1’] == x)
19 foreach l2’ ∈ choosers[l2][l1] do
20 chosen[l2’][l1] ← -1
21 else
22 foreach l2’ ∈ choosers[l2][l1] do
23 chosen[l2’][l1] ← x
24 hints ← {chosen[l2’][l1’]∀ l1’ ∈ L1reps, l2’ ∈ (L2relays \ choosers[l2][l1])}
25 hints ← hints \ {-1}
26 send 〈s,chosen[l2][l1],hints,l1〉 to l2



137

5.8 The Decider/Chooser Protocol in Wireless Networks

In this section, we describe another example of label assignment based on shared

connectivity. This case arises in the context of assigning IP addresses to wireless de-

vices. We offer this example to illustrate a plausible use of DCP outside of the context

of data center networking.

A local wireless network, e.g., within a building or a corporation, consists of

a set of fixed wireless access points and mobile devices that move around within the

network. At any time, a mobile device may be within range of (and may use the same

channel as) several access points (APs), but it associates with a single access point at a

time. A handoff occurs when the device changes its association from one AP to another.

If, as a result of handoff, the device needs to acquire a new IP address, then ongoing

communication sessions can be disrupted.

There are different ways to avoid this need for a new IP address. For example,

the set of access points in a network may utilize a wired distribution system to synchro-

nize with each other, ensuring that an IP address given to a device by AP1 is permittable

for use with AP2 as well. Or, the APs in a network may communicate with a central

server responsible for ensuring IP address uniqueness among all network devices. Man-

aging centralized state or requiring a separate distribution system between APs places a

significant additional management burden on the network operator.

A key difficulty of address assignment in this type of network is the dynamism of

the network; the set of mobile devices varies over time, as does the set of access points

visible to each mobile device. In fact, we learned from speaking with network operators

that the issues of changing sets of devices and difficulty with handoff are significant pain

points for some types of wireless networks.

This dynamism suggests a solution using the Decider/Chooser abstraction. In

wireless networks, we run an instance of DCP with mobile devices as choosers and

access points as deciders, wherein a link between device md and AP ap indicates that

md is within range of ap, as shown in Figure 5.13. A mobile device selects an IP

address that is acceptable with respect to all APs within range, i.e. all of its deciders. As

a device moves throughout the network, its set of deciders change, and if at any time it

finds its IP address to be in conflict (as reported by one of its deciders) it reselects. This
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application of DCP has the benefit of removing the requirement of a central authority

or separate wired distribution system between APs, but without the need for IP address

reassignment on every handoff.
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   md2	
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Figure 5.13: Multiple AP Example

5.9 Related Work

Our solution uses a Las Vegas type randomized algorithm: the labels that are

computed always satisfy the problem specification, but the algorithm is only probabilis-

tically fast. It is also a fully dynamic algorithm [33], in that it makes use of previous

solutions to solve the problem more quickly than by recomputing from scratch.

Assigning labels to nodes is not a new problem. For example, in [25] the authors

consider the issues of assigning labels to nodes in an anonymous network of unknown

size. The quality of an assignment algorithm depends on the size of the label domain

and the algorithm’s efficiency is based on the convergence time and message load. The

authors’ approach uses a special source node (the sole source of asymmetry) to root a

spanning tree of the anonymous network, and explores the cost of propagating enough

information to label all nodes. We consider networks with significant symmetry: each

network can be partitioned into bipartite graphs of processes, even if a process may be

made up of multiple nodes. This symmetry and the use of randomization allows us

to devise an algorithm in which nodes only communicate with immediate neighbors.

This reduces the overall message load relative to that of a network with only a single

designated node.

Our solution can also be considered an instance of the renaming problem [8, 9,

15] in which a set of processes, each with a unique name chosen from some large name
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space, together assign themselves unique names from a smaller name space. The proto-

col in [15]–which is for a shared memory model–has a similar structure to DCP with a

single decider process: our decider has a role similar to a shared atomic snapshot object

in their protocol. Their protocol differs in that they sought a deterministic solution; DCP

can rename into a smaller name space because it is randomized. Also, LSP differs from

the renaming problem: in LSP , two processes can assign themselves the same (shorter)

name if they don’t share a decider.

Finally, the Label Selection Problem also relates to the graph coloring problem

(GCP). In fact, GCP is reducible to LSP. The mapping from GCP to LSP is quite simple;

vertices in an instance of GCP, G = (V,E), correspond in a one-to-one mapping to

choosers in LSP, and for any pair of vertices in G that are connected by an edge in E

we create a decider d and connect each of the corresponding choosers to d. In this way,

pairs of vertices that require different colors in GCP correspond to pairs of choosers that

require distinct coordinates in LSP. The mapping from LSP to GCP is equally simple.

Even though LSP can be mapped to GCP, the LSP structure arises naturally in many

protocol problems—like those given in this chapter—and the separation of processes

into choosers and deciders has helped us to refine DCP for more practical application.

However, some techniques for graph coloring could be applied to LSP; for instance one

could apply the multi-trials technique introduced by Schneider and Wattenhofer [64] to

LSP.

5.10 Summary

We present, in this chapter, a theoretical analysis of the basic building block

of ALIAS. We first formalize a sub-problem of ALIAS, the Label Selection Problem

(LSP). We then provide the Decider/Chooser Protocol (DCP) as a solution to this prob-

lem. Through model checking and proofs, we show that DCP satisfies the requirements

of LSP. We use mathematical analysis and simulations to show that DCP converges

quickly under the expected conditions. Finally, we apply DCP to ALIAS, using proto-

col refinements to extend DCP to solve the more complicated issues in ALIAS.

This analysis allows us to formally reason about the correctness of ALIAS, the
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interactions among ALIAS components, and the interactions between ALIAS and other

data center network protocols. This is a crucial step in ensuring that data center network

protocols are correct as well as feasible to deploy, configure and debug.
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Chapter 6

Single Label Selection for ALIAS Hosts

As detailed in Chapter 4, ALIAS hosts have multiple labels. On one hand, clever

use of these labels can enable interesting load-balancing, task separation and multi-

path techniques. However, on the other hand, such multiple labels could prove to be a

limitation of the protocol, as they make the interface of ALIAS significantly different

from those of the protocols it aims to replace. In this chapter, we explore a technique for

selecting and using only a single label per host for routing and forwarding in ALIAS.

We begin with a short review of the relevant ALIAS details. We then consider

how to select a single, optimal1 label from an ALIAS host’s set of labels and how to use

this label exclusively, in ALIAS for routing and forwarding. Selecting a single label for

forwarding affects both multi-path support and peer link usage in ALIAS. To mitigate

these effects, we introduce a forwarding concept that we coin a super table. The super

table is stored in software and contains all forwarding information known to a switch.

It is used along with local policy to populate a switch’s hardware forwarding table with

a subset of the super table entries. We then perform simulations to measure the sizes

of the resulting forwarding tables for a number of sample topologies. We find that the

selection of a single label in ALIAS leads to an explosion in forwarding state, the very

property that ALIAS seeks to reduce. As such, we conclude that the benefits of choosing

a single label for each ALIAS host are outweighed by the associated costs.

1The definition of “optimal” will vary based on the requirements for any given network.

141
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6.1 Background and Environment

ALIAS operates over the multi-rooted tree topologies that underlie many data

center networks today [4, 13, 18, 28, 47, 56]. Figure 6.1 shows a sample multi-rooted

tree topology: a fat tree [19, 47] made up of 4-port switches. As shown in the fig-

ure, ALIAS organizes its input trees into levels, with hosts at Level L0 and switches at

levels L1 through Ln, from the bottom of the tree upwards. Switches are grouped into

hypernodes, wherein a hypernode is defined as a maximal set of switches at one level

such that each member switch connects to the same set of hypernodes below. Each L1

switch forms its own hypernode, and switches at the topmost level of the tree are not

grouped into hypernodes. With the exception of L1 switches, we denote a hypernode in

the following figures by physically grouping its constituent switches together.
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Figure 6.1: Fat Tree Topology

ALIAS assigns to each hypernode a set of coordinates to be shared among its

member switches; each Li switch has one coordinate per neighboring Li+1 hypernode.

Coordinates are concatenated from the root of the tree downward to form switch and

host labels. Since there may be paths through multiple different sets of hypernodes to

any given switch (host), a switch (host) in ALIAS has multiple labels.
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In Figure 6.1, the numbers marked on each switch and host indicate the nodes’

unique identifiers (UIDs).2 We refer to a switch with marked in the figures with UID

x as Sx in the exposition. In ALIAS, a hypernode’s coordinates are chosen based on a

distributed, randomized algorithm. However, for the purpose of this chapter, we intro-

duce the simplifying convention that a hypernode’s coordinate is based on its member

switches’ UIDs as well as on the physical location of the hypernode and its member

switches in our figures as follows: A hypernode hn’s coordinate corresponding to the

leftmost neighboring hypernode above is the UID of hn’s leftmost switch member. For

the upper-level neighboring hypernode second from the left, hn’s coordinate is the UID

of the member switch second from the left. This process continues as we move to the

right among hn’s neighboring upper-level hypernodes. We clarify this via example in

Figure 6.2.
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Figure 6.2: Labeling Conventions

(Dashed links are for switches not shown.)

The figure shows a subset of a topology with four levels of switches. L4 switches

are at the top level of the topology and are therefore not grouped into hypernodes. Since

there are no hypernodes at L4, each L3 hypernode has only a single coordinate. Our con-

vention is to use the UID of the leftmost member switch as the hypernode’s coordinate.

2In an implementation of ALIAS a UID might be, for instance, a MAC address.
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So the coordinate for hypernode {S64,S65,S66,S67} is 64 and the coordinate for hypern-

ode {S68,S69,S70,S71} is 68. Since L2 hypernode {S48,S49} only neighbors a single L3

hypernode, it has a single coordinate, 48. So, hypernode {S48,S49} and switches S48 S49

have one label each, namely 64.48. S witches S32 and S33 are each in their own hyper-

nodes, and each neighbor one L2 hypernode, so their labels are 64.48.32 and 64.48.33,

respectively. On the other hand, hypernode {S50,S51} neighbors two L3 hypernodes,

and therefore needs a coordinate to correspond to each. It uses the UID of its leftmost

member switch, S50 as the coordinate corresponding to 64 and the UID if its second-to-

leftmost switch, S51 as the coordinate corresponding to 68. Therefore, switches S50 and

S51 each have two labels, {64.50,68.51}. Similarly, the label sets for S34 and S35 are

{64.50.34,68.51.34} and {64.50.35,68.51.35}, respectively.

In ALIAS, a forwarding table entry (FTE) consists of a label or label prefix

and a next hop for all packets destined to that prefix or label. FTEs can also include

∗ values, indicating a match for anything not matched by a more specific entry. FTEs

may consist of multiple next hops, for use with multi-path forwarding protocols. In Fig-

ure 6.1, S48 might have the following forwarding entries: 64.48.32→S32, 64.48.33→S33,

64.∗→{S64,S65}, 68.∗→{S64,S65}, 72.∗→{S64,S65} and 76.∗→{S64,S65}. In general,

an ALIAS switch has two types of non-peer link forwarding entries:

• Downward Entries that match a label that is one coordinate longer than one of the

switch’s labels to a downward neighbor of that switch, e.g. 64.48.32→S32

• Upward Entries that match a single Ln−1 coordinate to a subset of the switch’s

upward neighbors, e.g. 76.∗→{S64,S65}

ALIAS accommodates peer links between switches at the same level. Peer links

can be used, for instance, to create shortcuts between switches that communicate fre-

quently or to connect top-level (Ln) switches directly to one another. The use of peer

links leads to forwarding entries with variable length labels; these entries are handled as

special cases.
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6.2 ALIAS Protocol Modifications

Selecting a single, optimal label for each ALIAS host and enabling exclusive

use of that label within ALIAS routing and forwarding requires changes throughout the

label assignment and communication portions of the ALIAS protocol. In this section,

we first consider one of the many possible definitions for an “optimal” label ` for a host

h, and we present a protocol to select labels that match this definition. We then provide a

protocol to propagate the selected label throughout the tree, so that nodes that previously

reached h via labels other than ` can now reach h via `.

Throughout this section, we use the example topology shown in Figure 6.3. This

topology is nearly a perfect 4-level, 4-port fat tree, with the exception that switches S64

and S76 have been disconnected from switches S50 and S62, respectively, moving S64

and S76 into their own hypernodes. Because of this, switches S48 and S49 and their de-

scendants each have two labels, one corresponding to each L3 hypernode that neighbors

L2 hypernode {S48,S49}. Given our convention for using hypernode members’ UIDs to

form labels, S32 has the label set {64.48.32,65.49.32}.
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Figure 6.3: Topology with Multiple Labels per Host
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6.2.1 Selecting a Single Label

There are a number of methods for selecting the “best” label for a given host,

h. To optimize for multi-path support, one might select the label ` corresponding to the

largest number of paths to h from the top level, Ln, of the network. In this way, if we

restrict access to h to only those paths using `, we still retain a large percentage of paths

from Ln switches to h. Or, to prioritize reachability, one might take into consideration

both the number of downward paths to h via ` from each Ln switch as well as the number

of other hosts reachable by such Ln switches; this has the effect of counting the total

number of hosts that reach h via `. To prioritize availability, one might perform the

above calculations in terms of link-disjoint paths, in order to minimize the disruption

that a link failure would have on h’s availability via `. In the current implementation, we

prioritize reachability while retaining as much multi-path support as possible. However,

this is just one of many possibilities; a network designer could certainly define “optimal”

to suit the requirements for a particular situation.

To determine a host’s optimal label according to the metrics above, we begin by

calculating an Ln-value (LNV) for each Ln switch sn. We then compute the number of

paths from sn to each individual L1 switch label ` in the network. Finally, we compute

`’s overall connectivity-value (CV) by combining the LNVs of each of its reachable Ln

switches with the number of paths to ` from that Ln switch. An L1 switch can then select

the label with the highest CV from its label set , and can use this to create a single label

for each of its neighboring hosts.

We first calculate an LNV for each Ln switch sn by counting the number of

hosts reachable by sn. This adds no message complexity and an insignificant amount

of computation overhead when injected into the ALIAS protocol; for ALIAS address

resolution, Ln switches store a mapping of UID-to-ALIAS label for each reachable host.

In order to determine its own LNV, an Ln switch simply counts the number of hosts

represented in these mappings. In Figure 6.3, all Ln switches except S80 and S81 reach

all hosts and therefore have LNVs of 32. Ln switches S80 and S81 do not reach hosts

H4-H7 or H28-H31 and therefore have LNVs of 24.

We next calculate the number of paths from Ln switches to each of an L1 switch’s

(and therefore its neighboring hosts’) labels. We accomplish this as follows; each Ln−1
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switch sn−1 stores for each neighboring Ln switch sn a tuple (`,sn.links,sn.id,sn.lnv),

where:

• ` is sn−1’s label (in this case, a single coordinate corresponding to the UID of the

leftmost switch in sn−1’s hypernode),

• sn.links is a count of the links from sn to sn−1
3,

• sn.id is sn’s UID and

• sn.lnv is sn’s LNV, as calculated above.

Ln−1 switches pass these tuples to Ln−2 switches as part of their periodically exchanged

Topology View Messages (TVMs).

Each Ln−2 switch sn−2 selects a coordinate per neighboring Ln−1 hypernode. For

each member sn−1 of a neighboring Ln−1 hypernode, sn−2 creates a label for itself by

concatenating its own coordinate (with respect to sn−1’s hypernode) to sn−1’s coordinate.

sn−2 then multiplies the number of links it has to sn−1 by the sn.links value in each per-

Ln switch tuple it has received from sn−1, in order to count the number of paths from

itself to sn via sn−1. Finally, sn−2 sums path counts to each Ln switch across all of sn−1’s

hypernode members to which it is directly connected, in order to create a set of tuples of

the form (`,sn.links,sn.id,sn.lnv) for each upper neighboring (Ln−1) hypernode. In these

tuples, ` is sn−2’s label with respect to a particular Ln−1 hypernode, sn.links gives the

number of paths from sn−2 to an Ln switch sn via members of this hypernode, and as

before, sn.id and sn.lnv carry sn’s identity and LNV, respectively.

This process continues moving down the tree, so that each L1 switch s1 can

eventually compute the CV of each of its labels based on the number of paths from each

Ln switch to s1 via that label. Including these operations in the ALIAS protocol adds

little complexity and overhead. Labels are passed downward in ALIAS TVMs in order

to support restriction of peer-link coordinates (see Chapter 4 for details) and so the per-

Ln switch ID, LNV, and path count fields in these new tuples for each label are the only

additions to outgoing TVMs.

3If parallel links between two switches are not allowed, this will always be 1 at level Ln−1.
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Finally, for each L1 label `, we combine reachable Ln switches’ LNVs with the

counts of paths from each Ln switch to `, and sum across all Ln switches in order to

determine an overall CV for each label. Currently, we use the following formula to

calculate a label’s CV:

∑
sn∈Lnswitches

LNV (sn)×pathsFrom(sn)

.

In Figure 6.3, the only L1 switches with multiple labels are S32, S33, S44 and

S45, with label sets {64.48.32,65.49.32}, {64.48.33,65.49.33}, {76.60.44,77.61.44}
and {76.60.45,77.61.45}, respectively. There is a single path from each of Ln switches

S80 and S81 to S32, and these Ln switches have an LNV of 24, giving label 64.48.32

a CV of 48. Similarly, there is one path from each of Ln switches S82 through S87 to

S32, and these six Ln switches each have an LNV of 32. So label 65.49.32 has a CV of

6×32 = 196, and it is the selected label for S32. The cases are similar for S33, S44 and

S45.

We refer to the label chosen by the protocol above as the “optimal label.”

6.2.2 Propagating Single Label Selections

Since a host h’s label corresponds to a particular set of paths from the top level

of the network to h, it is necessary to update the forwarding tables of switches along dif-

ferent paths, if we allow only one of h’s labels to be used for routing and forwarding. In

the current ALIAS implementation, L1 switches pass mappings of UID-to-ALIAS label

up towards Ln switches to support efficient address resolution. We leverage the infras-

tructure already in place for passing label mappings upward as follows: in its outgoing

TVMs, each L1 switch s1 passes only a single mapping upwards for each neighboring

host. This mapping includes a host’s optimal label and its UID. These mappings are

passed through all available upward paths, and therefore may encounter switches that

reach s1 (and its hosts) via a label other than the optimal label. When an Li:2≤i≤n switch

t encounters a mapping for which none of its labels is a prefix, it knows that this must be

an optimal label mapping for one of its descendants. t adds a (downward facing) FTE

`→q that will subsequently point messages destined for the optimal label in question (`)
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to the sender of the TVM (q). This process continues up to the top level of the network,

so that any switch along the way that does not reach a host via its optimal label is able

to add a new entry to its forwarding state.

For example in Figure 6.3, S64 adds extra FTEs that map optimal labels 65.49.32

and 65.49.33 to its downward neighbor S48. This way, when it receives a packet destined

for one of these labels, it can pass the packet to the appropriate next hop despite the fact

that it does not itself have a label matching a prefix of one of these destinations. Note

that S64 cannot combine these labels into a single FTE for prefix 65.49.∗; we defer

discussion of why this is not possible until Section 6.2.3. Switches S80 and S81 also add

exceptions to their forwarding state to map 65.49.32 and 65.49.33 to S64. Similar FTEs

are in place at S76, S80 and S81, for S44 and S45.

This adds little overhead to the basic ALIAS protocol, as switches only have to

check their own labels for prefixes of each incoming mapping’s label. However, it does

increase the forwarding state of switches that need to add exceptions for optimal labels.

We analyze the increase in forwarding table size in Section 6.5.

By propagating label selections upward, we have ensured that the Ln switches

with downward paths to a given host still maintain forwarding connectivity to that host

in the context of single label selection, even if they did not previously reach the host

by its optimal label. However, in order to provide full connectivity between all pairs

of hosts, similar label mappings need to be passed downwards through the tree as well.

Labels are passed downwards in a similar manner to that for passing labels upwards,

and a label ` stops moving downward once it reaches a switch that already has an FTE

for ` or for a prefix of `.

For example, in Figure 6.3, switch S76 connects to only two Ln switches, S80

and S81. Therefore, it only has upward FTEs for the coordinates of the L3 hypernodes

reached by S80 and S81, i.e. 64, 68 and 72. If it receives a packet destined for 65.49.32, it

does not know how to move the packet upwards towards its destination. Therefore, when

S80 and S81 learn of the optimal label mapping for 65.49.32, they push this mapping

downward to S68, S72 and S76. As an optimization, S80 and S81 do not send the mapping

to S64 since they know that they originally learned of the mapping from S64. S68, S72

and S76 push this mapping to their lower neighbors, S52, S54, S56, S58 and S60, but these
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L2 switches do not store related FTEs as they already have the label prefix 65 in their

forwarding tables.

This process increases ALIAS TVM size as it adds a set of optimal label map-

pings to each downward message. The added overhead is dependent on the number of L1

switches (regardless of how many hosts connect to each such L1 switch) with multiple

labels as well as on the number of switches that previously only reached a multiple-label

L1 switch through suboptimal labels (and therefore need to pass on forwarding excep-

tions). This process also increases the forwarding table sizes, as explored in Section 6.5.

6.2.3 Combining Single Label Forwarding Table Entries

In general, ALIAS switches cannot combine two optimal label FTEs that share

a prefix into a single, shorter FTE. That is, if a switch has two optimal label FTEs of the

form x.y.z and x.y.q, it cannot necessarily combine these FTEs into a single x.y.∗ FTE.

This would imply that the switch has access to the entire x.y hypernode, which may not

be the case. There are cases in which optimal label FTEs could be combined given a

global view of the topology, but switches in ALIAS do not have global information.

Figure 6.4 shows a small topology subset to exemplify this concept. In the figure,

switches S6, S7 and S8 have label sets {9.6,10.6}, {9.7,10.7} and {10.8}, respectively.

Suppose that due to connections to Ln switches not shown in this subset of the topol-

ogy, switches S6 and S7 have selected optimal labels associated with hypernode 10. In

this case, S11 requires downward facing exceptions that map 10.6 and 10.7 to S9. How-

ever, despite the shared prefix, S11 cannot combine these labels into a single FTE for

10.∗→S9, as this would imply that S11 can reach 10.8 via S9, which is not the case.
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Figure 6.4: Combining Optimal Label Forwarding Entries
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6.3 Effects of Single Label Selection on ALIAS

Reducing an ALIAS host’s label set down to a single, optimal label affects the

efficiency of communication within ALIAS. In particular, we consider the interactions

of optimal label selection with multi-path forwarding support, peer link usage and reac-

tivity after topology changes.

6.3.1 Effect on Multi-Path Support

One of the benefits of multi-rooted tree topologies is the inherent path multiplic-

ity between pairs of nodes in the hierarchy; this benefit is especially pronounced in fat

tree topologies. However path multiplicity does come at the cost of increased hardware

and wiring complexity, and so it is important that single label selection does not interfere

with multi-path support in ALIAS. As it is described in Section 6.2, the use of single

label selection can reduce the multi-path support available in ALIAS’s multi-rooted tree

topologies.

For instance, consider the tree of Figure 6.5. The topology is identical to that of

Figure 6.3 with the exception of the newly added link between S64 and S82.4 This new

link increases the CV of S32’s label 64.48.32 by 32, since the LNV of S82 is 32 and there

is one path from S82 to S32 via label 64.48.32. The new CV of 64.48.32 is 80, which is

still less than 65.49.32’s CV of 192, so 65.49.32 which remains as S32’s optimal label.

Recall that mappings corresponding to optimal labels are propagated upwards

and then downwards through the tree, stopping once they arrive at switches that are able

to reach an an optimal label without the help of special optimal label FTEs. In the case

of Figure 6.5, S82 reaches S32 via FTE 65.∗→S65. Because of this, S82 does not need

an additional FTE that maps 65.49.32 to S64 for reachability, and so the algorithm de-

scribed above will not create an FTE of the form 65.49.32→S64. However, this means

that anytime a packet destined for label 65.49.32 arrives at S82, S82 sends the packet

downward via S65, even though S64 can also reach the packet’s destination. This essen-

tially renders the link between S64 and S82 useless, removing half of S82’s options for

label 65.49.32.
4This assumes that S82 has an additional port available to make this connection.
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Figure 6.5: Multi-Path Support with Optimal Label Selection

This exemplifies a case in which mappings are not propagated upward suffi-

ciently for multi-path support; The case is similar for optimal label mappings moving

downwards. If an Ln−1 switch sn−1 has a non-optimal label FTE that matches a label

` or prefix of `, and it does not store an FTE of the form `→sn pushed down from an

Ln switch sn, sn−1 cannot forward packets through sn towards `. It will instead use

its existing FTEs. For instance, in Figure 6.5, S56 does not store an FTE of the form

65.49.32→S72, because it already reaches hypernode 65 via S73, prior to the propaga-

tion of optimal label mappings. However, this limits the upward path for packets at S56

that are destined for 65.49.32 to the single link between S56 and S73, rather than allowing

S56 to select between both of the upper neighbors that reach S32.

These effects can be characterized as follows: Let Q be the set of labels asso-

ciated with an L1 switch s1. Let ` be s1’s optimal label and R = Q\{`} be the other,

suboptimal labels of s1. We partition switches in the topology as follows: S` represents

switches that only reach s1 via `, SR represents switches that only reach s1 via labels

r ∈ R and not via `, and S`∧R represents switches that reach s1 via ` and also via at least

one label r ∈ R. In order to provide full connectivity between hosts in the face of opti-

mal label selection, all switches s ∈ SR require FTEs to map label ` to the appropriate

neighbor. Switches in S` only reach s1 via label ` and do not need additional forwarding
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information generated during optimal label selection. In the label propagation scheme

described in Section 6.2.2, switches in S`∧R do not receive additional mappings for opti-

mal label selection. However, these switches correspond directly to those in the example

given above; in order to provide full multi-path support, these switches would indeed

need additional mappings to enable use of paths that initially corresponded to labels in

R. For instance, in Figure 6.5, S56 is in the set S`∧R for label `= 65.49.32, as it reaches

hypernode 65 and label ` with regular FTEs via S73 and it reaches label r = 64.48.32

via S72. Therefore, for full multi-path support, S56 would need an FTE of the form

65.49.32→S72.

This brings to light a tradeoff between multi-path support and forwarding table

size with single label selection. In order to provide full multi-path support, any switch

that can reach an L1 switch s1 via a label r ∈ R must add an FTE for s1’s optimal label

`, regardless of whether it also reaches ` with regular FTEs. Since these optimal label

mappings add to the control overhead of ALIAS, a decision of whether to use SR or

S`∧R type mappings should be made prior to deployment. This decision can be changed

on the fly at any time, but if SR is the current choice, S`∧R entries should not be passed

throughout the tree unnecessarily.

The propagation of optimal label mappings to switches in S`∧R can also interfere

with longest prefix match forwarding. Since optimal label mappings include full labels

rather than prefixes, and cannot be combined based on shared prefixes, they will be at

least as long as regular FTEs, if not longer. A longest prefix match forwarding style will

cause switches to favor paths corresponding to optimal label FTEs as opposed to other

paths. This is not a concern for switches in SR, as optimal label FTEs are the only entries

that match a target destination. However, for switches in S`∧R, regular and optimal label

FTEs will coexist, and in many cases, optimal label entries will be longer than regular

entries. We address this via our forwarding protocol. We accumulate information for all

FTEs, including optimal label FTEs, in what we call a super table, stored in software.

We then use this super table along with local policy, to populate hardware forwarding

tables. We provide further details in Section 6.4.
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6.3.2 Effect on Peer Link Usage

The interaction between optimal label selection and peer links is complicated and

deserves special attention. In particular, we consider the question of whether optimal

label mappings should be passed across peer links.

We first consider the case in which a switch s is able to reach an L1 switch’s

optimal label both with and without traversing peer links. Here, we use the topology

of Figure 6.6, which is similar to our initial example (Figure 6.3) but with a peer link

added between S80 and S82. This link gives S80 access to hosts H4−H7 and H28−H31,

increasing S80’s LNV to 32. This changes the CV of label 64.48.32 from 48 to 56, which

still does not beat 65.49.32’s CV of 192, leaving S32’s optimal label as 65.49.32.
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Figure 6.6: Peer Links and Optimal Label Selection

In the figure, S82 reaches S32 via its peer link to S80 and also via its downward

link to S65. Note that the former of these two links would require an optimal label map-

ping to propagate across the peer link, whereas the latter already uses S32’s optimal label.

If we applied the more constrained scheme for optimal label propagation discussed in

Section 6.2.2, S82 would not store an optimal label FTE of the form 65.49.32→S80, as it

already has the regular FTE 65.∗→S65. However, this limits the paths that a packet can

take from S82 to S32 in the same way as described in Section 6.3.1.
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On the other hand, if S82 is given a mapping from 65.49.32 to S80, longest prefix

matching will favor the peer link, and the FTE 65.∗→S65 will effectively be lost. This

would be especially problematic if S82 had multiple connections to hypernode 65 and

yet still always chose a single peer link when forwarding to S32. In fact, this problem is

not unique to optimal label mappings across peer links and can occur with any mappings

passed across peer links.

As described in Section 6.3.1, ALIAS addresses this by creating a super table

that includes all possible forwarding information, including optimal label FTEs as well

as peer link FTEs. ALIAS uses the information in this table along with local policies

to populate a switch’s hardware forwarding tables. An example of a policy for optimal

label mappings received via peer links would be to inject only those optimal label FTEs

for which other routes are not available. A user may also elect to favor certain intentional

peer links over others, or to favor peer links at certain levels of the topology.

We next consider the case in which a switch s reaches an L1 switch’s optimal

label only via peer links, as is the case in Figure 6.7. In the figure, the links between S64

and S81 and between S76 and S80 have failed and a peer link between S80 and S81 has

replaced that between S80 and S82.
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Figure 6.7: Connectivity-Providing Peer Links and Optimal Label Selection
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As in our initial example, S80 and S81 are disconnected from hosts H4−H7 and

H28−H31 and therefore each have an LNV of 24. Thus, the CVs of labels 64.48.32 and

65.49.32 become 48, and 192, respectively. S81 only reaches label 65.49.32 via its peer

link to S80, and therefore it requires an optimal label FTE of the form 65.49.32→S80 in

order to maintain connectivity with S32. S81 must pass a similar mapping down to S76

as well. Because these optimal label FTEs are the only ways for switches S76 and S81 to

reach S32, they do not share prefixes with regular FTEs in the tables of S76 and S81, and

so they will be copied directly from the super table into the hardware forwarding tables

of these switches.

6.3.3 Effect on Reactivity to Topology Dynamics

In general, ALIAS is designed to react quickly to topology changes. Because

an ALIAS host label is based on paths to that host, certain topology changes cause this

label to change. This begs the question of whether optimal label selection should follow

suit. If a host’s set of labels changes, and the CVs of these labels change as well, should

the selected optimal label change as a result? In our experience, there are some cases in

which the optimal label should change and others in which it should not. For instance, if

a topology change causes a host’s optimal label to disappear, the host’s L1 switch must

necessarily select a new optimal label and propagate corresponding mappings through-

out the tree. In this case, the convergence time is bounded by twice the number of levels

in the tree. On the other hand, if a topology change simply causes the CV of a host’s

labels to change, care must be taken in deciding whether to select a new optimal label.

Figure 6.8 depicts this type of scenario. The figure shows a nearly perfect 4-

level, 4-port fat tree, with the exception of a “flaky” link that toggles on and off be-

tween S64 and S50. When this link is working, the topology is a perfect fat tree, and

switches S32 and S33 have one label each, 64.48.32 and 64.48.33, respectively. How-

ever, when the link is off, each switch has a set of two labels, {64.48.32,65.49.32} and

{64.48.33,65.49.33}. In this case, Ln switches S80 and S81 do not reach hosts H4-H7

and therefore have LNVs of 28, giving labels 64.48.32 and 64.48.33 each a CV of 56.

The other six Ln switches reach all hosts and have LNVs of 32, making the CVs of la-

bels 65.49.32 and 65.49.33 equal to 6×32 = 192. As the flaky link toggles on and off,



157

the selected labels of S32 and S33 (and therefore their connected hosts) change back and

forth between the default labels 64.48.32 and 64.48.33 and the optimal labels 65.49.32

and 65.49.33. Note that while this scenario involves a host moving from a set of two

labels to only one, there are also cases in which a host has a set of several labels and the

optimal label out of this set changes along with a flaky link or other topology dynam-

ics. Because such fluctuation in hosts’ optimal labels is likely undesirable, mechanisms

such as hysteresis or other local policy are necessary to prevent constant changes to

hosts’ optimal labels.
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Figure 6.8: Optimal Label Selection and Topology Changes

6.4 Building Forwarding Tables with Single

Label Selection

As discussed in Section 6.3, ALIAS with single label selection generates over-

lapping forwarding table entries at switches, and certain forwarding schemes (e.g. longest

prefix matching) will not necessarily prioritize these entries as a network administrator

would prefer.
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6.4.1 Super Tables

In order to correctly implement the expected types of policies for selecting be-

tween overlapping FTEs, ALIAS needs to know the origin of the entry, that is, whether

it is a regular entry, an optimal label entry, or an entry corresponding to a peer link. It

may also need to know other information such as the direction of the entry or whether a

peer link entry overlaps with one or more regular entries.

To support this, ALIAS computes a super table in software with all possible

FTEs, including those that might not be used in the actual hardware forwarding table.

Entries in the super table come with a tag that indicates the type of entry, i.e. whether

the entry points upwards or downwards or comes from a peer link or optimal label, etc.

ALIAS then uses several different policies to generate hardware forwarding tables from

super tables, such that the hardware forwarding table can be accessed in a “first match”

manner.

We first give an example of a simplified super table for a single switch and then

discuss specific super table entries in more detail. We repeat, in Figure 6.9, the topol-

ogy of Figure 6.6. In the figure, S64 has both upward- and downward-facing regular

forwarding entries, as well as entries corresponding to paths across peer links and en-

tries generated by optimal label selection. An initial super table for S64 is shown in

Figure 6.10. This table includes all possible FTEs for S64.

Since S64 connects to S80, which has downward connections to hypernodes 68

and 72, S64 has regular upward entries in its super table pointing to S80 for labels that

begin with these coordinates. S64 also has a regular downward entry for its only L2

neighbor, 48. S64 has no peer links itself, and therefore no peer link across entries.

However, it does have peer link upward entries corresponding to the hypernodes 68, 72

and 76, which it reaches via its neighbor S80 through S80’s peer link to S81. Finally,

because S32 and S33 use labels other than those obtained from hypernode 64, S64 has

downward facing optimal label entries for these switches.

Note the varying sizes of the label prefixes in each entry type; for a switch at Li:

• regular upward entries map Ln−1 labels (length = 1) to upper neighbors,

• regular downward entries refer to switches at Li−1 and therefore map label pre-
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Figure 6.9: Super Table Example Topology

Regular	
   Peer	
  Link	
  
Op0mal	
  Label	
  

Up	
   Down	
   Across	
   Up	
  

68.*S80	
   64.48.*S48	
   68.*S80	
   65.49.32S48	
  

72.*S80	
   72.*S80	
   65.49.33S48	
  

76.*S80	
  

Figure 6.10: Initial Super Table for S64

fixes of length n− (i−1) = n− i+1,

• peer link across entries refer to switches at Li and map prefixes of length n− i,

• peer link upward entries refer to switches at higher levels than Li and map label

prefixes of length n− j, j>i, and finally,

• optimal label entries refer to L1 switches and therefore map labels of length n−1.

Before computing entries for a switch’s actual forwarding tables, ALIAS takes

steps to consolidate super table entries when possible. For instance, there is no need for

S64 to maintain its single regular downward entry, as it has been replaced by the optimal

label entries, though one can construct a topology in which some regular downward
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entries are not replaced by optimal label entries. Also, several of S64’s peer link upward

entries are redundant with its regular upward entries and can be removed. Optimal label

entries cannot in general be combined into shorter shared prefixes. For instance, the

labels 65.49.32 and 65.49.33 in the above super table cannot be combined into 65.49.∗,
as this indicates that S64 reaches all of hypernode 65.49, which is not necessarily true.

Figure 6.11 shows the consolidated super table for S64 of Figure 6.9. Once the super

table has been consolidated, ALIAS can use local policy to populate a switch’s hardware

forwarding tables.

Regular	
   Peer	
  Link	
  
Op0mal	
  Label	
  

Up	
   Down	
   Across	
   Up	
  

68.*S80	
   76.*S80	
   65.49.32S48	
  

72.*S80	
   65.49.33S48	
  

Figure 6.11: Consolidated Super Table for S64

There are eight different types of FTEs that can appear in a switch’s super table.

We introduce Figure 6.12 to provide examples of the types of FTEs. Table 6.1 lists each

type of FTE, its direction and various options, and an example from Figure 6.12. We

consider each type of entry in turn below.

Regular Forwarding Table Entries

An ALIAS switch s at level Li has regular FTEs that correspond to paths that

do not cross peer links and paths that do not require optimal label mappings. These

entries are further divided by direction. Regular upward entries are used to pass packets

upwards when s does not have a label that is a prefix of the destination label. These

entries are of the form cn−1→upper_neighbors, where cn−1 is the coordinate (label)

of an Ln−1 hypernode, and the set of upper neighbors indicated includes those Li+1

neighbors of s that have connectivity to hypernode cn−1.

In some cases, ALIAS is able to combine multiple regular upward entries into

a “star entry” that is mapped to several (or all) upward neighbors. This entry is of

the form ∗→upper_neighbor(s) and indicates that any destination label not matching
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Figure 6.12: Topology for Super Table Entry Examples

another forwarding entry can be passed up to any of the target upper neighbors in the

mapping. With this optimization, the number of regular upward forwarding entries may

be reduced. In the super table of Figure 6.10, all of S64’s upward FTEs point to the

same upper neighbor, S80. Therefore, they can be combined into a single star entry,

∗→S80. On the other hand, in Figure 6.12, none of S64’s Ln neighbors reach all of the

Ln−1 hypernodes that S64 can reach, so S64 cannot use a star entry.

A switch contains regular downward entries to move packets towards the

switch’s descendants. A sample regular downward entry at S64 of Figure 6.12 is that

mapping 64.48.∗ to S48. A good policy for regular forwarding in ALIAS is longest pre-

fix matching. When there is a path downwards to a destination, it does not make sense

to push the packet up the tree and back down unnecessarily.

Peer Link Forwarding Table Entries

Super tables also contain peer link entries. A peer link across entry at s corre-

sponds to a label reachable by traversing a peer link between s and one of its neighbors.

Labels in peer link entries at Li contain coordinates from Ln−1 through Li. There are two

types of peer link entries in the super table:
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Table 6.1: Summary of Super Table Entries

(Examples are from Figure 6.12.)

Category Direction Options Example

Regular
up

No * Combo S64: 68.∗→S82

With * Combo (N/A in Fig. 6.12)

Down S64: 64.48.∗→S48

Peer

Across
Unrestricted S81: 72.56.40→S80

Restricted S80: 68.∗→S81

Up
Unrestricted S68: 64.48.32→S81

Restricted S68: 64.48.32→S81

SingleLabel

Down
SR only S64: 65.49.32→S48

S`∧R S86: 65.49.32→S64

Up
SR only S69: 65.49.32→S82

S`∧R S56: 65.49.32→S72

Across

SR
Restricted S81: 65.49.32→S80

Unrestricted S82: 65.49.32→S80

S`∧R
Restricted S84: 65.49.32→S80

Unrestricted S85: 65.49.32→S80

Up

SR
Restricted S68: 65.49.32→S81

Unrestricted S69: 65.49.32→S82

S`∧R
Restricted S70: 65.49.32→S84

Unrestricted S71: 65.49.32→S85
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• Unrestricted peer links include entries for all labels reachable within the system-

wide peer link hop-count limit, while

• restricted peer links include entries only for those labels not reachable without

traversing peer links.

Additionally, peer link entries have two directions, corresponding to peer links

at s’s level as well as those above.5

In Figure 6.12, S80 can only reach hypernode 68 and its descendants via its peer

links to S81, S82, S84 and S85 and so a peer link across entry for this would appear in

the super table whether we chose the restricted or unrestricted option. On the other

hand, S81 can reach the label 72.56.40 via its peer link to S80 or directly through S72 and

so a peer link across entry mapping this label to S80 would only occur in a super table

with unrestricted peer link across entries. Similarly, S68 reaches label 64.48.32 through

S81 (via its peer link to S80) and cannot reach this label without the help of peer links.

Therefore, a corresponding entry would appear in both the restricted and unrestricted

types of super tables.

As an optimization, peer link upward entries can be omitted from the super table

when redundant with regular entries. For instance, in Figure 6.12, S68 reaches label

72.56.40 via a regular upward entry to S81 (because S81 directly connects to hypernode

72) as well as via S81’s peer link to S80. In this case there is no need for S68 to store both

types of entries. It simply passes packets destined for 72.∗ to S81 and leaves S81 to decide

which path to use. More generally, if a destination label ` is reachable without using peer

links via an Ln switch sn, then the appropriate regular upward entries will exist at any

descendant of sn. Because of this, all peer link upward entries in the unrestricted case

will be redundant with regular upward entries and will ultimately be omitted from the

super table.

Note that it is not strictly necessary to determine which peer link entries fit into

the restricted category when populating the super table; this option could instead be

computed on the fly as the hardware forwarding table is populated. As discussed in

Section 6.3.2, policies for incorporating peer link entries into a switch’s hardware for-

5In ALIAS, packets are not allowed to traverse peer links after beginning a downward path in the
network, so we do not require downward-facing peer link FTEs.
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warding table vary and can include, for example, favoring specific peer links, preferring

peer links at certain levels of the tree, or only allowing restricted peer link use.

Optimal Label Forwarding Table Entries

Finally, the super table includes several types of entries related to single label

selection. Since the combination of optimal label propagation and peer link restriction

is quite complicated, we first discuss optimal label entries not related to peer links.

The first type of optimal label entry, optimal label downward, refers to the

downward-facing optimal label mappings that are passed upwards from an L1 switch

towards Ln switches, whereas optimal label upward entries encode the upward-facing

mappings passed downwards from Ln switches (Section 6.2.2). Both of these types have

two options, one in which only switches in SR are given entries corresponding to optimal

label mappings and the other in which switches in S`∧R also have optimal label-related

FTEs (Section 6.3.1). For the following examples, we do not assume a particular metric

for the selection of an optimal label. Rather, we simply select optimal labels that will

provide for the clearest examples.

Suppose that the optimal label for S32 in Figure 6.12 is 65.49.32. An example

of an SR optimal label downward entry is the mapping at S64 from 65.49.32 to S48,

as S64 does not reach S32 with this label via regular downward entries and so belongs

to SR for S32. A optimal label upward entry with the SR option is the mapping at S69

from 65.49.32 to S82, since without optimal label FTEs, S69 can only reach S32 via label

64.48.32 (even with the help of peer links) making it a member of SR for S32. A optimal

label upward entry for the S`∧R option is the mapping at S56 from 65.49.32 to S72. Since

S56 can reach hypernode 65 without optimal label forwarding (via S73), and can reach

the label 64.48.32 (and thus 65.49.32 with the help of optimal label entries) via S72, it

belongs to S`∧R for S32. Finally, S86 can reach S32 with label 65.49.32 via S67 as well

as with label 64.48.32 via S64. Therefore, S86 belongs to S`∧R for S32 and has a optimal

label downward entry mapping 65.49.32 to S64 in its super table.

The choice between the two types of optimal label policies is based on the re-

quired multi-path support for a topology, as described in Section 6.3.1. A similar policy

to that for peer link entries is applied to optimal label entries; optimal label upward
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entries that are redundant with regular upward entries are removed, and higher level

switches as left to make the decision between the two types of paths.

Optimal Label Forwarding Table Entries with Peer Links

We next turn our attention to the combination of optimal label entries with peer

link entries. Since optimal label mappings are passed across peer links, the super table

contains both across and upward entries for such mappings, and includes restricted,

unrestricted, SR, and S`∧R options for each. For simplicity, the system-wide peer-link

hop limit is 1 for the following examples.

Optimal label across and optimal label upward entries with the SR and restricted

options correspond to optimal label mappings that are passed across peer links to a

switch s, for which s cannot otherwise reach the mapped label, via other non-peer-related

forwarding entries or via other, suboptimal labels. In Figure 6.12, S81 can reach S32 only

via label 64.48.32 and only via its peer link to S80, so its mapping from 65.49.32 to S80

is an example of a optimal label across, SR, restricted entry. S81’s downward neighbor

S68 has a similar mapping from 65.49.32 to S81, an example of a optimal label upward,

SR, restricted entry. Optimal label across and optimal label upward entries with the SR

and unrestricted options correspond to optimal label mappings that are passed across

peer links to a switch s, for which s can reach only a suboptimal label for a particular

host, but can do so via both regular and peer link entries. In the figure, S82 can reach

S32 only via label 64.48.32, but can do so using its peer link to S80 or its downward link

to S64, so its mapping from 65.49.32 to S80 is an example of a optimal label across, SR,

unrestricted entry. S82’s downward neighbor S69 has a similar mapping from 65.49.32

to S82, an example of a optimal label upward, SR, unrestricted entry. However, this entry

would be redundant with an existing regular upward entry for S69 and therefore would

likely be removed on a consolidation pass through the super table.

Optimal label across and optimal label upward entries with the S`∧R and re-

stricted options correspond to optimal label mappings that are passed across peer links

to a switch s, for which s can reach a host via multiple labels (including the selected

optimal label), but can do so only via peer link entries. In the figure, S84 can reach S32

via label 64.48.32 using its peer link to S80 and via label 65.49.32 using its peer link to
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S85. In fact, it can only reach S32 via peer links. Therefore, its mapping from 65.49.32

to S80 is an example of a optimal label across, S`∧R, restricted entry. S84’s downward

neighbor S70 has a similar mapping from 65.49.32 to S84, an example of a optimal label

upward, S`∧R, restricted entry. Optimal label across and optimal label upward entries

with the S`∧R and unrestricted options correspond to optimal label mappings that are

passed across peer links to a switch s, for which s can reach a host via multiple labels

(including the selected optimal label), and can do so via both regular and peer link en-

tries. In the figure, S85 can reach S32 via label 64.48.32 using its peer link to S80 and via

label 65.49.32 using its downward link to S65. Since it can reach S32 via both the opti-

mal and other labels, and via regular and peer link entries, its mapping from 65.49.32

to S80 is an example of a optimal label across, S`∧R, unrestricted entry. S85’s downward

neighbor S71 has a similar mapping from 65.49.32 to S85, an example of a optimal label

upward, S`∧R, unrestricted entry.

It turns out that the combination of optimal label and peer link entries introduces

a somewhat circular logic into ALIAS, in that the choice of whether to consider a par-

ticular peer entry to be part of the restricted or unrestricted option depends on which

option (SR or S`∧R) is used for optimal labels. However, with the SR option, optimal

label entries are inserted based on necessity and this necessity depends on the treatment

of peer links. The key to resolving this cycle is to consider first the base, non-peer

link case: With the SR option, upward and downward optimal label entries are only

inserted when necessary for reachability, and with the S`∧R option, such entries are in-

serted when beneficial for multi-path support. Therefore, we apply the policy that peer

link restrictions can “overrule” optimal label options. With the SR option, optimal label

across entries are never inserted unless necessary for reachability, even in the case of

unrestricted peer links, since this is the intention of the SR option. On the other hand,

with the S`∧R option, optimal label across are inserted for non-reachability reasons (i.e.

multi-path support) only when unrestricted peer links are used or when a label is not

reachable without traversing peer links, thus making it part of the restricted peer links

category.
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6.4.2 Creating Forwarding Tables from Super Tables

The actual forwarding table at a switch s is created as follows: regular downward

entries are inserted into a table in alphanumeric order. This order is chosen for ease in

locating these entries when subsequently inserting other types of entries. At this point

regular upward entries are inserted such that any regular upward entry u that is a prefix

of a set of regular downward entries D_FT Es appears immediately after the last entry

for d_ f te ∈ D_FT Es. If compatible with the peer link and optimal label entries to be

used, an optimal regular upward star entry may replace one or more regular upward

entries. At this point, a “first match” forwarding table has been built.

If peer link entries are to be used, but with the restricted option, these entries

can simply be added to the end of the table, before the regular upward star entry, as

they represent otherwise unreachable hosts and there will be no prefixes of such entries

already in the table. If unrestricted peer link entries are used, they are placed either

immediately before or after corresponding regular entries, based on local policy stating

when to prefer each type of link. The case for optimal label entries is nearly identical.

There is one final optimization to take into account, based on the type of for-

warding table used. Consider an entry that points to multiple next hops in the super

table. Some types of forwarding tables allow for multiple entries for a label (e.g. for

use with ECMP [35]). In this case, such entries are split into multiple entries in the for-

warding table. If this sort of multiplicity is not supported, a single next-hop is selected

to represent the entry in the forwarding table.

6.5 Evaluation

In the sections above, we introduced several additions to the computation, con-

trol overhead and forwarding table sizes in ALIAS. All computational overhead is fairly

small. Also, the control overhead varies with the same factors as do the forwarding table

sizes. Since limiting the sizes of forwarding tables is a primary goal of ALIAS, we focus

on that aspect in this evaluation.

To evaluate forwarding table sizes with single label selection, we use our ALIAS

simulator (Chapter 4). We first generate full fat tree topologies with n levels and k-port
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switches. We then delete between d = 0% and d = 80% of the links at each level. For

each topology, i.e. each combination of n, k and d, we calculate ALIAS hypernodes,

coordinates, labels and forwarding tables. We extend the ALIAS simulator to generate

and propagate optimal label mappings as well as the corresponding FTEs. We then

compute number of FTEs at each switch, averaged over all switches in the topology and

across 100 runs. Because of the way the graphs are created, there are no peer links. In

fact, our results will show that even without the addition of peer link entries, the use of

optimal label selection significantly increases forwarding table sizes.

We present forwarding table sizes, broken down by type of entry, for a variety of

input topologies, policies, and optimizations in Figures 6.13 through 6.22. The x-axis

shows the percentage of links deleted, and the y-axis shows the average number of FTEs

per switch. The bottom portion of each column, denoted “regular”, shows the FTEs that

would be present without single label selection. The middle portion, denoted “SL, par-

tial MP”, gives the additional FTEs that would need to be added to incorporate support

for single label selection with full reachability but without full multi-path support. That

is, only switches in SR have optimal label entries for a given L1 switch. Finally, the top

portion of each column, marked “SL, full MP”, shows the additional entries that would

be necessary for full multi-path support, wherein switches in S`∧R have optimal label

entries.

Each figure is additionally presented for both multi-path forwarding such as

ECMP and single output port forwarding. In the multi-path forwarding case, FTEs

in which one label points to multiple neighbors are counted once for each neighbor.

In the single output port case, “duplicate” FTEs in which one label points to multiple

neighbors, are counted only as single entries. This is because without ECMP-style for-

warding, a single output port for each such entry would be selected. However, in these

cases, all multi-path support is not completely lost. The super table contains all path

entries possible, and so the switch CPU can use this information to update the hardware

forwarding tables as an approximation of slow-path multi-path support.6

6These two classifications of multi-path support differ in that the SR versus S`∧R option represents the
amount of information known to each switch whereas the ECMP versus Single Output Port cases refer to
the forwarding protocol’s use of a switch’s multi-path knowledge.
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Figure 6.13: Forwarding Table Sizes for n=3, k=4
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Figure 6.14: Forwarding Table Sizes for n=3, k=8
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Figure 6.15: Forwarding Table Sizes for n=3, k=16
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Figure 6.16: Forwarding Table Sizes for n=3, k=32
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Figure 6.17: Forwarding Table Sizes for n=3, k=64
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Figure 6.18: Forwarding Table Sizes for n=4, k=4
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Figure 6.19: Forwarding Table Sizes for n=4, k=8
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Figure 6.20: Forwarding Table Sizes for n=4, k=16
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Figure 6.21: Forwarding Table Sizes for n=5, k=4

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

0 10 20 30 40 50 60 70 80 

Av
er

ag
e 

FT
Es

/S
w

itc
h 

% Links Deleted 

SL, Full MP 
SL, Partial MP 
Regular 

(a) Multi-Path Forwarding

0 

100 

200 

300 

400 

500 

600 

0 10 20 30 40 50 60 70 80 
% Links Deleted 

(b) Single Output Port

Figure 6.22: Forwarding Table Sizes for n=5, k=8
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As the figures show, especially for larger trees, the cost in forwarding state asso-

ciated with selecting a single, optimal label per host is significant, especially when full

multi-path support is necessary. Since the graphs shown are for small values of k, we

extrapolate to determine what forwarding table sizes might be like for larger networks

as follows. We consider the case in which 20% of links fail for each graph where n = 3

and where k varies from 4 to 64. We compute the number of optimal label entries as a

function of regular entries, for both partial and full multi-path support. That is, if there

are 100 regular entries and 400 optimal label entries, we give a value of 400%, indicat-

ing that there are 4 times as many optimal label entries as regular entries. We show the

case with 20% failed links as it appears to frequently represent the worst case for opti-

mal label entries and because it does not correspond to an overly exaggerated number

of failures. The results of this extrapolation appear in Figure 6.23.

In the multi-path forwarding case (Figure 6.23a), the multiplicative factor of

single label vs. regular entries seems to grow exponentially with k. We perform an

extrapolation to k = 128 with a dotted line, to show that the number of optimal label

entries required for full multi-path support (i.e. S`∧R) for k = 128 could be as much as

25 times that of regular entries. The case for partial multi-path support (i.e. SR) is not

much better. In this case, for k = 128, we would need about 15 times as many optimal

label FTEs as we would regular FTEs.

On the other hand, in the single output port case (i.e. no ECMP-style forwarding)

the number of optimal label FTEs grows more slowly with respect to the number of

regular FTEs. For k = 128, with full multi-path support, we extrapolate to show that

there might be as many as 1.8 times as many optimal label FTEs as regular FTEs, and

with only partial multi-path support, the number of optimal label entries does not surpass

that of regular FTEs.

In order to estimate numerical values corresponding to these extrapolations, we

perform another extrapolation, this time showing the number of regular forwarding en-

tries as a function of k, in Figure 6.24. This allows us to estimate the number of for-

warding entries for k = 128. Based on this figure, we might expect a k = 128 switch to

have around 2300 regular entries. This means that incorporating optimal label selection

would introduce an additional 34,000 forwarding entries with partial multi-path support,
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Figure 6.23: Optimal Label Entries as a Percentage of Regular Entries

and another 57,000 entries with full multi-path support.
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Figure 6.24: Regular Entries vs. Number of Ports Per Switch for n = 3

Given these results, the only cases that might correspond to usable networks are

those with no ECMP-style multi-path support or perhaps those that incorporate ECMP-

style forwarding, but that force single label selection to significantly diminish multi-

path options in the forwarding tables. In the former case, we can not use a forwarding

protocol that leverages any multi-path options calculated by ALIAS, and in the latter

case we only calculate a small subset of multi-path options and pay a significant price

in forwarding state. As such, it appears that the benefits of selection of a single optimal

label per host in ALIAS are outweighed by the cost in terms of forwarding state.

6.6 Summary

ALIAS labels encode not only the locations of hosts and switches in the network,

but also ways to reach (i.e. paths to) these hosts and switches. Because there are poten-
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tially multiple ways to reach a host in a multi-rooted tree, ALIAS hosts have multiple

labels. This is a significant departure from the interfaces of most modern data center

communication protocols and so in this chapter, we consider the possibility of selecting

a single label per host and subsequently propagating this selection through the ALIAS

topology. We first offer a protocol for selecting an optimal label per host, prioritizing

reachability and multi-path support. We then give an algorithm for propagating selected

labels throughout the tree for two cases: (1) one case in which minimal forwarding state

is a priority and selected labels are propagated only when necessary for connectivity and

(2) one case in which selected labels are propagated everywhere necessary to take full

advantage of the topology’s inherent path multiplicity. We use simulations to evaluate

the resulting forwarding state for a variety of topologies and find that in general, the

selection of a single label is prohibitively expensive in terms of added forwarding state.



Chapter 7

Conclusions and Future Work

In this chapter, we summarize the challenges that we have addressed in this

dissertation and describe our approaches to solving each. We then discuss directions for

continuing research in these areas.

7.1 Summary

This dissertation sets out to show that we can have scalable, efficient and fault-

tolerant communication in hierarchical data center networks, despite the data center’s

scale and complexity. That is, with tunable topology design and tailored communication

protocols, we can overcome the following three challenges:

1. Building scalable, fault-tolerant topologies that allow network designers to tune

scalability and fault tolerance tradeoffs according to the requirements for a partic-

ular situation.

2. Providing scalable and efficient addressing and communication.

3. Formalizing the underlying protocols and their interactions in order to make con-

figuration and debugging feasible.

Here, we review our approaches to each of these challenges. In Chapter 3, we

consider the issue of improving failure recovery in the data center by modifying fat tree
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topologies to enable local failure reactions. A single link failure in a fat tree can dis-

connect a portion of the network’s hosts for a substantial period of time while updated

routing information propagates to every switch in the tree. This is unacceptable in the

data center, where the highest levels of availability are required. To this end, we in-

troduce the Aspen tree, a type of multi-rooted tree topology with the ability to react

to failures locally. Aspen trees provide decreased convergence times to improve a data

center’s availability, at the scalability cost of reduced host count and hierarchical aggre-

gation. We explore the tradeoffs between Aspen trees’ fault tolerance and scalability

properties and offer a set of “middle ground” trees that provide improved fault tolerance

via localized failure reaction while still maintaining much of the fat tree’s scalability.

With Aspen trees, we overcome challenge (1) by providing a class of multi-

rooted tree topologies with tunable scalability and fault tolerance. A data center op-

erator can design an Aspen tree that meets a particular scalability requirement while

maintaining the highest possible fault tolerance. Alternatively, the operator can specify

fault tolerance requirements and design an Aspen tree that supports as many hosts as

possible. In this way, the data center network meets only those requirements necessary,

and does not sacrifice one feature (i.e. fault tolerance or scalability) for an unnecessary

increase in the other.

In Chapter 4, we address challenge ( 2). We discuss the fact that current data

center naming and communication protocols rely on manual configuration or centraliza-

tion to provide communication between end hosts. Such manual configuration is costly,

time-consuming and error prone, and centralized approaches introduce the need for an

out-of-band control network.

We take advantage of particular characteristics of data center topologies to de-

sign and implement ALIAS. We show how to automatically overlay appropriate hierar-

chy on top of a data center network such that end hosts can automatically be assigned

hierarchical, topologically meaningful labels using only pair-wise communication, with

no central components. Our evaluation indicates that ALIAS simplifies data center man-

agement while simultaneously improving overall scalability.

In Chapter 5, consider the issue of formalizing data center communication pro-

tocols. We study ALIAS in more depth, formalizing its basic building block so that
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we can reason about the protocols’ correctness and efficiency. We formally define the

Label Selection Problem as a version of the network node labeling problem where (1)

labels are restricted based on connectivity and (2) connectivity can change. We give

a Las Vegas-style protocol, which we call the Decider/Chooser Protocol (DCP), that

solves the Label Selection Problem in an efficient manner. We then apply this protocol

to the problem of automatic label assignment in data center networks. We verify the

correctness of DCP via proof and model checking, and explore its performance through

analysis and simulation. We find that DCP is quick to converge, even with a small label

domain, due to the random nature of the protocol.

Our formalization of DCP and our derivation of ALIAS from DCP allow us

to reason about the correctness of ALIAS and its interactions with other data center

network protocols. This is a step towards solving challenge (3), the formalization of

networking protocols. Because of the scale and complexity of the data center, it is

crucial that we build protocols that are provably correct and that have understandable

configuration and debugging processes.

Finally, in Chapter 6, we return to the design of ALIAS and consider a modifica-

tion to reduce an ALIAS host’s label set to a single label for routing and forwarding use.

We first propose an algorithm for selecting a single label per host, choosing this label

based on reachability and multi-path support. We then show how to propagate selected

labels throughout the topology and we discuss the effects of these changes on multi-path

support, peer link usage and reactivity to topology changes. Finally, we use simulations

to examine the forwarding state necessary to support single label selection. We find that

the selection of a single label per host in ALIAS results in prohibitively large forwarding

tables, and so we favor a version of ALIAS with multiple labels per host.

7.2 Open Problems and Future Work

The field of data center networking is still a young area, and new and innovative

ideas appear continuously. Here, we discuss open problems related to the work in this

dissertation as well as ideas for ongoing research in the areas of data center network

topology, communication and fault tolerance.
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7.2.1 Data Center Network Topologies

Random Topologies

Jellyfish [67] was recently proposed as a new way of thinking about data center

network topologies. A Jellyfish topology is connected entirely randomly, without in-

tentional hierarchy or symmetry. Despite the fact that paths between pairs of hosts are

not likely to be uniform in Jellyfish topologies, the research shows promise for efficient

forwarding and short paths. However, a random topology does not have the opportunity

for the hierarchical label aggregation enjoyed by multi-rooted trees. Thus, there is a

need for careful analysis of the forwarding state stored by Jellyfish switches.

This area is wide open for future research. While much effort has gone into

designing regular, symmetrical, hierarchical structures, little has gone towards exploring

and evaluating random topologies. In particular, it would certainly be interesting to run

ALIAS over a Jellyfish topology and to examine the resulting hypernodes and labels.

Perhaps this might lead to alternate definitions for hypernodes, wherein the definition

selected for a given data center network might depend on the type of topology in use.

Improving the Scalability versus Fault Tolerance Tradeoff

Aspen trees enable fast, local failure reactions by leveraging the structure of the

topology. In contract, there is a large body of research that studies the introduction

of backup paths a priori or the use of alternative routing techniques such as bounce

routing and data-driven connectivity. In these cases, the focus is generally on arbitrary

topologies rather than on those frequently seen in the data center.

These two areas of research could be combined in order to improve fault toler-

ance in the data center at a smaller scalability cost than that of Aspen trees. That is, we

could leverage information about a network topology to selectively use backup paths or

alternative routing techniques. For instance, a network operator could design an Aspen

tree with added fault tolerance only at a subset of tree levels. Then, alternative routing

techniques could be used to “pick up the slack” at other levels of the tree. By limiting

the use of alternative routing techniques and by leveraging topology information, we can

reduce the complexity inherent to alternative routing techniques. At the same time, by
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only introducing added fault tolerance to a subset of tree levels, we limit the scalability

cost in terms of host support.

7.2.2 Scalable Communication

End-To-End Protocols

End-to-end protocols for flow scheduling and load balancing have become in-

creasingly important in modern data centers, where a key priority is achieving full uti-

lization of the topology’s offered bisection bandwidth. A number of recent research

efforts focus on related problems [5, 28, 55, 60].

ALIAS introduces the idea of encoding path information in a host’s address. In

particular, each ALIAS label corresponds to a set of paths to a host from the top level

of a multi-rooted tree. When a sender chooses a particular label for a flow, it effectively

selects a subset of all possible paths to the flow’s destination. The interaction between

this path encoding and load balancing or flow scheduling protocols is an area of ongoing

research.

Software Defined Networking

Software-Defined Networking (SDN) has gained significant traction in recent

years, in part due to the widespread adoption of OpenFlow [1]. SDN gives networking

researchers the opportunity to separate the control and data planes, thus enabling a log-

ically centralized control plane. This introduces an interesting middle ground between

centralized and fully distributed protocols. On one hand, centralized protocols can be

undesirable in the data center due to the corresponding need for a separate out-of-band

control network to connect each node to a single centralized component. On the other

hand, fully distributed protocols can be complex, making them difficult to configure and

debug. With SDN, it is possible to have logically, but not physically, centralized control.

We could operate in this middle ground by introducing partial centralization in

ALIAS. For instance, the topology could be divided into regions, with a centralized

OpenFlow-style controller per region. Controllers could even be co-located with ALIAS

switches. In this case, a simple distributed protocol could be used to elect a controller for
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each region of the topology. Then, each controller could handle the more complicated

tasks for its region, such as hypernode computation and coordinate assignment.

7.2.3 Formalizing Data Center Protocols

Tight Upper Bound on DCP Convergence Time

While we have shown with simulations and mathematical analysis that the De-

cider/Chooser Protocol converges quickly in practice, it would be useful to calculate

a tight upper bound for this convergence time as a function of the coordinate domain

size and the number of choosers. This upper bound is difficult to compute for several

reasons. First, we introduce the notion of rounds into our analysis, and we compute

the probability that a subset of the remaining choosers finish during each round. As the

protocol is inherently asynchronous, it would be ideal to analyze the convergence time

without relying on the construct of rounds. Additionally, the input to each round de-

pends on the results of the previous round. That is, the number of choosers that remain

before the start of round x is based on the number of choosers that remain before round

x−1 as well as on the number of choosers that finish during round x−1. The results of a

round form a probability distribution, making it difficult to use these results to generate

an input for the following round.
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