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Development and applications of CRISPR-based functional genomics platforms in 

human iPSC-derived neurons 

By 

Ruilin Tian 

ABSTRACT 

CRISPR/Cas9-based functional genomics have transformed our ability to 

elucidate mammalian cell biology. However, most previous CRISPR-based screens 

were conducted in cancer cell lines rather than healthy, differentiated cells such as 

neurons. Neurons possess unique cell biological properties that enable them to exert 

highly specialized physiological functions. To enable systematic characterization of 

neuronal cell biology, we established CRISPR interference (CRISPRi)- and CRISPR 

activation (CRISPRa)-based platforms in human neurons derived from induced 

pluripotent stem cells (iPSCs) that allow robust repression or activation of endogenous 

genes and large-scale genetic screens in human neurons. Using this toolkit, we 

performed multiple genome-wide screens to identity genes controlling neuronal survival 

under unstressed and oxidative stress conditions and genes regulating neuronal redox 

homeostasis. These screens provide numerous novel biological insights. We also 

demonstrate that our platforms can be coupled with single-cell RNA sequencing and 

longitudinal high-content imaging to reveal consequences of genetic perturbations on 

gene expression and neuronal morphology respectively. Our results highlight the power 

of unbiased genetic screens in iPSC-derived differentiated cell types and provide a 

platform for systematic interrogation of normal and disease states of neurons. 
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Introduction  

ruilintian
1



Introduction 

The human body comprises hundreds of different cell types. Even though their 

genomes are nearly identical, cell types are characterized by vastly different cell 

biologies, enabling them to fulfill diverse physiological functions. Transcriptomic 

profiling, fueled by recent advances in single-cell- and single-nucleus-RNA sequencing 

technologies, has revealed cell-type specific gene expression signatures (Gao et al., 

2018; Han et al., 2020; Lake et al., 2018; Muraro et al., 2016). In addition to gene 

expression, gene function can also be cell type-specific, as  evidenced by the fact that 

mutations in broadly expressed or housekeeping genes can lead to strongly cell-type 

specific defects and disease states. Striking examples are familial mutations causing 

neurodegenerative diseases, which are often characterized by the selective vulnerability 

of specific neuronal subtypes, even if the mutated gene is expressed throughout the 

brain or even throughout the body. Cell-type specific gene function is also supported by 

our recent finding that knockdown of certain genes can have remarkably different 

impacts on cell survival and gene expression in different isogenic human cell types, 

including stem cells and neurons (Tian et al., 2019). Therefore, understanding the 

function of human genes in different cell types is the next step toward elucidating 

tissue-specific cell biology and uncovering disease mechanisms. 

A powerful approach to functionally annotate the human genome is genetic 

screening in cultured cells. The robustness of such screens has improved substantially 

through the recent introduction of CRISPR/Cas9-based approaches. Cas9 nuclease can 

be targeted by single guide RNAs (sgRNAs) to introduce DNA breaks in coding regions 
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of genes, which are subsequently repaired by non-homologous end-joining pathways. 

This process frequently causes short deletions or insertions that disrupt gene function. 

This CRISPR nuclease (CRISPRn) strategy has enabled genetic screens through the 

use of pooled sgRNA libraries targeting large numbers of genes (Koike-Yusa et al., 

2014; Shalem et al., 2014; Wang et al., 2014; Zhou et al., 2014). We previously 

developed an alternative platform for loss-of-function screens in mammalian cells based 

on CRISPR interference (CRISPRi) (Gilbert et al., 2014). In CRISPRi screens, sgRNAs 

target catalytically dead Cas9 (dCas9) fused to a KRAB transcriptional repression 

domain to transcription start sites in the genome, thereby inhibiting gene transcription. 

CRISPRn and CRISPRi screening platforms each have their advantages for specific 

applications (Kampmann, 2018); (Rosenbluh et al., 2017), but generally yield similar 

results (Horlbeck et al., 2016). Most previous CRISPR-based screens were 

implemented in cancer cell lines or stem cells rather than healthy differentiated human 

cells such as neurons, thereby limiting potential insights into cell type-specific roles of 

human genes. 

To address this need, we developed CRISPRi- and CRISPRa-based platforms 

for genetic screens in human induced pluripotent stem cell (iPSC)-derived neurons. To 

our knowledge, this is the first description of a large-scale CRISPR-based screening 

platform in any differentiated, human iPSC-derived cell type. We focused on neurons as 

our first application, since functional genomic screens in human neurons have the 

potential to reveal mechanisms of selective vulnerability in neurodegenerative diseases 

(Kampmann, 2017) and convergent mechanisms of neuropsychiatric disorders (Willsey 
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et al., 2018), thus addressing urgent public health issues. iPSC technology is 

particularly relevant to the study of human neurons, since primary neurons are difficult 

to obtain from human donors, and non-expandable due to their post-mitotic nature. 

We integrated CRISPRi and CRISPRa technologies with our previously 

described i3Neuron platform (Fernandopulle et al., 2018, Wang et al., 2017), which 

yields large quantities of highly homogeneous neurons, a prerequisite for robust 

population-based screens. We decided to use CRISPRi rather than CRISPRn, since 

CRISPRn-associated DNA damage is highly toxic to iPSCs and untransformed cells 

(Haapaniemi et al., 2018, Schiroli et al., 2019, Ihry et al., 2018). Furthermore, CRISPRi 

perturbs gene function by partial knockdown, rather than knockout, thereby enabling the 

investigation of the biology of essential genes. While large-scale genetic screens in 

mouse primary neurons have previously been implemented using RNA interference 

(RNAi) technology (Nieland et al., 2014; Sharma et al., 2013), CRISPRi represents an 

important advance over RNAi, since it lacks the pervasive off-target effects (Gilbert et 

al., 2014) inherent to RNAi-based screening approaches (Adamson et al., 2012; 

Jackson et al., 2003; Kaelin, 2012). 

We demonstrate the versatility of our approach in three complementary genetic 

screens, based on neuronal survival, single-cell RNA sequencing (scRNA-Seq), and 

neuronal morphology. These screens revealed striking examples of cell-type specific 

gene functions and identified new genetic modifiers of neuronal biology.  

Neurons, as one of the longest-living cell types in the human body, are 

challenged by various stresses in aging and disease. Due to their post-mitotic nature, 
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neurons do not have the ability to ‘self-renew’ by cell division. Therefore, robust stress 

response mechanisms are required for neurons to maintain long-term health. One of the 

predominant stresses in aging and neurodegenerative diseases is oxidative stress 

(Barnham et al., 2004; Finkel and Holbrook, 2000), which is induced by excessive 

accumulation of reactive oxygen species (ROS) in the cell. ROS are highly reactive 

oxygen-derived molecules that are generated as by-products of normal oxygen 

metabolism. At low levels, ROS have physiological functions in cellular signaling and 

activate pro-survival pathways such as MAPK pathways (Kim et al., 2015).  

Various antioxidant systems have evolved to control ROS levels and maintain 

redox homeostasis, including non-enzymatic antioxidants such as vitamin E, vitamin C 

and glutathione, and enzymatic antioxidants such as superoxide dismutase (SOD), 

glutathione peroxidases (GPX), peroxiredoxins (PRX) and catalase (Kim et al., 2015). 

There are also dedicated cellular pathways that sense and respond to ROS levels such 

as the Keap1-Nrf2 pathway (Sies et al., 2017). An imbalance of ROS production and 

antioxidant defenses leads to excessive accumulation of ROS, which can cause 

oxidative damage to proteins, lipids and DNA and ultimately lead to cell death (Kim et 

al., 2015; Sies et al., 2017). In particular, peroxidation of lipids containing 

polyunsaturated fatty acids (PUFAs) can cause a non-apoptotic cell death termed 

ferroptosis, which is iron-dependent (Li et al., 2020).  

The brain is highly susceptible to ROS and ferroptosis, due to its high levels of 

oxygen consumption, abundant redox-active metals such as iron and copper, limited 

antioxidants and high levels of PUFAs (Patel, 2016). A large body of evidence has 
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indicated the implications of oxidative stress, iron accumulation and ferroptosis in many 

neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease 

(PD) and Amyotrophic Lateral Sclerosis (ALS) (Lin and Beal, 2006; Niedzielska et al., 

2016; Rouault, 2013), yet a comprehensive understanding of how neurons regulate 

redox homeostasis and maintain survival under oxidative stress is lacking. 

We applied our functional genomics platforms to systematically identify genetic 

modifiers of ROS levels, lipid peroxidation, and neuronal survival under oxidative stress. 

These screens uncovered an unexpected role for prosaposin (PSAP), knockdown of 

which strongly induced ROS and lipid peroxidation levels in neurons and led to neuronal 

ferroptosis under oxidative stress. We elucidated the underlying mechanism: depletion 

of PSAP and resulting defects in glycosphingolipids (GSLs) degradation lead to the 

formation of lipofuscin in the lysosome, which is a hallmark of aged neurons,,  driving 

the accumulation of iron and generation of ROS that oxidize lipids. Intriguingly, the 

strong phenotypes of PSAP depletion are only presented in neurons, but not iPSCs or 

HEK293s. These results demonstrate the power of our platforms in uncovering novel 

cell-type specific human cell biology. 
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INTRODUCTION 

While DNA sequencing has provided us with an inventory of human genes, and 

RNA sequencing is revealing when and where these genes are expressed, the next 

challenge is to systematically understand the function of human genes in different cell 

types. A powerful approach to functionally annotate the human genome is genetic 

screening in cultured cells. The robustness of such screens has improved substantially 

through the recent introduction of CRISPR/Cas9-based approaches. Cas9 nuclease can 

be targeted by single guide RNAs (sgRNAs) to introduce DNA breaks in coding regions 

of genes, which are subsequently repaired by non-homologous end-joining pathways. 

This process frequently causes short deletions or insertions that disrupt gene function. 

This CRISPR nuclease (CRISPRn) strategy has enabled genetic screens through the 

use of pooled sgRNA libraries targeting large numbers of genes (Koike-Yusa et al., 

2014; Shalem et al., 2014; Wang et al., 2014; Zhou et al., 2014). We previously 

developed an alternative platform for loss-of-function screens in mammalian cells based 

on CRISPR interference (CRISPRi) (Gilbert et al., 2014). In CRISPRi screens, sgRNAs 

target catalytically dead Cas9 (dCas9) fused to a KRAB transcriptional repression 

domain to transcription start sites in the genome, thereby inhibiting gene transcription. 

CRISPRn and CRISPRi screening platforms each have their advantages for specific 

applications (Kampmann, 2018; Rosenbluh et al., 2017), but generally yield similar 

results (Horlbeck et al., 2016). Most previous CRISPR-based screens were 

implemented in cancer cell lines or stem cells rather than healthy differentiated human 

cells, thereby limiting potential insights into cell type-specific roles of human genes. 
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Here, we present a CRISPRi-based platform for genetic screens in human 

induced pluripotent stem cell (iPSC)-derived neurons. To our knowledge, it is the first 

description of a large-scale CRISPR-based screening platform in any differentiated, 

human iPSC-derived cell type. We focused on neurons as our first application, since 

functional genomic screens in human neurons have the potential to reveal mechanisms 

of selective vulnerability in neurodegenerative diseases (Kampmann, 2017) and 

convergent mechanisms of neuropsychiatric disorders (Willsey et al., 2018), thus 

addressing urgent public health issues. iPSC technology is particularly relevant to the 

study of human neurons, since primary neurons are difficult to obtain from human 

donors, and non-expandable due to their post-mitotic nature. 

We integrated CRISPRi technology with our previously described i3Neuron 

platform (Fernandopulle et al., 2018; Wang et al., 2017), which yields large quantities of 

highly homogeneous neurons, a prerequisite for robust population-based screens. We 

decided to use CRISPRi rather than CRISPRn, since CRISPRn-associated DNA 

damage is highly toxic to iPSCs and untransformed cells (Haapaniemi et al., 2018; Ihry 

et al., 2018; Schiroli et al., 2019). Furthermore, CRISPRi perturbs gene function by 

partial knockdown, rather than knockout, thereby enabling the investigation of the 

biology of essential genes. While large-scale genetic screens in mouse primary neurons 

have previously been implemented using RNA interference (RNAi) technology (Nieland 

et al., 2014; Sharma et al., 2013), CRISPRi represents an important advance over 

RNAi, since it lacks the pervasive off-target effects (Gilbert et al., 2014) inherent to 
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RNAi-based screening approaches (Adamson et al., 2012; Jackson et al., 2003; Kaelin, 

2012). 

We demonstrate the versatility of our approach in three complementary genetic 

screens, based on neuronal survival, single-cell RNA sequencing (scRNA-Seq), and 

neuronal morphology. These screens revealed striking examples of cell-type specific 

gene functions and identified new genetic modifiers of neuronal biology. Our results 

provide a strategy for systematic dissection of normal and disease states of neurons, 

and highlight the potential of interrogating human cell biology and gene function in 

iPSC-derived differentiated cell types.  
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RESULTS 

Robust CRISPR interference in human iPSC-derived neurons 

As a first step towards a high-throughput screening platform in neurons, we 

developed a scalable CRISPRi-based strategy for robust knockdown of endogenous 

genes in homogeneous populations of human iPSC-derived neurons. We built on our 

previously described i3Neuron (i3N) platform, which enables large-scale production of 

iPSC-derived glutamatergic neurons. Central to this platform is an iPSC line with an 

inducible Neurogenin 2 (Ngn2 ) expression cassette (Zhang et al., 2013) in the AAVS1 

safe-harbor locus (Fernandopulle et al., 2018; Wang et al., 2017). To enable stable 

CRISPRi in iPSC-derived neurons, we generated a plasmid (pC13N-dCas9-BFP-KRAB) 

to insert an expression cassette for CAG promoter-driven dCas9-BFP-KRAB into the 

CLYBL safe harbor locus, which enables robust transgene expression throughout 

neuronal differentiation at higher levels than the AAVS1 locus (Cerbini et al., 2015) (Fig. 

2.1A). We then integrated this cassette into our i3N iPSC line, and called the resulting 

monoclonal line CRISPRi-i3N iPSCs. A normal karyotype was confirmed for 

CRISPRi-i 3N iPSCs (Fig. 2.2A). 

To validate CRISPRi activity, we transduced these iPSCs with a lentiviral 

construct expressing an sgRNA targeting the transferrin receptor gene (TFRC). 

Knockdown of TFRC  mRNA was robust in iPSCs and in i3Neurons for several weeks 

after differentiation (Fig. 2.1B,C). We also validated knockdown of three additional 

genes, UBQLN2  (Fig. 2.1D,E), GRN  (Fig. 2.1F,G) and CDH2  (Fig. 2.2B) by qRT-PCR, 
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Western blot, and/or immunofluorescence. Our platform thus enables potent CRISPRi 

knockdown of endogenous genes in iPSC-derived neurons. 

Since CRISPRn-associated DNA damage has been found to be highly toxic to 

iPSCs (Ihry et al., 2018), we evaluated whether the CRISPRi machinery caused DNA 

damage in iPSCs or otherwise interfered with neuronal differentiation or activity. We 

found that expression of CRISPRi machinery and/or sgRNAs did not cause detectable 

DNA damage (Fig. 2.2C,D), as expected based on the abrogation of nuclease activity in 

dCas9, and did not affect neuronal differentiation (Fig. 2.2E) or activity as evaluated by 

calcium imaging (Fig. 2.2F). 

We established the CRISPRi-i3N system used throughout this study in the 

background of the well-characterized WTC11 iPSC line (Miyaoka et al., 2014). In 

addition, we also generated an equivalent line in the NCRM5 iPSC line (Luo et al., 

2014) and validated its CRISPRi activity (Fig. 2.2G). 

 

A pooled CRISPRi screen reveals neuron-essential genes 

We then used this platform to identify cell type-specific genetic modifiers of 

survival in pooled genetic screens in iPSCs and iPSC-derived neurons (Fig. 2.3A). We 

first transduced CRISPRi-i3N iPSCs with our lentiviral sgRNA library H1 (Horlbeck et al., 

2016). The H1 library targets 2,325 genes encoding kinases and other proteins 

representing the “druggable genome” with at least five independent sgRNAs per gene, 

plus 500 non-targeting control sgRNAs, for a total of 13,025 sgRNAs. Transduced 

iPSCs were either passaged for 10 days, or differentiated into neurons by 
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doxycycline-induced Ngn2 expression. Neurons were collected 14, 21 and 28 days 

post-induction. Frequencies of cells expressing each sgRNA at each time point were 

determined by next-generation sequencing of the sgRNA-encoding locus. We observed 

highly correlated sgRNA frequencies between independently cultured experimental 

replicates (Fig. 2.4A), supporting the robustness of these measurements. 

To analyze the screen results, we developed a new bioinformatics pipeline, 

MAGeCK-iNC (MAGeCK including Negative Controls, available at 

kampmannlab.ucsf.edu/mageck-inc). This pipeline integrates a published method, 

MAGeCK (Li et al., 2014) with aspects of our previous bioinformatics pipeline 

(Kampmann et al., 2013, 2014) to take full advantage of the non-targeting control 

sgRNAs in our library when computing P values (see Methods for details). Based on the 

depletion or enrichment of sgRNAs targeting specific genes at different time points 

compared to day 0, we identified hit genes for which knockdown was toxic or beneficial 

to either iPSCs or neurons at different time points (Fig. 2.3B, Fig. 2.4B). We then 

calculated a knockdown phenotype score and significance P value for each gene (Table 

S1). The large number of non-targeting sgRNAs in our library enabled us to generate 

“quasi-genes” from random groupings of non-targeting sgRNAs to empirically estimate a 

false-discovery rate (FDR) for a given cutoff of hit strength (defined as the product of 

phenotype score and –log10(P value)), see Methods for details. We defined genes 

passing an FDR < 0.05 as hit genes. For the majority of hit genes, two or three sgRNAs 

in the library resulted in strong phenotypes (Fig. 2.4C,D), justifying the use of five 

sgRNAs/gene in the primary screen library. 

18 



Knockdown phenotypes of hit genes were strongly correlated between neurons 

at different time points, but distinctly less correlated between neurons and iPSCs (Fig. 

2.3C). Next, we compared genes that were essential in iPSCs and/or neurons in our 

screens with “gold-standard” essential genes that were previously identified through 

genetic screens in cancer cell lines (Hart et al., 2017). This analysis revealed a shared 

core set of essential genes, as expected, and additional iPSC-specific and 

neuron-specific essential genes (Fig. 2.3D). 

Using Gene Set Enrichment Analysis (GSEA) (Mootha et al., 2003; Subramanian 

et al., 2005), we found enrichment of distinct groups of survival-related genes in 

neurons compared to iPSCs, such as genes associated with sterol metabolism (Fig. 

2.5A). We validated the strong neuronal dependence on the cholesterol biogenesis 

pathway pharmacologically using the HMG-CoA reductase inhibitor mevastatin (Fig. 

2.3E) and found that CRISPRi knockdown of HMG-CoA reductase (HMGCR) can be 

partially rescued by supplementing its product mevalonate (Fig. 2.3F). 

We determined expression levels of genes at different time points during 

neuronal differentiation by Quant-Seq (Data deposited in GEO, GSE124703; the results 

can be visualized at kampmannlab.ucsf.edu/ineuron-rna-seq). As a group, 

neuron-essential genes were expressed at significantly higher levels than non-essential 

genes in iPSC-derived neurons (one-sided Mann-Whitney U test, Fig. 2.5B). The vast 

majority of neuron-essential genes were detectable at the transcript level, further 

supporting the specificity of our screen results. 
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Intriguingly, we identified several genes that specifically enhanced neuronal 

survival when knocked down, including MAP3K12  (encoding dual leucine zipper kinase 

DLK), MAPK8  (encoding Jun kinase JNK1), CDKN1C  (encoding the cyclin-dependent 

kinase inhibitor p57) and EIF2AK3  (encoding the eIF2alpha kinase PERK) (Table S1). A 

pathway involving DLK, JNK and PERK has previously been implicated in neuronal 

death (Ghosh et al., 2011; Huntwork-Rodriguez et al., 2013; Larhammar et al., 2017; 

Miller et al., 2009; Pozniak et al., 2013; Watkins et al., 2013; Welsbie et al., 2013), 

validating our approach. 

In summary, our large-scale CRISPRi screen in human iPSC-derived neurons 

uncovered genes that control the survival of neurons, but not cancer cells or iPSCs, 

demonstrating the potential of our platform to characterize the biology of differentiated 

cell types. 

 

Pooled validation of hit genes 

To validate and further characterize hit genes from the primary large-scale 

screen, we performed a series of secondary screens. For this purpose, we generated a 

new lentiviral sgRNA plasmid (pMK1334) that enables screens with single-cell RNA-Seq 

(scRNA-Seq) readouts (based on the CROP-Seq format (Datlinger et al., 2017)), and 

high-content imaging readouts (expressing a bright, nuclear-targeted BFP) (Fig. 2.6A). 

We individually cloned 192 sgRNAs into this plasmid (184 sgRNAs targeting 92 different 

hit genes with two sgRNAs per gene and eight non-targeting control sgRNAs). Then, to 

confirm essential genes identified in our primary screen, we pooled these plasmids and 

20 



conducted a survival-based validation screen (Fig. 2.6A). Because the library size was 

small compared to the primary screen, we obtained a high representation of each 

sgRNA in the validation screen. As in the primary screen, CRISPRi-i3N iPSCs 

transduced with the plasmid pool were either passaged as iPSCs or differentiated into 

glutamatergic neurons, and then harvested at different time points for next-generation 

sequencing and calculation of survival phenotypes for each sgRNA (Table S2). We 

observed a high correlation of raw sgRNA counts between two independently 

differentiated biological replicates (R2 > 0.9, Fig. 2.6B), supporting the robustness of 

phenotypes measured in the pooled validation screen. We then compared the results 

from the validation screen with those from the primary screen. In both iPSCs and 

neurons, all positive hits and most of the negative hits from the primary screen were 

confirmed in the validation screen (Fig. 2.6C). These findings indicate that hits identified 

in the primary screen are highly reproducible. 

In the brain, many neuronal functions are supported by glial cells, particularly 

astrocytes. To rule out the possibility that hits from the primary screen were artifacts of 

an astrocyte-free culture environment, we included an additional condition in the 

validation screen, in which neurons were co-cultured with primary mouse astrocytes. 

Neuronal phenotypes in the presence or absence of astrocytes were highly correlated 

(Fig. 2.6D,E and Fig. 2.8A), indicating that the vast majority of the neuron-essential 

genes we identified are required even in the presence of astrocytes. However, we 

identified a small number of genes, including PPCDC , UROD and MAT2A, for which 

knockdown was less toxic in the presence of astrocytes (Fig. 2.6F). This suggests that 
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astrocytes may compensate for the loss of function for these genes in neurons. We also 

identified a small number of other genes, including MMAB, UBA1  and PPP2R2A, for 

which knockdown was more toxic in the presence of astrocytes (Fig. 2.6F). These 

genes may function in pathways affected by crosstalk between neurons and astrocytes. 

 

Inducible CRISPRi distinguishes neuronal differentiation and survival phenotypes 

A caveat of our primary screen is that we introduced the sgRNA library into cells 

constitutively expressing CRISPRi machinery at the iPSC stage. Therefore, some hit 

genes detected in the primary screen may play a role in neuronal differentiation rather 

than neuronal survival. To explore this possibility, we developed a system to allow 

independent control of neuronal differentiation and CRISPRi activity. We generated 

inducible CRISPRi constructs by tagging the CRISPRi machinery (dCas9-BFP-KRAB) 

with dihydrofolate reductase (DHFR) degrons. In the absence of the small molecule 

trimethoprim (TMP), these DHFR degrons cause proteasomal degradation of fused 

proteins. Addition of TMP counteracts degradation (Iwamoto et al., 2010). Our initial 

construct contained a single N-terminal DHFR degron (Fig. 2.8B), which was insufficient 

to fully suppress CRISPRi activity in the absence of TMP (Fig. 2.8C). Therefore, we 

generated another plasmid (pRT029) with DHFR degrons on both the N- and C-termini 

of dCas9-BFP-KRAB (Fig. 2.8G). This dual-degron CRISPRi construct was then 

integrated into the CLYBL locus of i3N-iPSCs. In the absence of TMP, the 

double-degron construct had no CRISPRi activity in iPSCs or neurons (Fig. 2.8D). TMP 

addition starting at the iPSC stage resulted in robust CRISPRi activity in iPSCs and 
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neurons (Fig. 2.8D), and TMP addition starting at the neuronal stage resulted in 

moderate CRISPRi activity (Fig. 2.8E). While future optimization of the inducible 

CRISPRi construct will be necessary, these results indicate that temporal regulation of 

CRISPRi activity can be achieved in iPSCs and differentiated neurons. 

We used the inducible CRISPRi platform to determine if hit genes from our 

primary screen were related to neuronal survival or differentiation. iPSCs expressing the 

dual-degron construct were transduced with the pooled validation sgRNA library. Cells 

were then cultured under three different conditions, including no TMP, TMP added 

starting at the iPSC stage, and TMP added at the neuronal stage (Fig. 2.6H). In the 

population cultured without TMP, none of the sgRNAs showed strong phenotypes 

compared to cells to which TMP was added at the iPSC stage (Fig. 2.6I), confirming the 

tight control of the inducible system. To determine if any of the neuron-essential genes 

identified in our primary screen were in actuality required for differentiation, we 

compared neurons in which knockdown was induced either at the iPSC stage or later at 

the neuronal stage of the protocol. Phenotypes observed in these two conditions were 

highly correlated (r = 0.98, Fig. 2.6J), indicating that the vast majority of hits identified 

from the original screen are indeed essential for neuronal survival, rather than 

differentiation (Fig. 2.6H). 

Interestingly, there was one exception: sgRNAs targeting PPP1R12C were 

strongly enriched when TMP was added at the iPSC stage, but this phenotype was 

substantially weaker when TMP was added at the neuron stage. Based on this finding, 

we hypothesized that these sgRNAs may interfere with neuronal differentiation. Indeed, 
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we observed that two independent sgRNAs targeting PPP1R12C each caused 

continued proliferation instead of neuronal differentiation in a subset of iPSCs (Fig. 

2.8F,G), providing an explanation for the enrichment of cells expressing 

PPP1R12C-targeted sgRNAs in the primary screen. Thus, our inducible CRISPRi 

approach successfully uncovered a false-positive hit from the primary screen, which 

affected differentiation as opposed to neuronal survival. Interestingly, the AAVS1 locus, 

into which the inducible Ngn2 transgene was integrated, resides within the PPP1R12C 

gene. An open question remains as to whether PPP1R12C plays a role in neuronal 

differentiation, or whether sgRNAs directed against PPP1R12C interfered with 

doxycycline-mediated induction of Ngn2. 

Taken together, these pooled validation screens confirmed that hits from the 

primary screen were highly reproducible and that we were able to identify genes 

specifically essential for neuronal survival. 

 

CROP-Seq generates mechanistic hypotheses for genes controlling neuronal 

survival 

Recently developed strategies to couple CRISPR screening to scRNA-Seq 

readouts yield rich, high-dimensional phenotypes from pooled screens (Adamson et al., 

2016; Datlinger et al., 2017; Dixit et al., 2016). As a first step towards understanding the 

mechanisms by which hit genes affect the survival of iPSCs and neurons, we 

investigated how gene knockdown altered transcriptomes of single cells (Fig. 2.7A). We 

selected 27 genes that exemplified different categories of hits based on their pattern of 
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survival phenotypes in iPSCs and neurons (Fig. 2.6E). A pool of 58 sgRNAs (two 

sgRNAs targeting each selected gene and four non-targeting control sgRNAs) in the 

secondary screening plasmid pMK1334 (Fig. 2.6A) was transduced into CRISPRi-i3N 

iPSCs. We used the 10x Genomics platform to perform scRNA-Seq of ~ 20,000 iPSCs 

and 20,000 Day 7 neurons. We chose to monitor transcriptomic effects of hit gene 

knockdown at the early Day 7 time point to capture earlier, gene-specific effects of 

knockdown, as opposed to later nonspecific effects reflecting toxicity. Transcripts 

containing sgRNA sequences were further amplified to facilitate sgRNA identity 

assignment, adapting a previously published strategy (Hill et al., 2018). Following 

sequencing, transcriptomes and sgRNA identities were mapped to individual cells (Data 

deposited in GEO, GSE124703). High data quality was evident from the mean reads 

per cell (~84,000 for iPSCs, ~91,000 for neurons), the median number of genes 

detected per cell (~5,000 for iPSCs, ~4,600 for neurons) and the number of cells to 

which a unique sgRNA could be assigned after quality control (~15,000 iPSCs, ~8,400 

neurons). Based on the expression of canonical marker genes, we excluded the 

possibility that gene knockdown interfered with differentiation to glutamatergic neurons 

(Fig. 2.9A). 

Next, we examined the transcriptomes of groups of cells expressing a given 

sgRNA (which we refer to as “sgRNA groups”). In both iPSCs and neurons, the two 

sgRNA groups expressing sgRNAs targeting the same gene tended to form clusters in 

t-Distributed stochastic neighbor embedding (tSNE) plots (Fig. 2.9B), confirming that 

independent sgRNAs targeting the same gene had highly similar phenotypic 
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consequences. The extent of gene knockdown varied across cells within an sgRNA 

group and between the two sgRNAs targeting the gene. Given that many genes 

selected for the CROP-Seq screen are essential, it is likely that cells with lower levels of 

knockdown had a survival advantage and are enriched in the sequenced population. To 

characterize phenotypes in cells with the most stringent gene knockdown, we took 

advantage of the single-cell resolution of the CROP-Seq data to select the top 50% of 

cells with the best on-target knockdown for each gene for further analysis. We refer to 

this group of cells as the “gene knockdown group”. Compared to cells with non-targeting 

sgRNAs, the expression levels of the targeted genes in a gene knockdown group were 

greatly repressed (Fig. 2.7B). For most genes (24/27 in iPSCs, 18/27 in neurons) 

knockdown levels of greater than 80% were achieved. Together, these findings further 

support the robustness of CRISPRi knockdown and of the transcriptomic phenotypes 

determined by our modified CROP-Seq platform. 

To characterize how gene knockdown altered transcriptomes of iPSCs and 

neurons, we performed differential expression analysis between gene knockdown 

groups and the negative control group (Table S3). While knockdown of some genes 

induced the expression of cell-death related genes (including PDCD2 , AEN , GADD45A 

and ATF3 ), no generic signature of dying cells dominated the differentially expressed 

genes. Rather, knockdown of different genes resulted in gene-specific transcriptomic 

signatures (Fig. 2.7C). By clustering gene knockdown groups based on the signature of 

differential gene expression, we found transcriptomic signatures associated with 

knockdown of functionally related genes (Fig. 2.7C). For some genes, knockdown 
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resulted in upregulation of functionally related genes. For example, knockdown of genes 

involved in cholesterol and fatty acid biosynthesis, including HMGCS1, HMGCR, PMVK, 

MVK, MMAB, and  HACD2, caused induction of other genes in the same pathway (Fig. 

2.7C, Table S3). Thus, pooled CROP-Seq screens can identify and group functionally 

related genes in human neurons. 

The CROP-Seq screen also generated mechanistic hypotheses. For example, 

knockdown of MAP3K12 specifically improved neuronal survival. Signaling by the 

MAP3K12 -encoded kinase DLK was previously implicated in neuronal death and 

neurodegeneration (Ghosh et al., 2011; Huntwork-Rodriguez et al., 2013; Larhammar et 

al., 2017; Miller et al., 2009; Pozniak et al., 2013; Watkins et al., 2013; Welsbie et al., 

2013). In our screen, knockdown of MAP3K12  resulted in coherent changes in neuronal 

gene expression (Fig. 2.10A and Table S3). Ribosomal genes and the anti-apoptotic 

transcription factor Brn3a (encoded by POU4F1 ) were upregulated. 

Conversely, we observed downregulation of the pro-apoptotic BCL-2 protein 

Harakiri/DP5 (encoded by HRK), the neurodegeneration-associated amyloid precursor 

protein (APP), and the pro-apoptotic transcription factor JUN, which is also a 

downstream signaling target of DLK (Welsbie et al., 2013). Furthermore, MAP3K12 

knockdown caused downregulation of a vast array of proteins involved in cytoskeletal 

organization, and upregulation of specific synaptotagmins, which act as calcium sensors 

in synaptic vesicles. These changes in gene expression may relate to the function of 

DLK in synaptic terminals and its reported role as a neuronal sensor of cytoskeletal 

damage (Valakh et al., 2015). Lastly, MAP3K12  knockdown induced expression of 
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neuritin (NRN1), a neurotrophic factor associated with synaptic plasticity and 

neuritogenesis (Cantallops et al., 2000; Javaherian and Cline, 2005; Naeve et al., 1997; 

Yao et al., 2016). Intriguingly, neuritin levels are decreased in Alzheimer’s Disease 

patient brains, and overexpression of neuritin was found to be protective in a mouse 

model of Alzheimer’s Disease (Choi et al., 2014). Thus, CROP-Seq provides a wealth of 

testable hypotheses for neuroprotective mechanisms and specific effectors downstream 

of DLK/MAP3K12 inhibition. 

 

CROP-Seq reveals neuron-specific transcriptomic consequences of gene 

knockdown 

The results from our parallel CROP-Seq screens in iPSCs and neurons enabled 

us to compare transcriptomic consequences of gene knockdown across both cell types 

(Fig. 2.9C). Interestingly, only a few genes, including SQLE, MMAB, MVK, UQCRQ, and 

ATP5B, showed high similarity (similarity score > 0.15) in the transcriptomic changes 

they induced in iPSCs versus neurons. Knockdown of most genes induced distinct 

transcriptomic responses in the two cell types. This suggests that either gene 

knockdown caused different stress states in the two cell types or that gene regulatory 

networks are wired differently in iPSCs and iPSC-derived neurons. 

To further dissect these cell type-specific phenotypes, we ranked genes by the 

similarity of their knockdown phenotypes in iPSCs and neurons with respect to survival 

and transcriptomic response (Fig. 2.9D). For some genes, both survival and 

transcriptomic phenotypes were similar in iPSCs and neurons. An example for this 
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category of genes is UQCRQ, which encodes a component of the mitochondrial 

complex III in the electron transport chain. UQCRQ is essential in both cell types (Fig. 

2.10B), and knockdown of UQCRQ had similar transcriptomic consequences in both 

iPSCs and neurons – upregulation of mitochondrially encoded electron transport chain 

components and of ribosomal proteins (Fig. 2.10C, Table S3). Similarly, knockdown of 

cholesterol and fatty acid biosynthesis genes induced expression of other cholesterol 

and fatty acid biosynthesis genes in both iPSCs and neurons (Fig. 2.7C, Table S3). 

Interestingly, we also found examples of genes that were essential in both 

neurons and iPSCs, yet caused substantially different transcriptomic phenotypes when 

knocked down (Fig. 2.9D). For example, knockdown of the essential E1 ubiquitin 

activating enzyme, UBA1  (Fig. 2.10B) caused neuron-specific induction of a large 

number of genes (Fig. 2.10D, Table S3), including those encoding heat shock proteins 

(cytosolic chaperones HSPA8 and HSPB1 and endoplasmic reticulum chaperones 

HSPA5 and HSP90B1). This suggests that compromised UBA1 function triggered a 

broad proteotoxic stress response in neurons, but not iPSCs, consistent with the role of 

UBA1 in several neurodegenerative diseases (Groen and Gillingwater, 2015). Thus, 

even ubiquitously expressed housekeeping genes can play distinct roles in different cell 

types. 

Lastly, we discovered that some genes differed with respect to both survival and 

transcriptomic phenotypes in neurons and iPSCs (Fig. 2.9D). This was expected for 

genes predominantly expressed in neurons, such as MAP3K12  (Fig. 2.10A). However, 

we also found examples of genes in which knockdown had strikingly different 
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transcriptomic consequences in neurons and iPSCs despite high expression in both cell 

types. Such a gene is MAT2A, encoding methionine adenosyl transferase 2a, which 

catalyzes the production of the methyl donor S-adenosylmethionine (SAM) from 

methionine and ATP (Fig. 2.11A). MAT2A is essential in neurons, but not iPSCs (Fig. 

2.11B). Knockdown of MAT2A in iPSCs did not substantially affect the expression of 

any gene other than MAT2A itself (Fig. 2.11C). In neurons, however, knockdown of 

MAT2A caused differential expression of thousands of genes (Fig. 2.11D, Table S3). 

Genes downregulated in neurons in response to MAT2A knockdown were enriched for 

neuron-specific functions (Fig. 2.11E), providing a possible explanation for the 

neuron-selective toxicity of MAT2A knockdown. 

In summary, results from CROP-Seq screens in iPSCs and iPSC-derived 

neurons further highlight differences in gene function across the two cell types, provide 

rich insights into consequences of gene knockdown, and generate mechanistic 

hypotheses. They further support the idea that it is critically important to study gene 

function in relevant cell types, even for widely expressed genes. 

 

An arrayed CRISPRi platform for rich phenotyping by longitudinal imaging 

While pooled genetic screens are extremely powerful due to their scalability, 

many cellular phenotypes cannot be evaluated using a pooled approach. Such 

phenotypes include morphology, temporal dynamics, electrophysiological properties, 

and non-cell-autonomous phenotypes. To expand the utility of our screening platform, 

we therefore optimized an arrayed CRISPRi platform for iPSC-derived neurons. 
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As a proof-of-concept arrayed screen, we established a longitudinal imaging 

platform to track the effect of knocking down selected hit genes from our primary screen 

on neuronal survival and morphology over time. First, we stably expressed cytosolic 

mScarlet (for neurite tracing) and nuclear-localized mNeon-Green (for survival analysis) 

in CRISPRi-i3N iPSCs. Then, we infected these iPSCs in multi-well plates with lentiviral 

preparations encoding 48 individual sgRNAs (23 genes selected from the gene set from 

the CROP-Seq screen targeted by two sgRNAs each, and two non-targeting sgRNAs), 

followed by puromycin selection and longitudinal imaging of iPSCs, or neuronal 

differentiation. After three days, we re-plated pre-differentiated neurons on 96-well 

plates alongside similarly prepared cells that did not express sgRNAs or the cytosolic 

mScarlet marker at a 1:20 ratio to allow more accurate tracing of mScarlet-expressing 

neurons. These plates were then longitudinally imaged every few days using an 

automated microscope with a large area of each well imaged at each time point, 

allowing us to re-image the same populations of neurons over time (Fig. 2.12A, Movies 

S3, S4). 

We developed an automated image analysis pipeline to segment neuronal cell 

bodies and neurites (Fig. 2.12B). By tracking cell numbers over time, we could measure 

neuronal survival and iPSC proliferation (Fig. 2.12C,D). Quantification of survival based 

on longitudinal imaging was robust across independent experiments (Fig. 2.13A). Three 

individual sgRNAs were so toxic that they prevented longitudinal imaging, and were 

removed from further analysis. As anticipated, the vast majority of sgRNAs that altered 

survival in pooled screens also altered survival in our arrayed longitudinal survival 
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analysis (Fig. 2.12D). However, longitudinal imaging provided additional information on 

the timeline of toxicity caused by knockdown of different genes and revealed 

gene-specific temporal patterns (Fig. 2.12D,E). 

We then analyzed the effect of gene knockdown on neurite morphology. Our 

neurite segmentation algorithm extracted multiple morphology metrics, including neurite 

length, number of neurite trunks and neurite branching (Fig. 2.12B,C). Our longitudinal 

imaging approach also enabled us to evaluate adverse effects of the expression of 

CRISPRi machinery and/or non-targeting sgRNA using highly sensitive readouts. We 

found that neither CRISPRi machinery nor non-targeting sgRNAs affected neuronal 

survival (Fig. 2.13B) or neurite growth (Fig. 2.13C). 

Surprisingly, knockdown of genes that we selected based on their impact on 

neuronal survival also had distinct effects on neuronal morphology (Fig. 2.12C,F). 

Knockdown of the geranylgeranyltransferase PGGT1B  promoted both neurite growth 

and branching, consistent with previous findings that protein prenylation inhibits axon 

growth (Li et al., 2016). Neurite length and the number of neurite trunks were under 

independent genetic control (Fig. 2.12G). 

Taken together, the profile of features extracted from our imaging platform was 

so information-rich and gene-specific that hierarchical clustering of individual sgRNAs 

based on these features led to co-clustering of the two sgRNAs targeting a given gene 

for the majority of genes (Fig. 2.12E). Conceptually, knockdown phenotypes of specific 

genes occupy distinct regions in a high-dimensional neuronal morphology space (Fig. 

2.12E,G). 
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In combination with survival-based and CROP-Seq screens, our arrayed 

high-content CRISPRi platform will enable the deep characterization of gene function in 

a plethora of human cell types. 
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DISCUSSION 

Here, we describe a platform for large-scale, multimodal CRISPRi-based genetic 

screens in human iPSC-derived neurons. While CRISPR screens in cancer cells and 

stem cells have revealed numerous biological insights, we reasoned that screens in 

differentiated, non-cancerous cell types could elucidate novel, cell-type specific gene 

functions. Indeed, our survival screens uncovered genes that were essential for 

neurons, but not iPSCs or cancer cells. We also found that knockdown of some 

broadly-expressed housekeeping genes, such as UBA1, caused strikingly distinct 

transcriptomic phenotypes in neurons compared to iPSCs, consistent with the idea that 

gene functions can vary across distinct cell types. Lastly, our arrayed screening platform 

uncovered gene-specific effects on longitudinal survival and neuronal morphology. 

These proof-of-concept screens have generated a wealth of phenotypic data, which will 

provide a rich resource for further analysis and the generation of mechanistic 

hypotheses. 

The combination of CRISPRi functional genomics and iPSC-derived neuron 

technology leverages the strengths of both approaches. Neurons are a highly 

specialized and disease-relevant cell type, and thus it is crucial to study certain human 

gene functions in these cells. However, primary human neurons cannot readily be 

obtained in the quantities and homogeneity needed for large-scale screens. By contrast, 

human iPSCs have several fundamental qualities ideally suited for screens. They can 

be made from readily available cells, such as skin fibroblasts or peripheral mononuclear 
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blood cells; they can be genetically engineered and subsequently expanded to generate 

large numbers of isogenic cells; and they can then be differentiated into a variety of cell 

types, including specific neuronal subtypes. Differentiation protocols based on induced 

expression of transcription factors are particularly useful for screens, as they are rapid 

and yield large numbers of homogeneous neurons. In addition to the Ngn2-driven 

generation of glutamatergic neurons (Fernandopulle et al., 2018; Wang et al., 2017; 

Zhang et al., 2013) used here, induced expression of different transcription factors yield 

other types of neurons, such as motor neurons (Hester et al., 2011; Shi et al., 2018) and 

inhibitory neurons (Yang et al., 2017). Systematic screens are beginning to uncover 

additional combinations of transcription factors driving specific neuronal fates (Liu et al., 

2018; Tsunemoto et al., 2018). Thus, iPSC technology could be used to generate 

different neuron types from an isogenic parental cell line, which would facilitate parallel 

CRISPR screens to dissect neuronal subtype specific gene function. Such screens will 

address fundamental questions in neuroscience, such as why specific neuronal 

subtypes are selectively vulnerable in neurodegenerative diseases (Kampmann, 2017). 

Furthermore, genetic modifier screens in neurons derived from patient iPSCs and 

isogenic controls have the potential to uncover new disease mechanisms. These 

discoveries may, in turn, yield new therapeutic strategies to correct cellular defects 

linked to disease genes. Despite their usefulness, iPSC-derived neurons have 

limitations – in particular, they do not fully recapitulate all features of mature (or aging) 

neurons in the human brain. We anticipate that functional genomics approaches, such 
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as ours, may hold the key to improving protocols that lead to ever more faithful models 

of mature human neurons. 

CRISPRi is particularly well suited as a method to study gene function in 

iPSC-derived neurons, for several reasons. First, it does not cause DNA damage (Fig. 

2.2C,D), and thus lacks the non-specific p53-mediated toxicity observed with CRISPRn 

approaches in iPSCs and untransformed cells (Haapaniemi et al., 2018; Ihry et al., 

2018). Second, it is inducible and reversible (Gilbert et al., 2014), enabling the 

time-resolved dissection of human gene function. Third, it perturbs gene function via 

partial knockdown, as opposed to knockout, thereby enabling functional characterization 

of essential genes, as demonstrated in this study. 

There are several areas for further development of our platform. Further 

optimization of inducible CRISPRi will result in more potent gene repression in mature 

neurons, leading to increased sensitivity. The standard use of inducible CRISPRi would 

be preferable in order to initiate gene perturbation in the differentiated cell state, thereby 

avoiding false-positive phenotypes due to interference with the differentiation process. 

Also, establishment of our CRISPR activation (CRISPRa) approach in iPSC-derived 

neurons will enable gain-of-function genetic screens, which yield complementary 

insights to CRISPRi loss-of-function screens (Gilbert et al., 2014). Finally, using 

synthetic sgRNAs instead of lentivirus in arrayed CRISPRi screens would substantially 

increase scalability. 

We anticipate that the technology described here can be broadly applied to 

include additional neuron-relevant readouts, such as multi-electrode arrays (to measure 

36 



electrophysiological properties) and brain organoids (to assay interactions of neurons 

with other cell types). However, our technology is not limited to neurons, and should 

provide a paradigm for investigating the specific biology of numerous other types of 

differentiated cells. Parallel genetic screens across the full gamut of human cell types 

cells may systematically uncover context-specific roles of human genes, leading to a 

deeper mechanistic understanding of how they control human biology and disease.  
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FIGURES 

 
Fig. 2.1. Durable gene knockdown by CRISPR interference in human iPSC-derived 
neurons 
(A) Construct pC13N-dCas9-BFP-KRAB for the expression of CRISPRi machinery from 
the CLYBL safe-harbor locus: catalytically dead Cas9 (dCas9) fused to blue fluorescent 
protein (BFP) and the KRAB domain, under the control of the constitutive CAG 
promoter. 
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(B) Timeline for sgRNA transduction, selection and recovery, doxycycline-induced 
neuronal differentiation and functional analysis of CRISPRi-i3N iPSCs. 

 
(C) Knockdown of the transferrin receptor (TFRC) in CRISPRi-i3N iPSCs and neurons. 
CRISPRi-i3N iPSCs were lentivirally infected with an sgRNA targeting TFRC or a 
non-targeting negative control sgRNA. Neuronal differentiation was induced by addition 
of doxycycline on Day −3 of the differentiation protocol and plating cells in neuronal 
medium on Day 0. Cells were harvested at different days for qPCR. After normalizing by 
GAPDH mRNA levels, ratios of TFRC mRNA were calculated for cells expressing the 
TFRC-targeting sgRNA versus the non-targeting sgRNA; mean ± SD (two biological 
replicates). 

 
(D, E) Knockdown of ubiquilin 2 (UBQLN2) in CRISPRi-i3N neurons. CRISPRi-i3N 
neurons infected with UBQLN2 sgRNA or non-targeting control sgRNA were harvested 
on Day 11 for qPCR (D) or Western blot (E) to quantify UBQLN2 knockdown at the 
mRNA level or protein level, respectively. (D) Relative UBQLN2 mRNA level was 
determined by normalizing UBQLN2 mRNA level by GAPDH. Relative UBQLN2 mRNA 
was calculated for cells expressing the UBQLN2-targeting sgRNA versus the 
non-targeting sgRNA; mean ± SD (three biological replicates). (E) Left, representative 
Western blot (Loading control β-Actin). Right, quantification of UBQLN2 protein levels 
normalized by β-Actin for cells with non-targeting sgRNAs or UBQLN2 sgRNA; mean ± 
SD (two independent Western blots). 

 
(F,G) Knockdown of progranulin (GRN) in CRISPRi-i3N neurons. CRISPRi-i3N neurons 
infected with GRN sgRNA or non-targeting control sgRNA were harvested on Day 11 for 
qPCR (F) or monitored by immunofluorescence (IF) microscopy on Day 5. (G) Relative 
GRN mRNA level normalized by GAPDH mRNA. Ratio of relative GRN mRNA for cells 
expressing the GRN-targeting sgRNA versus the non-targeting sgRNA; mean ± SD 
(three biological replicates). (G) Top row, non-targeting negative control sgRNA. Bottom 
row, sgRNA targeting progranulin. Progranulin signal (IF, green), neuronal marker Tuj1 
(IF, red) and nuclear counterstain DRAQ5 (blue) are shown. 
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Figure 2.2. Normal karyotype, neuronal differentiation and activity and CRISPRi 
activity of the CRISPRi- i3N iPSC monoclonal line 
(A) Karyotyping of the monoclonal CRISPRi- i3N iPSC line confirmed a normal male 
karyotype. 
 
(B) Knockdown of N-cadherin (CDH2) in iPSC-derived neurons on Day 18 monitored on 
the protein level by immunofluorescence (IF) microscopy. White arrows mark cells 
infected with a lentiviral plasmid expressing an sgRNA and GFP (green). Top row, 
uninfected cells. Middle 
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row, non-targeting negative control sgRNA. N-cadherin signal (IF, red) is similar in 
infected and uninfected cells. Bottom row, sgRNA targeting N-cadherin (CDH2). For the 
infected cells (white arrows), N-cadherin signal (IF, red) is substantially reduced 
compared with neighboring uninfected cells (yellow arrows). Nuclear counterstain DAPI 
is shown in blue. 
 
(C,D) DNAdamagedetectedbyγH2AXstaining.CRISPRi-i3NiPSCstreatedwithvehicleor 
1μM etoposide for 6 hours or infected with non-targeting sgRNA or two different MAT2A 
sgRNAs for 48 hours were fixed and immunostained using an γH2AX antibody. (C) 
Representative images of γH2AX staining (Green). γH2AX foci can be observed in cells 
treated with etoposide, but not in cells with no treatment or with sgRNAs. Nuclei are 
visualized by Hoechst stain (top row, control and etoposide treatment) or NLS-BFP 
(bottom row, sgRNAs). (D) Quantification of the number of γH2AX foci per nucleus 
using CellProfiler. Mean and standard deviations for 6 replicates wells are shown. 
 
(E) Quantification of the percentage of NeuN positive cells in i3N iPSCs, i3N neurons 
and CRISPRi-i3N neurons with or without transduction of a non-targeting sgRNA. Mean 
and standard deviations for replicates are shown. 
 
(F) Heatmaps showing neuronal activity by GCaMP6m calcium imaging in i3N neurons 
and CRISPRi-i3N neurons with or without a non-targeting sgRNA. 
 
(G) Knockdown of progranulin (GRN) in CRISPRi-NCRM5 neurons on Day 5 detected 
at the protein level by immunostanining. Top row, non-targeting control sgRNA. Bottom 
row, sgRNA targeting progranulin. For cells infected with progranulin-targeting sgRNA 
(indicated by arrow), progranulin signal (IF, green) is substantially reduced compared 
with cells infected with non-targeting sgRNA or cells not infected with sgRNA (indicated 
by arrowheads). The neuronal marker Tuj1 (IF, red), an sgRNA marker (BFP-NLS, 
purple) and a nuclear marker (mApple- NLS, blue) are shown. 
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Fig. 2.3. Massively parallel screen for essential genes in iPSCs and iPSC-derived 
neurons 
(A) Strategy: CRISPRi-i3N iPSCs were transduced with a lentiviral sgRNA library 
targeting 2,325 genes (kinase and the druggable genome) and passaged as iPSCs or 
differentiated into glutamatergic neurons. Samples of cell populations were taken at 
different time points, and frequencies of cells expressing a given sgRNA were 
determined by next-generation sequencing. 

 
(B) Volcano plots summarizing knockdown phenotypes and statistical significance 
(Mann-Whitney U test) for genes targeted in the pooled screen. Top, 
proliferation/survival of iPSCs between Day 0 and Day 10. Bottom, survival of 
iPSC-derived neurons between Day 0 and Day 28. Dashed lines: cutoff for hit genes 
(FDR = 0.05, see Methods). 

 
(C) Correlation of hit gene strength (the product of phenotype and –log10(P value)) 
obtained for Day 10 iPSCs, and neurons harvested on Day 14, 21, or 28 post-induction. 

 
(D) Overlap between essential genes we identified here in iPSCs and neurons, and 
gold-standard essential genes in cancer cell lines (Hart et al., 2017). 

 
(E) Survival of neurons without treatment (black) or with various concentrations of 
Mevastatin (blue) quantified by microscopy; mean ± SD (six replicates). 

 
(F) Survival of neurons infected with non-targeting sgRNA (black) or HMGCR sgRNA 
(blue) or HMGCR sgRNA with various concentrations of mevalonate (pink to red) 
quantified by microscopy; mean ± SD (six replicates). 
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Fig.2.4. Characterization of results from massively parallel screens for essential 
genes in iPSCs and neurons  
(A) Correlation of read counts from next-generation sequencing for individual sgRNAs 
between experimental replicates. 
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(B) Volcano plots summarizing knockdown phenotypes and statistical significance 
(Mann- Whitney U test) for genes targeted in the pooled screen in iPSC-derived 
neurons. Top, phenotypes for survival between Day 0 and Day 14. Bottom, phenotypes 
for survival between Day 0 and Day 21. Dashed lines represent the cutoff for hit genes, 
which was defined based on the product of phenotype and -log10(P value) at an 
empirically determined false discovery rate of 0.05 (see Methods). 
 
(C) Heatmaps showing knockdown phenotype scores of all 5 sgRNAs (x-axis) for every 
hit gene (y-axis) in iPSCs (left) and iPSC-derived neurons (right). The five sgRNAs for a 
given gene are ranked by their p-values and are shown from left to right. 
 
(D) Bar graphs summarizing the percentage of hit genes that have a certain number of 
sgRNAs (x-axis) showing a knockdown phenotype score above a given activity cutoff in 
iPSCs (left) and iPSC-drived neurons (right). For each sgRNA targeting a given gene, a 
relative sgRNA phenotype score was calculated by dividing its knockdown phenotype 
score by that of the most significant sgRNA targeting the same gene. Cutoffs are set 
based on the relative sgRNA phenotype scores. 
 
 

  

45 



 

Fig.2.5. Functional analysis of hit genes from primary survival screens in iPSCs 
and iPSC-derived neurons 
(A) Gene set enrichment analysis (GSEA) for hit genes from the screens. Significantly 
enriched GO terms for biological processes (BH-adjusted P value<0.05: 100,000 
permutations) are shown for essential genes in iPSCs (Day 0 vs. Day 10) and neurons 
(Day 0 vs. Day 28). NES, normalized enrichment score. 
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(B) Expression levels of essential and non-essential genes in neurons at Day 14, 21, 
and 28 of differentiation were plotted as the distributions of log10 normalized counts from 
Quant- Seq. Median levels of expression were indicated. P values were calculated 
using one-sided Mann-Whitney U test. 
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Fig.2.6. Pooled validation of hit genes from the primary screen 
(A) Strategy for validation of hit genes. 
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(B) Raw counts of sgRNAs from next-generation sequencing for biological replicates of 
Day 10 iPSCs (left) and Day 14 neurons (right) and coefficients of determination (R2), 
Each dot represents one sgRNA. 
 
(C) Knockdown phenotype scores from primary screens and validation screens for Day 
10 iPSCs (left) and Day 14 neurons (right) and Pearson correlation coefficients (r). Each 
dot represents one gene. 

 
(D) Hierarchical clustering of different cell populations from the pooled validation 
screens based on the pairwise correlations of the knockdown phenotype scores of all 
genes. 

 
(E) Heatmap showing knockdown phenotype scores of the genes targeted in the 
validation screen (columns) in different cell populations (rows). Both genes and cell 
populations were hierarchically clustered based on Pearson correlation. Red asterisks 
mark genes selected for secondary screens (CROP-Seq and longitudinal imaging). 

 
(F) Gene knockdown phenotype scores of Day 14 neurons in monoculture (x-axis) and 
co-culture with primary mouse astrocytes (y-axis) and Pearson correlation coefficient (r). 
Each dot represents one gene. Outlier genes, (differences > ± 2 SD from the mean 
differences) are labeled. 

 
(G) Strategy for degron-based inducible CRISPRi. Addition of trimethoprim (TMP) 
stabilizes the DHFR degron-tagged CRISPRi machinery. 

 
(H) Strategy to test whether hit genes control neuronal survival or earlier processes. 

 
(I) Knockdown phenotype scores for Day 14 neurons from screens in the inducible 
CRISPRi iPSCs, comparing populations with TMP added from the iPSC stage (x-axis) 
to populations without TMP added (y-axis). Each dot represents one gene. 

 
(J) Knockdown phenotype scores for Day 14 neurons from screens in the inducible 
CRISPRi iPSCs, comparing populations with TMP added from the iPSC stage (x-axis) 
to populations with TMP added from the neuronal stage (y-axis) and Pearson 
correlation coefficient (r). Each dot represents one gene. The outlier gene, PPP1R12C, 
is labeled. 
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Fig.2.7. CROP-Seq reveals transcriptome changes in iPSCs and iPSC-derived 
neurons induced by knockdown of survival-relevant genes 
(A) Strategy for CROP-Seq experiments. 
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(B) On-target knockdown efficiencies in the CROP-Seq screen were quantified for 
iPSCs (left) and Day 7 neurons (right). For each target gene, the 50% of cells with the 
strongest on-target knockdown were selected from all cells expressing sgRNAs 
targeting the gene; average expression of each target gene within these cells is 
compared to cells with non-targeting control sgRNAs. Error bars: 95% confidence 
intervals estimated by bootstrapping. 

 
(C) Changes in gene expression in response to CRISPRi knockdown of genes of 
interest in iPSCs (top) and Day 7 neurons (bottom). Each row represents one targeted 
gene; for each targeted gene, the top 20 genes with the most significantly altered 
expression were selected, and the merged set of these genes is represented by the 
columns. Rows and columns were clustered hierarchically based on Pearson 
correlation. Functionally related groups of differentially expressed genes are labeled. 
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Fig.2.8. Pooled validation of hit genes from the primary screen 
(A) Heatmap showing relative knockdown phenotype scores of sgRNAs (rows) from the 
validation screens (columns, both experimental replicates, expect for Day 28 neurons, 
for which the second replicate sample was accidentally lost during sample preparation). 
Both sgRNAs and screens were hierarchically clustered based on Pearson correlation. 
 
(B) Construct pMTL5 for the expression of CRISPRi machinery (dCas9-BFP-KRAB) 
fused to an N-terminal DHFR degron from the AAVS1 safe-harbor locus. 
 
(C) Characterization of inducible CRISPRi activity in iPSCs with integrated 
single-degron CRISPRi machinery (construct pMTL5), compared to an equivalent 
constitutive construct lacking the degron (pMTL3). iPSCs were transduced with a 
lentiviral sgRNA expression construct containing a non-targeting sgRNA (grey bars) or 
an sgRNA targeting CDH2 (encoding N-cadherin, blue bars). Cells were cultured in the 
presence or absence of 10 μM trimethoprim (TMP), and cell-surface levels of 
N-cadherin were quantified by immunofluorescence flow cytometry 48 hours after 
transduction. Expression levels relative to non-targeting sgRNA are shown. Mean of two 
experimental replicates, error bars indicate standard deviation. 
 
(D,E) Characterization of inducible CRISPRi activity in iPSCs and neurons with 
integrated double-degron CRISPRi machinery (construct pRT029). (D) Knockdown of 
the transferrin receptor (TFRC) in iPSCs and iPSC-derived neurons in the presence or 
absence of trimethoprim (TMP). iPSCs expressing the inducible CRISPRi machinery 
were lentivirally infected with an sgRNA targeting TFRC or a non-targeting negative 
control sgRNA. Infected iPSCs were cultured and differentiated into neurons in the 
presence of 20 μM TMP from iPSC stage or in the absence of TMP. Cells from both 
conditions were harvested at different days and levels of TFRC as well as ACTB 
mRNAs were quantified by qPCR. After normalizing each sample by ACTB mRNA 
levels, ratios of TFRC mRNA were calculated for cells expressing the TFRC-targeting 
sgRNA versus cells with the non-targeting sgRNA cultured in the same condition. Mean 
and standard deviations for replicates are shown. (E) qPCR result showing the 
conditional knockdown of GRN in iPSC-derived neurons. iPSCs expressing the dual- 
degron inducible CRISPRi machinery were lentivirally infected with an sgRNA targeting 
GRN or a non-targeting negative control sgRNA. Infected iPSCs were differentiated into 
neurons. The neurons were cultured in neuronal medium with the presence or absence 
of 20 μM TMP. Day 7 neurons from both conditions were harvested and levels of GRN 
as well as ACTB mRNAs were quantified by qPCR. After normalizing each sample by 
ACTB mRNA levels, ratios of GRN mRNA were calculated for cells expressing the 
GRN-targeting sgRNA versus cells with the control sgRNA cultured in the same 
condition. Mean and standard deviations for replicates are shown. One-tailed t-test was 
applied (*** P<0.001). 
 
(F,G) Inhibition of the neuronal differentiation of CRISPRi-i3N iPSCs by sgRNAs 
targeting PPP1R12C. (F) Phase contrast (first column) and fluorescence (second and 
third column) micrographs of partially differentiated neuron populations infected with an 
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expression construct for sgRNAs (non-targeting control sgRNA, top row, or two different 
sgRNAs targeting PPP1R12C, middle and bottom row) and a BFP marker. Nuclei are 
visualized by expression of mNeonGreen-NLS (second column, green in merged 
images). Cells expressing sgRNAs are marked by cytosolic BFP (third column, blue in 
merged images). Images were acquired following six days of iPSC proliferation 
post-infection and three days of doxycycline-induced 
differentiation. (G) Quantification of undifferentiated colonies in a repeat experiment. 
Rosettes were counted manually by an individual blinded to the experimental 
conditions. The total number of cells was counted by Nikon Elements software bright 
spot detection module for green nuclei. Mean and SEM for replicate wells are shown (n 
= 6). One-way ANOVA and multiple comparisons were applied (****P<0.0001). 
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Fig.2.9. Characterization of CROP-Seq screen results 
(A) Heatmap showing the expression levels of marker genes for different cell types in 
different gene knockdown groups in iPSCs and Day 7 neurons obtained from the 
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CROP-seq screen. The shade of red indicates the mean expression level of a given 
gene for all cells in that gene knockdown group. 
 
(B) Transcriptomes of different sgRNA groups in iPSCs (left) and neurons (right) were 
visualized with t-Distributed stochastic neighbor embedding (t-SNE), colored by target 
genes. 
 
(C) Pairwise similarities of transcriptome changes of different gene knockdown groups 
across iPSCs and neurons were determined based on the numbers of overlapping and 
total transcripts that were significantly altered in two groups (see Methods for details). 
Gene knockdown groups were hierarchically clustered based on Pearson correlation. 
The shade of red indicates the similarity. 
 
(D) Comparison of differences between iPSCs and neurons in knockdown phenotypes 
for survival and transcriptomic responses. Genes were ranked by similarities between 
iPSCs and neurons in their knockdown phenotypes in terms of survival (x-axis) or 
transcriptomic response (y-axis). Dashed lines indicate the middle rank positions. 
Genes selected for further discussion are labeled in red. 
 

 

 

  

56 



Fig.2.10. Cell-type specific responses to gene knockdown on the transcriptomic 
level 
(A) Changes in transcript levels caused by MAP3K12 knockdown in neurons from the 
CROP-Seq screen. Differentially expressed genes (padj < 0.05) in red (upregulation) or 
blue (downregulation), or other colors for genes discussed in the main text. 
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(B) Knockdown phenotypes of UQCRQ (top) and UBA1 (bottom) in iPSCs and 
iPSC-derived neurons from the primary and validation screens. Survival phenotypes of 
2 sgRNAs targeting the same gene, mean ± SD. 
 
(C,D) Transcriptomic changes caused by knockdown of UQCRQ (C) or UBA1 (D) in 
iPSCs and neurons. Differentially expressed genes (padj < 0.05) in red (upregulation) or 
blue (downregulation), or other colors for genes discussed in the main text. 
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Fig.2.11. CROP-Seq reveals neuron-specific transcriptomic consequences of 
MAT2A knockdown 
(A) Methionine adenosyl transferase 2a (MAT2A) catalyzes the production of the methyl 
donor S-adenosylmethionine (SAM) from methionine and ATP. 
 
(B) MAT2A is essential in neurons but not iPSCs. Knockdown phenotypes of MAT2A in 
iPSCs and neurons from the primary and validation screens. Survival phenotypes of 2 
sgRNAs targeting MAT2A, mean ± SD. 
 
(C,D) Changes in transcript levels caused by MAT2A knockdown in iPSCs (C) and 
neurons (D) from the CROP-Seq screen. Differentially expressed genes (padj < 0.05) in 
red (upregulation) or blue (downregulation). 
 
(E) Gene Set Enrichment Analysis (GSEA) results for differentially expressed genes in 
iPSC-derived neurons with MAT2A knockdown compared to negative control sgRNAs. 
Significantly enriched GO terms for Biological Process and Cellular Component are 
shown. 
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Fig.2.12 .Longitudinal imaging to track the effect of selected hit gene knockdown 
on iPSC growth, neuronal survival and neurite morphology 
(A) Strategy for longitudinal imaging for neuronal survival and neurite morphology. 
 
(B) An example illustrating the image analysis pipeline. A raw image (left) containing 
sgRNA positive neurons expressing nuclear BFP (cyan) and cytosolic mScarlet 
(greyscale) were segmented and neurites were recognized (right). Different parameters, 
including neurite length, number of neurite trunks and number of neurite branches were 
quantified for individual neurons. Total number of sgRNA positive neurons was 
quantified for each image to monitor neuronal survival. 
 
(C) Quantification of knockdown effects of PGGT1B and PPP2R1A on neuronal 
survival, neurite length, number of branches and number of trunks. For each sgRNA, 
mean ± SD of replicate images is shown for each time point. *** significant differences 
compared to non-targeting sgRNA (P < 0.001, Student’s t-test). 
 
(D) Examples of hit genes whose survival phenotypes in the pooled screens were 
validated by longitudinal imaging. Top, knockdown phenotypes of SQLE, HMGCR, 
MAT2A and MAP3K12 in iPSCs and neurons from the validation screens. Average 
phenotypes of two sgRNAs targeting each gene; error bars represent SD. Growth 
curves of iPSCs (middle) and survival curves of neurons (bottom) with non-targeting 
sgRNAs and sgRNAs targeting SQLE, HMGCR, MAT2A or MAP3K12. Fold change (for 
iPSCs, middle) or surviving fraction (for neurons, bottom) of number of sgRNA-positive 
cells relative to Day 1 was calculated for each imaging well, mean ± SD for all replicate 
wells for one sgRNA are shown. 
 
(E) Changes of iPSC proliferation, neuronal survival and neurite morphology features 
relative to non-targeting sgRNAs at different time points (columns) induced by 
knockdown of different genes (rows). Rows were hierarchically clustered based on 
Pearson correlation. 
 
(F) Representative images of neurons with PGGT1B and PPP2R1A knockdown on 
Days 1, 5 and 10. Nuclear BFP is shown in blue, cytosolic mScarlet is shown in red. 
Scale bar, 100 μm. 
 
(G) Effect of gene knockdown on neurite length (x-axis) and number of neurite trunks 
(y-axis). Each dot indicates the mean measurements of all neurons in one image. 
Different target genes are shown in different colors, and replicate images for one target 
gene are grouped by dashed lines in the same colors. 
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Fig.2.13. Reproducibility of longitudinal imaging results  

(A) Scatter plot showing surviving fractions of neurons with different sgRNAs at different 
days of differentiation (shown in different colors) relative to Day 1 in two independent 
sets of imaging experiments. Each dot represents one sgRNA in a certain time point. 
Coefficient of determination (R2) is indicated. 
 
(B,C) Survival (B) and neurite growth (C) of i3N neurons and inducible CRISPRi i3N 
neurons with or without non-targeting sgRNA in the absence or presence of TMP, 
quantified from longitudinal imaging data. Mean and standard deviations for 6 replicate 
wells are shown. 
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TABLES 

Table 2.1 Key resources 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Goat polyclonal anti-human 
progranulin 

R&D Systems 
Cat#AF2420; 
RRID:AB_2114489 

Mouse monoclonal anti-TUJ1 BioLegend 
Cat#801201; 
RRID:AB_2313773 

Donkey polyclonal anti-goat AF-488 
Jackson 
ImmunoResearch 

Cat#705-545-147; 
RRID:AB_2336933 

Donkey polyclonal anti-mouse RRX 
Jackson 
ImmunoResearch 

Cat#715-295- 

151; RRID:AB_2340832 

Donkey polyclonal anti-goat AF-647 
Jackson 
ImmunoResearch 

Cat#705-605-147; 
RRID:AB_2340437 

Donkey polyclonal anti-mouse 
AF-488 

Jackson 
ImmunoResearch 

Cat#715-545-151; 
RRID:AB_2341099 

Guinea pig polyclonal anti-NeuN MilliporeSigma 
Cat#ABN90; 
RRID:AB_11205592 

Chicken polyclonal anti-MAP2  Abcam 
Cat#ab5392; 
RRID:AB_2138153 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

Mouse monoclonal anti-human tau  Thermo 
Cat#MN1000; 
RRID:AB_2314654 

Goat polyclonal anti-guinea pig 
AF-647 

ThermoFisher 
Scientific 

Cat#A-21450; 
RRID:AB_2735091 

Donkey polyclonal anti-chicken 
AF-647 

Jackson 
ImmunoResearch 

Cat#703-605-155; 
RRID:AB_2340379 

Mouse monoclonal anti- β-Actin 
(8H10D10) 

Cell Signaling 
Technology 

Cat# 3700, 
RRID:AB_2242334 

Mouse monoclonal anti- 
phospho-Histone H2A.X (Ser139) 

Millipore 
Cat# 05-636, 
RRID:AB_309864 

Rabbit monoclonal anti-UBQLN2 
(D7R2Z) 

Cell Signaling 
Technology 

Cat# 85509, 
RRID:AB_2800056 

IRDye 680RD Goat anti-Mouse IgG 
LI-COR 
Biosciences 

Cat# 926-68070, 
RRID:AB_10956588 

IRDye 800CW Goat anti-Rabbit IgG 
LI-COR 
Biosciences 

Cat# 926-32211, 
RRID:AB_621843 
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Chemicals, Peptides, and Recombinant Proteins 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Trimethoprim Sigma Cat#92131-5G 

CNQX disodium salt Tocris Cat#1045 

Puromycin dihydrochloride Sigma Cat#P9620-10ML 

Blastidicin S HCl 
Gemini 
Bio-Products 

Cat#400-165P 

Hoechst 33342 Thermo Cat#62249 

Lipofectamine Stem ThermoFisher Cat#STEM00003 

Alt-R S.p. HiFi Cas9 Nuclease V3 IDT Cat#1081060 

Lipofectamine 3000 Transfection 
Reagent 

ThermoFisher 
Scientific 

Cat# L3000015 

ViralBoost Alstem Cat#VB100 

BrainPhys Neuronal Medium 
STEMCELL 
Technologies 

Cat#05790 

BrainPhys without Phenol Red  
STEMCELL 
Technologies 

Cat#05791 

Cultrex 3D Culture Matrix Laminin I R&D Systems Cat#3446-005-01 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

Doxycycline hyclate Sigma Cat#D9891 

Poly-L-ornithine hydrobromide Sigma-Aldrich Cat#P3655-50MG 

Etoposide Abcam Cat#ab120227 

Essential 8 Medium 
Thermo Fisher 
Scientific 

Cat#A1517001 

Matrigel Basement Membrane 
Matrix 

Corning Cat#356231 

Y-27632 dihydrochloride ROCK 
inhibitor 

Tocris Cat#125410 

N2 Supplement 
Thermo Fisher 
Scientific 

Cat#17502-048 

B27 Supplement 
Thermo Fisher 
Scientific 

Cat#17504-044 

NT-3 PeproTech Cat#450-03 

BDNF PeproTech Cat#450-02 

Mevastatin Sigma-Aldrich Cat#M2537 

Mevalonate Sigma-Aldrich Cat#M4667 

Critical Commercial Assays 

Direct-zol 96 RNA Kit Zymo Cat#R2055 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

iTaq Universal Probes One-Step Kit Bio-Rad Cat#172-5141 

Chromium Single Cell 3’ Library & 
Gel Bead Kit v2 

10x Genomics Cat# 120267 

Chromium i7 Multiplex Kit Kit  10x Genomics Cat#120262 

Chromium Single Cell A Chip 10x Genomics Cat#1000009 

Chromium Controller & Accessory 
Kit 

10x Genomics Cat#120223 

Quick-RNA Miniprep Kit Zymo Cat#R1054 

Qubit RNA HS Assay Kit Invitrogen Cat#Q32855 

QuantSeq 3’ mRNA-Seq Library 
Prep Kit FWD 

Lexogen Cat#015 

Qubit dsDNA HS Assay Kit Invitrogen Cat#Q32851 

High Sensitivity DNA Kit Agilent Cat#5067-4626 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

SensiFAST SYBR Lo-ROX 2X 
master mix 

Bioline Cat#BIO-94005 

GAPDH PrimePCR Primers Bio-Rad 

Unique Assay ID: 

 qHsaCEP0041396 

  

GRN PrimePCR Primers Bio-Rad 

Unique Assay ID: 

qHsaCEP0057821 

  

UBQLN2 PrimePCR Primers Bio-Rad 

Unique Assay ID: 

qHsaCEP0055207 

  

Deposited Data 

iNeuron-RNA-Seq This paper  

https://kampmannlab.ucsf.edu/i
neuron-rna-seq 

; GEO: GSE124703 

  

iPSC and Day 7 Neuron CROP-seq 
Data 

This paper GEO: GSE124703 
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Experimental Models: Cell Lines 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Human: NCRM5 iPSC line Luo et al., 2014 N/A 

Human: i3N iPSC line 
Wang et al., 
2017 

N/A 

 

Recombinant DNA 

Plasmid: Ef1a-mNeon-Green-NLS (H53) This paper N/A 

Plasmid: Ef1a-mScarlet (I2) This paper N/A 

Plasmid: Ef1a-GCaMP6m (I1) This paper N/A 

Plasmid: CLYBL-TO-hNGN2-BSD-mApple Addgene 

Addgene 
Plasmid#124229; 
RRID:Addgene_1242
29 

Plasmid: pCE-mp53DD 
Okita et al., 
2013 

Addgene 
Plasmid#41856; 
RRID:Addgene_4185
6 

Plasmid: 
pC13N-CLYBL-CAG-dCas9-BFP-KRAB 

This paper N/A 

Plasmid: pRT029 This paper N/A 

Plasmid:pMTL3 This paper N/A 

Plasmid:pMTL5 This paper N/A 

Plasmid:pMK1334 This paper N/A 
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Software and Algorithms 

REAGENT or RESOURCE SOURCE IDENTIFIER 

NIS Elements AR 5.02.01 
64-bit 

Nikon Instruments 
Inc. 

https://www.microscope.healthcare.n
ikon.com/products/software/nis-elem
ents 

Fiji -  2.0.0-rc-69/1.52n 
Schindelin et al., 
2012 

https://imagej.net/Fiji 

CellProfiler- 3.1.5 
Carpenter et al., 
2006 

https://cellprofiler.org/ 

BlueBee Genomics Platform BlueBee https://www. bluebee.com/quantseq 

Bowtie- 1.2.1.1 
Langmead et al., 
2009 

http://bowtie-bio.sourceforge.net/ind
ex.shtml 

MAGeCK- 0.5.7 Lie et al., 2014 
https://sourceforge.net/p/mageck/wik
i/Home/ 

MAGeCK-iNC This paper kampmannlab.ucsf.edu/mageck-inc 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

Cell Ranger- 2.2.0 10X Genomics 
https://support.10xgenomics.com/sin
gle-cell-gene-expression/software/pi
pelines/latest/what-is-cell-ranger 

R- 3.5.1 The R project https://www.r-project.org/ 

scater- 1.8.4 
McCarthy et al., 
2017 

https://bioconductor.org/packages/rel
ease/bioc/html/scater.html 

fgsea – 1.7.1 Sergushichev, 2016 
https://bioconductor.org/packages/rel
ease/bioc/html/fgsea.html 

WebGestalt Zhang et al., 2005 http://www.webgestalt.org/# 

Cluster- 3.0 Eisen et al., 1998 
http://bonsai.hgc.jp/~mdehoon/softw
are/cluster/software.htm#ctv 

Java TreeView- 1.1.6r4 Saldanha, 2004 http://jtreeview.sourceforge.net/ 
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MATERIALS AND METHODS 

Human iPSCs 

Human iPSCs (male WTC11 background (Miyaoka et al., 2014) unless otherwise 

noted; male NCRM5 (Luo et al., 2014) background in Fig. 2.2G) were cultured in 

Essential 8 Medium (Gibco/Thermo Fisher Scientific; Cat. No. A1517001) on BioLite 

Cell Culture Treated Dishes (Thermo Fisher Scientific; assorted Cat. No.) coated with 

Growth Factor Reduced, Phenol Red-Free, LDEV-Free Matrigel Basement Membrane 

Matrix (Corning; Cat. No. 356231) diluted 1:100 in Knockout DMEM (Gibco/Thermo 

Fisher Scientific; Cat. No. 10829-018). Briefly, Essential 8 Medium was replaced every 

other day or every day once 50% confluent. When 80-90% confluent, cells were 

passaged, which entailed the following: aspirating media, washing with DPBS, 

incubating with StemPro Accutase Cell Dissociation Reagent (Gibco/Thermo Fisher 

Scientific; Cat. No. A11105-01) at 37°C for 7 minutes, diluting Accutase 1:5 in DPBS, 

collecting in conicals, centrifuging at 200g for 5 minutes, aspirating supernatant, 

resuspending in Essential 8 Medium supplemented with 10nM Y-27632 dihydrochloride 

ROCK inhibitor (Tocris; Cat. No. 125410), counting, and plating onto Matrigel-coated 

plates at desired number. 

Human iPSC-derived neurons 

Human iPSCs engineered to express mNGN2 under a doxycycline-inducible 

system in the AAVS1 safe harbor locus were used for the differentiation protocol below. 
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iPSCs were released and centrifuged as above, and pelleted cells were resuspended in 

N2 Pre-Differentiation Medium containing the following: Knockout DMEM/F12 

(Gibco/Thermo Fisher Scientific; Cat. No. 12660-012) as the base, 1X MEM 

Non-Essential Amino Acids (Gibco/Thermo Fisher Scientific; Cat. No. 11140-050), 1X 

N2 Supplement (Gibco/Thermo Fisher Scientific; Cat. No. 17502-048), 10ng/mL NT-3 

(PeproTech; Cat. No. 450-03), 10ng/mL BDNF (PeproTech; Cat. No. 450-02), 1μg/mL 

Mouse Laminin (Thermo Fisher Scientific; Cat. No. 23017-015), 10nM ROCK inhibitor, 

and 2μg/mL doxycycline hydrochloride (Sigma-Aldrich; Cat. No. D3447-500MG) to 

induce expression of mNGN2. iPSCs were counted and plated at 7 x 105 cells per 

Matrigel-coated well of a 6-well plate in 2mL of N2 Pre-Differentiation Medium, or at 4 x 

106 cells per Matrigel-coated 10-cm dish in 12mL of medium, for three days. After three 

days, hereafter Day 0, pre-differentiated cells were released and centrifuged as above, 

and pelleted cells were resuspended in Classic Neuronal Medium containing the 

following: half DMEM/F12 (Gibco/Thermo Fisher Scientific; Cat. No. 11320-033) and 

half Neurobasal-A (Gibco/Thermo Fisher Scientific; Cat. No. 10888-022) as the base, 

1X MEM Non-Essential Amino Acids, 0.5X GlutaMAX Supplement (Gibco/Thermo 

Fisher Scientific; Cat. No. 35050-061), 0.5X N2 Supplment, 0.5X B27 Supplement 

(Gibco/Thermo Fisher Scientific; Cat. No. 17504-044), 10ng/mL NT-3, 10ng/mL BDNF, 

1μg/mL Mouse Laminin, and 2μg/mL doxycycline hydrochloride. Pre-differentiated cells 

were subsequently counted and plated plated at 2 x 105 cells per well of a BioCoat 

Poly-D-Lysine 12-well plate (Corning; Cat. No. 356470) in 1mL of Classic Neuronal 

Medium, or at 7.5 x 106 cells per BioCoat Poly-D-Lysine 10-cm dish (Corning; Cat. No. 
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356469) in 10mL medium. On Day 7, half of the medium was removed and an equal 

volume of fresh Classic Neuronal Medium without doxycycline was added. On Day 14, 

half of the medium was removed and twice that volume of fresh medium without 

doxycycline was added. On Day 21, one-third of the medium was removed and twice 

that volume of fresh medium without doxycycline was added. On Day 28 and each week 

after, one-third of the medium was removed and an equal volume of fresh medium 

without doxycycline was added. 

For the longitudinal imaging screens, updated media formulations were used for 

neuronal differentiation and culture. During the three days of pre-differentiation, we used 

Induction Medium containing the following: Knockout DMEM/F12 (Gibco/Thermo Fisher 

Scientific; Cat. No. 12660-012) as the base, 1X GlutaMAX Supplement (Gibco/Thermo 

Fisher Scientific; Cat. No. 35050-061), 1X MEM Non-Essential Amino Acids 

(Gibco/Thermo Fisher Scientific; Cat. No. 11140-050), 1X N2 Supplement 

(Gibco/Thermo Fisher Scientific; Cat. No. 17502-048), 10nM ROCK inhibitor, and 

2ug/mL doxycycline (Sigma #D9891). Differentiated neurons were cultured in Cortical 

Neuron Culture Medium containing the following: BrainPhys Neuronal Medium 

(STEMCELL Technologies #05790) or BrainPhys without Phenol Red (STEMCELL 

Technologies #05791) as the base, 1X B27 Supplement (Gibco/Thermo Fisher 

Scientific; Cat. No. 17504-044), 10ng/mL NT-3 (PeproTech; Cat. No. 450-03), 10ng/mL 

BDNF (PeproTech; Cat. No. 450-02), 1ug/mL Mouse Laminin (R&D Systems 

#3446-005-01), and optionally 2μg/mL doxycycline. 
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Primary mouse astrocytes 

Primary mouse astrocytes were isolated from two P1 mouse pups and cultured in 

T75 in DMEM + 10% FBS. One day after plating neurons, astrocytes were dissociated 

by trypsin, washed by PBS to remove any remaining FBS and centrifuged at 200g for 5 

minutes. The pelleted astrocytes were resuspended in the Classic Neuronal Medium 

and plated onto the neuronal culture at a 1:5 astrocytes to neurons ratio. Media 

changes were performed as indicated above for neuronal culture. Once astrocytes were 

confluent, 2 μM final concentration of AraC was added to the culture. 

 

Molecular Cloning 

The CLYBL-targeting constitutive CRISPRi vector pC13N-dCas9-BFP-KRAB was 

obtained by sub-cloning dCas9-BFP-KRAB from plasmid pHR-SFFV-dCas9-BFP-KRAB 

downstream of a CAG promoter in the CLYBL-targeting pC13N-iCAG.copGFP vector 

via BsrGI and AgeI digestion, thus replacing copGFP and generating the plasmid. 

pHR-SFFV-dCas9-BFP-KRAB was a gift from Stanley Qi & Jonathan Weissman, 

Addgene plasmid # 46911; http://n2t.net/addgene:46911; RRID:Addgene_46911 

(Gilbert et al., 2013) and pC13N-iCAG.copGFP was a gift from Jizhong Zou (Addgene 

plasmid # 66578; http://n2t.net/addgene:66578; RRID:Addgene_66578 (Cerbini et al., 

2015)). 

The AAVS1-targeting constitutive CRISPRi vector pMTL3 was obtained by 

inserting a gene block (gBlock, IDT Technologies) encoding BFP-KRAB into 

pAAVS1-NC-CRISPRi to create a C-terminal fusion with dCas9, and replacing the 
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neomycin resistance marker with a puromycin resistance marker. pAAVS1-NC-CRISPRi 

(Gen3) was a gift from Bruce Conklin (Addgene plasmid # 73499; 

http://n2t.net/addgene:73499; RRID:Addgene_73499 (Mandegar et al., 2016)). The 

degron controlled version was generated by inserting a gene-block encoding E. coli 

dihydrofolate reductase (ecDHFR)–derived degrons with the R12Y, G67S, and Y100I 

mutations (Iwamoto et al., 2010) to generate an N-terminal fusion with the CRISPRi 

machinery. 

The CLYBL-targeted inducible CRISPRi construct pRT029 was generated by 

sub-cloning gene blocks encoding E. coli dihydrofolate reductase (ecDHFR)–derived 

degrons with the R12Y, G67S, and Y100I mutations in the first degron and R12H, N18T 

and A19V in the second degron (Iwamoto et al., 2010) to generate both an N-terminal 

and a C-terminal in-frame fusion with dCas9-BFP-KRAB in pC13N-dCas9-BFP-KRAB. 

The secondary screening vector pMK1334 was generated as follows: The PpuMI 

– SnaBI fragment of CROPseq-Guide-Puro was replaced with a gene block encoding 

the mU6-BstXI-BlpI-optimized sgRNA backbone fragment from our sgRNA vector 

pCRISPRia-v2 (Addgene plasmid # 84832; http://n2t.net/addgene:84832; 

RRID:Addgene_84832 (Horlbeck et al., 2016)) to obtain pMK1332. 

CROPseq-Guide-Puro was a gift from Christoph Bock (Addgene plasmid # 86708; 

http://n2t.net/addgene:86708; RRID:Addgene_86708 (Datlinger et al., 2017)). Next, the 

RsrII + PflMI fragment from pMK1332 was replaced by the RsrII + PflMI fragment from 

pCRISPRia-v2 to introduce tagBFP, creating pMK1333. Last, tagBFP was replaced by a 

gene block encoding 2xmycNLS-tagBFP2 to obtain pMK1334. 

76 



The mNeon-Green-NLS vector (H53) was generated by sub-cloning an EF1α 

promoter and mNeon-Green with two SV40-NLS into the pMK1333 vector via XhoI and 

EcoRI digestion, thus replacing the mU6 promoter, the original EF1α promoter, and the 

original fluorophore. The mScarlet vector (I2) was generated by sub-cloning mScarlet 

downstream of an EF1α promoter in the H53 vector via BmtI and EcoRI digestion, thus 

replacing mNeon-Green-NLS. 

The GCaMP6m vector (I1) was generated by sub-cloning GCaMP6m 

downstream of an EF1α promoter in the H53 vector via BmtI and EcoRI digestion, thus 

replacing mNeon-Green-NLS. 

Vector maps are available at kampmannlab.ucsf.edu/resources, and plasmids 

will be shared on Addgene. 

 

CRISPRi iPS cell line generation 

WTC11 iPSCs harboring a single-copy of doxycycline-inducible mouse NGN2 at 

the AAVS1 locus (Wang et al., 2017, Fernandopulle et al., 2018) were used as the 

parental iPSC line for further genetic engineering. iPSCs were transfected with 

pC13N-dCas9-BFP-KRAB and TALENS targeting the human CLYBL intragenic safe 

harbor locus (between exons 2 and 3) (pZT-C13-R1 and pZT-C13-L1, Addgene 

#62196, #62197) using DNA In-Stem (VitaScientific). After 14 days, BFP-positive iPSCs 

were isolated via FACS sorting, and individualized cells were plated in a serial dilution 

series to enable isolation of individual clones under direct visualization with an inverted 

microscope (EtaLuma LS 620) in a tissue culture hood via manual scraping. Clones with 
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heterozygous integration of dCas9-BFP-KRAB (determined using PCR genotyping) 

were used for further testing. Karyotype testing (Cell Line Genetics) was normal for the 

clonal line used for further experiments in this study, which we termed CRISPRi-i3N 

iPSCs. Similarly, we generated the inducible CRISPRi iPSC line by using pRT029 as a 

donor plasmid, instead of pC13N-dCas9-BFP-KRAB. 

NCRM5 iPSCs (Luo et al., 2014) were used as a second parental iPSC line for 

genetic engineering. iPSCs were transfected using Lipofectamine Stem (ThermoFisher 

#STEM00003) with Alt-R S.p. HiFi Cas9 Nuclease V3 (Integrated DNA Technologies 

#1081060), a custom sgRNA targeting the human CLYBL intragenic safe harbor locus 

(between exons 2 and 3) from Synthego (sequence ATGTTGGAAGGATGAGGAAA), 

and the following plasmids: pC13N-dCas9-BFP-KRAB, 

CLYBL-TO-hNGN2-BSD-mApple (Addgene #124229) and pCE-mp53DD (Okita et al., 

2013, Addgene #41856). The following day, iPSCs were individualized and plated in a 

serial dilution series to enable isolation of individual clones under direct visualization 

with an inverted microscope (EtaLuma LS 620) in a tissue culture hood via manual 

scraping. While iPSCs were plated in the serial dilution series, 20 μM blasticidin (Gemini 

Bio-Products #400-165P) was added to the culture medium for 1-4 days to select for 

clones with successful integration of TO-hNGN2-BSD-mApple. Clones with 

heterozygous integration of dCas9-BFP-KRAB and TO-hNGN2-BSD-mApple 

(determined using PCR genotyping) were used for further testing, including functional 

CRISPRi activity (verified by GRN immunocytochemistry) and neuronal differentiation 

(verified visually and with TUJ1 immunocytochemistry). 
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Dissociation of neurons 

Papain (Worthington; Code: PAP2; Cat. No.LK003178) was resuspended in 1X 

Hanks’ Balanced Salt Solution (Corning; Cat. No. 21-022-CV) to 20U/mL and warmed at 

37°C for 10 minutes. Magnesium chloride was added at 5mM and DNase (Worthington; 

Code: DPRF; Cat. No. LS006333) was added at 5ug/mL immediately before use. 

Culture medium was aspirated and human iPSC-derived neurons were washed with 

DPBS. The papain, magnesium chloride, and DNase solution was added at 250μL per 

well of a 12-well plate or at 2mL per 10-cm dish and incubated at 37°C for 10 minutes. 

This dissociation solution was quenched in 5 volumes of DMEM (Gibco/Thermo Fisher 

Scientific; Cat. No. 10313-039) supplemented with 10% fetal bovine serum for each 

volume of dissociation solution, and the resulting solution was used to detach and 

transfer the sheet of cells to the appropriate collection tube format. For DNA, RNA, or 

protein extraction, the neuron sheet was centrifuged at 200g for 3 minutes, the 

supernatant was carefully removed with a P1000 pipette, and the pellet was snap frozen 

in liquid nitrogen. For flow cytometry analysis, the neuron sheet was triturated 10-15 

times and centrifuged at 200g for 10 minutes, the supernatant was carefully removed 

with a P1000 pipette, and the pellet was resuspended in staining solution. 

 

Quantification of knockdown by qPCR 

To quantify TFRC or CDH2 knockdown, human iPSCs or neuron cell pellets were 

thawed on ice, and total RNA was extracted using the Quick-RNA Miniprep Kit (Zymo; 
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Cat. No. R1054). An input of 100ng RNA was used to synthesize cDNA with the 

SuperScript III First-Strand Synthesis System (Invitrogen; Cat. No. 18080-051). 

Samples were prepared for qPCR in technical duplicates in 15μL reaction volumes 

using SensiFAST SYBR Lo-ROX 2X master mix (Bioline; Cat. No. BIO-94005), custom 

qPCR primers from Integrated DNA Technologies used at a final concentration of 

0.4uM, and cDNA (prepared above) diluted at 1:2 or 1:100 for the target or 

housekeeping gene, respectively. Quantitative real-time PCR was performed on an 

Agilent Mx3005P QPCR System with the following Fast 2-Step protocol: 1) 95°C for 2 

minutes; 2) 95°C for 5 seconds (denaturation); 3) 60°C for 15 seconds 

(annealing/extension); 4) repeat steps 2 and 3 for a total of 40 cycles; 5) ramp from 

55°C to 95°C to establish melting curve. Expression fold changes were calculated using 

the ΔΔCt method. 

To quantify UBQLN2 or GRN knockdown, total RNA was extracted from Day 11 

CRISPRi-i3N neurons on 12-well plates using the Direct-zol 96 RNA Kit (Zymo 

#R2055). Samples were prepared for RT-qPCR in technical and biological triplicates in 

10 μL reaction volumes using the iTaq Universal Probes One-Step Kit (Bio-Rad 

#172-5141). The following PrimePCR Probe Assays from Bio-Rad were diluted 1:20: 

GAPDH (Unique Assay ID qHsaCEP0041396), UBQLN2 (qHsaCEP0055207), and 

GRN (qHsaCEP0057821). Quantitative real-time PCR was performed on a QuantStudio 

6 Flex Real-time PCR System (ThermoFisher #4485691). Expression fold changes 

were calculated using the ΔΔCt method. 
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Quantification of knockdown by Western Blot 

To quantify protein level knockdown of UBQLN2 by UBQLN2 sgRNA in 

CRISPRi-i3N neurons, neurons with 2 different non-targeting sgRNAs or UBQLN2 

sgRNA were lysed and 20ug of total protein from each lysate was loaded into a 

NuPAGE 4-12% Bis-Tris Gel (Invitrogen, Cat# NP0336BOX). Subsequently, the gel was 

transferred onto a nitrocellulose membrane, which was then blocked by Odyssey® 

Blocking Buffer (PBS) (LI-COR, Cat#927-50000), followed by overnight incubation with 

primary antibodies at 4 degree. The primary antibodies used were Mouse monoclonal 

anti-β-Actin (8H10D10) (Cell Signaling Technology, Cat#3700) and Rabbit monoclonal 

anti-UBQLN2 (D7R2Z) (Cell Signaling Technology, Cat#85509). After incubation, the 

membrane was washed three times with TBST and then incubated with secondary 

antibodies (LI-COR Cat# 926-32211 and 926-68070) at room temperature for 1hr. The 

membrane was then washed 3 times with TBST and once with TBS and imaged on the 

Odyssey Fc Imaging system (LI-COR Cat# 2800). Digital images were processed and 

analyzed using ImageJ. 

 

Immunocytochemistry 

To evaluate N-cadherin (CDH2) knockdown, pre-differentiated neurons were 

plated in Classic Neuronal Medium with doxycycline on day 0 at 4 x 104 cells per well 

on sterilized, Matrigel-coated 12mm diameter round glass coverslips (Ted Pella Inc; 

Cat. No. 26023) placed in 24-well plates. One day later, primary rat cortical astrocytes 

(gift from Li Gan) were plated in Classic Neuronal Medium with doxycycline on the same 
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coverslips (co-culture) at 8 x 103 cells per well. On days 7 and 14, half of the medium 

was removed and an equal volume of fresh Classic Neuronal Medium without 

doxycycline was added. On day 18, culture medium was aspirated from each well and 

cells were subsequently washed with DPBS. Cells were then fixed with 4% 

paraformaldehyde, which was prepared by diluting 16% paraformaldehyde (Electron 

Microscopy Sciences; Cat. No. 15710) 1:4 in DPBS, at room temperature for 15 

minutes. Paraformaldehyde was removed with a P1000 pipette and collected for proper 

disposal, and coverslips were washed three times with DPBS for 5 minutes each. Cells 

were blocked with 2.5ug/mL Mouse BD Fc Block (BD Biosciences; Cat. No. 553141) at 

room temperature for 15 minutes and subsequently incubated with 1uL mouse IgG1k 

anti-human CD325 antibody conjugated to APC (BioLegend; Cat. No. 350808) in 50uL 

of Fc Block at room temperature for 45 minutes. Coverslips were then washed once 

with DPBS for 5 minutes, incubated with 1ug/mL Hoechst 33342 (Thermo Fisher 

Scientific; Cat. No. H3570) diluted in DPBS at room temperature for 10 minutes, and 

then washed twice more with DPBS for 5 minutes each. One drop of Aqua Poly Mount 

(Polysciences; Cat. No. 18606) 

To evaluate progranulin (GRN) knockdown, pre-differentiated neurons were 

plated in Cortical Neuron Culture Medium with doxycycline on Day 0 at 3.0 x 105 cells 

per well on poly-L-ornithine-coated 8-well glass-bottom slides (Ibidi #80827). On day 5, 

culture medium was aspirated from each well and cells were subsequently washed with 

PBS. Cells were fixed with 4% paraformaldehyde, which was prepared by diluting 16% 

paraformaldehyde (Electron Microscopy Sciences; Cat. No. 15710) 1:4 in PBS, at room 
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temperature for 30 minutes. Paraformaldehyde was removed with a P1000 pipette and 

collected for proper disposal, and slides were washed three times with PBS. Cells were 

blocked with 3% donkey serum with 0.1% saponin in PBS at room temperature for one 

hour and subsequently incubated with goat anti-human progranulin antibody diluted 

1:3000 (R&D Systems #AF2420) and mouse anti-human TUJ1 antibody (BioLegend 

#801201) diluted 1:1000 in blocking buffer at 4°C overnight. Slides were then washed 

three times with PBS and incubated with donkey anti-goat IgG conjugated to AF-488 or 

AF-647 (Jackson ImmunoResearch #705-545-147 or #705-605-147) and donkey 

anti-mouse IgG conjugated to RRX or AF-488 (Jackson ImmunoResearch 

#715-295-151 or #715-545-151) diluted 1:2000 in blocking buffer at room temperature 

for one hour. Slides were again washed three times with PBS, and incubated with 5 uM 

DRAQ5 (Thermo Fisher Scientific #62251) in blocking buffer at room temperature for 30 

minutes. 

To evaluate neuronal differentiation, pre-differentiated neurons were 

resuspended in Cortical Neuron Culture Medium with doxycycline (2 ug/uL), then plated 

on poly-L-ornithine-coated 96-well culture dishes (Perkin Elmer #6055308) at a density 

of 7.5×104 cells/well (n=6 wells per sgRNA). On day 14, culture medium was aspirated 

from each well on one set of plates and cells were subsequently washed with PBS. 

Cells were fixed with 4% paraformaldehyde, which was prepared by diluting 16% 

paraformaldehyde (Electron Microscopy Sciences; Cat. No. 15710) 1:4 in PBS, at room 

temperature for 15 minutes. Paraformaldehyde was removed and collected for proper 

disposal, and the plate was washed three times with PBS. Cells were blocked with 5% 
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donkey serum and 0.1% Triton X-100 in PBS at room temperature for 2.5 hours and 

subsequently incubated with guinea pig anti-NeuN antibody (MilliporeSigma #ABN90) 

diluted 1:1000 in blocking buffer at 4°C overnight. The plate was then washed three 

times with PBS and incubated with goat anti-guinea pig IgG conjugated to AF-647 

(ThermoFisher Scientific #A-21450) diluted 1:1000 in blocking buffer at room 

temperature for 2.5 hours. Plates were again washed three times with PBS. Cells 

without sgRNA were then incubated with 4 uM Hoechst 33342 (Thermo #62249) for 30 

minutes at room temperature, and subsequently washed three times with PBS. i3N 

iPSCs plated on Ibidi slides were stained alongside the neurons for comparison. For 

NeuN quantification, stained neurons were imaged with a spinning disk confocal 

microscope with a motorized stage (Nikon Eclipse Ti), controlled using Nikon Elements 

software. A 20X objective was used to acquire a series of 36 slightly overlapping 

images within each well followed by image stitching. 

 

DNA damage assay 

CRISPRi-i3N iPSCs were infected by non-targeting sgRNA or 2 different MAT2A 

sgRNAs for 48hrs on Matrigel-coated 96-well plates. Cells with no treatment and with 

1uM Etoposide treatment for 6hrs were used as negative and positive controls, 

respectively. These cells were fixed by 4% paraformaldehyde for 15 mins followed by 

permeabilization by 0.1% Triton for 10 mins. After that, the cells were blocked with 5% 

goat serum and 0.1% Triton X-100 in PBS at room temperature for 1 hour and 

subsequently incubated with mouse anti-H2AX pS139 antibody (Millipore #05-636) 
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diluted in blocking buffer at a final concentration of 2 μg/ml overnight at 4 degree. 

Following incubation, the cells were washed three times with PBS and incubated with 

goat anti-mouse IgG conjugated to Alexa Fluor 488 (Abcam, Cat#ab150113) at room 

temperature for 1hr. Cells were then washed three times with PBS. Untreated cells and 

Etoposide treated cells were incubated with 1uM Hoechst 33342 (Thermo #62249) for 

30 minutes at room temperature. For quantification, stained iPSCs were imaged using 

an InCell 6000 (GE Cat# 28-9938-51) at 60X and H2AX foci were quantified using 

CellProfiler (Carpenter et al., 2006). 

 

Calcium Imaging 

i3N iPSCs and CRISPRi-i3N iPSCs were lentivirally transduced with the 

GCaMP6m vector (I1). These polyclonal iPSCs were passaged and plated at a density 

of 5.0×104 cells/well in Matrigel-coated 6-well culture plates. Shortly afterwards, half of 

the wells with iPSCs were transduced with lentivirus containing non-targeting sgRNA. 

The following day, media was changed to E8 + RI. Two days after infection, the media 

was changed to E8 + 12 ug/mL puromycin (Sigma #P9620-10ML) to select for 

transduced cells. 

Following selection for 3-4 additional days, the iPSCs were passaged into fresh 

Matrigel-coated 6-well culture plates at a high density and allowed to differentiate in 

Induction Medium with doxycycline (2 ug/mL) for 3 days, with daily media changes. 
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Following the 3 days of differentiation, these partially-differentiated neurons were 

passaged and resuspended in Cortical Neuron Culture Medium with doxycycline (2 

ug/uL), then plated on poly-L-ornithine-coated 96-well culture dishes (Perkin Elmer 

#6055308) at a density of 7.5×104 cells/well (n=6 wells per sgRNA). For the remainder 

of the experiment before imaging, half of the culture medium was removed and an equal 

volume of fresh medium was added three times per week. On day 28, half of the culture 

medium was aspirated from each well. Neurons were imaged with a spinning disk 

confocal microscope with a 37 °C heated chamber and a motorized stage (Nikon 

Eclipse Ti), controlled using Nikon Elements software. A 20X objective was used to 

acquire 30-second movies of one field per well (n = 4-6 wells) at approximately 5 

frames/second. Following the initial acquisition, culture medium containing CNQX 

(Tocris #1045) at a final concentration of 50 uM was added to each well. Beginning one 

minute after CNQX addition, the same fields were imaged as previously. 

 

Primary CRISPRi screen 

The CRISPRi v2 H1 library with top 5 sgRNAs per gene (Horlbeck et al., 2016) 

was packaged into lentivirus for transduction of iPSCs as follows. Two 15-cm dishes 

were each seeded with 8 x 106 HEK293T cells in 20 mL DMEM complete (basal 

medium supplemented with 10% FBS and 1% penicillin/streptomycin). The next day, H1 

library transfection mix was prepared in the following manner: 10ug H1 library plasmid 

and 10ug third generation packaging mix (1:1:1 mix of the three plasmids) were diluted 

into 2mL Opti-MEM I Reduced Serum Medium (Gibco; Cat. No. 31985070); 250uL 
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Lipofectamine 2000 Transfection Reagent (Invitrogen; Cat. No. 11668027) was diluted 

into 2mL Opti-MEM and incubated at room temperature for 5 minutes; the diluted DNA 

solution was added to the diluted Lipofectamine solution, inverted several times to mix, 

and incubated at room temperature for 15 minutes. Following incubation, half of the 

transfection solution was gently added dropwise to each 15-cm dish with HEK293T 

cells, and the plates were briefly and gently moved in a figure-eight pattern to mix. Eight 

hours later, the Lipofectamine-containing media on each dish was carefully aspirated 

and replaced with 20mL DMEM complete supplemented with 40uL ViralBoost (Alstem; 

Cat. No. VB100; diluted 1:500 in media). Two days later, HEK293T media 

(approximately 40mL) was transferred to a 50mL conical and centrifuged at room 

temperature for 10 minutes at 300g to pellet cell debris. The supernatant was carefully 

transferred to a syringe fitted with a 0.45um filter in order to filter the virus-containing 

solution into a new 50mL conical. Approximately 10mL of cold Lentivirus Precipitation 

Solution (Alstem; Cat. No. VC100) was added to this filtered solution, which was then 

mixed well and stored at 4°C for 48 hours. Following incubation, the solution was 

centrifuged at 4°C for 30 minutes at 1,500g, and the supernatant was decanted. A 

second centrifugation at 4°C for 5 minutes at 1,500g was performed, and the remaining 

supernatant was removed with a P1000 pipette. The virus-containing pellet was 

resuspended in 20mL Essential 8 iPSC medium with ROCK inhibitor. 

For infection with the H1 library, two T175 Matrigel-coated flasks were each 

seeded with 2 x 107 CRISPRi-i3 N iPSCs in 10mL of the virus-containing medium and 

left in the tissue culture hood for 15 minutes to allow even distribution and attachment 
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before moving to the incubator. Six hours later, an additional 15mL of Essential 8 

medium with ROCK inhibitor was added to each flask without removing the 

virus-containing medium. The next day, we performed a complete media change on all 

flasks, adding 35mL Essential 8 medium with ROCK inhibitor to allow the cells to 

recover and proliferate. One day later, we released the cells and seeded four T175 

Matrigel-coated flasks each with 1 x 107 cells in 20mL Essential 8 medium with ROCK 

inhibitor, which was the medium volume and formulation used for puromycin treatment 

to enrich sgRNA-expressing cells. The initial MOI, quantified as the fraction of 

BFP-positive cells by flow cytometry, was ~15%, corresponding to a library 

representation of ~450 cells per library element. Puromycin treatment proceeded in the 

following manner: two days with 0.8ug/mL puromycin, followed by two days with 1ug/mL 

puromycin. At the end of treatment, cells were assessed by flow cytometry (83% 

expressed high levels of BFP) and seeded for the iPSC and neuronal survival screens, 

which are described below. 

For the iPSC growth-based screen, two T175 Matrigel-coated flasks were each 

seeded with 1 x 107 cells in 20mL Essential 8 medium with ROCK inhibitor (timepoint 

t0), corresponding to a library representation of ~1,200 cells per library element. 

Approximately 2 x 107 t0 cells were also snap frozen in liquid nitrogen for downstream 

sample preparation to represent the Day 0 sample, corresponding to a library 

representation of ~1,200 cells per library element. Media was replaced on day two (t2), 

omitting ROCK inhibitor. Cells were released on day three (t3), and each replicate was 

seeded into two new T175 Matrigel-coated flasks with 1 x 107 cells each in 20mL 
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Essential 8 medium with ROCK inhibitor. Media was replaced on day five (t5), omitting 

ROCK inhibitor. Cells were released on day six (t6), cells within the same replicate were 

mixed across flasks, and each replicate was seeded into two new T175 Matrigel-coated 

flasks with 1 x 10 cells each in 20mL Essential 8 medium with ROCK inhibitor. Media 

was replaced on days eight (t8) and nine (t9), omitting ROCK inhibitor. Cells were 

released on day ten (t10), cells within the same replicate were mixed across flasks, and 

4 x 107 cells from each replicate were snap frozen for downstream sample preparation, 

corresponding to a library representation of ~2,500 cells per library element 

For the neuronal survival screen, twelve 10-cm Matrigel-coated dishes were each 

seeded with 4 x 106 iPSCs in N2 Pre-Differentiation Medium (day-3) and differentiated 

as previously described. However, an additional full media change (10mL) was 

performed on Day 4 to remove cellular debris that started to appear. On Days 14, 21, 

and 28, dead (floating cells) were removed and live (adherent) cells from two 10-cm 

dishes were harvested per replicate per timepoint. Since neuronal death occurred over 

time, the estimated library representation for these time points was ~410 cells/library 

element on Day 14, ~380 cells/library element on Day 21, and ~330 cells/library 

element on Day 28. Adherent cells were released by papain as previously described, 

and pelleted cells were snap frozen for downstream sample preparation. Genomic DNA 

was extracted with the NucleoSpin Blood L or XL kits (Macherey Nagel; Cat. No. 

740954.20 or 740950.10, respectively) and samples were prepared for sequencing on 

an Illumina HiSeq-4000 based on previously described protocols (Gilbert et al., 2014; 

Kampmann et al., 2014). 
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Pooled validation screen 

192 sgRNAs, including 184 sgRNAs targeting 92 selected hit genes from the 

primary screen (two sgRNAs per gene) and 8 non-targeting control sgRNAs, were 

individually cloned into the secondary screening vector pMK1334 and verified by 

Sanger sequencing. The plasmid was pooled and lentivirus was produced as for the 

Primary Screen. CRISPRi-i3N iPSCs were transduced with the pool at 70% MOI 

(quantified as fraction of BFP-positive cells by flow cytometry) and were transduced 

cells selected by 1 ug/ml of puromycin to obtain a population of cells that was ~85% 

BFP-positive. Following 3 days of expansion, approximately 2 million of these cells were 

harvested as Day 0 sample (corresponding to a library representation of ~9,000 

cells/library element) and the rest of cells were cultured as iPSCs (as described in 

‘Human iPS cell culture’) or differentiated into glutamatergic neurons (as described in 

‘Human neuronal culture’). For the iPSC growth screen, iPSCs were cultured in E8 

medium with daily medium change in two T25 flasks as duplicates and were passaged 

every 2-3 days till Day 10. Approximately 2 million of Day 10 iPSCs from each replicate 

were harvested, corresponding to a library representation of ~9,000 cells/library 

element. For the mono-culture neuronal screen, 10 million of pre-differentiated neurons 

were plated in one Poly-D-Lysine coated 15-cm dish (Corning; Cat. No. 354550). Two 

replicate dishes of neurons were cultured in Classic Neuronal Medium as described in 

‘Human neuronal culture’. Live neurons were harvested on Day 14 and Day 28 neurons 

as described for the primary screens; the library representation was ~35,000 cells / 
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library element on Day 14 and ~28,000 cells / library element on Day 28. For the 

co-culture neuronal screen, 1.5 million of primary mouse astrocytes were added into 

one Poly-D-Lysine coated 15-cm dish containing 7.5 million neurons. Two replicate 

dishes of neurons in co-culture were cultured as described in ‘Astrocyte co-culture’. Day 

14 neurons from each replicate of co-culture experiment were harvested, the library 

representation was ~50,000 neurons/library element. Genomic DNA was isolated from 

all harvested samples using a commercial kit (Macherey Nagel; NucleoSpin® Blood). 

The sgRNA-encoding region were then amplified and sequenced as in the Primary 

Screen. 

 

CROP-Seq 

CRISPRi-i3N iPSCs were infected with a pool of selected sgRNAs in the 

CROP-Seq vector pMK1334 at a low multiplicity of infection to minimize double 

infection. After puromycin selection and expansion, cells were either passaged as 

iPSCs or differentiated into neurons. Approximately 20,000 iPSCs and 20,000 day 7 

i3Neurons were captured by the 10X Chromium Controller using Chromium Single Cell 

3’ Library & Gel Bead Kit v2 (10X Genomics; Cat. No. 120267) with 10,000 input cells 

per lane. Sample prep was performed according to protocol, holding 10-30 ng full-length 

cDNA for sgRNA-enrichment PCR. 

To facilitate sgRNA assignment, sgRNA-containing transcripts were additionally 

amplified by hemi-nested PCR reactions by adapting a previously published approach 

(Hill et al., 2018). Briefly, in the first PCR reaction, 15ng of full-length cDNA was used as 
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template and Enrichemnt_PCR_1_For and Enrichemnt_PCR_1_Rev were used as 

primers. PCR product was cleaned up by 1.0x SPRI beads (SPRIselect; BECKMAN 

COULTER; Cat. No. B23317) and 1ng cleaned product was input into the second PCR 

reaction using Enrichemnt_PCR_2_For and Enrichemnt_PCR_2_Rev as primers. 

Following 1.0x SPRI beads clean up, 1 ng of the PCR product from the second PCR 

reaction was used as template in the final PCR, in which reverse primer 

Enrichemnt_PCR_2_Rev and a forward primer, Enrichemnt_PCR_3_For, containing an 

i7 index, were used as primers. All PCR reactions were carried out for 18 cycles using 

KAPA HiFi polymerase (KAPA HiFi HotStart ReadyMix (2X); Cat. No. KK2602) with 

annealing temperature at 62 degree and 15 seconds extension per cycle. The 

sgRNA-enrichment libraries were separately indexed and sequenced as spike-ins 

alongside the whole-transcriptome scRNA-Seq libraries using a NovaSeq 6000 using 

the following configuration: Read 1: 26, i7 index: 8, i5 index: 0, Read 2: 98. 

Quant-Seq 

Neurons cultured in 12-well plates were released with papain, pelleted, and snap 

frozen on days 0, 14, 21, 28, and 35 in technical duplicates (approximately 2 x 105 cells 

each) per timepoint. RNA was extracted using the Quick-RNA Miniprep Kit (Zymo; Cat. 

No. R1054), and RNA concentrations were determined with the Qubit RNA HS Assay 

Kit (Invitrogen; Cat. No. Q32855) on a Qubit 2.0 Fluorometer (Invitrogen; Cat. No. 

Q32866). mRNA-Seq libraries were prepared from an input of 184ng total RNA in 5uL 

using the QuantSeq 3’ mRNA-Seq Library Prep Kit FWD for Illumina (Lexogen; Cat. No. 

015). Briefly, oligodT hybridization enabled mRNA-selective reverse transcription. The 
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original RNA template was then degraded, and second strand cDNA synthesis was 

achieved by random priming and extension by DNA polymerase. Samples were 

subsequently subjected to magnetic bead-based purification, followed by library 

amplification with indexed flow-cell adapters (14 PCR cycles) and another round of 

magnetic bead-based purification. mRNA-Seq library concentrations (mean of 1.01 ± 

0.275 ng/uL) were measured with the Qubit dsDNA HS Assay Kit (Invitrogen; Cat. No. 

Q32851) on a Qubit 2.0 Fluorometer. Library fragment-length distributions (mean of 371 

± 16.1 bp) were quantified with the High Sensitivity DNA Kit (Agilent; Cat. No. 

5067-4626) on a 2100 Bioanalyzer Instrument (Agilent; Cat. No. G2939BA). All libraries 

were diluted to 2.72nM for equimolar representation in the final, pooled sample. 

Single-end sequencing was performed, generating reads toward the poly(A) tail. 

 

Longitudinal CRISPRi-i3Neuron imaging screen 

CRISPRi-i3N iPSCs were transduced with lentivirus expressing 

mNeonGreen-NLS and FACS-sorted for the brightest green population. These 

polyclonal cells will be referred to as nuclear-green CRISPRi-i3N iPSCs. Subsequently, 

a fraction of these iPSCs were transduced with lentivirus expressing cytosolic mScarlet 

and FACS sorted for the brightest red and green cells. These polyclonal iPSCs will be 

referred to as the nuclear-green/cytosolic red CRISPRi-i3N iPSCs. 

The arrayed sgRNAs in the pMK1334 vector were packaged into lentivirus for 

transduction of iPSCs as follows: 6-well plates coated with poly-D-lysine were seeded 

with 2.5 x 106 HEK293T cells per well in 1.5 mL of DMEM complete (basal medium 
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supplemented with 10% FBS) each. The next day, the arrayed transfection mixes were 

prepared in the following manner: 1.2ug sgRNA plasmid and 1.2 ug packaging mix 

(0.8ug psPAX2, 0.3ug pMD2G, 0.1ug pAdVantage), along with 5 uL P3000 reagent 

(ThermoFisher Scientific # L3000015) were diluted into 150 uL Opti-MEM I Reduced 

Serum Medium (Gibco; Cat. No. 31985070); 3.75 uL Lipofectamine 3000 Transfection 

Reagent (ThermoFisher Scientific # L3000015) was diluted into 150 uL Opti-MEM and 

incubated at room temperature for 5 minutes; the diluted Lipofectamine solution was 

added to the diluted DNA solution, flicked to mix, and incubated at room temperature for 

20 minutes. Following incubation, the transfection solutions were gently added dropwise 

to each well with HEK293T cells, and the plates were briefly and gently moved in a 

figure-eight pattern to mix. The following day, the Lipofectamine-containing media on 

each well was carefully aspirated and replaced with 3mL DMEM complete 

supplemented with 6uL ViralBoost (Alstem; Cat. No. VB100; diluted 1:500 in media). 

Three days later, HEK293T media from each well was transferred to one well each of 

two 2mL deep 96-well dishes (USA Scientific #1896-2800) and centrifuged at 4°C for 30 

minutes at 3428g to pellet cell debris. Viral supernatant was stored at 4°C. 

For functional titering of the lentivirus, nuclear-green+ CRISPRi-i3N iPSCs were 

passaged and plated at a density of 1.0 x 104 cells/well in Matrigel-coated 96-well 

culture dishes. Following adherence of iPSCs, 75 uL of each viral supernatant was 

added to one well, and a series of half-volume dilutions was performed for a total of four 

dilutions. The following day, the culture medium containing the lentivirus was carefully 

aspirated and replaced with fresh medium. Three days after infection, iPSCs were 

94 



imaged with a spinning disk confocal microscope with a motorized stage (Nikon Eclipse 

Ti), controlled using Nikon Elements software. A 20X objective was used to acquire a 

series of 36 slightly overlapping images within each well followed by image stitching. 

The ratio of cells infected with lentivirus was quantified via Nikon Elements software as 

the number of green nuclei with blue signal above an intensity threshold divided by the 

total number of green nuclei. The volumes of viral supernatant used in all subsequent 

infections were adjusted based on the differences between infection ratios. 

Nuclear-green+ cytosolic red+ CRISPRi-i3N iPSCs were passaged and plated at 

a density of 2.5×104 cells/well in Matrigel-coated 12-well culture plates. Shortly 

afterwards, the iPSCs were transduced with lentivirus containing individual sgRNAs. 

The following day, media was changed to E8 + RI. Two days after infection, the media 

was changed to E8 + puromycin (12 ug/mL) to select for transduced cells. 

Following selection for 3-4 additional days, the iPSCs were passaged into fresh 

Matrigel-coated 12-well culture plates at a high density and allowed to differentiate in 

Induction Medium with doxycycline (2 ug/mL) for 3 days, with daily media changes. 

Concurrently, the uninfected nuclear-green CRISPRi-i3N iPSCs were differentiated 

alongside the infected nuclear-green+blue/cytosolic red CRISPRi-i3N iPSCs. 

Following the 3 days of differentiation, these partially-differentiated neurons were 

passaged and resuspended in Cortical Neuron Culture Medium with doxycycline (2 

ug/uL), then plated on poly-L-ornithine-coated 96-well culture dishes (Perkin Elmer 

#6055308) at a density of 5.0×104 cells/well (n=6 wells per sgRNA for most, 3-5 for 

some). The nuclear-green+blue/cytosolic red CRISPRi-i3Neurons were spiked in at a 
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density of 1:20 with the nuclear-green CRISPRi-i3Neurons to facilitate tracing of 

neurites while maintaining trophic support of higher-density neuron cultures. Following 

plating, we waited for adherence of neurons before imaging for the first time. For the 

remainder of each longitudinal imaging experiment, half of the culture medium was 

removed and an equal volume of fresh medium was added three times per week. 

For each timepoint, CRISPRi-i3Neurons were imaged with a spinning disk 

confocal microscope with a motorized stage (Nikon Eclipse Ti), controlled using Nikon 

Elements software. A 20X objective was used to acquire a series of 25 slightly 

overlapping images within each well followed by image stitching. Between imaging 

sessions, plates were incubated in a traditional water-jacketed 5% CO2 incubator at 

37°C. 

 

Longitudinal iPSC imaging screen 

Nuclear-green CRISPRi-i3N iPSCs were passaged and plated in Matrigel-coated 

96-well culture dishes at a density of 1,000 cells/well. Following adherence, iPSCs were 

transduced with lentivirus (same preparation as for the longitudinal neuronal imaging) 

containing individual sgRNAs (n=3 wells per sgRNA). The following day, media was 

changed to E8 + ROCK inhibitor. Starting two days after infection, iPSCs were imaged 

with a spinning disk confocal microscope with a motorized stage (Nikon Eclipse Ti), 

controlled using Nikon Elements software. A 20X objective was used to acquire a series 

of 36 slightly overlapping images within each well followed by image stitching. Between 
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imaging sessions, plates were incubated in a traditional water-jacketed 5% CO2 

incubator at 37 °C. 

 

Longitudinal imaging for CRISPRi toxicity 

i3N iPSCs and inducible CRISPRi-i3N iPSCs were transduced with lentivirus 

expressing only mNeonGreen-NLS, and/or with lentivirus expressing cytosolic mScarlet. 

These polyclonal iPSC groups will be referred to as the nuclear-green iPSCs and 

nuclear-green/cytosolic red iPSCs, respectively. Nuclear-green/cytosolic red iPSCs 

were passaged and plated at a density of 5.0×104 cells/well in Matrigel-coated 6-well 

culture plates. Shortly afterwards, half of the wells with iPSCs were transduced with 

lentivirus containing non-targeting sgRNA. The following day, media was changed to E8 

+ RI. Two days after infection, the media was changed to E8 + puromycin (12 ug/mL) to 

select for transduced cells. Following selection for 3-4 additional days, the iPSCs were 

passaged into fresh Matrigel-coated 12-well culture plates at a high density and allowed 

to differentiate in Induction Medium with doxycycline (2 ug/mL) for 3 days, with daily 

media changes. Concurrently, the uninfected nuclear-green iPSCs were differentiated 

alongside the nuclear-green/cytosolic red iPSCs. Following the 3 days of differentiation, 

these partially-differentiated neurons were passaged and resuspended in Cortical 

Neuron Culture Medium with doxycycline (2 ug/uL), then plated on 

poly-L-ornithine-coated 96-well culture dishes (Perkin Elmer #6055308) at a density of 

5.0×104 cells/well (n=6 wells per sgRNA). The inducible CRISPRi-i3N neurons were 

plated in two groups, with or without 20 uM TMP (Sigma #92131-5G) in the culture 
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medium. The nuclear-green/cytosolic red neurons were spiked in at a density of 1:20 

with the nuclear-green neurons to facilitate tracing of neurites while maintaining trophic 

support of higher-density neuron cultures. Following plating, we waited for adherence of 

neurons before imaging for the first time. For the remainder of each longitudinal imaging 

experiment, half of the culture medium was removed and an equal volume of fresh 

medium was added three times per week. For each timepoint, neurons were imaged 

with a spinning disk confocal microscope with a motorized stage (Nikon Eclipse Ti), 

controlled using Nikon Elements software. A 20X objective was used to acquire a series 

of 25 slightly overlapping images within each well followed by image stitching. Between 

imaging sessions, plates were incubated in a traditional water-jacketed 5% CO2 

incubator at 37 °C. 

 

Pharmacological validation of HMGCR phenotype 

CRISPRi-i3N cells infected with non-targeting control sgRNA or HMGCR sgRNA 

were seeded into 96- or 384-well plates on Day 0 into Brainphys media containing 

mevastatin (compactin, Sigma #M2537) or mevalonate (Sigma #M4667) at the 

concentrations indicated in Fig. 2E,F. Images were taken daily and half-media changes 

performed every second day, with half-concentrations of the treatments used when 

refreshing media. 
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QUANTIFICATION AND STATISTICAL ANALYSIS 

Quant-Seq analysis 

Fastq files were uploaded to and processed through the cloud-based BlueBee 

Genomics Platform (https://www.bluebee.com/quantseq). Briefly, raw reads were 

trimmed with Bbduk, aligned with STAR Aligner, and counted with HTSeq-count to yield 

gene counts. Differential expression analyses were performed with the DESeq2 

pipeline, which compared counts from each set of duplicates at different timepoints to 

counts from the day 0 timepoints. Additional, custom analysis pipelines were devised in 

R. We developed a simple web application with the Shiny R package that enables users 

to visualize normalized read counts and expression fold change (relative to day 0) 

throughout neuronal differentiation for a queried gene. The web application can be 

accessed via kampmannlab.ucsf.edu/ineuron-rna-seq. 

 

Primary screen analysis 

We developed a bioinformatics pipeline, MAGeCK-iNC (MAGeCK including 

Negative Controls) for large-scale functional genomics analysis, which we made publicly 

available (kampmannlab.ucsf.edu/mageck-inc). First, raw sequencing reads from 

next-generation sequencing were cropped and aligned to the reference using Bowtie 

(Langmead et al., 2009) to determine sgRNA counts in each sample. Next, counts files 

of two samples subject to comparison were input into MAGeCK and log2 fold changes 

(LFCs) and P values were calculated for each sgRNA using the ‘mageck test –k’ 

command. Following that, gene level knockdown phenotype scores were determined by 
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averaging LFCs of the top 3 sgRNAs targeting this gene with the most significant P 

values. The statistical significance for each gene was determined by comparing the set 

of P values for sgRNAs targeting it with the set of P values for non-targeting control 

sgRNAs using the Mann-Whitney U test, as described previously (Kampmann et al., 

2013, 2014). To correct for multiple hypothesis testing, we first performed random 

sampling of 5 with replacement from non-targeting control sgRNAs to generate 

‘negative-control-quasi-genes’ and calculated knockdown phenotype scores and P 

values for each of them. Then, we calculated the hit strength, defined as the product of 

knockdown phenotype score and –log (p value), for all genes in the library and for 

‘negative-control-quasi-genes’ generated above. Based on the distribution of all the 

products, a cutoff value was chosen to make sure the false-discovery rate (FDR) is less 

than 0.05. To find enriched annotations within hit genes, Gene Set Enrichment Analysis 

(GSEA) was performed for Day 10 iPSCs and Day 28 neurons using the fgsea package 

in R (Sergushichev, 2016). 

 

Pooled validation screen analysis 

sgRNA counts for each sample were determined as in primary screen. 

Subsequently, knockdown phenotype scores for each sgRNA were calculated as LFCs 

of sgRNA counts between two samples and were normalized by subtracting the median 

of non-targeting control sgRNAs. LFCs were averaged for samples with replicates. 

Gene-level knockdown phenotype score was determined as the mean of knockdown 

phenotype scores of all sgRNAs targeting this gene. 

100 



 

CROP-Seq analysis 

Cell Ranger (version 2.2.0, 10X Genomics) with default parameters was used to 

align reads and generate digital expression matrices from single-cell sequencing data. 

To map sgRNA transcripts together with other mRNA transcripts to individual cells, a 

custom reference was generated by extending the human genome assembly (Ensembl 

GRCh38 release) with ‘quasi-genes’ representing sgRNA-containing transcripts (one 

sgRNA sequence per quasi-gene with 250bp upstream and 230bp downstream 

sequences). Sequencing results of sgRNA-enrichment libraries were analyzed using 

methods previously described (Hill et al., 2018) to further facilitate sgRNA identity 

assignment. 

For a given cell, sgRNA(s) whose UMI counts were greater than 4 standard 

deviations of the mean UMI counts of all sgRNAs were assigned to that cell as its 

identity. Cells with only one assigned sgRNA were retained for further analysis. The 

Scater package (McCarthy et al., 2017) implemented in R was used to analyze the 

digital expression matrices including normalization, quality control and filtering. 

The mean reads per cell was around 84,000 for iPSCs and 91,000 for neurons. 

Median number of genes detected per cell was around 5,000 for iPSCs and 4,600 for 

neurons. After quality control, a single sgRNA could be assigned to ~15,000 iPSCs and 

~8,400 neurons 

For each target gene, the top 50% cells with best on-target knockdown were 

retained. Differential gene expression analysis was performed between each gene 
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knockdown group (cells assigned by targeting sgRNAs of that gene) and control group 

(cells assigned by non-targeting control sgRNAs) using the R package edgeR 

(Robinson et al., 2010) treating each cell as one replicate. 

For Fig. 2.7C, relative expression of each gene was calculated as z-normalized 

expression with respect to the mean and standard deviation of that gene in the control 

group: 

 

The top 20 most significantly altered genes were selected for each gene 

knockdown group and merged together to form the signature gene list. Gene 

knockdown groups were hierarchically clustered based on their relative expression of 

the signature genes, using Cluster 3.0 (Eisen et al., 1998) and visualized using Java 

TreeView (Saldanha, 2004). 

For Fig. 2.11E, GSEA was performed using the web tool WebGestalt (Zhang et 

al., 2005). For Fig. 2.9C,D, the similarity score of transcriptome changes between two 

gene knockdown groups, A and B, was calculated as follows: 

 

Aup and Bup denote for the significantly upregulated genes (padj<0.01) in A and 

B, while Adown and Bdown denote for the significantly downregulated genes 

(padj<0.01) in A and B. 
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Longitudinal imaging data analysis 

A CellProfiler (Carpenter et al., 2006) pipeline was developed to analyze 

longitudinal imaging data. For iPSC growth and i3Neuron survival experiments, sgRNA+ 

cells were recognized as nuclear-green+ blue+ objects and the total number of sgRNA+ 

cells was quantified for every image. iPSC growth and i3Neuron survival were 

calculated as the ratio of sgRNA+ cell number at different time points to that of day 1 of 

imaging. For neurite morphology analysis, neurites of sgRNA+ cells were first enhanced 

by the EnhanceOrSuppressFeatures and EnhanceEdges modules, and then 

skeletonized by the Morph module. Following that, MeasureObjectSkeleton module was 

implemented to measure neurite length, number of branches and number of trunks for 

individual neurons. The mean values of the above measurements of all sgRNA+ 

neurons were calculated for each image. 

To integrate all image analysis data, we generated a panel of imaging 

phenotypes for a given sgRNA, including neurite length, number of neurite branches, 

number of neurite trunks, neuronal survival and iPSC growth at different time points. For 

Fig. 2.12E, the percentage changes of imaging phenotypes compared to the mean of 

non-targeting control sgRNAs were calculated for each sgRNA. Most of genes in the 

imaging experiment were targeted by two sgRNAs (some genes missed one sgRNA 

during experiment process), and a gene was discarded if it was targeted by two 

sgRNAs and the correlation of the two sgRNAs was less than 0.8. All remaining 

sgRNAs were hierarchically clustered based on the Pearson correlation of their 
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percentage changes of imaging phenotypes, using Cluster 3.0 (Eisen et al., 1998) and 

visualized using Java TreeView (Saldanha, 2004). 

 

Calcium Imaging Analysis 

Representative GCaMP6m movies for each cell group were chosen manually, 

after viewing all movies for each group. Representative movies before and after CNQX 

addition were merged sequentially and aligned using Nikon Elements software. For 

each merged and aligned movie, ROIs were drawn manually with Fiji (Schindelin et al., 

2012) around every clearly visible cell body, and the mean gray value was measured for 

each ROI in each frame. For each ROI, ΔF/F was calculated using the average of the 5 

frames with the lowest values as the baseline. 

 

DATA AND SOFTWARE AVAILABILITY 

RNA sequencing data sets generated in this study are available on NCBI GEO 

as dataset GSE124703 

( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124703). 

Expression levels of genes of interest at different time points during neuronal 

differentiation can be visualized interactively at kampmannlab.ucsf.edu/ineuron-rna-seq. 

Longitudinal imaging data files will be made available on request to the lead 

author. The MAGeCK-iNC bioinformatics pipeline is available at 

kampmannlab.ucsf.edu/mageck-inc. 
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The CellProfiler pipeline for analysis of neuronal longitudinal imaging data will be 

made available on request to the lead author, and will also be submitted to the 

CellProfiler depository of published pipelines 

(https://cellprofiler.org/examples/published_pipelines.html) upon publication. 
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CHAPTER THREE 

Genome-wide CRISPRi/a screens in human neurons  

link lysosomal failure to ferroptosis  
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INTRODUCTION 

The human body comprises hundreds of different cell types. Even though their 

genomes are nearly identical, cell types are characterized by vastly different cell 

biologies, enabling them to fulfill diverse physiological functions. Transcriptomic 

profiling, fueled by recent advances in single-cell- and single-nucleus-RNA sequencing 

technologies, has revealed cell-type specific gene expression signatures (Gao et al., 

2018; Han et al., 2020b; Lake et al., 2018; Muraro et al., 2016). In addition to gene 

expression, gene function can also be cell type-specific, as  evidenced by the fact that 

mutations in broadly expressed or housekeeping genes can lead to strongly cell-type 

specific defects and disease states. Striking examples are familial mutations causing 

neurodegenerative diseases, which are often characterized by the selective vulnerability 

of specific neuronal subtypes, even if the mutated gene is expressed throughout the 

brain or even throughout the body. Cell-type specific gene function is also supported by 

our recent finding that knockdown of certain genes can have remarkably different 

impacts on cell survival and gene expression in different isogenic human cell types, 

including stem cells and neurons (Tian et al., 2019).  

Therefore, understanding the function of human genes in different cell types is 

the next step toward elucidating tissue-specific cell biology and uncovering disease 

mechanisms. To this end, we recently developed a functional genomics platform, 

leveraging the strengths of CRISPR interference (CRISPRi) and iPSC technology, that 

enables large-scale, multimodal loss-of-function genetic screens in differentiated human 

cell types, as demonstrated in neurons (Tian et al., 2019). Here, we present a 
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complementary gain-of-function screening platform in human iPSC-derived neurons 

based on CRISPR-activation (CRISPRa), which can give complementary biological 

insights to CRISPRi screens (Gilbert et al., 2014). 

We conduct the first genome-wide CRISPRi and CRISPRa screens in human 

neurons using different readouts to identify genes controlling neuronal survival and 

redox homeostasis, and CROP-seq screens to uncover transcriptional fingerprints of 

genes associated with neurodegenerative diseases.  

Neurons, as one of the longest-living cell types in the human body, are 

challenged by various stresses in aging and disease. Due to their post-mitotic nature, 

neurons do not have the ability to ‘self-renew’ by cell division. Therefore, robust stress 

response mechanisms are required for neurons to maintain long-term health. One of the 

predominant stresses in aging and neurodegenerative diseases is oxidative stress 

(Barnham et al., 2004; Finkel and Holbrook, 2000), which is induced by excessive 

accumulation of reactive oxygen species (ROS) in the cell. ROS are highly reactive 

oxygen-derived molecules that are generated as by-products of normal oxygen 

metabolism. At low levels, ROS have physiological functions in cellular signaling and 

activate pro-survival pathways such as MAPK pathways (Kim et al., 2015). 

Various antioxidant systems have evolved to control ROS levels and maintain redox 

homeostasis, including non-enzymatic antioxidants such as vitamin E, vitamin C and 

glutathione, and enzymatic antioxidants such as superoxide dismutase (SOD), 

glutathione peroxidases (GPX), peroxiredoxins (PRX) and catalase (Kim et al., 2015). 

There are also dedicated cellular pathways that sense and respond to ROS levels such 
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as the Keap1-Nrf2 pathway (Sies et al., 2017). An imbalance of ROS production and 

antioxidant defenses leads to excessive accumulation of ROS, which can cause 

oxidative damage to proteins, lipids and DNA and ultimately lead to cell death (Kim et 

al., 2015; Sies et al., 2017). In particular, peroxidation of lipids containing 

polyunsaturated fatty acids (PUFAs) can cause a non-apoptotic cell death termed 

ferroptosis, which is iron-dependent (Li et al., 2020).  

The brain is highly susceptible to ROS and ferroptosis, due to its high levels of 

oxygen consumption, abundant redox-active metals such as iron and copper, limited 

antioxidants and high levels of PUFAs (Patel, 2016). A large body of evidence has 

indicated the implications of oxidative stress, iron accumulation and ferroptosis in many 

neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease 

(PD) and Amyotrophic Lateral Sclerosis (ALS) (Lin and Beal, 2006; Niedzielska et al., 

2016; Rouault, 2013), yet a comprehensive understanding of how neurons regulate 

redox homeostasis and maintain survival under oxidative stress is lacking. 

Here, we apply our functional genomics platforms to systematically identify 

genetic modifiers of ROS levels, lipid peroxidation, and neuronal survival under 

oxidative stress. These screens uncovered an unexpected role for prosaposin (PSAP), 

knockdown of which strongly induced ROS and lipid peroxidation levels in neurons and 

led to neuronal ferroptosis under oxidative stress. We elucidated the underlying 

mechanism: depletion of PSAP and resulting defects in glycosphingolipids (GSLs) 

degradation lead to the formation of lipofuscin in the lysosome, which is a hallmark of 

aged neurons,,  driving the accumulation of iron and generation of ROS that oxidize 
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lipids. Intriguingly, the strong phenotypes of PSAP depletion are only presented in 

neurons, but not iPSCs or HEK293s. These results demonstrate the power of our 

platforms in uncovering novel cell-type specific human cell biology.  
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RESULTS 

Genome-wide CRISPRi and CRISPRa screens reveal genes regulating survival of 

human neurons 

We have previously established a CRISPRi platform that enables robust 

knockdown of endogenous genes and high-throughput loss-of-function genetic screens 

in human iPSC-derived neurons (Tian et al., 2019). Here, we further expand our toolbox 

by developing a CRISPRa system that allows us to robustly overexpress endogenous 

genes in cultured human neurons. We used a published inducible CRISPRa system, 

DHFR-dCas9-VPH, whose function has been validated in human iPSCs (Weltner et al., 

2018). In this system, the CRISPRa machinery is tagged by a DHFR degron so that its 

activity can only be induced in the presence of trimethoprim (TMP) which stabilizes the 

DHFR degron and prevent the proteasomal degradation of the entire fused protein. 

Similarly to our CRISPRi platform, an expression cassette for CRISPRa, CAG 

promoter-driven DHFR-dCas9-VPH, was stably integrated into the CLYBL safe-harbor 

locus of an iPSC line (i3N-iPSC) with an inducible Neurogenin 2 (Ngn2 ) expression 

cassette in the AAVS1 safe-harbor locus (Fig.3.1A). These CRISPRa-iPSCs can be 

efficiently differentiated into homogenous glutamatergic neurons in a highly scalable 

manner upon doxycycline-induced Ngn2 expression. A monoclonal line of 

CRISPRa-iPSC was generated and a normal karyotype was confirmed (Fig.3.2A). In a 

functionality validation, our CRISPRa system robustly activated expression of an 

endogenous gene, CXCR4 , in iPSC-derived neurons in a tightly inducible manner 

(Fig.3.1B).  
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We previously conducted a sub-genome scale CRISPRi screen to reveal genes 

regulating neuronal survival using an sgRNA library targeting 2,325 genes in the 

“druggable genome”. Here, we greatly expanded the screen to target all protein-coding 

human genes in both loss-of- and gain-of-function screens by CRISPRi and CRISPRa 

respectively. To our knowledge, these are so far the first genome-wide CRISPR screens 

in human neurons . Using a similar paradigm as previously described (Tian et al., 2019) 

(shown in Fig. 3.1C), we transduced our CRISPRi and CRISPRa iPSCs via lentiviral 

delivery with the genome-wide hCRISPRi/a-v2 sgRNA libraries (Horlbeck et al., 2016). 

After selection and expansion, the transduced iPSCs (Day -3 iPSCs) were differentiated 

into neurons by doxycycline-induced Ngn2 expression. For the CRISPRa screen, TMP 

was added to Day 0 neurons to induce CRISPRa activity. For both screens, iPSCs prior 

to differentiation (Day -3) and Day10 neurons were collected and sgRNA frequencies in 

each sample were determined by next-generation sequencing of the sgRNA-encoding 

region. Based on the depletion or enrichment of sgRNAs targeting specific genes at 

Day10 compared to Day-3, we identified genes for which knockdown or overexpression 

inhibits or promotes neuronal survival. A phenotype score and a significance p value for 

each gene was calculated using our previously published pipeline, MAGeCK-iNC (Tian 

et al., 2019). We defined a ‘gene score’ as the product of phenotype score and –log10(p 

value) and called genes as hits based on gene score cutoff corresponding to an 

empirical false discovery rate (FDR) of 5% (Fig.3.1D).  
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Next, we focused on top enrichment and depletion hit genes in each screen. For 

CRISPRi, among the top 10 depletion hits were genes encoding superoxide 

dismutases, including SOD1  and SOD2 , which protect cells from oxidative stress, 

suggesting that redox homeostasis is pivotal for neuronal survival. Genes encoding 

subunits of vacuolar ATPase(V-ATPase) complex (e.g. ATP6V1H , ATP6V1C1 , 

ATP6AP1 , etc.,), which mediates acidification of endo-lysosomal vesicles through ATP 

hydrolysis coupled proton transport, were also among the top depletion hits, suggesting 

their indispensable role for neuronal survival, in line with the evidences that altered 

v-ATPase activity and lysosomal pH dysregulation could lead to aging and adult-onset 

neurodegenerative diseases, including Parkinson Disease and Alzheimer Disease 

(Colacurcio and Nixon, 2016). Interestingly, all 7 genes encoding components of the 

N6-methyltransferase writer complex including METTL3 , METTL14 , KIAA1429 (also 

knowns as VIRMA), WTAP , ZC3H13  RBM15 and CBLL1, were among the top 

enrichment hits in CRISPRi screen, with 6 of them (except CBLL1 ) in the top 10 hits 

(Fig.3.1E). The N6-methyltransferase writer complex is responsible for the catalytic 

addition of N6-methyladenosine (m6A) modification to target RNAs, regulating their 

stability, processing and translation efficiency. M6A regulates various cellular processes 

and the result here indicates an interesting uncharacterized role of m6A in regulating 

neuronal survival. Moreover, Gene Ontology (GO) analysis revealed additional 

pathways that were enriched in the top 100 enrichment and depletion hits in the 

CRISPRi screen (Fig.3.1F). For example, genes involved in cholesterol biosynthesis 

were strongly enriched in depletion hits, suggesting an important role of cholesterol in 
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maintaining neuronal survival, consistent with our previous findings (Tian et al., 2019). 

We also identified other pathways, such as iron homeostasis, protein folding, mRNA 

processing and autophagy, were essential for neuronal survival. For CRISPRa, GO 

analysis revealed that overexpression of pro- and anti-apoptotic genes were enriched in 

top depletion and enrichment hits respectively, as expected, validating our approach.  

We next compared survival-related hits we identified here for neurons with genes 

affecting survival of other cell types based on previous studies (Fig.3.2B). For CRISPRi, 

we compared essential genes for neurons (i.e. depletion hits) with those for either 

human pluripotent stem cells (integrated from 3 studies, Ihry et al., 2019, Mair et al., 

2019 and Yilmaz et al., 2018) or cancer cells (‘gold-standard’ essential, Hart et al., 

2017 ). This analysis revealed a shared core set of essential genes, as expected, and a 

large number of neuron-specific essential genes. Similarly, comparison between 

neurons and human pluripotent stem cells on genes for which knockdown promotes 

survival revealed minimal overlap,suggesting different roles genes may play in different 

cell types. For CRISPRa, we reanalyzed a published genome-wide survival screen in 

K562 cells (Horlbeck et al., 2016) using the same MAGeCK-iNC pipeline as in this 

study. Again, in both depletion and enrichment hits, the majority of them are 

neuron-specific. Taken together, these results highlighted the usefulness of our 

approach in uncovering neuron-specific gene function. 

Next, we compared hits from our CRISPRi and CRISPRa screens (Fig.3.1E). 

Overall, there was little overlap between CRISPRi and CRISPRa hits, consistent with a 

previous study (Gilbert et al., 2014). The fact that CRISPRi and CRISPRa screens 
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uncover distinct sets of hit genes can be explained by several factors. First, a gene that 

is not expressed in neurons will not have a CRISPRi knockdown phenotype, but may 

have a CRISPRa overexpression phenotype. Indeed, genes expressed at low or 

undetectable levels were strongly depleted from CRISPRi hits (Fig.3.1G, left), whereas 

CRISPRa hits were not restricted by endogenous expression levels (Fig.3.1G,  right). 

Second, CRISPRi hit genes encoded proteins that form a complex (such as the 

V-ATPase complex or the  N6-methyltransferase writer complex), for which knockdown 

of a single component could abrogate the function of the entire complex and result in a 

phenotype, whereas overexpression of a single subunit by CRISPRa would generally be 

insufficient to induce an increased function  of the complex. Last, knockdown of a single 

gene may not lead to a phenotype due to redundancy. Taken together, CRISPRi and 

CRISPRa screens can uncover complementary biological insights. 

Nevertheless, there were a number of overlapping hit genes in the two screens 

(Fig.3.1E). Many of these genes showed opposing phenotypes on neuronal survival 

upon CRISPRa induction and CRISPRi repression. For example, the X-linked inhibitor 

of apoptosis protein (encoded by XIAP ) affected survival negatively when repressed, 

but positively when activated. XIAP is a well-characterized gene that controls neuronal 

apoptosis by regulating caspase activity. Reduced XIAP levels or loss-of-function 

modifications of XIAP lead to axon degeneration and neuronal loss both in vivo  and  in 

vitro (Tsang et al., 2009; Unsain et al., 2013), whereas overexpression of XIAP is 

neuroprotective (Kügler et al., 2000; Xu et al., 1999). GDPGP1  (encoding the 

GDP-D-Glucose Phosphorylase 1 ) showed similar phenotypes as XIAP  in our screens. 

126 

http://sciwheel.com/work/citation?ids=8714775,489670&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=8954430,8954431&pre=&pre=&suf=&suf=&sa=0,0


A recent study showed that GDPGP1 is a stress-responsive gene of which knockdown 

led to neuronal death while overexpression protected neurons against stress and 

neurodegeneration (Schulz et al., 2020). MAP3K12  (encoding dual leucine zipper 

kinase DLK), another known factor regulating neuronal survival, when overpressed 

compromised neuronal survival, while its inhibition enhanced neuronal survival, 

consistent with our previous screen and other studies (Chen et al., 2008; Le Pichon et 

al., 2017; Tian et al., 2019; Welsbie et al., 2013). 

For some genes, including several involved in protein homeostasis (e.g. CUL3 , 

FBXO2 , COMMD1  and HSPD1 ), perturbations in both directions were detrimental to 

neuronal survival, suggesting their endogenous expression levels are narrowly 

balanced for optimal survival. 

In summary, our genome-wide CRISPRi and CRISPRa screens uncovered 

complete sets of survival-related genes for human iPSC-derived neurons, which are 

largely different from other proliferating cell types including pluripotent stem cells or 

cancer cells. These results further demonstrated the potential of our platform to 

interrogate the biology of differentiated post-mitotic cell types.  

 

Genome-wide CRISPRi/a screens elucidate pathways controlling neuronal 

response to oxidative stress 

Given the unique vulnerability of neurons to redox imbalance-induced oxidative 

stress, which is often found in the brain of patients with NDDs, we sought to apply our 

functional genomics toolkit to systematically identify factors that are important for redox 
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homeostasis and oxidative stress response in human neurons. We performed screens 

based on two strategies. 

First, we conducted genome-wide CRISPRi and CRISPRa screens to identify 

modifiers of neuronal survival under oxidative stress conditions (Fig.3.3A). Standard 

neuronal culture medium contains a combination of antioxidants, including vitamin E, 

vitamin E acetate, superoxide dismutase, catalase, and glutathione. To create an 

environment of chronic low-level oxidative stress, we cultured neurons in medium 

lacking the above antioxidants (–AO medium). We reasoned that compared to acute 

harsh treatments to induce ROS, such as adding H2O2 or rotenone, –AO medium 

provided a more physiologically relevant approximation of chronic oxidative stress .  

We next compared modifiers of neuronal survival in this oxidative stress 

condition to the modifiers of survival in the standard,unstressed condition (Fig. 2B). 

Interestingly, in the comparison for CRISPRi hits, we identified that GPX4 (encoding the 

selenoprotein Glutathione Peroxidase 4) and genes responsible for selenocysteine 

incorporation into proteins (including PSTK, SEPHS2  and SEPSECS) were particularly 

essential for neurons to survive under oxidative stress (Fig.3.3B,C). GPX4 utilizes 

glutathione to reduce peroxidized lipids and thus prevents cells from ferroptosis, which 

is a non-apoptotic type of cell death caused by iron-dependent lipid peroxidation. This 

result suggested that neurons could be susceptible to ferroptosis under oxidative stress 

conditions. Hits for CRISPRa screens showed a high correlation between oxidative 

stress and unstressed conditions, suggesting no strong stress-specific phenotypes for 

overexpressed genes (Fig.3.4).  
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Second, we conducted genome-wide CRISPRi screens for modifiers of levels of 

ROS and peroxidized lipids in neurons. Specifically, we stained CRISPRi neurons 

transduced with genome-wide sgRNA libraries with fluorescent indicators of ROS and 

lipid peroxidation (CellRox and Liperfluo, respectively) and sorted them into high and 

low fluorescence populations by FACS (Fig.3.3B). The MAGeCK-iNC pipeline was used 

to identify hit genes knockdown of which led to an increase (‘high signal’’) or decrease 

(‘low signal’) in ROS or peroxidized lipids. From these screens, we identified both 

known and unexpected genetic modifiers of ROS and peroxidized lipid levels. We found 

that knockdown of components of the electron transport chain increased both ROS and 

lipid peroxidation levels (Fig.3.3D, 3.4B). This was expected, because ROS are mainly 

generated by proton leak from the electron transport chain, and knockdown subunits of 

electron transport chain complexes could increase proton leakage. Many 

autophagy-related genes were also common hits in the two screens (Fig.3.3D, 3.4B), 

suggesting an important role of autophagy in maintaining redox homeostasis in cells, as 

reported in previous studies (Filomeni et al., 2015; Guerrero-Gómez et al., 2019; Yan 

and Finkel, 2017). 

Disruption of genes involved in the mTORC1 pathway, including components of 

the mTORC1 complex (MTOR , RPTOR  and MLST8  or its activator RHEB reduced ROS 

and/or lipid peroxidation levels in neurons (Fig.3.3E), consistent with previous 

observations that increasing mTORC1 signalling induced ROS production (Reho et al., 

2019 ), whereas inhibiting mTORC1 reduced ROS (Nacarelli et al., 2014; Reho et al., 

2019; Shin et al., 2011). Moreover, GO term enrichment analysis of lipid peroxidation 
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hits revealed a strong enrichment of peroxisomal genes, knockdown of which increased 

lipid peroxidation, consistent with the important roles of peroxisomes in redox regulation 

(Cipolla and Lodhi, 2017) and degradation of (poly-)unsaturated fatty acids (van 

Roermund et al., 1998). 

FBXO7 , a gene associated with Parkinson’s disease, whose deficiency was 

found to cause complex I respiratory impairment and ROS production 

(Delgado-Camprubi et al., 2017), also increased ROS levels when knocked down in our 

screens. Knockdown of other previously characterized ROS regulators, including 

positive regulators such as PARP1 (Hocsak et al., 2017), SAT1 (Ou et al., 2016) and 

NOX5 (Bánfi et al., 2001) and negative regulators such as PTEN (Bankoglu et al., 2016) 

and FH  (encoding fumarate hydratase) (Bardella et al., 2012; Sudarshan et al., 2009) 

showed the expected effects on ROS and/or peroxidized lipid levels in our screens. 

Interestingly, key regulators of ferroptosis were also hits in the lipid peroxidation 

screen. ACSL4, encoding Acyl-CoA Synthetase Long Chain Family Member 4, which 

enriches cellular membranes with long PUFAs is required for ferroptosis (Doll et al., 

2017; Yuan et al., 2016). ACLS4 inhibition has been shown to prevent ferroptosis (Doll 

et al., 2017), consistent with reduction of peroxidized lipids upon knockdown in our 

screen (Fig.3.3E). By contrast, knockdown of CD44 , whose splicing variant CD44v 

stabilizes the cystine/glutamate antiporter xCT at the plasma membrane and increases 

cysteine uptake for GSH synthesis, thereby inhibiting ferroptosis (Li et al., 2020), 

increased lipid peroxidation.  
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To further investigate hit genes from the genome-wide ROS and lipid 

peroxidation screens in high-throughput, we conducted ‘batch characterization’ screens. 

We generated an sgRNA library containing 2,190 sgRNAs targeting 730 hit genes from 

the genome-wide ROS and lipid peroxidation screens (3 sgRNAs per gene) plus 100 

non-targeting sgRNAs. We screened these libraries for their effect on intracellular labile 

ferrous iron (Fe 2+) levels (by FeRhoNox-1 stain) and lysosomal status (by Lysotracker 

stain), given the important roles for iron in redox homeostasis and for lysosomes in 

metabolic signaling and autophagy (Fig.3.3A). These  screens uncovered that several of 

our original ROS/lipid peroxidation hit genes also strongly affected iron and/or lysosome 

levels (Fig.3.3F). We found that knockdown of many lysosome/autophagy-related genes 

affected both lysosomal status and iron levels, reflecting the key role of lysosomes in 

iron homeostasis (Bogdan et al., 2016; Weber et al., 2020). Among these genes, we 

found WDR45 and  WIPI2 , which are involved in autophagosome formation and 

lysosomal degradation and are also associated with Neurodegeneration with Brain Iron 

Accumulation (NBIA) in line with previous studies (Seibler et al., 2018; Wan et al., 

2018). We also identified other known iron regulators for which knockdown increased 

iron levels, including FBXL5, a negative regulator of iron levels (Muto et al., 2017), the 

Fe/S cluster biogenesis genes NFU1 and NUBPL , and MCOLN1 , which encodes an 

endolysosomal iron release channel (Dong et al., 2008). Interestingly, depletion of 

genes involved in the electron transport chain increased free ferrous iron (Fig.3.3F), 

supporting the role of mitochondria as a major hub of cellular iron storage and utilization 

131 

http://sciwheel.com/work/citation?ids=8120787,3902702&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=8954472,8954473&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=8954472,8954473&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=4023897&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=3700001&pre=&suf=&sa=0


in processes such as heme synthesis and iron-sulfur cluster biogenesis (Ward and 

Cloonan, 2019). 

In summary, our screens for survival of oxidative stress and levels of ROS and 

peroxidized lipids uncovered many categories of known redox regulators, validating the 

sensitivity of our approach and supporting the notion that core mechanisms of redox 

regulation are conserved across different cell types. A substantial fraction of the hit 

genes were also modifiers of ferrous iron levels and/or lysosomal status (Fig.3.3G). 

Surprisingly, we identified that knockdown of PSAP, encoding the lysosomal protein 

prosaposin which facilitates glycosphingolipids (GSLs) degradation, altered lysosomal 

status and strongly induced ROS, lipid peroxidation and iron levels when depleted 

(Figure E-G). Given the unexpected link between the known functions of PSAP and its 

screen phenotypes, we further investigated the underlying mechanisms of PSAP in 

redox regulation in the later sections of this paper. 

 

Transcriptomic signatures of perturbations of disease-associated genes in 

human neurons 

Over the past decade, genome-wide association studies (GWASs) have 

uncovered hundreds of genes that are associated with human neurodegenerative 

diseases (NDD), including Alzheimer's disease, Parkinson's disease and others (Chang 

et al., 2017; Shen and Jia, 2016). However, functional characterizations of these risk 

genes are largely lacking (Gallagher and Chen-Plotkin, 2018). Our CRISPRi and 

CRISPRa platforms provide a high-throughput approach to systematically interrogate 
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gene function in human neurons. Beyond one-dimensional phenotypes such as survival 

or fluorescent reporter levels, CRISPR perturbation can be coupled to single-cell RNA 

sequencing, using CROP-seq or Perturb-Seq strategies, to provide rich transcriptomic 

phenotypes.  

The hit genes from our unbiased genome-wide CRISPRi and CRISPRa screens 

included hundreds of genes associated with NDDs (based on DisGeNet annotation and 

literature research). To better characterize these NDD risk genes, we performed 

CROP-seq experiments, targeting 184 genes for CRISPRi and 100 genes for CRISPRa 

with 2 sgRNAs per gene (see Method for details). Robust on-target gene knockdown 

and overexpression were detected for CRISPRi and CRISPRa, respectively 

(Fig.3.5B-D). Within the population of cells expressing sgRNAs for a specific target 

gene, the levels of target knockdown or overexpression were  heterogeneous in some 

cases (Fig.3.5B,C). This could be due to different efficiencies of the two sgRNAs 

targeting that gene, misassignment of sgRNA identities for some cells or stochastic 

silencing of the CRISPR machinery in some cells. To select cells in which intended 

genes were effectively targeted, we employed an unsupervised classification method 

based on outlier detection using a local outlier factor. The classifier was first trained by 

the gene expression profiles of cells containing non-targeting sgRNAs. Then the 

classifier will detect for each group of cells containing sgRNAs for a specific target gene, 

whether a cell was an ‘outlier’ compared to training samples, i.e. non-targeting control 

cells. If the sgRNA in a cell was not active, the expression profile of that cell will be 

similar to cells with non-targeting control sgRNAs, and it will therefore be classified as a 
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non-outlier(Fig.3.5B, see Method for details). This classification method was particularly 

useful for CRISPRi when the basal expression level of the target gene was too low to be 

detected by single-cell RNA-seq thus did not allow selecting cells based on knockdown 

level of target gene. Using this classification method, we retained cells with functional 

perturbations for downstream analysis.  

To characterize how gene knockdown or overexpression altered transcriptomes 

of neurons, we performed differential gene expression analysis between cells containing 

perturbations and cells containing non-targeting control sgRNAs. From this analysis, we 

identified differentially expressed genes (DEGs) for each perturbation. To identify 

convergent transcriptomic responses across different perturbations of 

disease-associated genes, we determined pairwise DEG similarities among all 

perturbations using a method relying on weighted sum of overlap in top-ranking 

DEGs(see Methods). This analysis revealed clusters of genes that shared common 

DEG signatures (Fig.3.5E). As expected, knockdown of functionally related genes had 

similar transcriptomic consequences. For example, knockdown mitochondria-related 

genes, including COX10, NDUFS8, NDUFV1, MRPL10 and SOD2, resulted in similar 

DEGs, as did knockdown of the anti-apoptotic genes BNIP1  and XIAP .. However, we 

also identified unexpected gene clusters. For example, knockdown of VPS54 , PAXIP1 

and PON2  caused highly correlated transcriptomic changes (Fig.3.6).  , VPS54  and 

PON2  have been implicated in Amyotrophic Lateral Sclerosis (ALS) whereas PAXIP1  is 

associated with AD (Chen et al., 2015; Schmitt-John et al., 2005; Slowik et al., 2006). 

Shared transcriptomic changes included: (i) upregulation of EBF3 , an apoptosis inducer 
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that is also upregulated in the hippocampus of AD model mice (Gu et al., 2018; Zhao et 

al., 2006), (ii) downregulation of components of neurofilaments, including NEFL , NEFM 

and NEFH , which are biomarkers for ALS and AD progression. Importantly, NEFL , 

NEFM  and NEFH  mRNA levels are decreased in patients with NDDs, including ALS, AD 

and PD (Julien and Mushynski, 1998; Mathys et al., 2019; Rosengren et al., 1996) and 

(iii) downregulation of other genes important for neuronal function, including PCDH11X 

and PCDH11Y, encoding protocadherin proteins, and SYT2, encoding synaptotagmin 2.  

To identify genes that were co-regulated under different genetic perturbations, 

we performed weighted gene co-expression network analysis (WGCNA). This analysis 

identified 10 modules for CRISPRi and 8 modules for CRISPRa that were co-regulated 

across different perturbations (Fig.3.5F). These modules contained genes enriched in 

various pathways (Fig.3.5G). Interestingly, we found a cluster of genes including INSR , 

ATP5F1C , SOX5 , GSX2  and GBX2  (Fig.3.5E, right) overexpression of which 

downregulated a gene module related to neurogenesis (M1) and upregulated a gene 

module related to the cell cycle (M5) (Fig.3.5F, bottom), suggesting that overexpression 

of these genes interfered with neuronal differentiation thus kept cells in a proliferating 

state. This result was expected for SOX5 , GSX2  and GBX2 , which are transcription 

factors maintaining neural progenitor cell fate and/or their self-renewal (Luu et al., 2011; 

Martinez-Morales et al., 2010; Méndez-Gómez and Vicario-Abejón, 2012), but 

unexpected for INSR  (encoding the insulin receptor) and ATP5F1C  (encoding a subunit 

of mitochondrial ATPsynthase), suggesting these genes might have uncharacterized 

functions in neuronal fate regulation, which require further investigation. 
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The CROP-seq data also generated hypotheses for disease mechanisms. For 

example, NQO1, encoding the NAD(P)H:Quinone Oxidoreductase 1, is thought to be a 

cytoprotective factor through its antioxidant functions (Ross and Siegel, 2017). Elevated 

levels and activity of NQO1 has been found in the brains of patients with different 

NDDs, including AD and PD (Bian et al., 2008; van Muiswinkel et al., 2004; Raina et al., 

1999; SantaCruz et al., 2004; Wang et al., 2000), as well as in patient iPSC-derived 

neurons (Imaizumi et al., 2012). The upregulation of NQO1 was proposed to be a 

neuroprotective mechanism against oxidative stress in NDDs. Paradoxically, however, 

NQO1 overexpression showed a strong negative impact on neuronal survival in our 

pooled CRISPRa screen (Fig.3.1E).  In the CROP-seq data, we observed distinct gene 

expression profiles for cells overexpressing NQO1 compared to control (Fig.3.5C, 

Fig.3.7A). Surprisingly, NQO1 overexpression strongly induced the NRF2 pathway 

(Fig.3.7B,C). The transcription factor NRF2 induces the expression of many antioxidant 

genes, including NQO1,  in response to oxidative stress (Ma, 2013). Intriguingly, the 

NRF2 pathway is also induced in PD, both in patient brains and in patient iPSC-derived 

neurons (Imaizumi et al., 2012; Ramsey et al., 2007). Based on these findings, we can 

formulate several testable hypotheses. For example, upregulation of NQO1 in the 

context of NDDs could be neurotoxic instead of neuroprotective, by inducing or 

mimicking an oxidative stress condition through unknown mechanisms, in turn activating 

the NRF2 pathway, which however is insufficient to cope with the stress. Based on this 

hypothesis, the elevation of NQO1 levels in patients would actually contribute to 

disease, rather rather than being an effective defense mechanism. Alternatively, the 
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toxicity of NQO1 overexpression is caused by other mechanisms, such as 

downregulation of genes involved in axon development or cholesterol metabolism, 

which we observed in the CROP-seq data  (Fig.3.7B,C). In this scenario, the NRF2 

pathway would be activated through an unknown feedback mechanism by which cells 

attempt to match the levels of different antioxidant strategies to that of NQO1 in 

NQO1-overexpressing cells (Fig.3.7B,C).  

Taken together, our CROP-seq results provide a rich resource for investigating 

consequences of perturbations of NDD-associated genes in human neurons and for 

generating testable hypotheses for the NDD mechanisms and potential therapeutic 

strategies. 

 

Depletion of prosaposin increases ROS and lipid peroxidation levels in neurons 

and causes neuronal ferroptosis under oxidative stress 

As described above, we surprisingly identified prosaposin (encoded by PSAP) as 

one of the strongest hits in our FACS screens for redox modifiers, knockdown of which 

increased ROS and lipid peroxidation levels (Fig.3.8A). Prosaposin is a pro-protein that 

is proteolytically processed by cathepsin D (encoded by CTSD ) in the lysosome to 

generate four cleavage products: saposins A, B, C, and D (Hiraiwa et al., 1997). These 

four saposins, along with the lysosomal protein GM2A (GM2 Ganglioside Activator), 

function as activators for glycosphingolipid (GSL) degradation by lysosomal hydrolases 

(Sandhoff and Harzer, 2013). Intriguingly, both CTSD  and GM2A  were also hits in at 
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least one of the redox screens, showing similar knockdown phenotypes as PSAP, which 

suggested an important and unexpected role of GSL degradation in redox homeostasis.  

To validate our screen results using an independent approach, we generated a 

clonal PSAP  knockout (KO) iPSC line by CRISPR/Cas9. Western blot and 

immunostaining confirmed a complete depletion of PSAP in the KO line (Fig.3.8C & D). 

Next, we measured ROS and lipid peroxidation levels in WT and PSAP KO neurons. 

We included C11-BODIPY, another indicator for oxidized lipid, as additional validation 

for lipid peroxidation levels. Indeed, we observed a substantial increase in ROS and 

oxidized lipid levels in PSAP KO neurons, confirming our screen results (Fig.3.8E). 

Moreover, ROS induction in PSAP KO neurons can be rescued by the overexpression 

of PSAP cDNA, confirming that phenotypes were not driven by off-target genome 

editing. Interestingly, PSAP KO or knockdown in other cell types, including iPSCs and 

HEK293s, did not increase ROS levels (Fig.3.8F), suggesting a neuron-specific role of 

PSAP in redox regulation.  

Next, we asked if increased ROS in PSAP KO neurons affect survival. 

Interestingly, we did not observe a survival defect of PSAP KO neurons over two weeks 

of culture in standard neuronal medium (+AO). Strikingly, however, when we cultured 

these neurons in the medium lacking antioxidants (–AO), PSAP KO caused a dramatic 

decrease in survival on Day 8, and complete death of all neurons by Day 14 (Fig.3.8G).  

To further investigate the underlying mechanism of cell death, we treated WT 

and PSAP KO neurons with compounds that inhibit different cell death pathways. 

Intriguingly, the viability of PSAP KO neurons under the -AO condition was not rescued 
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by Z-VAD-FMK, a pan-caspase inhibitor that blocks apoptosis, but was fully rescued by 

ferroptosis inhibitors, including the iron chelator deferoxamine (DFO) and the lipid 

peroxidation inhibitor ferrostatin-1 (Fig.3.8H,I).  

In summary, we validated the unexpected strong hit gene from our unbiased 

screens, PSAP, as a strong redox modifier in human neurons. Depletion of PSAP 

increases ROS levels and leads to increased lipid peroxidation, resulting in neuronal 

ferroptosis under mild oxidative stress. 

 

Depletion of PSAP leads to GSL accumulation and lipofuscin formation in 

lysosomes, which impairs lysosomal functions and causes iron accumulation, 

resulting in increased ROS and lipid peroxidation levels 

Given the surprising connection between PSAP and ferroptosis, we further 

investigated the underlying mechanism. We first asked if depletion of PSAP blocked 

GSL degradation, given the canonical function of saposins. To answer this question, we 

performed untargeted lipidomics on WT and PSAP KO neurons. Indeed, almost all GSL 

species  accumulated significantly in PSAP KO neurons compared to WT neurons (FDR 

< 0.01, Fig.3.9 A,B). Ether lipids, which are peroxisome-derived glycerophospholipids, 

were also enriched in PSAP KO neurons. Whether ether lipid accumulation was due to 

a protective or maladaptive mechanism remains to be investigated. Interestingly, the 

accumulation of ether lipids was also characterized as a feature of hypoxia in a recent 

study (Jain et al., 2020).  
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We also confirmed the accumulation of a specific GSL species, GM1 ganglioside, 

by immunostaining in PSAP KO neurons (Fig.3.9C). Interestingly, we did not observe 

GM1 accumulation in PSAP KO iPSCs (Fig.3.9D), suggesting a cell-type specific role of 

PSAP . Strikingly, we observed dramatically enlarged lysosomes (by LAMP2 staining) in 

PSAP  KO neurons (Fig.3.9C), which were also reflected in an increased lysotracker 

signal by flow cytometry (Fig.3.9E), as expected based on our screen results (Fig.3.3F). 

Again, this phenotype was neuron-specific, as PSAP depletion did not cause  enlarged 

lysosomes in other cell types , iPSCs or HEK293s (Fig.3.9F).  

We observed colocalization of accumulated GM1 and LAMP2-positive lysosomes 

by conventional confocal microscopy and by super-resolution microscopy (Fig.3.9C & 

6G), consistent with the notion that lysosome is the main compartment for GSL 

degradation.  

To further characterize the enlarged, LAMP2-positive lysosome-like structures 

accumulating in PSAP KO neurons, we performed electron microscopy (EM). 

Remarkably, we observed a large number of  electron-dense granules that resembled 

the structure of lipofuscin (also known as age pigment), an aging-associated insoluble 

aggregate of oxidized lipids and proteins and metals in lysosomes of postmitotic cells, 

such as neurons, which forms through unknown mechanisms (Terman and Brunk, 

1998). One feature of lipofuscin is its autofluorescence when excited by ultraviolet (UV) 

light (Mochizuki et al., 1995). Indeed, we detected strong autofluorescence in the FITC 

channel (525/20 nm) in PSAP KO neurons when excited by UV light (405 nm) (Fig.3.9I), 

confirming the formation of lipofuscin in PSAP KO neurons. lipofuscin is known to 
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accumulate iron from lysosomal degradation of iron-rich proteins or organelles (e.g. 

mitochondria), and accumulated iron in lipofuscin can generate ROS through the Fenton 

reaction, which is promoted by the low pH of the lysosome (Terman and Brunk, 2004). 

Indeed, we observed an substantial increase of iron levels in PSAP KO neurons using a 

panel of different iron indicators  (Fig.3.9J, K, 3.10A,B), This result was consistent with 

our finding of PSAP as a top hit in our iron level screen (Fig.3.3F). The accumulated 

iron in PSAP KO neurons was colocalized with lysosomes and was partially rescued by 

the iron chelator DFO (Fig.3.9K, 3.10A&B). As a consequence of iron accumulation, 

dramatically increased lipid peroxidation was detected in lysosomes of PSAP KO 

neurons (Fig.3.9L), consistent with the strong lipid peroxidation-inducing phenotype of 

PSAP  knockdown in our screen (Fig.3.3E).  

The formation of lipofuscin also disrupted other lysosomal functions in PSAP KO 

neurons. We observed a massive accumulation of autophagosomes in PSAP KO 

neurons as indicated by the increased ratio of PE-conjugated form of LC3B to its 

unconjugated form (LC3B-II / LC3B-I) by western blot (Fig.3.9M,N), and increased 

LC3B puncta by immunostaining (Fig.3.9O) . Treatment with Bafilomycin A1 (BafA1), an 

inhibitor for degradation of autophagosomes by lysosomes, increased the LC3B-II / 

LC3B-I ratio in WT, but not PSAP KO neurons (Fig.3.9M), suggesting a blockade of 

autophagic flux in PSAP KO neurons. 

Moreover, we performed RNA-seq on WT and PSAP KO neurons. Interestingly, 

a number of genes involved in cholesterol biosynthesis were upregulated in PSAP KO 

neurons (Fig.3.10C and 3.10D). Consistent with the induction of this pathway, we found 
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increased cholesterol levels in lysosomes of PSAP KO neurons, as measured by Filipin 

staining (Fig.3.10E and 3.10F). This finding mirrored the results of previous studies 

showing that PSAP is a strong genetic modifier for cholesterol levels (Bartz et al., 2009 ) 

and accumulated GSLs can lead to accumulation of cholesterol in lysosomes by 

inhibiting cholesterol efflux (Glaros et al., 2005; Harbison et al., 1976; Puri et al., 2003). 

In summary, we elucidated that PSAP depletion blocks GSL degradation in 

lysosomes, leading to the formation of lipofuscin, which in turn accumulates iron and 

generates ROS that oxidized lipids. The accumulation of oxidized lipids leads to 

neuronal ferroptosis in the absence of antioxidants (Fig.3.11).   
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DISCUSSION 

In this study, we developed a CRISPRa platform in human iPSC-derived 

neurons, complementing our previously established CRISPRi platform, to enable robust 

gene perturbation and large-scale, multimodal genetic screens in human neurons.  

We demonstrated the power of our screening platforms in multiple large-scale 

screens in human iPSC-derived neurons, including genome-wide CRISPRi and 

CRISPRa survival screens under unstressed and oxidative stress conditions, 

genome-wide CRISPRi screens based on ROS and peroxidized lipid levels, secondary 

CRISPRi screens based on iron levels and lysosomal status, and CROP-seq screens 

on NDDs-associated genes. 

Compared to other published CRISPR screens focusing on ROS toxicity in 

human cells (Dubreuil et al., 2020; Reczek et al., 2017), our screens are unique in the 

following aspects. First, we used post-mitotic neurons instead of cancer cell lines. 

Second, we induced milder oxidative stress in cells by prolonged culture of cells in an 

antioxidant-free medium, compared to severe oxidative stress induced by paraquat or 

H 2O2 in other studies. Thirdly, we screened not only based on cell survival, but also on 

direct ROS and lipid peroxidation levels, while other studies focused on survival only. 

Given these major differences, it is not surprising that the majority of our hits were not 

identified in previous screens. 

Numerous novel biological insights have emerged from our rich datasets. In 

particular, we identified the first comprehensive inventories of genes that, when 

depleted or activated, modulate survival of human neurons under normal or oxidative 
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stress conditions. Intriguingly, many of these genes only affect survival in neurons, but 

not stem cells or cancer cells, supporting the notion that neurons have cell-type specific 

vulnerabilities, which may explain why defects in some generally expressed genes 

specifically cause neurological diseases. .  

Our screens also identified that GPX4 and genes related to GPX4 synthesis are 

indispensable for neurons to survive oxidative stress. Given the major role of GPX4 in 

reducing lipid peroxidation and suppressing ferroptosis, this result suggests that lipid 

peroxidation-induced ferroptosis, rather than other forms of cell death, may be the main 

cause of neuronal loss under oxidative stress conditions that are commonly found in the 

brains of patients with NDDs. This is supported by numerous studies reporting high 

levels of iron and lipid peroxidation in NDD patient brains (Han et al., 2020a; Ndayisaba 

et al., 2019),  and by the finding that ferroptosis inhibitors such as iron chelators and the 

lipid-peroxidation inhibitor Ferrostatin-1 are neuroprotective in animal and cellular 

models of NDDs, including AD, PD and HD (Han et al., 2020a).  

Among all tissues in the human body, the brain is one of the richest in lipid 

content and lipid diversity. Lipids are not only an essential structural component of 

membranes, but also important signaling molecules in the brain (Bazan, 2005). 

Therefore, maintaining lipid homeostasis is of vital importance for brain cells, especially 

neurons with long neurites and dynamic synaptic vesicles release and recycling. 

Although abnormal lipid metabolism has been observed in NDDs (Hallett et al., 2019; 

Yadav and Tiwari, 2014), its role as a pathogenic mechanism has not been investigated 

as extensively as ‘protein-centric’ mechanisms, in particular protein aggregation. Our 
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results indicate that disruption of lipid metabolism, in particular glycosphingolipid 

degradation in the lysosome by depletion of prosaposin (PSAP), drives the formation of 

lipofuscin in neurons, which leads to iron accumulation and strongly induces ROS 

production, oxidizing lipids and leading to neuronal ferroptosis under oxidative stress.  

While lipofuscin has traditionally been considered a byproduct of aging and as a 

consequence of defective cellular homeostasis, our result argues that lipofuscin can 

have a direct pathogenic role in inducing neuronal ferroptosis. Given the presence of 

lipofuscin in many neurodegenerative diseases, including neuronal ceroid lipofuscinosis 

(NCL) (Grubman et al., 2014) and frontotemporal dementia (FTD) (Ward et al., 2017), 

this result suggests that inhibiting ferroptosis or lipofuscin formation may serve as new 

therapeutic strategies.  

Furthermore, studying biological functions and biophysical properties of lipofuscin 

rely on a robust system to generate it. The fact that lipofuscin is normally only formed in 

aged post-mitotic cells makes it very difficult to model them. Our PSAP depletion 

neurons provide a reliable genetic system to model and study the biology of lipofuscin in 

live cells. 

Our result highlights the importance of balanced levels of GSLs for neuronal 

health. This is supported by a recent study which shows that the accumulation of certain 

GSLs, especially simple gangliosides caused by inhibition of lysosome membrane 

recycling contributes to neurodegeneration both in cultured neurons and in animal 

models (Boutry et al., 2018)..  
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Many important questions around neuronal ferroptosis remain to be investigated. 

For example, since neurons have very long neurites, how do neurons sense and 

respond to a local lipid peroxidation event on cell membrane? Is GPX4 or other 

enzymes recruited to sites of lipid peroxidation, or are peroxidized lipids internalized and 

delivered to GPX4 or other enzymes for detoxi¿cation? What are the sensors and 

mediators in these processes? How do peroxidized lipids cause neuronal death? Is it a 

passive physical process or a regulated biological program? If the latter is true, what are 

the players mediating cell death downstream of lipid peroxidation? Many of these 

questions can be readily investigated using our functional genomics platform. 

There are several areas for future development. First, a robust inducible 

CRISPRi system that allows temporal control of gene knockdown in mature neurons will 

help avoiding false-positive screening phenotypes due to interference with the 

differentiation process. For example, the inducible CRISPRi system will help to 

determine whether the strong enrichment phenotypes of genes in the 

N6-methyltransferase writer complex (Fig.3.1E) is due to increased neuronal survival or 

defects in neuronal differentiation, since m6A can regulate neuronal differentiation 

(Edens et al., 2019; Li et al., 2018). Second, a high-throughput imaging-based 

application of our platform in an arrayed format will allow screens for complex neuronal 

phenotypes, including electrophysiological signals (by voltage imaging or calcium 

imaging), neurite outgrowth, synaptic vesicle dynamics, axonal transport and so on. 

This can also be coupled with transcriptomic profiling, thus allowing association of gene 

expression with imaging phenotypes for a given genetic perturbation. Lastly, by 
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combining our platform with the recently developed prime editing technology (Anzalone 

et al., 2019), we will be able to directly assess the effect of disease-associated 

mutations on given cellular phenotypes in a scalable, massively parallel format. 

We anticipate that our iPSC-based functional genomics platforms can be broadly 

applied to a variety of human differentiated cell types. Parallel genetic screens across 

the full gamut of isogenic human cell types will uncover context-specific roles of human 

genes, leading to a deeper mechanistic understanding of how they control human 

biology and disease. 
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FIGURES 

Fig.3.1. Genome-wide CRISPRi & CRISPRa screens in human iPSC-derived 
neurons identify regulators of neuronal survival 
 
(A) Strategy for generating the CRISPRa iPSC line: an inducible CRISPRa construct, 
CAG promoter-driven DHFR-dCas9-VPH, was stably integrated into the CLYBL safe 
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harbor locus through TALEN-mediated knock-in. dCas9, catalytically dead cas9. VPH, 
activator domains containing 4X repeats of VP48, P65 and HSF1. 

 
(B) Functional validation of CRISPRa activity. qPCR quantification of the relative fold 
change of CXCR4  mRNA levels in CRISPRa-neurons expressing a CXCR4 sgRNA as 
compared to a non-targeting control sgRNA in the presence or absence of trimethoprim 
(TMP), which stabilizes the DHFR degron  (mean sd, n = 3). CXCR4  levels are±  
normalized to the housekeeping gene ACTB . 

 
(C) Schematic for neuronal survival screens. CRISPRi/a iPSCs were transduced with 
genome-wide sgRNA libraries, containing ~100,000 sgRNAs targeting ~19,000 
protein-coding genes and ~1,800 non-targeting control sgRNAs. TMP was added to 
CRISPRa neurons from Day 0 to induce CRISPRa activity. Frequencies of cells 
expressing a given sgRNA were determined by next-generation sequencing for Day 10 
neurons and Day -3 iPSCs.  

 
(D) Volcano plots summarizing knockdown or overexpression phenotypes and statistical 
significance (Mann-Whitney U test) for genes targeted in the CRISPRi (left) and 
CRISPRa (right) screens. Dashed lines: gene score cutoff for hit genes (FDR = 0.05, 
see Methods) 

 
(E) Comparing hits from CRISPRi and CRISPRa screens. Genes that are enrichment 
and depletion hits in either screen are shown in red and blue, respectively. Genes that 
are hits in both screens are shown in orange. Genes discussed in this paper are 
highlighted in green. 

 
(F) Gene Ontology (GO) term enrichment analysis for the top 100 enrichment and 
depletion hits in CRISPRi (left) and CRISPRa (right) survival screens. Significantly 
enriched Biological Process terms (FDR<0.01) are shown. 

 
(G) Expression levels of hit genes (enrichment or depletion) and non-hit genes from 
CRISPRi (left) or CRISPRa (right) screens.  
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Fig.3.2. Karyotyping of the monoclonal CRISPRa-iPSC line and comparison of 
CRISPRi and CRISPRaa screen results for neuronal survival with other published 
survival screens for different cell types 
 
(A) A normal karyotype was confirmed for the monoclonal CRISPRa-iPSC line. 
 
(B) Venn diagrams comparing CRISPRi and CRISPRa screen results for neuronal 
survival from this paper with other published survival screens for different human cell 
types. For CRISPRi, depletion hits for the survival of neurons were compared with those 
for cancer cells (‘gold-standard’ essential genes, Hart et al., 2017 ) and pluripotent stem 
cells (integrated from Ihry et al., 2019; Mair et al., 2019 and Yilmaz et al., 2018); genes 
that were identified as essential in more than one studies were retained for 
comparison).Enrichment hits for the survival of neurons were compared with those for 
human pluripotent stem cells (integrated from Ihry et al., 2019; Yilmaz et al., 2018. 
Genes that were identified as essential in both studies were retained for comparison). 
For CRISPRa, hits were compared with a published survival screen in K562 cells 
(Horlbeck et al., 2016) reanalyzed using our MAGeCK-iNC pipeline. 
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Fig.3.3. Genome-wide CRISPRi & a screens in human iPSC-derived neurons 
identify regulators of oxidative stress response and redox homeostasis 
(A) Screening strategies. First, survival-based screens were conducted to identify 
modifiers of neuronal survival under mild oxidative stress induced by anti-oxidant 
removal from the neuronal medium (-AO). Second, FACS-based screens were 
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conducted for modifiers of ROS and lipid peroxidation levels. Last, batch 
characterization screens were conducted to further characterize hit genes. 
 
(B) Comparison of  gene scores in +AO and -AO conditions for CRISPRi survival 
screens. 

 
(C) Pathway for selenocysteine incorporation into GPX4. Hit genes are highlighted in 
orange. 
 
(D) GO term enrichment analysis for the top 100 high-signal and low-signal hits in the 
ROS screen (left) and the lipid peroxidation screen (right). Significantly enriched 
Biological Process terms (FDR<0.01) are shown. 

 
(E) Ranked gene scores from the ROS screen and the lipid peroxidation screen. 
High-signal hits are shown in red and low signal hits in blue. Genes discussed in the 
paper are highlighted in orange. 

 
(F) Gene scores from the lysosome screen and the iron screen. Genes are color-coded 
by pathways. 
 
(G) Heatmap showing gene scores across screens (rows) for genes that are among the 
top 20 high-signal or low-signal hits in at least one screen (columns) . Rows and 
columns are hierarchically clustered. Genes are color-coded by pathways.  
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Fig.3.4. Comparing CRISPRa survival screens in +AO and -AO conditions and 
common hits in ROS and lipid peroxidation screens 
 
(A) Comparing gene scores in +AO and -AO conditions for CRISPRa survival screens 

 
(B) Screen results from ROS and lipid peroxidation screens shown as ranked gene 
scores, highlighting genes that are among the top 100 enrichment or depletion hits in 
both screens. Gene labels are color-coded by pathways. 
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Fig.3.5. CROP-seq reveals transcriptomic responses to perturbations of 
neurodegenerative disease-associated hit genes in human iPSC-derived neurons 
 
(A) Hit genes from our screens that are also associated with neurodegenerative 
diseases are analyzed by CROP-seq to detect their knockdown or overexpression 
effects on gene expression at single-cell resolution in human iPSC-derived neurons. 

 
(B&C) Examples of CROP-seq results showing on-target knockdown (TUBB4A in 
CRISPRi, B) or overexpression (NQO1 in CRISPRa, C) and the classification method, 
shown as 2-dimensional UMAP projection. 
  
(D) Summary of on-target knockdown in CRISPRi (top) or overexpression in CRISPRa 
(bottom) for all target genes in the CROP-seq libraries. log2FC represents the log2 fold 
change of the mean expression of a target gene in perturbed cells (i.e. cells expressing 
sgRNAs targeting that gene) compared to unperturbed cells (i.e. cells expressing 
non-targeting control sgRNAs). P values were calculated by the Wilcoxon rank-sum 
test. Target genes are ranked by their expression in unperturbed cells. 

 
(E) Pairwise similarities of differentially expressed genes among perturbations. 
Similarity scores were determined by the OrderedList package in R (see Methods). 
Genes in strong clustered are indicated. 
 
(F & G) Eigengene expression of gene modules identified from WGCNA analysis in 
cells containing different perturbations relative to unperturbed cells (F). Enriched 
pathways in each module are shown in G.  
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Fig.3.6. Shared signatures of transcriptomic responses to the knockdown of 
VPS54 , PAXIP1  and PON2  in human iPSC-derived neurons 
 
Transcriptomic changes induced by knockdown of VPS54 (left), PAXIP1  (middle) and 
PON2 (right) in neurons. For each perturbation, the top 200 upregulated and 
downregulated genes compared to control (i.e. unperturbed cells) are shown in red and 
blue, respectively. Within these, shared genes among all three perturbations are 
highlighted in green.  
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Fig.3.7. Overexpression of NQO1 induces unexpected transcriptome changes in 
human iPSC-derived neurons 
 
(A) Transcriptomic changes induced by NQO1 overexpression in neurons. Significantly 
upregulated and downregulated genes (q-value < 0.01) are shown in red and blue, 
respectively.  

 
(B) Pathway analysis showing enriched pathways in upregulated and downregulated 
genes in NQO1-overexpressing neurons. 

 
(C) String-db association networks of selected pathways enriched in upregulated and 
downregulated genes. Genes with stronger associations are connected by thicker lines. 
Colors and sizes of nodes reflect log2 fold changes (logFCs) and significances (-log10P) 
of DEGs, respectively.  
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Fig.3.8. Depletion of PSAP induces ROS and lipid peroxidation in neurons and 
causes neuronal ferroptosis in the absence of antioxidants  
 
(A) Results from the ROS screen and the lipid peroxidation screen, highlighting PSAP 
and the related genes CTSD  and GM2A. 
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(B) Prosaposin is processed in the lysosome by cathepsin D (encoded by CTSD ) into 
saposin subunits, which function together with GM2A as activators for GSL degradation. 
 
(C) Western blot showing the depletion of prosaposin in the PSAP KO iPSC line. 
 
(D) Representative immunofluorescence microscopy images showing the depletion of 
prosaposin in PSAP KO neurons. WT and PSAP KO neurons were fixed and stained by 
antibodies against prosaposin (shown in green) and the neuronal marker Tuj1 (shown in 
purple). Nuclei were counterstained by Hoechst, shown in blue. Scale bar, 20 μm. 
 
(E) ROS levels (as indicated by CellRox, left) and lipid peroxidation levels (as indicated 
by Liperfluo and C11-BODIPY) in WT and PSAP KO neurons, measured by flow 
cytometry. 

 
(F) ROS levels in iPSCs and HEK293s in WT and PSAP depletion backgrounds (PSAP 
KO for iPSCs and PSAP knockdown by CRISPRi in HEK293s), measured by flow 
cytometry. 

 
(G) Survival curves for WT and PSAP KO neurons cultured in normal neuronal medium 
(+AO) or medium lack of antioxidants (-AO), quantified by imaging using Hoechst stain ( 
cells)and propidium iodide (PI) (dead cells). Survival fraction is calculated as ( total cell 
count - dead cell count ) /  total cell count. Data is shown as mean sd, n = 4 culture±  
wells per group. 16 imaging fields were averaged for each well. 
 
(H) Survival fractions of WT and PSAP KO neurons treated with different cell death 
inhibitors under +AO or -AO conditions, quantified by imaging in the same way as for G. 
Data is shown as mean sd, n = 32 imaging fields per group.±  
 
(I) Representative images for the Hoechst (shown in blue) and PI (shown in red) 
staining in H. Scale bar, 50 μm.  
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Fig.3.9. Depletion of PSAP in neurons disrupts glycosphingolipid degradation 
and causes lipofuscin formation in the lysosome, which accumulates iron and 
generates ROS that oxidize lipids 
 
(A) Untargeted lipidomics comparing abundances of different lipid species in WT and 
PSAP  KO neurons. P values were calculated using tudent's t-test (n=3 replicates per 
group). Dashed line, P value cutoff for FDR<0.01. All glycosphingolipids (GSLs) are 
shown in orange and ether lipids in green. 
 
(B) Heatmap showing the abundances of significantly increased or decreased lipids in 
PSAP  KO neurons as compared to WT (FDR<0.01). Enrichment P values for 
glycosphingolipids and ether lipids were calculated using Fisher's exact test. Lipid 
abundances were Z score-normalized across samples. 
 
(C) Representative immunofluorescence microscopy images for WT and PSAP KO 
neurons stained with LAMP2 antibodies (shown in green) and GM1 antibodies (shown 
in red). Nuclei were counterstained by Hoechst, shown in blue. Scale bar, 10 μm. 

 
(D) Representative immunofluorescence microscopy images for WT and PSAP KO 
iPSCs stained with GM1 antibodies (shown in red). Nuclei were counterstained by 
Hoechst, shown in blue. Scale bar, 20 μm 

  
(E&F) Lysotracker signals measured by flow cytometry in WT and PSAP KO neurons 
(E), WT and PSAP KO iPSCs (F, left) and WT (no sgRNA) and PSAP knockdown 
( PSAP sgRNA) HEK293s (F,right). 
 
(G) Two-color STORM super-resolution images for neurons stained with LAMP2 
antibodies (shown in green) and GM1 antibodies (shown in magenta). Scale bar, 2 μm. 

 
(H) Electron microscopy images for WT and PSAP KO neurons. Arrow, a representative 
structure of lipofuscin. Scale bar, 1 μm. 

 
(I) Representative images for autofluorescence in WT and PSAP KO neurons. 
Excitation, UV (405nm). Emission, FITC (525/20 nm). Scale bar, 10 μm. 

 
(J) Labile iron levels in WT and PSAP KO neurons. Neurons were stained with iron 
indicators, including FeRhoNox-1 (left) and FerroOrange (right). Staining signals were 
measured by flow cytometry. 
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(K) Representative fluorescence microscopy images for WT neurons, PSAP KO 
neurons and PSAP KO neurons treated with 10 μM DFO for 3 days, stained with 
Lysotracker (shown in green) and FeRhoNox-1 (shown in red). Nuclei were 
counterstained by Hoechst, shown in blue. Scale bar, 10 μm. 

 
(L) Representative fluorescence microscopy images for WT and PSAP KO neurons 
stained with Lysotracker (shown in green) and Liperfluo (shown in red). Nuclei were 
counterstained by Hoechst, shown in blue. Scale bar, 10 μm. 

 
(M) Western blot showing protein levels of phosphatidylethanolamine (PE)-conjugated 
LC3B (LC3B-II) and unconjugated LC3B (LC3B-I) in WT and PSAP KO neurons in the 
absence or presence of Bafilomycin A1 (BafA1). β-Actin was used as loading control. 
Ratios of LC3B-II to LC3B-I are indicated at the bottom. 

 
(N) Quantification of LC3B-II / LC3B-I ratios for WT and PSAP KO neurons (mean sd,±  
n = 6 independent experiments). 
 
(O) Representative immunofluorescence microscopy images for WT and PSAP KO 
neurons, stained with LC3B antibodies (shown in red). Nuclei were counterstained by 
Hoechst, shown in blue. Scale bar, 20 μm.  
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Fig.3.10. Characterization of PSAP KO neurons 
 
(A) Labile iron levels in WT and PSAP KO neurons with or without DFO treatment. Cells 
were stained by FeRhoNox-1 and measured by flow cytometry. Median signal 
intensities are indicated. 
 
(B) Labile iron levels in WT neurons, PSAP KO neurons and PSAP KO neurons with 
DFO treatment. Cells were stained by Calcein and measured by flow cytometry. Median 
signal intensities are indicated. 
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(C) Gene expression changes in PSAP KO neurons as compared to WT. Genes that 
are significantly upregulated and downregulated in PSAP KO neurons are shown in red 
and blue respectively (FDR<0.05). Top 50 up- and down-regulated genes are labeled, 
among which genes involved in the cholesterol biosynthesis pathway are highlighted in 
orange. 
 
(D) GO term enrichment analysis for significantly up- and down-regulated genes 
(FDR<0.05) in PSAP KO neurons. Significantly enriched Biological Process terms are 
shown (FDR<0.01). 

 
(E) Cholesterol levels measured by flow cytometry of Filipin-stained WT and PSAP KO 
neurons in +AO and -AO conditions. 
 
(F) Representative fluorescence microscopy images of WT and PSAP KO neurons 
stained with Filipin (shown in cyan) and LAMP2 antibodies (shown for PSAP KO 
neurons, in red). Scale bar, 10 μm.  
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Fig.3.11.  A working model for PSAP depletion inducing neuronal ferroptosis 
Knocking out PSAP leads to loss of saposins, which blocks glycosphingolipid (GSL) 
degradation in the lysosome. The build-up of GSLs leads to lipofuscin formation, which 
accumulates iron and generates ROS through the Fenton reaction. ROS then 
peroxidize lipids and cause neuronal ferroptosis in the absence of antioxidants 
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MATERIALS AND METHODS 

Human iPSCs culture and neuronal differentiation 

Human iPSCs (male WTC11 background (Miyaoka et al., 2014)) were cultured in 

StemFlex Medium (GIBCO/Thermo Fisher Scientific; Cat. No. A3349401) in plates or 

dishes coated with Growth Factor Reduced, Phenol Red-Free, LDEV-Free Matrigel 

Basement Membrane Matrix (Corning; Cat. No. 356231) diluted 1:100 in Knockout 

DMEM (GIBCO/ v; Cat. No. 10829-018). StemFlex Medium was replaced every other 

day or every day once cells reached 50% confluence. When 80%–90% confluent, cells 

were dissociated using StemPro Accutase Cell Dissociation Reagent (GIBCO/Thermo 

Fisher Scientific; Cat. No. A11105-01) at 37°C for 5 min, centrifuged at 200 g for 5 min, 

resuspended in StemFlex Medium supplemented with 10 nM Y-27632 dihydrochloride 

ROCK inhibitor (Tocris; Cat. No. 125410) and plated onto Matrigel-coated plates or 

dishes at desired number. Studies with human iPSCs at UCSF were approved by the 

Human Gamete, Embryo and Stem Cell Research (GESCR) Committee.  

The CRISPRi- and CRISPRa-iPSC lines used in this study were engineered to 

express mNGN2 under a doxycycline-inducible system in the AAVS1 safe harbor locus. 

For their neuronal differentiation, we followed our previously described protocol (Tian et 

al., 2019). Briefly, iPSCs were pre-differentiated in matrigel-coated plates or dishes in 

N2 Pre-Differentiation Medium containing the following: Knockout DMEM/F12 

(GIBCO/Thermo Fisher Scientific; Cat. No. 12660-012) as the base, 1X MEM 

Non-Essential Amino Acids (GIBCO/Thermo Fisher Scientific; Cat. No. 11140-050), 1X 

N2 Supplement (GIBCO/ Thermo Fisher Scientific; Cat. No. 17502-048), 10 ng/mL NT-3 
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(PeproTech; Cat. No. 450-03), 10ng/mL BDNF (PeproTech; Cat. No. 450-02), 1 μg/mL 

Mouse Laminin (Thermo Fisher Scientific; Cat. No. 23017-015), 10nM ROCK inhibitor, 

and 2 μg/mL doxycycline to induce expression of mNGN2. After three days, on the day 

referred to hereafter as Day 0, pre-differentiated cells were re-plated into BioCoat 

Poly-D-Lysine-coated plates or dishes (Corning; assorted Cat. No.) in regular Neuronal 

Medium, which we will refer to as +AO Neuronal Medium, containing the following: half 

DMEM/F12 (GIBCO/Thermo Fisher Scientific; Cat. No. 11320-033) and half 

Neurobasal-A (GIBCO/Thermo Fisher Scientific; Cat. No. 10888-022) as the base, 1X 

MEM Non-Essential Amino Acids, 0.5X GlutaMAX Supplement (GIBCO/Thermo Fisher 

Scientific; Cat. No. 35050-061), 0.5X N2 Supplement, 0.5X B27 Supplement 

(GIBCO/Thermo Fisher Scientific; Cat. No. 17504-044), 10ng/mL NT-3, 10ng/mL BDNF 

and 1 μg/mL Mouse Laminin. For -AO experiments, we used a medium we refer to as 

-AO Neuronal Medium, in which B-27 Supplement minus antioxidants (GIBCO/Thermo 

Fisher Scientific; Cat. No. 10889-038) was used instead of regular B27 in the +AO 

Neuronal Medium . Neuronal Medium was half-replaced every week.  

 

Molecular cloning 

The CLYBL-targeting inducible CRISPRa vector pRT43 containing CAG-driven 

DHFR-dCas9-VPH-T2A-EGFP was generated by sub-cloning 

DHFR-dCas9-VPH-T2A-EGFP from plasmid 

PB-CAG-DDdCas9VPH-T2A-GFP-IRES-Neo to the downstream of a CAG promoter in 

CLYBL-targeting plasmid pUCM-CLYBL-hNIL digested by SalI and EcoRV. 
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(PB-CAG-DDdCas9VPH-T2A-GFP-IRES-Neo was a gift from Timo Otonkoski (Addgene 

plasmid # 102886 ; http://n2t.net/addgene:102886 ; RRID:Addgene_102886) and 

pUCM-CLYBL-hNIL was a gift from Michael Ward (Addgene plasmid # 105841 ; 

http://n2t.net/addgene:105841 ; RRID:Addgene_105841)) 

 

CRISPRa-iPSC cell line generation 

WTC11 iPSCs harboring a single-copy of doxycycline-inducible mouse NGN2 at 

the AAVS1 locus (Ngn2-iPSCs, Wang et al., 2017; Fernandopulle et al., 2018) were 

used as the parental iPSC line for further genetic engineering. iPSCs were transfected 

with pRT43 containing DHFR-dCas9-VPH and TALENS targeting the human CLYBL 

intragenic safe harbor locus (between exons 2 and 3) (pZT-C13-R1 and pZT- C13-L1, 

gifts from Jizhong Zou (Addgene plasmid # 62196 ; http://n2t.net/addgene:62196 ; 

RRID:Addgene_62196, and Addgene plasmid # 62197 ; http://n2t.net/addgene:62197 ; 

RRID:Addgene_62197) using Lipofectamine Stem (Invitrogen/Thermo Fisher Scientific; 

Cat. No. STEM00003). Monoclonal lines were isolated by limiting dilution and CLYBL 

integration was confirmed by PCR genotyping. Karyotype testing (Cell Line Genetics) 

was normal for the clonal line used for further experiments in this study, which we 

termed CRISPRa iPSCs. 

 

Genome-wide survival-based and FACS-based screens 

The genome-wide CRISPRi and CRISPRa libraries hCRISPRi-v2 and 

hCRISPRa-v2 (Horlbeck et al., 2016), consisting of 7 sublibraries each (H1-H7), were 
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packaged into lentivirus as previously described (Tian et al., 2019). CRISPRi- and 

CRISPRa-iPSCs were infected by the sgRNA libraries at MOIs of 0.4-0.6 (as measured 

by the BFP fluorescence from the lentiviral vector) with approximately 1000x coverage 

per library element. Two days after infection, the cells were selected for lentiviral 

integration using puromycin (1 μg/mL) for 3 days as the cultures were expanded for the 

screens. After selection and expansion, a fraction of the cells (Day -3 iPSCs) were 

harvested and subjected to sample preparation for next-generation sequencing. Another 

fraction of Day -3 iPSCs, with a cell count corresponding to 1000x coverage per library 

element, were differentiated into neurons as described in the Human iPSCs Culture and 

Neuronal Differentiation subsection.  

Neurons were cultured in either the +AO or -AO Neuronal Medium (see Human 

iPSCs Culture and Neuronal Differentiation subsection) for ten days. For the survival 

screens, Day 10 neurons were harvested and subjected to sample preparation for 

next-generation sequencing. For the FACS screens, Day 10 CRISPRi neurons cultured 

in the +AO medium and -AO medium were dissociated using Papain (Worthington; 

Code: PAP2; Cat. No.LK003178) and stained by CellRox Green (Invitrogen/Thermo 

Fisher Scientific; Cat. No. C10444) and Liperfluor (Dojindo Molecular Technologies, 

Inc.; Cat. No. L248-10) respectively (see Cell Staining by Fluorescent Probes) and 

sorted into high and low signal populations in each screen corresponding to the top 40% 

and bottom 40% of the staining signal distribution, followed by sample preparation for 

next-generation sequencing. 
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For each screen sample, genomic DNA was isolated using a Macherey-Nagel 

Blood L kit (Machery-Nagel; Cat. No. 740954.20). sgRNA-encoding regions were 

amplified and sequenced on an Illumina HiSeq- 4000 as previously described (Gilbert et 

al., 2014).  

 

Batch characterization screens  

The batch characterization library contained 2,190 sgRNAs targeting 730 genes 

that were hits in at least one of the ROS and lipid peroxidation screens with 3 sgRNAs 

per gene selected based on their phenotypes in the primary screens, and 100 

non-targeting control sgRNAs. A pool of sgRNA-containing oligonucleotides were 

synthesized by Agilent Technologies and cloned into our optimized sgRNA expression 

vector as previously described (Gilbert et al., 2014). CRISPRi-iPSCs were transduced 

with the batch characterization library, puromycin selected and differentiated into 

neurons as for the primary screens. Day10 neurons were stained with FeRhoNox-1 

(Goryo Chemical; Cat. No. GC901) or Lysotracker-green (Cell Signaling Technology; 

Cat. No. 8783S) and sorted into high and low signal populations corresponding to the 

top 40% and bottom 40% of the staining signal distribution. Screen samples were 

processed and sequenced by next-generation sequencing as described above. 

 

CROP-seq 

For the CROP-seq experiments, we included 184 genes for CRISPRi and 100 

genes for CRISPRa, which were hits in at least one of our genome-wide pooled screens 
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and were also associated with human neurodegenerative diseases (NDDs). We curated 

a list of NDD-associated genes based on the literature and the DisGeNET database 

(https://www.disgenet.org/). The CROP-seq libraries included 2 sgRNAs per gene plus 

6 non-targeting control sgRNAs, for a total of 374 sgRNAs for CRISPRi and 206 

sgRNAs for CRISPRa. Top and bottom strands of sgRNA oligos were synthesized 

(Integrated DNA Technologies) and annealed in an arrayed format. The annealed 

sgRNAs were then pooled in equal amounts and ligated into our optimized CROP-seq 

vector (Gilbert et al., 2014).  

The CROP-seq experiments were carried out similarly as previously described 

(Tian et al., 2019). Briefly, Day 0 CRISPRi and CRISPRa neurons were infected by the 

corresponding CROP-seq sgRNA library at a MOI of 0.1-0.2, followed by puromycin 

selection at 4 µg/ml for 3 days and recovery. On Day 10, neurons were dissociated with 

Papain and approximately 98,000 CRISPRi neurons and 50,000 CRISPRa neurons 

were loaded into 10X chips with about 25,000 input cells per lane. Sample preparations 

were performed using the ChromiumNext GEM Single Cell 3ʹ Reagent Kits v3.1 (10X 

Genomics; Cat. No.PN-1000121) according to the manufacturer’s protocol. To facilitate 

sgRNA assignment, sgRNA-containing transcripts were additionally amplified by 

hemi-nested PCR reactions as described (Tian et al., 2019). The sgRNA-enrichment 

libraries were separately indexed and sequenced as spike-ins alongside the whole- 

transcriptome scRNA-seq libraries using a NovaSeq 6000 using the following 

configuration: Read 1: 28, i7 index: 8, i5 index: 0, Read 2: 91. 
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Cell Staining by Fluorescent Probes 

All stains were performed according to manufacturing protocols. For Filipin 

staining, cells were washed with PBS for 3 times and fixed with 3% paraformaldehyde 

for 1 hr at room temperature. Cells were then washed 3 times with PBS and incubated 

with 0.05 mg/ml Filipin III from Streptomyces filipinensis (Sigma; Cat. No. F4767-1MG) 

in PBS for 2 h at room temperature. Cells were washed with PBS 3 times before 

analysis. For staining using other live cell probes, cells were washed with PBS and 

incubated in DMEM containing appropriate concentrations of the probes at 37 °C as 

detailed  below. Cells were washed with PBS before analysis. Concentrations and 

staining conditions for different probes were as follows: CellRox Green, 2.5 μM for 30 

minutes; Lysotracker Green, 50 nM for 5 minutes; FeRhoNox-1, 5 μM for 60 minutes; 

Liperfluo, 5 μM for 30 minutes; C11-BODIPY, 2.5 μM for 30 minutes; FerroOrange 

(Dojindo Molecular Technologies, Inc.; Cat. No. F374-10), 1 μM for 30 minutes; Hoechst 

33342 (Thermo Fisher Scientific; Cat. No. H3570),  1 μg/ml for 10 minutes; Propidium 

Iodide (PI)(Thermo Fisher Scientific; Cat. No. P1304MP ), 1 μg/ml for 10 minutes. 

 

Immunofluorescence 

Cells were washed with PBS and fixed with 4% paraformaldehyde for 15 min at 

room temperature. After washing with PBS for 3 times, cells were permeabilized with 

0.1% Triton X-100 for 10 min and blocked with 5% normal goat serum with 0.01% Triton 

X-100 in PBS for 1 hr at room temperature. Cells were then incubated with primary 

antibodies diluted in blocking buffer at 4 °C overnight. After that, cells were washed with 
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PBS for 3 times and incubated with secondary antibodies diluted in blocking buffer for 1 

hr at room temperature. Cells were then washed with PBS for 3 times and stained with 

10 μg/ml Hoechst 33342 (Thermo Fisher Scientific; Cat. No. H3570) for 10 min. Cells 

were imaged using a confocal microscope (Leica SP8) or an IN Cell Analyzer 6000 (GE; 

Cat. No.  28-9938-51). Primary antibodies used for immunofluorescence in this study 

were as follows: rabbit anti-PSAP antibody (1:50 dilution; Proteintech; Cat. No. 

10801-1-AP), mouse anti-LAMP2 antibody (1:100 dilution; abcam; Cat. No. ab25631), 

rabbit anti-GM1 antibody (1:20 dilution; abcam; Cat. No. ab23943), rabbit anti-LC3B 

antibody (1:200 dilution; Cell Signaling Technology; Cat. No. 2775S) and chicken 

anti-TUJ1 antibody (1:500; AVES; Cat. No. TUJ). Secondary antibodies used in this 

study were as follows: goat anti-rabbit IgG Alexa Fluor 555 (1:500 dilution; abcam; Cat. 

No. ab150078), goat anti-mouse IgG Alexa Fluor 488 (1:500 dilution; abcam; Cat. No. 

ab150113) and goat anti-chicken IgG Alexa Fluor 647 (1:500 dilution; abcam; Cat. No. 

ab150171).  

 

Western blots 

Cells were lysed in RIPA buffer and 20-30 μg of total proteins were loaded into 

NuPAGE 4%–12% Bis-Tris Gels (Invitrogen, Cat# NP0336BOX). Subsequently, the 

gels were transferred onto nitrocellulose membranes and the membranes were blocked 

by Odyssey Blocking Buffer (PBS) (LI-COR, Cat#927-50000), followed by overnight 

incubation with primary antibodies at 4°C. After incubation, the membranes were 

washed three times with TBST and then incubated with secondary antibodies at room 
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temperature for 1 hr. The membranes were then washed 3 times with TBST and once 

with TBS and imaged on the Odyssey Fc Imaging system (LI-COR Cat# 2800). Digital 

images were processed and analyzed using ImageJ. 

Primary antibodies used were mouse anti-β-Actin antibody (1:2000 dilution; Cell 

Signaling Technology; Cat. No. 3700), rabbit anti-PSAP antibody (1:1000 dilution; 

Proteintech; Cat. No. 10801-1-AP) and rabbit anti-LC3B antibody (1:1000 dilution; Cell 

Signaling Technology; Cat. No. 2775S). Secondary antibodies were IRDye 680RD goat 

anti-mouse IgG (1:20,000 dilution; LI-COR; Cat. No. 926-68070) and IRDye 800CW 

goat anti-rabbit IgG(1:20,000 dilution; LI-COR; Cat. No. 926-32211).  

 

Generating PSAP KO iPSC line 

An sgRNA targeting PSAP exon 2 (sgRNA sequence: 

GGACTGAAAGAATGCACCA) was cloned into plasmid px330-mcherry (px330-mcherry 

was a gift from Jinsong Li (Addgene plasmid # 98750 ; http://n2t.net/addgene:98750 ; 

RRID:Addgene_98750)). The plasmid was transfected into WT Ngn2-iPSCs using 

Lipofectamine Stem (Invitrogen/Thermo Fisher Scientific; Cat. No. STEM00003). 

Monoclonal lines were isolated in 96-well plates by limiting dilution. One clonal line was 

selected and frameshift indels were confirmed by Sanger sequencing. Protein level KO 

was confirmed by western blot and immunofluorescence (Fig. 5C,D). A normal 

karyotype was confirmed (Cell Line Genetics). 
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Bulk RNA sequencing 

RNA was extracted from cells using the Quick-RNA Miniprep Kit (Zymo; Cat. No. 

R1054), and 3′-tag RNA-seq was performed by the DNA Technologies and Expression 

Analysis Core at the UC Davis Genome Center. 

 

Electron Microscopy 

Neurons grown on a poly-D-lysine coated 35-mm ibidi µ-Dish (ibidi; Cat. No. 

81156) were  fixed with 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer (EMS) 

for at least an hour at room temperature. Samples were further post-fixed with 1% 

osmium tetroxide and 1.6% potassium ferrocyanide, later dehydrated in graded series 

of ethanols, and embedded in epon araldite resin. Samples were then trimmed, 70nm 

sections were cut using Ultra cut E (Leica) and stained with 2% uranyl acetate and 

Reynold's  lead citrate. Images were acquired on a FEI Tecnai 12 120KV TEM (FEI) 

and data was recorded using UltraScan 1000 Digital Micrograph 3 software (Gatan Inc.) 

 

STORM super-resolution microscopy 

Sample preparation and STORM imaging were performed as described (Hauser 

et al., 2018). Samples were fixed in 4% paraformaldehyde (Electron Microscopy 

Sciences) in PBS (Corning) for 30 minutes at room temperature, followed by three times 

of washing with PBS. Prior to immunostaining, samples were treated by a blocking 

buffer (BB) of 3% bovine serum albumin (Sigma) and 0.1% Triton-X100 (Sigma) in PBS 

for 1 hour at room temperature. Primary antibodies were diluted in BB and labeled at 4C 
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overnight. Unbound antibodies were rinsed three times, 10 minutes each time with a 

washing buffer (WB) prepared by 10X dilution of BB in PBS. Secondary antibodies 

Dye-labeled secondary antibodies from Invitrogen or Jackson ImmunoResearch 

Laboratories were diluted in BB and labeled at room temperature for 1 hour, followed by 

three times of washing with WB. 

Before STORM imaging, the sample was mounted in a standard STORM 

imaging buffer of 5% [w/v] glucose (Sigma), 0.1 M cysteamine (Sigma), 0.8 mg/mL 

glucose oxidase (Sigma), and 40 mg/mL catalase (Sigma) in 0.1 M Tris-HCl pH 7.5 

(Corning). Imaging was carried out on a custom setup modified from a Nikon Eclipse 

Ti-E inverted fluorescence microscope with an oil immersion objective (Nikon CFI Plan 

Apochromat λ, 100X, numerical aperture 1.45). Lasers at 405, 488, 560, and 647 nm 

illuminated the sample through the back focal plane of the microscope and were shifted 

toward the edge of the objective to illuminate an ~1 µm layer above the coverglass. A 

strong excitation laser of 647 nm or 560 nm (~2 kW/cm2) was applied to photoswitch 

most of the AF647 or CF568 dye molecules into the dark state while also exciting the 

remaining dye molecules at a low density for single-molecule localization. A weak 

405-nm laser (0-1 W/cm2) was used simultaneously with the 647-nm or 560-nm laser to 

reactivate dye molecules in the dark state into the emitting state to acquire adequate 

sampling of the labeled molecules. 3D localization was achieved with 

astigmatism-based optics with a cylindrical lens (f = 1000.0 mm, Thorlabs) (Huang et 

al., 2008). Images were collected at 110 frames per second with an electron multiplying 

charge-coupled device camera (Andor iXon Ultra 897) for ~50,000 frames per image. 

176 

http://sciwheel.com/work/citation?ids=920842&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=920842&pre=&suf=&sa=0


Raw single-molecule data were processed into 3D-STORM images as previously 

described [2]. Briefly, the point-spread function of each molecule was fitted by a 

2D-Gaussian function to define its location in the image plane as well as in the axial 

direction (encoded in ellipticity). All localized positions were overlaid and the sample 

drift during imaging was corrected by autocorrelation in time. 

 

Untargeted Lipidomics 

The untargeted lipidomics experiment and primary analysis were performed by 

Cayman Chemical. Briefly, lipids were extracted using a methyl-tert-butyl ether 

(MTBE)-based liquid-liquid method. Cell pellets (approximately 100 μL in volume) were 

thawed on ice and transferred into 8-mL screw-cap tubes before adding 600 μL MeOH, 

the 600 μL MeOH containing 200 ng each of the internal standards 

TG(15:0/18:1-d7/15:0), PC(15:0/18:1-d7), PE(15:0/18:1-d7), PG(15:0/18:1-d7), and 

PI(15:0/18:1-d7) (EquiSPLASH, Avanti Polar Lipids), and finally 4 mL MTBE. After 

vigorous vortexing, the samples were incubated at room temperature on a shaker for 1 

h. For phase separation, 1 mL water was added,and samples were vortexed and 

centrifuged for 10 min at 1000 x g. The upper organic phase of each sample was 

carefully removed using a Pasteur pipette and transferred into a pre- weighed empty 

glass tube. The remaining aqueous phase was re-extracted with 2 mL of clean 

MTBE/methanol/water 10:3:2.5 (v/v/v). The two upper organic phases were combined 

and dried under vacuum in a SpeedVac concentrator. The dried lipid extracts were 

weighed and resuspended in 100 μL isopropanol/acetonitrile 1:1 (v/v) for untargeted 

177 



lipidomic analysis by LC-MS/MS. Triplicates of samples for WT and PSAP KO neurons 

were analyzed. 

 

Data analysis 

Pooled CRISPR screens 

Pooled CRISPR screens were analyzed using the MAGeCK-iNC pipeline as 

described (Tian et al., 2019). Briefly, raw sequencing reads from next-generation 

sequencing were cropped and aligned to the reference using Bowtie (Langmead et al., 

2009) to determine sgRNA counts in each sample. Counts files for samples subject to 

comparison were entered into the MAGeCK-iNC software 

(kampmannlab.ucsf.edu/mageck-inc). Phenotype scores and significance P values were 

determined for all target genes in the library, as well as for 

‘negative-control-quasi-genes’ that were generated by random sampling from 

non-targeting control sgRNAs. A gene score was calculated for each gene, which was 

defined as the product of the phenotype score and −log10(P value). To determine hit 

genes, a gene score cutoff value was chosen to make sure the false-discovery rate 

(FDR) is less than 0.05.  

 

CROP-seq 

CROP-seq analysis was performed similarly to previously described (Tian et al., 

2019). Cellranger (version 3.1.0,10X Genomics) with default parameters was used to 

align reads and generate digital expression matrices from single-cell sequencing data. 
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Approximately 58,000 CRISPRi neurons and 38,000 CRISPRa neurons were 

detected. The mean reads per cell was around 48,000 for CRISPRi and 36,000 for 

CRISPRa. Median number of genes detected per cell was around 4,341 for iPSCs and 

3,100 for CRISPRa.  

sgRNA-enrichment libraries were analyzed using methods previously described 

(Hill et al., 2018) to obtain sgRNA UMI counts for each cell barcode. For a given cell, 

sgRNA(s) whose UMI counts were greater than 4 standard deviations of the mean UMI 

counts of all sgRNAs were assigned to that cell as its identity. Single sgRNAs could be 

assigned to about 35,000 CRISPRi cells and about 21,000 CRISPRa cells, which were 

retained for further analysis. 

The Scanpy package (version 1.4.6) (Wolf et al., 2018) implemented in Python 

was used for downstream analysis of the digital expression matrices with mapped 

sgRNA identities. To ensure data quality, a stringent criterion was applied to filter cells 

based on the number of genes detected (> 2000 for CRISPRi and > 1500 for CRISPRa) 

and percentage of mitochondrial transcript counts (< 0.15%). Genes that had less than 

0.5 UMIs on average in all perturbation groups were filtered out. To select cells in which 

functional perturbations happened, we leveraged an unsupervised outlier detection 

method based on the local outlier factor (LOF) using the LocalOutlierFactor function in 

the Python package scikit-learn (version 0.23.0). A similar strategy was described 

previously (Adamson et al., 2016). Specifically, for every target gene, we selected two 

populations of cells, including one population of cells that were mapped with sgRNAs 

targeting that gene (i.e. perturbed group) and another population of cells that were 
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mapped with non-targeting control sgRNAs (i.e. control group). We then identified 

differentially expressed genes (DEGs) between the two populations by t-tests at p < 

0.05. A gene-expression matrix containing only expression of DEGs in cells from the 

two populations was generated and principal component analysis (PCA) was performed 

to reduce the matrix to 4 dimensions.  Cells in the control group in the 4-dimensional 

space were used as the training set to fit a LocalOutlierFactor model. Then, the model 

was used to determine whether a cell in the perturbed group was an ‘outlier’ based on 

the extent it deviated from the controls. The ‘outliers’ were considered as cells in which 

functional perturbations occurred and were retained for downstream analysis. DEGs for 

each perturbation group compared to control group were then determined by t-tests 

using the diffxpy package in Python. 

A mean gene-expression matrix was generated for different perturbation groups 

(including the control group) by averaging the normalized expression profile of all cells 

within that group. This matrix was used for weighted correlation network analysis 

(WGCNA) using the WGCNA package (version 1.69), (Langfelder and Horvath, 2008) 

implemented in R. The blockwiseModules function was used to detect gene modules 

that were co-regulated in different perturbation groups and to determine eigengene 

expression of each module in each perturbation group. Relative eigengene expression 

values were calculated by subtracting the eigengene expression value of each module 

in the control group from that in each perturbation group.  
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RNA-seq 

Raw sequencing reads from 3′-tag RNA-seq were mapped to the human 

reference transcriptome (GRCh38, Ensembl Release 97) using Salmon (v.0.14.139) 

with the ‘–noLengthCorrection’ option to obtain transcript abundance counts. Gene-level 

count estimates were obtained using tximport (v.1.8.040) with default settings. 

Subsequently, genes with more than 10 counts were retained for differential 

gene-expression analysis, and adjusted P values (Padj ) were calculated using DESeq2 

(v.1.20.041).  

 

Pathway enrichment analysis 

Gene Ontology (GO) term and Wikipathways enrichment analysis was performed 

using WebGestalt (WEB-based Gene SeT AnaLysis Toolkit) using the 

over-representation analysis (ORA) method (Liao et al., 2019). 

 

Lipidomics 

Lipostar software (Molecular Discovery) was used for feature detection, noise 

and artifact reduction, alignment, normalization and lipid identification. For each lipid, 

the log 2-fold change and a significance P value by t-test were determined by comparing 

the abundances of that lipid in WT and PSAP KO neurons (samples in triplicates). The 

Benjamini-Hochberg (BH) method was used to correct for multiple hypothesis testing. 
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