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A. E. Glassgold 
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September 2, 1959 

ABSTRACT 

Collective qscillations for an infinite system of ferii\io:ns are dis-

cussed for the general case where the. force between two particles depends 

.on the internal variables as well as on their relative separation and 

_momentum. Two theories are reviewed, one byrWatson, Heckrotte,. and 

Glass gold which is based, on Sawada'' s treatment of the electron gas, and 

the other, a semiclassical treatment by Landau. 
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COLLECTIVE OSCILLATIONS OF A SYSTEM OF INTERACTING FERMIONS., 

A. E. Glassgold 

Lawrence·Radiation Laboratory 
University of California 

Berkeley,. California 

Septer.nber 2, 1959 

I. INTRODUCTION 

The quantur.n r.nechanical probler.n of the degenerate electron gas 

has received a great deal of attention in recent years. Significant progress 

has been r.nade in calculating the grcmnd state energy. and properties of the 

excited states. particularly the collective aspects' of this r.nany~ body syste.r.n. 

There are, of course, other infinite syster.ns of particles obeying Ferr.ni-

Dirac statistics which are of interest. As exar.nples, we r.nay r.nention the 

low-ter.nperature behavior of liquid He 
3 

or the popular abstraction called 

nuclear r.natter. In connection with the collective r.notions, the novel aspect 

of such syster.ns is that the internal variables, such as spin and isotopic 

spin,. are now ir.nportant. This occurs because the force between two heliurn 

ator.ns or between two nucleons depends strongly on the internal variables. 

On the other hand, the only force 'between two nonrelativistic electrons is 

the far.niliar spin-independent Coulor.nb repulsion. We are thus led to ·expect 

new kinds of collective oscillations for general ferr.nion syster.ns besides the 

far.niliar plasr.na oscillations of the electron gas. 

):( 

Paper read at the 1959 International Plasr.na Physics Institute held at 

the University of Washington, Seattle, August 31 to Septer.nber 5, 1959. 

This work was perforr.ned under the auspices of the U.S. Ator.nic Energy 

Cor.nr.nis sion. 
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Oscillations of this type were first considered by-Klimontovich and 

Silin
1 

and by Ferentz, Gell-Mann, and Pines
2 

in 1952. Starting in 1956, 

Landau andhis school developed the theory of the Fermi liquid, with He
3 

in mind as the important application. 
3 

As will be discussed below, this 

theory has marked classical and phenomenological aspects. A review of 

this work by Abrikosov and Khalatnikov has recently appeared in translation. 
4 

5 
Independently, Watson, Heckrotte, and the author developed a theory for the 

collective oscillations_ of fermion systems and applied it to the problem of 

nuclear matter. This treatment is a generalization of the theory of the electron 

6 
gas as formulated by, Sawada. As such, it is .more of a microscopic treat-

ment than is Landau 1 s approach. In the rest of this report,. the es.sential 

steps and results of this procedure will be reviewed. Then Landau's theory 

will also be discussed briefly. A detailed discussion of the application of 

these theories to He
3 

and nuclear matter will not be presented here. Such 

discussion may be found in the literature. 
4

• 5 

II. THE COMPLETE HAMILTONIAN 

The introduction oL)more general kinds of forces leads to interesting 

. new phenomena, but naturally at the expense of more complicated calculations. 

The difficulties arise from the simple increase in the number of degrees of 

freedom and from the complicated nature of the force law. To be more specific, 

the interaction between two particles in He
3 

or nuclear matter, for example, 

. involves a repulsive core for small separations with a relatively weak 

attractive region outside. In other words, the interaction is strongly 

. momentum-dependent and also depends on spin .(and isotopic spin). 

To handle this difficult situation, we adopt the following popular 

point of view. We assume that the states of the system bear some re-

semblance to the ideal Fermi gas in spite of the strong interactions: To 
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first approximation, we now have a system of noninteracti,ng quasiparticles 

whose effective mass is different thanthe particle.mass .. The interaction 

betweenthe quasiparticles is considerably weaker and better behaved than 

the actual force law between the particles. With reference to nuclear matter 
. 7 

we are, of course,_ thinking of Brueckner 1 s theory. 

We -will let P = {j?, X.) label the state of a quasiparticle, where R 

is the momentum and X. is the set of internal variables such as spin, 

isotopic spin, etc. In the language of second quantization, 

are the operators which create and destroy a quasiparticle in state P. These 

operators obey the anticommutation rules for ferrn,ions 

Here P = P' requires every quantum number of the two states to be the 

same. In terms of these operators, it is assumed that the Hamiltonian can 

be written as 

t 2~ p f. p 1- p ij 

1 2 1 2 

(P 1--p I 

1 2 

I E 
P<P p 

0 

( 1) 

where n is simply the volume of the quantization box,;:arid P ( P
0 

means 

that the sum .is restricted to p' = ]2--. I (p
0

. Here p
0 

is the Fermi momentum 

4n 3 N 
Po n = 

3 s 

where N is the total number of particles, S is the number of internal 

3 
variables (S = 2 for He , S .= 4 for nuclear matter, etc. )11 and Planck's 

constant has been set equal to unity. 
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The interaction between the quasiparticles is given by the operator 

K, and its matrix elements depend on the states of the two particles before 

(P
1

, P~) and after (P 
1

•, P 
2

1 ) "scattering". The form of the matrix elements 

is restricted by various conservation laws, e. g., momentum conservation 

requires ,!I + j 2 = g 1 
1 + ,ez.' • (We shall not discuss here the_ ,J.,ay this 

operator is determined in the Brueckner theory, and we may even regard 

it phenomenologically.) The constant EB is the average value of H fi:r:r. the 

ground state~ <Po of the system of noninteracting quasi particles, i. e. the 

+ state in which apap = 1 for P ( P
0 

and 0 for P> P
0

. Thus we have 

1 

2n (P1 Pz/ Kl P 2P 1] 

( 2) 

The prime ·on the second summation in Eq. (1) means that the terms diagonal 

for <Po. have been excluded. Finally the energy_ of the quasi particles is 

Ep = 
1 

1 
+ IT 

It will be convenient to write E near p
0 

approximately as 
pl 

where M* is the effective mass at the Fermi surface. 

' 
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III. SAWADA1 S APPROXIMATION 

The procedure adopted for solving the above Hamiltonian is .to break 

the interaction into two parts. One part can easily be diagonalized and has 

collective eigenstates. The other part presumably will cause only small 

effects when treated as a perturbation. 

In order to define this separation we introduce particle and hole 

operators: 

P )Po 
+ P> P 0 ap , ap 

a = a :t = p p 

13p 
+ 

P (Po 13p P(P
0 

The momentum associated with a particle operator is always greater than 

p
0

, the momentum associated with a hole is always less than p
0

. Next we 

combine these into pair-creation and annihilation operators: 

+ 
'{ P' p = + A.+ 

a ps t-" p 

The first momentum associated with a pair operator is always greater than 

Po• the second is always less than p
0

. (These conditions, associated with 

the definition of particle and holes, will not usually be written explicitly 

in what follows. ) 

I£ we now examine the potential energy of interactions of the 

quasiparticles, 

1 

2!.1 
(P I p 1 

1 2 

we can consider 16 classe~. of terms. These 16 classes arise from the 
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two possibilities available for each of the four' momenta, p 1 
1

, p 1 
2p 2 , and 

p
1

, i.e. each momentum is either less than or greater than ~Po· Of these 

16 classes there are 6 that refer only to pairs as just defined, i.e. terms 

in which two momenta are less than p
0 

and two are greater than ~Po· 

V is the part of the interaction which is to be treated seriously and V 1 

If 

the part to be considered as a perturbation, then the 10 cl:asses of terms 

which are not pair terms are certainly included in V 1 • Of the pair terms 

we include the four which can be written as 

V= 
1 (P I p 1 

1 2 2n 
(3) 

+ ) ( + X 'Yp I p + :V,p p I 'Yp I p + 'Yp p I) 
11 11 2 2 2 2 

Each term includes operators which (a) create two pairs (y + p 1 p 'I+ p 1 p ) 
1 1 2 2 

and (c) transform one pair into (b) destroy two pairs (Yp p 1 'Yp p 1 ) 

+ 1 1 +2 2 
another (Yp p 1 y p 1 p + y p 1 p 'lp p 1 ). The exchange terms for 

11 2 2 11 22 
this last type (in which P 2 and P 2

1 are interchanged) have not been included 

and appear instead in V 1 • (A certain amount of reordering has also been 

done in obtaining the symmetrical form of Eq. (3). and certain trivial 

additions have been made to V 1 to compensate.) Finally, the kinetic energy 

is 

K= [ (4) 
p 

The complete Hamiltonian is 

H = EB + K + v + v•, (5) 

where H, EB, K, and V are given by Eqs. (1) to (4), and 
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V 1 = H - (EB + K + V). We now solve the truncated Hamiltonian 

(6) 

+ by making the further assumption that the pair operators '{ pl_ p and 

'Yp• p satisfy boson commutation relations: 

With this assumption it can be shown that 

[
'Ypr+ p KJ = -

1 1' -

and 

+ 
(e p I - E p ) 'Ypl p 

1 1 1 1 

1 

n 
L 

p p .i 
.2 2 

'Yp I PJ 
2 2 -

=0. {7) 

From this result it follows that the excitation energies (and the operators 

creating the excited states from the ground state) can be determined exactly 

with standard matrix procedures. 

If t~;0 is the ground state of fio, then it can be shown that the 

operator Bq +, which creates the excited state Bq +4;
0 

with momentum q 

and excitation energy AEq = Eq - _E
0

, has the following properties: 

rO'Bq+J_ = AE B + 
q g 

r B +J = 6 rq~ B J = 0 
ql 9.2 _ glq2 , q2 

+ ' B = il-
q pp• 

(-) l 
- GP'P YppJ · 

The new notation here is that P = (p,- >..). The expansion coefficients satisfy 
-'I 

the eigenvalue equation (for p 7 
1 = p

2 
+ q): 

~ .,.,.._-
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'L (Pl 'P21 KIPlP2 1)(cJ+.>p +~(~b ). 
plplt 1 1 1 1 

1 

Here Gp 1 p (+) is defined only for p ( p
0 

and p 1 > l,e + ;LI, whereas 

GP' p(-) is defined only for p ) p 0 and p 1 < (2_ + ~l . 
The properties of the excited states have been investigated in detail 

by Sawada and Brout and others. There are, first of all, simple pair 

excitations with excitation energy: 

Lpq: 'p+q 'p N ~ + 3)2 - pz] /2M* 

In addition there are the genuine collective excitations whose excitation 

energy will be represented by 6.E 
q 

Some properties of these states will 

be discussed in detail in the next section. 

Before proceeding, we note that if a wave packet is formed from 

the collective states, the state of the system has the form 

-iE0t o1. + ~ -i(E0 +6.Eq)t + 
ljJ = e '~"o L c e B 4;0 . q q q 

The density of particles at (lS t) is given by the expectation value of the 

density operator, 

fi·-x. = 
1 

n ppl 

For small deviations from the average density, this is 

where we have 
~ i ( q. X - 6.E t) 
L c e -- q 
q q 

~{G (+) _ :t G (-) 
L p+q,·-_q;-X.- x. p+q, -q_; 
p 

x2Re [ ~ (8) 
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This shows that, for small-amplitude oscillations, the G(±) functions are 

linearly related to the density fluctuations. 

IV, PROPERTIES OF THE COLLECTIVE MODES 

In order to study the properties of these solutions it is useful to 

consider simple forms for the interaction K between quasi particles. As 

a simple example we consider 

Because v depends only on the momentum transfer, this is an ordinary 

local interaction. Note that it is not an exchange interaction, but simply a 

force where the strength depends on the spin state of the particles. We 

adopt the following notation for the index A. for the c~ase of nuclear matter: 

A.= 1, 2 corresponds to protons with spin up and spin down, respectively; 

>.. = 3, 4 corresponds to neutrons with spin up and down, respectively. The 

f then form a matrix 
},1)..2 

f = 

a b 

b a 

c b 

b c 

where a describes the interaction of particles with unlike spin: and b and 

c describe the interaction of particles with the same spin but unlike and like 

isotopic spin, respectively. 

This model of nuclear matter might be called a 11four-fluid" model. 

One might expect, a priori, that in the normal modes of oscillation of the 

fluids, the density ratio would be 
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1: 1 ( -1) ( -1) 

1 : ( -1): ( -1) 1 
p '·p '·p •·p '= (9) 1 ° 2 ° 3 . 4 

1 : (- 1): 1 ( -1) 

1 1 1 1 

In the last case, the four fluids oscillate in phase, whereas in the first case 

the two proton fluids move out of phase with the two neutron fluid·so In case 

III the two spin-up fluids move out of phase with the two spin-down fluids. In 

case II, the two fluids with opposite spin and ()pposite isotopic spin are out of 

phase. We may then give these modes the appropriate names: 

I Isotopic-spin wave 

II Spin- -isotopic- spin wave 
( 1 0) 

III Spin wave 

IV Compression wave. 

Mode I is reminiscent of the Goldhaber-Teller explanation of the giant 

dipole resonance in the nuclear photoeffect. 

The actual solution of the problem gives just these normal inodes. 

In the long-wavelength limit, i.e. q ( ( p
0

, the excitation energies are 

determined by the following equation for A } 1 
q 

A A + 1 
1 - __9,_ log ____,q.__ __ 

2 A - 1 
q 

-1 
= Q (q) • (11) 

p q 
Here we have A = ~E / 0 

q q M* 
, i.e. A is the excitation energy divided 

q 

by the maximum pair excitation energy, and Q(q) is an eigenvalue with the 

following values for the four normal modes: 
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c - a I 

Q(q) ~[- ~ N V(q)J c - a II ( 12) 
8 n e 0 . c + a - 2b III 

c+a+ 2b IV 

Figure 1 shows Q -
1 

as a function of A in the range 1 (A ( CJD • We see 

that Q- 1 increases monotonically from -CJD to 0 in this range. Thus if 

Eq. (12) yields a negative value for Q- 1
, A is greater than l, and the mode 

will be a stable oscillation with an excitation energy determined by Eq. (1 1}. 

On the other hand, if Q-l is positive, the corresponding mode will be 

unstable since A will be complex, 

Although carried out for a very special case, this analysis has 

a number of interesting features. First we note that the finite range of the 

forces under consideration implies that V(O) is finite. Thus for small q, -
the eigenvalues -1 

Q , and therefore A, are independent of q. Therefore 

we have 

where v
0 

= p
0
/M* is the Fermi velocity. Thus the collective excitations 

have a phonon energy spectrum, i.e. , the excitation energy is proportional 

to the momentum. Of course we mentioned before that the operators which 

create and destroy these excitations have boson commutation rules. 

This result differs from that for the plasma oscillations of the 

electron gas and depends on the short range of the forces. On the other 

hand, the dispersion relation is similar to the one appropriate to the electron 

gas. The function Q is proportional to the Fourier transform of the 

potential; the increase in the number of degrees of freedom manifests itself 

through a different proportionality constant for each mode. 
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According to Eq. (13), A is simply the velocity of the waves in 

units of the Fermi velocity. In the limit of very weak forces, the excitation 

energies and velocities of all the modes become the same and equaL to~ the 

Fermi velocity: 

A= v 
0 

For "strong" forces we have 

c - a 

A2= 
w 

(__Q_ ) 2 c - a 

2f.L c + a -

c + a + 
2b 

2b 

I 

II 

III 

IV 

lol >> I. 

In this discussion we have considered V to be a Yukawa potential of range 

-1 2 
f.L and strength g and therefore we can write 

2 
= 4'TTg 

2 + 2 f.L q 

The frequency w
0 

is a characteristic frequency: 

2 
w = (4'TT 

0 
N 

n 
2 

g 
1 

M 
) ' 

We have also investigated the properties of the collective oscillations 

for the following nonlocal exchange interaction which is more general than 

5 
the above simple example: 

(P I p I 
1 2 

x < x.l
1 

X-2' 

IKI PlP2) = v ( iPl-~1 1 ) 2 ) w ( (£1-~2') 2 ) 
\ 1 + clg 1 · f1..2 + c2l.1 · Z..2 + c3.2:1 · .9: 2Z1 · .X.2 I x.l X-2> 

The inclusion of the exchange mixture gives rise to 16 rather than four 

modes of oscillation, although there are only four distinct eigenfrequencies. 

If G (±) represents the 4 by 4 matrix formed by the elements G 1 , 1 , (±) 
pq p p, 1\ 1\ 

with p' - = p + q, theri the oscillating amplitudes are sums of quantities like: - .......... 
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T lTi 
G(±)J d = 3 I 

pq 

T [a.T. G(±)J d = 9 II 
1 1 pq ( 14) 

T [a. G(±)J d = 3 III 
1 pq 

T [ G~~J d = 1 IV.. 

Here T [ J means the diagonal sum in the >.. space, and d is the degeneracy. 

We have kept the same labels for the modes as in the previous example because 

the density ratios of Eq. (9) and the descriptions of Eq. (10) are also suitable here. 

A more detailed discussion of these waves is given in reference 5. 

We should note that Eq. (13) is preserved and follows from the short-range 

nature of the forces, The form of the dispersion relation is modified, however, 

by the nonlocal character of the force. In addition to the function on the left 

side of Eq. (11), some of its derivatives are involved. 

Even though· A is greater than 1, there is still damping from the 
q 

terms V 1 in the original Hamiltonian left out of the discussion so far. 

Perturbation calculations of their effect on the lj.:.fetime of these states indicate 

that the condition A is greater than 1 is actually sufficient for stability. 
q 

The compressional mode IV in this simple model of nuclear matter 

is characterized by A ( 1 and, furthermore, is unstable in a growing sense. 

This is associated with the dominance of the attractive forces in this state. 

Brueckner has suggested that, in this case, the pairing proce~ure used in the 

theory of superconductivity may remove this instability. 
8 
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V. LANDAU'S THEORY OF THE FERMI LIQUID 

3 
One of the basic assumptions in Landau's theory is that the 

classification of energy levels for a system of interacting fermions, i.e. a 

"Fermi liquid, "is the same as for the ideal Fermi gas. Thus one introduces 

a distribution n(p) for the occupation of these levels which is a matrix in --
spin space. With 

-3 3 
dT = (Z1r) n d p , the total number of particles N and 

the total momentum P are -
(l5a) 

and 

P = TfdT n(p)p (15b) 
- w.l'....,.. 

The symbol T indicates, of course, a trace in spin space. Landau's next 

essential step is to introduce first and second functional derivatives of the 

total energy E with respect to the distribution function: 

oE = T ~T on (p) e·(p) ){. ,.,...,. .......... (l6a) 

oe·(~ = T'fdT 1 f~~~) on (p 1
) (l6b) 

In the Fermi gas, the particles are in states of definite momentum p ..... 
and energy E (O) = p 

2 
/2M; the equilibrium distribution at temperature kT=!)-l is 

n = 
0 [ 

!)(e 0 - p 
2
/ZM) J -1 

e + l . ( l 7) 

In the Fermi liquid, n{p) is the distribution of quasiparticles which obey 

Fermi-Dirac statistics. 'f.he energy E (p) of a quasiparticle with momentum p 
..... -

is given- by the change in the total energy E when a single quasiparticle is added : 

in that state. The interaction between quasiparticles is specified by the 

function f(p, p 1 ), and is related to the change in the energy of one quasiparticle 
-./IN' 

when another is added to the system. Thus a quasiparticle 1 s energy E (p) -
depends on the distribution of the other quasiparticles. 
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By varying the distribution such that we have oN = 0, oE = 0, and 

5S = 0, where the entropy is 

S =- k T fir [n:log n + (1-n) log (1-n~ 

the equilibrium distribution of quasiparticles is found to be 

n = [•~(<-~) +~-I 
The chemical potential 1-1 is determined from the condition N = T f drn. 

This is formally the same as the Fermi gas except that e and 1-1 depend 

implicitly on the distribution function n. 

The Fermi energy e 
0 

is defined as the chemical potential at ab~olute 

zero. One also defines the velocity of the quasiparticles as v = o e /op and 

the effective mass at the Fermi surface as M* = p
0
/v 

0
. 

With these few assumptions it is possible to study the properties of 

the system in great detaiL 
4 

To a large extent the quasiparticle interaction is 

regarded phenomenologically, subject, of course, to general invariance re­

quirements. A correlation of this model with the observed properties of He 
3 

is given by Abrikosov and Kha1atnikov. 
4 

One of the first results deduced by Landau was the speed of ordinary 

sound at absolute zero, which .was calculated from the compressibility, 

2 
c (p0/2 n)

3 
-
1 

fdn {1-cos 8) TT' [f/n}. 
4n 

( 18) 

The first term is appropriate .to the ideal Fermi gas; the second gives corrections 

from the mutual interactions between particles. Here f is the interaction 

between two quasiparticles on the Fermi surface and depends on the angle e 

between their momenta and on their ·spins. 9 

With respect to other collective oscillations, Landau introduced the 

transport equation 



~ + on 

ot or 
fV(I 

OE om 

ap 

"""" 

OE 

or 
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= I(n) . 

We consider n and e to deviate slightly from the quasiparticles 1 ground-

state distribution: 

n = 

E = 
no (_e,) + on(.;._. ~ t) 

E(O)(p) + oe(r,p,t) ....- ""'-_._,_. 

Neglecting the quasiparticle collision term I(n), we obtain the following linear 

equation: 

a - a (O) a ono 
-(on) + (on) a e - -- ( 0 E ) = 0. 
at or ap a~ op - VV\ 

"""" 
Assuming solutions of the form exp G (i_' ;:__- wt~ , we find 

ono 
(q· v - w) on = q· v (-) OE ' ( 19) 
~ "' ~ ""'- OE 

where v = oe /op is the quasiparticle velocity. Because of the derivative 
'/"""-. ~-

ono/oe on the right side, the deviations on and OE are restricted to the 

Fermi surface. By making some appropriate definitions this equation can be 

rewritten in a familiar form. Let. u = w/q be the wave velocity, 11 = u/v 

the ratio of wave to quasiparticle velocity, X the angle between two 

quasiparticle momenta ~ and .a', and (8, ~) the polar coordinates of J!. 

with respect to q. Then we find the dispersion relation 
#' 

cos$ 1 j v(tl,~) = - drl1 v(e: <j> 1 )F(x) • {20) 
11-costl 4n 

The new functions are 

on(p) 
,_., 

and 

-3 [ 2 F = 4n(2n) p 
de 

T' f(p,p 1 ~ • ..... ,..... J p'=p=po 
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These functions are analogous to the functions G (±) and K introduced 
pq 

in previous sections. For example, if the mo:rrl.entum dependence of F is 

neglected, i.e. if F is the constant +F
0

, we obtain the dispersion relation 

-F
0

- 1 =1-..llog TJ+l (21) 
2 TJ - 1 

This is identical to Eq. (Il) if - F 
0 

is replaced by Q. The similarities be-

tween Landau 1 s treatment and the microscopic theory given above can be 

demonstrated in much greater detail. Certainly this brief treatment does not 

do full justice to Landau's simple theory. It is certainly very impressive 

that he obtains these results with much les~ effort than the completely quantum 

mechanical study. An under standing <i>fthe ~relation belwee:n.-~he two· approa:ches 

10 
would be helpful in understanding the physical basis of both methods. 
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Fig. 1. The disperson function Q -
1 

of Eq •. (11) plotted as a 
function of A for 1 < A ' ao • 
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