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Abstract 

People need to generate and test hypotheses in order to create 
accurate representations of their environments. But how do 
they know which hypotheses to consider when there are often 
infinitely many possibilities? Here we explore the idea that 
evolutionary mental representation generation and selection 
processes – responsible for the generation of both local (i.e., 
within a task) and global (i.e., about a task) representations – 
enable people to address this problem. We investigated this 
through an active learning experiment, where participants’ task 
was to discover a hidden rule determining the behavior of a 
simple physical system. Specifically, we aimed to manipulate 
factors that constrain this process, particularly through 
experimental instructions and feedback. We found that 
providing more opportunities for participants to recognize 
when their initial task conceptualization was wrong and adjust 
it helped them create more accurate representations about the 
task, which in turn led to better accuracy within the task.  
Keywords: active learning; constructive models; hypothesis 
generation and selection  

Introduction 
Building and maintaining a representation of the world seems 
to involve ongoing processes of generating, testing, and 
revising hypotheses at different levels and scales of 
abstraction (Szollosi & Newell, 2020). Psychologists have 
typically investigated human learning by studying behavior 
in tasks with carefully selected fixed and finite dimensions. 
However, there is considerable variation in how much effort 
is then made to bring participants’ task conceptualization in 
line with the experimenters’. We explore the idea that 
participants often represent tasks quite differently to 
experimenters, in spite of instruction, unless they are 
provided with ample opportunities to recognize and correct 
inconsistencies. We suggest this leads to a pervasive pattern 
of analyses that mistake representational differences for 
simple lapses or randomness. 

To generate hypotheses worth entertaining (out of an often-
infinite set of possibilities) in a particular environment, 
people first need to create a reasonably good representation 
of the rules and affordances of that environment. A person 
trying to pick their next move in a game of chess must first 
establish how the pieces are allowed to move, what the 
exceptions to those rules are, and what the goal of the game 
is. A plumber trying to find the cause of a blockage needs to 
first have a good model of how pipes work and what stops 
them from working. A gardener trying to decide which tree 
to plant in a particular garden needs to first have a good model 
of the conditions of the garden, and about the kinds of trees 
that prefer those conditions. The common theme across these 

situations is that, in order to be able to create and test 
appropriate hypotheses, people need to have an apt 
representation of the problem situation in the first place – 
otherwise they are liable to waste time and resources trying 
things that will not work or cannot be right. 

Despite the importance of developing an accurate 
representation of the problem situation at hand, theories of 
learning and decision making often neglect to explain how 
people achieve this. Instead, they tend to start at the point 
where the task representation is already built – for example, 
by assuming that participants have perfectly recreated the 
intended structure and affordances of an experiment based on 
its description in the instructions. Yet there is ample evidence 
that people make errors when developing task representations 
for a variety of reasons – such as not sharing the background 
knowledge on which the task is based (Szollosi et al., 2023), 
inferring not (necessarily) intended implications of the 
experimenter’s communicative acts (Hilton, 1995), or simply 
not caring enough about the task to invest a lot of mental 
effort into developing a good representation of it (Tversky & 
Kahneman, 1974).  

This paper aims to start filling this gap in our understanding 
by exploring the processes by which task representations 
develop. We construe this as a more general evolutionary-like 
representation generation and selection process (labelled as 
such by Campbell, 1960; but also frequently related to 
“constructivism” in other parts of the literature, e.g., Carey, 
2009), according to which all types of representations are 
generated by alternating cycles of variance-increasing and 
selective-retention processes (i.e., two alternating processes, 
the first of which expands or explores the space of possible 
representations, and the second of which selectively retains 
some subset of the representations under consideration). 
These processes enable the creation of not only proximal 
hypotheses (i.e., within the task) but also more global ones 
(i.e., about the task itself). They are similar in some ways to 
the processes of variation and selective retention (through 
genetic mutation and natural selection) that drive biological 
evolution. 

Although such evolutionary-type theories do not make 
predictions about modal responses (in contrast with 
conventional theories in psychology), they make predictions 
about variability (Campbell, 1960; Szollosi et al., 2023). 
Specifically, they predict variability in responses (outputs, 
products, or behaviors) to change as a function of selection 
pressures: When selection pressures increase, we should 
expect the range of responses to reduce, and conversely when 
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they decrease, we should expect the range of responses to 
increase (similar to how historically speciation has arisen 
predominantly in periods of abundance but decreased during 
periods of hardship or scarcity). In learning, we can think of 
selection pressures (or constraints) coming from the act of 
comparing hypotheses to observations (evidence or feedback 
from the environment), but they can come equally from other 
information (such as task instructions, pre-existing 
representations of similar contexts, etc.). Here, we aimed to 
probe both sources. 

Active learning tasks (e.g., Bramley et al., 2015; Markant 
& Gureckis, 2014) provide a natural testing ground for such 
predictions, because they are deliberately unconstrained, 
allowing a broader view of the hypothesis generation and 
selection process. Here we used a simple rule-discovery task 
(based on Bramley et al., 2018) in which participants had to 
identify a hidden rule guiding the behavior of simple physical 
environments by actively manipulating and testing those 
environments. This task models well the relevant 
characteristics of real environments (i.e., a mixture of known 
and unknown processes that people need to understand to 
increase control over the environment – similar to our real-
world examples above) and so enables the study of the 
processes responsible for creating representations of them.  

To better understand how people’s task representations 
develop and how this affects their within-task behavior, we 
aimed to experimentally manipulate constraints on task 
understanding (through instruction, examples, and 
comprehension tests before the task) and rule sparsity 
(through environmental feedback within the task). We 
expected that increasing instructional constraints – going 
from only a minimal description of the task, to providing 
illustrative examples about relevant hypotheses, to testing 

participants knowledge on what the rules can be – would help 
participants in narrowing their task representation (i.e., align 
it better with the intended representation) and consequently 
in generating more appropriate hypotheses to test. We also 
expected that by introducing increasingly constraining rules 
(through manipulating rule sparsity, the proportion of 
possible tests resulting in a positive outcome) would further 
constrain the set of hypotheses participants entertained – on 
the assumption that tests with negative outcomes provide 
more opportunities to learn about the constraints of the space. 

Methods 

Participants and materials 
We recruited 101 participants on Prolific academic. They 
were paid a flat fee of GBP 2.50. The experiment was based 
on Bramley et al. (2018) and took participants 25 minutes to 
complete on average.  

General structure of the task 
Participants were given an “alien planet” cover story in which 
their task was to discover a rule for how to arrange rocks so 
that they emit radiation when heated. The rocks varied along 
two features: shape (stick, square, triangle) and color (red, 
green, purple). The rule set was restricted such that they 
specified that an arrangement must contain either exactly one, 
two, or three rocks of a specific feature to produce radiation 
(e.g., “There is exactly one red rock”). A schematic 
illustration of the procedure can be seen in the top panel of 
Figure 1. 

After receiving instructions imposing varying levels of 
constraints (manipulated between-subjects, see below), 

 
 

Figure 1: Schematic illustration of the design. Top panel: General structure of the task. Bottom panel: Example of a trial 
(actual data of Participant #21). 
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participants completed three trials each consisting of a 
learning phase and a generalization phase. Participants had to 
discover a different rule in each of the three trials 
(manipulated within-subjects, see below).  

In the learning phase, participants were shown an initial 
example arrangement that followed the rule1 and then 
performed 7 tests themselves by constructing arrangements 
on their own (bottom-left panel on Figure 1). Each test scene 
started with no rocks in it. They were allowed to add and 
remove any rock to a test arrangement, which could consist 
of up to three rocks (but at least one). Once they were 
satisfied with the test arrangement they clicked “Test”, which 
resulted in feedback as to whether the arrangement caused 
radiation2.   

In the generalization phase, participants were asked to 
identify the rule-consistent arrangements out of 8 
possibilities (bottom-right panel on Figure 1). They had to 
select at least one but could not select all of them. The 
arrangements were selected in advance such that 4 were rule 
consistent and the other 4 were not. They were presented in a 
randomized order to each participant. After this task, 
participants were asked to verbally state what they thought 
the rule was (“Now that you had the opportunity to test 
various arrangements, what do you think the rule is for how 
to set up arrangements to create radiation on this planet? Try 
to make your description as clear and specific as possible.”). 

Experimental manipulations 
The experiment used a 3 × 3 design (instruction constraint × 
rule constraint). For the instruction constraint manipulation, 
participants received the instructions of varying complexity. 
In the least restrictive condition (n = 37), participants were 
only informed about the main goal of the experiment (i.e., to 
discover the hidden rule that produces radiation), and the 
mechanisms by which they can construct and test 
arrangements. They had to correctly complete a generic 
attention check questionnaire (which aimed to test whether 
they paid attention to surface-level features of the 
instructions, such as the color and shape of the rocks, and the 
method to test whether an arrangement causes radiation) to 
continue and had to repeat the instruction phase if they failed. 
In the moderately restrictive condition (n = 34), in addition 
to the previous, participants were told that “As you just saw, 
the rules specify that an exact number of rock(s) of either a 
specific color or shape must be present for a type of radiation 
to appear” and were shown example positive and negative 
tests for three hypothetical rules3. In the most restrictive 
condition (n = 30), participants had to additionally categorize 

 
1 This initial example was chosen such that it showed a rock / 

multiple rocks with the feature (i.e., shape or color) designated by 
the rule for that trial (more details about rules are given under the 
Experimental Manipulations section). The other feature(s) of the 
rock(s) (i.e., color or shape) was/were counterbalanced. No other 
rocks were shown in these examples. 
2 After each test, participants were asked to give free text response 

to the question: “Please explain what you expected to learn about 
the rule by constructing the arrangement in this particular way and 

five rules as to whether they were possible or impossible 
under the instructions (e.g., “There are exactly two green 
rocks” – possible; “There is exactly one purple square-shaped 
rock” – impossible). They had to repeat the instruction phase 
if they failed. The aim of this manipulation was to 
increasingly constrain the ways in which participants could 
construe the task itself, and therefore the possible hypotheses 
they might generate and test in the trials. 

For the rule constraint manipulation, on each trial, 
participants were assigned a rule that they needed to discover, 
which specified the number and feature of rocks that must be 
present (i.e., that there must be exactly one, two, or three 
rocks of a specific feature present). Every aspect of this rule 
was completely hidden from the participants. Each 
participant received (in a randomized order) a trial where the 
rule referred to one rock, a trial where the rule referred to two 
rocks, and a trial where the rule referred to three rocks. The 
specific feature that the rules referred to (a specific shape or 
color) was randomly drawn from all possible features on each 
trial. The aim of this manipulation was to constrain the set of 
possible arrangements (or, in other words, rule sparsity) that 
would produce a positive outcome (38.36%, 19.18%, and 
4.57% of all possible arrangements for the one, two, and three 
rule conditions respectively).  

Dependent variables 
We aimed to assess the effects of our manipulations on 
multiple measures. Our main dependent variable was how 
well participants identified the rule as measured by 
generalization accuracy (i.e., the number of arrangements 
correctly categorized as rule following or not rule following 
out of a total of 8 arrangements shown in the test phase). This 
measure was supplemented by verbal reports of the rule (both 
their accuracy and variability; see Results for details).  

To get at the processes underlying participants’ 
representation building in even greater detail, we also 
analyzed measures of active learning. We used the difference 
between the proportion of tests producing positive outcomes 
and the proportion of such tests expected under random 
testing as a crude measure of the sensibility of participants’ 
hypotheses (i.e., whether their hypotheses mapped onto some 
aspects of the real rules at all). To get a better measure of how 
informative participants’ tests were over the course of each 
trial, we compared them to ideal observer models with initial 
hypothesis spaces of varying complexity. 

why?” This question was included to inspire a follow-up 
experiment, so we do not analyze these responses in the present 
paper. 
3 Since the test cases were independently counterbalanced, 

occasionally they would coincide with one or more of the examples. 
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Results 
We analyzed the data in R (R Core team, 2022) using RStudio 
(Posit Team, 2022). We used the lme4 package (Bates et al., 
2015) for mixed-effect modeling, and the ggplot2 package 
(Wickham, 2016) for creating the figures.  

To evaluate the effects of our manipulations, we predicted 
the various outcome measures using general or generalized 
linear models. We added predictors (instruction condition, 
rule condition, and their interaction) stepwise to the model 
and compared them to each other in most cases (deviations 
from this are noted in the relevant sections). Participants had 
random intercepts in all models. Reported test statistics 
reflect model comparisons between the two best fitting 
models.  

The rule guesses were categorized by the first two authors 
as correct or incorrect. Agreement was 85.48%; Cohen’s 
Kappa also indicated substantial agreement k = .70, p < .001. 
In cases of disagreement, the first author revisited the rule 
and made the final decision. In addition, to have a better 
understanding of the variability of inaccurate rule guesses, 
the second author developed and applied a categorization 
scheme for all free text responses based on logical 
equivalence for the possible scenes in the task.  

Accuracy 
Figure 2 displays participants’ generalization accuracy 
broken down by experimental conditions. Generalization 
accuracy was best predicted in the model that included 
instruction and rule condition, but not their interaction, χ2(2, 
N = 7) = 53.52, p < .001. Generalization accuracy (i.e., 
number of arrangements correctly categorized as rule-
following/not-rule-following out of 8) increased both as a 
instructional constraints (MLeast = 5.68, SELeast = 0.14, 
MModerate = 6.32, SEModerate = 0.18, MMost = 7.14, SEMost = 0.16) 
and rule constraints (MOne X = 5.84, SEOne X =  0.15, MTwo X = 
6.10, SETwo X = 0.14, MThree X = 7.05, SEThree X = 0.14) 
increased.  

The pattern was the same for verbal reports of the rule (also 
shown on Figure 2). Accuracy of verbal reports was predicted 
best by a model that included instruction and rule condition, 
but not their interaction, χ2(2, N = 6) = 7.39, p = .002. 

Accuracy improved with increasing instructional constraints 
and was 44.14%, 52.94%, and 74.44% in the least, 
moderately, and most restrictive conditions respectively. 
Similarly, accuracy improved with increasing rule constraints 
and was 47.52%, 56.44%, and 64.36% in the conditions 
where rules referred to one, two, or three features 
respectively. 

Rule guess accuracy also predicted generalization accuracy 
(compared to a null model), χ2(1, N = 4) = 111.25, p < .001, 
such that generalization accuracy was higher when 
participants’ guess about the hidden rule was correct, β = 
1.73, SE = 0.15.  

Figure 3 indicates that guessed rules were increasingly less 
varied as instructional constraints increased: there were 35, 
30, and 19 unique categories of rule reports in the least, 
moderately, and most restrictive conditions respectively. As 
an illustration, in Table 1, we provide some examples of 
participants’ guesses.  
 

Table 1: Examples of verbal report guesses. 

Active learning  
Figure 4 summarizes aggregate positive outcome proportion 
(i.e., the proportion of arrangements participants generated 
that produced radiation) across conditions. We expected 
participants to construct fewer arrangements leading to 
positive outcomes as rule sparsity increased, since there were 
fewer arrangements that would yield a positive outcome in 
those cases (this was because of the restriction on the number 
of objects that may be added to an arrangement). True 
proportions were 38.36%, 19.18%, and 4.57% in the 

Guess category 
(Instruction condition) Example 

Accurate guess 
(‘Most’) “Exactly 3 triangle rocks” 

Conjunctive rule 
(‘Moderate’) “2 green square rocks” 

Disjunctive rule 
(‘Moderate’) 

“I think it must include a red 
triangle, or it could include any 
coloured triangle” 

Uncategorized 
(‘Least’) 

“Must contain at least 2 
squares either both red or 1 red 
and 1 green” 

 
Figure 2: Participants’ generalization accuracy (boxplots) and 
rule-guess accuracy (individual dots; green = accurate, red = 
inaccurate) broken down by experimental conditions. 
Individual dots reflect individual participants. 
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Figure 3: Variability in rule reports. White indicates correctly 
guessed rule. Grey indicates inaccurate uncategorized 
guesses. Other colors indicate alternative inaccurate guesses. 
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conditions where rules referred to one, two, or three features 
respectively (indicated by red stars on Figure 4). A model that 
included rule constraints as a predictor performed better than 
a null model, χ2(2, N = 4) = 15.27, p < .001, and adding other 
predictors did not significantly increase model fit. The 
proportion of tests with positive outcomes was 62%, 57.3%, 
and 52.6% in the conditions where rules referred to one, two, 
or three features respectively – substantially higher than what 
these proportions would have been if arrangements were 
constructed at random. 

For a more detailed analysis of the temporal trajectory of 
participants’ active learning, we calculated the Shannon 
entropy (Shannon, 1951), 𝐻(. ), on each of their tests with 
respect to the intended hypothesis space 𝑅 (i.e., the 18 
hypotheses specifying the exact number of a single feature 
that needs to be present in an arrangement), and also with 
respect to a larger hypothesis space 𝑅! (a total of 1118 
hypotheses) containing the intended one, plus conjunctive 
hypotheses (i.e., hypotheses specifying the exact number of 
conjoined shape and color features that need to be present), 
and relaxed variations of both (i.e., the number of features 
could be specified as ‘at least’ and ‘at most’ – an example 
hypothesis from the most relaxed space is “There are at least 
two blues and there is exactly one blue triangle”). Through 
this measure, we aimed to quantify the quality of participants’ 
test arrangements based on how much reduction in 
uncertainty they achieved – taking into account the relevant 
set of hypotheses, past evidence, and possible other test 
arrangements. We assumed a uniform prior over legal 
hypotheses in both spaces. 𝐻(. ) was calculated according to 

 
 
 (1) 
 
 

where 𝑟 ∈ 𝑅 are the hypothetical rules, and 𝐷 is the data the 
participant has seen up to that test. 

Figure 5 displays the temporal trajectory of entropy for 
both the intended and extended hypothesis spaces (reflecting 
the extent to which participants reduced their uncertainty by 
that point within the respective spaces). For the intended set, 

only in the clearest instruction condition could all participants 
reduce their uncertainty to zero (and only for the one/two 
feature rule conditions) over the course of the 7 tests (for the 
1st position we plotted, the example was given to the 
participants). For the extended set, participants achieved 
substantial uncertainty reduction in all conditions, although 
participants in the clearest instruction condition seemed to 
retain some advantage over other conditions. 

Discussion 
We investigated how people generate and refine hypotheses 
in and about an active learning task. We gradually increased 
constraints through experimental instructions and task 
feedback. Our results were in line with our expectations: 
With more constraints imposed, participants’ 
representational variability decreased, and their accuracy 
increased. We explained this as a result of their task 
representation becoming better aligned with the intended 
representation of the task. Although these findings may seem 
self-evident from a commonsense perspective, they are 
surprising under accounts of learning and decision making 
that implicitly assume that people spontaneously represent 
tasks as intended by the researcher – under such accounts, we 
should have observed consistently close to ceiling 
performance.   

We found that increasing instructional constraints resulted 
in both better generalization accuracy and more correct rule 
guesses. In addition, their final rule guesses were less 
variable. Participants also appeared to generate more 
informative tests (and quicker) in the most constraining 
condition according to normative measures. These results are 
consistent with our explanation that participants used 
instructional information to refine their task representation – 
which led to a narrower (and more appropriate) hypothesis 

 
Figure 4: Proportion of tests with positive outcomes broken 
down by experimental conditions. Individual dots reflect 
aggregate positive tests for individual participants for each 
trial. Red stars indicate overall proportion of possible 
arrangements consistent with the rule. 
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Figure 5: Average change in entropy over tests broken down 
by experimental conditions. Error bars reflect standard error. 
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set to test, which in turn gave them a better chance of 
discovering the intended rule. The results also dovetail with 
Bonawitz and colleagues’ (2011) finding that children’s 
learning was improved (but their spontaneous exploration 
decreased) as instructions about how to use a toy were made 
increasingly clear. 

Participants’ responses were affected similarly by the 
constraining influence of feedback caused by the true rule’s 
sparsity. Specifically, in conditions where the expected 
positive outcome rate was lowest (where all three objects had 
to have a feature in common), participants’ accuracy was 
highest. Our explanation for this is that because in these 
conditions participants’ hypotheses were exposed to more 
disconfirmation (i.e., their tests had more negative 
outcomes), they had more opportunities to learn when they 
were wrong and could adjust their hypotheses accordingly. 
Alternatively, however, it could be the case that initially 
provided examples helped people in narrowing the 
hypothesis space even before any testing took place, because 
they could be used as anchors to base further hypotheses on 
(these anchors could be helpful in figuring out the intended 
hypotheses because the examples given to the participants did 
not contain potentially misleading additional rocks, e.g., as 
shown on Figure 1). Future research may manipulate initial 
examples independently to tease apart these explanations. 

These results further highlight the problem with the general 
assumption that participants’ task representation largely 
aligns with the experimenters’. The more general 
evolutionary/constructive view we have advocated here 
implies that solving a task also involves creating a 
representation of the task – and if the experimenter does not 
provide enough help for the participant to recreate the 
intended representation, then they might end up solving a 
different task. The misrepresented task might be more 
difficult to solve (as was the case in some conditions of the 
current study) and correct answers may differ from those of 
the intended task – making the evaluation of the adequacy of 
participants’ actions and responses difficult at best. For 
instance, a researcher may mistakenly conclude that 
participants are generally bad at solving such tasks, when in 
fact it was the researcher who did not give instructions 
appropriately (McKenzie, 2003; Szollosi & Newell, 2020). 

A more in-depth consideration of the issue of creating task 
representations might also be relevant for artificial 
intelligence research, where such representations are often 
hand-coded into models (e.g., the rules of chess). If the aim 
is to make such models more human-like in terms of 
generality – for example, to allow them to perform better in 
one-shot learning and/or transfer to novel environments – a 
better understanding of the processes responsible for domain-
general representation generation is likely to be key.  

Although the current findings showed how introducing 
constraints at different points of the representation-
generation process influences people’s representations about 
and within a task, it is yet unclear how these constraints get 
incorporated into the variation and selection learning cycles. 
One approach is to use constraints just for selection, perhaps 

discarding and regenerating representations that mismatch 
feedback. Another approach could be to use feedback to 
adapt one’s construction process such that it is more likely to 
create appropriate representations (cf. Cropper, 2022). We 
speculate human learning makes use of both constraint 
mechanisms. Using grammar-based algorithms, recent work 
has begun to model learning on such tasks assuming that 
people continually make local edits to existing 
representations and preferentially retain those that are better 
adapted to their objective (e.g., Bramley et al., 2017; Zhao et 
al., 2022). Such algorithms might also be adapted to model 
the constraint mechanisms explored in the current paper. 

Future research can further investigate implications of the 
evolutionary-type representation-generation processes we 
argued for in this paper – for example, identifying where they 
diverge from probability-respecting mutation algorithms like 
MCMC, and by probing other “pinch points” in the 
representation generation process. Here we focused on 
constraints at the beginning and end of the process 
(instructions and environmental feedback respectively) – but 
there are other possibilities, including constraining the 
process through the information provided in examples, or 
through teaching people more or less suitable active learning 
strategies for testing their hypotheses.  
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