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Microbial cell factories are expected to have a transformative impact on the

chemical industry, but, first, we must meet the challenges of designing and optimizing

high-yield cell factory strains. The most popular conceptual model for cell factory

optimization is the design-build-test-learn cycle. I present methods that use systems

biology to improve the optimization process in each of these steps. First, the build

step requires a parts list for a host organism and any heterologous pathways. I present

BiGG Models, a database of more than 75 high-quality, manually-curated genome-scale

metabolic models that comprise a standardized metabolic parts list. BiGG Models has

xviii



become the most popular resource in the community for gold-standard genome-scale

metabolic models. For the test step, contextualization of omics data is an enormous

challenge, and I present a visualization tool to address this challenge. Escher is a

web application for visualizing data on biological pathways. With Escher, users can

identify trends in common gene-oriented data types (e.g. RNA-Seq, proteomics) and

metabolite- and reaction-oriented data types (e.g. metabolomics, fluxomics). For

the learn step, genome-scale models can be used to identify general trends in cell

factory performance. I introduce a computational method—OptSwap—to predict

bioprocessing strain designs by identifying optimal modifications of the cofactor

binding specificities of oxidoreductase enzymes and by identifying complementary

reaction knockouts. I also present an optimization procedure that identifies optimal

cofactor-specificity “swaps” for improving theoretical yield in genome-scale metabolic

models. Swapping the cofactor specificity of central metabolic enzymes is shown to

increase NADPH production and increase theoretical yields for many native and non-

native products. Last, the design step requires models that can successfully predict

phenotype from genotype. I assess the predictive capabilities of existing models of

Escherichia coli through literature mining and simulate strains from the literature in

six historical genome-scale models of E. coli. This study shows that the predictive

power of models has increased as they have expanded in size and scope. Together,

these studies provide a path toward successfully applying systems biology methods to

optimizing microbial cell factories.
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Chapter 1

Introduction

Biology is the only field of study that asks us to look deep inside ourselves, to

the interior of our physical being. Somewhere in there is a mechanism that makes

us tic. We are often tempted to view ourselves as mechanical beings. When a bone

breaks, it cracks and fractures like inanimate rock. Our skin reacts with acids and

bases. We physically respond to heat and cold, and even a lack of gravity. But with

every discovery, biology seems to move further from these mechanistic and reductionist

explanations, becoming richer in mathematics, physics, logic, and computation. If

there is a more thrilling field of study, I have not found it.

Incredible revelations on the function of our internal “ticker” have come from

many disciplines: microbiology and cell theory in the 19th century, developmental

biology and genetics in the early 20th century, molecular biology beginning in the 1960s,

and systems biology since the development of whole genome sequencing in the 1990s.

With each wave of discovery, we develop a new vision of what our ticker looks like. Are

we elaborate, skyskraping towers of protein and lipid? Or are we biochemical reactors

where each stimulus sets off the an unthinkable network of toppling dominoes? Are

1
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we information processing machines, stuffed full of tickertape written in a quaternary

alphabet? Or maybe we are all of those at once—a network of networks—where

physical structure, biochemical dynamics, and information processing are in constant

communication.

In this dissertation, I employ the latter systems biology approach. I will defend

the thesis that systems biology methods are essential to optimizing cell factory strains,

especially for contextualizing and visualizing data and for generalizing observations

about a model system to all cell factory strains. To begin, I will introduce the field of

systems biology and the specific mathematical tools employed in this dissertation.

1.1 Systems biology

Whole genome sequencing, high-throughput data collection, and advances in

computation have made it possible to construct a complete parts list for a model

organism. Every gene in a complete genome sequence can be identified. Through a

bottom-up reconstruction process, every biochemical reaction and metabolite in a

metabolic network can be added to the parts list based on the annotated genome

and on experimental literature (Feist et al. 2009; Thiele and Palsson 2010). A similar

approach can be taken with other biological networks. The resulting biochemical,

genetic, and genomic (BiGG) knowledge base forms a scaffold upon which we can

build predictive models, data analysis methods, and visualization tools.

A key goal of systems biology is to compute the relationship between genotype

and phenotype. Diverse approaches that range from stochastic kinetic models to

statistical Bayesian networks have been applied, and each of these approaches has

differing rationales and advantages (Table 1.1). One of these approaches is constraint-



3

based reconstruction and analysis (COBRA), which can be implemented with a BiGG

knowledge base. The BiGG knowledge base is first converted to a mathematically

consistent format, primarily by generating a stoichiometric matrix. This matrix is

the central component of an ever-growing set of COBRA modeling methods (Lewis,

Nagarajan, and Palsson 2012). COBRA methods are primarily based on metabolic

networks, including multicellular metabolic interactions (Zhuang et al. 2011; Klitgord

and Segrè 2010; Bordbar et al. 2011; Bordbar et al. 2010; Lewis et al. 2010b). COBRA

methods also exist for signaling (Papin and Palsson 2004; Li et al. 2009), transcriptional

regulation (Gianchandani et al. 2009), and macromolecule synthesis (Thiele et al.

2009).

The first COBRA method for biological predictions was flux-balance analysis

(FBA). Its formulation is rooted in the hypothesis that a cell is “striving” to achieve

a metabolic objective. Studies have shown that, by optimizing the assumed cellular

objectives of growth (Ibarra, Edwards, and Palsson 2002) and energy use (Carlson

and Srienc 2004b; Carlson and Srienc 2004a) one can predict metabolic fluxes in

microorganisms. The constraint-based modeling framework is also amenable to

simultaneous integration of a range of omic data types (Hyduke, Lewis, and Palsson

2013). In particular, omic data have been used both to constrain calculated flux

distributions and as a comparison and validation tool for model predictions. Such

omic data integration has enabled context-specific studies of the metabolism of an

organism, such as studies of enzyme promiscuity (Guzmán et al. 2015; Nam et al.

2012) and pathogenesis (Lobel et al. 2012). Recent work shows that COBRA methods

can be used to place interaction networks of diverse biological components into context

and to interpret these networks (Szappanos et al. 2011). Finally, the discrepancies
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between COBRA predictions and experimental data have been used to design targeted

experiments that correct inaccuracies in metabolic knowledge (Reed et al. 2006b; Orth

and Palsson 2010).

Methods that model the genotype-phenotype relationship can also be applied

to building and optimizing microbial cell factories. The promise of automating the

design of microbial cell factories is still largely unrealized, but it has the potential to

transform our built environment and our change our relationship with the natural

environment.

1.2 Microbial cell factories

The demand for raw material inputs to agriculture, industry, and energy

are growing steadily, and concerns about environmental sustainability are becoming

more acute; thus, alternatives to traditional, fossil-fuel based chemical production are

becoming economically viable (Johnson 2007). Cell factories, which use microorganisms

to produce materials from renewable biomass, are an attractive alternative, and an

increasing number of platform chemicals are being produced at industrial scale using

engineered microorganisms (Manzer, Waal, and Imhof 2013). To meet the demand

for robust, high-yield production strains, an initial metabolic engineering strategy

was developed, which used random mutagenesis and screening to identify strains with

improved production performance (i.e. titer, productivity, and yield). However, the

permutations possible in genomic sequences are so numerous that a mutagenesis and

screening approach can only explore a small subset of possible strains, so the highest

performance strains might never be identified. On the other hand, if targeted strain

improvements can be predicted, then strains can be engineered which would not be
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found using untargeted mutagenesis and screening, and this can be accomplished with

the tools of systems biology.

An important first step in designing a production strain for a non-native

metabolite is to identify and build a synthetic pathway (Shin et al. 2013). COBRA

methods have been employed successfully for pathway prediction and optimization

(Shin et al. 2013; Campodonico et al. 2014). After a pathway has been designed, strain

optimization is performed to increase the yield and productivity of the strain. The

most common paradigm for managing strain optimization is the “design-build-test-

learn” cycle, which will be used to help contextualize the methods in this dissertation

(Smanski et al. 2014; Liu et al. 2015).

A great number of COBRA methods have been developed (Lewis, Nagarajan,

and Palsson 2012), and the methods that have led to experimental improvements in

production strains can be categorized according to the types of predictions made. The

most common prediction of COBRA methods in systems metabolic engineering has

been the calculation of maximum theoretical yield, the percentage of substrate carbon

that can be converted to a target molecule, given the limitations of carbon and redox

balance in the stoichiometric network (Fig. 1.1a). Yield is a critical consideration

when considering the economic viability of a chemical production, so these analyses

have direct consequences for cell factory design. Shen and Liao (2013) recently

demonstrated the importance of theoretical yield calculations for designing production

strains. In order to design a strain of Escherichia coli that produces 1-propanol, the

authors used a simple mass- and redox-balanced stoichiometric model and FBA to

compare the theoretical yields of three routes to 1-propanol: the native threonine

pathway, the non-native citramalate pathway, and a synergistic employment of both
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pathways (Fig. 1.1a). The calculations revealed that the two pathways together have

a theoretical yield of 1.33 mol 1-propanol per mol glucose, 33% higher than either

individual pathway. Indeed, the authors constructed production strains for all three

1-propanol routes, and the synergistic employment of both pathways had the highest

observed yield, ~30% greater yield than the citramalate pathway and ~55% greater

yield than the threonine pathway.

Another class of COBRA predictions uses the biomass objective function—a

representation of all the metabolite demands required for cell growth (Feist et al.

2010)—to predict how gene deletions will affect cellular phenotypes. For instance,

a number of COBRA algorithms have been developed to identify groups of gene

knockouts that are predicted to change the fermentation profile of a cell when growing

at a maximum growth rate, a characteristic known as growth-coupling; e.g. OptKnock

(Burgard, Pharkya, and Maranas 2003), OptGene (Patil et al. 2005), RobustKnock

(Tepper and Shlomi 2010), OptSwap (King and Feist 2013), for further discussion see

(Lewis, Nagarajan, and Palsson 2012). However, only a few studies (Yim et al. 2011;

Fong et al. 2005) have tested the validity of the predictions of these algorithms, and

thus their significance to systems metabolic engineering is largely untested.

A similar COBRA method, called SIMUP, was recently shown to have direct

usefulness for systems metabolic engineering (Gawand et al. 2013). The SIMUP

method predicted groups of gene knockouts that forced co-utilization of two substrates.

Lignocellosic biomass is typically hydrolyzed into a mixture of glucose and xylose, but

industrial organisms preferentially consume glucose over xylose. Thus, the SIMUP

algorithm was used to identify a group of three gene knockouts that disable upper

glycolysis and part of the pentose phosphate pathway so that both glucose and xylose
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consumption are necessary for rapid growth (Fig. 1.1b). The results of the simulations

were tested in vitro, and it was found that SIMUP accurately predicted strain designs

that co-utilized these substrates, albeit with substrate uptake rates lower than the

wild type.

Some of the most successful COBRA methods for predicting modifications for

systems metabolic engineering use empirical data (e.g. omics data) to generate a

reference state for a host strain, then find the set of up-regulations, down-regulations,

and/or knockouts necessary to increase the yield of a target molecule; e.g. MOMA

(Segre, Vitkup, and Church 2002), OptForce (Ranganathan, Suthers, and Maranas

2010), FSEOF (Choi et al. 2010). In a recent example of this approach, overproduction

of C14–C16 fatty acids was engineered in E. coli by implementing the predicted gene

up-regulations and deletions (Ranganathan et al. 2012; Fig. 1.1c). Similar strategies

have been employed to produce polylactatic acid (up to 11% yield by weight from

glucose using metabolic flux analysis and MOMA; Jung et al. 2010), malonyl-CoA

(4-fold increase from wild type using OptForce; Xu et al. 2011), lycopene (over 8-fold

increase from control using FSEOF and MOMA; Choi et al. 2010), the antibiotic

actinorhodin (52-fold increase from wild type using FSEOF; Kim et al. 2014), and

the recombinant protein human Superoxide dismutase (up to 1.4-fold increase from

control using FSEOF and MOMA; Nocon et al. 2014).

Thus, COBRA methods have been used to great effect in optimizing microbial

cell factories, but the prediction types can be expanded. The tide is shifting toward

a much greater range of predictive capabilities through use of more complex models

that add additional constraints to the systematic analysis.
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(Ranganathan, Wei Tee, et al. 2012)

Three knockouts lead to 
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efficient production of 
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(Gawand et al. 2013)

Synergistic use of two 
pathways simultaneously 
increases theoretical yield 
by 33%
(Shen and Liao 2013)

Figure 1.1: Three types of COBRA predictions have been successfully imple-
mented for systems metabolic engineering. (a) Theoretical yield. As an example,
theoretical yield was maximized through synergistic use of two production pathways (Shen
and Liao 2013). (b) Gene deletions and biomass. As an example, the SIMUP algorithm
identifies three gene knockouts that force co-utilization of glucose and xylose to achieve
maximum growth (Gawand et al. 2013). (c) Regulatory changes to increase yield. As an
example, gene up-regulations and deletions were used to increase the production of fatty
acids (Ranganathan et al. 2012). Figures were generated using Escher (King et al. 2015a).

1.3 Introducing the Thesis

In this dissertation, I develop systems biology methods for the optimization of

microbial cell factories. The design-build-test-learn cycle is widely used to conceptualize

the optimization process, so the following chapters are organized around this cycle.

Chapter 2 introduces BiGG Models, a public database of standardized genome-scale

models of metabolism. Together, they represent a parts list that can be used during

the build step in strain optimization when new reactions (via genes) are added to a

strain. Chapter 3 introduces Escher, a web-based application for visualizing omics
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data in the context of the metabolic network. During test, analytical data is collected

and analyzed, and Escher provides a high-level view of many data types (including

transcriptomics, fluxomics, and metabolomics) in the context of the metabolic network.

Chapters 4 and 5 describe algorithms for optimizing cofactor usage in metabolic

networks, specifically through modifying NADH/NADPH specificity of oxidoreductase

enzymes. These methods contribute to a general picture of the importance of cofactor

balance for product yields with NADPH-dependent pathways, and they demonstrate

the value of COBRA methods in the learn step. Chapter 6 uses literature mining to

assess the predictive strength of genome-scale metabolic models of E. coli. This study

provides support for the use of COBRA methods and de novo predictions during

design. Chapter 7 concludes the dissertation and offers an outlook on next-generation

genome-scale modeling techniques for optimizing microbial cell factories.

Chapter 1 is adapted from published manuscripts: King, Z. A., Lloyd, C. J.,

Feist, A. M., and Palsson, B. O. (2015b). “Next-generation genome-scale models

for metabolic engineering”. In: Curr. Opin. Biotechnol. 35, pp. 23–29. doi:

10.1016/j.copbio.2014.12.016. The dissertation author was the primary author of

the review. Bordbar, A., Monk, J. M., King, Z. A., and Palsson, B. O. (2014a).

“Constraint-based models predict metabolic and associated cellular functions”. In:

Nat. Rev. Genet. 15.2, pp. 107–120. doi: 10.1038/nrg3643. The dissertation author

was one of the authors of the review.

http://dx.doi.org/10.1016/j.copbio.2014.12.016
http://dx.doi.org/10.1038/nrg3643


Chapter 2

BiGG Models: A platform for

integrating, standardizing, and

sharing genome-scale models

2.1 Introduction

Biological knowledge bases must evolve to keep pace with the incredible progress

in experimental biology. Methods for collecting genome-scale ‘omics’ data have

been widely adopted, and the resulting datasets can be difficult to understand,

especially when multiple data types are collected in the same experiment (Dolinski

and Troyanskaya 2015). These challenges are emblematic of the larger efforts to deal

with and capitalize on Big Data (Margolis et al. 2014). A biological knowledge base

can serve as a framework for interpreting omics data by providing biological context

for each measurement. For this to work, the knowledge base must contain an accurate,

genome-scale representation of the organism; it must use unique identifiers and links

11
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to existing databases so that scientists can easily align data; and it must describe the

relationships between between biological networks so that distinct omics data types

can be connected during analysis.

Knowledge bases are widely available and commonly used by biologists. The

most extensive pathway-oriented knowledge base is the Kyoto Encyclopedia of Genes

and Genomes (KEGG) that contains 15 related databases with information on 3,982

organisms (Kanehisa et al. 2014). In contrast, BioCyc is best known for seven highly-

curated, multi-scale knowledge bases for model organisms that include Escherichia

coli, Bacillus subtilis, and Homo sapiens (Caspi et al. 2014). Similar databases are

available for model organisms such as yeast (Costanzo et al. 2014) and mouse (Eppig

et al. 2014). These knowledge bases are all generated through a combination of

bioinformatics (e.g. identifying a gene function by sequence homology) and manual

curation (e.g. assigning a pathway name to a set of gene products). A complimentary

approach is to build a knowledge base around a mathematical model of an organism,

and this approach has certain advantages.

Genome-scale metabolic models (GEMs) are mathematically-structured knowl-

edge bases. They contain descriptions of all the biochemical reactions, metabolites, and

genes in metabolism for a specific organism—a Biochemical, Genetic, and Genomic

(BiGG) knowledge base (Feist et al. 2009). Additionally, GEMs contain descriptions of

the biophysical constraints on metabolic systems (nutrient uptake, oxygen availability,

reaction stoichiometry, and reversibility) (Feist et al. 2009). GEMs can be used to

predict cellular phenotypes (Bordbar et al. 2014a), contextualize omics data (Lewis,

Nagarajan, and Palsson 2012; Lewis and Abdel-Haleem 2013; Hyduke, Lewis, and

Palsson 2013), design cell factories (King et al. 2015b; Machado and Herrgård 2015),
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and understand evolutionary trajectories (McCloskey, Palsson, and Feist 2013). A

further advantage of mathematical structure is that the accuracy of GEMs increases

continuously through comparison with experimental data (Reed et al. 2006a).

GEMs have not generally been available through a centralized resource with

reliable standards. A workflow for building high-quality GEMs has been described

(Thiele and Palsson 2010), but this process is complex and the quality of published

GEMs is highly variable (Monk, Nogales, and Palsson 2014). A number of challenges

still exist in the reconstruction process. The workflow recommends that metabolites

be linked against existing databases (Thiele and Palsson 2010), but this is not a formal

requirement in the models. Visualization of GEMs has been an important feature

since the first models were reconstructed, but accessible tools for visualizing GEMs

have also been lacking. These challenges have been addressed in the past through

unwritten “best practices” in individual labs, but they represent a general challenge

when models from different labs are to be collected or compared.

The first BiGG knowledge base was published in 2010, and it addressed some

of these challenges for a specific set of 10 GEMs generated at the Systems Biology

Research Group at the University of California, San Diego (Schellenberger et al.

2010). With BiGG, reaction identifiers, metabolite identifiers, and pathway maps were

formalized in a database, using the software package SimPheny (Genomatica, San

Diego CA), and shared on a public website. In BiGG, users could export models in

the SBML format (Hucka et al. 2003), visualize metabolic pathways, and search the

database. BiGG was a widely-used community resource that was incorporated into

other applications (Ganter et al. 2013; Wishart et al. 2013; Gavai et al. 2015; Kumar,

Suthers, and Maranas 2012), but it was never extended to be a general resource for
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storing large numbers of GEMs or for building new GEMs (Table 2.1. MetRxn is

another curated and interactive database of GEMs (Kumar, Suthers, and Maranas

2012), but it focuses more on identifying metabolite structures and performing model

comparisons.

Table 2.1: Comparing BiGG (2010) to BiGG Models (2015).

BiGG (2010) BiGG Models (2015)

10 models 77 models

Pathway visualization with SVG Pathway visualization with Escher

Export to SBML Level 2 Export to SBML Level 3, MAT, and JSON

Standardized identifiers for metabolites, reactions, and genes

Public, documented API

Gene identifiers linked to NCBI RefSeq genome annotation

BiGG Models is a completely redesigned knowledge base that currently includes

77 GEMs linked to 71 genome annotations. It includes a workflow for integrating

models built at different times so models can be improved and exported with the

latest standards. Model, reaction, metabolite, compartment, and gene identifiers are

standardized, and pathway maps are included using the Escher pathway visualization

library (King et al. 2015a). A website allows users to search, browse, and visualize the

networks. Models can be exported in various community standard formats (Dräger and

Palsson 2014). BiGG Models has a comprehensive application programming interface

(API) for accessing and building upon BiGG. With these features, BiGG Models is a

platform for integrating, standardizing, and sharing knowledge of metabolism.
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2.2 Knowledge base content

BiGGModels is built around a set of high-quality published GEMs. The original

models were collected from the supplemental data provided with their publications.

Only minimal changes to the models were made (changes are listed in Supplemental

Data S6), and the updated models were validated by comparing content and predictions

to the published models. These models were aligned in BiGG Models so that they share

a common list of reactions and metabolites (“universal” reactions and metabolites).

Thus, any curation of general attributes like metabolite formulae will apply to all

models in the knowledge base, and therefore also provide a standard for future genome-

scale metabolic network reconstructions. A total of 77 GEMs are included in BiGG

Models as of publication, and more will be added over time.

Genome annotations for the models were downloaded from the NCBI RefSeq

database (Pruitt et al. 2014). In total, 71 genome annotations were identified for the

GEMs in BiGG Models (a full list of models and genome annotations can be found in

Supplemental Data S1).

Pathway maps are included in BiGG Models using the Escher visualization

library (King et al. 2015a). Maps are currently available for the most widely used

models in the database, and more maps are under construction. External database links

for metabolites and genes have been included in the database. The external databases

include KEGG (Kanehisa et al. 2014), MetaCyc (Caspi et al. 2014), Reactome (Croft

et al. 2014), HMDB (Wishart et al. 2013), RCSB PDB (Rose et al. 2015), Model

SEED (Henry et al. 2010), and Entrez Gene (Brown et al. 2014). Finally, compartment

names are often missing from publicly available GEMs, so a list of compartment names

was collected in BiGG Models (Supplemental Data S3).
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BiGG Models integrates these models, genome annotations, pathway maps,

and additional data in order to provide a set of gold-standard models and a knowledge

base of shared biological components (Fig. 2.1). This knowledge base can then

be used for analyzing omics data related to reactions (fluxomics), genes (genomics,

transcriptomics, proteomics), and metabolites (metabolomics). Recent work has

extended GEMs to encompass gene expression (King et al. 2015b; O’Brien and Palsson

2015), and eventually these ME-models can be included in BiGG, where they can

serve as a framework for analyzing protein-associated datasets (proteomics).

Proteomics

Genome-scale models (x77)

BiGG ModelsExternal database links

Pathway visualizations

Genome annotations (x71)

FluxomicsTranscriptomics

Third-party applications
Metabolomics

4,040 BiGG metabolites
11,459 BiGG reactions

BiGG API

Figure 2.1: BiGG Models content. BiGG Models is built around a collection of
77 GEMs. The GEMs are integrated into a single database with shared reaction and
metabolite identifiers. This core database is enriched with external database links, Escher
pathway maps (King et al. 2015a), and genome annotations. As a result, BiGG Models is
a resource that can be used to analyze and contextualize many omics data types.
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2.3 Getting started with BiGG Models

2.3.1 BiGG website

BiGG Models has a user-friendly website (http://bigg.ucsd.edu) for browsing,

searching, visualizing, and downloading content. The homepage for BiGG Models

includes a search bar for finding models, reactions, metabolites, and genes for a search

term (Fig. 2.2). It also includes links to lists of all the models, universal metabolites,

and universal reactions in the knowledge base.

http://bigg.ucsd.edu
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Figure 2.2: The BiGG Models homepage. The central text box allows users to search
for pages in BiGG Models, including models and their reactions, metabolites, and genes.
Convenient links to the most popular pages about models, metabolites, and reactions can
be found below the search box. General information about BiGG Models can be found by
clicking About at the top of the page.

The page for a BiGG model provides an overview of the model and options

for downloading the model in community standard formats. The model page also

provides a link to the corresponding genome annotation. Reactions and metabolites

can be viewed on model-specific pages and universal pages, reflecting the organization

of the knowledge base. Model-specific reaction pages include the stoichiometry of the
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reaction, the reaction bounds within the GEM, and the gene-reaction rule for the

reaction with links to the related genes. Metabolite pages show the molecular formula

for the metabolite and provide external database links. Pages for each gene provide

the position of the gene in the chromosome and a link to a page for the genome that

contains the chromosome.

The website also includes pathway visualization, advanced search, and docu-

mentation of the web API. Model, reaction, and metabolite pages that have associated

pathway visualizations include an embedded, interactive pathway map viewer powered

by Escher (an example can be seen on the page http://bigg.ucsd.edu/models/e_coli_

core/reactions/GAPD, Fig. 2.2). An Advanced search page gives users the option

to search for metabolites by external identifier (e.g. KEGG ID) and to find BiGG

pages for a specific model. And the Web API page has information and examples

for using the web API.

2.3.2 Using BiGG Models for COBRA modeling

The GEMs in BiGG Models are can be used for modeling metabolism, inter-

preting omics data, visualizing metabolic phenotypes, and more (Lewis, Nagarajan,

and Palsson 2012; Lewis and Abdel-Haleem 2013; King et al. 2015a). BiGG Models

makes the models more accessible to users with a variety of options for browsing and

downloading them. The GEMs in BiGG Models can be analyzed using the many

available Constraint-Based Reconstruction and Analysis (COBRA) methods (Bordbar

et al. 2014a; Lewis, Nagarajan, and Palsson 2012; Ebrahim et al. 2013) or any software

that reads SBML.

To use a model for COBRA analysis, first download the model in the appropriate

http://bigg.ucsd.edu/models/e_coli_core/reactions/GAPD
http://bigg.ucsd.edu/models/e_coli_core/reactions/GAPD


20

format. The most general and most highly annotated format is SBML (SBML Level 3

with FBC), which includes all the content of the model plus the external database links,

compartment names, and license information. This is the preferred format for analysis

in COBRApy (Ebrahim et al. 2013) and the 280+ existing tools can read SBML files

(http://sbml.org/SBML_Software_Guide). Models are available in MATLAB MAT

format for analysis with the MATLAB COBRA toolbox (Schellenberger et al. 2011)

and the the JavaScript Object Notation (JSON) format for building visualizations

with Escher (King et al. 2015a). With the BiGG Models API, software tools can also

access the complete contents of these models programmatically.

2.3.3 Using BiGG Models for building GEMs

BiGG Models provides a set of identifiers and metabolic components that can be

used for new models, as well as a set of standards for defining new IDs (Supplemental

Data S4). The BiGG Models API can be used to directly access these identifiers using

tools developed for building models.

Using BiGG for new reconstructions provides a number of benefits. Using BiGG

IDs in a new model means that the model can easily be compared to the set of existing

models that already in this knowledge base. BiGG Models, COBRApy (Ebrahim et al.

2013), and Escher (King et al. 2015a) can be deployed in other research labs, and using

BiGG Models as a guide for new reconstructions will mean that the new reconstruction

is compatible with these tools. Specifically, the Escher maps in BiGG Models can

be adapted to new organisms if the new models utilize the same identifiers (see the

Escher documentation for more details at https://escher.readthedocs.org). Finally,

BiGG Models can be extended to include models built in other research groups, as

http://sbml.org/SBML_Software_Guide
https://escher.readthedocs.org
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long as they conform to the standards set out with BiGG Models.

2.3.4 Accessing the API

BiGG Models includes a fully featured web API (Fig. 2.3). The API can be

accessed from any programming language that supports Hypertext Transfer Protocol

(HTTP) requests. Thus, BiGG can be used as a service from other applications; for

example, a metabolic modeling toolkit could provide direct access to BiGG models

via the BiGG API. The web API returns JSON formatted data. In the case of an

error, an appropriate HTTP error code is returned. The full documentation of the

API is provided on the Web API page of the BiGG website.

BiGG Models
http://bigg.ucsd.edu

Third-party applications and scripts

Data-intensive applications

Scientists

BiGG Website API
Version 2.0

Relational database

Figure 2.3: Accessing BiGG. BiGG Models has a user-friendly website for browsing and
searching the knowledge base. The knowledge base can also be accessed programmatically
using the web API. For more data-intensive applications, it is possible to run a local version
of the BiGG database.

As an example, a list of the models in BiGG Models can be retrieved with the
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following HTTP request:
GET http :// bigg.ucsd.edu/api/v2/models HTTP /1.1

This can be accomplished by visiting http://bigg.ucsd.edu/api/v2/models in a

web browser. Many programming languages provide functions for accessing resources

on the web. For example, in Python 2.7, the following script will load the data and

decode the JSON formatted results:
import urllib2
import json
# Run the HTTP request
response = urllib2.urlopen("http :// bigg.ucsd.edu/api/v2/

models")
# Should return the success code 200
assert response.code == 200
# decode the body of the response , and parse the resulting

JSON
models = json.loads(response.read().decode("utf8"))
# print number of models
print models["results_count"]

The specific models can then be accessed with follow-up requests. For example,

an overview of the first model with BiGG ID e_coli_core can be accessed with a

request to the URL http://bigg.ucsd.edu/api/v2/models/e_coli_core, and the full

model can be downloaded with a request to the URL http://bigg.ucsd.edu/api/v2/

models/e_coli_core/download.

With these tools in hand, developers can use the BiGG API to access any content

in the knowledge base from analysis scripts, modeling tools, and web applications.

http://bigg.ucsd.edu/api/v2/models
http://bigg.ucsd.edu/api/v2/models/e_coli_core
http://bigg.ucsd.edu/api/v2/models/e_coli_core/download
http://bigg.ucsd.edu/api/v2/models/e_coli_core/download
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2.4 Implementation of standards

2.4.1 Loading genomes and GEMs

A workflow was developed for integrating models and genome annotations into

a single, coherent database. This workflow reconciles any conflicting information,

links genes from GEMs to genes in the genome annotations wherever possible, and

constructs a single database that serves as the basis for BiGG Models. The workflow

proceeds as follows. First, a database is initialized in PostgreSQL (PostgreSQL Global

Development Group), a high-performance, open-source, relational database. A total

of 24 tables are necessary to store the content in BiGG Models (Fig. S2).

For each genome annotation, genes are loaded into the database with all

available identifiers and external database references (Fig. S5). Genome annotations

are used to fill the genome, chromosome, genome region, and gene tables (Fig. S2).

A single genome can have multiple chromosomes, and genes in each chromosome are

loaded from individual files in the Genbank file format (Benson et al. 2014). The

positions of the genes are recorded, and the organism and taxon ID are stored for

each genome annotation.

Next, GEMs are loaded into database by reaction, metabolite, and gene

(Fig. S5). Efforts are made to separate general information about biological components

from model-specific information. The information about reactions and metabolites

that is not specific to an organism or a model is considered universal, and BiGG Models

represents this information in database tables for universal reactions and universal

metabolites. Model-specific information is stored in database tables for model-specific

reactions and model-specific metabolites (Fig. S5). Analogously, information about
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genes is separated into the annotation-specific gene table in the database and the

model-specific gene table. Multiple GEMs may reference a genome annotation; thus,

annotation-specific genes can be shared between models.

A further separation is made between metabolites (called components in the

database tables), which can exist in any cellular compartment, and compartmentalized

metabolites, which have a specific compartment and participate in reactions.

All the data in BiGG Models that are not found in the GEMs and the genome

annotations are arranged in six preference files (Supplemental Data S3).

2.4.2 BiGG identifiers

BiGG Models uses a set of identifiers—BiGG IDs—that are unique, well-defined,

human-readable, and memorable (Table 1). BiGG IDs have been used to build GEMs

in many research groups, and they were available with BiGG 1, but problems have

appeared with the quality and consistency of BiGG IDs. With BiGG Models, the goal

is to provide a single source of correct BiGG IDs that are easy to discover and for

other applications.

Now, BiGG IDs follow a simple, clear specification (Supplemental data S4).

Reactions, metabolites, and genes are assigned unique alphanumeric identifiers, based

on the IDs already found in most published GEMs (Fig. 2.4). Metabolites in com-

partments include a one or two letter compartment code (lowercase letters), and

tissue-specific metabolites have a one or two letter tissue code (capital letters). BiGG

IDs are now available in the MIRIAM registry with URIs from the identifiers.org

service (Juty, Le Nover̀e, and Laibe 2012) (Table 2.2).
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(sll1102 and sll1103and sll1104)

(sll1102 and sll1103 and sll1104)

Published GEM:

BiGG 2:

Require valid Boolean logic for gene reaction rules
- Fixed 60 gene reaction rules

E.g. UNKNOWN from model iMM904

Identified 1211 genes that do not map to genome annotations

_g3p_c g3p(c) g3p[c]

metabolite g3p, compartment c

Published GEM:

BiGG 2:

Published GEM:

BiGG 2:

ACPS1
ACPS1

coa_c + apoACP_c → ACP_c + pap_c + h_c
coa_c + apoACP_c → ACP_c + pap_c

ACPS1
ACPS1_1

coa_c + apoACP_c → ACP_c + pap_c + h_c
coa_c + apoACP_c → ACP_c + pap_c

A B

C

D

BiGG IDs follow a specification
- No special characters (e.g. [ ] ( ) -)
- Metabolite compartments defined in the database

Reactions must be unique
- Fixed 251 conflicting reaction BiGG IDs

Figure 2.4: Standardizing GEMs. In order to standardize the GEMs in BiGG Models,
a number of changes had to be made to the models. (A) First, metabolite and reaction
IDs were standardized by removing extraneous characters and using a single format for
referring to compartments. (B) In cases where the same reaction ID referred to different
reactions, one of the reactions received a new identifier. (C) Invalid gene reaction rules
were manually corrected. (D) All the genes that did not map to a genome annotation were
recorded for future updates to both the GEMs and the genome annotations.

For compatibility with existing tools that do not allow numbers at the beginning

of identifiers (e.g. SBML), a BiGG ID can be prefixed with R_ for reactions and M_

for metabolites. Unprefixed BiGG IDs are used on the BiGG website, in Escher, and

in COBRApy, and prefixed BiGG IDs are automatically generated in exported SBML

files.

Genes in BiGG Models have identifiers that are unique to a specific genome

annotation. Thus, genes are referenced by their locus IDs in the genome annotation.

Genes that do not map to a genome annotation retain the ID from the original model

file. Gene BiGG IDs are prefixed with G_ in exported SBML files, and unprefixed

gene IDs are used in BiGG Models, Escher, and COBRApy.
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Table 2.2: BiGG Identifiers. BiGG Models contains unique identifiers for models,
reactions, metabolites, compartments, and genes. With the exception of genes, these
elements are registered with MIRIAM.

Type Example BiGG ID MIRIAM URI

Model Latest E. coli model
(Orth et al. 2011)

iJO1366 http://identifiers.org/bigg.model/iJO1366

Reaction Glyceraldehyde-3-
phosphate dehydroge-
nase

GAPD http://identifiers.org/bigg.reaction/GAPD

Metabolite Glyceraldehyde-3-
phosphate

g3p http://identifiers.org/bigg.metabolite/g3p

Compartment Cytsosol c http://identifiers.org/bigg.compartment/c

Gene E. coli gapA b1779

2.4.3 ModelPolisher

BiGG Models supports the latest SBML standard Level 3 Version 1 with FBC

version 2 (Rodriguez et al. 2015). To generate compliant and highly-annotated files, the

ModelPolisher application was developed (https://github.com/SBRG/ModelPolisher).

SBML models are first generated using COBRApy (Ebrahim et al. 2013), then

ModelPolisher inserts MIRIAM annotations and adds specific terms from the Systems

Biology Ontology (SBO) (Courtot et al. 2011) to individual model components in

order to better point out their role. The SBO is a collection of controlled vocabulary

terms with clear definitions and references. For the annotation of BiGG models,

the following new terms have been added to SBO: flux bound (SBO 625, SBO 626),

exchange reaction (SBO 627), demand reaction (SBO 628), biomass reaction (SBO

629), and ATP maintenance (SBO 630). The resulting SBML files are available on

the model pages of the BiGG Models website, and an overview of the model content

can be seen by loading a downloaded SBML file in a web browser.

http://identifiers.org/bigg.model/iJO1366
http://identifiers.org/bigg.reaction/GAPD
http://identifiers.org/bigg.metabolite/g3p
http://identifiers.org/bigg.compartment/c
https://github.com/SBRG/ModelPolisher
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2.4.4 Design and implementation

BiGG Models is a modular application composed of a relational database,

a web API, and a website (Fig. 2.3). It is primarily written in Python 2.7, SQL,

JavaScript, HTML, and CSS.

BiGG Models is built with PostgreSQL 9.4.4 (PostgreSQL Global Development

Group, http://www.postgresql.org/). The SQLAlchemy (http://www.sqlalchemy.org/)

object relational mapper (ORM) is used to load and query from the database. The

website and API servers are implemented with Tornado (http://www.tornadoweb.

org/en/stable/). The website retrieves data through the same web API provided to

users; thus, all the content in the website is available through the API. A number

of other libraries were essential for building BiGG Models, including Jinja2 (http:

//jinja.pocoo.org/), JQuery (https://jquery.com), and TableSorter (https://mottie.

github.io/tablesorter/docs/).

2.5 Conclusion

BiGG Models is a fully redesigned platform for integrating, standardizing, and

sharing GEMs of metabolism. The knowledge base currently integrates the metabolic

content from 77 GEMs and 71 genome annotations, and users can search and explore

the knowledge base with the BiGG website. A web API is available for building new

applications that extend the capabilities of BiGG. The result of these features is a

knowledge base that can be used to understand a huge variety of experimental data.

BiGG is free for academic and non-profit use so that the community can easily

use and extend the knowledge base. The BiGG Models source code is available on

http://www.postgresql.org/
http://www.sqlalchemy.org/
http://www.tornadoweb.org/en/stable/
http://www.tornadoweb.org/en/stable/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
https://jquery.com
https://mottie.github.io/tablesorter/docs/
https://mottie.github.io/tablesorter/docs/
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GitHub (https://github.com/SBRG/bigg_models). If a user finds a model error or a

website bug using the BiGG Models website, it is possible to submit a report to the

maintainers so this issue can be resolved. Each page for a reaction, gene, metabolite,

or model includes a form to submit such a report, along with instructions. Website

bugs can be fixed with future software releases. Model issues, in contrast, cannot be

immediately fixed because BiGG is meant to present GEMs that are mathematically

equivalent to the published models (though identifiers have been modified). Therefore,

model issues will be collected for future updates to the GEM for that organism.

BiGG Models will continue to be developed to meet the needs of experimental

and computational biologists. New visualization tools and model analysis features

are in the works. The next generation of models can eventually be included in BiGG;

these models incorporate expression networks, increased spatial resolution, regulation,

and protein structures into GEMs (Bordbar et al. 2014a; King et al. 2015b; O’Brien

and Palsson 2015). Plans for future BiGG releases will be driven by ongoing feedback

from the users of the BiGG Models knowledge base.

2.6 Availability and requirements

BiGG Models is freely available online for academic and non-profit use at

http://bigg.ucsd.edu, and a JavaScript-enabled browser is required to access certain

features. The requirements for viewing Escher maps can be found on the Escher

website (https://escher.github.io). Installation of an independent system requires

Python 2.7 and PostgreSQL 9.4.4 or later.

Chapter 2 is a reprint of a published manuscript: King, Z. A., Lu, J., Dräger,

A., Miller, P., Federowicz, S., Lerman, J. A., Ebrahim, A., Palsson, B. O., and

https://github.com/SBRG/bigg_models
http://bigg.ucsd.edu
https://escher.github.io
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Lewis, N. E. (2016). “BiGG Models: A platform for integrating, standardizing and

sharing genome-scale models”. In: Nucleic Acids Res. 44.D1, pp. D515–22. doi:

10.1093/nar/gkv1049. The dissertation author was the primary author of the paper

and was responsible for the research.

http://dx.doi.org/10.1093/nar/gkv1049


Chapter 3

Escher: A web application for

building, sharing, and embedding

data-rich visualizations of

biological pathways

3.1 Introduction

The behavior of an organism emerges from the complex interactions between

genes, proteins, reactions, and metabolites. With next-generation sequencing and

various “omics” technologies, it is now possible to rapidly and comprehensively measure

these components and interactions. These technologies have transformed the scientific

process over the past decade. Data acquisition is substantially easier, but data analysis

is increasingly becoming the primary bottleneck to discovery. To address the analysis

bottleneck, there has been a demand for data visualization tools to complement

30
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statistical and modeling methods.

Biological visualizations often fall into categories characterized by biological

scale, and the style of a visualization reflects the type of information at that scale.

Three-dimensional objects are often used for representing protein structures (Arnold

et al. 2006; Herráez 2006), one-dimensional tracks for genome sequences (Skinner et al.

2009; Karolchik et al. 2014), force-directed graphs for interaction networks (Smoot

et al. 2011), trees for phylogenetic relationships (Letunic and Bork 2007; Huson

et al. 2007). And, finally, two-dimensional pathway maps have long been a popular

visual representation of metabolic pathways and other biological pathways. For each

type of visualization, data can be associated with the biological components in the

visualization. Visualizing data in this way contextualizes and enriches the dataset

for scientists. Data-rich visualizations have been extremely valuable for viewing,

interpreting, and communicating data.

A tool for visualizing pathway maps must satisfy a set of core features. The

tool must (1) visually represent reactions and pathways clearly and in a way that is

biochemically correct, (2) allow users to navigate and search through the visualization,

(3) allow users to design and customize pathway maps, (4) allow users to represent

diverse data types within the map using visual cues like size and color, (5) provide

import and export features so that maps can be stored, shared, and exported to other

tools, and (6) provide an application program interface (API) so the tool can be used

within data analysis pipelines.

The existing tools that satisfy these core features are all desktop applications.

Briefly, these tools include Omix (Droste, Nöh, and Wiechert 2013), Cytoscape (Smoot

et al. 2011), CellDesigner (Funahashi et al. 2008), Vanted (Rohn et al. 2012) with the



32

SBGN-ED add-on (Czauderna, Klukas, and Schreiber 2010), VisAnt (Hu et al. 2013)

and PathVisio (Kutmon et al. 2015). Desktop applications have many advantages

over web applications; including speed, stability, and integration with the operating

system, and these merits have made desktop applications more popular.

The advantages of web applications include rapid deployment (no need to

download an application or browser plug-in), greater cross-platform compatibility (e.g.

mobile devices), flexible sharing, collaborating, and embedding features, as well as easy

application development. Recently, a critical mass of performance enhancements and

new libraries has made web tools comparable to desktop tools for many applications.

A number of web-based tools exist for visualizing pathway maps: ArrayXPath

(Chung et al. 2004), Pathway Projector (Kono et al. 2009), iPath2.0 (Yamada et al.

2011), WikiPathways (Kelder et al. 2012), Biographer (Krause et al. 2013), and the

BioCyc pathway viewer (Latendresse and Karp 2011). However, none of these satisfy

all the core features for a pathway map visualization tool.

One of the key differentiating features of a web application is that modern

web browsers come with a built-in software development platform (often called the

Developer Tools). This development platform includes a JavaScript shell for directly

interacting with the web page runtime and a tool for inspecting and modifying every

element in the web page document object model (DOM). Thus, any user can locally

modify any element on the page at any time. If a web application is built on the DOM,

then users can rapidly prototype new features and build extensions to the application

while it is running. (A comparable feature is the extensibility of the EMACS editor,

which can be extended while the editor is running (Stallman 1981). On the strength

of this feature, EMACS has remained popular for 30 years.) To utilize this powerful
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feature, one must use a visualization library that is based on the DOM, the most

popular of which is Data-Driven Documents (D3) (Bostock, Ogievetsky, and Heer

2011).

Escher is a web application for visualizing pathway maps, and it is designed to

be a fully featured pathway visualization tool that also harnesses all the advantages

of the web. Escher has three key features that distinguish it from all existing pathway

visualization tools, including the popular desktop applications. First, Escher makes

building pathway maps fast and easy, using the information in datasets and genome-

scale models to suggest pathways to the user—with this, pathway map design can

be semi-automated. Second, Escher connects genes and enzymes to the reactions

they catalyze, so that genomic data can be visualized in the context of the reaction

network. We show how Escher can be used to visualize reaction data (metabolic fluxes),

metabolite data (metabolomics), and genomic data (transcriptomic data), bridging the

gap between these data types. Third, Escher uses the advantages of web technologies

so that pathway maps can be adapted, extended, shared, and embedded. We illustrate

the export and development features of Escher, including native support for scalable

vector graphics (SVG) export, a downloadable tool for converting Escher maps to

common standards for representing layouts, and application program interfaces (APIs)

for developing new applications that extend the functionality of Escher.
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3.2 Results

3.2.1 Building pathway maps

To build a pathway map, one first needs a source for the names, stoichiometries,

and associated genes for each biochemical reaction in an organism. This information

is provided by a constraint-based reconstruction and analysis (COBRA) model, a

collection of all the reactions, metabolites, and genes known to exist in an organism

(also called a genome-scale model, GEM, or constraint-based model, CBM) (Bordbar et

al. 2014a). While COBRA models have generally focused on metabolism, the COBRA

modeling approach can be applied to any biochemical reaction network (Bordbar

et al. 2014a), so Escher could be used to visualize pathways like gene expression and

membrane translocation, which are now being incorporated into COBRA models

(King et al. 2015b; Liu et al. 2014; O’Brien et al. 2013).

The Escher interface is centered around a canvas for the pathway map (Fig. 3.1A).

In the Escher Builder, a number of editing modes are available in the Edit menu; these

include tools for navigating the map (Pan mode), selecting and modifying elements

(Select mode), adding reactions (Add reaction mode), rotating the current selection

(Rotate mode), and adding and editing text annotations (Text mode).
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Follow pathway suggestions 

for semi-automated 
pathway map design

Figure 3.1: The Escher interface. A) The application includes a set of menus with a
link to the documentation, a button bar for accessing common features, and a menu for
jumping to maps that were built with the same model. B) To build pathway maps, enter
the Add reaction mode using the Edit menu or the button bar. Click on the canvas or an
existing metabolite to see a search menu. Reactions can be searched by reaction ID, by
metabolite, and by gene. When a gene dataset or reaction dataset is loaded, suggestions
appear for the reactions with the largest values in the dataset.

In Add reaction mode, a new pathway can be added to the canvas. Clicking on
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the canvas or an existing metabolite opens the new reaction search box. The search

box can find reactions with a number of queries: reaction identifiers (IDs) and display

names, metabolite IDs and display names, and gene IDs and names (Fig. 3.1B). (IDs

and names are based on those in the COBRA model.) If a reaction or gene dataset is

loaded, then Escher provides suggestions of the next reaction to build, sorted by the

data value for that reaction (Fig. 3.1B).

With this set of suggestions, a user can quickly build an Escher map based on

previous knowledge of the organism or using the suggestion of a dataset. Data-driven

map layout is also extremely useful for understanding an organism at the genome-

scale—guided by the data, it is possible to find all the elements of a network that

are, for example, highly upregulated without any bias toward well known pathways.

To add the top suggested reaction, a user can simply press the Enter key. Thus, if a

pathway is linear or has high values in a given dataset, then pressing Enter repeatedly

will draw a linear pathway that is based entirely on the information in the data and

the COBRA model. This process can be repeated to build perpendicular branches

from metabolites in the pathway.

The Escher interface includes a general menu, a menu bar for accessing common

functions, a tool for switching between maps, and a canvas containing the interactive

pathway map (Fig. 3.1A). The Map and Model menus contain import and export

functions for maps and COBRA models. The Data menu contains the data loading

functions, and the View menu contains zoom options and access to the Settings

page.
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3.2.2 Visualizing data

Three types of data can be visualized on an Escher map: reaction data,

metabolite data, and gene data. And Escher supports visualizing a single dataset, or

visualizing the comparison of two datasets using a number of comparison functions (log,

log2, and difference). The Settings page includes a detailed set of options for coloring

and sizing elements based on statistical features of a dataset (min, max, quartiles,

mean). Here, examples are provided for each data type, and the files required for

recreating the visualizations are in the supplementary data.

Reaction data. To demonstrate the visualization of reaction fluxes, an in sil-

ico simulation of anaerobic growth was performed in the Escherichia coli COBRA

model iJO1366 using parsimonious flux balance analysis (pFBA) (Lewis et al. 2010a;

Orth et al. 2011). The Escher map of iJO1366 central metabolism was loaded

(iJO1366.Central Metabolism) and the dataset (S1 Data) was loaded using the

Data>Load reaction data function. (Datasets can be JavaScript Object Notation

(JSON) or comma separated values (CSV) files, as described in the documentation.)

Two settings were changed for this visualization: The absolute value of reaction data

was visualized so that negative fluxes appear as large values, and the secondary nodes

were hidden to simplify the visualization.

The resulting figure shows reaction fluxes for fermentation pathways (Fig. 3.2A).

It was downloaded as a SVG image with the command Map>Export as SVG, and

the text labels of the high flux reactions were made larger for the figure.
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Figure 3.2: Data visualization. A) The results of an in silico flux simulation visualized
on the reactions. B) Metabolomics data for E. coli aerobic growth visualized on the
metabolites. C) RNA-Seq data showing the shift from aerobic to anaerobic conditions in
E. coli. Green represents reactions downregulated in anaerobic growth and red represents
gene upregulated in anaerobic growth, based on the log2 of the fold change.

Metabolite data. Metabolite concentrations are shown from a dataset recently

reported by our research group (McCloskey et al. 2013), which were organized in a

CSV file with metabolite BiGG IDs as keys (S2 Data). The example figure shows
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aerobic metabolite concentrations on a modified map of E. coli central metabolism

(S3 Data). To better identify metabolite concentration differences, the metabolite size

was changed on the Settings page, and the secondary metabolites were hidden.

The resulting figure provides a high level view of the most abundant metabolites

in the network aerobic growth of E. coli (Fig. 3.2B). It was downloaded as a SVG

image with the command Map>Export as SVG, and the text annotations were

made larger for the figure.

Gene data. To demonstrate the use of gene data on an Escher map, transcript

abundances for aerobic and anaerobic growth of E. coli were calculated using RNA-

Seq datasets from a recent publication (Bordbar et al. 2014b). The datasets were

downloaded from the Gene Expression Omnibus (GEO) repository (Edgar, Domrachev,

and Lash 2002) (accession number GSE48324), and fragments per kilobase of exon

per million fragments mapped (FPKMs) were calculated using the Cufflinks functions

cuffquant and cuffnorm (Trapnell et al. 2012), with appropriate parameters for the

library type of the published data. These data were then collected, with locus tags as

gene identifiers, in a single CSV file (D4 Data).

To connect genomic data with the reactions on an Escher map, Escher must

consider which gene products are responsible for catalyzing each biochemical reaction.

This association can be defined using Boolean gene reaction rules (also called gene-

protein-reaction association (GPRs)) (Reed et al. 2003). When either of two enzymes

can catalyze a reaction—as with isozymes—then these genes are connected with an

OR rule. Escher adds the values of two genes connected with an OR rule. When

two enzymes are required together for catalysis—as in an enzyme complex—these are

connected with an AND rule. Escher can take the mean or the minimum of the two
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values connected with an OR rule; this option is selected on the Settings page. For

a comparison of two datasets, the gene reaction rules are evaluated for each dataset

separately, then a comparison is made between the two resulting values (Fig. 3.2C).

The resulting figure shows the shift from aerobic to anaerobic conditions, where

green reactions are downregulated anaerobically and red reactions are upregulated

anaerobically (Fig. 3.2C). Escher shows the log2 of fold change between the conditions.

However, Escher cannot yet display statistical significance for the datasets, so it should

be paired with statistical tools (e.g. cuffdiff (Trapnell et al. 2012)).

3.3 Design and Implementation

JavaScript. Escher is a web application written primarily in JavaScript, using

the libraries D3 (Bostock, Ogievetsky, and Heer 2011), and, optionally, JQuery

(http://jquery.com), and Bootstrap (http://getbootstrap.com). The Escher JavaScript

code can be compiled into a single JavaScript file, and a JavaScript API is available

for interacting with and extending an Escher visualization (Fig. 3.3A). All layout,

editing, import, and export features of Escher are included in the JavaScript library,

and the default visual styles are defined in two cascading style sheets (CSS) files. The

Escher website is built using the JavaScript API, and other web applications can be

built on top of this library.

http://jquery.com
http://getbootstrap.com
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Figure 3.3: The organization of the Escher project. A) Escher source code can be
compiled to a single JavaScript file (either minified or not minified) and two style sheets.
The Python package is used to serve the Escher web application in various ways. APIs exist
for both JavaScript and Python. B) Escher maps are generated from the BiGG database
or built by users. COBRA models are generated using COBRApy. C) The Escher web
application can be viewed on the Escher website, or, for local access, using various methods
in the Python package.

Python. A Python package for Escher is also available (Fig. 3.3A), and this package

includes a number of extra features: Access to Escher maps from Python terminals and

IPython Notebooks, offline access to Escher, a local server with map and model caching,

and a Python API for developing applications with these additional features. Accessing

maps from Python and IPython Notebook allows Escher to be integrated directly with

data analysis and modeling workflows. For example, within an IPython Notebook, the

results of an in silico flux simulation can be applied to an Escher map, and the map

will be embedded and shared with the notebook. Escher even supports NBViewer for
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sharing static IPython Notebooks as websites (http://nbviewer.ipython.org).

Map and model database. Escher includes a database of pathway maps and

genome-scale models. Pathway maps are currently available for a number of organisms,

and new pathway maps will be continually added to the database from our group.

The maps in the BiGG database are being converted to the new Escher format

(Schellenberger et al. 2010). We also accept contributions from the community, and

the method for submitting pathway maps is described in the documentation (S2 File).

JSON schema. Both Escher maps and COBRA models are stored as JavaScript

Object Notation (JSON) files. JSON is a useful, plain-text format for storing nested

data structures. For Escher maps, a JSON Schema has been defined (S1 File, see the

schema file escher/jsonschema/1-0-0), and the schema can be enforced using the

JSON Schema validators available in a number of languages (http://json-schema.org).

Thus, Escher maps conform to a well-defined specification that can be generated by

other tools and scripts.

Export. Escher represents biochemical reactions as transformations from a set of

reactants to a set of products, and each reaction can be assigned enzymes using a

Boolean gene reaction rule. Thus, Escher uses a well-defined representation of the

biochemical network, but the scope of the Escher notation is much more specific

than community standards such as Systems Biology Graphical Notation (SBGN)

(Kitano et al. 2005) and Systems Biology Markup Language (SBML) with the layout

extension (Hucka et al. 2003; Gauges et al. 2006; Dräger and Palsson 2014). Escher

can be exported to both formats using the EscherConverter application (Fig. 3.4).

http://nbviewer.ipython.org
http://json-schema.org
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EscherConverter is written in JavaTM, and it is available as a standalone executable

file (S3 File) that includes a graphical user interface with graph drawing capabilities

and a command-line interface. Files can be opened through drag and drop or the file

menu, and a history of up to 10 recent files is stored. Several user preferences allow

flexible customization of the file conversion. The conversion to SBML and SBGN-ML

(the XML implementation of SBGN) relies heavily on JSBML (Rodriguez et al. 2015)

and libSBGN (Iersel et al. 2012).
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Figure 3.4: The import and export types in Escher and the EscherConverter. A)
Escher can save to the Escher JSON file format or export to a SVG image. EscherConverter
can be used to generate files in the SBML and SBGN-ML formats. B) The EscherConverter
graphical user interface

Open-source development. Escher is hosted on GitHub, with a public bug

tracker and tools for community contribution to the codebase (https://github.com/

zakandrewking/escher). Documentation for Escher is available and was generated

using Sphinx and ReadTheDocs (https://escher.readthedocs.org). This documentation

https://github.com/zakandrewking/escher
https://github.com/zakandrewking/escher
https://escher.readthedocs.org
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includes a description of the Escher features and detailed information on the JavaScript

and Python APIs.

Integrating Escher with analysis workflows. The Escher Python package,

which is available from the Python Package Index (PyPI, https://pypi.python.org),

can be used to integrate Escher maps with data analysis and simulation workflows.

Using the available functions, datasets can be applied to Escher maps, and the resulting

maps can be saved as standalone web pages, saved as JSON or SVG, or exported

using the EscherConverter as a command line utility. The Python package works

directly with COBRA models using COBRApy (Ebrahim et al. 2013). It also includes

functions for modifying all of the Escher map settings, including the color and size

scales for all elements.

The Python package also includes a simple web server to run Escher locally.

The web server caches maps and models for offline use, and users can also add maps

to the cache directory so that they appear in the local web application. The following

commands will install the package, print the location of the local cache directory, and

run the Escher server:
# install escher
pip install escher
# print the cache directory
python -c "import␣escher;␣print␣escher.get_cache_dir ()"
# run the local server (available at http :// localhost

:7778)
python -m escher.server

Developing with Escher. Application programming interfaces (APIs) are available

for both JavaScript and Python to enable users to build, modify, and export maps

programmatically. The specific functions in the APIs are defined in the Escher

https://pypi.python.org
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Documentation. New web applications can be built on top of the basic Escher

functions by developing with the Escher JavaScript API. The Documentation provides

details on implementing a very simple web page with an embedded Escher map.

3.4 Availability and Future Directions

Escher version 1.1 is now available. Bug fixes and new pathway maps will

be released regularly, and a number of Escher applications are currently in progress.

Escher releases will follow the Semantic Versioning guidelines (http://semver.org)

so that application developers can rely on new versions of Escher to be backwards

compatible.

The Escher approach to web visualization. A major focus during development

of future Escher versions will be to generalize and improve the approach to web

visualization. As discussed in the Introduction, there are many types of biological

visualizations that contribute to our interpretation of “omics” datasets. Successful

user interface designs should be applicable to all of these visualization types, with

modifications for the specific needs of a tool. As web platforms become ubiquitous for

application development, it is important to consider what elements might be shared

across a suite of visualization tools. This would make development of new tools easier,

and improve interoperability between tools. For example, a genetic dataset in Escher

could link directly to a visualization of the dataset on a genome browser.

The BiGG database. Escher will be included in the next release of the BiGG

database (Schellenberger et al. 2010). The BiGG database is a repository for COBRA

http://semver.org
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models developed in the Systems Biology Research Group at the University of Cali-

fornia, San Diego. BiGG already includes static pathway maps for many models in

the database. Escher maps will be embedded in the web pages for models, reactions,

and metabolites so that users can quickly see the network context of a biological

component, and the maps will be available on both the BiGG and Escher websites.

A community effort. The Escher framework is highly amenable to improvements,

such as new visual features. Example improvements include compartment membranes,

representations of regulation and signaling such as those in the SBGN specification,

better statistical tools for analyzing and comparing various data types, more import

and export options, and direct integration of other visualizations (such as protein and

metabolite structures). Because Escher is an open-source project, contributions from

the community—bug fixes, use cases, code contributions, etc.—will be encouraged

and will be an important factor in making Escher a sustainable, long-term solution to

the challenges of visualizing biological pathways.

3.5 Availability and requirements

1. Project name: Escher

2. Project home page: https://escher.github.io

3. Project source: https://github.com/zakandrewking/escher

4. Open-source license: MIT license

5. Operating systems(s): Platform independent

https://escher.github.io
https://github.com/zakandrewking/escher
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6. Programming languages: JavaScript, Python, and Java

7. Other requirements: none

8. Any restrictions to use by non-academics: no limitations

Chapter 3 is a reprint of a published manuscript: King, Z. A., Dräger, A.,

Ebrahim, A., Sonnenschein, N., Lewis, N. E., and Palsson, B. O. (2015a). “Escher: A

Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of

Biological Pathways”. In: PLoS Comput. Biol. 11.8, e1004321. doi: 10.1371/journal.

pcbi.1004321. The dissertation author was the primary author of the paper and was

responsible for the research.

http://dx.doi.org/10.1371/journal.pcbi.1004321
http://dx.doi.org/10.1371/journal.pcbi.1004321


Chapter 4

Optimizing Cofactor Specificity of

Oxidoreductase Enzymes for the

Generation of Microbial

Production Strains—OptSwap

4.1 Introduction

In microorganisms, anabolism and catabolism are precisely controlled by regu-

lation of flux through metabolic enzymes. This regulation of anabolic and catabolic

activity is an important element of the adaptive system that allows a microorganism

to find the optimal phenotype for growth and reproduction in its environment. The

currency metabolites NAD(H) and NADP(H)—which carry and transfer reducing

equivalents—play unique roles in metabolism. The primary role of the reduced respira-

tory cofactor NADH is to transfer electrons to oxygen via the electron transport chain,
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generating the proton gradient that is used for oxidative phosphorylation of ADP

to ATP (Russell and Cook 1995; Sauer et al. 2004; Gottschalk 1986). Concurrently,

the reduced cofactor NADPH donates electrons to anabolic reactions and drives

biosynthetic pathways in the cell (Sauer et al. 2004; Gottschalk 1986). Despite the

chemical similarity between NAD(H) and NADP(H), many central dehydrogenase and

reductase enzymes in the cell preferentially catalyze reduction or oxidation of a specific

carrier (Kim et al. 2011; Bocanegra, Scrutton, and Perham 1993; Rodríguez-Arnedo

et al. 2005; Lunzer et al. 2005). Thus, the functional separation of these electron

carriers and the specificity of enzymes to one electron carrier allow the system to

direct resources to energy production or anabolism on a whole-cell scale.

Cellular control over the direction of reducing equivalents to NADH or NADPH

is facilitated both by the specificity and activity of dehydrogenase reactions and also

by the activity of transhydrogenase enzymes, which transfer reducing equivalents

between the two cofactors. Two transhydrogenases are encoded in the genome and

expressed in Escherichia coli. The soluble transhydrogenase encoded by the gene sthA

catalyzes the reaction

NAD+ + NADPH→ NADP+ + NADH

The membrane-bound transhydrogenase encoded by pntAB couples reduction of

NADP+ with inward proton translocation, catalyzing the reaction

NADP+ + NADH + H+
out ↔ NADPH + NAD+ + H+

in

It has been reported that 35–45% of the NADPH required for biosynthesis is generated
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by the transhydrogenase encoded by pntAB during aerobic batch growth on glucose

(Sauer et al. 2004). The large contribution of this transhydrogenase enzyme to

NADPH production reflects the importance of transhydrogenases for balancing cofactor

generation to meet the needs of the cellular environment (Sauer et al. 2004; Fuhrer

and Sauer 2009), so any strategy to modify cofactor production should consider the

role that transhydrogenases play in attempting to maintain homeostasis.

Oxidoreductase specificity for NAD(H) or NADP(H) is a central parameter in

determining the direction of cellular resources. Thus, strategies have been developed

to modulate the cofactor specificity of dehydrogenase enzymes in order to increase

production of desirable cellular products. Protein engineering has been used to switch

the carrier specificity of dehydrogenase enzymes by modifying the amino acid residues

of the nucleotide-phosphate binding site. In E. coli, the enzymes dihydrolipoadmide

dehydrogenase (a component of the pyruvate dehydrogenase complex and the 2-

oxoglutarate dehydrogenase complex) (Bocanegra, Scrutton, and Perham 1993; Guest

et al. 2003) and isopropylmalate dehydrogenase (Lunzer et al. 2005) were engineered to

prefer NADP(H) over NAD(H) as cofactor, and the enzyme isocitrate dehydrogenase

(Hurley, Chen, and Dean 1996) was engineered to prefer NAD(H) over NADP(H).

Furthermore, the cofactor specificity of isocitrate dehydrogenase was reversed by

protein engineering, and a competition study was performed in which the modified

strain outcompeted wild-type when grown on glucose (Zhu, Golding, and Dean 2005).

Despite these efforts, dehydrogenase enzymes modified by protein engineering have

not been exploited for metabolic engineering purposes.

An alternative strategy to engineer cofactor specificity is to replace native

dehydrogenase reactions in central carbon metabolism with heterologous dehydro-
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genases that have specificity for the opposite cofactor. These non-native enzymes

may be more efficient than enzymes produced using protein engineering because the

heterologous enzymes have benefited from evolutionary optimization. To this end,

the NAD(H)-dependent glyceraldehyde-3-phosphate dehydrogenase in E. coli was

replaced with the NADP(H)-dependent glyceraldehyde-3-phosphate from Clostridium

acetobutylicum to increase lycopene yield (Martínez et al. 2008). In Saccharomyces

cerevisiae, the native NAD(H)-dependent glyceraldehyde-3-phosphate dehydrogenase

was replaced with the NADP(H)-dependent enzyme from Kluyveromyces lactis to

increase fermentation of D-xylose to ethanol (Verho et al. 2003). Thus, researchers

have exploited homologous swaps to boost production phenotypes.

The scientific interest shown in modifying electron carrier availability and

the yield improvements seen in these modified strains suggest that a computational

approach to model oxidoreductase specificity modifications could guide future ex-

perimental work and ultimately affect metabolic engineering. Which oxidoreductase

specificity modifications are likely to have the greatest impact on the system? And

how can oxidoreductase specificity changes be paired with reaction knockouts most

effectively? These kinds of questions can be answered with an in silico modeling

procedure.

As a tool for investigating metabolic networks in silico, constraint-based re-

construction and analysis (COBRA) methods have been shown to accurately predict

bacterial behavior under many conditions (Feist and Palsson 2008; McCloskey, Palsson,

and Feist 2013). COBRA methods utilize genome-scale models (GEMs), which are

built by pairing the reconstructed metabolic network of an organism with governing

constraints based on physico-chemical conservations (i.e. known reaction stoichiome-
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tries), spatial limitations, and environmental parameters. Governing constraints are

formulated as a set of linear inequalities that enclose the solution space available to

metabolic fluxes (Price, Reed, and Palsson 2004). Solution spaces can be examined by

optimizing for objectives using flux balance analysis (FBA) and other linear program-

ming methods (Lewis, Nagarajan, and Palsson 2012). The optimal solutions predicted

by FBA can match in vivo behavior in cases where the metabolic network of the cell

is optimized for the same objective (e.g., growth). A powerful approach to achieve in

vivo optimality is adaptive laboratory evolution (ALE). ALE optimizes the genotype of

the organism, and the result is often a match between the observed growth phenotypes

and the model predictions (Ibarra, Edwards, and Palsson 2002; Fong et al. 2006; Fong

and Palsson 2004; Fong et al. 2005). Growth-coupled strains—strains where growth is

directly coupled to the production of a given molecule—have drawn attention because

these strains are predicted to produce high yields of the target molecule after ALE

selecting for cell growth (Feist et al. 2010). Computational algorithms that identify

growth-coupled designs have proliferated, including OptKnock (Burgard, Pharkya,

and Maranas 2003), RobustKnock (Tepper and Shlomi 2010), and OptGene (Patil

et al. 2005). (For a review, see Lewis, Nagarajan, and Palsson 2012.) Thus, in silico

COBRA methods coupled with ALE constitute a strategy for rational engineering of

high-yield production strains. A COBRA method for optimizing cofactor specificity

has not been reported. Previous investigations have explored the importance of

cofactor balancing for microbial production strains (Fuhrer and Sauer 2009; Verho

et al. 2003; Ghosh, Zhao, and Price 2011), but de novo strain design has not been

explored using non-biased cofactor optimization.

In this work, we present an in silico, constraint-based modeling technique—
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OptSwap—for generating strategies to optimize the production of native cellular

compounds by modifying the electron carrier specificity of oxidoreductase reactions

in the metabolic network. A mixed-integer linear programming (MILP) method is

presented that optimizes growth-coupled product yield by pairing oxidoreductase

specificity swaps with reaction knockouts. Utilizing OptSwap, we predict novel,

growth-coupled designs for the production of valuable compounds by E. coli, and we

compare these designs to solutions that are predicted utilizing reaction knockouts

alone.

4.2 Methods

4.2.1 Modeling and computational tools

The iJO1366 metabolic reconstruction of E. coli K-12 MG1655 was used for

all simulations in this work (Orth et al. 2011). As described previously, FHL (formate-

hydrogen lyase) and the oxidative stress reactions CAT (catalase), SPODM (cytosolic

superoxide dismutase), and SPODMpp (periplasmic superoxide dismutase) were

constrained to zero (Orth et al. 2011). The POR5 (pyruvate:ferredoxin oxidoreductase)

reaction was made irreversible, as supported by biochemical data (Blaschkowski et al.

1982).

Flux balance analysis (FBA) (Kauffman, Prakash, and Edwards 2003), parsi-

monious flux balance analysis (pFBA) (Lewis et al. 2010a), flux variability analysis

(FVA) (Mahadevan and Schilling 2003), and RobustKnock (Tepper and Shlomi 2010)

were implemented in MATLAB as described in the literature. All simulations were

performed using MATLAB (The MathWorks Inc., Natick, MA, USA) and the COBRA
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Toolbox (Becker et al. 2007) software packages with TOMLAB/CPLEX (Tomlab

Optimization Inc., San Diego, CA, USA) and Gurobi (Gurobi Optimization, Inc.,

Houston, TX, USA) LP/MILP solvers.

Substrate uptake rates for the solitary carbon substrates in each simulation

were constrained to a maximum uptake rate of 20 mmol gDW-1 h-1. For aerobic

simulations, the oxygen uptake rate was set to a maximum of 20 mmol gDW-1 h-1.

These values were chosen based on experimental observations of aerobic and anaerobic

growth of E. coli (Varma, Boesch, and Palsson 1993; Varma and Palsson 1994).

4.2.2 Model reduction and selection of reaction set for knock-

outs

The reaction set available for knockout was restricted based on a previously

reported method for model reduction and target reaction selection (Feist et al. 2010).

After setting the bounds for the primary carbon source and oxygen exchange, we

performed the following procedure, as reported (Feist et al. 2010): (1) To generate

a “reduced model,” reactions that could not be utilized under the conditions of the

simulation were removed, and upper and lower bounds of all reactions were set to

maximum and minimum obtainable values, as determined by FVA. (2) Non-gene

associated reactions, spontaneous reactions, transport reactions, reactions in peripheral

metabolic pathways, and reactions acting on high-carbon containing molecules were

removed from the knockout reaction set. (3) Sets of coupled reactions were identified

by examining the null space of the stoichiometric matrix (Palsson 2006), and only one

reaction in each correlated set was considered for knockout.

With glucose as the substrate, the reactions available for knockout during
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optimization numbered 217 anaerobically and 243 aerobically. With D-xylose as the

substrate, the reactions available for knockout numbered 216 anaerobically and 238

aerobically. (Supplementary Table S1; Supplementary Data are available online at http:

//dx.doi.org/10.1089/ind.2013.0005) Both the proton-translocating transhydrogenase

reaction THD2pp (pntAB) and the energy-independent transhydrogenase reaction

NADTRHD (sthA) were constrained to zero for the transhydrogenase-knockout design

∆pntAB ∆sthA.

4.2.3 Selection of reaction set for cofactor specificity swaps

The set of oxidoreductase reactions available for modification in the OptSwap

procedure was determined by finding the oxidoreductase reactions in the high-flux

backbone (Almaas et al. 2004). In the metabolic model iJO1366, all reactions that

utilize NAD(H) or NADP(H) as a cofactor were located. The reactions were sorted by

flux magnitude after pFBA optimization for flux through the biomass objective function

under conditions of aerobic and anaerobic growth on glucose and D-xylose minimal

media. The reactions with highest flux under each set of conditions were selected.

D-Lactate dehydrogenase, malic enzymes, and L-1,2-propanediol oxidoreductase were

added to the set based on interest in the literature (Zhang et al. 2007; Wang et al.

2011; Stols and Donnelly 1997). Malate dehydrogenase was removed from the pool of

oxidoreductase enzymes that can be swapped with OptSwap because the NADPH-

specific malate dehydrogenase allowed non-physiological loops to form in the flux

solutions. Under anaerobic conditions, NADH:oxidoreductase I was removed from

the pool of reactions during model reduction because the reaction cannot carry flux

during simulations of anaerobic growth. Thus, 22 oxidoreductase enzymes were chosen

http://dx.doi.org/10.1089/ind.2013.0005
http://dx.doi.org/10.1089/ind.2013.0005
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under aerobic conditions and 21 oxidoreductase enzymes under anaerobic conditions

(Table 4.1).

4.2.4 MILP formulation

OptSwap is a bi-level MILP problem based on RobustKnock (Tepper and

Shlomi 2010) with new constraints that enforce swaps of the cofactor specificity of

oxidoreductase reactions (Fig. 4.1). The following procedure was used to incorporate

these constraints into the RobustKnock problem. First, for each oxidoreductase

enzyme in the pool of the reactions that can be “swapped,” a reaction with opposite

specificity (either NAD(H) or NADP(H)) was added to the model. New Boolean

decision variables were utilized. The variables sd represent the on/off state of the

native oxidoreductase reactions, and td represent the on/off state of the “swapped”

reactions, where a value of 0 means the reaction is off and a value of 1 means the

reaction is on. D is the set of oxidoreductase reaction pairs (native and “swapped”).

sd ∈ {0, 1} ∀d ∈ D (4.1)

td ∈ {0, 1} ∀d ∈ D (4.2)



58

Table 4.1: Oxidoreductase reactions targeted for analysis with OptSwap.

Key oxidoreductase enzymes in
E. coli

Gene symbol Model
reaction

Native
electron
carrier

Past studies exploring
alternative cofactor uses

Glyceraldehyde-3-phosphate
dehydrogenase

gapA GAPD NADH non-native enzyme
(Martínez et al. 2008;
Verho et al. 2003)

Acetaldehyde dehydrogenase adhE OR mhpF ACALD NADH

Ethanol dehydrogenase adhP OR adhE ALCD2x NADH

Glutamate dehydrogenase gdhA GLUDy NADPH non-native enzyme (Yaoi
et al. 1996)

Glucose-6-phosphate dehydrogenase zwf G6PDH2r NADPH

6-Phosphogluconate dehydrogenase gnd GND NADPH

FAD reductase fre FADRx NADH

Phosphoglycerate dehydrogenase serA PGCD NADH

Isocitrate dehydrogenase icd ICDHyr NADPH in silico structural
analysis (Baba et al. 2006;
Hurley, Chen, and Dean
1996) protein engineering
(Rodríguez-Arnedo et al.
2005; Zhu, Golding, and
Dean 2005; Wang et al.
2011; Baba et al. 2006)

Aspartate-semialdehyde
dehydrogenase

asd ASAD NADPH

Methylene tetrahydrofolate
dehydrogenase

folD MTHFD NADPH

Acetohydroxy acid isomeroreductase
(2-Acetolactate)

ilvC KARA1 NADPH

Homoserine hydrogenase metL OR thrA HSDy NADPH

3-Isopropylmalate dehydrogenase leuB IPMD NADH protein engineering
(Auriol et al. 2011;
Lunzer et al. 2005)

Shikimate dehydrogenase aroE SHK3Dr NADPH

Dihydrodipicolinate reductase dapB DHDPRy NADPH

NADH:ubiquinone oxidoreductase I nuoF, nuoA–C,
nuoE, nuoG–N

NADH16pp NADH directed evolution
(Heavner et al. 2012)

Pyruvate dehydrogenase lpd, aceE, aceF PDH NADH protein engineering
(Bocanegra, Scrutton,
and Perham 1993; Guest
et al. 2003)

L-1,2-Propanediol oxidoreductase fucO LCARR NADH

D-Lactate dehydrogenase ldhA LDH_D NADH

Malic enzyme (NADH) maeA ME1 NADH

Malic enzyme (NADPH) maeB ME2 NADPH
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Figure 4.1: The OptSwap formulation for optimizing cofactor specificity of ma-
jor metabolic enzymes (NAD(H) vs. NADP(H)) coupled to reaction knockouts.
(a) Constraints are added to the MILP problem to enforce swapping the cofactor specificity
of reactions catalyzed by oxidoreductase enzymes. (b) Production envelopes show the
ability to growth couple a product of interest, which is not possible with native cofactor
specificity. G6PDH: glucose-6-phosphate dehydrogenase; G6P: glucose-6-phosphate; 6PGL:
6-phophogluconolactone.

These variables are present in addition to the RobustKnock Boolean variables

ye which represent the on/off state of all reactions that can be knocked out in the

model. E is the set of reactions that can be knocked out.

ye ∈ {0, 1} ∀e ∈ E (4.3)

Second, a constraint was added to the outer problem that requires either the

native or the “swapped” reaction to be knocked out for each oxidoreductase reaction

pair in D. This is the constraint that forces an oxidoreductase “swap.”

se + td = 1 ∀e ∈ E (4.4)
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Third, a constraint was added to the outer problem to limit the number of

swaps to be less than or equal to the parameter L.

∑
d∈D

(1− sd) ≤ L (4.5)

The knockout limitation constraint from RobustKnock ensures that the number

of reaction knockouts is less than or equal to the parameter K.

∑
e∈E

(1− ye) ≤ K (4.6)

Fourth, a constraint was added to the outer problem to limit the number of

interventions (oxidoreductase swaps and reaction knockouts) to be less than or equal

to the parameter X. ∑
e∈E

(1− ye) +
∑
d∈D

1− sd ≤ X (4.7)

These three constraints on the number of knockouts and swaps can be included

or excluded from the problem according to the desired simulation scenario. If the

oxidoreductase set D is empty, then OptSwap reduces to the RobustKnock problem.

Fifth, a set of constraints was added to limit flux to zero for any native or

swapped oxidoreductase reaction whose corresponding decision variable is equal to zero.

The function x maps the set of oxidoreductase reaction pairs, D, to the corresponding

fluxes and bounds for native oxidoreductase reactions in the model, and the function y

maps the set of oxidoreductase reaction pairs to the corresponding fluxes and bounds

for the non-native, “swapped” oxidoreductase reactions. Thus, when sd = 0, the flux
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vx(d) is constrained to zero.

sdLBx(d) ≤ vx(d) ≤ sdUBx(d) ∀d ∈ D (4.8)

tdLBy(d) ≤ vy(d) ≤ tdUBy(d) ∀d ∈ D (4.9)

These are present in addition to the knockout constraint from RobustKnock.

The function z maps the set of reactions that can be knocked out, E, to the corre-

sponding fluxes.

yeLBz(e) ≤ vz(e) ≤ yeUBz(e) ∀e ∈ E (4.10)

As an illustration of the variables s and t, consider the case where sd = 0.

Then, by Equation 4.4, td = 1. Equation 4.9 reduces to LBy(d) ≤ vy(d) ≤ UBy(d), so

flux through the “swapped” oxidoreductase reaction is constrained only by the lower

and upper bounds—the reaction is “on.” For the same case, Equation 4.8 reduces to

0 ≤ vx(d) ≤ 0, so flux through the native oxidoreductase reaction is constrained to

zero—the reaction is “off.”

Thus, the final formulation of the OptSwap problem can be stated as follows.
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J is the set of all reaction fluxes, and I is the set of all metabolites in the model.

max min vchemical

s.t.

max vbiomass

s.t.
∑
j∈J

Sijvj = 0 ∀i ∈ I

LBj ≤ vj ≤ UBj ∀j ∈ J

sdLBx(d) ≤ vx(d) ≤ sdUBx(d) ∀d ∈ D

tdLBy(d) ≤ vy(d) ≤ tdUBy(d) ∀d ∈ D

yeLBz(e) ≤ vz(e) ≤ yeUBz(e) ∀e ∈ E



sd ∈ {0, 1} ∀d ∈ D

td ∈ {0, 1} ∀d ∈ D

ye ∈ {0, 1} ∀e ∈ E

sd + td ≤ 1 ∀d ∈ D
∑
d∈D

(1− sd) ≤ L

∑
e∈E

(1− ye) ≤ K

∑
e∈E

(1− ye) +
∑
d∈D

1− sd ≤ X

(4.11)

To solve this bi-level max-min problem, we implemented the techniques that

were used to simplify and solve RobustKnock (Tepper and Shlomi 2010). The function
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dual_embed from the RobustKnock implementation was used to generate the dual

of the inner problem and linearize the bilinear terms (Eq. 4.8–4.10). By the strong

duality theory of linear programming, the outer problem and the dual of the inner

problem could be integrated (Tepper and Shlomi 2010). Finally, the minimization

problem in the resulting min-max problem was converted to a maximization problem

using the dual_embed function. After this second conversion and integration, the

OptSwap problem is a max-max optimization that can be solved with standard MILP

solvers. (See Supplement S5 for the implementation of OptSwap in MATLAB).

A slight variation of the OptSwap MILP was also investigated. Equation 4.4

can be converted to an inequality so that oxidoreductase reactions can be swapped

(sd = 0, td = 1) or knocked out (sd = td = 0).

sd + td ≤ 1 ∀d ∈ D (4.12)

However, this more-general formulation proved to be more computationally

intensive and presented numerical challenges that we could not resolve with the

TOMLAB/CPLEX solver. Results with this formulation were limited to run for

12 hours, and many simulations did not solve to optimality (Supplementary Table S4).

4.3 Results

The in silico metabolic optimization procedure OptSwap was used to predict

production strains that couple cellular growth to production of targeted products

using a combination of oxidoreductase specificity swaps and reaction knockouts. In

order to optimize for maximal growth-coupled yield, a MILP problem was developed
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based on the RobustKnock problem (Tepper and Shlomi 2010). RobustKnock is a

bi-level optimization problem similar to OptKnock, except that, where OptKnock

maximizes production of a target molecule subject to maximizing biomass production,

the RobustKnock problem maximizes the minimum production of a target product

subject to maximizing growth rate. This procedure ensures that “non-unique” solutions

are not produced—a concern that was first addressed by tilting the objective function

prior to the appearance of RobustKnock (Feist et al. 2010). OptSwap contains

additional constraints so that both reaction knockouts and oxidoreductase swaps can

be utilized to identify a growth-coupled design.

OptSwap was demonstrated using the iJO1366 genome-scale metabolic model

of E. coli (Orth et al. 2011). The pool of oxidoreductase enzymes that could be

“swapped” in the analysis was determined by identifying central, high-flux-carrying

reactions (as described in Methods). Where reaction knockouts were considered for

use with OptSwap, a reaction selection workflow was utilized as previously reported

(Feist et al. 2010). All swap designs were based on the transhydrogenase-deficient

∆pntAB ∆sthA genotype to ensure that unconstrained transhydrogenase activity in

the model did not counteract the effect of swapping oxidoreductase specificity.

Growth-coupled designs predicted by OptSwap with both oxidoreductase speci-

ficity swaps and reaction knockouts were compared with solutions from RobustKnock

where only reactions knockouts were considered. The designs were categorized by

the number of interventions, where an intervention is a reaction knockout or a dehy-

drogenase swap. Thirteen high-value products were investigated based on a previous

screening criteria for industrially significant compounds produced natively in E. coli

(Feist et al. 2010). For each product, simulations were performed under conditions of
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glucose and D-xylose minimal media for both aerobic and anaerobic growth (Supple-

mentary Table S3).

For the conditions considered in these simulations, OptSwap produced ten de-

signs where coupling oxidoreductase specificity swaps with reaction knockouts resulted

in superior predicted production rate compared to just reaction knockouts (Table 4.2).

The eight designs where OptSwap predicted significantly stronger growth coupling

or higher substrate-specific productivity (yield ÃŮ growth rate) were investigated

in more detail (Fig. 4.2). OptSwap predicted a strongly growth-coupled design for

L-alanine production that secretes no coproducts and generates L-alanine with high

yield under anaerobic conditions on glucose minimal media. The design requires

only three knockouts and one swap of the native enzyme (Fig. 4.3); it utilizes an

NAD(H)-specific glutamate dehydrogenase in place of the native NADP(H)-specific

reaction (ghdA). NAD(H)-specific glutamate dehydrogenase transfers electrons from

NADH to glutamate. Subsequently, L-alanine transaminase (alaA or alaC ) produces

L-alanine and 2-oxoglutarate from glutamate and pyruvate. Knockouts of D-lactate

dehydrogenase (ldhA) and ethanol dehydrogenase (adhP or adhE) prevent D-lactate

and ethanol production. With the new NADH-specific glutamate dehydrogenase

pathway in place, L-alanine secretion is energetically favorable to succinate secretion.

Knockout of acetyl-CoA acetyltransferase (atoB) is also predicted to be necessary for

growth coupling (Fig. 4.4).
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4 Interventions
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Figure 4.2: Calculated production envelopes for OptSwap designs predicted
to have significantly higher optimal production rate or substrate-specific pro-
ductivity than designs with just reaction knockouts. The wild-type (solid grey)
and the DeltapntAB DeltasthA genotype (dashed black) are shown. All designs were
found by first knocking out transhydrogenases (DeltapntAB DeltasthA). The optimized
phenotypes for OptSwap (solid red) and RobustKnock (dashed orange) are compared. Each
phenotype required four interventions (one intervention being either a reaction knockout or
a oxidoreductase swap). The star (*) indicates that the same design was identified in both
cases. The x indicates that no growth-coupled design was identified by RobustKnock under
these conditions. OptSwap predicts growth-coupled designs for producing L-alanine under
all four conditions and D-lactate aerobically on D-xylose substrate; growth coupling is not
predicted for these products with just four or fewer reaction knockouts under identical
conditions. The OptSwap designs for succinate and acetate are predicted to have higher
yield than designs with just reaction knockouts. The designs for succinate production and
acetate production on glucose substrate are also predicted to have higher substrate-specific
productivities than the designs predicted by RobustKnock.
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Figure 4.3: Network diagrams showing the shift in reduced cofactor usage
between wild-type and the L-alanine production design. (a) Simulated wild-type
flux distribution during anaerobic fermentation in E. coli. The fluxes shown are unique
solutions calculated using pFBA, optimizing flux through the biomass objective function.
(b) L-alanine production design. Red X’s indicate reaction deletions, and the orange box
indicates the oxidoreductase swap. Reactions are shown with arrows pointing in the direction
of flux. Knockouts of ethanol dehydrogenase (adhP or adhE), acetyl-CoA acetyltransferase
(atoB), and lactate dehydrogenase (ldhA) reactions prevent ethanol and D-lactate from
being produced. With the NAD(H)-specific glutamate dehydrogenase (gdhA_nadh) in
place, L-alanine is predicted to be the energetically-favorable final fermentation product.
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Figure 4.4: The predicted effect of combinatorial interventions on the design
for anaerobic production of L-alanine on glucose minimal media. Glutamate
dehydrogenase must be swapped for high yields of L-alanine to be produced at high growth
rates. (Dashed blue envelope shows production with the native glutamate dehydrogenase.)
With fewer than three reaction knockouts and the swapped glutamate dehydrogenase, high
yield of L-alanine is possible, but L-alanine production is not growth-coupled. The final set
of three reactions knockouts and one dehydrogenase swap causes a strong coupling between
L-alanine production and cell growth. LDH_D: D-lactate dehydrogenase; ACACT1r:
acetyl-CoA acetyltransferase; ALCD2x: ethanol dehydrogenase; GLUDy: glutamate dehy-
drogenase.

For anaerobic production of L-alanine from D-xylose and for aerobic production

of L-alanine from glucose and D-xylose, slightly different designs were predicted.

Phenotypes for aerobic production of L-alanine are predicted to have lower yield

and higher maximum growth rate than the anaerobic designs (Fig. 4.2). In all

four L-alanine production designs, swapping the cofactor specificity of glutamate

dehydrogenase results in predicted phenotypes with strong growth coupling, while

growth coupling is not predicted in any designs with four or fewer reaction knockouts.

However, previously reported simulations suggest that growth-coupling of L-alanine

production may be possible with five reaction knockouts in E. coli (Feist et al. 2010).

OptSwap predicted that anaerobic production of acetate can be increased with

four interventions (Fig. 4.2). The acetate designs rely on replacing the native NAD(H)-

dependent ethanol dehydrogenase (adhP or adhE) with a NADP(H)-dependent ethanol
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dehydrogenase. On both glucose and D-xylose substrates, maximum optimal acetate

production is predicted to be higher with the OptSwap design than with just four or

fewer reaction knockouts. Furthermore, simulation predicted that acetate production

on glucose substrate with the OptSwap design can be obtained at higher growth rates,

and thus with higher substrate-specific productivity.

Simulations predicted that succinate can be produced aerobically with glucose

as the substrate using three knockouts and one dehydrogenase swap. The OptSwap

design for succinate production utilizes a NAD(H)-dependent glutamate dehydrogenase

in place of the native enzyme, coupled to three reaction knockouts. The result is a

small increase in the predicted succinate production rate at maximum growth rate

but a large increase in the predicted substrate-specific productivity, so this design is

interesting in the case where substrate-specific productivity is desirable.

The OptSwap design for aerobic production of D-lactate on D-xylose substrate

is predicted to be strongly growth-coupled, whereas RobustKnock does not predict

any growth-coupling for D-lactate with four or fewer interventions under identical

conditions. The OptSwap design swaps the native NAD(H)-dependent ethanol dehy-

drogenase (adhP or adhE) with a NADP(H)-dependent ethanol dehydrogenase. Three

knockouts were predicted: acetate kinase (tdcD or ackA or purT ), ATP synthase

(atpA–H ), and pyruvate formate lyase (pflA and pflB). ATP synthase is not predicted

to be essential by the metabolic model for growth on either of the substrates considered

in these simulations (glucose amd D-xylose). Experimental evidence indicates that

ATP synthase knockout strains grow slowly on glucose in vivo (Marx et al. 1999).

A number of cases exist where RobustKnock predicted a design with greater

optimal yield than the OptSwap solution (Table 4.2). In these cases, the RobustKnock
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solution contains a knocked out oxidoreductase reaction. In the formulation of OptSwap

presented here, oxidoreductase reactions cannot be knocked out—Equation 4.4 enforces

swaps and disallows knockouts. An alternative OptSwap formulation was considered

in which oxidoreductase reaction knockouts are allowed. The equality constraint

(Eq. 4.4) is replaced with an inequality (Eq. 4.12) that allows swaps or knockouts.

However, the solution space of the more-general MILP problem caused challenges for

the MILP solver used for this work. Numerical imprecision caused non-real solutions,

and solution times increased to more than 12 hours. However, when the new problems

solved to optimality (for a number of substrate/product combinations tested), they

identified the same solutions found with RobustKnock (Supplementary Table S4).

4.4 Discussion

This study presents a computational method to predict optimal cofactor speci-

ficity of oxidoreductase reactions in the genome-scale metabolic model. The de-

signs identified by OptSwap are non-intuitive solutions to produce desirable cellular

products—solutions that are not possible with just reaction knockouts. Growth-

coupled designs for L-alanine and D-lactate were identified by OptSwap using four

interventions, where reaction knockouts could not be used to identify growth-coupled

production phenotypes under identical conditions. The anaerobic production designs

for L-alanine utilize a NAD(H)-specific glutamate dehydrogenase coupled to reaction

knockouts that limit the pathways available for anaerobic fermentation in order to

produce very high yields of L-alanine at maximum growth rate. For succinate and

acetate, yield improvements were smaller, but large increases in substrate-specific pro-

ductivity were predicted with OptSwap when compared to designs with just reaction
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knockouts.

The unique anaerobic L-alanine production design reported here is simpler

than a previously reported design requiring seven knockouts and one gene insertion

(Zhang et al. 2007). In that study, the native D-lactate dehydrogenase of E. coli

was replaced with alanine dehydrogenase from Geobacillus stearothermophilus. To

ensure growth coupling of L-alanine, the authors also disabled fermentation pathways

for ethanol, acetate, formate, D-lactate, L-lactate, and succinate. By utilizing the

predictive power of constraint-based modeling, we predicted a design within high yield

and fewer genetic manipulations.

The OptSwap in silico design strategies can be broadly applied to any product

in the genome-scale model. A previous analysis demonstrated that growth coupling

in genome scale models is most easily achieved for a class of products related to the

native fermentation pathways in E. coli (Feist et al. 2010). However, techniques like

OptSwap may expand the scope of products that can be growth coupled by exploring

a broader set of solutions. The knockout and swap designs predicted by OptSwap are

candidates for experimental validation, and can be built with current technologies.

More complex designs than those presented here have been successfully implemented

in E. coli, including the strain for production of L-alanine (Zhang et al. 2007).

The main limitation of OptSwap is that it is more computationally demanding

than past methods, including RobustKnock and OptKnock. The greater complexity

of the solution space means that finding an optimal solution is more difficult. MILP

problems are NP complete, and solution time depends on the structure of the problem

and the solving method. The solution times increased with the parameters K, L, and

X (Supplementary Table S5), and adopting a more general problem increases solution
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times further. While the simpler formulation of OptSwap reported here is computa-

tionally tractable, the more general problem allowing oxidoreductase knockouts could

not be solved in many cases within 12 hours. CPLEX is a sophisticated MILP solver,

and tweaking solver parameters did yield improvements in performance. OptSwap

can be solved by choosing the less general formulation utilized for these results and

restricting interventions (L or X) to be four or less. Improvements in MILP solvers

and computational power will reduce these challenges in the future, and even more

complex MILP problems will be solvable.

OptSwap adds a new level of complexity to the COBRA methods for identi-

fication of useful production phenotypes in microorganisms (Lewis, Nagarajan, and

Palsson 2012). The constraints placed on the presence/absence of oxidoreductase reac-

tions with specificity for different cofactors allow direct investigation and manipulation

of cofactor pools that are central to directing cellular resources in microorganisms.

Changing cofactor specificity alters the metabolic solution space. While reaction

knockouts always decrease the size of the solution space, changing cofactor specificity

can have more complex effects and may even increase the solution space in the direction

of an objective function.

OptSwap can be readily implemented in metabolic models of other organisms.

For example, the experimental findings with a dehydrogenase swap in S. cerevisiae

(Verho et al. 2003) could be further investigated with the genome-scale metabolic model

of that organism (Heavner et al. 2012). The constraints that enforce dehydrogenase

specificity swaps can also be extended to target other metabolic specificity sets (e.g.

nucleoside triphosphates) and can be incorporated into other in silico design strategies.

Chapter 4 is a reprint of a published manuscript: King, Z. A. and Feist,
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A. M. (2013). “Optimizing Cofactor Specificity of Oxidoreductase Enzymes for the

Generation of Microbial Production Strains—OptSwap”. In: Ind. Biotechnol. 9.4,

pp. 236–246. doi: 10.1089/ind.2013.0005. The dissertation author was the primary

author of the paper and was responsible for the research.

http://dx.doi.org/10.1089/ind.2013.0005


Chapter 5

Optimal cofactor swapping can

increase the theoretical yield for

chemical production in Escherichia

coli and Saccharomyces cerevisiae

5.1 Introduction

Division of the roles of currency metabolites is a well-conserved feature of

metabolism in microorganisms. In Escherichia coli and Saccharomyces cerevisiae,

the cofactors NAD(H) and NADP(H) are both responsible for transferring reducing

equivalents between metabolic subsystems. NAD(H) is primarily generated by gly-

colytic enzymes and transfers reducing equivalents to the electron transport chain

or to fermentation products (Russell and Cook 1995; Gottschalk 1986; Sauer et al.

2004). NADP(H) is produced primarily by the pentose phosphate pathway and tran-

75
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shydrogenase enzymes, and it transfers reducing equivalents to provide energy for

biosynthesis (Gottschalk 1986; Sauer et al. 2004). While this separation is not complete

(for example, fungi utilize NADPH for pentose catabolism (Verho et al. 2003)), the

functional separation of these electron carriers and the specificity of oxidoreductase

enzymes to a specific electron carrier allow the cell to precisely partition resources

between ATP production and anabolism.

When growing in a steady state, microorganisms coordinate the production

of reduced cofactors to match cofactor consumption, and their metabolic network

structures and regulatory systems are organized to carry out this balancing act in

common environments (Sauer et al. 2004; Lunzer et al. 2005; Zhu, Golding, and Dean

2005). Consequently, the cofactor balance in microorganisms is poorly optimized for

many synthetic cellular objectives (Ghosh, Zhao, and Price 2011; Lim et al. 2013; Jan

et al. 2013). Thus, one should consider how cofactor balance can be optimized when

formulating new cellular objectives for metabolic engineering and synthetic biology.

Cofactor balance optimization is especially important for introducing non-native

production pathways that are driven by cofactor concentration (Shen et al. 2011).

A number of experimental methods have been developed to increase the avail-

ability of the reduced cofactors NADH and NADPH to enzymes in production pathways

that are cofactor-driven, and thereby increase yield of high-value byproducts (reviewed

by Lee et al. 2013). One strategy to increase cofactor availability is overexpression of

genes that generate cofactor-producing enzymes. Overexpression of NADH-producing

formate dehydrogenase (fdh1 from Candida boidinii) in E. coli was shown to increase

production of ethanol during anaerobic fermentation and to cause production of

fermentation byproducts during aerobic growth (Berríos-Rivera, San, and Bennett
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2002; Berríos-Rivera et al. 2004; Berríos-Rivera, Bennett, and San 2002b; Berríos-

Rivera, Bennett, and San 2002a). Similarly, the manipulation of transhydrogenase

enzymes in E. coli can shift byproduct yield. The overexpression of sthA, which

encodes the soluble transhydrogenase enzyme, was shown to increase yield of both

(S)-2 chloropropionate and poly(3-hydroxybutyrate), two byproducts produced in

E. coli by anabolic reactions that utilize NADPH (Sanchez et al. 2006; Jan et al.

2013). For (S)-2 chloropropionate production, the deletion of pntAB, which encodes

the membrane-bound transhydrogenase enzyme, also increased product yield (Jan

et al. 2013).

A second strategy to increase cofactor availability is to replace the native

enzyme with a non-native oxidoreductase with specificity for the opposite cofactor. For

example, the NAD(H)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPD)

in E. coli (encoded by the gene gapA) was replaced with the NADP(H)-dependent

GAPD from Clostridium acetobutylicum (encoded by the gene gapC ) to increase the

production of lycopene and to increase the NADPH yield to drive a bioprocessing

reaction (cyclohexanone to ε-caprolactone) where E. coli acts only as a source of

reducing equivalents (Martínez et al. 2008). In another study, the native NAD(H)-

dependent GAPD of S. cerevisiae (encoded by the genes TDH1–3 ) was supplemented

with the NADP(H)-dependent GAPD from Kluyveromyces lactis (encoded by the gene

GDP1 ) to increase fermentation of D-xylose to ethanol (Verho et al. 2003). These

studies show that experimental implementation of such cofactor “swaps” is feasible

and can result in promising increases in product yield. However, the question that

remains to be answered is, which enzymes should be modified for maximum yield?

Computational studies have also investigated cofactor balancing. Most studies
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to date have utilized constraint-based modeling, which represents the metabolic net-

work by formulating the stoichiometry of metabolic reactions as a linear system of

equations. Thermodynamic constraints (e.g., reaction irreversibility) and environmen-

tal parameters (e.g., nutrient availability) can be included in the formulation, and,

by assuming that the system is in a mass-balanced steady state, linear optimization

techniques can be used to identify optimal metabolic flux states and modifications in

well-understood organisms (Price, Reed, and Palsson 2004). In a previous study, the

authors reported the development of a bilevel optimization method called OptSwap to

identify growth-coupled designs using modifications of oxidoreductase specificity and

knockouts (King and Feist 2013). Similarly, Chung et al. 2013 presented a method

called cofactor modification analysis (CMA) which optimized modifications of oxidore-

ductase specificity to improve the yield of terpenoids in yeast, and Lakshmanan et al.

2013 used the method to identify growth-coupled bioprocessing designs. Ghosh, Zhao,

and Price 2011 used constraint-based modeling to analyze cofactor balancing for the

specific case of yeast producing ethanol from L-arabinose and D-xylose. Chin et al.

2009 utilized the constraint-based model of E. coli to calculate theoretical yields of

xylitol with various knockouts that affected cofactor balance, but they did not report

a strategy to improve the cofactor balance. Despite the success of these targeted

studies, a comprehensive analysis of the effects of changing cofactor specificity on a

system-wide scale does not exist.

In this work, constraint-based modeling is utilized to identify optimal cofactor-

specificity swaps for increasing theoretical yield in the genome-scale metabolic models

of E. coli and S. cerevisiae. This work presents a global analysis of cofactor swapping

for a large number of products across two important production organisms, and the
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optimizations identify the minimal cofactor swaps necessary to maximize theoretical

yield in the metabolic network.

5.2 Methods

5.2.1 Models and parameters

The iJO1366 metabolic reconstruction of E. coli K-12 MG1655 (Orth et al.

2011) and the iMM904 metabolic reconstruction of S. cerevisiae (Mo, Palsson, and

Herrgård 2009) were used for the simulations in this work. Flux balance analysis

(FBA) (Kauffman, Prakash, and Edwards 2003) and parsimonious flux balance analysis

(pFBA) (Lewis et al. 2010a) were implemented in MATLAB as reported. As described

previously, the iJO1366 oxidative stress reactions CAT, SPODM, and SPODMpp and

the FHL reaction were constrained to zero (Orth et al. 2011), and the iJO1366 POR5

(pyruvate:ferredoxin oxidoreductase) reaction was made irreversible, as supported by

biochemical data (Blaschkowski et al. 1982). In iMM904 simulations, free exchange of

six sterols and fatty acids—ergosterol, zymosterol, hexadecenoate, and octadecanoate

(saturated, monounsaturated, and polyunsaturated)—was allowed under anaerobic

conditions, as reported by Mo, Palsson, and Herrgård 2009.

For cofactor swap optimizations, the substrate uptake rates (SURs) for the

solitary carbon substrates in each simulation were constrained to a maximum uptake

rate of 10 mmol gDW-1 h-1. For aerobic simulations, the oxygen uptake rate was

set to a maximum of 10 mmol gDW-1 h-1. For these simulations, the minimum flux

through the biomass objective function was set to 0.1 h-1. For simulations with

S. cerevisiae under anaerobic conditions with D-xylose substrate and E. coli under



80

anaerobic conditions with glycerol substrate, the in silico growth rate was less than

0.1 h-1. To explore the effect of cofactor swaps in these cases, the minimum biomass

requirement was set to 10% of the maximum growth rate.

For substrate uptake, only native gene content was considered. For growth

of S. cerevisiae on D-xylose, the preexisting iMM904 model includes a D-xylose

catabolism pathway consisting of xylose reductase (XR, EC 1.1.1.307) and xylitol

dehydrogenase (XDH, EC 1.1.1.10), which were included in the model based on

annotation for the genes GRE3 and XYL2, respectively (Mo, Palsson, and Herrgård

2009). However, under experimental conditions, D-xylose catabolism in yeast cannot

support growth, and recombinant XR and XDH are necessary for fermentation of

D-xylose (Bettiga, Hahn-Hägerdal, and Gorwa-Grauslund 2008; Ghosh, Zhao, and

Price 2011; Bengtsson, Hahn-Hägerdal, and Gorwa-Grauslund 2009). Therefore, these

reactions were considered to be native in the simulations, but their usage requires

heterologous gene expression. Xylose isomerase (XI, EC 5.3.1.5), an alternative enzyme

for D-xylose uptake which is not in iMM904, was also considered in the analysis of

S. cerevisiae xylose catabolism (Bettiga, Hahn-Hägerdal, and Gorwa-Grauslund 2008).

Theoretical maximum yield (YP/S) is reported as the percentage of carbon

consumed during substrate uptake that is converted to production of the target

byproduct, subject to a minimum growth rate requirement at steady state (Feist et al.

2010):

YP/S = byproduct production rate (mmol carbon gDW-1 h-1)
substrate uptake rate (mmol carbon gDW-1 h-1)
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5.2.2 Non-native pathways

To simulate cofactor swapping in realistic production pathways for non-native

compounds, a literature search was performed to identify the most recent and successful

experimentally-validated strain designs for production of non-native compounds in

E. coli. Pathways were reconstructed by creating in silico reactions corresponding

to the genes used in these experiments (Table 5.1, Supplementary Tables). In silico

cofactor specificities were determined based on reports in the literature. Transport

was assumed to be non-energy-coupled unless otherwise specified in the iJO1366

reconstruction or in the literature.

Table 5.1: Non-native pathways reconstructed in E. coli for cofactor balance
optimization. aTwo alternate pathways were reconstructed for these cases, according to
the literature.

Product Number of reactions
(+number of
transporters) added to
model

Reducing
equivalents
consumed in
non-native
pathway

Reference

1,3-Propanediol 2 (+2) 1 NADPH (Tang et al. 2009)
1,4-Butanediol 7 (+2) 3 NADH (Yim et al. 2011)
meso-2,3-Butanediol 3 (+1) 1 NADH (Ui et al. 2004)
R,R-2,3-Butanediol 3 (+1) 1 NADH (Yan, Lee, and Liao 2009)
R-3-Hydroxybutyrate 4 (+2)a 1 NADPH (Tseng et al. 2009)
S-3-Hydroxybutyrate 4 (+2)a 1 NADH (Tseng et al. 2009)
3-Hydroxypropanoate 2 (+2) 2 NADPH (Rathnasingh et al. 2012)
R-3-Hydroxyvalerate 5 (+2) 1 NADPH (Tseng et al. 2010)
S-3-Hydroxyvalerate 5 (+2) 1 NADH (Tseng et al. 2010)
Styrene 2 (+1) None (McKenna and Nielsen 2011)
p-Hydroxystyrene 2 (+1) None (Qi et al. 2007)
Lycopene 3 (+1) 8 NADPH (Martínez et al. 2008)

5.2.3 Selection of the reaction sets for cofactor-specificity

swaps

The sets of oxidoreductase reactions available for modification during opti-

mizations were determined by locating central, high-flux oxidoreductase reactions, as

previously reported (King and Feist 2013). In the metabolic models iJO1366 and
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iMM904, all reactions utilizing NAD(H) or NADP(H) as a substrate were located.

The reactions were sorted by flux magnitude after pFBA optimization for flux through

the biomass objective function under conditions of aerobic and anaerobic growth

on glucose and D-xylose minimal media. The reactions with highest flux under all

conditions were selected. Lactate dehydrogenase, malic enzymes, and lactaldehyde

dehydrogenase were added to the set for E. coli based on interest in the literature

(Stols and Donnelly 1997; Wang et al. 2011; Zhang et al. 2007). Under anaerobic

conditions, the NADH:oxidoreductase I reaction in iJO1366 was removed from the

pool of enzymes during model reduction. Thus, 21 oxidoreductase reactions were

chosen for E. coli under anaerobic conditions and 22 oxidoreductase reactions under

aerobic conditions (Table 5.2), and 22 reactions were chosen for S. cerevisiae under

both aerobic and anaerobic conditions (Table 5.3).
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Table 5.2: Oxidoreductase enzymes in the E. coli iJO1366 model chosen for
cofactor balance optimizations. aThe flux through each reaction for maximum growth
simulation using pFBA, relative to carbon uptake rate.

Key oxidoreductase
enzymes in E. coli Gene name

Model
reaction
abbrevia-
tion

Native
electron
carrier in
E. coli

pFBA, relative flux scaled to
carbon uptakea

Glucose
aerobic

Xylose
aerobic

Glucose
anaerobic

Xylose
anaerobic

NADH:ubiquinone
oxidoreductase I

nuoF,
nuoAâĂŞC,
nuoE,
nuoGâĂŞN

NADH16pp NADH 1.98 1.98 0.0 0.0

Glyceraldehyde-3-
phosphate
dehydrogenase

gapA GAPD NADH 1.68 1.38 1.89 1.59

Glucose-6-phosphate
dehydrogenase

zwf G6PDH2r NADPH 0.45 0.40 0.15 0.11

6-Phosphogluconate
dehydrogenase

gnd GND NADPH 0.45 0.40 0.15 0.11

Pyruvate dehydrogenase lpd, aceE, aceF PDH NADH 0.37 0.66 0.0 0.0

FAD reductase fre FADRx NADH 0.16 0.14 0.06 0.04

Phosphoglycerate
dehydrogenase

serA PGCD NADH 0.12 0.11 0.04 0.03

Isocitrate dehydrogenase icd ICDHyr NADPH 0.08 0.07 0.03 0.02

Aspartate-semialdehyde
dehydrogenase

asd ASAD NADPH 0.08 0.07 0.03 0.02

Acetohydroxy acid
isomeroreductase
(2-Acetolactate)

mdh MDH NADH 0.08 0.07 0.02 0.01

Methylene
tetrahydrofolate
dehydrogenase

folD MTHFD NADPH 0.06 0.06 0.02 0.02

Acetohydroxy acid
isomeroreductase

ilvC KARA1 NADPH 0.06 0.06 0.02 0.02

Homoserine
dehydrogenase

metL OR thrA HSDy NADPH 0.05 0.05 0.02 0.01

3-Isopropylmalate
dehydrogenase

leuB IPMD NADH 0.03 0.03 0.01 0.01

Shikimate
dehydrogenase

aroE SHK3Dr NADPH 0.03 0.02 0.01 0.01

Dihydrodipicolinate
reductase

dapB DHDPRy NADPH 0.03 0.02 0.01 0.01

Acetaldehyde
dehydrogenase

adhE OR
mhpF

ACALD NADH 0.0 0.0 0.93 0.78

Alcohol dehydrogenase
(ethanol)

adhP OR
adhE

ALCD2x NADH 0.0 0.0 0.93 0.78

L-1,2-Propanediol
oxidoreductase

fucO LCARR NADH 0.0 0.0 0.0 0.0

D-Lactate
dehydrogenase

ldhA LDH_D NADH 0.0 0.0 0.0 0.0

Malic enzyme (NADH) maeA ME1 NADH 0.0 0.0 0.0 0.0

Malic enzyme (NADPH) maeB ME2 NADPH 0.0 0.0 0.0 0.0
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Table 5.3: Oxidoreductase enzymes in the iMM904 model of S. cerevisiae
chosen for cofactor balance optimizations. aThe flux through each reaction for
maximum growth simulation using pFBA, relative to carbon uptake rate. bThe irreversible
reaction ALCD2ir was removed from the model in favor of the equivalent but reversible
ALCD2x.

Key oxidoreductase
enzymes in S.
cerevisiae

Gene
symbol

Model
reaction
abbrevia-
tion

Native
electron
carrier in
S. cerevisiae

pFBA, relative flux scaled to
carbon uptakea

Glucose
aerobic

Xylose
aerobic

Glucose
anaerobic

Xylose
anaerobic

Glyceraldehyde-3-
phosphate
dehydrogenase

TDH1 or
TDH2 or
TDH3

GAPD NADH 1.68 1.20 1.88 1.63

Alcohol dehydrogenase
(ethanol)

ADH1 or
ADH4 or
ADH5 or
SFA1

ALCD2xb NADH 1.01 0.78 1.67 1.57

NADH dehydrogenase NDE1 or
NDE2

NADH2-
u6cm

NADH 0.69 1.44 0.03 0.01

Isocitrate dehydrogenase IDP2 ICDHy NADPH 0.30 0.11 0.02 0.01

Glutamate
dehydrogenase

GDH1 or
GDH3

GLUDyi NADPH 0.26 0.22 0.00 0.00

Phosphoglycerate
dehydrogenase

SER3 or
SER33

PGCD NADH 0.03 0.03 0.01 0.00

Acetaldehyde
dehydrogenase

ALD6 ALDD2y NADPH 0.02 0.02 0.01 0.00

6-Phosphogluconate
dehydrogenase

GND1âĂŞ2 GND NADPH 0.02 0.59 0.00 0.00

Glucose-6-phosphate
dehydrogenase

ZWF1 G6PDH2 NADPH 0.02 0.59 0.00 0.00

Aspartate-semialdehyde
dehydrogenase

HOM2 ASADi NADPH 0.02 0.02 0.01 0.00

Homoserine
dehydrogenase

HOM6 HSDxi NADH 0.02 0.02 0.01 0.00

3-Isopropylmalate
dehydrogenase

LEU2 IPMD NADH 0.02 0.01 0.01 0.00

L-Aminoadipate-
semialdehyde
dehydrogenase

LYS2, LYS5 AASAD2 NADH 0.02 0.01 0.01 0.00

Saccharopine
dehydrogenase
(L-glutamate forming)

LYS9 SACCD1 NADPH 0.02 0.01 0.01 0.00

Saccharopine
dehydrogenase (L-lysine
forming)

LYS1 SACCD2 NADH 0.02 0.01 0.01 0.00

Shikimate
dehydrogenase

ARO1 SHK3D NADPH 0.01 0.01 0.01 0.00

Glycerol-3-phosphate
dehydrogenase

GPD1 G3PD1ir NADH 0.00 0.00 0.00 1.00

Xylose reductase GRE3 XYLR NADPH 0.00 1.00 0.00 1.00

Xylitol dehydrogenase XYL2 XYLTD_D NADH 0.00 1.00 0.00 1.00

Glutamate synthase GLT1 GLUSx NADH 0.00 0.00 0.10 0.03

Malate dehydrogenase MDH2 MDH NADH 0.00 0.00 0.08 0.03

Glycerol dehydrogenase GCY1 GLYCDy NADPH 0.00 0.00 0.00 1.00
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5.2.4 MILP formulation

A MILP problem was formulated to find the set of cofactor-specificity swaps

that maximize the theoretical yield of chemical production with a minimum biomass

requirement (Fig. 5.1). The MILP formulation is functionally identical to the one

used by Chung et al. 2013, but here it is implemented differently. As described in our

previous report, the non-native oxidoreductase enzymes are added to the system and

coupled so that either the native enzyme or the non-native enzyme is active (King and

Feist 2013). The final formulation of the MILP problem can be stated follows, where

S is the stoichiometric matrix, I is the set of metabolites, J is the set of reactions, D

is the set of oxidoreductase reactions, s and t are decision variables defining the state

of each swap, and L is the maximum number of swaps allowed:
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maximize vchemical

subject to
∑
j∈J

Sijvj = 0 ∀i ∈ I

LBj ≤ vj ≤ UBj ∀j ∈ J

vbiomass ≥ min_biomass

sd ∈ {0, 1} ∀d ∈ D

td ∈ {0, 1} ∀d ∈ D

sd + td = 1 ∀d ∈ D

sdLBx(d) ≤ vx(d) ≤ sdUBx(d) ∀d ∈ D

tdLBy(d) ≤ vy(d) ≤ tdUBy(d) ∀d ∈ D
∑
d∈D

(1− sd) ≤ L
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Figure 5.1: Cofactor specificity modifications of oxidoreductase reactions can
improve the maximum theoretical yield of metabolic byproducts. In this work,
(a) oxidoreductase reactions in the metabolic model are identified as candidates for in silico
cofactor “swaps,” and (b) an optimization procedure identifies swaps that maximize the
theoretical yield of a targeted compound.

5.2.5 Non-unique solutions

In many cases, the solution to the MILP problem was non-unique. To investigate

the diversity of cofactor swaps that could produce the same results, an exhaustive

search method was utilized. For each solution, all swaps that improved maximum

theoretical yield to within 99% of the optimal solution were found. These were

identified as solution “groups” (Fig. 5.2–5.4). The same procedure was repeated to

investigate secondary swaps, after first swapping a reaction from the first-swap group.

Similar results could be achieved utilizing MILP solvers that enumerate solutions,

such as the Solution Pool feature in CPLEX 11+ (IBM, Armonk, NY, USA).
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Product No. of 
Carbons wt 1 swap 2 swaps wt 1 swap 2 swaps wt 1 swap 2 swaps wt 1 swap 2 swaps

L-Cysteine 3 0.10 0.18 0.06 0.11 0.39 0.43 0.45 0.41 0.44 0.46
GAPD GAPD GAPD Group 8 GAPD PGCD

L-Homoserine 4 0.26 0.45 0.48 0.15 0.31 0.79 0.81 0.83 0.77 0.78 0.80
GAPD 3+ rxns GAPD 3+ rxns GAPD 3+ rxns Group 9

L-Threonine 4 0.23 0.40 0.13 0.24 0.77 0.79 0.80 0.75 0.76 0.77
GAPD GAPD 3+ rxns GAPD 3+ rxns Group 9

1,5-Diaminopentane 5 0.21 0.37 0.12 0.23 0.59 0.60 0.61 0.57 0.58 0.59
GAPD GAPD GAPD 3+ rxns GAPD 3+ rxns

L-Lysine 6 0.26 0.45 0.15 0.27 0.70 0.72 0.73 0.68 0.70 0.70
GAPD GAPD GAPD 3+ rxns GAPD 3+ rxns

L-Isoleucine 6 0.28 0.47 0.54 0.16 0.38 0.39 0.67 0.69 0.70 0.65 0.66 0.67
GAPD PDH GAPD 3+ rxns GAPD 3+ rxns GAPD 3+ rxns

L-Leucine 6 0.40 0.56 0.58 0.25 0.40 0.70 0.72 0.72 0.67 0.69 0.70
GAPD Group 1 GAPD GAPD 3+ rxns GAPD 3+ rxns

Glycine 2 0.17 0.24 0.26 0.10 0.15 0.66 0.71 0.74 0.69 0.74 0.78
GAPD 3+ rxns GAPD GAPD 3+ rxns GAPD PGCD

5-Methylthio-D-ribose 6 0.07 0.10 0.04 0.06 0.24 0.26 0.26 0.24 0.25 0.25
GAPD GAPD GAPD 3+ rxns GAPD 3+ rxns

Spermidine 7 0.08 0.12 0.05 0.07 0.28 0.30 0.30 0.28 0.29 0.29
GAPD GAPD GAPD 3+ rxns GAPD 3+ rxns

L-Proline 5 0.28 0.41 0.16 0.25 0.76 0.79 0.79 0.73 0.76 0.76
GAPD GAPD GAPD 3+ rxns GAPD 3+ rxns

Cys-Gly 5 0.09 0.12 0.05 0.08 0.37 0.42 0.43 0.38 0.43 0.44
GAPD GAPD GAPD Group 8 GAPD 3+ rxns

L-Aspartate 4 0.43 0.60 0.25 0.36 1.11 1.15 1.08 1.11
GAPD GAPD GAPD GAPD

Reduced glutathione 10 0.14 0.19 0.08 0.11 0.59 0.67 0.68 0.62 0.68 0.68
GAPD GAPD GAPD 3+ rxns GAPD 3+ rxns

L-Serine 3 0.28 0.38 0.16 0.23 0.95 0.97 0.97 0.93 0.95 0.95
GAPD GAPD Group 6 3+ rxns Group 6 3+ rxns

Thymine 5 0.13 0.17 0.07 0.10 0.60 0.67 0.69 0.62 0.70 0.70
GAPD GAPD GAPD Group 8 GAPD 3+ rxns

Putrescine 4 0.17 0.22 0.10 0.14 0.58 0.60 0.56 0.58
GAPD GAPD GAPD GAPD

Glycerol 3 0.28 0.38 0.16 0.23 0.70 0.71 0.71 0.68 0.68 0.69
GAPD GAPD 3+ rxns 3+ rxns 3+ rxns 3+ rxns

Glucose Xylose
Anaerobic Aerobic

XyloseGlucose

Figure 5.2: Results from optimizing the cofactor specificity of oxidoreductases
in the E. coli iJO1366 model to increase the maximum theoretical yield of na-
tive metabolic compounds. (a) Maximum theoretical yield for wildtype (wt) metabolic
content and after one oxidoreductase swap (1 swap) and two oxidoreductase swaps (2 swap).
Colors indicate the percent increase in maximum theoretical yield compared to wildtype.
(b) Reactions found to most influence production of products are ranked and plotted
by increase in theoretical maximum yield under each condition, and each color indicates
a reaction or group of reactions that can be swapped to reach the optimal theoretical
maximum yield.
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a

b

Product No. of 
carbons wt swap wt swap wt swap wt swap

L-Aspartate 4 0.33 0.63 0.20 0.70 0.94 0.93
Group 2 ALCD2x

L-Valine 5 0.41 0.78 0.26 0.83 0.75 0.78 0.70 0.77
Group 2 Group 1 Group 2 ALCD2x

L-Alanine 3 0.50 0.94 0.31 1.00 0.90 0.94 0.84 0.93
Group 2 Group 2 Group 2 ALCD2x

L-Serine 3 0.17 0.29 0.10 0.50 0.87 0.94 0.76 0.93
Group 1 ALCD2x 4+ rxns 4+ rxns

L-Cysteine 3 0.07 0.11 0.04 0.18 0.30 0.39 0.29 0.42
Group 1 ALCD2x ALCD2x ALCD2x

L-Lactate 3 0.17 0.26 0.10 0.45 0.77 0.80 0.72 0.78
Group 1 ALCD2x ALCD2x ALCD2x

L-Methionine 5 0.09 0.14 0.06 0.23 0.38 0.52 0.37 0.50
Group 1 ALCD2x ALCD2x ALCD2x

L-Phenylalanine 9 0.20 0.30 0.13 0.51 0.74 0.75 0.69 0.73
Group 1 ALCD2x 4+ rxns ALCD2x

Pyruvate 3 0.40 0.53 0.31 0.78 0.94 0.93
Group 1 ALCD2x

Thymine 5 0.08 0.10 0.05 0.18 0.36 0.39 0.33 0.43
Group 1 Group 1 Group 3 ALCD2x

sn-Glycero-3-phosphocholine 8 0.05 0.06 0.03 0.11 0.20 0.22 0.20 0.24
Group 1 Group 1 Group 3 ALCD2x

Glycine 2 0.11 0.15 0.08 0.25 0.53 0.76 0.48 0.81
Group 1 ALCD2x ALCD2x ALCD2x

L-Lysine 6 0.10 0.13 0.06 0.23 0.56 0.67 0.50 0.65
Group 2 Group 1 4+ rxns ALCD2x

L-Proline 5 0.17 0.22 0.10 0.38 0.75 0.79 0.70 0.77
Group 2 Group 1 4+ rxns ALCD2x

L-Asparagine 4 0.13 0.18 0.08 0.30 0.56 0.60 0.55 0.65
Group 2 Group 1 4+ rxns Group 1

episterol 28 0.00 0.00 0.24 0.32 0.21 0.36
Group 1 ALCD2x

fecosterol 28 0.00 0.00 0.24 0.32 0.21 0.36
Group 1 ALCD2x

zymosterol 27 0.00 0.00 0.24 0.32 0.21 0.36
Group 1 ALCD2x

Ergosterol 28 0.00 0.00 0.23 0.30 0.20 0.33
Group 1 ALCD2x
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Figure 5.3: Results from optimizing the cofactor specificity of oxidoreductases
in the S. cerevisiae iMM904 model to increase the maximum theoretical yield
of native metabolic compounds. (a) Carbon yield for wildtype (wt) metabolic content
and after one oxidoreductase swap (swap). Colors indicate the percent increase in maximum
theoretical yield compared to wildtype. (b) Reactions found to most influence production
of products are ranked and plotted by increase in theoretical maximum yield under each
condition, and each color indicates a reaction or group of reactions that can be swapped to
reach the optimal theoretical maximum yield. Note that the D-xylose uptake reactions
(XR/XDH) exist in the iMM904 model and thus in these simulations, but this pathway is
not active in wildtype S. cerevisiae (see Methods). *Minimum growth rate set to 10% of
the maximum growth rate.
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Group 1: GAPD, PDH

Group 2: ACALD, GAPD, PDH

Group 3: GAPD, SHK3Dr

Group 4: GAPD, PDH, SHK3Dr

0% 10% 20% 30% 50% 60% 70% >80%40%Percent increase in YP/S from wildtype: Reaction sets predicted to increase YP/S:

Product wt 1 swap 2 swaps wt 1 swap 2 swaps wt 1 swap 2 swaps wt 1 swap 2 swaps wt 1 swap 2 swaps wt 1 swap 2 swaps

1,3-Propanediol 0.29 0.39 0.46 0.17 0.31 0.32 0.69 0.75 0.78 0.63 0.63 0.63 0.61 0.61 0.61 0.71 0.72 0.72
GAPD PDH GAPD PDH Group 1 PDH 4+ rxns 4+ rxns 4+ rxns 4+ rxns 4+ rxns 4+ rxns

1,4-Butanediol 0.51 0.43 0.64 0.64 0.62 0.68

R,R-2,3-Butanediol 0.63 0.51 0.33 0.66 0.64 0.65

meso-2,3-Butanediol 0.63 0.51 0.33 0.66 0.64 0.65

R-3-Hydroxybutyrate 0.53 0.72 0.73 0.40 0.60 0.36 0.40 0.78 0.79 0.81 0.75 0.77 0.79 0.80 0.82 0.83
GAPD 4+ rxns GAPD GAPD Group 2 GAPD Group 2 GAPD GAPD 4+ rxns

S-3-Hydroxybutyrate 0.63 0.74 0.49 0.60 0.40 0.79 0.81 0.81 0.77 0.78 0.79 0.81 0.83
GAPD GAPD Group 2 4+ rxns Group 2 4+ rxns 4+ rxns

3-Hydroxypropanoate 0.32 0.55 0.61 0.19 0.41 0.39 0.84 0.87 0.89 0.81 0.84 0.86 0.91 0.92 0.92
GAPD PDH GAPD Group 1 PDH Group 1 PDH 4+ rxns 4+ rxns

R-3-Hydroxyvalerate 0.48 0.61 0.28 0.40 0.34 0.75 0.76 0.72 0.73 0.78
GAPD GAPD Group 1 Group 1

S-3-Hydroxyvalerate 0.59 0.61 0.36 0.40 0.34 0.76 0.76 0.73 0.73 0.78
Group 1 GAPD 4+ rxns 4+ rxns

Styrene 0.24 0.29 0.14 0.18 0.15 0.67 0.67 0.65 0.66 0.71
GAPD GAPD Group 3 Group 4

p-Hydroxystyrene 0.23 0.27 0.13 0.17 0.14 0.69 0.70 0.67 0.68 0.72 0.72
GAPD GAPD Group 3 Group 3 4+ rxns

Lycopene 0.36 0.41 0.00 0.22 0.66 0.67 0.00 0.70
GAPD 4+ rxns

Anaerobic Aerobic
GlycerolGlucose Xylose Glycerol* Glucose Xylose

Figure 5.4: The effect of swapping cofactor specificity of oxidoreductases for
the production of non-native compounds in E. coli. The table shows the maximum
theoretical yield for wildtype (wt) and after one oxidoreductase swap (1 swap) and two
oxidoreductase swaps (2 swaps), and the selected reaction or groups of reactions that can
be swapped to reach the optimal theoretical maximum yield. Colors indicate the percent
increase in maximum theoretical yield compared to wildtype. *Minimum growth rate set
to 10% of the maximum growth rate.

5.2.6 Sensitivity analysis

A number of parameters can effect the simulation of theoretical yields; these

include the oxygen uptake rate (OUR), the minimum growth rate (µmin), and the

SUR. A sensitivity analysis was performed for aerobic (OUR = 10 mmol gDW-1 h-1)

and anaerobic (OUR = 0) conditions. For a range of SUR values from 5 to 20 mmol

gDW-1 h-1, corresponding to a realistic range for glucose uptake in E. coli (Covert

et al. 2004), and µmin values from 0 to maximum growth, the optimal single swap was

identified and the theoretical yield improvement was calculated.
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5.2.7 Determining cofactor usage

To determine the NADPH usage of each production pathway, pFBA simulations

were run optimizing for flux through each production pathway with zero growth

(µmin = 0) and with the transhydrogenase enzymes constrained to zero flux. Then,

the flux through all reactions consuming NADPH was summed. This procedure was

repeated for all carbon-containing metabolites that could be exported by the metabolic

model.

All simulations were performed using MATLAB (The MathWorks Inc., Natick,

MA, USA) and the COBRA Toolbox (Becker et al. 2007) software packages with

TOMLAB (Tomlab Optimization Inc., San Diego, CA, USA) and Gurobi (Gurobi

Optimization, Inc., Houston, TX, USA) MILP solvers.

5.3 Results

5.3.1 Native Pathways

To determine the effect of cofactor swaps on product yield, simulations were

performed to optimize production of 81 and 154 target compounds in E. coli and S. cere-

visiae, respectively, while allowing one and two swaps of oxidoreductase specificity

out of the pool of oxidoreductase reactions (Tables 5.2, 5.3). All carbon-containing

molecules that can be exported by the metabolic models were considered. Increases in

theoretical maximum yield were seen for many native products after one swap in both

the E. coli iJO1366 and S. cerevisiae iMM904 models (Fig. 5.2–5.3). The theoretical

yields for these pathways are dependent on the specific values selected for SUR, OUR,

and µmin. For these optimizations, the parameters were chosen to represent a possible
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scenario for a bioprocessing strain (a maximum value of SUR = 10 mmol gDW−1 h−1

and OUR = 10 mmol gDW−1 h−1, and a minimum value of µmin = 0.1 h−1). Studies

have reported specific growth rates in the range of 0.03–0.43 h−1 for production strains

of E. coli (Martínez et al. 2008; Murarka et al. 2008; Bettiga, Hahn-Hägerdal, and

Gorwa-Grauslund 2008; Qian, Xia, and Lee 2009; Rathnasingh et al. 2009), and the

SUR was chosen to match observed glucose uptake under aerobic conditions (Covert

et al. 2004). To further justify the selection of these parameters for the global analysis,

a sensitivity analysis was performed, discussed in Section 5.3.3.

E. coli

During anaerobic growth on glucose, cofactor optimizations of iJO1366 showed

an increase in theoretical yield greater than 20% for 29 native products after one

cofactor swap. The effect of a second swap was small in most simulations, and further

swaps (> 2 swaps) had no effect on product yield (Fig. 5.2). For anaerobic growth

with D-xylose as a substrate, the increases in maximum theoretical yield were slightly

greater in magnitude but qualitatively similar to those with glucose as a substrate.

Aerobically, smaller increases in maximum theoretical yield were observed for all native

targets and cofactor swaps. A 10–15% increase in theoretical yields was seen for 15

products (e.g., thymine, agmatine, L-arginine, D-alanine) with glucose as a substrate

(Fig. 5.2A), and similar increases were seen with D-xylose as a substrate.

In iJO1366, converting the cofactor specificity of GAPD (EC 1.2.1.13) from

production of NADH to production of NADPH has a global effect on the theoretical

yield of native products. When considering the 45 metabolites with the greatest

change in yield after cofactor swapping, simulated under 4 media conditions, it was
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observed that in all 180 cases swapping the native GAPD for the NADPH-dependent

GAPD resulted in the greatest increase in yield, and for 155 of 180 cases no other

cofactor swap can produce the theoretical maximum yield (the solutions are unique)

(Fig. 5.2B). In order to investigate the relationship between cofactor swapping and the

NADPH usage of production pathways, pFBA simulations (Lewis et al. 2010a) were

run maximizing production for each target molecule with zero growth. Then, for each

simulation, the sum of the fluxes through all reactions that consume NADPH was

calculated. This sum is an indication of the NADPH usage for producing a particular

metabolite at the theoretical limit of production at steady state. A correlation was

observed between the NADPH usage of production pathways and the improvement in

theoretical yield after swapping GAPD (Pearson’s r = 0.76, Supplementary Fig. 1).

This correlation points to the finding that producing more NADPH can can leads to a

higher maximum theoretical yield for a number of desired production targets.

S. cerevisiae

Cofactor swapping optimizations for S. cerevisiae also showed increases in

theoretical yield after one cofactor swap (Fig. 5.3). S. cerevisiae does not contain an

active pathway for D-xylose catabolism. However, many studies have reported the

introduction of a D-xylose uptake pathway containing the enzymes XR, which oxidizes

NADPH, and XDH, which reduces NAD+ to NADH, and high D-xylose consumption

has been achieved with the pathway from Pichia stipitis (Ghosh, Zhao, and Price 2011;

Bengtsson, Hahn-Hägerdal, and Gorwa-Grauslund 2009). These reactions were utilized

in the analysis of native yeast metabolism because they are included in iMM904 (as

discussed in the Methods). Maximum theoretical yields of many products increase
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250–350% after one swap when this pathway is modeled and D-xylose is present as the

substrate. XI is an alternative, cofactor-balanced pathway for xylose uptake (Bettiga,

Hahn-Hägerdal, and Gorwa-Grauslund 2008). When this enzyme is simulated, the

predicted flux distribution utilizes XI in preference to XR/XDH. Using XI increases

yield to the maximum theoretical yield achieved by cofactor swaps. Thus, modifying

the D-xylose uptake pathway is an alternative to implementing the optimal cofactor

swap.

Under aerobic conditions, increases in maximum theoretical yield were smaller

than under anaerobic conditions, as in the E. coli metabolic model. However, the

theoretical yield increases were still significant. For example, maximum theoretical

yields of episterol, fecosterol, zymosterol, and ergosterol increased 29–32% with glucose

as a substrate and 66–70% with D-xylose as a substrate after swapping the cofactor

specificity of the alcohol dehydrogenase reaction ALCD2x (EC 1.1.1.1).

In the yeast metabolic model, swapping the cofactor specificity of a second

oxidoreductase had no impact on theoretical yield. Also, in comparison to the results

for E. coli, more of the yeast yield optimizations resulted in non-unique solution

groups (Fig. 5.3B). For instance, under anaerobic conditions with glucose substrate,

the L-serine yield reached a maximum of 0.47 Cmol / Cmol substrate after swapping

the cofactor specificity of either oxidoreductase enzyme in the solution group (Group 1:

GAPD or ALCD2x). In contrast to E. coli, the reaction that appeared most often in

solutions is ALCD2x, and GAPD appears secondarily.
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5.3.2 Non-native pathways in E. coli

Major building block molecules that have been heavily studied as non-native

products of E. coli were selected for the cofactor swapping analysis. These products in-

clude (1) the polyester building-blocks 1,3-propanediol, 1,4-butanediol, 2,3-butanediol,

3-hydroxybutyrate, and 3-hydroxyvalerate, and (2) the polyvinyl building blocks

styrene and hydroxystyrene (Adkins et al. 2012). Production of lycopene, a red-

colored carotenoid sold commercially as a colorant and a nutritional supplement, was

also simulated. When applicable, production pathways for alternate sterioisomers

were considered, so that, in total, twelve non-native pathways were reconstructed in

the E. coli model (Table 5.1).

Optimization of cofactor swapping increased the theoretical maximum yield of

9 of 12 non-native pathways (Fig. 5.4). The effects were much greater anaerobically;

under aerobic conditions, less than 10% increases were observed. For three products

(1,4-butanediol, R,R-2,3-butanediol, and meso-2,3-butanediol), the optimization did

not find any solution, indicating that modifying cofactor specificity is not predicted

to increase the maximum yield of these products. For these products, a sensitivity

analysis was performed (Section 5.3.3).

5.3.3 NADPH yield and parameter sensitivity

The effect of cofactor swaps was observed to depend on the values of SUR,

OUR, µmin selected for the simulation. To better understand the relationship between

these parameters and the observed improvements in theoretical yield, a simple scenario

where E. coli is used to regenerate reducing equivalents of NADPH for the conversion

of cyclohexanone to ε-caprolactone was explored. Martínez et al. 2008 performed



96

a GAPD cofactor swap in E. coli and observed an increase in the yield of NADPH

reducing equivalents for this chemical conversion. By examining this simple case, the

effect of the cofactor swaps on NADPH yield can be isolated from other factors such

as shifts in carbon metabolism.

Cofactor optimizations were performed for a range of SUR and µmin values,

under aerobic and anaerobic conditions. The NADPH yield in E. coli was observed to

decrease as the biomass production approaches a maximum (Fig. 5.5A,D). However,

swapping the cofactor specificity of the GAPD reaction resulted in increased maximum

theoretical yield compared to the wildtype (Fig. 5.5C,F). It was also observed that the

selection of GAPD as the optimal swap was consistent across parameters for aerobic

and anaerobic conditions (see Discussion for further analysis).
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a. wildtype b. GAPD swap c. Difference in yield (swap − wildype)
Anaerobic (OUR = 0)

d. wildtype e. GAPD swap f. Difference in yield (swap − wildype)
Aerobic (OUR = 10 mmol/gDW/h)
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Average Δyield for feasible region: 
0.65 ± 0.33 mol NADPH/mol glucose

Average Δyield for feasible region: 
1.42 ± 0.20 mol NADPH/mol glucose

Figure 5.5: A sensitivity analysis on the impact of cofactor swapping when
varying modeling parameters. The conversion of cyclohexanone to ε-caprolactone
requires reducing equivalents which can be provided by E. coli growing in glucose minimal
media. For this conversion, a sensitivity analysis was performed for (a–c) anaerobic and
(d–f) aerobic conditions. Substrate uptake rate (SUR) and the minimum growth rate
(µmin) were varied across a wide range of values, and it was observed that swapping GAPD
increased carbon yield across all parameters. For infeasible µmin values, no growth is
possible, so yield is zero (dark blue regions). Across all feasible datapoints, the average
and standard deviation of the ∆yield are given and can be compared to the increase in
yield observed by Martínez et al. 2008 of 1.25± 0.19 mol NADPH/mol glucose.

For the non-native compounds 1,4-butanediol and 2,3-butanediol, running

the cofactor swap optimization with the default parameters did not identify any

opportunities to improve theoretical yield. The same sensitivity analysis was performed

for these target molecules to determine whether, under any other conditions, a cofactor

swap might be beneficial (Supplementary Fig. 5.2). It was observed that under a

certain range of SUR and µmin values, when growth is near the maximum growth rate,

a swap does improve theoretical yield for 1,4-butanediol, under aerobic and anaerobic
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conditions. Specifically, under anaerobic conditions, it was found that there were

790 feasible parameter sets based on the parameters of the sensitivity analysis (see

Methods). Out of these, the cofactor swap was beneficial for 292 of the 790 feasible

parameter sets (i.e. 37%, and the increase can be seen in Supplementary Fig. 5.2).

Furthermore, when examining both 2,3-butanediol isomers during the sensitivity

analysis, the cofactor swapping did not improve theoretical yield at any values of SUR

and µmin.

Finally, the sensitivity analysis was performed for L-cysteine production (on

glucose minimal media in E. coli) to further examine whether the optimizations for a

single parameter set (Fig. 5.2–5.4) are sensitive to the selection of SUR, OUR, and

µmin. It was observed that theoretical yields were improved by the GAPD cofactor

swap across a broad range of SUR, OUR, µmin values (Supplementary Fig. 5.3). Thus,

the parameter set chosen for the global analysis, where SUR and µmin are relatively

small, leads to accurate estimations of the maximum effect of a cofactor swap (e.g.

L-cysteine anaerobically), or even underestimations of the maximum effect of a cofactor

swap (e.g. L-cysteine aerobically, 1,4-butanediol), and the general trends observed

in the global analysis are a meaningful representation of the total impact of cofactor

swapping on theoretical yields.
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5.4 Discussion

5.4.1 Cofactor swaps for certain enzymes have a global im-

pact on theoretical yields

This study presents a computational analysis to determine optimal cofactor-

specificity swaps of oxidoreductase enzymes in genome-scale metabolic models, specifi-

cally for the production organisms E. coli and S. cerevisiae. Increases in theoretical

yield were observed for many products of E. coli and S. cerevisiae metabolism after

one cofactor swap, and swapping certain reactions (esp. GAPD, ALCD2x) was seen to

have a global benefit for theoretical yields. The theoretical yield improvements were

found for a number of native products that are produced on an industrial scale and

have been considered for bioproduction using E. coli or S. cerevisiae. These include the

native compounds L-lysine, L-isoleucine, L-proline, L-serine, L-threonine, L-aspartate,

L-lactate, 1,5-diaminopentane (cadaverine), and putrescine, and the non-native com-

pounds 3-propanediol, 3-hydroxybutyrate, 3-hydroxypropanoate, 3-hydroxyvalerate,

styrene, and lycopene. (For review articles describing the bioproduction of these

compounds in E. coli, see Becker and Wittmann 2012; Jang et al. 2012.)

Nearly all single swaps selected by the optimization for native and non-native

products in E. coli were for the GAPD enzyme. This is a central enzyme in glycolysis,

and the change in electron carrier specificity causes a shift in central metabolism

toward NADPH production. Because the GAPD cofactor swap has such a global

impact on biosynthesis in E. coli metabolism, a stable strain with NADPH-dependent

GAPD could be a useful starting point for engineering E. coli for production of any

of the products reported here (Fig. 5.2, 5.4). Published results have shown that
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experimentally replacing the GAPD in E. coli with an NADPH-dependent GAPD

increases yield and productivity of lycopene and e-caprolactone (Martínez et al. 2008).

The optimizations presented here demonstrate that the GAPD cofactor swap is an

ideal choice. However, for some products, swapping the cofactor specificity of other

important oxidoreductase enzymes can have the same affects on yield (e.g., pyruvate

dehydrogenase [PDH, EC 1.2.4.1], malate dehydrogenase [MDH, EC 1.1.1.37], and

phosphoglycerate dehydrogenase [PGCD, EC 1.1.1.95]).

The environmental conditions (aerobicity, substrate) were a major determinant

of the impact of cofactor swapping. Simulations with D-xylose as a substrate showed

greater increases in yield after swapping than those with glucose substrate (Fig. 5.2–5.4),

and, with glycerol as a substrate, very little improvement was possible with cofactor

swapping (Fig. 5.4). Aerobicity also had a major effect. In anaerobic simulations,

cofactor swapping had a much greater impact than in aerobic simulations. SUR and

µmin also affected the results of cofactor swapping (as described below). Some cases

(e.g. aerobic production of glycine in yeast) are exceptions to these trends, so the

relationship between environment conditions, cofactor swapping, and theoretical yield

is complex, and the cofactor balance depends on the exact metabolic state of a cell.

Simulations utilizing the S. cerevisiae metabolic network differed from E. coli

in that more cofactor swaps could theoretically produce the same improvement in

yield, as seen in the many non-unique solutions (Fig. 5.3B). Thus, one has more

flexibility to choose interventions as various swaps can produce the same effect. The

exact enzyme to modify can be determined by other factors, such as the strength of

regulation of the native enzyme or the availability of an appropriate enzyme with

alternate cofactor specificity. As in E. coli, the native GAPD in S. cerevisiae has
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been experimentally replaced with a NADPH-dependent GAPD, resulting in higher

D-xylose fermentation (Verho et al. 2003) and the same design has been patented for

the production of many products (ethanol, lactic acid, polyhydroxyalkanoates, amino

acids, fats, vitamins, nucleotides) (Londesborough et al. 2003). However, the results

of cofactor swapping optimizations demonstrate that modifying ALCD2x can have the

same impact on theoretical yield, and, in many cases, any one of a group of enzymes

can increase theoretical yield to optimal levels.

5.4.2 Simulated theoretical yield improvement matches ex-

perimental observations for a GAPD swap

To determine how cofactor swapping modifies the capabilities of the metabolic

network, a simple scenario was explored where E. coli generates reducing equivalents

of NADPH that drive a bioprocessing reaction. In such a scenario, the effect of

cofactor balance can be isolated from biomass production and carbon metabolism.

In an experimental study, Martínez et al. 2008 compared the ability of wildtype and

GAPD-swap E. coli strains to produce reducing equivalents of NADPH for a reaction

that converts cyclohexanone to ε-caprolactone (utilizing one mole of NADPH per mole

of ε-caprolactone produced). The authors reported an increase in NADPH yield from

1.72± 0.19 to 2.97± 0.05 mol NADPH / mol glucose. For in silico optimizations of

ε-caprolactone production, GAPD is the optimal cofactor swap across the range of

SUR, OUR, and µmin parameters, and swapping GAPD increases theoretical yield for

all parameter values (Fig. 5.5). The increase in theoretical yield after swapping GAPD

was somewhat consistent across parameters: 1.42± 0.20 mol NADPH / mol glucose

under anaerobic conditions and 0.65 ± 0.33 mol NADPH / mol glucose under the
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examined aerobic conditions (Fig. 5.5C,F). Thus, the simulated increase in theoretical

yield is a plausible explanation for the 1.25± 0.19 mol NADPH / mol glucose increase

in yield observed by Martínez et al. 2008.

5.4.3 Optimal cofactor swaps increase ATP availability

It has been reported that transhydrogenase enzymes in E. coli are responsible

for producing 35–45% of the NADPH necessary for biosynthesis (Sauer et al. 2004).

However, the transfer of reducing equivalents from NAD(H) to NADP(H) requires

energy from proton translocation to proceed. Thus, in vivo and in silico, the amount

of NADPH that can be produced by the transhydrogenase enzyme is limited by this

energy requirement. Some yield increases for products of biosynthetic reactions can

be achieved by overexpressing the membrane-bound transhydrogenase encoded by

sthA or down-regulating the soluble transhydrogenase encoded by pntAB (Sanchez

et al. 2006; Jan et al. 2013). However, the metabolic model predicts that modifying

transhydrogenases will not lead to the maximum theoretical yield. Producing NADPH

directly during a metabolic transformation is inherently more efficient than utilizing

the transhydrogenase enzyme and the electrochemical gradient to generate NADPH

from NADH. At the theoretical limit of NADPH production under anaerobic con-

ditions (Supplementary Fig. 5.4), the GAPD cofactor swap allows for a decrease in

NADPH production by the energy-coupled transhydrogenase enzyme. Thus, demand

for transmembrane electrochemical potential (i.e. ATP equivalents) from the tran-

shydrogenase enzyme decreases, and more flux can be directed away from glycolysis

and ATP production and towards NADPH producing enzymes (e.g. in the pentose

phosphate pathway). These trends were also investigated for native products of E. coli
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iJO1366 for which the GAPD swap increased theoretical yield. For these products, it

was observed that, at the theoretical maximum production state, the flux through

glycolysis, the pentose phosphate pathway, and TCA cycle were not generally shifted

after swapping GAPD (Supplementary Fig. 5.5). Thus, glycolytic flux remains high

in the GAPD-swap simulation, and any ATP that was is no longer necessary for

transhydrogenase activity can be directed to product and biomass generation.

In contrast to E. coli, no transhydrogenase enzymes have been identified in yeast

(Nissen et al. 2001). Therefore, balancing cofactor production and consumption in S.

cerevisiae is even more critical. In yeast, under anaerobic conditions, the theoretical

yield of NADPH increases after the ALCD2x swap because NADH production decreases,

so less flux is directed to ethanol fermentation (which would act to oxidize NADH),

and more flux can be directed to acetate fermentation (which has a higher ATP

yield than ethanol fermentation). Thus, the decrease in NADH production can

theoretically increase the availability of ATP at steady state—even in the absence of

transhydrogenase enzymes.

5.4.4 Cofactor swapping in yeast has a greater effect with

D-xylose as a substrate

When D-xylose is used as a substrate, swapping the specificity of a single

oxidoreductase can have an even greater effect on the production of native products in

S. cerevisiae. There has been much interest in the use of 5-carbon sugars as a feedstock

for S. cerevisiae production strains, which can be accomplished with heterologous

expression of the XYL1 and XYL2 genes, encoding XR and XDH, respectively, from

P. stipitis (Bengtsson, Hahn-Hägerdal, and Gorwa-Grauslund 2009). This XR is
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NADPH-dependent, and modifications to the cofactor specificity of XR have been

shown to increase xylose fermentation, experimentally (Bengtsson, Hahn-Hägerdal,

and Gorwa-Grauslund 2009) and computationally (Ghosh, Zhao, and Price 2011). The

simulations presented here show that swapping the cofactor specificity of high-flux,

central metabolic enzymes (i.e., GAPD, ALCD2x) can increase theoretical yields by

2–3 fold across native metabolism in S. cerevisiae by generating more NADPH to

drive D-xylose uptake by XR (Fig. 5.3, see Methods for how the native XR and XDH

in the model are accounted for). Our results also show that swapping the cofactor

specificity of these central metabolic enzymes has a greater impact on theoretical

yield in yeast than cofactor swaps for XR or XDH. Utilizing the cofactor-balanced XI

enzyme (Bettiga, Hahn-Hägerdal, and Gorwa-Grauslund 2008) is another approach to

cofactor balancing D-xylose uptake, and the XI uptake pathway also maximizes the

theoretical yield in silico.

While theoretical yield improves for many products with D-xylose as a substrate,

the theoretical yield of ethanol fermentation was not much improved by cofactor

swapping. Under aerobic conditions, simulations showed an increase in theoretical

yield from 0.606 to 0.619 Cmol / Cmol (a 2% increase) after swapping the cofactor

specificity of ALCD2x. Under anaerobic conditions, no increase was observed. In

a previous study, Verho et al. 2003 compared ethanol fermentation from D-xylose

with the native GAPD enzyme to ethanol fermentation with an NADPH-GAPD,

and the authors reported a significant increase in ethanol yield (from 0.24 to 0.41

Cmol / Cmol). The results of this work suggest that the theoretical yield was not

significantly increased in the GAPD-swap strain, and so other effects (e.g. regulation,

kinetics) could be considered to explain the improved yield.
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5.4.5 Theoretical yield of non-native products increases with

swaps

Optimizations for the non-native pathways reconstructed in E. coli demon-

strate that cofactor swapping can also improve maximum theoretical yields for non-

native industrial products. In particular, the theoretical yields of 1,3-propanediol,

3-hydroxybutyrate, 3-hydroxypropanoate, 3-hydroxyvalerate, styrene, and lycopene

were increased after one cofactor swap. For biomonomer production strains, yield is

an extremely important consideration. Final titer, productivity, and yield are the

three most important design parameters in bioprocessing, and yield plays a central

role in determining the economic viability of a production process for high volume/low

cost products like biomonomers (Villadsen, Nielsen, and Lidén 2011). The same type

of modifications of cofactor specificity that have been used to increase yield of native

products in E. coli (Martínez et al. 2008) and S. cerevisiae (Bengtsson, Hahn-Hägerdal,

and Gorwa-Grauslund 2009; Verho et al. 2003) are predicted to increase the maximum

yield of these non-native products.

In the global analysis, theoretical yields of 1,4-butanediol and 2,3-butanediol

were not effected by cofactor swapping. For these products, a detailed analysis of

swapping across the parameter space of SUR, OUR, and µmin (Supplementary Fig. 2)

showed that some improvement in theoretical yield is possible for 1,4-butanediol at

certain parameter values. Specifically, improvements in theoretical yield are prevalent

when µmin is near its maximum value for a given SUR. Only at higher growth rates

does cofactor balance become a limitation for production of 1,4-butanediol. However,

across the parameter range, cofactor swaps did not increase the thoeretical yield for

either of the 2,3-butanediol isomers. The case of 1,4-butanediol demonstrates that one
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should pay close attention to SUR, OUR, and µmin and their effects when simulating

theoretical yield and optimizing cofactor balance.

5.4.6 Theoretical yields are sensitive to knowledge of cofac-

tor preference and enzyme promiscuity

A limitation of this analysis is the possibility of alternative cofactor usage by

promiscuous oxidoreductase enzymes (Olavarría, Valdés, and Cabrera 2012). This

limitation can be addressed by improving the model to include additional reactions

for those oxidoreductases that are known to catalyze flux with multiple cofactors, and,

in fact, some reactions do have this kind of annotation (e.g. frdABCD in iJO1366

(Orth et al. 2011)). To engineer a strain that generates a product near the theoretical

yield, it is still necessary to optimize the native regulation and the kinetics and

thermodynamics of the optimal pathways. Also, the theoretical yields presented here

are purely stoichiometric, so any theoretical kinetic or thermodynamic limitations

beyond reaction reversibilities (Feist et al. 2007) are not included in the analysis.

Furthermore, the kinetic and thermodynamic impacts of cofactor swapping a particular

enzyme could lead to unintended consequences in the network that are not reflected in

the thoeretical yield. Published cases of successfully swapping the cofactor specificity

of oxidoreductase enzymes have not identify this as a major limitation (Verho et al.

2003; Martínez et al. 2008), but it is an important consideration, especially as one

approaches the theoretical limits of bioproduction.
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5.5 Conclusion

Constraint-based modeling is uniquely suited for modeling optimal metabolic

states, because optimizations like cofactor swapping can be performed for large sets of

products and environmental conditions. The optimizations reported here demonstrate

the importance of cofactor swapping in E. coli and S. cerevisiae for native and non-

native products, and show that microbial byproducts can be organized according to

the need for a synthetic increase in NADPH production. These results also highlight

the centrality of certain enzymes and that swapping the cofactor specificity of these

enzymes (GAPD, ALCD2x) has a global effect on cofactor balance in the metabolic

network. These methods are especially applicable for highly engineered strains can

generate metabolic products with yields approaching the maximum theoretical yield

(Murarka et al. 2008; Trinh 2012; Lin, Bennett, and San 2005). Cofactor swapping

could be used to tune high-yield industrial bioprocessing strains, and experimental

validation of the optimal swaps predicted for E. coli and S. cerevisiae could have an

immediate application in industry.

Chapter 5 is a reprint of a published manuscript: King, Z. A. and Feist, A. M.

(2014). “Optimal cofactor swapping can increase the theoretical yield for chemical

production in Escherichia coli and Saccharomyces cerevisiae”. In: Metab. Eng. 24,

pp. 117–128. doi: 10.1016/j.ymben.2014.05.009. The dissertation author was the

primary author of the paper and was responsible for the research.

http://dx.doi.org/10.1016/j.ymben.2014.05.009


Chapter 6

Literature mining supports a

next-generation modeling approach

to predict cellular byproduct

secretion

6.1 Introduction

All cells secrete metabolic byproducts in the course of growing and producing

energy, and these byproducts play important roles in the study of biological systems.

Byproducts are a readout of the cellular state; lactate excretion, for instance, is

characteristic of tumor cell growth (Hanahan and Weinberg 2011; Basan et al. 2015).

Byproducts can be engineered for bioproduction of commodity chemicals and biofuels

(Lee and Kim 2015; Zhang, Rodriguez, and Keasling 2011; Chubukov et al. 2016).

And byproducts of yeast fermentation – including ethanol – are responsible for the

108
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most popular beverages in human history (Piškur et al. 2006). With the critical roles

played by metabolic byproducts in disease and biotechnology, it is of great interest to

be able to predict the byproducts that a cell will secrete under a specific condition.

However, no published study has assessed whether existing computational methods

are able to predict metabolic byproducts for a range of strains and conditions.

Computational models have been shown to correctly predict byproduct secretion

under common laboratory conditions. During aerobic growth, the model bacterium

Escherichia coli oxidizes substrate molecules to secrete CO2 and water; during anaero-

bic fermentation, E. coli secretes mixed-acid fermentation products (ethanol, acetate,

formate, D-lactate, and succinate) (Clark, David P 1989). Genome-scale models

(GEMs) and constraint-based reconstruction and analysis (COBRA) methods rely on

knowledge of the metabolic network and mass-balance during steady state growth to

predict the optimal distribution of metabolic flux for growth (Bordbar et al. 2014a).

GEMs have been shown to be able to predict E. coli byproduct secretions in certain

cases (Varma, Boesch, and Palsson 1993; Fong et al. 2005). In the context of GEMs,

the byproducts that must be secreted for optimal growth are called growth-coupled, and

computational methods have been developed to predict and engineer growth-coupled

chemical production (Burgard, Pharkya, and Maranas 2003; Feist et al. 2010; Lewis,

Nagarajan, and Palsson 2012). However, few experimental studies have followed from

the computational method development, among them (Fong et al. 2005; Yim et al.

2011), so it is unclear how these methods would scale up to a wide variety of strains

and conditions.

Next-generation GEMs of metabolism and gene expression (called ME-models)

are now available; ME-models predict the composition of the entire proteome of a
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cell (O’Brien et al. 2013; O’Brien and Palsson 2015; Lerman et al. 2012). In contrast,

GEMs of metabolism (M-models) predict only the reaction fluxes in a metabolic

network (O’Brien and Palsson 2015). One new capability of ME-models is the ability

to predict the bacterial Warburg effect, the tendency of bacteria to secrete acetate

during aerobic growth in the presence of excess substrate (Basan et al. 2015; Molenaar

et al. 2009). In ME-models, the limitations of ribosome efficiency lead to low-yield

metabolic approaches like acetate secretion (O’Brien et al. 2013). The same effect

can be seen in smaller-scale growth models and is supported by phenotypic data

(Basan et al. 2015; Molenaar et al. 2009). Whether ME-models can correctly predict

byproduct secretion for other conditions is not currently known.

High-quality genotypic and phenotypic data are required to test any model

predictions, and such data have not been available for the study of byproduct secretion.

The present study takes a novel approach by mining the research literature for examples

of engineered strains of E. coli with diverse byproduct secretion mixtures. We collected

73 papers reporting a total of 89 strains of E. coli that have a wide range of gene

knockouts, heterologous pathways, and growth conditions, and we simulated these

paired genotype-phenotype data in 6 historical GEMs of E. coli, including the next-

generation ME-model. We find that GEMs have been improving in their ability

to recapitulate measured byproducts from experimental studies as the models have

increased in size and scope. We explore the possible reasons for incorrect predictions

and provide insights into the challenges of simulating byproduct secretion for any

growing cell.
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6.2 Results

6.2.1 Literature mining provides a diverse set of strains and

phenotypes.

An impressive body of data on E. coli byproduct secretion can be found in

the peer reviewed literature (Fig. 6.1). We generated a bibliomic database using

a workflow for identifying relevant papers, extracting data, and performing quality

assessment (Fig. S1; Supplementary Figures and Data available at http://dx.doi.org/

10.1101/066944). Each paper in the database reported a strain design of E. coli in

which the fermentation pathways were engineered to force the cell to secrete a target

molecule (Fig. 6.2). The bibliomic database includes the gene knockouts, heterologous

pathway descriptions, substrate conditions, oxygen availability, and the parent cell

line for each strain (Supplementary Data 1). It is difficult to extract and normalize

quantitative measures of byproduct secretion from the literature. Instead, we recorded

the molecule that was targeted for overproduction in the study, and we confirmed

that this byproduct was the major secretion product in each case (see Methods). The

bibliomic database contains 73 papers and 89 strains of E. coli; this is approximately

20% of all papers on metabolic engineering of E. coli collected in the LASER database

(Winkler, Halweg-Edwards, and Gill 2015).

http://dx.doi.org/10.1101/066944
http://dx.doi.org/10.1101/066944
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a

b

Figure 6.1: The bibliomic database. (a) The number of papers published for each
target molecule over time. (b) The individual genes that have been knocked out for each
target molecule. The sums across the bottom indicate the total number of designs that
include a given gene, and the sums across the right indicate the total number of unique
genes knocked out for a given target molecule. These common knockouts remove the routes
to the native fermentation products acetate (pta, ackA, pflB), ethanol (adhE, pflB), formate
(pflB), D-lactate (ldhA), and succinate (frdABCD). These knockouts represent a common
strategy where the highest-yield fermentation pathways are knocked out, one by one, until
the target pathway becomes the optimal route for balancing the redox state of the cell.
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Figure 6.2: The engineered fermentation pathways in E. coli. All the engineering
pathways in the bibliomic database are shown, along with their metabolic precursors.
Native products (yellow) are those that appear in the genome-scale model iJO1366. Native
pathways in iJO1366 (dark blue arrows) and non-native pathways (light blue arrows) are
also differentiated.

The strains in the bibliomic database were simulated in six GEMs of E. coli

(Table 6.1). The models have increased in size and complexity over the past decade;

they include five M-models and one ME-model that includes 1,683 genes and accounts

for 80% of the proteome by mass (O’Brien and Palsson 2015; O’Brien et al. 2013). Gene

knockouts, heterologous pathways, and environmental conditions from the bibliomic

database were recreated in each of the GEMs. For each strain, flux balance analysis

(FBA) (Orth, Thiele, and Palsson 2010) was used to find the predicted growth rate

and the growth-coupled yield, the carbon yield of a compound at the maximum growth
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rate. The analysis began with two comparisons between the bibliomic database and

the simulations: (1) whether the strain grew in a given environment and (2) whether

the simulation predicted growth-coupled secretion of the target byproduct from the

study.

Table 6.1: The increasing size and scope of genome-scale models of E. coli.

Model Genes Reactions Metabolites / Components Year (Reference)

Core model 137 95 72 2006 (Palsson 2006)

iJR904 904 1075 761 2003 (Reed et al. 2003)

iAF1260 1,260 2,382 1,668 2007 (Feist et al. 2007)

iAF1260b 1,260 2,388 1,668 2010 (Feist et al. 2010)

iJO1366 1,366 2,583 1,805 2011 (Orth et al. 2011)

iOL1650-ME 1,683 12,009 6,563 2013 (O’Brien et al. 2013)

The predictive power of GEMs has generally increased over time, with the

increasing size and scope of the models. New GEMs provide better predictions of

growth-coupled secretion compared to their predecessors (“Model accuracy” in Fig. 6.3).

In order to understand the reasons for this trend, we designed a computational approach

to categorize cases of incorrect prediction. Exhaustive search and parameter sampling

were employed in the M- and ME-models, respectively, to determine what changes to

the modeling approach might lead to in silico secretion of the target byproduct (see

Methods). These categories provide insights into the general challenges of modeling

byproduct secretion.
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a b

Figure 6.3: Simulations of the bibliomic dataset in E. coli GEMs. (a) The 89
strains in the bibliomic database were simulated in six GEMs of E. coli, and the incorrect
predictions were categorized to suggest a reasons for the errors. The solid line signifies
that the experimentally observed target byproduct is growth-coupled in the model. The
dashed line represents the possibility of improving predictions in the ME-model by correctly
determining the kinetic parameters (keffs). (b) The categories separated according to the
target molecule.

6.2.2 Genome-scale models do not differentiate between

isozymes.

Isozymes are common in metabolic networks, and they are represented in

M-models, but their diverse regulatory and catalytic properties lead to a broad and

complex set of challenges for metabolic modeling. Reactions are often catalyzed

by a major isozyme that is responsible for most catalysis, while minor isozymes

are also present in the cell but have a smaller role (they may not be expressed or

have less-favorable kinetics) (Nakahigashi et al. 2009); recent progress in studying

enzyme promiscuity and underground metabolism suggests that isozymes are even

more widespread than previously thought (Guzmán et al. 2015). Many experimental

studies report gene knockouts of major isozymes that decrease the activity of the

associated reaction significantly, enough so that the minor isozymes can be ignored
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(e.g. removing ldhA and ignoring dld (Trinh et al. 2011; Stols and Donnelly 1997; Zhou,

Shanmugam, and Ingram 2003)). However, M-models do not distinguish between

major and minor isozymes, so these cases are incorrectly predicted in the model; the

minor isozyme catalyzes the reaction in silico, and the in silico gene knockout of the

major isozyme has no effect. Therefore, to simulate byproduct secretion for real-world

experiments, it was necessary to employ a “greedy knockout” strategy in which all

reactions associated with a gene knockout are disabled, even if minor isozymes might

be present (Fig. 6.4a).
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Figure 6.4: Comparing simulations with experiments. All modeling approaches
have failure modes, and comparing model predictions to experimental results allows these
failure modes to be analyzed. (a) A “greedy knockout” strategy is necessary to contend
with major and minor isozymes that are difficult to simulate in GEMs. (b) The genes in
the frd operon are responsible for most of the incorrect predictions of cell death in iJR904
and iAF1260. This error was fixed in iAF1260b and later models with the addition of
the reaction DHORDfum. (c) For an isobutanol design, the ME model correctly predicts
isobutanol secretion in preference to hexanoic acid secretion because the hexanoic acid
pathway has greater protein cost (Atsumi, Hanai, and Liao 2008; Atsumi et al. 2010). (d)
Alternative optimal phenotypes appear in M-models when two pathways have equivalent
stoichiometries, as in this example for L-alanine secretion. ME-models explicitly account
for the cost of producing pathway enzymes, so the shorter L-alanine production pathway is
optimal in ME-models. (e) Succinate secretion is difficult to predict using existing GEMs,
but an ensemble of ME-models with sampled kinetic parameters demonstrates that for
certain parameter sets succinate secretion is correctly predicted.

There are exceptions where greedy knockouts are not appropriate. For example,

the alanine racemase activity of isozymes alrR and dadX is necessary for in silico

growth, so applying the greedy knockout strategy to the reported strain that has a

knockout of alrR leads to a prediction of cell death (Zhang et al. 2007). In other words,
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this strain can not be correctly simulated by M-models with or without the greedy

knockout strategy. This issue can only be addressed through continued development

of genome-scale modeling methods to address regulation, kinetics, allosteric inhibition,

and the many biophysical properties that differentiate isozymes. Furthermore, ME-

models can potentially select the appropriate enzyme based on protein cost, but ME-

models do not include regulatory effects that often are responsible for the distinction

between major and minor isozymes, so greedy knockouts are still generally required.

In this study, the greedy knockout approach was sufficient to correctly simulate most

of the gene knockouts in the bibliomic database.

6.2.3 Larger models solve false predictions of cell death.

Every strain in the bibliomic database was able to grow in the published

experimental studies, but many simulations of these strains in early GEMs resulted in

predictions of no growth (defined as in silico specific growth rate less than 0.005 hr-1).

These incorrect predictions have decreased as the GEMs have increased in size and

scope (“Experimental KO(s) are lethal in silico” in Fig. 6.3). In most cases, the reason

for the improved prediction is that the more comprehensive GEMs include a pathway

that can rescue an essential cellular function when another important pathway is

disabled by gene knockouts. In the five E. coli M-models, the lethal genotypes were

analyzed by exhaustively searching for the minimal combinations of reactions that

lead to in silico cell death (Fig. S2).

The biggest improvement in modeling the strains in the bibliomic database can

be attributed to a single reaction. The models iJR904 and iAF1260 incorrectly predict

that fumarate reductase (FRD, frd) is essential under anaerobic conditions, and 63%
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of the designs in the bibliomic database include a knockout in the frd operon (see

the large jump from iAF1260 to iAF1260b in Fig. 6.3a). These incorrect predictions

were corrected in iAF1260b and later GEMs with the inclusion of a new reaction

(DHORDfum) that rescues growth when FRD is removed (Fig. 6.4b). However, there

is no experimental evidence to support the presence of the DHORDfum reaction. So

why does this reaction exist in the models, and why does it improve predictions?

One explanation is that the DHORDfum reaction does not take place in the cell,

and, instead, succinate dehydrogenase (SUCDi, sdh) acts in the reverse direction to

rescue conversion of fumarate to succinate; this has actually been shown experimentally

(Maklashina, Berthold, and Cecchini 1998). Thus, the evidence supports removing

DHORDfum from the models and making SUCDi reversible. However, this change

introduces the challenges associated with modeling isozymes for the activity catalyzed

by frd and sdh, so the presence of DHORDfum has served as a convenient hack for

modeling E. coli.

6.2.4 Simulations suggest that some strains have room to

evolve.

When the experimental observations of byproduct secretion disagree with

predictions, another possible explanation is that the experimental strain could evolve

to grow faster by adopting the byproduct secretion strategy predicted by the model

(“Target byproduct is not growth-coupled” in Fig. 6.33). FBA simulations predict

the metabolic state of a cell that is operating close to optimal growth; GEMs are

powerful for predicting cellular behavior precisely because fast growing cells often

adopt a near-optimal strategy for growth (Ibarra, Edwards, and Palsson 2002; Edwards,
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Ibarra, and Palsson 2001). Thus, some of the disagreement between observation and

prediction might be caused, not by model errors, but rather by an assumption of

the modeling approach (the optimality assumption). This hypothesis can be tested

through laboratory evolution by passing the strain repeatedly (Fong et al. 2005). (The

process is also called serial passage, metabolic evolution, growth rescue, or adaptive

laboratory evolution (ALE).) Laboratory evolution was used in 14 studies (19 strains)

in the bibliomic database to improve byproduct secretion, and the predictive power

of the model is greater for these cases than for the bibliomic database in general

(Fig. S3). This supports the hypothesis that FBA predicts byproduct secretions that

are not correct for the reported strains but would be correct if the strains were evolved

through growth selection.

6.2.5 Next-generation ME-models improve predictions but

require parameterization.

ME-models expand upon M-models by explicitly accounting for all of the bio-

chemical reactions in the gene expression machinery of the cell (including transcription

and translation) (O’Brien et al. 2013; O’Brien and Palsson 2015). To include protein

production in the ME-model, one must estimate the turnover rate of each enzyme (keff)

that determines how many active proteins must be present to convert one set of reac-

tants to products in a given time. ME-model simulations used a set of experimentally

validated kinetic parameters from a recent study (Ebrahim et al. n.d.). For high-flux

reactions, the keffs were shown to be consistent across four growth conditions. However,

it is still possible for keffs to change between conditions, depending on metabolite

concentrations and other variables (they range between 0 and kcat). Therefore, we
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sampled keffs in the ME-model to generate an ensemble of models for each strain

that was not growth-coupled with default parameters (see Methods). We found that

26 / 41 strains in this set could be growth-coupled in the ME-model with at least one

model in the ensemble, including 9 / 11 designs for succinate production (Fig. 6.4e).

Addressing kinetic parameters will have to be a part of ME-model development going

forward, and this should lead to better predictions of byproduct secretion.

The protein costs associated with metabolic pathways in the ME-model also

solve another failure mode in M-models: alternative optimal solutions. Alternative

optimal solutions occur in M-models when two metabolic states lead to the same

growth rate, and this common failure mode has been solved with next-generation

ME-models (“Alternative optimal growth-coupled solutions” in Fig. 6.3) (Lewis et al.

2010a). In ME-model simulations, each pathway has specific enzyme costs that must

be precisely allocated using cellular resources. Therefore, pathways with the same

metabolic contribution to cellular growth (e.g. same ATP production and redox

balance) that are equivalent in the M-model have different proteomic costs in the ME-

model. In all cases, this failure mode of M-models disappear in ME-model predictions

(with one example provided in Fig. 6.4d).

In addition to removing alternative optimal solutions, the proteomic pathway

costs in the ME-model can address challenges of encoding reversibility in the M-model.

As an example, the production of isobutanol using a 2-keto acid based pathway was

recently demonstrated (Atsumi et al. 2010; Atsumi, Hanai, and Liao 2008), and the

optimal in silico phenotype of this production strain varies between models of E. coli

(Fig. 6.3b). iAF1260b correctly predicts the production of isobutanol as the optimal

fermentation product; in contrast, iJO1366 predicts that hexanoic acid, a 6-carbon
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intermediate in the β-oxidation cycle, is the preferred product. This difference can

be traced to the thermodynamic reversibility of the thiolase reaction in the second

round of the reversed β-oxidation cycle – it is irreversible in iAF1260 (KAT2) and

reversible in iJO1366 (ACACT2r) (Fig. 6.4c). The reversibility in iJO1366 is in

line with experimental evidence (Dellomonaco et al. 2011), but it also leads to the

seemingly incorrect prediction of hexanoic acid secretion. The ME-model suggests

that the incorrect prediction of hexanoic acid secretion by iJO1366 is not so much a

matter of thermodynamics as a matter of pathway length and thus proteomic cost.

When the cost of producing enzymes for metabolic pathways is incorporated into

genome-scale models, long pathways like the hexanoic acid production route through

β-oxidation carry a greater cost than the shorter 2-keto acid route to isobutanol. This

case shows the power of a constraint-based modeling approach: Properly encoding

reversibility in M-models has been a long-standing challenge, so the ME-model applies

a completely different constraint (pathway cost) that makes the reversibility of β-

oxidation unimportant for correct predictions.

6.3 Discussion

As cellular models become larger and more complicated, the datasets used

to validate them must also grow. This study presents a novel approach to model

validation based on literature mining. In spite of the uneven quality of literature

data, this approach was capable of generating important insights into the abilities

of GEMs to predict byproduct secretion. Higher-quality data would enable an even

more thorough model validation, and there is a great need in systems biology for

standardizing genotype-phenotype datasets. Standards for storing phenotypic data
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have been discussed (McMurry et al. 2016; Check Hayden 2015), and it is essential

that progress be made.

There are a few challenges that will have to be addressed to scale these methods

to larger and more complicated systems. First, many data points in the bibliomic

database cannot be modeled in existing GEMs. For instance, regulatory knockouts

are not in the scope of M- and ME-models, so they were ignored in this study. The

correct predictions of strains in the bibliomic database draw largely from the concept

of redox balance in the cell (NAD(P)H produced during glycolysis must be consumed

by fermentation pathways), and extending prediction of byproduct secretion to other

applications where redox balance is not the driving phenomenon may require further

development of the modeling methods. However, constraint-based modeling methods

are generally extensible, as we have seen with the development and implementation

of ME-models. Exploration of constraint based approaches to other subsystems –

including protein structures, membrane translocation, and regulation – are under way

(King et al. 2015b).

Second, strains modeled using GEMs and FBA must be operating close to an

optimal growth state. Understanding the byproduct secretion of strains that are not

growing rapidly will require research into other objective functions that could make

the models predictive for strains that are not optimizing for growth (Zhao et al. 2016;

Schuetz, Kuepfer, and Sauer 2007). On the other hand, the optimality assumption of

FBA offers an advantage: GEMs and laboratory evolution can be used together for

systematic optimization of microorganisms (Fong et al. 2005; Yim et al. 2011).

Finally, the extension of these methods to larger and more complex organisms,

such as tumor cells, will require rigorous development and assessment of GEMs. This
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study provides an example of validating model predictions using genotype-phenotype

data mined from the literature. The collection of these data will need to be scaled up

to validate larger and more complex models. All cells have the same basic features

that include gene expression, metabolism, and, by necessity, byproduct secretion; with

targeted validation studies, we can feel increasingly confident in our ability to model

and understand them.

6.4 Methods

6.4.1 Literature mining.

A literature mining search was performed to identify all papers reporting the

construction of a cell factory strain of E. coli for the production of a fermentation

product. A workflow was developed (Fig. S1), hundreds of papers were collected, and

73 were included in the bibliomic database based on their matching the following

criteria:

• Utilized a strain of E. coli.

• Modified the strain for production of a native or heterologous metabolite.

• Removed alternative fermentation pathways using gene knockouts.

Metadata were collected from each paper, including the target production

molecule, whether simulations were performed to identify knockouts, the parent E. coli

strain, the genetic additions and deletions, the aerobicity and carbon sources during

fermentation experiments, whether laboratory evolution was performed, and (when

possible) the measured fermentation profile of the engineered strain.
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A single target molecule was selected for each experiment, even though in some

cases a mixture of products was reported. When papers reported mixtures of hydrogen

or formate with a coproduct, the coproduct was considered the target molecule.

6.4.2 Simulations.

To simulate reported designs, the gene knockouts were implemented in silico

using a “greedy knockout” strategy. For each gene that was knocked out experimentally,

all reactions associated with that gene in the metabolic model are turned off. The

alternative strategy is to evaluate the gene-protein-reaction (GPR) rules for each

reaction in turn, to determine whether the reaction is turned off or remains unchanged;

however, as discussed in the text, only the “greedy knockout” approach was able to

correctly simulate strains in the bibliomic database.

For all non-native genes reported in the papers, pathways were reconstructed by

creating in silico reactions corresponding to the genes used in these experiments. For

transport reactions, transport was assumed to be non-energy-coupled unless otherwise

specified in the iJO1366 reconstruction or in the literature.

Polymer production must be considered separately from ordinary metabolite

secretions. To simulate these strains, the production of the monomer was optimized.

It is unclear whether polymers such as polylactic acid (PLA) would be growth coupled.

The PHA synthase is not energy coupled (Lee 1996), so an equilibrium between

monomer and polymer would probably be achieved in the optimal state (this has been

shown for soluble heteroglycans (Kartal et al. 2011)). However, by upregulating the

PHA synthase in an strain optimized for monomer production, one can use the growth-

coupling effect to perform much of the strain optimization. Thus, growth-coupling of
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the monomer is of interest.

Five M-models and one ME-model of E. coli K-12 MG1655 were used for the

simulations in this work. The M-models were collected from the BiGG Models database

(King et al. 2016), and they were used as reported in their respective publications

(Table 6.1). As described previously, the iJO1366 oxidative stress reactions CAT,

SPODM, and SPODMpp and the FHL reaction were constrained to zero (Orth et al.

2011). A new software implementation of the ME model iOL1650-ME was used.

Pathway diagrams were generated using Escher (King et al. 2015a), and COBRA

simulations were performed with COBRApy (Ebrahim et al. 2013).

For M-model simulations, the substrate uptake rates (SURs) for the solitary

carbon substrates in each simulation were constrained to a maximum uptake rate of

10 mmol gDW-1 hr-1. The oxygen uptake rates were constrained to 0 for anaerobic

conditions and 20 mmol gDW-1 hr-1 for aerobic conditions. For ME-model simulations,

SURs were left unbounded and the ME-model optimization procedure chose optimal

SURs. If LB or yeast extract was present in the medium, the simulations were still

performed with an in silico minimal media based on the assumption that cells will

preferentially consume glucose before more-complex carbon sources; however, if this

approximation led to a lethal phenotype in iJO1366, then supplementations known to

exist in rich media were added to alleviate the lethal phenotype. Microaerobic designs

were assumed to be anaerobic because it has been observed that even under aerobic

conditions the anaerobic physiology contributes to fermentation (Ingram et al. 1987).

FBA was used to find the maximum and minimum secretion of each metabolite

in the network when the growth rate is near its maximum (within 0.01%) (Orth,

Thiele, and Palsson 2010). The key outputs of these simulations are predicted growth
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rate – the flux through the biomass objective function – and the growth-coupled yield

– the minimum carbon flux through the target molecule exchange reaction at the

maximum growth rate

6.4.3 Parameter sampling.

Parameter sampling in the ME-model was employed to determine the sensitivity

of ME-model simulations to keff values. For each sampling simulation, an ensemble

of 200 models was generated with keff values selected randomly from a lognormal

distribution of possible kcats. The distribution was determined from a collection of

all kcats in the BRENDA enzyme database (µ = 2.48 and σ = 3.29) (Bar-Even, Noor,

and Savir 2011).

6.4.4 Failure model categorization.

Growth-coupling was defined as secretion of the target molecule with greater

than 15% carbon yield or, for hydrogen production, greater than 2 mmol gDW-1 hr-1.

Lethal phenotypes were defined as having an in silico growth rate below 0.005 hr-1.

Alternative optima were identified by finding designs whose maximum secretions were

above the threshold for growth coupling but whose minimum secretions were below

this threshold.

Chapter 6 is a reprint of a published manuscript: King, Z. A., O’Brien, E. J.,

Feist, A. M., and Palsson, B. O. “Literature mining supports a next-generation

modeling approach to predict cellular byproduct secretion”. In: Metabolic Engineering.

under review. The dissertation author was the primary author of the paper and was

responsible for the research.



Chapter 7

Conclusions and Outlook

7.1 Next-generation models and predictions

As the applications of COBRA methods have multiplied, there has also been a

continuous expansion in the scope and complexity of new models (Feist et al. 2009) and

methods (Lewis, Nagarajan, and Palsson 2012). Together, these new methods deliver

a vision of a COBRA modeling framework encompassing many biological networks

and simulation strategies (Fig. 7.1), so that many new types of predictions can be

made (Table 7.1).
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Table 7.1: Current and next-generation COBRA models – types of predictions
that are possible.

Model Scope Enabled Predictions References

Metabolism
(M-Model)

- Genetic manipulations for metabolite
overproduction/consumption
- Gene essentiality
- Growth rate given constraining uptake rates
- Metabolite secretion rates
- Metabolic fluxes, considering stoichiometry
of network, at given growth rate

(Orth et al. 2011)

Metabolism and gene
expression
(ME-Model)

- Maximum feasible growth rate without
explicit constraining substrate uptake rates
- Cellular macromolecule composition
- Gene expression levels
- Metabolic fluxes, considering enzyme cost,
at maximum feasible growth rate
- Nutrient limited phenotypes

(Lerman et al. 2012;
O’Brien et al. 2013)

ME-Model with cell
membrane protein
translocation

- Membrane protein composition
- Protein compartmentalization
- Protein excretion rates

(Liu et al. 2014)

Protein structural
properties and
metabolism

- Effect of enzyme structural characteristics
on cell metabolism
- Enzymes with low thermal stability which
have greatest effect on cellular
thermotolerance
- Drug binding sites of enzymes and resultant
cellular phenotype

(Zhang et al. 2009;
Chang et al. 2013a;
Chang et al. 2013b)

Probabilistic
transcriptional
regulation and
metabolism

- Quantitative impact on growth rate
following genetic perturbation of
transcriptional regulators
- Downstream effects of gene
up-/down-regulation on pathways effected by
regulatory network

(Chandrasekaran and
Price 2010)

“Whole-cell” model - Role of metabolism in cell-cycle regulation
- Interaction of many cellular processes

(Karr et al. 2012)
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Membrane
content
(Liu 2014)

New cellular networksa

Expression
and catalysis
(Lerman 2012,
O’Brien 2013)

Enzyme structure
(Chang 2013a, 2013b)

Regulation
(Chandrasekaran 2010)

gene

TF

Modular simulationsb

Structural
modeling
(Chang 2013a, 
Chang 2013b)

Replication
(Karr 2012)

COBRA

Kinetic modeling
(Chowdhury 2013)

Next generation models

Figure 7.1: COBRA tools have advanced through (a) increased scope of cellular
systems which can be modeled, and (b) highly modular simulation strategies,
built upon genome-scale models of metabolism.

7.1.1 New cellular networks

Many of the latest improvements in COBRA modeling are based on collecting

and reconstructing knowledge of cellular networks beyond metabolism (Fig. 7.1a).

These next-generation networks include gene product expression coupled to metabolism,

protein translocation in the cell membrane, protein structures of metabolic enzymes,

and transcriptional regulation. Each of these network reconstructions has been

integrated with the metabolic network, so that additional costs and constraints can

be directly incorporated with existing COBRA methods.

The first model to integrate metabolism with gene expression (ME-model) was

developed for the minimal thermophilic bacterium Thermotoga maritima (Lerman

et al. 2012), followed closely by the development of a ME-model for Escherichia coli

(O’Brien et al. 2013; Thiele et al. 2012). With the inclusion of gene expression, ME-

models have a host of new predictive capabilities. They directly account for the protein

investment necessary for operating a metabolic pathway. In a metabolic model (M-
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model), enzymes are “free;” a pathway of ten reactions has the same metabolic cost as

a pathway of three reactions, as long as the overall stoichiometries of the pathways are

equivalent. This often comes into play when simulating knockout mutant phenotypes

that shift flux in exotic ways. In reality, longer pathways have a significantly greater

enzyme production cost, and this cost is directly predicted in ME-model simulations.

As an example of new predictions possible for systems engineering, the ME-model

predicted acetate overflow metabolism as a result of rate-yield tradeoffs between

metabolic pathways (O’Brien et al. 2013). Furthermore, the ME-model was shown

to simulate batch growth conditions where the availability of enzyme protein limits

the maximum substrate uptake rate and, therefore, the maximum growth rate. Both

of these examples highlight important concepts in metabolic engineering that are

captured by ME-models and not in models of metabolism.

The E. coli ME-model has been extended to include protein translocation

in the cell membrane (Liu et al. 2014). In addition to the predictions described

above, this extended ME-model can predict how spatial limitations in the inner

and outer membranes (i.e. membrane crowding) lead to tradeoffs between energy-

efficient pathways that require membrane space (e.g. electron transport chain) and

less-efficient pathways that require less membrane space (e.g. fermentation). These

tradeoffs are not present in other COBRA models, and they could have major effects

on metabolic engineering strategies that employ the expression of a large numbers of

membrane-bound enzymes for substrate and product transport.

Another recent model expansion involved the collection of all the available

enzyme structures for enzymes in the metabolic network of T. maritima (Zhang et al.

2009), followed by the collection of enzyme structures for E. coli in a model called
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GEM-PRO (Chang et al. 2013a). In addition to the application to thermotolerance

discussed in the GEM-PRO publication, GEM-PRO can eventually be applied to

exploring the multitude of effects that protein structures have on metabolic activity

and regulation, including enzyme promiscuity, catalytic rates, complex formation,

substrate channeling, and allosteric regulation (Zhang et al. 2009; Beltrao, Kiel, and

Serrano 2007; Fisher et al. 2014).

A final area of active expansion in the scope of COBRA models is transcriptional

regulation. This topic has received much attention (Gonçalves et al. 2013), and so, in

this article, it will only be noted that many strain engineering strategies are based on

regulatory effects. Thus, techniques like the probabilistic regulation of metabolism

(PROM) approach (Chandrasekaran and Price 2010), which can predict the impact of

transcriptional regulation on metabolic activity, will eventually allow for the direct

prediction of regulatory modifications for strain engineering. A major limitation of

PROM is that it requires large-scale empirical datasets to make accurate predictions. It

is not yet possible to make forward predictions of transcriptional regulation using only

the structure of the regulatory network. However, this kind of prediction will eventually

be possible as the quality of binding information for transcription factors increases

and the knowledgebase of regulatory interactions becomes more comprehensive (Cho

et al. 2012; Lee et al. 2007; Federowicz et al. 2014; Cho et al. 2007; Carrera, Estrela,

and Luo 2014; Cho et al. 2014; Seo et al. 2014)

7.1.2 Modularity

A second theme in the evolution of COBRA models is modularity of simulation

strategies (Fig. 7.1b). There have been long-standing challenges associated with
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genome-scale modeling of cellular networks using fine-grained approaches like stochastic

and deterministic kinetic modeling, and so COBRA methods, which are tractable at the

genome-scale, have risen in popularity (Bordbar et al. 2014a). By embracing modular

simulations embedded in genome-scale COBRA models, it is possible to explore

complex topics—including dynamics, concentrations, and physical structures—without

losing genome-scale context.

While kinetic modeling is very difficult at the genome scale, the k-OptForce

algorithm combines a genome-scale model of metabolism with a smaller-scale, deter-

ministic kinetic model to identify strategies for metabolic engineering that incorporate

knowledge about metabolite concentrations and kinetics (Chowdhury, Zomorrodi,

and Maranas 2014). Additionally, the GEM-PRO model of metabolism and enzyme

structure brings algorithms for protein structure analysis and simulation into the

context of a COBRA model (Chang et al. 2013a; Chang et al. 2013b).

Finally, a ‘whole-cell’ model of Mycoplasma genitalium has been reported,

and this model includes modular simulations of all annotated gene functions in that

minimal organism (Karr et al. 2012). The authors employ a highly modular platform

where many types of simulations, including a COBRA model of metabolism, are

executed at discrete time points. This model represents an extreme approach to

modular simulation where every system can exist somewhat separately but with a

shared notion of time. To manage this modularity computationally, all the constituent

cellular processes are decoupled and simulated over a single time step (1 second), and

then the modules are synchronized before the next time step is taken. A challenge

associated with of this strategy is that it is difficult to establish clear numerical

convergence criteria.
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7.2 Conclusion

With next-generation COBRA models, new predictions will be possible, ranging

from enzyme promiscuity to allosteric regulation, from membrane crowding to overflow

metabolism, and from metabolite concentration to cell cycle effects. To automate the

design and creation of engineered cells, it will be necessary to incorporate detailed

knowledge of interconnected cellular processes and to simulate these processes across

time- and size-scales, using modular simulations. Furthermore, these new methods

and models will need to be rigorously validated by repeatedly comparing predictions

to experimental outcomes, in order to determine key modeling parameters and to

close the gaps in our knowledge of biological systems. COBRA methods have proven

their usefulness in a growing number of studies, and, as they expand to include many

new cellular networks and types of simulation and prediction, the value and adoption

of these methods are likely to grow.

Chapter 7 is adapted from a published manuscript: King, Z. A., Lloyd, C. J.,

Feist, A. M., and Palsson, B. O. (2015b). “Next-generation genome-scale models

for metabolic engineering”. In: Curr. Opin. Biotechnol. 35, pp. 23–29. doi:

10.1016/j.copbio.2014.12.016. The dissertation author was the primary author of the

review.

http://dx.doi.org/10.1016/j.copbio.2014.12.016


Bibliography

Adkins, J., Pugh, S., McKenna, R., and Nielsen, D. R. (2012). “Engineering microbial
chemical factories to produce renewable “biomonomers””. In: Front. Microbiol.
3.August, p. 313. doi: 10.3389/fmicb.2012.00313.

Almaas, E., Kovács, B., Vicsek, T., Oltvai, Z. N., and Barabási, A.-L. (2004). “Global
organization of metabolic fluxes in the bacterium Escherichia coli”. In: Nature
427.6977, pp. 839–843. doi: 10.1038/nature02289.

Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006). “The SWISS-MODEL
workspace: A web-based environment for protein structure homology modelling”.
In: Bioinformatics 22.2, pp. 195–201. doi: 10.1093/bioinformatics/bti770.

Atsumi, S., Hanai, T., and Liao, J. C. (2008). “Non-fermentative pathways for synthesis
of branched-chain higher alcohols as biofuels”. In: Nature 451.7174, pp. 86–89.
doi: 10.1038/nature06450.

Atsumi, S., Wu, T.-Y., Eckl, E.-M., Hawkins, S. D., Buelter, T., and Liao, J. C.
(2010). “Engineering the isobutanol biosynthetic pathway in Escherichia coli by
comparison of three aldehyde reductase/alcohol dehydrogenase genes”. In: Appl.
Microbiol. Biotechnol. 85.3, pp. 651–657. doi: 10.1007/s00253-009-2085-6.

Auriol, C., Bestel-Corre, G., Claude, J.-B., Soucaille, P., and Meynial-Salles, I. (2011).
“Stress-induced evolution of Escherichia coli points to original concepts in
respiratory cofactor selectivity”. In: Proc. Natl. Acad. Sci. U. S. A. 108.4,
pp. 1278–1283. doi: 10.1073/pnas.1010431108.

Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. a.,
Tomita, M., Wanner, B. L., and Mori, H. (2006). “Construction of Escherichia
coli K-12 in-frame, single-gene knockout mutants: the Keio collection”. In: Mol.
Syst. Biol. 2, p. 2006.0008. doi: 10.1038/msb4100050.

Bar-Even, A., Noor, E., and Savir, Y. (2011). “The Moderately Efficient Enzyme:
Evolutionary and Physicochemical Trends Shaping Enzyme Parameters”. In:
Biochemistry, pp. 4402–4410.

135

http://dx.doi.org/10.3389/fmicb.2012.00313
http://dx.doi.org/10.1038/nature02289
http://dx.doi.org/10.1093/bioinformatics/bti770
http://dx.doi.org/10.1038/nature06450
http://dx.doi.org/10.1007/s00253-009-2085-6
http://dx.doi.org/10.1073/pnas.1010431108
http://dx.doi.org/10.1038/msb4100050


136

Basan, M., Hui, S., Zhang, Z., Shen, Y., Williamson, J. R., and Hwa, T. (2015).
“Overflow metabolism in bacteria results from efficient proteome allocation for
energy biogenesis”. In: Nature 1. doi: 10.1038/nature15765.

Becker, J. and Wittmann, C. (2012). “Systems and synthetic metabolic engineering for
amino acid production – the heartbeat of industrial strain development”. In:
Curr. Opin. Biotechnol. 23.5, pp. 718–726. doi: 10.1016/j.copbio.2011.12.025.

Becker, S. A., Feist, A. M., Mo, M. L., Hannum, G., Palsson, B. Ø., and Herrgård,
M. J. (2007). “Quantitative prediction of cellular metabolism with constraint-
based models: the COBRA Toolbox”. In: Nat. Protoc. 2.3, pp. 727–738. doi:
10.1038/nprot.2007.99.

Beltrao, P., Kiel, C., and Serrano, L. (2007). “Structures in systems biology”. In: Curr.
Opin. Struct. Biol. 17.3, pp. 378–384. doi: 10.1016/j.sbi.2007.05.005.

Bengtsson, O., Hahn-Hägerdal, B., and Gorwa-Grauslund, M. F. (2009). “Xylose
reductase from Pichia stipitis with altered coenzyme preference improves
ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae”. In:
Biotechnol. Biofuels 2, p. 9. doi: 10.1186/1754-6834-2-9.

Benson, D. A., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Sayers,
E. W. (2014). “GenBank”. In: Nucleic Acids Res. 43.D1, pp. D30–D35. doi:
10.1093/nar/gku1216.

Berríos-Rivera, S. J., Sánchez, a. M., Bennett, G. N., and San, K.-Y. (2004). “Effect of
different levels of NADH availability on metabolite distribution in Escherichia
coli fermentation in minimal and complex media”. In: Appl. Microbiol. Biotech-
nol. 65.4, pp. 426–432. doi: 10.1007/s00253-004-1609-3.

Berríos-Rivera, S. J., Bennett, G. N., and San, K.-Y. (2002a). “Metabolic Engineering
of Escherichia coli: Increase of NADH Availability by Overexpressing an NAD+-
Dependent Formate Dehydrogenase”. In: Metab. Eng. 4.3, pp. 217–229. doi:
10.1006/mben.2002.0227.

— (2002b). “The Effect of Increasing NADH Availability on the Redistribution
of Metabolic Fluxes in Escherichia coli Chemostat Cultures”. In: Metab. Eng.
4.3, pp. 230–237. doi: 10.1006/mben.2002.0228.

Berríos-Rivera, S. J., San, K.-Y., and Bennett, G. N. (2002). “The Effect of NAPRTase
Overexpression on the Total Levels of NAD, The NADH/NAD+ Ratio, and the
Distribution of Metabolites in Escherichia coli”. In: Metab. Eng. 4.3, pp. 238–
247. doi: 10.1006/mben.2002.0229.

http://dx.doi.org/10.1038/nature15765
http://dx.doi.org/10.1016/j.copbio.2011.12.025
http://dx.doi.org/10.1038/nprot.2007.99
http://dx.doi.org/10.1016/j.sbi.2007.05.005
http://dx.doi.org/10.1186/1754-6834-2-9
http://dx.doi.org/10.1093/nar/gku1216
http://dx.doi.org/10.1007/s00253-004-1609-3
http://dx.doi.org/10.1006/mben.2002.0227
http://dx.doi.org/10.1006/mben.2002.0228
http://dx.doi.org/10.1006/mben.2002.0229


137

Bettiga, M., Hahn-Hägerdal, B., and Gorwa-Grauslund, M. F. (2008). “Comparing the
xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in ara-
binose and xylose fermenting Saccharomyces cerevisiae strains”. In: Biotechnol.
Biofuels 1.1, p. 16. doi: 10.1186/1754-6834-1-16.

Blankschien, M. D., Clomburg, J. M., and Gonzalez, R. (2010). “Metabolic engineering
of Escherichia coli for the production of succinate from glycerol”. In: Metab.
Eng. 12.5, pp. 409–419. doi: 10.1016/j.ymben.2010.06.002.

Blaschkowski, H. P., Neuer, G., Ludwig-Festl, M., and Knappe, J. (1982). “Routes of
flavodoxin and ferredoxin reduction in Escherichia coli”. In: Eur. J. Biochem.
123.3, pp. 563–569. doi: 10.1111/j.1432-1033.1982.tb06569.x.

Bocanegra, J. A., Scrutton, N. S., and Perham, R. N. (1993). “Creation of an NADP-
dependent pyruvate dehydrogenase multienzyme complex by protein engineer-
ing”. In: Biochemistry 32.11, pp. 2737–2740. doi: 10.1021/bi00062a001.

Bordbar, A., Feist, A. M., Usaite-Black, R., Woodcock, J., Palsson, B. O., and
Famili, I. (2011). “A multi-tissue type genome-scale metabolic network for
analysis of whole-body systems physiology”. In: BMC Syst. Biol. 5, p. 180. doi:
10.1186/1752-0509-5-180.

Bordbar, A., Lewis, N. E., Schellenberger, J., Palsson, B. Ø., and Jamshidi, N. (2010).
“Insight into human alveolar macrophage and M. tuberculosis interactions via
metabolic reconstructions”. In: Mol. Syst. Biol. 6, p. 422. doi: 10.1038/msb.
2010.68.

Bordbar, A., Monk, J. M., King, Z. A., and Palsson, B. O. (2014a). “Constraint-based
models predict metabolic and associated cellular functions”. In: Nat. Rev.
Genet. 15.2, pp. 107–120. doi: 10.1038/nrg3643.

Bordbar, A., Nagarajan, H., Lewis, N. E., Latif, H., Ebrahim, A., Federowicz, S.,
Schellenberger, J., and Palsson, B. O. (2014b). “Minimal metabolic pathway
structure is consistent with associated biomolecular interactions”. In: Mol. Syst.
Biol. 10, p. 737. doi: 10.15252/msb.20145243.

Bostock, M., Ogievetsky, V., and Heer, J. (2011). “D3: Data-Driven Documents”. In:
IEEE Trans. Vis. Comput. Graph. 17.12, pp. 2301–2309. doi: 10.1109/TVCG.
2011.185.

Brown, G. R., Hem, V., Katz, K. S., Ovetsky, M., Wallin, C., Ermolaeva, O., Tolstoy,
I., Tatusova, T., Pruitt, K. D., Maglott, D. R., and Murphy, T. D. (2014).

http://dx.doi.org/10.1186/1754-6834-1-16
http://dx.doi.org/10.1016/j.ymben.2010.06.002
http://dx.doi.org/10.1111/j.1432-1033.1982.tb06569.x
http://dx.doi.org/10.1021/bi00062a001
http://dx.doi.org/10.1186/1752-0509-5-180
http://dx.doi.org/10.1038/msb.2010.68
http://dx.doi.org/10.1038/msb.2010.68
http://dx.doi.org/10.1038/nrg3643
http://dx.doi.org/10.15252/msb.20145243
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.185


138

“Gene: a gene-centered information resource at NCBI”. In: Nucleic Acids Res.
43.D1, pp. D36–D42. doi: 10.1093/nar/gku1055.

Burgard, A. P., Pharkya, P., and Maranas, C. D. (2003). “Optknock: a bilevel program-
ming framework for identifying gene knockout strategies for microbial strain op-
timization”. In: Biotechnol. Bioeng. 84.6, pp. 647–657. doi: 10.1002/bit.10803.

Campodonico, M. A., Andrews, B. A., Asenjo, J. A., Palsson, B. O., and Feist,
A. M. (2014). “Generation of an atlas for commodity chemical production in
Escherichia coli and a novel pathway prediction algorithm, GEM-Path”. In:
Metab. Eng. 25, pp. 140–158. doi: 10.1016/j.ymben.2014.07.009.

Carlson, R. and Srienc, F. (2004a). “Fundamental Escherichia coli biochemical path-
ways for biomass and energy production: creation of overall flux states”. In:
Biotechnol. Bioeng. 86.2, pp. 149–162. doi: 10.1002/bit.20044.

— (2004b). “Fundamental Escherichia coli biochemical pathways for biomass and
energy production: identification of reactions”. In: Biotechnol. Bioeng. 85.1,
pp. 1–19. doi: 10.1002/bit.10812.

Carrera, J., Estrela, R., and Luo, J. (2014). “An integrative, multi-scale, genome-wide
model reveals the phenotypic landscape of Escherichia coli”. In: Mol. Syst.
Biol. 10.735, pp. 1–13.

Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C. A., Hol-
land, T. A., Keseler, I. M., Kothari, A., Kubo, A., Krummenacker, M., La-
tendresse, M., Mueller, L. A., Ong, Q., Paley, S., Subhraveti, P., Weaver,
D. S., Weerasinghe, D., Zhang, P., and Karp, P. D. (2014). “The MetaCyc
database of metabolic pathways and enzymes and the BioCyc collection of
Pathway/Genome Databases”. In: Nucleic Acids Res. 42, pp. D459–D471. doi:
10.1093/nar/gkt1103.

Chandrasekaran, S. and Price, N. D. (2010). “Probabilistic integrative modeling
of genome-scale metabolic and regulatory networks in Escherichia coli and
Mycobacterium tuberculosis”. In: Proc. Natl. Acad. Sci. U. S. A. 107.41,
pp. 17845–17850. doi: 10.1073/pnas.1005139107.

Chang, R. L., Andrews, K., Kim, D., Li, Z., Godzik, A., and Palsson, B. O. (2013a).
“Structural Systems Biology Evaluation of Metabolic Thermotolerance in Es-
cherichia coli”. In: Science 340.6137, pp. 1220–1223. doi: 10.1126/science.
1234012.

http://dx.doi.org/10.1093/nar/gku1055
http://dx.doi.org/10.1002/bit.10803
http://dx.doi.org/10.1016/j.ymben.2014.07.009
http://dx.doi.org/10.1002/bit.20044
http://dx.doi.org/10.1002/bit.10812
http://dx.doi.org/10.1093/nar/gkt1103
http://dx.doi.org/10.1073/pnas.1005139107
http://dx.doi.org/10.1126/science.1234012
http://dx.doi.org/10.1126/science.1234012


139

Chang, R. L., Xie, L., Bourne, P. E., and Palsson, B. O. (2013b). “Antibacterial
mechanisms identified through structural systems pharmacology”. In: BMC
Syst. Biol. 7.1, p. 102. doi: 10.1186/1752-0509-7-102.

Check Hayden, E. (2015). “Synthetic biologists seek standards for nascent field”. In:
Nature News 520.7546, p. 141. doi: 10.1038/520141a.

Chin, J. W., Khankal, R., Monroe, C. a., Maranas, C. D., and Cirino, P. C. (2009).
“Analysis of NADPH supply during xylitol production by engineered Escherichia
coli”. In: Biotechnol. Bioeng. 102.1, pp. 209–220. doi: 10.1002/bit.22060.

Cho, B.-K., Charusanti, P., Herrgård, M. J., and Palsson, B. O. (2007). “Microbial
regulatory and metabolic networks”. In: Curr. Opin. Biotechnol. 18.4, pp. 360–
364. doi: 10.1016/j.copbio.2007.07.002.

Cho, B.-K., Federowicz, S., Park, Y.-S., Zengler, K., and Palsson, B. Ø. (2012).
“Deciphering the transcriptional regulatory logic of amino acid metabolism”.
In: Nat. Chem. Biol. 8.1, pp. 65–71. doi: 10.1038/nchembio.710.

Cho, B.-K., Kim, D., Knight, E. M., Zengler, K., and Palsson, B. O. (2014). “Genome-
scale reconstruction of the sigma factor network in Escherichia coli: topology
and functional states”. In: BMC Biol. 12, p. 4. doi: 10.1186/1741-7007-12-4.

Choi, H. S., Lee, S. Y., Kim, T. Y., and Woo, H. M. (2010). “In silico identification of
gene amplification targets for improvement of lycopene production”. In: Appl.
Environ. Microbiol. 76.10, pp. 3097–3105. doi: 10.1128/AEM.00115-10.

Chowdhury, A., Zomorrodi, A. R., and Maranas, C. D. (2014). “k-OptForce: integrating
kinetics with flux balance analysis for strain design”. In: PLoS Comput. Biol.
10.2, e1003487. doi: 10.1371/journal.pcbi.1003487.

Chubukov, V., Mukhopadhyay, A., Petzold, C. J., Keasling, J. D., and Martín, H. G.
(2016). “Synthetic and systems biology for microbial production of commodity
chemicals”. In: npj Systems Biology and Applications 2, p. 16009. doi: 10.1038/
npjsba.2016.9.

Chung, B. K.-S., Lakshmanan, M., Klement, M., Mohanty, B., and Lee, D.-Y. (2013).
“Genome-scale in silico modeling and analysis for designing synthetic terpenoid-
producing microbial cell factories”. In: Chem. Eng. Sci. 103.15, pp. 100–108.
doi: 10.1016/j.ces.2012.09.006.

Chung, H. J., Kim, M., Park, C. H., Kim, J., and Kim, J. H. (2004). “ArrayXPath:
Mapping and visualizing microarray gene-expression data with integrated

http://dx.doi.org/10.1186/1752-0509-7-102
http://dx.doi.org/10.1038/520141a
http://dx.doi.org/10.1002/bit.22060
http://dx.doi.org/10.1016/j.copbio.2007.07.002
http://dx.doi.org/10.1038/nchembio.710
http://dx.doi.org/10.1186/1741-7007-12-4
http://dx.doi.org/10.1128/AEM.00115-10
http://dx.doi.org/10.1371/journal.pcbi.1003487
http://dx.doi.org/10.1038/npjsba.2016.9
http://dx.doi.org/10.1038/npjsba.2016.9
http://dx.doi.org/10.1016/j.ces.2012.09.006


140

biological pathway resources using Scalable Vector Graphics”. In: Nucleic Acids
Res. 32, pp. 621–626. doi: 10.1093/nar/gkh476.

Clark, David P (1989). “The fermentation pathways of Escherichia coli”. In: FEMS
Microbiol. Rev. 63, pp. 223–234.

Costanzo, M. C., Engel, S. R., Wong, E. D., Lloyd, P., Karra, K., Chan, E. T., Weng,
S., Paskov, K. M., Roe, G. R., Binkley, G., Hitz, B. C., and Cherry, J. M.
(2014). “Saccharomyces genome database provides new regulation data”. In:
Nucleic Acids Res. 42, pp. D717–D725. doi: 10.1093/nar/gkt1158.

Courtot, M., Juty, N., Knüpfer, C., Waltemath, D., Zhukova, A., Dräger, A., Dumontier,
M., Finney, A., Golebiewski, M., Hastings, J., Hoops, S., Keating, S., Kell, D. B.,
Kerrien, S., Lawson, J., Lister, A., Lu, J., Machne, R., Mendes, P., Pocock,
M., Rodriguez, N., Villeger, A., Wilkinson, D. J., Wimalaratne, S., Laibe, C.,
Hucka, M., and Le Novère, N. (2011). “Controlled vocabularies and semantics
in systems biology”. In: Mol. Syst. Biol. 7, p. 543. doi: 10.1038/msb.2011.77.

Covert, M. W., Knight, E. M., Reed, J. L., Herrgård, M. J., and Palsson, B. O. (2004).
“Integrating high-throughput and computational data elucidates bacterial net-
works”. In: Nature 429.6987, pp. 92–96. doi: 10.1038/nature02456.

Croft, D., Mundo, A. F., Haw, R., Milacic, M., Weiser, J., Wu, G., Caudy, M.,
Garapati, P., Gillespie, M., Kamdar, M. R., Jassal, B., Jupe, S., Matthews,
L., May, B., Palatnik, S., Rothfels, K., Shamovsky, V., Song, H., Williams,
M., Birney, E., Hermjakob, H., Stein, L., and D’Eustachio, P. (2014). “The
Reactome pathway knowledgebase”. In: Nucleic Acids Res. 42, pp. D472–D477.
doi: 10.1093/nar/gkt1102.

Czauderna, T., Klukas, C., and Schreiber, F. (2010). “Editing, validating and trans-
lating of SBGN maps”. In: Bioinformatics 26.18, pp. 2340–2341. doi: 10.1093/
bioinformatics/btq407.

Dellomonaco, C., Clomburg, J. M., Miller, E. N., and Gonzalez, R. (2011). “Engineered
reversal of the β-oxidation cycle for the synthesis of fuels and chemicals”. In:
Nature 476.7360, pp. 355–359. doi: 10.1038/nature10333.

Dolinski, K. and Troyanskaya, O. G. (2015). “Implications of Big Data for cell biology”.
In: Mol. Biol. Cell 26.14, pp. 2575–2578. doi: 10.1091/mbc.E13-12-0756.

Donnelly, M. I., Millard, C. S., Clark, D. P., Chen, M. J., and Rathke, J. W. (1998). “A
novel fermentation pathway in an Escherichia coli mutant producing succinic

http://dx.doi.org/10.1093/nar/gkh476
http://dx.doi.org/10.1093/nar/gkt1158
http://dx.doi.org/10.1038/msb.2011.77
http://dx.doi.org/10.1038/nature02456
http://dx.doi.org/10.1093/nar/gkt1102
http://dx.doi.org/10.1093/bioinformatics/btq407
http://dx.doi.org/10.1093/bioinformatics/btq407
http://dx.doi.org/10.1038/nature10333
http://dx.doi.org/10.1091/mbc.E13-12-0756


141

acid, acetic acid, and ethanol”. In: Appl. Biochem. Biotechnol. 70.1, pp. 187–
198.

Dräger, A. and Palsson, B. Ø. (2014). “Improving collaboration by standardization
efforts in systems biology”. In: Frontiers in Bioengineering and Biotechnology
2, p. 61. doi: 10.3389/fbioe.2014.00061.

Droste, P., Nöh, K., and Wiechert, W. (2013). “Omix - A visualization tool for
metabolic networks with highest usability and customizability in focus”. In:
Chemie-Ingenieur-Technik 85.6, pp. 849–862. doi: 10.1002/cite.201200234.

Ebrahim, A., Brunk, E., Tan, J., O’Brien, E. J., Kim, D., Szubin, R., Lerman, J. A.,
Lechner, A., Sastry, A., Bordbar, A., Feist, A. M., and Palsson, B. O. “Multi-
omic data integration enables discovery of hidden biological regularities”. In:
Nature Communications. In press.

Ebrahim, A., Lerman, J. A., Palsson, B. O., and Hyduke, D. R. (2013). “COBRApy:
COnstraints-Based Reconstruction and Analysis for Python”. In: BMC Syst.
Biol. 7, p. 74. doi: 10.1186/1752-0509-7-74.

Edgar, R., Domrachev, M., and Lash, A. E. (2002). “Gene Expression Omnibus: NCBI
gene expression and hybridization array data repository”. In: Nucleic Acids
Res. 30.1, pp. 207–210. doi: 10.1093/nar/30.1.207.

Edwards, J. S., Ibarra, R. U., and Palsson, B. O. (2001). “In silico predictions of
Escherichia coli metabolic capabilities are consistent with experimental data”.
In: Nat. Biotechnol. 19.2, pp. 125–130. doi: 10.1038/84379.

Eppig, J. T., Blake, J. A., Bult, C. J., Kadin, J. A., Richardson, J. E., and The Mouse
Genome Database Group (2014). “The Mouse Genome Database (MGD):
facilitating mouse as a model for human biology and disease”. In: Nucleic Acids
Res. 43, pp. D726–D736. doi: 10.1093/nar/gku967.

Federowicz, S., Kim, D., Ebrahim, A., Lerman, J., Nagarajan, H., Cho, B.-K., Zen-
gler, K., and Palsson, B. (2014). “Determining the control circuitry of re-
dox metabolism at the genome-scale”. In: PLoS Genet. 10.4, e1004264. doi:
10.1371/journal.pgen.1004264.

Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M., Joyce, A. R., Karp, P. D.,
Broadbelt, L. J., Hatzimanikatis, V., and Palsson, B. Ø. (2007). “A genome-
scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts
for 1260 ORFs and thermodynamic information”. In: Mol. Syst. Biol. 3.121,
p. 121. doi: 10.1038/msb4100155.

http://dx.doi.org/10.3389/fbioe.2014.00061
http://dx.doi.org/10.1002/cite.201200234
http://dx.doi.org/10.1186/1752-0509-7-74
http://dx.doi.org/10.1093/nar/30.1.207
http://dx.doi.org/10.1038/84379
http://dx.doi.org/10.1093/nar/gku967
http://dx.doi.org/10.1371/journal.pgen.1004264
http://dx.doi.org/10.1038/msb4100155


142

Feist, A. M., Herrgård, M. J., Thiele, I., Reed, J. L., and Palsson, B. Ø. (2009).
“Reconstruction of biochemical networks in microorganisms”. In: Nat. Rev.
Microbiol. 7.2, pp. 129–143. doi: 10.1038/nrmicro1949.

Feist, A. M. and Palsson, B. Ø. (2008). “The growing scope of applications of genome-
scale metabolic reconstructions using Escherichia coli”. In: Nat. Biotechnol.
26.6, pp. 659–667. doi: 10.1038/nbt1401.

Feist, A. M., Zielinski, D. C., Orth, J. D., Schellenberger, J., Herrgård, M. J., and
Palsson, B. Ø. (2010). “Model-driven evaluation of the production potential for
growth-coupled products of Escherichia coli”. In: Metab. Eng. 12.3, pp. 173–186.
doi: 10.1016/j.ymben.2009.10.003.

Fisher, A. K., Freedman, B. G., Bevan, D. R., and Senger, R. S. (2014). “A review of
metabolic and enzymatic engineering strategies for designing and optimizing
performance of microbial cell factories”. In: Comput. Struct. Biotechnol. J.
11.18, pp. 91–99. doi: 10.1016/j.csbj.2014.08.010.

Fong, S. S., Burgard, A. P., Herring, C. D., Knight, E. M., Blattner, F. R., Maranas,
C. D., and Palsson, B. O. (2005). “In silico design and adaptive evolution of
Escherichia coli for production of lactic acid”. In: Biotechnol. Bioeng. 91.5,
pp. 643–648. doi: 10.1002/bit.20542.

Fong, S. S., Nanchen, A., Palsson, B. Ø., and Sauer, U. (2006). “Latent pathway
activation and increased pathway capacity enable Escherichia coli adaptation
to loss of key metabolic enzyme”. In: J. Biol. Chem. 281.12, pp. 8024–8033.
doi: 10.1074/jbc.M510016200.

Fong, S. S. and Palsson, B. Ø. (2004). “Metabolic gene-deletion strains of Escherichia
coli evolve to computationally predicted growth phenotypes”. In: Nat. Genet.
36.10, pp. 1056–1058. doi: 10.1038/ng1432.

Fuhrer, T. and Sauer, U. (2009). “Different biochemical mechanisms ensure network-
wide balancing of reducing equivalents in microbial metabolism”. In: J. Bacte-
riol. 191.7, pp. 2112–2121. doi: 10.1128/JB.01523-08.

Funahashi, A., Matsuoka, Y., Jouraku, A., Morohashi, M., Kikuchi, N., and Kitano, H.
(2008). “CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks”.
In: Proc. IEEE 96.8, pp. 1254–1265. doi: 10.1109/JPROC.2008.925458.

Gallina, A. A., Layer, M., King, Z. A., Levering, J., Palsson, B. Ø., Zengler, K.,
and Peers, G. (2016). “A Phaeodactylum tricornutum literature database for
interactive annotation of content”. In: Algal Research 18, pp. 241–243.

http://dx.doi.org/10.1038/nrmicro1949
http://dx.doi.org/10.1038/nbt1401
http://dx.doi.org/10.1016/j.ymben.2009.10.003
http://dx.doi.org/10.1016/j.csbj.2014.08.010
http://dx.doi.org/10.1002/bit.20542
http://dx.doi.org/10.1074/jbc.M510016200
http://dx.doi.org/10.1038/ng1432
http://dx.doi.org/10.1128/JB.01523-08
http://dx.doi.org/10.1109/JPROC.2008.925458


143

Ganter, M., Bernard, T., Moretti, S., Stelling, J., and Pagni, M. (2013). “MetaNetX.org:
a website and repository for accessing, analysing and manipulating metabolic
networks”. In: Bioinformatics 29.6, pp. 815–816. doi: 10.1093/bioinformatics/
btt036.

Gauges, R., Rost, U., Sahle, S., and Wegner, K. (2006). “A model diagram layout
extension for SBML”. In: Bioinformatics 22.15, pp. 1879–1885. doi: 10.1093/
bioinformatics/btl195.

Gavai, A. K., Supandi, F., Hettling, H., Murrell, P., Leunissen, J. A. M., and Beek,
J. H. G. M. van (2015). “Using Bioconductor Package BiGGR for Metabolic
Flux Estimation Based on Gene Expression Changes in Brain”. In: PLoS One
10.3, e0119016. doi: 10.1371/journal.pone.0119016.

Gawand, P., Hyland, P., Ekins, A., Martin, V. J. J., and Mahadevan, R. (2013). “Novel
approach to engineer strains for simultaneous sugar utilization”. In: Metab.
Eng. 20, pp. 63–72. doi: 10.1016/j.ymben.2013.08.003.

Ghosh, A., Zhao, H., and Price, N. D. (2011). “Genome-scale consequences of co-
factor balancing in engineered pentose utilization pathways in Saccharomyces
cerevisiae”. In: PLoS One 6.11, e27316. doi: 10.1371/journal.pone.0027316.

Gianchandani, E. P., Joyce, A. R., Palsson, B. Ø., and Papin, J. a. (2009). “Functional
states of the genome-scale Escherichia coli transcriptional regulatory system”.
In: PLoS Comput. Biol. 5.6, e1000403. doi: 10.1371/journal.pcbi.1000403.

Gonçalves, E., Bucher, J., Ryll, A., Niklas, J., Mauch, K., Klamt, S., Rocha, M., and
Saez-Rodriguez, J. (2013). “Bridging the layers: towards integration of signal
transduction, regulation and metabolism into mathematical models”. In: Mol.
Biosyst. 9.7, pp. 1576–1583. doi: 10.1039/c3mb25489e.

Gottschalk, G. (1986). Bacterial metabolism. 2nd. New York, NY: Springer-Verlag.

Guest, J. R., Abdel-Hamid, A. M., Auger, G. A., Cunningham, L., Henderson, R. A.,
Machado, R. S., and Attwood, M. M. (2003). “Physiological Effects of Replacing
the PDH Complex of E. coli by Genetically Engineered Variants or by Pyruvate
Oxidase”. In: Thiamine: Catalytic Mechanisms in Normal and Disease States.
Ed. by F. Gordon and S. P. Mulchand. New York, NY: CRC Press. Chap. 22,
pp. 387–407. doi: 10.1201/9780203913420.ch22.

Guzmán, G. I., Utrilla, J., Nurk, S., Brunk, E., Monk, J. M., Ebrahim, A., Pals-
son, B. O., and Feist, A. M. (2015). “Model-driven discovery of underground

http://dx.doi.org/10.1093/bioinformatics/btt036
http://dx.doi.org/10.1093/bioinformatics/btt036
http://dx.doi.org/10.1093/bioinformatics/btl195
http://dx.doi.org/10.1093/bioinformatics/btl195
http://dx.doi.org/10.1371/journal.pone.0119016
http://dx.doi.org/10.1016/j.ymben.2013.08.003
http://dx.doi.org/10.1371/journal.pone.0027316
http://dx.doi.org/10.1371/journal.pcbi.1000403
http://dx.doi.org/10.1039/c3mb25489e
http://dx.doi.org/10.1201/9780203913420.ch22


144

metabolic functions in Escherichia coli”. In: Proceedings of the National
Academy of Sciences 112.3, pp. 929–934. doi: 10.1073/pnas.1414218112.

Hanahan, D. and Weinberg, R. A. (2011). “Hallmarks of cancer: the next generation”.
In: Cell 144.5, pp. 646–674. doi: 10.1016/j.cell.2011.02.013.

Heavner, B. D., Smallbone, K., Barker, B., Mendes, P., and Walker, L. P. (2012). “Yeast
5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic
network”. In: BMC Syst. Biol. 6.1, p. 55. doi: 10.1186/1752-0509-6-55.

Hefzi, H., Ang, K. S., Hanscho, M., Bordbar, A., Ruckerbauer, D., Lakshmanan,
M., Orellana, C. A., Baycin-Hizal, D., Huang, Y., Ley, D., Martinez, V. S.,
Kyriakopoulos, S., Jiménez, N. E., Zielinski, D. C., Quek, L.-E., Wulff, T.,
Arnsdorf, J., Li, S., Lee, J. S., Paglia, G., Loira, N., Spahn, P. N., Pedersen,
L. E., Gutierrez, J. M., King, Z. A., Lund, A. M., Nagarajan, H., Thomas,
A., Abdel-Haleem, A. M., Zanghellini, J., Kildegaard, H. F., Voldborg, B. G.,
Gerdtzen, Z. P., Betenbaugh, M. J., Palsson, B. O., Andersen, M. R., Nielsen,
L. K., Borth, N., Lee, D.-Y., and Lewis, N. E. (2016). “A Consensus Genome-
scale Reconstruction of Chinese Hamster Ovary Cell Metabolism”. In: Cell
Syst 3.5, 434–443.e8. doi: 10.1016/j.cels.2016.10.020.

Henry, C. S., DeJongh, M., Best, A. A., Frybarger, P. M., Linsay, B., and Stevens, R. L.
(2010). “High-throughput generation, optimization and analysis of genome-scale
metabolic models”. In: Nat. Biotechnol. 28.9, pp. 977–982. doi: 10.1038/nbt.
1672.

Herráez, A. (2006). “Biomolecules in the computer: Jmol to the rescue”. In: Biochem.
Mol. Biol. Educ. 34, pp. 255–261. doi: 10.1002/bmb.2006.494034042644.

Hu, Z., Chang, Y. C., Wang, Y., Huang, C. L., Liu, Y., Tian, F., Granger, B., and
Delisi, C. (2013). “VisANT 4.0: Integrative network platform to connect genes,
drugs, diseases and therapies”. In: Nucleic Acids Res. 41.May, pp. 225–231.
doi: 10.1093/nar/gkt401.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., Arkin, A. P.,
Bornstein, B. J., Bray, D., Cornish-Bowden, A., Cuellar, A. A., Dronov, S.,
Gilles, E. D., Ginkel, M., Gor, V., Goryanin, I. I., Hedley, W. J., Hodgman,
T. C., Hofmeyr, J. H., Hunter, P. J., Juty, N. S., Kasberger, J. L., Kremling,
A., Kummer, U., Le Novère, N., Loew, L. M., Lucio, D., Mendes, P., Minch,
E., Mjolsness, E. D., Nakayama, Y., Nelson, M. R., Nielsen, P. F., Sakurada,
T., Schaff, J. C., Shapiro, B. E., Shimizu, T. S., Spence, H. D., Stelling, J.,
Takahashi, K., Tomita, M., Wagner, J., and Wang, J. (2003). “The systems
biology markup language (SBML): A medium for representation and exchange

http://dx.doi.org/10.1073/pnas.1414218112
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://dx.doi.org/10.1186/1752-0509-6-55
http://dx.doi.org/10.1016/j.cels.2016.10.020
http://dx.doi.org/10.1038/nbt.1672
http://dx.doi.org/10.1038/nbt.1672
http://dx.doi.org/10.1002/bmb.2006.494034042644
http://dx.doi.org/10.1093/nar/gkt401


145

of biochemical network models”. In: Bioinformatics 19.4, pp. 524–531. doi:
10.1093/bioinformatics/btg015.

Hurley, J. H., Chen, R., and Dean, A. M. (1996). “Determinants of Cofactor Specificity
in Isocitrate Dehydrogenase: Structure of an Engineered NADP+ → NAD+

Specificity-Reversal Mutant”. In: Biochemistry 35.18, pp. 5670–5678.

Huson, D. H., Richter, D. C., Rausch, C., Dezulian, T., Franz, M., and Rupp, R.
(2007). “Dendroscope: An interactive viewer for large phylogenetic trees”. In:
BMC Bioinformatics 8, p. 460. doi: 10.1186/1471-2105-8-460.

Hyduke, D. R., Lewis, N. E., and Palsson, B. Ø. (2013). “Analysis of omics data with
genome-scale models of metabolism”. In: Mol. Biosyst. 9.2, pp. 167–174. doi:
10.1039/c2mb25453k.

Ibarra, R. U., Edwards, J. S., and Palsson, B. O. (2002). “Escherichia coli K-12
undergoes adaptive evolution to achieve in silico predicted optimal growth”.
In: Nature 420.November, pp. 20–23. doi: 10.1038/nature01195.1..

Iersel, M. P. van, Villéger, A. C., Czauderna, T., Boyd, S. E., Bergmann, F. T.,
Luna, A., Demir, E., Sorokin, A., Dogrusoz, U., Matsuoka, Y., Funahashi, A.,
Aladjem, M. I., Mi, H., Moodie, S. L., Kitano, H., Le novère, N., and Schreiber,
F. (2012). “Software support for SBGN maps: SBGN-ML and LibSBGN”. In:
Bioinformatics 28.15, pp. 2016–2021. doi: 10.1093/bioinformatics/bts270.

Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., and Preston, J. F. (1987).
“Genetic engineering of ethanol production in Escherichia coli”. In: Appl.
Environ. Microbiol. 53.10, pp. 2420–2425.

Jan, J., Martinez, I., Wang, Y., Bennett, G. N., and San, K.-Y. (2013). “Metabolic
engineering and transhydrogenase effects on NADPH availability in Escherichia
coli”. In: Biotechnol. Prog. 29.5, pp. 1124–1130. doi: 10.1002/btpr.1765.

Jang, Y.-S., Kim, B., Shin, J. H., Choi, Y. J., Choi, S., Song, C. W., Lee, J., Park, H. G.,
and Lee, S. Y. (2012). “Bio-based production of C2-C6 platform chemicals”.
In: Biotechnol. Bioeng. 109.10, pp. 2437–2459. doi: 10.1002/bit.24599.

Johnson, F. X. (2007). Industrial Biotechnology and Biomass Utilisation: Prospects
and Challenges for the Developing World. Tech. rep. Vienna, Austria: United
Nations Industrial Development Organization.

http://dx.doi.org/10.1093/bioinformatics/btg015
http://dx.doi.org/10.1186/1471-2105-8-460
http://dx.doi.org/10.1039/c2mb25453k
http://dx.doi.org/10.1038/nature01195.1.
http://dx.doi.org/10.1093/bioinformatics/bts270
http://dx.doi.org/10.1002/btpr.1765
http://dx.doi.org/10.1002/bit.24599


146

Jung, Y. K., Kim, T. Y., Park, S. J., and Lee, S. Y. (2010). “Metabolic engineering of
Escherichia coli for the production of polylactic acid and its copolymers”. In:
Biotechnol. Bioeng. 105.1, pp. 161–171. doi: 10.1002/bit.22548.

Juty, N., Le Nover̀e, N., and Laibe, C. (2012). “Identifiers.org and MIRIAM Registry:
Community resources to provide persistent identification”. In: Nucleic Acids
Res. 40, pp. D580–D586. doi: 10.1093/nar/gkr1097.

Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M.
(2014). “Data, information, knowledge and principle: back to metabolism in
KEGG”. In: Nucleic Acids Res. 42, pp. D199–D205. doi: 10.1093/nar/gkt1076.

Karolchik, D., Barber, G. P., Casper, J., Clawson, H., Cline, M. S., Diekhans, M.,
Dreszer, T. R., Fujita, P. A., Guruvadoo, L., Haeussler, M., Harte, R. A.,
Heitner, S., Hinrichs, A. S., Learned, K., Lee, B. T., Li, C. H., Raney, B. J.,
Rhead, B., Rosenbloom, K. R., Sloan, C. A., Speir, M. L., Zweig, A. S.,
Haussler, D., Kuhn, R. M., and Kent, W. J. (2014). “The UCSC Genome
Browser database: 2014 update”. In: Nucleic Acids Res. 42.D1, pp. 764–770.
doi: 10.1093/nar/gkt1168.

Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival, B.,
Assad-Garcia, N., Glass, J. I., and Covert, M. W. (2012). “A whole-cell compu-
tational model predicts phenotype from genotype”. In: Cell 150.2, pp. 389–401.
doi: 10.1016/j.cell.2012.05.044.

Kartal, O., Mahlow, S., Skupin, A., and Ebenhöh, O. (2011). “Carbohydrate-active
enzymes exemplify entropic principles in metabolism”. In: Mol. Syst. Biol.
7.542, p. 542. doi: 10.1038/msb.2011.76.

Kauffman, K. J., Prakash, P., and Edwards, J. S. (2003). “Advances in flux balance
analysis”. In: Curr. Opin. Biotechnol. 14.5, pp. 491–496. doi: 10.1016/j.copbio.
2003.08.001.

Kelder, T., Iersel, M. P. van, Hanspers, K., Kutmon, M., Conklin, B. R., Evelo, C. T.,
and Pico, A. R. (2012). “WikiPathways: Building research communities on
biological pathways”. In: Nucleic Acids Res. 40.November 2011, pp. 1301–1307.
doi: 10.1093/nar/gkr1074.

Kim, M., Sang Yi, J., Kim, J., Kim, J.-N., Kim, M. W., and Kim, B.-G. (2014).
“Reconstruction of a high-quality metabolic model enables the identification of
gene overexpression targets for enhanced antibiotic production in Streptomyces
coelicolor A3(2)”. In: Biotechnol. J. 9.9, pp. 1185–1194. doi: 10.1002/biot.
201300539.

http://dx.doi.org/10.1002/bit.22548
http://dx.doi.org/10.1093/nar/gkr1097
http://dx.doi.org/10.1093/nar/gkt1076
http://dx.doi.org/10.1093/nar/gkt1168
http://dx.doi.org/10.1016/j.cell.2012.05.044
http://dx.doi.org/10.1038/msb.2011.76
http://dx.doi.org/10.1016/j.copbio.2003.08.001
http://dx.doi.org/10.1016/j.copbio.2003.08.001
http://dx.doi.org/10.1093/nar/gkr1074
http://dx.doi.org/10.1002/biot.201300539
http://dx.doi.org/10.1002/biot.201300539


147

Kim, S., Lee, C. H., Nam, S. W., and Kim, P. (2011). “Alteration of reducing powers in
an isogenic phosphoglucose isomerase (pgi)-disrupted Escherichia coli express-
ing NAD(P)-dependent malic enzymes and NADP-dependent glyceraldehyde
3-phosphate dehydrogenase”. In: Lett. Appl. Microbiol. 52.5, pp. 433–440. doi:
10.1111/j.1472-765X.2011.03013.x.

King, Z. A., Dräger, A., Ebrahim, A., Sonnenschein, N., Lewis, N. E., and Palsson, B. O.
(2015a). “Escher: A Web Application for Building, Sharing, and Embedding
Data-Rich Visualizations of Biological Pathways”. In: PLoS Comput. Biol. 11.8,
e1004321. doi: 10.1371/journal.pcbi.1004321.

King, Z. A. and Feist, A. M. (2013). “Optimizing Cofactor Specificity of Oxidoreductase
Enzymes for the Generation of Microbial Production Strains—OptSwap”. In:
Ind. Biotechnol. 9.4, pp. 236–246. doi: 10.1089/ind.2013.0005.

— (2014). “Optimal cofactor swapping can increase the theoretical yield for
chemical production in Escherichia coli and Saccharomyces cerevisiae”. In:
Metab. Eng. 24, pp. 117–128. doi: 10.1016/j.ymben.2014.05.009.

King, Z. A., Lloyd, C. J., Feist, A. M., and Palsson, B. O. (2015b). “Next-generation
genome-scale models for metabolic engineering”. In: Curr. Opin. Biotechnol.
35, pp. 23–29. doi: 10.1016/j.copbio.2014.12.016.

King, Z. A., Lu, J., Dräger, A., Miller, P., Federowicz, S., Lerman, J. A., Ebrahim,
A., Palsson, B. O., and Lewis, N. E. (2016). “BiGG Models: A platform for
integrating, standardizing and sharing genome-scale models”. In: Nucleic Acids
Res. 44.D1, pp. D515–22. doi: 10.1093/nar/gkv1049.

King, Z. A., O’Brien, E. J., Feist, A. M., and Palsson, B. O. “Literature mining
supports a next-generation modeling approach to predict cellular byproduct
secretion”. In: Metabolic Engineering. under review.

Kitano, H., Funahashi, A., Matsuoka, Y., and Oda, K. (2005). “Using process diagrams
for the graphical representation of biological networks”. In: Nat. Biotechnol.
23.8, pp. 961–966. doi: 10.1038/nbt1111.

Klitgord, N. and Segrè, D. (2010). “Environments that induce synthetic microbial
ecosystems”. In: PLoS Comput. Biol. 6.11, e1001002. doi: 10.1371/journal.
pcbi.1001002.

Kono, N., Arakawa, K., Ogawa, R., Kido, N., Oshita, K., Ikegami, K., Tamaki, S., and
Tomita, M. (2009). “Pathway projector: Web-based zoomable pathway browser

http://dx.doi.org/10.1111/j.1472-765X.2011.03013.x
http://dx.doi.org/10.1371/journal.pcbi.1004321
http://dx.doi.org/10.1089/ind.2013.0005
http://dx.doi.org/10.1016/j.ymben.2014.05.009
http://dx.doi.org/10.1016/j.copbio.2014.12.016
http://dx.doi.org/10.1093/nar/gkv1049
http://dx.doi.org/10.1038/nbt1111
http://dx.doi.org/10.1371/journal.pcbi.1001002
http://dx.doi.org/10.1371/journal.pcbi.1001002


148

using KEGG Atlas and Google Maps API”. In: PLoS One 4.11, e7710. doi:
10.1371/journal.pone.0007710.

Krause, F., Schulz, M., Ripkens, B., Flöttmann, M., Krantz, M., Klipp, E., and
Handorf, T. (2013). “Biographer: Web-based editing and rendering of SBGN
compliant biochemical networks”. In: Bioinformatics 29, pp. 1467–1468. doi:
10.1093/bioinformatics/btt159.

Kumar, A., Suthers, P. F., and Maranas, C. D. (2012). “MetRxn: a knowledgebase
of metabolites and reactions spanning metabolic models and databases”. In:
BMC Bioinformatics 13, p. 6. doi: 10.1186/1471-2105-13-6.

Kutmon, M., Iersel, M. P. van, Bohler, A., Kelder, T., Nunes, N., Pico, A. R., and
Evelo, C. T. (2015). “PathVisio 3: An Extendable Pathway Analysis Toolbox”.
In: PLoS Comput. Biol. 11, e1004085. doi: 10.1371/journal.pcbi.1004085.

Lakshmanan, M., Chung, B. K. S., Liu, C., Kim, S.-W., and Lee, D.-Y. (2013).
“Cofactor Modificiation Analysis: A Computational Framework to Identify
Cofactor Specificity Engineering Targets for Strain Improvement”. In: Journal
of bioinformatics and biotechnology 11.6, p. 1343006.

Latendresse, M. and Karp, P. D. (2011). “Web-based metabolic network visualization
with a zooming user interface”. In: BMC Bioinformatics 12.1, p. 176. doi:
10.1186/1471-2105-12-176.

Lee, S. J., Lee, D. Y., Kim, T. Y., Kim, B. H., Lee, J., and Lee, S. Y. (2005). “Metabolic
Engineering of Escherichia coli for Enhanced Production of Succinic Acid ,
Based on Genome Comparison and In Silico Gene Knockout Simulation”. In:
Appl. Environ. Microbiol. 71.12, p. 7880. doi: 10.1128/AEM.71.12.7880.

Lee, S. Y. (1996). “Bacterial polyhydroxyalkanoates”. In: Biotechnol. Bioeng. 49, pp. 1–
14. doi: 10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P.

Lee, S. Y. and Kim, H. U. (2015). “Systems strategies for developing industrial microbial
strains”. In: Nat. Biotechnol. 33.10, pp. 1061–1072. doi: 10.1038/nbt.3365.

Lee, S. G., Park, J. H., Hou, B. K., Kim, Y. H., Kim, C. M., and Hwang, K. S. (2007).
“Effect of weight-added regulatory networks on constraint-based metabolic
models of Escherichia coli”. In: Biosystems. 90.3, pp. 843–855. doi: 10.1016/j.
biosystems.2007.05.003.

http://dx.doi.org/10.1371/journal.pone.0007710
http://dx.doi.org/10.1093/bioinformatics/btt159
http://dx.doi.org/10.1186/1471-2105-13-6
http://dx.doi.org/10.1371/journal.pcbi.1004085
http://dx.doi.org/10.1186/1471-2105-12-176
http://dx.doi.org/10.1128/AEM.71.12.7880
http://dx.doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P
http://dx.doi.org/10.1038/nbt.3365
http://dx.doi.org/10.1016/j.biosystems.2007.05.003
http://dx.doi.org/10.1016/j.biosystems.2007.05.003


149

Lee, W.-H., Kim, M.-D., Jin, Y.-S., and Seo, J.-H. (2013). “Engineering of NADPH
regenerators in Escherichia coli for enhanced biotransformation”. In: Appl.
Microbiol. Biotechnol. doi: 10.1007/s00253-013-4750-z.

Lerman, J. A., Hyduke, D. R., Latif, H., Portnoy, V. A., Lewis, N. E., Orth, J. D.,
Schrimpe-Rutledge, A. C., Smith, R. D., Adkins, J. N., Zengler, K., and
Palsson, B. O. (2012). “In silico method for modelling metabolism and gene
product expression at genome scale”. In: Nat. Commun. 3.may, p. 929. doi:
10.1038/ncomms1928.

Letunic, I. and Bork, P. (2007). “Interactive Tree Of Life (iTOL): An online tool for
phylogenetic tree display and annotation”. In: Bioinformatics 23.1, pp. 127–128.
doi: 10.1093/bioinformatics/btl529.

Lewis, N. E. and Abdel-Haleem, A. M. (2013). “The evolution of genome-scale models
of cancer metabolism”. In: Front. Physiol. 4.237, pp. 1–7. doi: 10.3389/fphys.
2013.00237.

Lewis, N. E., Hixson, K. K., Conrad, T. M., Lerman, J. a., Charusanti, P., Polpitiya,
A. D., Adkins, J. N., Schramm, G., Purvine, S. O., Lopez-Ferrer, D., Weitz,
K. K., Eils, R., König, R., Smith, R. D., and Palsson, B. Ø. (2010a). “Omic data
from evolved E. coli are consistent with computed optimal growth from genome-
scale models”. In: Mol. Syst. Biol. 6.390, p. 390. doi: 10.1038/msb.2010.47.

Lewis, N. E., Nagarajan, H., and Palsson, B. Ø. (2012). “Constraining the metabolic
genotype-phenotype relationship using a phylogeny of in silico methods”. In:
Nat. Rev. Microbiol. 10.4, pp. 291–305. doi: 10.1038/nrmicro2737.

Lewis, N. E., Schramm, G., Bordbar, A., Schellenberger, J., Andersen, M. P., Cheng,
J. K., Patel, N., Yee, A., Lewis, R. A., Eils, R., König, R., and Palsson, B. Ø.
(2010b). “Large-scale in silico modeling of metabolic interactions between cell
types in the human brain”. In: Nat. Biotechnol. 28.12, pp. 1279–1285. doi:
10.1038/nbt.1711.

Li, F., Thiele, I., Jamshidi, N., and Palsson, B. Ø. (2009). “Identification of potential
pathway mediation targets in Toll-like receptor signaling”. In: PLoS Comput.
Biol. 5.2, e1000292. doi: 10.1371/journal.pcbi.1000292.

Lim, J. H., Seo, S. W., Kim, S. Y., and Jung, G. Y. (2013). “Model-driven rebalancing
of the intracellular redox state for optimization of a heterologous n-butanol
pathway in Escherichia coli”. In: Metab. Eng. 20, pp. 56–62. doi: 10.1016/j.
ymben.2013.09.003.

http://dx.doi.org/10.1007/s00253-013-4750-z
http://dx.doi.org/10.1038/ncomms1928
http://dx.doi.org/10.1093/bioinformatics/btl529
http://dx.doi.org/10.3389/fphys.2013.00237
http://dx.doi.org/10.3389/fphys.2013.00237
http://dx.doi.org/10.1038/msb.2010.47
http://dx.doi.org/10.1038/nrmicro2737
http://dx.doi.org/10.1038/nbt.1711
http://dx.doi.org/10.1371/journal.pcbi.1000292
http://dx.doi.org/10.1016/j.ymben.2013.09.003
http://dx.doi.org/10.1016/j.ymben.2013.09.003


150

Lin, H., Bennett, G. N., and San, K.-Y. (2005). “Metabolic engineering of aerobic
succinate production systems in Escherichia coli to improve process productivity
and achieve the maximum theoretical succinate yield”. In: Metab. Eng. 7.2,
pp. 116–127. doi: 10.1016/j.ymben.2004.10.003.

Liu, J. K., O’Brien, E. J., Lerman, J. A., Zengler, K., Palsson, B. Ø., and Feist, A. M.
(2014). “Reconstruction and modeling protein translocation and compartmen-
talization in Escherichia coli at the genome-scale”. In: BMC Syst. Biol. 8.110.
doi: 10.1186/s12918-014-0110-6.

Liu, R., Bassalo, M. C., Zeitouna, R. I., and Gill, R. T. (2015). “Genome scale
engineering techniques for metabolic engineering”. In: Metab. Eng. Pp. 1–12.
doi: 10.1016/j.ymben.2015.09.013.

Lobel, L., Sigal, N., Borovok, I., Ruppin, E., and Herskovits, A. a. (2012). “Integrative
genomic analysis identifies isoleucine and CodY as regulators of Listeria mono-
cytogenes virulence”. In: PLoS Genet. 8.9, e1002887. doi: 10.1371/journal.
pgen.1002887.

Londesborough, J., Penttilae, M., Richard, P., and Verho, R. (2003). “Fungal micro-
organism having an increased ability to carry out biotechnological process(es)”.
2003038067 A1.

Lunzer, M., Miller, S. P., Felsheim, R., and Dean, A. M. (2005). “The biochemical
architecture of an ancient adaptive landscape”. In: Science 310.5747, pp. 499–
501. doi: 10.1126/science.1115649.

Ma, J., Gou, D., Liang, L., Liu, R., Chen, X., Zhang, C., Zhang, J., Chen, K., and Jiang,
M. (2013). “Enhancement of succinate production by metabolically engineered
Escherichia coli with co-expression of nicotinic acid phosphoribosyltransferase
and pyruvate carboxylase”. In: Appl. Microbiol. Biotechnol. doi: 10.1007/
s00253-013-4910-1.

Machado, D. and Herrgård, M. (2015). “Co-evolution of strain design methods based
on flux balance and elementary mode analysis”. In: Metabolic Engineering
Communications 2, pp. 85–92. doi: 10.1016/j.meteno.2015.04.001.

Mahadevan, R. and Schilling, C. H. (2003). “The effects of alternate optimal solutions in
constraint-based genome-scale metabolic models”. In: Metab. Eng. 5.4, pp. 264–
276. doi: 10.1016/j.ymben.2003.09.002.

Maklashina, E., Berthold, D. a., and Cecchini, G. (1998). “Anaerobic expression of
Escherichia coli succinate dehydrogenase: functional replacement of fumarate

http://dx.doi.org/10.1016/j.ymben.2004.10.003
http://dx.doi.org/10.1186/s12918-014-0110-6
http://dx.doi.org/10.1016/j.ymben.2015.09.013
http://dx.doi.org/10.1371/journal.pgen.1002887
http://dx.doi.org/10.1371/journal.pgen.1002887
http://dx.doi.org/10.1126/science.1115649
http://dx.doi.org/10.1007/s00253-013-4910-1
http://dx.doi.org/10.1007/s00253-013-4910-1
http://dx.doi.org/10.1016/j.meteno.2015.04.001
http://dx.doi.org/10.1016/j.ymben.2003.09.002


151

reductase in the respiratory chain during anaerobic growth”. In: J. Bacteriol.
180, pp. 5989–5996.

Manzer, L. E., Waal, J. C. v. d., and Imhof, P. (2013). “The Industrial Playing Field
for the Conversion of Biomass to Renewable Fuels and Chemicals”. In: Catalytic
Process Development for Renewable Materials. Ed. by J. C. v. d. Waal and
P. Imhof. 1st ed. Weinheim, Germany: Wiley-VCH, pp. 1–24.

Margolis, R., Derr, L., Dunn, M., Huerta, M., Larkin, J., Sheehan, J., Guyer, M.,
and Green, E. D. (2014). “The National Institutes of Health’s Big Data to
Knowledge (BD2K) initiative: capitalizing on biomedical big data”. In: J. Am.
Med. Inform. Assoc. 21, pp. 957–958. doi: 10.1136/amiajnl-2014-002974.

Martínez, I., Zhu, J., Lin, H., Bennett, G. N., and San, K.-Y. (2008). “Replacing
Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum
facilitates NADPH dependent pathways”. In: Metab. Eng. 10.6, pp. 352–359.
doi: 10.1016/j.ymben.2008.09.001.

Marx, A., Eikmanns, B. J., Sahm, H., Graaf, A. A. de, and Eggeling, L. (1999).
“Response of the central metabolism in Corynebacterium glutamicum to the
use of an NADH-dependent glutamate dehydrogenase”. In: Metab. Eng. 1.1,
pp. 35–48. doi: 10.1006/mben.1998.0106.

McCloskey, D., Gangoiti, J. A., King, Z. A., Naviaux, R. K., Barshop, B. A., Palsson, B.,
and Feist, A. M. (2013). “A model-driven quantitative metabolomics analysis of
aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically
and thermodynamically consistent”. In: Biotechnol. Bioeng. 111.4, pp. 803–815.
doi: 10.1002/bit.25133.

McCloskey, D., Palsson, B. Ø., and Feist, A. M. (2013). “Basic and applied uses of
genome-scale metabolic network reconstructions of Escherichia coli”. In: Mol.
Syst. Biol. 9.1, p. 661. doi: 10.1038/msb.2013.18.

McKenna, R. and Nielsen, D. R. (2011). “Styrene biosynthesis from glucose by
engineered E. coli”. In: Metab. Eng. 13.5, pp. 544–554. doi: 10.1016/j.ymben.
2011.06.005.

McMurry, J., Kohler, S., Balhoff, J., Borromeo, C., Brush, M., Carbon, S., Conlin, T.,
Dunn, N., Engelstad, M., Foster, E., Gourdine, J.-P., Jacobsen, J., Keith, D.,
Laraway, B., Lewis, S., Xuan, J. N., Shefchek, K., Vasilevsky, N., Yuan, Z.,
Washington, N., Hochheiser, H., Mungall, C., Groza, T., Smedley, D., Robinson,

http://dx.doi.org/10.1136/amiajnl-2014-002974
http://dx.doi.org/10.1016/j.ymben.2008.09.001
http://dx.doi.org/10.1006/mben.1998.0106
http://dx.doi.org/10.1002/bit.25133
http://dx.doi.org/10.1038/msb.2013.18
http://dx.doi.org/10.1016/j.ymben.2011.06.005
http://dx.doi.org/10.1016/j.ymben.2011.06.005


152

P., and Haendel, M. (2016). “Navigating the phenotype frontier: The Monarch
Initiative”.

Mo, M. L., Palsson, B. O., and Herrgård, M. J. (2009). “Connecting extracellular
metabolomic measurements to intracellular flux states in yeast”. In: BMC Syst.
Biol. 3, p. 37. doi: 10.1186/1752-0509-3-37.

Molenaar, D., Berlo, R. van, Ridder, D. de, and Teusink, B. (2009). “Shifts in growth
strategies reflect tradeoffs in cellular economics”. In: Mol. Syst. Biol. 5.323,
p. 323. doi: 10.1038/msb.2009.82.

Monk, J., Nogales, J., and Palsson, B. O. (2014). “Optimizing genome-scale network
reconstructions”. In: Nat. Biotechnol. 32.5, pp. 447–452. doi: 10.1038/nbt.2870.

Murarka, A., Dharmadi, Y., Yazdani, S. S., and Gonzalez, R. (2008). “Fermentative
utilization of glycerol by Escherichia coli and its implications for the production
of fuels and chemicals”. In: Appl. Environ. Microbiol. 74.4, pp. 1124–1135. doi:
10.1128/AEM.02192-07.

Nakahigashi, K., Toya, Y., Ishii, N., Soga, T., Hasegawa, M., Watanabe, H., Takai, Y.,
Honma, M., Mori, H., and Tomita, M. (2009). “Systematic phenome analysis of
Escherichia coli multiple-knockout mutants reveals hidden reactions in central
carbon metabolism”. In: Mol. Syst. Biol. 5.306, p. 306. doi: 10.1038/msb.2009.
65.

Nam, H., Lewis, N. E., Lerman, J. a., Lee, D.-H., Chang, R. L., Kim, D., and Palsson,
B. O. (2012). “Network context and selection in the evolution to enzyme
specificity”. In: Science 337.6098, pp. 1101–1104. doi: 10.1126/science.1216861.

Nissen, T. L., Anderlund, M., Nielsen, J., Villadsen, J., and Kielland-Brandt, M. C.
(2001). “Expression of a cytoplasmic transhydrogenase in Saccharomyces cere-
visiae results in formation of 2-oxoglutarate due to depletion of the NADPH
pool”. In: Yeast 18.1, pp. 19–32. doi: 10.1002/1097-0061(200101)18:1<19::
AID-YEA650>3.0.CO;2-5.

Nocon, J., Steiger, M. G., Pfeffer, M., Sohn, S. B., Kim, T. Y., Maurer, M., Ruß-
mayer, H., Pflügl, S., Ask, M., Haberhauer-Troyer, C., Ortmayr, K., Hann, S.,
Koellensperger, G., Gasser, B., Lee, S. Y., and Mattanovich, D. (2014). “Model
based engineering of Pichia pastoris central metabolism enhances recombinant
protein production”. In: Metab. Eng. 24, pp. 129–138. doi: 10.1016/j.ymben.
2014.05.011.

http://dx.doi.org/10.1186/1752-0509-3-37
http://dx.doi.org/10.1038/msb.2009.82
http://dx.doi.org/10.1038/nbt.2870
http://dx.doi.org/10.1128/AEM.02192-07
http://dx.doi.org/10.1038/msb.2009.65
http://dx.doi.org/10.1038/msb.2009.65
http://dx.doi.org/10.1126/science.1216861
http://dx.doi.org/10.1002/1097-0061(200101)18:1<19::AID-YEA650>3.0.CO;2-5
http://dx.doi.org/10.1002/1097-0061(200101)18:1<19::AID-YEA650>3.0.CO;2-5
http://dx.doi.org/10.1016/j.ymben.2014.05.011
http://dx.doi.org/10.1016/j.ymben.2014.05.011


153

O’Brien, E. J., Lerman, J. A., Chang, R. L., Hyduke, D. R., and Palsson, B. Ø.
(2013). “Genome-scale models of metabolism and gene expression extend and
refine growth phenotype prediction”. In: Mol. Syst. Biol. 9.1, p. 693. doi:
10.1038/msb.2013.52.

O’Brien, E. J. and Palsson, B. O. (2015). “Computing the functional proteome:
recent progress and future prospects for genome-scale models”. In: Curr. Opin.
Biotechnol. 34, pp. 125–134. doi: 10.1016/j.copbio.2014.12.017.

Olavarría, K., Valdés, D., and Cabrera, R. (2012). “The cofactor preference of glucose-
6-phosphate dehydrogenase from Escherichia coli–modeling the physiological
production of reduced cofactors”. In: FEBS J. 279.13, pp. 2296–2309. doi:
10.1111/j.1742-4658.2012.08610.x.

Orth, J. D., Conrad, T. M., Na, J., Lerman, J. A., Nam, H., Feist, A. M., and Palsson,
B. Ø. (2011). “A comprehensive genome-scale reconstruction of Escherichia
coli metabolism—2011”. In: Mol. Syst. Biol. 7.535, p. 535. doi: 10.1038/msb.
2011.65.

Orth, J. D. and Palsson, B. (2010). “Systematizing the generation of missing metabolic
knowledge”. In: Biotechnol. Bioeng. 107.3, pp. 403–412. doi: 10.1002/bit.22844.

Orth, J. D., Thiele, I., and Palsson, B. Ø. (2010). “What is flux balance analysis?” In:
Nat. Biotechnol. 28.3, pp. 245–248. doi: 10.1038/nbt.1614.

Palsson, B. Ø. (2006). Systems Biology: Properties of Reconstructed Networks. Cam-
bridge, UK: Cambridge University Press.

Papin, J. A. and Palsson, B. O. (2004). “The JAK-STAT signaling network in the
human B-cell: an extreme signaling pathway analysis”. In: Biophys. J. 87.1,
pp. 37–46. doi: 10.1529/biophysj.103.029884.

Patil, K. R., Rocha, I., Förster, J., and Nielsen, J. (2005). “Evolutionary programming
as a platform for in silico metabolic engineering”. In: BMC Bioinformatics 6,
p. 308. doi: 10.1186/1471-2105-6-308.

Piškur, J., Rozpedowska, E., Polakova, S., Merico, A., and Compagno, C. (2006).
“How did Saccharomyces evolve to become a good brewer?” In: Trends Genet.
22.4, pp. 183–186. doi: 10.1016/j.tig.2006.02.002.

Price, N. D., Reed, J. L., and Palsson, B. Ø. (2004). “Genome-scale models of microbial
cells: evaluating the consequences of constraints”. In: Nat. Rev. Microbiol. 2.11,
pp. 886–897. doi: 10.1038/nrmicro1023.

http://dx.doi.org/10.1038/msb.2013.52
http://dx.doi.org/10.1016/j.copbio.2014.12.017
http://dx.doi.org/10.1111/j.1742-4658.2012.08610.x
http://dx.doi.org/10.1038/msb.2011.65
http://dx.doi.org/10.1038/msb.2011.65
http://dx.doi.org/10.1002/bit.22844
http://dx.doi.org/10.1038/nbt.1614
http://dx.doi.org/10.1529/biophysj.103.029884
http://dx.doi.org/10.1186/1471-2105-6-308
http://dx.doi.org/10.1016/j.tig.2006.02.002
http://dx.doi.org/10.1038/nrmicro1023


154

Pruitt, K. D., Brown, G. R., Hiatt, S. M., Thibaud-Nissen, F., Astashyn, A., Ermolaeva,
O., Farrell, C. M., Hart, J., Landrum, M. J., McGarvey, K. M., Murphy, M. R.,
O’Leary, N. A., Pujar, S., Rajput, B., Rangwala, S. H., Riddick, L. D., Shkeda,
A., Sun, H., Tamez, P., Tully, R. E., Wallin, C., Webb, D., Weber, J., Wu, W.,
Dicuccio, M., Kitts, P., Maglott, D. R., Murphy, T. D., and Ostell, J. M. (2014).
“RefSeq: An update on mammalian reference sequences”. In: Nucleic Acids Res.
42, pp. D756–D763. doi: 10.1093/nar/gkt1114.

Qi, W. W., Vannelli, T., Breinig, S., Ben-Bassat, A., Gatenby, A. A., Haynie, S. L., and
Sariaslani, F. S. (2007). “Functional expression of prokaryotic and eukaryotic
genes in Escherichia coli for conversion of glucose to p-hydroxystyrene”. In:
Metab. Eng. 9.3, pp. 268–276. doi: 10.1016/j.ymben.2007.01.002.

Qian, Z.-G., Xia, X.-X., and Lee, S. Y. (2009). “Metabolic engineering of Escherichia
coli for the production of putrescine: a four carbon diamine”. In: Biotechnol.
Bioeng. 104.4, pp. 651–662. doi: 10.1002/bit.22502.

Ranganathan, S., Suthers, P. F., and Maranas, C. D. (2010). “OptForce: an optimiza-
tion procedure for identifying all genetic manipulations leading to targeted
overproductions”. In: PLoS Comput. Biol. 6.4, e1000744. doi: 10.1371/journal.
pcbi.1000744.

Ranganathan, S., Wei Tee, T., Chowdhury, A., Zomorrodi, A. R., Moon Yoon, J., Fu,
Y., Shanks, J. V., and Maranas, C. D. (2012). “An integrated computational
and experimental study for overproducing fatty acids in Escherichia coli”. In:
Metab. Eng. 14.6, pp. 687–704. doi: 10.1016/j.ymben.2012.08.008.

Rathnasingh, C., Raj, S. M., Jo, J.-E., and Park, S. (2009). “Development and
evaluation of efficient recombinant Escherichia coli strains for the production of
3-hydroxypropionic acid from glycerol”. In: Biotechnol. Bioeng. 104.4, pp. 729–
739. doi: 10.1002/bit.22429.

Rathnasingh, C., Raj, S. M., Lee, Y., Catherine, C., Ashok, S., and Park, S. (2012).
“Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recom-
binant Escherichia coli strains”. In: J. Biotechnol. 157.4, pp. 633–640. doi:
10.1016/j.jbiotec.2011.06.008.

Reed, J. L., Famili, I., Thiele, I., and Palsson, B. O. (2006a). “Towards multidimensional
genome annotation”. In: Nat. Rev. Genet. 7.2, pp. 130–141. doi: 10.1038/
nrg1769.

Reed, J. L., Patel, T. R., Chen, K. H., Joyce, A. R., Applebee, M. K., Herring, C. D.,
Bui, O. T., Knight, E. M., Fong, S. S., and Palsson, B. O. (2006b). “Systems

http://dx.doi.org/10.1093/nar/gkt1114
http://dx.doi.org/10.1016/j.ymben.2007.01.002
http://dx.doi.org/10.1002/bit.22502
http://dx.doi.org/10.1371/journal.pcbi.1000744
http://dx.doi.org/10.1371/journal.pcbi.1000744
http://dx.doi.org/10.1016/j.ymben.2012.08.008
http://dx.doi.org/10.1002/bit.22429
http://dx.doi.org/10.1016/j.jbiotec.2011.06.008
http://dx.doi.org/10.1038/nrg1769
http://dx.doi.org/10.1038/nrg1769


155

approach to refining genome annotation”. In: Proc. Natl. Acad. Sci. U. S. A.
103.46, pp. 17480–17484. doi: 10.1073/pnas.0603364103.

Reed, J. L., Vo, T. D., Schilling, C. H., and Palsson, B. Ø. (2003). “An expanded
genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR)”. In: Genome
Biol. 4.9, R54. doi: 10.1186/gb-2003-4-9-r54.

Rodriguez, N., Thomas, A., Watanabe, L., Vazirabad, I. Y., Kofia, V., Gómez, H. F.,
Mittag, F., Matthes, J., Rudolph, J., Wrzodek, F., Netz, E., Diamantikos, A.,
Eichner, J., Keller, R., Wrzodek, C., Fröhlich, S., Lewis, N. E., Myers, C. J.,
Le Novère, N., Palsson, B. Ø., Hucka, M., and Dräger, A. (2015). “JSBML
1.0: providing a smorgasbord of options to encode systems biology models”. In:
Bioinformatics, Advance access. doi: 10.1093/bioinformatics/btv341.

Rodríguez-Arnedo, A., Camacho, M., Llorca, F., and Bonete, M.-J. (2005). “Complete
reversal of coenzyme specificity of isocitrate dehydrogenase from Haloferax
volcanii”. In: Protein J. 24.5, pp. 259–266. doi: 10.1007/s10930-005-6746-8.

Rohn, H., Junker, A., Hartmann, A., Grafahrend-Belau, E., Treutler, H., Klapperstück,
M., Czauderna, T., Klukas, C., and Schreiber, F. (2012). “VANTED v2: a
framework for systems biology applications”. In: BMC Syst. Biol. 6.3, p. 139.
doi: 10.1186/1752-0509-6-139.

Rose, P. W., Prlić, A., Bi, C., Bluhm, W. F., Christie, C. H., Dutta, S., Green, R. K.,
Goodsell, D. S., Westbrook, J. D., Woo, J., Young, J., Zardecki, C., Berman,
H. M., Bourne, P. E., and Burley, S. K. (2015). “The RCSB Protein Data Bank:
views of structural biology for basic and applied research and education”. In:
Nucleic Acids Res. 43, pp. D345–D356. doi: 10.1093/nar/gks1200.

Russell, J. B. and Cook, G. M. (1995). “Energetics of bacterial growth: balance of
anabolic and catabolic reactions”. In: Microbiol. Mol. Biol. Rev. 59.1, pp. 48–62.

Sanchez, A. M., Andrews, J., Hussein, I., Bennett, G. N., and San, K.-Y. (2006).
“Effect of overexpression of a soluble pyridine nucleotide transhydrogenase
(UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli”. In:
Biotechnol. Prog. 22.2, pp. 420–425. doi: 10.1021/bp050375u.

Sánchez, A. M., Bennett, G. N., and San, K.-Y. (2005a). “Efficient succinic acid
production from glucose through overexpression of pyruvate carboxylase in an
Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant”. In:
Biotechnol. Prog. 21.2, pp. 358–365. doi: 10.1021/bp049676e.

http://dx.doi.org/10.1073/pnas.0603364103
http://dx.doi.org/10.1186/gb-2003-4-9-r54
http://dx.doi.org/10.1093/bioinformatics/btv341
http://dx.doi.org/10.1007/s10930-005-6746-8
http://dx.doi.org/10.1186/1752-0509-6-139
http://dx.doi.org/10.1093/nar/gks1200
http://dx.doi.org/10.1021/bp050375u
http://dx.doi.org/10.1021/bp049676e


156

Sánchez, A. M., Bennett, G. N., and San, K.-Y. (2005b). “Novel pathway engineering
design of the anaerobic central metabolic pathway in Escherichia coli to
increase succinate yield and productivity”. In: Metab. Eng. 7.3, pp. 229–239.
doi: 10.1016/j.ymben.2005.03.001.

Sauer, U., Canonaco, F., Heri, S., Perrenoud, A., and Fischer, E. (2004). “The soluble
and membrane-bound transhydrogenases UdhA and PntAB have divergent
functions in NADPH metabolism of Escherichia coli”. In: J. Biol. Chem. 279.8,
pp. 6613–6619. doi: 10.1074/jbc.M311657200.

Schellenberger, J., Park, J. O., Conrad, T. M., and Palsson, B. Ø. (2010). “BiGG:
a Biochemical Genetic and Genomic knowledgebase of large scale metabolic
reconstructions”. In: BMC Bioinformatics. doi: 10.1186/1471-2105-11-213.

Schellenberger, J., Que, R., Fleming, R. M. T., Thiele, I., Orth, J. D., Feist, A. M.,
Zielinski, D. C., Bordbar, A., Lewis, N. E., Rahmanian, S., Kang, J., Hyduke,
D. R., and Palsson, B. Ø. (2011). “Quantitative prediction of cellular metabolism
with constraint-based models: the COBRA Toolbox v2.0”. In: Nat. Protoc. 6.9,
pp. 1290–1307. doi: 10.1038/nprot.2011.308.

Schuetz, R., Kuepfer, L., and Sauer, U. (2007). “Systematic evaluation of objective
functions for predicting intracellular fluxes in Escherichia coli”. In: Mol. Syst.
Biol. 3.119, p. 119. doi: 10.1038/msb4100162.

Segre, D., Vitkup, D., and Church, G. M. (2002). “Analysis of optimality in natural
and perturbed metabolic networks”. In: Proceedings of the National Academy
of Sciences 99.23, pp. 15112–15117.

Seo, S. W., Kim, D., Latif, H., O’Brien, E. J., Szubin, R., and Palsson, B. O. (2014).
“Deciphering Fur transcriptional regulatory network highlights its complex role
beyond iron metabolism in Escherichia coli”. In: Nat. Commun. 5, p. 4910.
doi: 10.1038/ncomms5910.

Shen, C. R., Lan, E. I., Dekishima, Y., Baez, A., Cho, K. M., and Liao, J. C. (2011).
“Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia
coli”. In: Appl. Environ. Microbiol. 77.9, pp. 2905–2915. doi: 10.1128/AEM.
03034-10.

Shen, C. R. and Liao, J. C. (2013). “Synergy as design principle for metabolic
engineering of 1-propanol production in Escherichia coli”. In: Metab. Eng. 17,
pp. 12–22. doi: 10.1016/j.ymben.2013.01.008.

http://dx.doi.org/10.1016/j.ymben.2005.03.001
http://dx.doi.org/10.1074/jbc.M311657200
http://dx.doi.org/10.1186/1471-2105-11-213
http://dx.doi.org/10.1038/nprot.2011.308
http://dx.doi.org/10.1038/msb4100162
http://dx.doi.org/10.1038/ncomms5910
http://dx.doi.org/10.1128/AEM.03034-10
http://dx.doi.org/10.1128/AEM.03034-10
http://dx.doi.org/10.1016/j.ymben.2013.01.008


157

Shin, J. H., Kim, H. U., Kim, D. I., and Lee, S. Y. (2013). “Production of bulk
chemicals via novel metabolic pathways in microorganisms”. In: Biotechnol.
Adv. 31.6, pp. 925–935. doi: 10.1016/j.biotechadv.2012.12.008.

Singh, A., Cher Soh, K., Hatzimanikatis, V., and Gill, R. T. (2011). “Manipulating
redox and ATP balancing for improved production of succinate in E. coli”. In:
Metab. Eng. 13.1, pp. 76–81. doi: 10.1016/j.ymben.2010.10.006.

Skinner, M. E., Uzilov, A. V., Stein, L. D., Mungall, C. J., and Holmes, I. H. (2009).
“JBrowse : A next-generation genome browser”. In: Genome Res. 19, pp. 1630–
1638. doi: 10.1101/gr.094607.109.

Smanski, M. J., Bhatia, S., Zhao, D., Park, Y., B A Woodruff, L., Giannoukos,
G., Ciulla, D., Busby, M., Calderon, J., Nicol, R., Gordon, D. B., Densmore,
D., and Voigt, C. A. (2014). “Functional optimization of gene clusters by
combinatorial design and assembly”. In: Nat. Biotechnol. 32.12, pp. 1241–1249.
doi: 10.1038/nbt.3063.

Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L., and Ideker, T. (2011). “Cy-
toscape 2.8: New features for data integration and network visualization”. In:
Bioinformatics 27.3, pp. 431–432. doi: 10.1093/bioinformatics/btq675.

Stallman, R. M. (1981). EMACS the extensible, customizable self-documenting display
editor. doi: 10.1145/872730.806466.

Stols, L., Kulkarni, G., Harris, B. G., and Donnelly, M. I. (1997). “Expression of Ascaris
suum malic enzyme in a mutant Escherichia coli allows production of succinic
acid from glucose”. In: Appl. Biochem. Biotechnol. 63-65.4, pp. 153–158.

Stols, L. and Donnelly, M. I. (1997). “Production of succinic acid through overex-
pression of NAD+-dependent malic enzyme in an Escherichia coli mutant”. In:
Appl. Environ. Microbiol. 63.7, pp. 2695–2701.

Szappanos, B., Kovács, K., Szamecz, B., Honti, F., Costanzo, M., Baryshnikova, A.,
Gelius-Dietrich, G., Lercher, M. J., Jelasity, M., Myers, C. L., Andrews, B. J.,
Boone, C., Oliver, S. G., Pál, C., and Papp, B. (2011). “An integrated approach
to characterize genetic interaction networks in yeast metabolism”. In: Nat.
Genet. 43.7, pp. 656–662. doi: 10.1038/ng.846.

Tang, X., Tan, Y., Zhu, H., Zhao, K., and Shen, W. (2009). “Microbial conversion
of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli”. In:
Appl. Environ. Microbiol. 75.6, pp. 1628–1634. doi: 10.1128/AEM.02376-08.

http://dx.doi.org/10.1016/j.biotechadv.2012.12.008
http://dx.doi.org/10.1016/j.ymben.2010.10.006
http://dx.doi.org/10.1101/gr.094607.109
http://dx.doi.org/10.1038/nbt.3063
http://dx.doi.org/10.1093/bioinformatics/btq675
http://dx.doi.org/10.1145/872730.806466
http://dx.doi.org/10.1038/ng.846
http://dx.doi.org/10.1128/AEM.02376-08


158

Tepper, N. and Shlomi, T. (2010). “Predicting metabolic engineering knockout strate-
gies for chemical production: accounting for competing pathways”. In: Bioin-
formatics 26.4, pp. 536–543. doi: 10.1093/bioinformatics/btp704.

Thiele, I., Fleming, R. M. T., Que, R., Bordbar, A., Diep, D., and Palsson, B. O.
(2012). “Multiscale modeling of metabolism and macromolecular synthesis in
E. coli and its application to the evolution of codon usage”. In: PLoS One 7.9,
e45635. doi: 10.1371/journal.pone.0045635.

Thiele, I., Jamshidi, N., Fleming, R. M. T., and Palsson, B. Ø. (2009). “Genome-
scale reconstruction of Escherichia coli’s transcriptional and translational
machinery: a knowledge base, its mathematical formulation, and its functional
characterization”. In: PLoS Comput. Biol. 5.3, e1000312. doi: 10.1371/journal.
pcbi.1000312.

Thiele, I. and Palsson, B. Ø. (2010). “A protocol for generating a high-quality genome-
scale metabolic reconstruction”. In: Nat. Protoc. 5.1, pp. 93–121. doi: 10.1038/
nprot.2009.203.

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel,
H., Salzberg, S. L., Rinn, J. L., and Pachter, L. (2012). “Differential gene
and transcript expression analysis of RNA-seq experiments with TopHat and
Cufflinks”. In: Nat. Protoc. 7, pp. 562–578. doi: 10.1038/nprot.2012.016.

Trinh, C. T. (2012). “Elucidating and reprogramming Escherichia coli metabolisms for
obligate anaerobic n-butanol and isobutanol production”. In: Appl. Microbiol.
Biotechnol. 95.4, pp. 1083–1094. doi: 10.1007/s00253-012-4197-7.

Trinh, C. T., Li, J., Blanch, H. W., and Clark, D. S. (2011). “Redesigning Escherichia
coli metabolism for anaerobic production of isobutanol”. In: Appl. Environ.
Microbiol. 77.14, pp. 4894–4904. doi: 10.1128/AEM.00382-11.

Tseng, H.-C., Harwell, C. L., Martin, C. H., and Prather, K. L. J. (2010). “Biosynthesis
of chiral 3-hydroxyvalerate from single propionate-unrelated carbon sources
in metabolically engineered E. coli”. In: Microb. Cell Fact. 9, p. 96. doi:
10.1186/1475-2859-9-96.

Tseng, H.-C., Martin, C. H., Nielsen, D. R., and Prather, K. L. J. (2009). “Metabolic
engineering of Escherichia coli for enhanced production of (R)- and (S)-3-
hydroxybutyrate”. In: Appl. Environ. Microbiol. 75.10, pp. 3137–3145. doi:
10.1128/AEM.02667-08.

http://dx.doi.org/10.1093/bioinformatics/btp704
http://dx.doi.org/10.1371/journal.pone.0045635
http://dx.doi.org/10.1371/journal.pcbi.1000312
http://dx.doi.org/10.1371/journal.pcbi.1000312
http://dx.doi.org/10.1038/nprot.2009.203
http://dx.doi.org/10.1038/nprot.2009.203
http://dx.doi.org/10.1038/nprot.2012.016
http://dx.doi.org/10.1007/s00253-012-4197-7
http://dx.doi.org/10.1128/AEM.00382-11
http://dx.doi.org/10.1186/1475-2859-9-96
http://dx.doi.org/10.1128/AEM.02667-08


159

Ui, S., Takusagawa, Y., Sato, T., Ohtsuki, T., Mimura, A., Ohkuma, M., and Kudo,
T. (2004). “Production of L-2,3-butanediol by a new pathway constructed in
Escherichia coli”. In: Lett. Appl. Microbiol. 39.6, pp. 533–537. doi: 10.1111/j.
1472-765X.2004.01622.x.

Varma, A., Boesch, B. W., and Palsson, B. O. (1993). “Stoichiometric interpretation
of Escherichia coli glucose catabolism under various oxygenation rates”. In:
Appl. Environ. Microbiol. 59.8, pp. 2465–2473.

Varma, A. and Palsson, B. Ø. (1994). “Metabolic Flux Balancing: Basic Concepts,
Scientific and Practical Use”. In: Nat. Biotechnol. 12.October, pp. 994–998.

Vemuri, G. N., Eiteman, M. A., and Altman, E. (2002). “Effects of Growth Mode and
Pyruvate Carboxylase on Succinic Acid Production by Metabolically Engineered
Strains of Escherichia coli”. In: Appl. Environ. Microbiol. 68.4, pp. 1715–1727.
doi: 10.1128/AEM.68.4.1715.

Verho, R., Londesborough, J., Penttilä, M., and Richard, P. (2003). “Engineering Redox
Cofactor Regeneration for Improved Pentose Fermentation in Saccharomyces
cerevisiae”. In: Appl. Environ. Microbiol. 69.10, p. 5892. doi: 10.1128/AEM.69.
10.5892.

Villadsen, J., Nielsen, J., and Lidén, G. (2011). “Chemicals from Metabolic Pathways”.
In: Bioreaction Engineering Principles. Boston, MA: Springer US. Chap. 2,
pp. 7–62. doi: 10.1007/978-1-4419-9688-6.

Wang, B., Wang, P., Zheng, E., Chen, X., Zhao, H., Song, P., Su, R., Li, X., and Zhu,
G. (2011). “Biochemical properties and physiological roles of NADP-dependent
malic enzyme in Escherichia coli”. In: J. Microbiol. 49.5, pp. 797–802. doi:
10.1007/s12275-011-0487-5.

Winkler, J. D., Halweg-Edwards, A. L., and Gill, R. T. (2015). “The LASER database:
Formalizing design rules for metabolic engineering”. In: Metabolic Engineering
Communications 2, pp. 30–38. doi: 10.1016/j.meteno.2015.06.003.

Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., Djoumbou, Y.,
Mandal, R., Aziat, F., Dong, E., Bouatra, S., Sinelnikov, I., Arndt, D., Xia,
J., Liu, P., Yallou, F., Bjorndahl, T., Perez-Pineiro, R., Eisner, R., Allen, F.,
Neveu, V., Greiner, R., and Scalbert, A. (2013). “HMDB 3.0—The Human
Metabolome Database in 2013”. In: Nucleic Acids Res. 41, pp. D801–D807.
doi: 10.1093/nar/gks1065.

http://dx.doi.org/10.1111/j.1472-765X.2004.01622.x
http://dx.doi.org/10.1111/j.1472-765X.2004.01622.x
http://dx.doi.org/10.1128/AEM.68.4.1715
http://dx.doi.org/10.1128/AEM.69.10.5892
http://dx.doi.org/10.1128/AEM.69.10.5892
http://dx.doi.org/10.1007/978-1-4419-9688-6
http://dx.doi.org/10.1007/s12275-011-0487-5
http://dx.doi.org/10.1016/j.meteno.2015.06.003
http://dx.doi.org/10.1093/nar/gks1065


160

Xu, P., Ranganathan, S., Fowler, Z. L., Maranas, C. D., and Koffas, M. a. G. (2011).
“Genome-scale metabolic network modeling results in minimal interventions
that cooperatively force carbon flux towards malonyl-CoA”. In: Metab. Eng.
13.5, pp. 578–587. doi: 10.1016/j.ymben.2011.06.008.

Yamada, T., Letunic, I., Okuda, S., Kanehisa, M., and Bork, P. (2011). “IPath2.0:
Interactive pathway explorer”. In: Nucleic Acids Res. 39.May, pp. 412–415.
doi: 10.1093/nar/gkr313.

Yan, Y., Lee, C.-C., and Liao, J. C. (2009). “Enantioselective synthesis of pure
(R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol
dehydrogenases”. In: Org. Biomol. Chem. 7.19, pp. 3914–3917. doi: 10.1039/
b913501d.

Yaoi, T., Miyazaki, K., Oshima, T., Komukai, Y., and Go, M. (1996). “Conversion of
the Coenzyme Specificity of Isocitrate Dehydrogenase by Module Replacement”.
In: J. Biochem. 1018, pp. 1014–1018.

Yim, H., Haselbeck, R., Niu, W., Pujol-Baxley, C., Burgard, A., Boldt, J., Khandurina,
J., Trawick, J. D., Osterhout, R. E., Stephen, R., Estadilla, J., Teisan, S.,
Schreyer, H. B., Andrae, S., Yang, T. H., Lee, S. Y., Burk, M. J., and Van Dien,
S. (2011). “Metabolic engineering of Escherichia coli for direct production of 1,4-
butanediol”. In: Nat. Chem. Biol. 7.7, pp. 445–452. doi: 10.1038/nchembio.580.

Zhang, F., Rodriguez, S., and Keasling, J. D. (2011). “Metabolic engineering of micro-
bial pathways for advanced biofuels production”. In: Curr. Opin. Biotechnol.
22.6, pp. 775–783. doi: 10.1016/j.copbio.2011.04.024.

Zhang, X., Jantama, K., Moore, J. C., Shanmugam, K. T., and Ingram, L. O. (2007).
“Production of L-alanine by metabolically engineered Escherichia coli”. In: Appl.
Microbiol. Biotechnol. 77.2, pp. 355–366. doi: 10.1007/s00253-007-1170-y.

Zhang, X., Shanmugam, K. T., and Ingram, L. O. (2010). “Fermentation of glycerol
to succinate by metabolically engineered strains of Escherichia coli”. In: Appl.
Environ. Microbiol. 76.8, pp. 2397–2401. doi: 10.1128/AEM.02902-09.

Zhang, Y., Thiele, I., Weekes, D., Li, Z., Jaroszewski, L., Ginalski, K., Deacon, A. M.,
Wooley, J., Lesley, S. A., Wilson, I. A., Palsson, B. Ø., Osterman, A. L.,
and Godzik, A. (2009). “Three-Dimensional Structural View of the Central
Metabolic Network of Thermotoga maritima”. In: Science September, pp. 1544–
1549.

http://dx.doi.org/10.1016/j.ymben.2011.06.008
http://dx.doi.org/10.1093/nar/gkr313
http://dx.doi.org/10.1039/b913501d
http://dx.doi.org/10.1039/b913501d
http://dx.doi.org/10.1038/nchembio.580
http://dx.doi.org/10.1016/j.copbio.2011.04.024
http://dx.doi.org/10.1007/s00253-007-1170-y
http://dx.doi.org/10.1128/AEM.02902-09


161

Zhao, Q., Stettner, A. I., Reznik, E., Paschalidis, I. C., and Segrè, D. (2016). “Mapping
the landscape of metabolic goals of a cell”. In: Genome Biol. 17.1, p. 109. doi:
10.1186/s13059-016-0968-2.

Zhou, S., Shanmugam, K. T., and Ingram, L. O. (2003). “Functional Replacement of
the Escherichia coli d-(–)-lactate dehydrogenase gene (ldhA) with the l-(+)-
lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici”. In: Appl.
Environ. Microbiol. 69.4, p. 2237. doi: 10.1128/AEM.69.4.2237.

Zhu, G., Golding, G. B., and Dean, A. M. (2005). “The selective cause of an ancient
adaptation”. In: Science 307.5713, pp. 1279–1282. doi: 10.1126/science.1106974.

Zhuang, K., Izallalen, M., Mouser, P., Richter, H., Risso, C., Mahadevan, R., and
Lovley, D. R. (2011). “Genome-scale dynamic modeling of the competition
between Rhodoferax and Geobacter in anoxic subsurface environments”. In:
ISME J. 5.2, pp. 305–316. doi: 10.1038/ismej.2010.117.

http://dx.doi.org/10.1186/s13059-016-0968-2
http://dx.doi.org/10.1128/AEM.69.4.2237
http://dx.doi.org/10.1126/science.1106974
http://dx.doi.org/10.1038/ismej.2010.117

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Systems biology
	Microbial cell factories
	Introducing the Thesis

	BiGG Models: A platform for integrating, standardizing, and sharing genome-scale models
	Introduction
	Knowledge base content
	Getting started with BiGG Models
	BiGG website
	Using BiGG Models for COBRA modeling
	Using BiGG Models for building GEMs
	Accessing the API

	Implementation of standards
	Loading genomes and GEMs
	BiGG identifiers
	ModelPolisher
	Design and implementation

	Conclusion
	Availability and requirements

	Escher: A web application for building, sharing, and embedding data-rich visualizations of biological pathways
	Introduction
	Results
	Building pathway maps
	Visualizing data

	Design and Implementation
	Availability and Future Directions
	Availability and requirements

	Optimizing Cofactor Specificity of Oxidoreductase Enzymes for the Generation of Microbial Production Strains—OptSwap
	Introduction
	Methods
	Modeling and computational tools
	Model reduction and selection of reaction set for knockouts
	Selection of reaction set for cofactor specificity swaps
	MILP formulation

	Results
	Discussion

	Optimal cofactor swapping can increase the theoretical yield for chemical production in Escherichia coli and Saccharomyces cerevisiae
	Introduction
	Methods
	Models and parameters
	Non-native pathways
	Selection of the reaction sets for cofactor-specificity swaps
	MILP formulation
	Non-unique solutions
	Sensitivity analysis
	Determining cofactor usage

	Results
	Native Pathways
	Non-native pathways in E. coli
	NADPH yield and parameter sensitivity

	Discussion
	Cofactor swaps for certain enzymes have a global impact on theoretical yields
	Simulated theoretical yield improvement matches experimental observations for a GAPD swap
	Optimal cofactor swaps increase ATP availability
	Cofactor swapping in yeast has a greater effect with D-xylose as a substrate
	Theoretical yield of non-native products increases with swaps
	Theoretical yields are sensitive to knowledge of cofactor preference and enzyme promiscuity

	Conclusion

	Literature mining supports a next-generation modeling approach to predict cellular byproduct secretion
	Introduction
	Results
	Literature mining provides a diverse set of strains and phenotypes.
	Genome-scale models do not differentiate between  isozymes.
	Larger models solve false predictions of cell death.
	Simulations suggest that some strains have room to evolve.
	Next-generation ME-models improve predictions but require parameterization.

	Discussion
	Methods
	Literature mining.
	Simulations.
	Parameter sampling.
	Failure model categorization.


	Conclusions and Outlook
	Next-generation models and predictions
	New cellular networks
	Modularity

	Conclusion

	Bibliography



