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RESEARCH ARTICLE
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Abstract
Natural selection at one site shapes patterns of genetic variation at linked sites. Quantifying

the effects of “linked selection” on levels of genetic diversity is key to making reliable infer-

ence about demography, building a null model in scans for targets of adaptation, and learn-

ing about the dynamics of natural selection. Here, we introduce the first method that jointly

infers parameters of distinct modes of linked selection, notably background selection and

selective sweeps, from genome-wide diversity data, functional annotations and genetic

maps. The central idea is to calculate the probability that a neutral site is polymorphic given

local annotations, substitution patterns, and recombination rates. Information is then com-

bined across sites and samples using composite likelihood in order to estimate genome-

wide parameters of distinct modes of selection. In addition to parameter estimation, this

approach yields a map of the expected neutral diversity levels along the genome. To illus-

trate the utility of our approach, we apply it to genome-wide resequencing data from 125

lines in Drosophila melanogaster and reliably predict diversity levels at the 1Mb scale. Our

results corroborate estimates of a high fraction of beneficial substitutions in proteins and

untranslated regions (UTR). They allow us to distinguish between the contribution of

sweeps and other modes of selection around amino acid substitutions and to uncover evi-

dence for pervasive sweeps in untranslated regions (UTRs). Our inference further suggests

a substantial effect of other modes of linked selection and of adaptation in particular. More

generally, we demonstrate that linked selection has had a larger effect in reducing diversity

levels and increasing their variance in D.melanogaster than previously appreciated.

Author Summary

One of the major discoveries in modern population genetics is the profound effect that
natural selection on one locus can have on genetic variation patterns at linked loci. Since
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the first evidence for linked selection was uncovered in Drosophila melanogaster over two
decades ago, substantial effort has focused on quantifying the effects and on distinguishing
the relative contributions of purifying and positive selection. We introduce an approach to
jointly model the effects of positive and negative selection along the genome and infer
selection parameters. To this end, we consider how closely linked each neutral site is to dif-
ferent types of annotations and substitutions. When we apply the inference method to
genome-wide data from 125 D.melanogaster lines, our model explains most of the vari-
ance in diversity levels at the megabase scale and allows us to distinguish among the con-
tribution of different modes of selection on proteins and UTRs. More generally, we
provide a map of the effects of natural selection along the genome, and show that selection
at linked sites has had an even more drastic effect on diversity patterns than previously
appreciated. We also make a tool available to apply this approach in other species.

Introduction
Selection at one site distorts patterns of polymorphism at linked neutral sites, acting as a local
source of genetic drift. While the qualitative effects of “linked selection” are undisputed, quan-
tifying them and understanding their source has been one of the central challenges in evolu-
tionary genetics over the past two decades [1–17].

Indeed, characterizing the effects of linked selection is of central importance in many con-
texts. If linked selection introduces substantial heterogeneity in rates of coalescence along the
genome, then obtaining accurate estimates of demographic parameters requires a genomic map
of these effects [18,19]. Such maps would also serve as improved null models for other popula-
tion genetic inferences, such as scans for recent targets of adaptation that rely on outlier
approaches [20–22]. Moreover, an accurate characterization of the effects of linked selection
carries extensive information about the selective pressures that shape genome evolution. Under-
standing how the effects vary among taxa would also inform long-standing questions about the
determinants of levels of genetic diversity and genetic load within species [23,24,25, 26].

Patterns of genetic variation are informative about natural selection at linked sites because
the effects of linked selection vary with the mode and parameters of selection. For instance,
“classic” selective sweeps, in which a newly-arisen beneficial mutation is quickly driven to fixa-
tion, reduce genetic variation at nearby sites over a scale that depends on the strength of selec-
tion and rate of recombination [2,3]. Other modes of adaptation, including partial and soft
sweeps, cause similar, although more subtle effects [27–31]. Background (purifying) selection
against deleterious mutations also reduces diversity levels at linked sites over a scale that
depends on the strength of selection and rate of recombination but to an extent that depends
on the density of selected sites [5,8,9,32–34].

Until recently, evidence for the effects of linked selection was sought in the relationships
between diversity patterns and factors that are expected to influence the strength and frequency
of selection [13–15,17]. For example, both positive and negative linked selection should have a
greater effect in regions with lower recombination rates, because, on average, a neutral site
would be linked to more selected sites. Consistent with this expectation, diversity levels are pos-
itively correlated with rates of recombination in Drosophila melanogaster and several other spe-
cies [4,35,36]. By a similar argument, linked purifying selection should be stronger in regions
with a greater density of functional sites (e.g., coding regions) and the effects of sweeps should
be greater in regions with more functional substitutions (e.g., non-synonymous substitutions).
In accordance with these expectations, diversity levels decrease with the density of amino acid

A Genomic Map of the Effects of Linked Selection in Drosophila

PLOS Genetics | DOI:10.1371/journal.pgen.1006130 August 18, 2016 2 / 24

Competing Interests: The authors have declared
that no competing interests exist.



substitutions in Drosophila species [11,12] and in humans [37], and decrease with the density
of coding and putatively functional non-coding regions in Drosophila [38], humans [18,35,37]
and other species (e.g., [39,40] and cf. [17]).

Beyond providing compelling evidence for the importance of linked selection, these rela-
tionships can be used to estimate selection parameters [6,10–12]. These inferences, however,
suffer from severe limitations. First, it is difficult to distinguish between the effects of different
modes of linked selection, with two decades of effort focused on distinguishing the effects of
classic selective sweeps from those of background selection [5,7,10,14,17,31]. Second, even
when a specific mode of selection is assumed, some parameters remain poorly identifiable (e.g.,
the rate and strength of beneficial substitutions in sweep models [10,14]). These inferences also
appear to be strongly affected by the genomic scale over which they are evaluated [14].

An alternative approach is to take advantage of spatial diversity patterns along the genome.
Pioneering efforts in D.melanogaster used estimates of the genome-wide rate of deleterious
mutations, genetic maps, and the spatial distribution of constrained genomic regions, to dem-
onstrate that background selection could account for changes in diversity levels along chromo-
somes as well as for differences in diversity levels between X and autosomes ([41–43]). More
recently, McVicker et al. [18] used ancestral diversity levels along the genome in order to build
a map of the effects of background selection along the human genome. The central idea was to
calculate the probability that a neutral site is polymorphic, given its genetic distance from con-
served coding regions and the rate of deleterious mutation and distribution of selection effects
at these regions; selection parameters were then estimated by maximizing the composite-likeli-
hood for neutral polymorphisms along the genome. Although based on limited data, the map
inferred by this approach provides an impressive fit to diversity patterns on the mega-base
scale. However, the associated estimate of the deleterious mutation rate is unreasonably high,
more than four-fold greater than estimates of the total spontaneous mutation rate [44–47],
possibly reflecting the absorption of the effects of background selection from other, poorly
annotated functional regions or the effects of positive selection [18].

Another recent approach to learn about selective sweeps relies on plots of the average levels
of diversity as a function of distance from amino acid substitutions throughout the genome
[48–50]. Assuming that some of the substitutions resulted from classic sweeps, we would
expect a trough in diversity levels around substitutions, with the depth related to the fraction
that were beneficial and the width (in units of genetic distance) reflecting the strength of selec-
tion. The rate and strength of classic sweeps can thus be inferred from the shape of the trough.
Applying this methodology to data from D. simulans, Sattath et al. [48] found a trough in neu-
tral diversity levels around amino acid substitutions that extended over ~15 kb, but not around
synonymous substitutions (which served as a control). The collated plot approach has several
limitations, however. First, application of the same approach to human data [49] suggests that
background selection, which is concentrated in or near coding regions, may contribute to the
troughs in diversity, and thus could bias estimates of positive selection parameters. Second,
inferences based on collated diversity patterns account only for the average clustering of amino
acid substitutions and not for their spatial distribution around every neutral site.

Here, we combine the advantages of these two recent approaches [18,48] in order to infer
selection parameters and build a genomic map of the effects of linked selection, considering
background selection and classic selective sweeps jointly. We model the effects of background
selection using the annotations for linked sites, and those of classic sweeps by considering
linked, putatively functional sites that experienced a substitution. The method is applicable to
genome-wide polymorphism data, allowing for information to be combined across samples. As
an illustration, we apply our method to genome-wide resequencing data from 125 lines of
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Drosophila melanogaster (from the DGRP [51]). We also make software available for the
approach to be applied more broadly.

Materials and Methods

The model and inference method
Wemodel the effects of background selection and classic sweeps on neutral heterozygosity
(i.e., the probability of observing different alleles in a sample size of two), π, at an autosomal
position x. In a coalescent framework, the model takes the form

pðxÞ ¼ 2uðxÞ
2uðxÞ þ 1=ð2NeBðxÞÞ þ SðxÞ ; ð1Þ

where u(x) is the local mutation rate, Ne is the effective population size without linked selection,
B(x) is the local (multiplicative) reduction in the effective population size due to background
selection and S(x) is the local coalescence rate caused by classic sweeps. This approximation can
be arrived at by considering the probability that a mutation occurs (at a rate 2u(x) per genera-
tion) before our pair of lineages are forced to coalesce by either genetic drift (1/2NeB(x)), which
includes the effect of background selection, or by a selective sweep (S(x)). While we consider
autosomes, the model can be extended to sex chromosomes with minor modifications.

The model for the effects of background selection, B(x), follows Hudson & Kaplan [8] and
Nordborg et al. [9] (Fig 1A). We assume a set of distinct annotations iB = 1,. . .,IB under purify-
ing selection (e.g., exons, UTRs, introns and intergenic regions) and positions in the genome
AB = {aB(iB)|iB = 1,. . .,IB}, where aB(iB) denotes the set of genomic positions with annotation iB.
The selection parameters at these annotations are given by ΘB = {(ud(iB),f(t|iB))|iB = 1,. . .,IB},
where ud is the rate of deleterious mutations and f(t) is the distribution of selection coefficients
in heterozygotes. The reduction in the effective population size is then

BðxjAB;YB;RÞ ¼ Exp �
X
iB

X
y2aBðiBÞ

ð
udðiBÞ

tð1þ rðx; yÞð1� tÞ=tÞ2 f ðtjiBÞdt
 !

; ð2Þ

where R is the genetic map, r(x, y) is the genetic distance between the focal position x and posi-
tions y (only positions on the same chromosome are considered). The integral reflects the effect
that a site under purifying selection at position y exerts on a neutral site at position x. This
expression and its combination across sites should provide a good approximation to the effect
of background selection so long as selection is sufficiently strong (i.e., when 2Net>>1).

In turn, the model for the effect of selective sweeps follows from an approximation used by
Barton [52] and Gillespie [53], among others (Fig 1A). Similarly to the model for background
selection, we assume a set of distinct annotations iS = 1,. . .,IS subject to sweeps, but here we know
the specific positions at which substitutions have occurred, AS = {aS(iS)|iS = 1,. . .,Is}, with aS(iS)
denoting the set of substitution positions with annotation iS. The selection parameters at these
annotations areΘS = {(α(iS),g(s|iS))|iS = 1,. . .,IS}, where α is the fraction of substitutions that are
beneficial and g(s) is the distribution of their additive selection coefficients. For autosomes, the
expected rate of coalescent per generations at position x due to sweeps is then approximated by

SðxjAS;YS;R; �Ne;TÞ ¼
1

T

X
iS

aðiSÞ
X
y2aðiSÞ

ð
Expð�rðx; yÞtðs; �NeÞÞgðsjiSÞds; ð3Þ

where T is the length of the lineage (in generations) over which substitutions occurred, the posi-
tions of substitutions y are summed over the chromosome with the focal site, �Ne is the average
effective population size and τ(s,Ne) is the expected time to fixation of a beneficial substitution
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Fig 1. Constructing a map of the effects of linked selection and inferring the underlying selection parameters. (A) The
expected neutral heterozygosity is estimated for each position in the genome, given the positions and selection parameters of
different annotations. (B) To estimate selection parameters, their composite likelihood is maximized given the set of annotations and
neutral polymorphism data throughout the genome.

doi:10.1371/journal.pgen.1006130.g001
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with selection coefficient s and given an effective population sizeNe. We use the diffusion
approximation for the fixation time

tðs;NeÞ ¼
2ðlnð4NesÞ þ g� ð4NesÞ�1Þ

s
; ð4Þ

where γ is the Euler constant (cf. [28]). This model relies on several simplifying assumptions and
approximations. In particular, the term 1/T relies on an assumption of one substitution per site
per lineage and neglects variation in the length of lineages across loci. In combining the effects
over substitutions, we further assume that the timings of beneficial substitutions are independent
and uniformly distributed along the lineage, and that they are infrequent enough such that we
can ignore interference among them [54]. The exponent approximates the probability of coales-
cence of two samples due to a classic sweep with additive selection coefficient s (where
2Nes>>1) in a panmictic population of constant effective size �Ne. (We consider the effects
under more general sweep models later.) In principle, we should use the localNe incorporating
the effects of background selection but given the logarithmic dependence of Eq (3) onNe, we
simply use the average.

To infer the selection parameters ΘB and ΘS, we use a composite likelihood approach across
sites and samples [55] (Fig 1B). We denote the positions of neutral sites by X and the set of
samples by I. We then summarize the observations by a set of indicator variables across sites
and all pairs of samples O = {Oi,j(x) | x 2 X, i 6¼ j 2 I}, where Oi,j(x) = 1 indicates that samples i
and j (i 6¼j) differ at position x and Oi,j(x) = 0 indicates that they are the same. In these terms
the composite log-likelihood takes the form

LogL ¼
X
x2X

X
i6¼j2I

logðPrfOi;jðxÞjYB;YSgÞ;

where

PrfOi;jðxÞjYB;YSg ¼
pðxjYB;YSÞ Oi;jðxÞ ¼ 1

1� pðxjYB;YSÞ Oi;jðxÞ ¼ 0
:

(
ð5Þ

Using composite likelihood circumvents the complications of considering linkage disequilibrium
(LD) and the more complicated forms of coalescent models with larger sample sizes. Impor-
tantly, maximizing this composite likelihood should yield unbiased point estimates [56,57].
Beyond losing the information in LD patterns and in the site frequency spectrum, the main cost
of this approach is the difficulty in assessing uncertainty in parameter estimates (as standard
asymptotics do not apply). We therefore use other ways to assess the reliability of our inferences.

To make the composite likelihood calculations (i.e., the calculation of π(x|ΘB,ΘS)) feasible
genome-wide, we discretize the distribution of selection coefficients on a fixed grid. Given a
grid of negative and positive selection coefficients, tg and sk, g = 1,. . .,G and k = 1,. . .,K, the dis-
tribution of selection coefficients for each annotation becomes a set of weights on this grid,
w(tg| iB) and w(sk| iS). (In principle, the grid could also be annotation-specific.) For background
selection, these weights reflect the rate of deleterious mutations with a given selection coeffi-
cient and their sum should therefore be bound by the maximal deleterious mutation rate per
site. For sweeps, the weights reflect the fraction of beneficial substitutions with a given selection
coefficient and their sum should be bound by 1. In these terms, the effect of background selec-
tion takes the form

BðxjYBÞ ¼ Exp �
X
iB

XG
g¼1

wðtg jiBÞbðxjtg ; iBÞ
 !

; ð6Þ
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where Exp(−b(x|tg, iB)) is the proportional reduction in the effective population size induced by
having one deleterious mutation per generation per site with selection coefficient tg at all the
positions in annotation iB. By the same token, the effects of sweeps take the form

SðxjYSÞ ¼
1

T

X
iS

XK
k¼1

wðskjiSÞsðxjsk; iSÞ; ð7Þ

where 1
T
sðxjsk; iSÞ is the probability of coalescence per generation induced by sweeps in annota-

tion iS, if all the substitutions in this annotation are beneficial with selection coefficient sk.
Thus, by using a grid, we can calculate a lookup table of b(x|tg, iB) and s(x|sk, iS) once and then
use it to calculate the likelihood for a given set of weights. Moreover, the interpretation of esti-
mated distributions on a grid is arguably simpler than that of the continuous parametric distri-
butions commonly used (e.g., gamma and exponential), for which densities associated with
different selection coefficients are highly interdependent. In the Supplementary Material (S1B
Text), we describe additional simplifications in the calculation of b(x|tg, iB) and s(x|sk, iS).

Other parameters are estimated as follows. Consider Eq (1) rewritten as

pðxÞ ¼ p0 � ðuðxÞ=�uÞ
p0 � ðuðxÞ=�uÞ þ 1=BðxÞ þ Sðx; �Ne;TÞ

; ð8Þ

to clearly specify all the additional parameters required for inference. p0 � 4Ne�u is (approxi-
mately) the average neutral heterozygosity, given the effective population size in the absence of
linked selection and the average mutation rate per site (�u); π0 is estimated through the likeli-
hood maximization. The local variation in mutation rate uðxÞ=�u is estimated by averaging sub-
stitution patterns at putatively neutral sites among closely related species in sliding windows,
with a window size chosen to balance true variation in mutation rates and measurement error
(see S1B Text). Finally, �Ne is estimated based on the average genome-wide heterozygosity at
putatively neutral sites, after dividing out by a direct estimate of the spontaneous mutation rate
per site, and T=2 �Ne is estimated by ð�K=2Þ=p0, where �K is the average number of substitutions
per neutral site on the lineage.

The software package implementing the inference and construction of the map of the effects
of linked selection is available online (http://github.com/sellalab/LinkedSelectionMaps). In the
Supplementary Material (S1B Text), we describe the steps that were taken to check the proper
convergence of the likelihood maximization.

Application to data from Drosophila
We apply our method to population resequencing data from Drosophila melanogaster. The
data analyses are briefly described here, with further details provided in S1A Text. As a proxy
for neutral variation, we use synonymous polymorphism within D.melanogaster, based on
resequencing data from the Drosophila Genetic Reference Panel (DGRP) [51] consisting of
162 inbred lines derived from the Raleigh, North Carolina population. The rate of synonymous
divergence used to control for local variation in mutation rates is estimated using the aligned
reference genomes of D. simulans and D. yakuba [58]. As potential targets of selection (annota-
tions), we use coding regions, untranslated, transcribed regions (UTRs), long introns (>80bp)
and intergenic regions, downloaded from FlyBase [59] (http://flybase.org, release 5.33), all of
which have been inferred to be under extensive purifying selection in D.melanogaster [60–63],
and which together cover ~98.5% of the euchromatic genome. Substitutions that occurred in
these annotations on the D.melanogaster lineage since the common ancestor with D. simulans
are inferred from a three-species alignment of reference genomes from D.melanogaster, D.
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simulans and D. yakuba [58]. We do not include substitutions in intergenic regions, which are
not included in the three-species alignment, and our treatment of missing data, e.g., due to
gaps in the alignment, is detailed in S1B Text.

For the genetic map, we rely on estimates of the cM/Mb rates recently published by
Comeron et al. [64]. Because our inferences are sensitive to errors in the genetic map in regions
of low recombination, we exclude the distal 5% of chromosome arms (in which rates are
known to be low in D.melanogaster) and regions with a sex-averaged recombination rate
below 0.75cM/Mb.

We perform the inference under a variety of selection models. In the Results, we primarily
compare the models incorporating classic sweeps, background selection or both, including all
of the annotations listed above using a grid of selection coefficients which consists of five point
masses on a log-linear scale, with t and s = 10−5.5, 10−4.5, 10−3.5, 10−2.5 and 10−1.5. Our maps of
the effects of linked selection corresponding to the model incorporating both classic sweeps
and background selection are available online (http://github.com/sellalab/
LinkedSelectionMaps/melanogaster_maps). In the Supplementary Material we study the sensi-
tivity of our results to: selection on synonymous mutations—using a subsets of synonymous
differences (S1H Text), the recombination thresholds (S1H Text), the grid of selection coeffi-
cients (S1I Text), and to using subsets of annotations (S1I Text) and an upper bound on the
deleterious mutation rate (S1E Text).

Results

Maps of the effects of linked selection along the genome
Our inference yields a map of the expected neutral diversity levels at every position along the
genome. One way to evaluate these predictions is to compare them with observed diversity lev-
els (Fig 2). A quantitative comparison at the 1Mb scale suggests that our map accounts for 71%
of the variance (R2) in diversity levels of non-overlapping autosomal windows. To address the
concern that the high R2 is the result of over-fitting, we perform a leave-one-out cross-valida-
tion (LOOCV) analyses [65] in which we divide the genome into non-overlapping 1Mb win-
dows, using only data outside a window to make our predictions about diversity levels in it
(S1C Text; Table S2 in S1 Text). This analysis shows that over-fitting has a negligible effect on
our prediction, which is to be expected: while our model has many parameters (36), the data
set is much larger (consisting of 1.7×106 codons, and levels of linkage disequilibrium are low).

In interpreting the fit, both model misspecification and the stochasticity inherent to the evo-
lutionary process need to be considered. Importantly, even if our model provided an accurate
description of the processes generating genetic diversity, we would not expect a perfect fit to
the data because of the randomness of the processes being modeled. Notably, our model
assumes that a substitution at a given annotation could have occurred with uniform probability
at any time along the D.melanogaster lineage and that it had a certain probability of being ben-
eficial with a given selection coefficient. Any evolutionary realization of the model would have
that substitution occur at a particular time—more often than not, too far in the past to affect
extant diversity patterns—and with a given selection coefficient, thus generating considerable
variance in predicted diversity levels at linked sites. In addition, both genealogical and muta-
tional processes are stochastic. Averaging over 1Mb windows partially reduces this stochasti-
city and in that regard, it is not surprising that our predictions become less precise when we
use smaller windows (Fig 2B). However, even with 1Mb windows, we would still expect consid-
erable variance in diversity levels around the expectation.

In addition, although we assume that the genetic maps and annotations are known, there is
error in both. Imprecision of the genetic map and imperfect annotations (e.g., our clumping
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together of all coding, UTR, intronic and intergenic substitutions and regions) decrease our
predictive ability. As genetic maps and annotations become better, we should therefore expect
our predictions to improve. Another class of assumptions relates to processes that we did not
model, including changes in population size [61,66,67]. In spite of many potential factors con-
tributing to noise in our predictions, the fit to data is very good.

In the Supplementary Materials (S1F Text) we compare our predictions to those based on a
map of the effects of background selection generated using the methodology developed by
Charlesworth [41] and recently extended by Charlesworth [42] and Comeron [43]. This
approach differs from ours in several ways, most notably in being based on estimates of selec-
tion parameters from the literature, which themselves do not rely on the effects of linked selec-
tion on diversity patterns. While it performs impressively well at the 1Mb scale (though not as

Fig 2. A comparison of observed and predicted scaled diversity levels along the major autosomes ofDrosophila
melangaster. Throughout, we refer to “scaled diversity” as synonymous heterozygosity divided by synonymous divergence,
to control for variation in the mutation rate (as detailed in S1C Text); scaled diversity is shown relative to the genome average.
(A) Observed and predicted scaled diversity over non-overlapping 1 Mb windows across chromosomal arms. (B) Summaries
of the goodness of fit for models including background selection (BS), classic sweeps (CS) and both (BS & CS). R2 is
calculated for autosomes using non-overlapping windows of different sizes. Selection parameters are inferred using
synonymous sites with recombination rate >0.75cM/Mb, while the predictions and corresponding summaries are calculated
for sites with recombination rate >0.1cM/Mb.

doi:10.1371/journal.pgen.1006130.g002

A Genomic Map of the Effects of Linked Selection in Drosophila

PLOS Genetics | DOI:10.1371/journal.pgen.1006130 August 18, 2016 9 / 24



well as ours) the quality of the predictions becomes much worse than ours as the scale becomes
smaller (Table S5 in S1 Text). (Note that Comeron [43] uses rank correlations to evaluate his
predictions; the explained variance using rank correlations are much higher than the quantita-
tive predictions we use here, which is why his result might appear comparable at first sight.)

Using R2 values for window sizes varying from 1kb to 1Mb, we can ask which model(s) are
best supported. We find that the one combining both background selection and classic sweeps
almost always does better than the models with a single mode of selection (Fig 2). Our leave-
one-out cross-validation analysis confirms that this finding is not the result of over-fitting in
the combined model (Table S2 in S1 Text; see S1C Text for details). Thus, our combined model
of the effects of linked selection captures much of the variation in diversity levels at the mega-
base scale, and provides an improved null model in scans for targets of positive selection or for
the purposes of demographic inference. Because using R2 has its limitations, we use a variety of
other statistical approaches to evaluate our inferences in the sections that follow.

The effects of linked selection around different annotations
We can also use our analysis to learn about the effects of linked selection for different annota-
tions. If a feature is enriched for targets of purifying or positive selection, then we expect to see
a reduction in diversity levels around it due to linked selection. Collating diversity levels around
all instances of a feature averages over confounding effects at specific genomic positions as well
as over the inherent stochasticity in diversity levels, allowing us to isolate the selection effects
[18,48–50].

We first consider how diversity levels vary with genetic distance from amino acid and syn-
onymous substitutions (Fig 3). There is a trough in diversity around both, but the one around
amino acid substitutions is substantially deeper (Fig 3A). Fig 3B compares the predicted diver-
sity levels around amino acid substitutions based on Sattath et al. [48] and our inference. A
rough quantitative comparison suggests that our method fits the data better than that of Sattath
et al. (R2 = 62% for our method compared to R2 = 56% for Sattath et al.; see S1G Text for more
details). Moreover, the new method also predicts more of the detailed variation in diversity lev-
els, presumably because it accounts for the statistical properties of genome architecture, e.g.,
the density of coding regions at given genetic distances up or downstream of substitutions.

In principle, our approach should allow us to tease apart the contributions of classic sweeps
and background selection to these diversity patterns (Fig 4). Comparing the predictions of each
model alone is less informative for this purpose, because when only one is considered, it likely
absorbs some of the effects of the other (see next section). In contrast, with the inference based

Fig 3. Observed and predicted scaled diversity levels around amino acid substitutions. (A) Comparison of
scaled diversity levels around non-synonymous (NS) and synonymous (SYN) substitutions. (B) Comparison of
predicted, scaled diversity levels based on our method and that of Sattath et al. (2011) [48].

doi:10.1371/journal.pgen.1006130.g003
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on the combined model, the contribution of each mode should be identifiable from its specific
functional forms and annotations. When we focus on the contribution of background selection
(blue lines in Fig 4B), we see a reduction in diversity around both synonymous and non-synon-
ymous substitutions because both types of substitutions occur in coding regions, in which
background selection effects are strongest (e.g., [18,68]). Moreover, because the density of cod-
ing regions and other annotations (blue lines in Fig 4C and Fig S6 in S1 Text) is similar around
the two kinds of substitutions, the shape and magnitude of the reductions in diversity are also
similar (blue lines in Fig 4B). In contrast to background selection, the reduction around non-
synonymous substitutions due to classic sweeps is much greater than for synonymous substitu-
tions (red lines in Fig 4B). This results not only from the focal non-synonymous substitution
but also (and primarily) from the greater density of non-synonymous substitutions near a focal
non-synonymous substitution than around a synonymous one (red lines in Fig 4C). Whereas
the clustering of non-synonymous substitutions around synonymous substitutions primarily
reflects the greater density of coding sites, the clustering around non-synonymous substitutions

Fig 4. The contribution of background selection and classic sweeps to scaled diversity levels around non-synonymous
and synonymous substitutions. (A) Observed and predicted scaled diversity levels around non-synonymous (left) and
synonymous (right) substitutions. The predictions are based on the joint model for background selection and classic sweeps. (B)
The contribution of background selection (blue) and classic sweeps (red) measured in terms of the coalescent rates that they
induce. The rates are measured in units of 1/2Ne, whereNe is our estimate of the effective population size in the absence of linked
selection. To make these graphs comparable to the scaled diversity levels in (A), with lower rates corresponding to higher scaled
diversity levels, the direction of the y-axis is reversed. (C) The density of exonic sites (blue) and non-synonymous substitutions
(red) as a function of distance from non-synonymous and synonymous substitutions. Densities are normalized by the average
densities at distance >0.06cM; the shaded areas correspond to the use of a different linear scale.

doi:10.1371/journal.pgen.1006130.g004
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(beyond the focal amino acid substitution) presumably reflects correlated evolution of nearby
residues and other adaptive processes (e.g., [69]).

These findings illustrate that, at least as modeled, background selection and classic sweeps
are identifiable. Intuitively, the information about classic sweeps at non-synonymous substitu-
tions comes from the comparison of neutral diversity levels between sites near many non-syn-
onymous substitutions versus near few, given a similar density of other annotations. After
properly accounting for the effects of classic sweeps, information about the background selec-
tion pressure exerted by exons comes from contrasting the diversity levels among regions that
vary in the density of codons but are otherwise similar. In practice, we do not learn about these
processes in a stepwise fashion, as presented here, but instead maximize the probability of the
data considering all of the annotations simultaneously.

We can therefore use these findings to revisit the enduring question of the relative contribu-
tion of background selection and classic sweeps to shaping diversity patterns (Fig 4). In partic-
ular, the negative correlation between diversity levels and the density of non-synonymous
substitutions previously reported in Drosophila [11,12] likely reflects a substantial contribution
of background selection in addition to positive selection. In contrast, the greater reduction in
diversity levels at non-synonymous compared to synonymous substitutions in Drosophila is
almost entirely the outcome of classic sweeps [48]. A caveat is that the parameter estimates
obtained from the approach based on collated plots likely absorb some of the effects of back-
ground selection and thus overestimate the effects of linked selection due to sweeps (see next
section and Tables S6 and S7 in S1 Text). More generally, in interpreting the results, an impor-
tant consideration is the presence of other modes of selection that are not modeled explicitly,
e.g., soft and partial sweeps. As we discuss at greater length below, our inferences about classic
sweeps may reflect a mixture of different kinds of sweeps that result in substitutions while our
inferences about background selection may reflect a contribution from other modes of linked
selection, including sweeps that do not result in substitutions.

We can also consider how well the relationships between diversity levels and various geno-
mic features are explained by models with a single mode of selection. As an illustration, Fig 5A
shows that the background selection model does better than the model with classic sweeps at
predicting diversity levels far from non-synonymous substitutions. Also visually apparent is
that, in contrast to the background selection model, the classic sweeps model explains the

Fig 5. Comparing alternative models around substitutions in proteins and UTRs. (A) Comparison of predicted scaled
diversity levels around non-synonymous substitutions based on models including background selection (BS), classic sweeps (CS)
and both (BS & CS). (B) Comparison of predicted scaled diversity levels around substitutions in UTRs based on models with and
without sweeps in UTRs.

doi:10.1371/journal.pgen.1006130.g005
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narrow, deep trough close to non-synonymous substitutions. The combined model does well at
predicting diversity levels both close to and far from non-synonymous and synonymous substi-
tutions, again illustrating the need to consider both modes of linked selection in making
inferences.

A similar approach can be used to examine the effects of selection acting on non-coding
annotations. Notably, our inference suggests that a substantial fraction of substitutions at
UTRs lead to classic sweeps (Table S11A in S1 Text and next section). To examine whether this
feature of the model is required to explain the data, we look at average diversity levels as a func-
tion of genetic distance from substitutions in UTRs (Fig 5B). Our full model does much better
at explaining these observations than a model without sweeps at UTRs. This provides the first
evidence, to our knowledge, for sweeps at UTRs (or in any non-coding annotation) in Dro-
sophila, and lends strong support to findings of pervasive adaptation in UTRs based on
McDonald-Kreitman type approaches and genetic differentiation (FST) along clines [60,70].

Estimates of sweep parameters
Our approach also provides estimates of selection parameters. We first consider those obtained
for classic sweeps, for which the positions of potential targets of selection (i.e. substitutions) are
known. For substitutions at non-synonymous sites and to a lesser extent in UTRs, the ability to
localize substitutions and to measure diversity levels using nearby synonymous sites provides
us with high spatial resolution about selection effects on diversity patterns.

If we exclude background selection from the model, the only notable difference is the addi-
tion of a probability mass of strong selection coefficients at amino acid substitutions (~0.3% of
substitution with s = 10−1.5), which affects diversity levels on a broad scale, in effect retracing
large-scale variation in recombination rate and, to a lesser extent, coding density. When back-
ground selection is included in the model, this spatial effect becomes entirely associated with
background selection (Fig S3 in S1 Text). This suggests that under a model of sweeps alone, the
extra mass is absorbing some of the effects of other modes of selection that are not driven by
substitutions.

In turn, under our combined models, the distribution of selection coefficient exhibits two
dominant masses: ~4% of substitutions appear to have been strongly selected (s�10−3.5) and
35–45% of substitutions weakly so (s between 10−5.5–10−6; the ranges reported here and below
correspond to grids of selection coefficients with 5 and 11 point masses; see S1I Text). The
effects of both masses on diversity levels can be clearly seen in collated plots around substitu-
tions (cf. Fig S8 in S1 Text) and accord with previous studies [48,71]. At UTRs, we find that
25–45% of substitutions are associated with weak to intermediate strength of selection
(s�10−4.5–10−5.5). While the effects of sweeps at UTRs are apparent in Fig 5B, our quantitative
estimates are associated with greater uncertainty than those for non-synonymous substitutions
because we have lower spatial resolution near substitutions at UTRs (see S1H Text). At long
introns, we infer that none of the substitutions were driven by sweeps; this estimate, however,
might also reflect low power in these regions, because we measure diversity levels at synony-
mous sites that are, on average, far from intronic substitutions (see S1I Text).

Intriguingly, our estimates of the fraction of beneficial substitutions in proteins and UTRs
accord with those based on extensions of the McDonald-Kreitman test (i.e., between ~40–85%
for amino acids and 30–60% from UTRs [12,38,60,72–74]), when previous estimates based on
the effects of sweeps on polymorphism data were substantially lower [11,48]. A caveat is that
this conclusion only holds when we include the contribution of weakly selected substitutions.
Our inference about weakly selected substitutions is based on diversity patterns very close to
substitutions (roughly equivalent to 50 bp on average) and at these distances, considerable
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uncertainty about the genetic map and limited polymorphism data preclude us from distin-
guishing between selection coefficients ranging between 10-5.5 and 10−6. Because selection coef-
ficients at the lower end of this range could be nearly neutral, the substitutions could partially
reflect the fixation of slightly deleterious mutations rather than beneficial ones and more gener-
ally compensatory evolution [75]. We note further that our approach is not necessarily
expected to agree with McDonald-Kreitman based estimates, which reflect adaptive rates over
different time scales (i.e., on the order of Ne in our case [76], as opposed to the time scale of
divergence). These reservations notwithstanding, our approach suggests that properly account-
ing for weakly selected substitutions leads to a convergence of estimates based on linked selec-
tion and McDonald-Kreitman based approaches, and provides, to our knowledge, the first
corroboration of these elevated estimates.

With recent research highlighting the potential role of modes of adaptation other than clas-
sic sweeps, e.g., partial and soft sweeps [27–31,77–80], which we do not model explicitly, it is
natural to ask how they might affect our inferences. To a first approximation, the effects of
other kinds of sweeps on diversity levels around the selected site can be viewed as a superposi-
tion of the effects of classic sweeps with varying selection coefficients at different distances
from the selected site (see [31,81] and S1D Text). This property implies that our parameter esti-
mates for classic sweeps can be translated into rates and strengths of other types of sweeps.

As an example, consider our estimates that ~4% of amino acid substitutions were driven by
selection coefficients of s = 10−3.5 and ~35% by a selection coefficient of 10-5.5. An approxi-
mately similar effect on diversity levels along the genome could be explained by assuming that
39% of substitutions are caused by partial sweeps that are driven to a frequency of x = 0.34 with
a selection coefficient of s = 10−3.9, then to fixation with a selection coefficient of s = 10−5.8 (see
S1D Text). Similar parameter estimates could also be generated by mixtures of partial and full
sweeps, described by the fraction of full and partial sweeps and associated selection coefficients
and distributions of frequencies (x) for each kind of partial sweep. In S1D Text, we detail how
other kinds of sweeps (soft, from multiple mutations or standing variation, or on recessive
alleles) would be recorded by our approach and thus how the effects of mixtures of sweeps
would translate into our parameter estimates.

In other words, in the presence of different kinds of sweeps, our parameter estimates reflect
the effects of the mixture on diversity levels around substitutions. A given set of estimates des-
ignates a continuous class of mixtures and, in principle, one can write down equations for the
parametric family of mixtures that would yield the same estimates. Further narrowing down
the underlying mixtures, however, will require developing inferences that use other aspects of
the data.

Estimates of background selection parameters
Parameter estimates for purifying selection are fairly insensitive to the exclusion of classic
sweeps from our model (e.g., Table S5 in S1 Text). When we do not impose an upper bound on
the rate of deleterious mutations, we observe two main selection strengths, both of which are
localized in exons and UTRs. The dominant one is extremely strong selection (s = 10-1.5),
which affects diversity over a spatial scale of ~4Mb (or ~7cM, the distance at which the diver-
sity levels reach 90% of baseline levels). As noted previously, such selection coefficients lead
diversity levels to follow large-scale variation in recombination rate and to a lesser extent cod-
ing density. In this regard, it is important to note that we have to rely on relatively crude anno-
tations, rather than accounting for the fine-scale location of sites under purifying selection
within each annotation. As a result, our inference is likely to capture an average effect over con-
siderably larger spatial scales than is actually the case, thereby leading to somewhat inflated
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selection coefficients (akin to what is seen for classic sweeps when background selection is not
considered).

The strong selection coefficient is also associated with unreasonably high estimates of the
deleterious mutation rate, which far exceed direct estimates of the total mutation rate (by 4-
9-fold in exons and UTRs; Table S12 in S1 Text) [82]. A plausible interpretation is that these
high rates reflect the absorption of linked selection effects that evade direct capture by our
inference. For example, they might absorb the effects of sweeps at introns (or intergenic
regions) that evade our inference because of the crude annotation of substitutions in these
regions. They might also absorb the effects of other modes of linked selection, which are not
modeled explicitly. Notably, population genetic models of quantitative traits suggest that the
response to changing selection pressures could involve many soft and partial sweeps that do
not result in fixation [83,84] and therefore would not be included in our estimates for classic
sweeps. The effects of such soft and partial sweeps on diversity levels can be similar to those of
background selection [31,81,85,86]. Moreover, because we lack localized annotations for such
sweeps (when they do not result in fixation), we would tend to associate them with stronger
selection coefficients of background selection, whose effects on diversity are less localized. If
this interpretation is correct, then our inference suggests that modes of linked selection other
than classic sweeps and background selection have a substantial effect on diversity levels
around coding regions.

We also find evidence for somewhat weaker purifying selection (centered around s = 10−3.5)
associated with a more realistic deleterious mutation rate (e.g. ~50–60% of the overall mutation
rate in exons), but which may still reflect a contribution from other forms of linked selection.
These values are in agreement with those obtained for exons by approaches that do not rely on
the signatures of linked selection (cf. [42,43], and S1F Text). Purifying selection of this strength
should affect diversity levels on spatial scale of ~40 kb (or 0.07cM, defined as above), a foot-
print that is visible in our analyses of diversity levels around synonymous and non-synony-
mous substitutions (blue lines in Fig 4B).

In the Supplementary Material (S1E and S1F Text), we present additional analyses that sup-
port this interpretation of background selection parameters, based on models in which we
impose a biologically plausible upper bound on the deleterious mutation rate and use the
modeling approach of Charlesworth [41,42].

The impact of linked selection on diversity levels
We next examine the extent to which linked selection decreases the mean and increases the
variance in diversity levels throughout the genome. The average reduction quantifies the effects
of linked selection on the effective population size, a key parameter for many aspects of genome
evolution [24,25]. The heterogeneity in diversity levels is of interest because it quantifies the
deviation from the uniform neutral null model that is implicitly assumed in most, if not all,
demographic inferences and scans for targets of adaptation.

We focus on the impact of linked selection in coding regions with recombination rates
above 0.1cM/Mb, because our predictions become less reliable in regions with lower recombi-
nation rates (see S1H Text). To this end, we sort genomic positions according to their predicted
levels of diversity (Fig 6A). For 1600 bins with equal amounts of data, the concordance between
observed and predicted levels is extremely high (Spearman ρ = 0.91), indicating that the varia-
tion predicted by our model is real (and not due to over-fitting; Table S2 in S1 Text). Sorting
based on our predictions, we find substantial variation in the observed diversity levels across
bins (approximately five-fold difference between the upper and lower 2.5%; Fig 6B). Moreover,
we see that the effects of linked selection are visible across all bins, rather than being restricted
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Fig 6. The impact of linked selection on scaled diversity levels. (A) Observed scaled diversity levels stratified by model predictions.
Shown here are the results based on our method with both background selection and classic sweeps (pink), background selection alone
(blue) and classic sweeps alone (red), as well as for the Wiehe and Stephan (1993) [6] method for classic sweeps based on the density of
non-synonymous substitutions (dark green) and the Kim and Stephan (2000) [10] method for background selection based on
recombination rates (light green). The stratification is described in the text. Predicted levels are shown in black, the observed deviations
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to bins with lower expected diversity. In other words, almost no region in the genome is free
from the effects of linked selection (with the exception of the correlation coefficient, none of
these results are sensitive to the number of bins).

We quantify the average reduction due to linked selection as the ratio of the average
observed diversity level, �p, to the predicted level without linked selection, π0. Doing so indicates
an average reduction of 77%-89% in neutral diversity levels genome-wide (excluding low-
recombination regions for which the reduction should be greater). Strikingly, even in the upper
1%-tile, linked selection is predicted to have reduced diversity levels by ~60–80%. Given the
uncertainty about the parameter estimates associated with strong purifying selection (S1E Text
and Table S4 in S1 Text), our inferences about π0 may not be robust, however. Indeed, impos-
ing a plausible bound on the rate of deleterious mutations results in fits that are only marginally
worse but dramatically affects our estimates of π0 (reducing it from 4.4 fold times the observed
mean to 2.8-fold, with 5 point masses; S1E Text and Table S4 in S1 Text). In brief, this follows
from the fact that strong selection affects diversity levels on broad spatial scales, leaving little
signal of localization, and thus similar observed diversity levels can result from different combi-
nations of deleterious mutation rates and π0 values. Unfortunately, we cannot observe π0
directly. What we can say, based on our stratification, is that linked selection reduces average
diversity levels by at least two-fold (Fig 6A).

Our estimates suggest much stronger effects of linked selection than do previous methods.
Notably, when we apply previous methods based on the relationship between diversity levels
and rates of recombination or functional divergence [6,10–12,26] (see S1G Text for details), we
infer an average reduction in diversity levels that lies between 34–36%, with no reduction in
the upper 1%-tile of predicted diversity levels (Fig 6B and Table S12 in S1 Text). Comparing
the stratification of diversity levels by the various methods (Fig 6A and 6B) indicates these pre-
vious methods do worse at predicting diversity levels, span a smaller range of diversity levels
and under-estimate the effects of linked selection; specifically, their predictions of π0 are lower
than the upper 1%-tile of observed diversity levels based on our stratification (Fig 6A and 6B).
The reason is that by relying on a single genomic feature (e.g., recombination rate) and averag-
ing over others (e.g., non-synonymous divergence), these methods overlook much of the varia-
tion in diversity levels caused by linked selection, causing their estimates to suffer from the
equivalent of regression toward the mean (the same problem applies to their estimated selec-
tion parameters; see S1G Text). A similar “averaging out” effect takes place when we consider a
model with background selection or classic sweeps alone (Fig 6A and 6B).

This line of argument implies that even with the combined model, we still underestimate
the heterogeneity in diversity levels because of imperfect annotations. Notably, this would be
the case if our inferences about background selection are likely absorbing substantial effects of
other modes of linked selection but are unable to capture them in full, let alone to do so with
high spatial resolution. Thus, the heterogeneity in diversity levels due to linked selection in the
Drosophila melanogaster genome is likely to be even greater than we have inferred. Similar
speculation about the average reduction in diversity levels is more difficult, given the uncer-
tainty associated with our parameter estimates for background selection (Tables S4 and S10 in
S1 Text). What we can say is that our lower bound based on stratification is likely to increase as
annotations improve.

from the predictions are shown as vertical lines, with the colors corresponding to different models, and the estimated scaled diversity levels
in the absence of linked selection are shown as horizontal bars. (B) Summaries of the mean reduction and heterogeneity in scaled diversity
levels based on the different methods and models. Also shown are estimates of compound selection parameters and the Spearman
correlation between predicted and observed levels. (1) The negative value reflects the fact that the observed scaled diversity level is higher
than the level predicted in the absence of linked selection.

doi:10.1371/journal.pgen.1006130.g006
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Discussion

The relative contribution of different modes of linked selection
Over two decades of research have aimed to quantify the relative contributions of classic
sweeps and background selection in shaping diversity patterns. If these were the only modes of
linked selection, then we would now have an answer. We have shown that the contributions of
background selection and classic sweeps are identifiable using our inference and, with the
stated caveats about the effects of partial annotations, we can quantify their relative contribu-
tions. Based on the combined model and using the genome-wide average rates of coalescence
induced by each mode of selection as a measure of their relative contribution, our findings
would suggest that background selection has a ~1.6–2.5-fold greater effect than classic selective
sweeps (Table S3 in S1 Text; see S1C Text for details and other metrics).

The question is complicated, however, by the contribution of other modes of linked selection.
Our results strongly suggest that inferences about background selection include a major contri-
bution of other modes of linked selection, plausibly the result of sweeps that do not result in sub-
stitutions. In turn, our inferences for classic sweeps may reflect a combination of different kinds
of sweeps. These results echo other theoretical and empirical results highlighting the importance
of other modes of positive selection, notably of partial and soft sweeps [27–31,77–81].

The question about the relative contribution of different modes of linked selection can
therefore be rephrased in terms of the contributions of background selection, classic sweeps
and other modes of linked selection. If we assume that our combined model fully accounts for
the reduction in diversity levels due to linked selection and that the effects of background selec-
tion are captured by our inferences excluding the strong selected mass, then 12% of the increase
in coalescence rate due to linked selection is the result of background selection (estimates in
this paragraph correspond to the model with 5 point masses). Further assuming that our infer-
ences about classic sweeps can reflect any combination of classic and other kinds of sweeps
resulting in fixation, and that the remaining effects are the outcome of other modes of linked
selection, then we would conclude that roughly 0 to 29% of coalescent events are due to classic
sweeps and the remaining 88 to 59%, respectively, are due to other modes of linked selection.

Implications for Drosophila and other taxa
Despite unresolved questions about linked selection, the maps do well at predicting diversity
levels at the 1Mb scale (Fig 2), the substantial stratification of diversity levels throughout the
genome (Fig 6) and the diversity patterns around different annotations (Figs 3, 4 and 5). This
predictive ability is explained in part by the effects of linked selection already well captured by
our current approach, e.g., the effects of sweeps that result in substitutions. Also important,
however, is the robustness of the inferred map of linked selection to model misspecification.
For instance, our map performs well even though the effects of background selection may
reflect a substantial contribution of other modes of linked selection and despite an averaging
effect owing to the imprecise annotations. Moreover, at this scale, the performance is fairly
insensitive to variations of the model (e.g., imposing a bound on the deleterious mutation rate),
suggesting that these features play a relatively minor role. Thus, while the spatial resolution of
maps of linked selection in Drosophila (and other taxa) is expected to improve with better
genetic maps, annotations and models, we can already do quite well. One implication is that
our approach already generates substantially improved null models for population genetic
inferences about demography and scans of selection.

The reliability of our inferences about selection critically depends on well-localized annota-
tions and on the distance between these annotations and the putatively neutral sites used to
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measure diversity levels. For these reasons, we obtain reliable estimates for sweeps resulting in
substitutions at exons and UTRs and distinguish their contribution from other forms of linked
selection, but cannot achieve similarly reliable estimates for other modes and annotations. It
follows that in applications to other species, we would expect the reliability of estimates to
depend both on the quality of annotations and on genome architecture. Human data may be
particularly well suited, as there are higher-resolution annotations as well as phylogeny-based
information about conservation in both coding and non-coding regions. In addition, properties
of the genome architecture, notably the lower density of selected regions [87], may help to dis-
tinguish effects of different annotations and modes of linked selection.

In both Drosophila and humans, one area that will need further work is the inclusion of
other modes of selection. In that regard, it is interesting to note that our results mirror similar
finding in humans: inferences about background selection in McVicker et al. [18] also led to
too large a rate of deleterious mutation and work done since suggests that classic sweeps con-
tribute little to the effects of linked selection on genetic variation [49,77,78]. Taken together
with other empirical evidence and modeling [27–30,77,79,80,83], these results strongly suggest
that other modes of linked selection and of adaptation in particular play a central role in both
Drosophila and humans.

It might be difficult to distinguish between different kinds of sweeps based on their foot-
prints around substitutions, especially given the many additional parameters for each if they
act in concert (S1D Text). Additional footprints of selection are likely to be needed. Notably,
there is likely to be important information about alternative modes of sweeps in diversity levels
and patterns of linkage disequilibrium around amino acid polymorphisms [22,80,88].

Another pertinent extension will be to incorporate more realistic demographic assumptions.
Like many other methods aimed at quantifying the genome-wide effects of linked selection to
date [10,12,18], our model implicitly assumes a panmictic population of constant size. While
we focus on a single population, and hence our assumption of random-mating is appropriate,
our assumption of a constant size is likely invalid [66,67,89,90]. However, our inference
method should be fairly insensitive to changes in the population size, because demographic his-
tory should affect different genomic regions similarly, regardless of annotations or other
aspects of genomic architecture. Since our method learns about modes of selection and their
parameters by contrasting diversity patterns among regions with different properties, it should
implicitly control for much of the effects of demography. Having said that, drastic changes in
population size could change the efficacy of selection and thus influence our estimates of the
distribution of selection coefficients. In addition, regions with different effective population
sizes due to linked selection could differ in their transient responses to demographic changes,
potentially affecting our inferences. Accounting for these effects is difficult, however. More-
over, existing demographic inferences for North American D.melanogaster are confounded by
the pervasive effects of linked selection. The methods developed here offer a way forward in
inferring demography in the presence of linked selection as our map of linked selection could
be factored into such analyses.

While these extensions will be important, our current application to Drosophila already
reveals that the effects of linked selection are greater than previously assumed, by taking into
account spatial features of genome architecture that were previously averaged out. Even
excluding low recombination regions, our results suggest high heterogeneity in expected diver-
sity levels due to linked selection (Fig 6B) and an overall reduction in diversity levels of at least
two-fold. Applying our approach to other taxa will reveal whether linked selection is having a
similarly large effect in other species, and is an important contributor to the apparent discon-
nect between census and effective population sizes [2,23–26].
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